Sample records for water avoidance stress

  1. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    PubMed

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  2. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat

    PubMed Central

    Alvarez, Pedro; Levine, Jon D.; Green, Paul G.

    2015-01-01

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2–9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50–75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. PMID:25637700

  3. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance?

    PubMed

    Zhang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (A n), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher A n, stomatal conductance (g s), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for A n and g s to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water

  4. Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs.

    PubMed

    Szota, Christopher; Farrell, Claire; Williams, Nicholas S G; Arndt, Stefan K; Fletcher, Tim D

    2017-12-15

    Green roofs are increasingly being used among the suite of tools designed to reduce the volume of surface water runoff generated by cities. Plants provide the primary mechanism for restoring the rainfall retention capacity of green roofs, but selecting plants with high water use is likely to increase drought stress. Using empirically-derived plant physiological parameters, we used a water balance model to assess the trade-off between rainfall retention and plant drought stress under a 30-year climate scenario. We compared high and low water users with either drought avoidance or drought tolerance strategies. Green roofs with low water-using, drought-avoiding species achieved high rainfall retention (66-81%) without experiencing significant drought stress. Roofs planted with other strategies showed high retention (72-90%), but they also experienced >50days of drought stress per year. However, not all species with the same strategy behaved similarly, therefore selecting plants based on water use and drought strategy alone does not guarantee survival in shallow substrates where drought stress can develop quickly. Despite this, it is more likely that green roofs will achieve high rainfall retention with minimal supplementary irrigation if planted with low water users with drought avoidance strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance.

    PubMed

    Ramirez, Karol; Shea, Daniel T; McKim, Daniel B; Reader, Brenda F; Sheridan, John F

    2015-05-01

    Psychosocial stress is associated with altered immunity, anxiety and depression. Previously we showed that repeated social defeat (RSD) promoted microglia activation and social avoidance behavior that persisted for 24days after cessation of RSD. The aim of the present study was to determine if imipramine (a tricyclic antidepressant) would reverse RSD-inducedsocial avoidance and ameliorate neuroinflammatory responses. To test this, C57BL/6 mice were divided into treatment groups. One group from RSD and controls received daily injections of imipramine for 24days, following 6 cycles of RSD. Two other groups were treated with saline. RSD mice spent significantly less time in the interaction zone when an aggressor was present in the cage. Administration of imipramine reversed social avoidance behavior, significantly increasing the interaction time, so that it was similar to that of control mice. Moreover, 24days of imipramine treatment in RSD mice significantly decreased stress-induced mRNA levels for IL-6 in brain microglia. Following ex vivo LPS stimulation, microglia from mice exposed to RSD, had higher mRNA expression of IL-6, TNF-α, and IL-1β, and this was reversed by imipramine treatment. In a second experiment, imipramine was added to drinking water confirming the reversal of social avoidant behavior and decrease in mRNA expression of IL-6 in microglia. These data suggest that the antidepressant imipramine may exert its effect, in part, by down-regulating microglial activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance

    PubMed Central

    Ramirez, Karol; Shea, Daniel T.; McKim, Daniel B.; B.F., Reader; Sheridan, John F.

    2015-01-01

    Psychosocial stress is associated with altered immunity, anxiety and depression. Previously we showed that repeated social defeat (RSD) promoted microglia activation and social avoidance behavior that persisted for 24 days after cessation of RSD. The aim of the present study was to determine if imipramine (a tricyclic antidepressant) would reverse RSD-induced social avoidance and ameliorate neuroinflammatory responses. To test this, C57BL/6 mice were divided into treatment groups. One group from RSD and controls received daily injections of imipramine for 24 days, following 6 cycles of RSD. Two other groups were treated with saline. RSD mice spent significantly less time in the interaction zone when an aggressor was present in the cage. Administration of imipramine reversed social avoidance behavior, significantly increasing the interaction time, so that it was similar to that of control mice. Moreover, 24 days of imipramine treatment in RSD mice significantly decreased stress-induced mRNA levels for IL-6 in brain microglia. Following ex vivo LPS stimulation, microglia from mice exposed to RSD, had higher mRNA expression of IL-6, TNF-α, and IL-1β, and this was reversed by imipramine treatment. In a second experiment, imipramine was added to drinking water confirming the reversal of social avoidant behavior and decrease in mRNA expression of IL-6 in microglia. These data suggest that the antidepressant imipramine may exert its effect, in part, by down-regulating microglial activation. PMID:25701613

  7. Urban water restrictions: Attitudes and avoidance

    NASA Astrophysics Data System (ADS)

    Cooper, Bethany; Burton, Michael; Crase, Lin

    2011-12-01

    In most urban cities across Australia, water restrictions remain the dominant policy mechanism to restrict urban water consumption. The extensive adoption of water restrictions as a means to limit demand, over several years, means that Australian urban water prices have consistently not reflected the opportunity cost of water. Given the generally strong political support for water restrictions and the likelihood that they will persist for some time, there is value in understanding households' attitudes in this context. More specifically, identifying the welfare gains associated with avoiding urban water restrictions entirely would be a nontrivial contribution to our knowledge and offer insights into the benefits of alternative policy responses. This paper describes the results from a contingent valuation study that investigates consumers' willingness to pay to avoid urban water restrictions. Importantly, the research also investigates the influence of cognitive and exogenous dimensions on the utility gain associated with avoiding water restrictions. The results provide insights into the impact of the current policy mechanism on economic welfare.

  8. Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata)

    PubMed Central

    Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi

    2013-01-01

    Background and Aims Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure. Methods The response of Siebold's beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data. Key Results The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold's beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity. Conclusions Ozone-induced stomatal closure in Siebold's beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system. PMID:23904447

  9. Water-avoidance stress enhances gastric contractions in freely moving conscious rats: role of peripheral CRF receptors.

    PubMed

    Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Okumura, Toshikatsu

    2014-05-01

    Stress alters gastrointestinal motility through central and peripheral corticotropin-releasing factor (CRF) pathways. Accumulating evidence has demonstrated that peripheral CRF is deeply involved in the regulation of gastric motility, and enhances gastric contractions through CRF receptor type 1 (CRF1) and delays gastric emptying (GE) through CRF receptor type 2 (CRF2). Since little is known whether water-avoidance stress (WAS) alters gastric motility, the present study tried to clarify this question and the involvement of peripheral CRF receptor subtypes in the mechanisms. We recorded intraluminal gastric pressure waves using a perfused manometric method. The rats were anesthetized and the manometric catheter was inserted into the stomach 4-6 days before the experiments. We assessed the area under the manometric trace as the motor index (MI), and compared this result with those obtained 1 h before and after initiation of WAS in nonfasted conscious rats. Solid GE for 1 h was also measured. WAS significantly increased gastric contractions. Intraperitoneal (ip) administration of astressin (100 μg/kg, 5 min prior to stress), a nonselective CRF antagonist, blocked the response to WAS. On the other hand, pretreatment (5 min prior to stress) with neither astressin2-B (200 μg/kg, ip), a selective CRF2 antagonist, nor urocortin 2 (30 μg/kg, ip), a selective CRF2 agonist, modified the response to WAS. These drugs did not alter the basal MI. WAS did not change GE. WAS may activate peripheral CRF1 but not CRF2 signaling and stimulates gastric contractions without altering GE.

  10. Confronting Future Risks of Global Water Stress and Sustainability: Avoided Changes Versus Adaptive Actions

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C.; Paltsev, S.; Monier, E.; Sokolov, A. P.; Winchester, N.; Chen, H.; Kicklighter, D. W.; Ejaz, Q.

    2016-12-01

    We examine the fate of global water resources under a range of self-consistent socio-economic projections using the MIT Integrated Global System Model (IGSM) under a range of plausible mitigation and adaptation scenarios of development to the water-energy-land systems and against an assessment of the results from the UN COP-21 meeting. We assess the trends of an index of managed water stress as well as unmet water demands as simulated by the Water Resource System within the IGSM framework (IGSM-WRS). The WRS is forced by the simulations of the global climate response, variations in regional climate pattern changes, as well as the socio-economic drivers from the IGSM scenarios. We focus on the changes in water-stress metrics in the coming decades and going into the latter half of this century brought about by our projected climate and socio-economic changes, as well as the total (additional) populations affected by increased stress. We highlight selected basins to demonstrate sensitivities and interplay between supply and demand, the uncertainties in global climate sensitivity as well as regional climate change, and their implications to assessing and reducing water risks and the populations affected by water scarcity. We also evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. We highlight the importance of adaptive measures that will be required, worldwide, to meet surface-water shortfalls even under more aggressive and certainly under intermediate climate mitigation pathways - and further analyses is presented in this context quantifying risks averted and their associated costs. In addition, we also demonstrate that the explicit representation of irrigated land within this intergrated modeling frameowork has a small impact on food, bioenergy and deforestation outcomes within the scenarios considered

  11. Experiential avoidance as a moderator of the relationship between anxiety sensitivity and perceived stress.

    PubMed

    Bardeen, Joseph R; Fergus, Thomas A; Orcutt, Holly K

    2013-09-01

    Given the significant deleterious effects of stress on psychological and physical well-being, the present two-part study sought to clarify relations among putative vulnerability factors (i.e., anxiety sensitivity, experiential avoidance) for perceived stress. Relations among anxiety sensitivity, experiential avoidance, and perceived stress were examined using a large college student sample (N=400) in Study 1 and were replicated using a large community sample (N=838) in Study 2. As predicted, experiential avoidance moderated the relationship between anxiety sensitivity and perceived stress. Contrary to expectations, simple effects in both studies revealed that anxiety sensitivity shared a significant positive association with perceived stress at low, but not high, levels of experiential avoidance. The moderating role of experiential avoidance was found to be robust to the effects of general distress. Moreover, anxiety sensitivity and experiential avoidance evidenced a differential pattern of relations with perceived stress than was evidenced with related negative affective states (i.e., anxiety and depression). The present results suggest that experiential avoidance appears to be a vulnerability factor of particular importance for understanding the phenomenology of perceived stress. Conceptual and clinical implications are discussed. Copyright © 2013. Published by Elsevier Ltd.

  12. Stress Generation, Avoidance Coping, and Depressive Symptoms: A 10-Year Model

    PubMed Central

    Holahan, Charles J.; Moos, Rudolf H.; Holahan, Carole K.; Brennan, Penny L.; Schutte, Kathleen K.

    2011-01-01

    This study examined (a) the role of avoidance coping in prospectively generating both chronic and acute life stressors and (b) the stress-generating role of avoidance coping as a prospective link to future depressive symptoms. Participants were 1,211 late-middle-aged individuals (500 women and 711 men) assessed 3 times over a 10-year period. As predicted, baseline avoidance coping was prospectively associated with both more chronic and more acute life stressors 4 years later. Furthermore, as predicted, these intervening life stressors linked baseline avoidance coping and depressive symptoms 10 years later, controlling for the influence of initial depressive symptoms. These findings broaden knowledge about the stress-generation process and elucidate a key mechanism through which avoidance coping is linked to depressive symptoms. PMID:16173853

  13. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark.

    PubMed

    Nauš, Jan; Šmecko, Slavomír; Špundová, Martina

    2016-08-01

    In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.

  14. Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner

    PubMed Central

    Lee, Ju Yup; Nam, Ryoung Hee; Sohn, Sung Hwa; Lee, Sun Min; Choi, Daeun; Yoon, Hyuk; Kim, Yong Sung; Lee, Hye Seung; Lee, Dong Ho

    2017-01-01

    The colonic response to stress is greater in female rats than in male rats. The aim of this study was to evaluate the effect of probiotics in the repeated water avoidance stress (rWAS)-induced colonic microinflammation model of Wistar rats in a sex-specific manner. The three groups (no-stress, WAS, and WAS with probiotics) were exposed to r-WAS for 1 h daily for 10 days, and Lactobacillus farciminis was administered by oral gavage for 10 days to animals in the probiotics group. The visceromotor response (VMR) to colorectal distension (CRD) was assessed using a barostat and noninvasive manometry before and after WAS exposure. Immunohistochemistry for mast cells and real-time polymerase chain reaction (RT-PCR) for detection of mucosal cytokines were performed using distal colon tissue after the animals were sacrificed. Significant reduction of VMR to CRD (visceral analgesia) was observed at 60 mmHg in the female WAS group (P = 0.045), but not in males. In addition, the female WAS with probiotics group showed a significantly lower colonic mucosal mast cell count in comparison to the female WAS group (P = 0.013), but this phenomenon was not observed in the male group. The colonic mucosal mRNA levels of interferon-γ (IFNR), tumor necrosis factor-α (TNFA), interleukin (IL) 6, and IL17 were higher in the female WAS group than in the male WAS group. The mRNA levels of IFNR, TNFA, and IL6 were significantly decreased in WAS females who received probiotics (all P < 0.050). In conclusion, rWAS is induced in a sex-specific manner. A 10-day-long treatment with L. farciminis is an effective therapy for rWAS-induced colonic microinflammation in female rates, but not in male rats. PMID:29244820

  15. Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner.

    PubMed

    Lee, Ju Yup; Kim, Nayoung; Nam, Ryoung Hee; Sohn, Sung Hwa; Lee, Sun Min; Choi, Daeun; Yoon, Hyuk; Kim, Yong Sung; Lee, Hye Seung; Lee, Dong Ho

    2017-01-01

    The colonic response to stress is greater in female rats than in male rats. The aim of this study was to evaluate the effect of probiotics in the repeated water avoidance stress (rWAS)-induced colonic microinflammation model of Wistar rats in a sex-specific manner. The three groups (no-stress, WAS, and WAS with probiotics) were exposed to r-WAS for 1 h daily for 10 days, and Lactobacillus farciminis was administered by oral gavage for 10 days to animals in the probiotics group. The visceromotor response (VMR) to colorectal distension (CRD) was assessed using a barostat and noninvasive manometry before and after WAS exposure. Immunohistochemistry for mast cells and real-time polymerase chain reaction (RT-PCR) for detection of mucosal cytokines were performed using distal colon tissue after the animals were sacrificed. Significant reduction of VMR to CRD (visceral analgesia) was observed at 60 mmHg in the female WAS group (P = 0.045), but not in males. In addition, the female WAS with probiotics group showed a significantly lower colonic mucosal mast cell count in comparison to the female WAS group (P = 0.013), but this phenomenon was not observed in the male group. The colonic mucosal mRNA levels of interferon-γ (IFNR), tumor necrosis factor-α (TNFA), interleukin (IL) 6, and IL17 were higher in the female WAS group than in the male WAS group. The mRNA levels of IFNR, TNFA, and IL6 were significantly decreased in WAS females who received probiotics (all P < 0.050). In conclusion, rWAS is induced in a sex-specific manner. A 10-day-long treatment with L. farciminis is an effective therapy for rWAS-induced colonic microinflammation in female rates, but not in male rats.

  16. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits.

    PubMed

    Yoshimura, Kazuya; Masuda, Akiko; Kuwano, Masayoshi; Yokota, Akiho; Akashi, Kinya

    2008-02-01

    Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild watermelon (Citrullus lanatus sp.), which exhibits extraordinarily high drought resistance. At the early stage of drought stress, root development of wild watermelon was significantly enhanced compared with that of the irrigated plants, indicating the activation of a drought avoidance mechanism for absorbing water from deep soil layers. Consistent with this observation, comparative proteome analysis revealed that many proteins induced in the early stage of drought stress are involved in root morphogenesis and carbon/nitrogen metabolism, which may contribute to the drought avoidance via the enhancement of root growth. On the other hand, lignin synthesis-related proteins and molecular chaperones, which may function in the enhancement of physical desiccation tolerance and maintenance of protein integrity, respectively, were induced mostly at the later stage of drought stress. Our findings suggest that this xerophyte switches survival strategies from drought avoidance to drought tolerance during the progression of drought stress, by regulating its root proteome in a temporally programmed manner. This study provides new insights into the complex molecular networks within plant roots involved in the adaptation to adverse environments.

  17. Leaf movements and photoinhibition in relation to water stress in field-grown beans.

    PubMed

    Pastenes, Claudio; Pimentel, Paula; Lillo, Jacob

    2005-01-01

    Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.

  18. Post-Traumatic Stress Avoidance is Attenuated by Corticosterone and Associated with Brain Levels of Steroid Receptor Co-Activator-1 in Rats

    PubMed Central

    Whitaker, Annie M.; Farooq, Muhammad A.; Edwards, Scott; Gilpin, Nicholas W.

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our laboratory has established a rodent model of stress that mimics the avoidance symptom cluster of PTSD. Rats are classified as ‘Avoiders’ or ‘Non-Avoiders’ post-stress based on avoidance of a predator-odor paired context. Previously, we demonstrated that Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration prior to stress would reduce magnitude and incidence of avoidance of a stress-paired context. Furthermore, we predicted that Avoiders would exhibit altered expression of GR signaling machinery elements, such as steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pre-treated with corticosterone (25 mg/kg) or saline and exposed to predator odor stress paired with a context, and tested for avoidance 24 h later, A second group of corticosterone-naïve rats (n = 24) were stressed (or not stressed), indexed for avoidance 24 h later, and killed 48 h post-odor exposure for analysis of phosphorylated GR, FKBP51, and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that express high quantities of GRs and regulate HPA function. Rats pre-treated with corticosterone exhibited lower magnitude and incidence of avoidance. Predator odor exposure also reduced SRC-1 expression in the PVN and CeA of Avoiders, and increased SRC-1 expression in the VH of Avoiders. SRC-1 expression in PVN, CeA, and VH was predicted by prior avoidance behavior. These results suggest that blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats. PMID:26482332

  19. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats.

    PubMed

    Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.

  20. Avoidance symptoms and assessment of posttraumatic stress disorder in Arab immigrant women.

    PubMed

    Norris, Anne E; Aroian, Karen J

    2008-10-01

    This study investigates whether the avoidance symptom criterion required for a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994) diagnosis of posttraumatic stress disorder (PTSD) is overly conservative. Arab immigrant women (N = 453), many of whom reported experiencing multiple traumatic events, completed the Posttraumatic Diagnostic Scale in Arabic as part of a face to face interview. Analyses indicated all but one avoidance symptom was reported less frequently than reexperiencing and arousal symptoms. However, those who fully met reexperiencing, avoidance, and arousal symptom criteria had worse symptom severity and functioning than those who fully met reexperiencing and arousal symptom criteria, but only partially met avoidance symptom criterion. Study findings support importance of the PTSD avoidance symptom criterion.

  1. Struggling in an emotional avoidance culture: a qualitative study of stress as a predisposing factor for somatoform disorders.

    PubMed

    Lind, Annemette Bondo; Delmar, Charlotte; Nielsen, Klaus

    2014-02-01

    To explore patterns of experienced stress and stress reactions before the onset of illness in the life history of patients with severe somatoform disorders to identify predisposing stress-mechanisms. A systematic, thematic analysis was conducted on data collected from 24 semi-structured individual life history interviews. Generally, patients had experienced high psychosocial stress during childhood/youth. However, there was considerable variability. Characteristic of all patients were narrations of how communication with significant adults about problems, concerns, and emotions related to stress were experienced to be difficult. The patients described how this involved conflicts stemming from perceived absent, insufficient, or dismissive communication during interactions with significant adults. We conceptualized this empirically based core theme as "emotional avoidance culture." Further, three related subthemes were identified: Generally, patients 1.) experienced difficulties communicating problems, concerns, and related complex feelings in close social relations; 2.) adapted their emotional reactions and communication to an emotional avoidance culture, suppressing their needs, vulnerability and feelings of sadness and anger that were not recognized by significant adults; and 3.) disconnected their stress reaction awareness from stressful bodily sensations by using avoidant behaviors e.g. by being highly active. Patients adapted to an emotional avoidance culture characterized by difficult and conflicting communication of concerns and related emotions in social interactions with significant adults. Patients experienced low ability to identify and express stress-related cognitions, emotions and feelings, and low bodily and emotional self-contact, which made them vulnerable to stressors. Generally, patients resolved stress by avoidant behaviors, prolonging their stress experience. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Gastrodia elata Bl. Attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze.

    PubMed

    Chen, Pei-Ju; Liang, Keng-Chen; Lin, Hui-Chen; Hsieh, Ching-Liang; Su, Kuan-Pin; Hung, Mei-Chu; Sheen, Lee-Yan

    2011-06-01

    This study adopted the forced-swimming paradigm to induce depressive symptoms in rats and evaluated the effects on learning and memory processing. Furthermore, the effects of the water extract of Gastrodia elata Bl., a well-known Chinese traditional medicine, on amnesia in rats subjected to the forced-swimming procedure were studied. Rats were subjected to the forced-swimming procedure, and the inhibitory avoidance task and Morris water maze were used to assess learning and memory performance. The acquisition of the two tasks was mostly impaired after the 15-minute forced-swimming procedure. Administration of the water extract of G. elata Bl. for 21 consecutive days at a dosage of 0.5 or 1.0 g/kg of body weight significantly improved retention in the inhibitory avoidance test, and the lower dose showed a better effect than the higher one and the antidepressant fluoxetine (18 mg/kg of body weight). In the Morris water maze, the lower dose of the water extract of G. elata Bl. significantly improved retention by shortening escape latency in the first test session and increasing the time in searching the target zone during the probe test. These findings suggest that water extracts of G. elata Bl. ameliorate the learning and memory deficits induced by forced swimming.

  3. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    NASA Astrophysics Data System (ADS)

    Manivasagam, V. S.; Nagarajan, R.

    2018-04-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with

  4. Acculturative stress and experiential avoidance: relations to depression, suicide, and anxiety symptoms among minority college students.

    PubMed

    Zvolensky, Michael J; Jardin, Charles; Garey, Lorra; Robles, Zuzuky; Sharp, Carla

    2016-11-01

    Although college campuses represent strategic locations to address mental health disparity among minorities in the US, there has been strikingly little empirical work on risk processes for anxiety/depression among this population. The present investigation examined the interactive effects of acculturative stress and experiential avoidance in relation to anxiety and depressive symptoms among minority college students (n = 1,095; 78.1% female; Mage = 21.92, SD = 4.23; 15.1% African-American (non-Hispanic), 45.3% Hispanic, 32.5% Asian, and 7.1% other races/ethnicities. Results provided empirical evidence of an interaction between acculturative stress and experiential avoidance for suicidal, social anxiety, and anxious arousal symptoms among the studied sample. Inspection of the significant interactions revealed that acculturative stress was related to greater levels of suicidal symptoms, social anxiety, and anxious arousal among minority college students with higher, but not lower, levels of experiential avoidance. However, in contrast to prediction, there was no significant interaction for depressive symptoms. Together, these data provide novel empirical evidence for the clinically-relevant interplay between acculturative stress and experiential avoidance in regard to a relatively wide array of negative emotional states among minority college students.

  5. How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers

    NASA Astrophysics Data System (ADS)

    Munia, Hafsa Ahmed; Guillaume, Joseph H. A.; Mirumachi, Naho; Wada, Yoshihide; Kummu, Matti

    2018-05-01

    Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status - i.e. they are not yet dependent on upstream water to avoid stress - but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning

  6. Avoidant Coping and Treatment Outcome in Rape-Related Posttraumatic Stress Disorder

    PubMed Central

    Leiner, Amy S.; Kearns, Megan C.; Jackson, Joan L.; Astin, Millie C.; Rothbaum, Barbara O.

    2012-01-01

    Objective This study investigated the impact of avoidant coping on treatment outcome in rape-related PTSD. Method Adult women with rape-related Posttraumatic Stress Disorder (PTSD; N = 62) received nine sessions of prolonged exposure (PE) or eye movement desensitization and reprocessing (EMDR). Mean age for sample was 34.7 years old, and race or ethnicity was reported as 67.7% Caucasian, 25.8% African American, 3.2% Latina, and 3.2% Other. PTSD was assessed with the PTSD Symptom Scale-Self Report and avoidant coping was assessed using the Disengagement Subscale of the Coping Strategies Inventory (CSI-D). Results Pretreatment avoidant coping was negatively associated with posttreatment PTSD symptom severity even when controlling for initial severity of total PTSD symptoms and when removing PTSD avoidance symptoms from the analysis to account for potential overlap between avoidant coping and PTSD avoidance symptoms (ΔR2 = .08, b* = −0.31, 95% CI [−0.17, −0.01], t (60) = −2.27, p = .028). The CSI-D mean score of 100 predicted a 96% likelihood of experiencing clinically significant change (CSC) during treatment. A CSI-D mean score of 61 was associated with a 40% likelihood of experiencing CSC. Conclusions PE and EMDR appear to be beneficial for women who frequently engage in avoidant coping responses following rape. A small subset of women with initially low levels of avoidant coping are unlikely to experience a therapeutic response from PE or EMDR. PMID:22229757

  7. Type D personality, stress, and symptoms of burnout: the influence of avoidance coping and social support.

    PubMed

    Polman, Remco; Borkoles, Erika; Nicholls, Adam R

    2010-09-01

    This study investigated whether approach coping, avoidance coping, or perceptions of available social support mediated the relationship between Type D personality and perceived stress. Furthermore, this research also examined whether Type D moderated the relationship between perceived stress and symptoms of burnout. In this cross-sectional study, 334 (male N=180; female N=154) first-year undergraduate students completed the Type D Scale-14 (DS14), the Brief Approach/Avoidance Coping Questionnaire, Perceived Stress Scale, Multidimensional Scale of Perceived Social Support, and the Oldenburg Burnout Inventory. Cross-sectional. Multiple mediation analysis revealed that only resignation and withdrawal coping, but not social support partially mediated the relationship between Type D and perceived stress. A small moderation effect was found for the disengagement subscale of the burnout inventory, with Type D individuals experiencing higher levels of disengagement at low and average stress levels. The correlations between variables provided support for most of the prediction from the literature with regard to Type D. Of the participants in the present study, 24.9% were classified as Type D. These individuals tend to use more passive and maladaptive avoidance coping strategies such as resignation and withdrawal. This is associated with higher levels of perceived stress and linked to increased levels of burnout symptoms.

  8. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  9. Plant Water Stress Detection Using Radar: The Influence Of Water Stress On Leaf Dielectric Properties

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick

    2015-04-01

    Recent research on an agricultural maize canopy has demonstrated that leaf water content can change considerably during the day and in response to water stress. Model simulations suggest that these changes have a significant impact on radar backscatter, particularly in times of water stress. Radar is already used for several vegetation and soil monitoring applications, and might be used for water stress detection in agricultural canopies. Radar observations of the land surface are sensitive because it results in two-way attenuation of the reflected signal from the soil surface, and vegetation contributes to total backscatter from the canopy itself. An important driver that determines the impact of vegetation on backscatter is the dielectric constant of the leaves, which is primarily a function of their moisture content. Understanding the effects of water stress on the dynamics of leaf dielectric properties might shed light on how radar can be used to detect vegetation water stress. Previous studies have investigated the dielectric properties of vegetation. However, this has mainly been done using destructive sampling or in-vivo measurements of tree trunks. Unfortunately, few in-vivo measurements of leaf dielectric properties exist. This study presents datasets of in-vivo dielectric measurements of maize leaves, taken during two field experiments. One experiment was done using was done during a period of water stress, the other during a period without. Field measurements revealed a different vertical profile in dielectric properties for the period with and without water stress. During a period of increased water stress, the diurnal dynamics of leaves at different heights responded differently to a decrease in bulk moisture content. This study provides insight in the effect of water stress on leaf dielectric properties and water content, and highlights the potential use of radar for water stress detection in agricultural canopies.

  10. Avoidant Coping and Treatment Outcome in Rape-Related Posttraumatic Stress Disorder

    ERIC Educational Resources Information Center

    Leiner, Amy S.; Kearns, Megan C.; Jackson, Joan L.; Astin, Millie C.; Rothbaum, Barbara O.

    2012-01-01

    Objective: This study investigated the impact of avoidant coping on treatment outcome in rape-related posttraumatic stress disorder (PTSD). Method: Adult women with rape-related PTSD (N = 62) received 9 sessions of prolonged exposure (PE) or eye movement desensitization and reprocessing (EMDR). The mean age for the sample was 34.7 years, and race…

  11. The water avoidance stress induces bladder pain due to a prolonged alpha1A adrenoceptor stimulation.

    PubMed

    Matos, Rita; Serrão, Paula; Rodriguez, Larissa; Birder, Lori Ann; Cruz, Francisco; Charrua, Ana

    2017-08-01

    Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) remains an elusive disease with the cause for the pain unclear. BPS/IC patients present increased sympathetic activity and high levels of urinary noradrenaline. At the experimental level, it has been shown that chronic adrenergic stimulation produces pain and bladder changes through an alpha 1A adrenoceptor mediated mechanism. Water avoidance stress (WAS) in rodents reproduces signs of nociception and bladder changes seen in BPS/IC patients. In this study, we explore the possible role of alpha 1A adrenoceptor in bladder pain and morphological changes. WAS was induced in a group of female Wistar rats. A separate WAS group received 0.2 mg/kg day silodosin (WAS + S). Lower abdominal pain was determined by performing sensitivity to Von Frey filaments. Bladder reflex activity was determined by cystometry in anaesthetised animals. Urine was collected for noradrenaline quantification by HPLC. Bladders were harvested and stained with Haematoxylin-eosin (to analyse urothelial morphology and to determine the disruption of surface umbrella cells) or with Toluidine Blue 0.1% to analyse mast cell infiltration. WAS increased urinary noradrenaline level and bladder frequency and decreased mechanical pain threshold, which was reversed by silodosin. WAS induced lymphocytic and mast cells infiltration in the mucosa and mild urothelial disruption, which was absent in WAS + S group. Alpha 1A adrenoceptor stimulation has an important role in the appearance of bladder pain in rats. Since BPS/IC patients present high levels of noradrenaline, alpha 1A stimulation may be an additional trigger for bladder dysfunction presented by these patients. Further studies will determine the clinical relevance of this finding in the treatment of BPS/IC patients.

  12. Investigation of automatic avoidance in displaced individuals with chronic Posttraumatic Stress Disorder (PTSD).

    PubMed

    Wittekind, Charlotte E; Behmer, Friederike; Muhtz, Christoph; Fritzsche, Anja; Moritz, Steffen; Jelinek, Lena

    2015-08-30

    Avoidance of trauma-related stimuli is a key feature of Posttraumatic Stress Disorder (PTSD). However, avoidance has almost exclusively been investigated with explicit measures targeting more strategic aspects of behavior. The aim of the present study was to examine automatic avoidance in older individuals displaced as children at the end of World War II with (n=22) and without PTSD (n=26) and in non-traumatized control participants (n=23) with an Approach-Avoidance Task (AAT). Participants were instructed to respond to the color (gray, brown) of trauma-related, neutral, and control pictures by pushing or pulling a joystick. Groups did not differ significantly as to their behavioral tendencies towards trauma-related pictures. Thus, there was no evidence for automatic avoidance in individuals with PTSD. However, high vigilance was associated with stronger implicit avoidance towards trauma-related pictures in the PTSD group. Several explanations for the non-significant results as well as implications and limitations of the present findings are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Injury-related fear-avoidance and symptoms of posttraumatic stress in parents of children with burns.

    PubMed

    Willebrand, M; Sveen, J

    2016-03-01

    Parents of children with burns experience a range of psychological reactions and symptoms, and parents' health is known to impact children's health. So far, there is little research into potential mechanisms that maintain parents' symptoms. The aim was to investigate parental injury-related fear-avoidance, and its associations with injury severity and health measures. Parents (n=107) of children aged 0.4-18 years that sustained burns 0.1-9.0 years previously completed questionnaires on fear-avoidance, posttraumatic stress, and health of the child. Analyses showed that the average level of fear-avoidance was low and positively associated with measures of injury severity and parents' symptoms of posttraumatic stress, and negatively associated with parents' ratings of their child's health. In two separate multiple regressions with parents' symptoms of PTSD and the child's health as dependent variables, fear-avoidance made the largest contribution in both models while injury severity was non-significant. Results were not related to comorbid conditions of the child, scarring, or parent-related socio-demographic variables. In summary, injury-related fear-avoidance is more likely among parents whose children sustain more severe burns. In turn, fear-avoidance contributes significantly to parents' symptoms of PTSD and to poorer health ratings regarding the child, irrespective of injury severity or child comorbidity. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. Avoidance threshold to oil water-soluble fraction by a juvenile marine teleost fish.

    PubMed

    Claireaux, Guy; Quéau, Pierre; Marras, Stefano; Le Floch, Stéphane; Farrell, Anthony P; Nicolas-Kopec, Annabelle; Lemaire, Philippe; Domenici, Paolo

    2018-03-01

    When oil spills occur, behavior is the first line of defense for a fish to avoid being contaminated. We determined the avoidance threshold of the European seabass (Dicentrarchus labrax) to the water-soluble fraction (WSF) of oil using a dual-flow choice box. The results showed that a plume of 20%-diluted WSF (total polycyclic aromatic hydrocarbon [PAH] concentration: 8.54 μg L -1 ) triggered a significant avoidance response that was detected within 7.5 min of introducing WSF-contaminated water into the experimental setup. However, the ecological relevance of seabass capacity to detect and avoid WSF remains to be established. In the short term, such a response is indeed liable to reduce seabass contact time with oil-contaminated water and thus preserve their functional integrity. In the long term, however, avoidance may contribute to the displacement of a population into a possibly less auspicious environment, with consequences very similar to those of contaminant exposure, that is, disturbed population dynamics and demography. Environ Toxicol Chem 2018;37:854-859. © 2017 SETAC. © 2017 SETAC.

  15. Oncologists' communication about end of life: the relationship among secondary traumatic stress, compassion satisfaction, and approach and avoidance communication.

    PubMed

    Granek, Leeat; Nakash, Ora; Cohen, Michal; Ben-David, Merav; Ariad, Samuel

    2017-11-01

    Oncologists must communicate effectively with patients and their families about end of life (EOL). Despite the importance of communicating on this topic, many oncologists avoid these conversations. The objective of this study was to examine the associations between secondary traumatic stress and compassion satisfaction and approach and avoidant communication about EOL with cancer patients. A convenience sample of 79 oncologists (n = 27 men, n = 52 women) participated in the study. Oncologists completed a survey that included a sociodemographic and clinical information questionnaire, the Professional Quality of Life Scale, and Communication about End of Life Survey. To examine the effect of secondary traumatic stress and compassion satisfaction on approach and avoidant communication, while controlling for gender and age, 2 hierarchical linear regression analyses were computed. Oncologists reported high levels of secondary traumatic stress and high compassion satisfaction. Scores on the approach and avoidant communication scales were in the mid-range of the scale. Lower reports of secondary traumatic stress and higher compassion satisfaction were associated with higher approach communication strategies: however, only higher secondary traumatic stress was associated with higher avoidant communication strategies. Our findings indicate that there is an association between emotional factors and approach communication. The findings have clinical implications in designing effective communication skills training. Further research and training should take secondary traumatic stress and compassion satisfaction into consideration to be able to ensure that terminal patients and their families receive the best quality EOL care. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  17. Variability in emotional responsiveness and coping style during active avoidance as a window onto psychological vulnerability to stress.

    PubMed

    Gorka, Adam X; LaBar, Kevin S; Hariri, Ahmad R

    2016-05-01

    Individual differences in coping styles are associated with psychological vulnerability to stress. Recent animal research suggests that coping styles reflect trade-offs between proactive and reactive threat responses during active avoidance paradigms, with proactive responses associated with better stress tolerance. Based on these preclinical findings, we developed a novel instructed active avoidance paradigm to characterize patterns of proactive and reactive responses using behavioral, motoric, and autonomic measures in humans. Analyses revealed significant inter-individual variability not only in the magnitude of general emotional responsiveness but also the likelihood to specifically express proactive or reactive responses. In men but not women, individual differences in general emotional responsiveness were linked to increased trait anxiety while proactive coping style was linked to increased trait aggression. These patterns are consistent with preclinical findings and suggest that instructed active avoidance paradigms may be useful in assessing psychological vulnerability to stress using objective behavioral measures. Copyright © 2016. Published by Elsevier Inc.

  18. Parasite stress and pathogen avoidance relate to distinct dimensions of political ideology across 30 nations.

    PubMed

    Tybur, Joshua M; Inbar, Yoel; Aarøe, Lene; Barclay, Pat; Barlow, Fiona Kate; de Barra, Mícheál; Becker, D Vaughn; Borovoi, Leah; Choi, Incheol; Choi, Jong An; Consedine, Nathan S; Conway, Alan; Conway, Jane Rebecca; Conway, Paul; Adoric, Vera Cubela; Demirci, Dilara Ekin; Fernández, Ana María; Ferreira, Diogo Conque Seco; Ishii, Keiko; Jakšić, Ivana; Ji, Tingting; van Leeuwen, Florian; Lewis, David M G; Li, Norman P; McIntyre, Jason C; Mukherjee, Sumitava; Park, Justin H; Pawlowski, Boguslaw; Petersen, Michael Bang; Pizarro, David; Prodromitis, Gerasimos; Prokop, Pavol; Rantala, Markus J; Reynolds, Lisa M; Sandin, Bonifacio; Sevi, Bariş; De Smet, Delphine; Srinivasan, Narayanan; Tewari, Shruti; Wilson, Cameron; Yong, Jose C; Žeželj, Iris

    2016-11-01

    People who are more avoidant of pathogens are more politically conservative, as are nations with greater parasite stress. In the current research, we test two prominent hypotheses that have been proposed as explanations for these relationships. The first, which is an intragroup account, holds that these relationships between pathogens and politics are based on motivations to adhere to local norms, which are sometimes shaped by cultural evolution to have pathogen-neutralizing properties. The second, which is an intergroup account, holds that these same relationships are based on motivations to avoid contact with outgroups, who might pose greater infectious disease threats than ingroup members. Results from a study surveying 11,501 participants across 30 nations are more consistent with the intragroup account than with the intergroup account. National parasite stress relates to traditionalism (an aspect of conservatism especially related to adherence to group norms) but not to social dominance orientation (SDO; an aspect of conservatism especially related to endorsements of intergroup barriers and negativity toward ethnic and racial outgroups). Further, individual differences in pathogen-avoidance motives (i.e., disgust sensitivity) relate more strongly to traditionalism than to SDO within the 30 nations.

  19. Parasite stress and pathogen avoidance relate to distinct dimensions of political ideology across 30 nations

    PubMed Central

    Tybur, Joshua M.; Inbar, Yoel; Aarøe, Lene; Barclay, Pat; Barlow, Fiona Kate; de Barra, Mícheál; Becker, D. Vaughn; Borovoi, Leah; Choi, Incheol; Choi, Jong An; Consedine, Nathan S.; Conway, Alan; Conway, Jane Rebecca; Conway, Paul; Adoric, Vera Cubela; Demirci, Dilara Ekin; Fernández, Ana María; Ferreira, Diogo Conque Seco; Ishii, Keiko; Jakšić, Ivana; Ji, Tingting; van Leeuwen, Florian; Lewis, David M. G.; Li, Norman P.; McIntyre, Jason C.; Mukherjee, Sumitava; Park, Justin H.; Pawlowski, Boguslaw; Petersen, Michael Bang; Pizarro, David; Prodromitis, Gerasimos; Prokop, Pavol; Rantala, Markus J.; Reynolds, Lisa M.; Sandin, Bonifacio; Sevi, Bariş; De Smet, Delphine; Srinivasan, Narayanan; Tewari, Shruti; Wilson, Cameron; Yong, Jose C.; Žeželj, Iris

    2016-01-01

    People who are more avoidant of pathogens are more politically conservative, as are nations with greater parasite stress. In the current research, we test two prominent hypotheses that have been proposed as explanations for these relationships. The first, which is an intragroup account, holds that these relationships between pathogens and politics are based on motivations to adhere to local norms, which are sometimes shaped by cultural evolution to have pathogen-neutralizing properties. The second, which is an intergroup account, holds that these same relationships are based on motivations to avoid contact with outgroups, who might pose greater infectious disease threats than ingroup members. Results from a study surveying 11,501 participants across 30 nations are more consistent with the intragroup account than with the intergroup account. National parasite stress relates to traditionalism (an aspect of conservatism especially related to adherence to group norms) but not to social dominance orientation (SDO; an aspect of conservatism especially related to endorsements of intergroup barriers and negativity toward ethnic and racial outgroups). Further, individual differences in pathogen-avoidance motives (i.e., disgust sensitivity) relate more strongly to traditionalism than to SDO within the 30 nations. PMID:27791090

  20. Maternal Dysphoric Mood, Stress, and Parenting Practices in Mothers of Head Start Preschoolers: The Role of Experiential Avoidance

    ERIC Educational Resources Information Center

    Shea, Sarah E.; Coyne, Lisa W.

    2011-01-01

    Maternal dysphoria predicts behavioral difficulties in preschool-aged children, and may contribute to negative child outcomes by exacerbating parenting stress. Parenting stress increases the likelihood of maladaptive parenting practices, especially when mothers face multiple contextual stressors. We explored maternal experiential avoidance (EA) as…

  1. Water Stress Detection using Temperature, Emissivity, and Reflectance

    NASA Astrophysics Data System (ADS)

    Gerhards, Max; Rock, Gilles; Schlerf, Martin; Udelhoven, Thomas

    2017-04-01

    Water stress is one of the most critical abiotic stressors limiting crop development. The main imaging and non-imaging remote sensing based techniques for the detection of plant stress (water stress and other types of stress) are thermography, visible (VIS), near- and shortwave infrared (NIR/SWIR) reflectance, and fluorescence. Just very recently, in addition to broadband thermography, narrowband (hyperspectral) thermal imaging has become available, which even facilitates the retrieval of spectral emissivity as an additional measure of plant stress. It is, however, still unclear at what stage plant stress is detectable with the various techniques. During summer 2014 a water treatment experiment was run on 60 potato plants (Solanum tuberosum L. Cilena) with one half of the plants watered and the other half stressed. Crop response was measured using broadband and hyperspectral thermal cameras and a VNIR/SWIR spectrometer. Stomatal conductance was measured using a leaf porometer. Various measures and indices were computed and analysed for their sensitivity towards water stress (Crop Water Stress Index (CWSI), Moisture Stress Index (MSI), Photochemical Reflectance Index (PRI), and spectral emissivity, amongst others). The results show that water stress as measured through stomatal conductance started on day 2 after watering was stopped. The fastest reacting, i.e., starting on day 7, indices were temperature based measures (e.g., CWSI) and NIR/SWIR reflectance based indices related to plant water content (e.g., MSI). Spectral emissivity reacted equally fast. Contrarily, visual indices (e.g., PRI) either did not respond at all or responded in an inconsistent manner. This experiment shows that pre-visual water stress detection is feasible using indices depicting leaf temperature, leaf water content and spectral emissivity.

  2. Water stress, water salience, and the implications for water supply planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  3. Voluntary exercise and increased food intake after mild chronic stress improve social avoidance behavior in mice.

    PubMed

    Otsuka, Airi; Shiuchi, Tetsuya; Chikahisa, Sachiko; Shimizu, Noriyuki; Séi, Hiroyoshi

    2015-11-01

    It is well-established that exercise can influence psychological conditions, cognitive function, and energy metabolism in peripheral tissues including the skeletal muscle. However, it is not clear whether exercise can influence social interaction with others and alleviate defeat stress. This study investigated the effect of voluntary wheel running on impaired social interaction induced by chronic social defeat stress (SDS) using the resident-intruder social defeat model. Mice were divided into three groups: control, stress alone, and stress+exercise. SDS was performed by exposing C57BL/6 mice to retired ICR mice for 2.5 min. The C57BL/6 mice were continuously defeated by these resident (aggressor) mice and, following 5 days of SDS, experienced 2 days of rest with no SDS. Mice in the stress+exercise group were allowed to voluntarily run on a wheel for 2h after every SDS exposure. Two weeks later, compared to the control group, the stress group showed a higher ratio of time spent in the corner zone of a social interaction paradigm even though SDS did not elicit depressive- and anxiety-like behaviors. We also observed that voluntary exercise, which did not affect muscle weight and gene expression, decreased social avoidance behavior of stressed mice without clear changes in brain monoamine levels. Interestingly, food intake in the stress+exercise group was the greatest among the three groups. To test the effect of the exercise-induced increase in food intake on social behavior, we set up a pair-fed group where food intake was restricted. We then compared these mice to mice in the stress alone group. We found that the ratio of time spent in the corner zone of the social interaction test was not different between ad libitum- and pair-fed groups, although pair-fed mice spent more time in the corner zone when an aggressor mouse was present than when it was absent. In addition, pair-feeding did not show exercise-induced reductions of adrenal gland weight and enhanced the

  4. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.

    PubMed

    Pedersen, Sindre A; Kristiansen, Erlend; Hansen, Bjørn H; Andersen, Rolf A; Zachariassen, Karl E

    2006-08-01

    The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.

  5. Physical and virtual water transfers for regional water stress alleviation in China

    PubMed Central

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R.; Guan, Dabo; Hubacek, Klaus

    2015-01-01

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management. PMID:25583516

  6. Physical and virtual water transfers for regional water stress alleviation in China.

    PubMed

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  7. Assessing corn water stress using spectral reflectance

    NASA Astrophysics Data System (ADS)

    Mefford, Brenna S.

    Multiple remote sensing techniques have been developed to identify crop water stress, but some methods may be difficult for farmers to apply. Unlike most techniques, shortwave vegetation indices can be calculated using satellite, aerial, or ground imagery from the green (525-600 nm), red (625-700 nm), and near infrared (750-900 nm) spectral bands. If vegetation indices can be used to monitor crop water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over irrigating. This study occurred in the 2013 growing season near Greeley, CO, where pressurized drip irrigation was used to irrigate twelve corn ( Zea mays L.) treatments of varying water deficit. Multispectral data was collected and four different vegetation indices were evaluated: Normalized Difference Vegetation Index (NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Normalized Difference Vegetation Index (GNDVI), and the Wide Dynamic Range Vegetation Index (WDRVI). The four vegetation indices were compared to corn water stress as indicated by the stress coefficient (Ks) and water deficit in the root zone, calculated by using a water balance that monitors crop evapotranspiration (ET), irrigation events, precipitation events, and deep percolation. ET for the water balance was calculated using two different methods for comparison purposes: (1) calculation of the stress coefficient (Ks) using FAO-56 standard procedures; (2) use of canopy temperature ratio (Tc ratio) of a stressed crop to a non-stressed crop to calculate Ks. It was found that obtaining Ks from Tc ratio is a viable option, and requires less data to obtain than Ks from FAO-56. In order to compare the indices to Ks, vegetation ratios were developed in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water

  8. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  9. Assays for root hydrotropism and response to water stress.

    PubMed

    Eapen, Delfeena; Martínez, Jesús J; Cassab, Gladys I

    2015-01-01

    Roots of most terrestrial plants show hydrotropic curvature when exposed to a moisture gradient. Though this root response is difficult to visualize in the soil habitat, there are reports of hydrotropism as an inherent response of primary roots of different plant species, such as Arabidopsis thaliana, Pisum sativum, and Zea mays L., from in vitro system studies. Many plant species use hydrotropism as a mechanism of avoidance to water stress. The actively growing root tip has the ability to change its direction towards greater water availability by differential growth in the elongation zone. The study of this tropic response has been challenged by the interaction of gravitropism, thigmotropism and possibly phototropism. It is hard to visualize hydrotropic curvature in vitro unless all other stimuli are neutralized by the presence of a moisture gradient. In this chapter, we describe methods for preparation of two assay systems used to visualize hydrotropic curvature in the primary roots of Arabidopsis and one moisture gradient system used for maize root seedlings.

  10. Packaged FBG sensors for real-time stress monitoring on deep-water riser

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Yang, Dexing; Jiang, Yajun; Wang, Meirong; Zhai, Huailun; Bai, Yang

    2014-11-01

    The safety of under-water risers in drilling platform is of great significance. A packaged fiber Bragg grating (FBG) sensor for real-time stress monitoring is designed for the applications on oil drilling risers under 3000 meters deep water. A copper tube which is the main component of the sensor has a small hole along its axes and a groove at its each end. The bare FBG is passed through the small hole and fixed to its ends by epoxy resin. Then the copper tube is packaged by filling the groove with structural adhesive. In order to avoid that the outer water-pressure is applied on the epoxy resin through the structural adhesive, a gap between the two types of glues is left. The relationships between the stress of the riser and the tension, pressure, temperature of the single sensor are discussed, respectively. The measured tension sensitivity is 136.75 pm/KN while the minimum R-square value is 0.99997. The experimental results also show that there is a good linear response between water-pressure and the Bragg wavelength from 0 to 30MPa, and the sensor can even survive under the pressure more than 30MPa. In addition, the Bragg wavelength shifts linearly with the increasing temperature from 0 to 40°C. So, the pressure and temperature can be easily compensated if another sensor without tension is used.

  11. The beneficial effect of oxytocin on avoidance-related facial emotion recognition depends on early life stress experience.

    PubMed

    Feeser, Melanie; Fan, Yan; Weigand, Anne; Hahn, Adam; Gärtner, Matti; Aust, Sabine; Böker, Heinz; Bajbouj, Malek; Grimm, Simone

    2014-12-01

    Previous studies have shown that oxytocin (OXT) enhances social cognitive processes. It has also been demonstrated that OXT does not uniformly facilitate social cognition. The effects of OXT administration strongly depend on the exposure to stressful experiences in early life. Emotional facial recognition is crucial for social cognition. However, no study has yet examined how the effects of OXT on the ability to identify emotional faces are altered by early life stress (ELS) experiences. Given the role of OXT in modulating social motivational processes, we specifically aimed to investigate its effects on the recognition of approach- and avoidance-related facial emotions. In a double-blind, between-subjects, placebo-controlled design, 82 male participants performed an emotion recognition task with faces taken from the "Karolinska Directed Emotional Faces" set. We clustered the six basic emotions along the dimensions approach (happy, surprise, anger) and avoidance (fear, sadness, disgust). ELS was assessed with the Childhood Trauma Questionnaire (CTQ). Our results showed that OXT improved the ability to recognize avoidance-related emotional faces as compared to approach-related emotional faces. Whereas the performance for avoidance-related emotions in participants with higher ELS scores was comparable in both OXT and placebo condition, OXT enhanced emotion recognition in participants with lower ELS scores. Independent of OXT administration, we observed increased emotion recognition for avoidance-related faces in participants with high ELS scores. Our findings suggest that the investigation of OXT on social recognition requires a broad approach that takes ELS experiences as well as motivational processes into account.

  12. C4 photosynthesis and water stress

    PubMed Central

    Ghannoum, Oula

    2009-01-01

    Background In contrast to C3 photosynthesis, the response of C4 photosynthesis to water stress has been less-well studied in spite of the significant contribution of C4 plants to the global carbon budget and food security. The key feature of C4 photosynthesis is the operation of a CO2-concentrating mechanism in the leaves, which serves to saturate photosynthesis and suppress photorespiration in normal air. This article reviews the current state of understanding about the response of C4 photosynthesis to water stress, including the interaction with elevated CO2 concentration. Major gaps in our knowledge in this area are identified and further required research is suggested. Scope Evidence indicates that C4 photosynthesis is highly sensitive to water stress. With declining leaf water status, CO2 assimilation rate and stomatal conductance decrease rapidly and photosynthesis goes through three successive phases. The initial, mainly stomatal phase, may or may not be detected as a decline in assimilation rates depending on environmental conditions. This is because the CO2-concentrating mechanism is capable of saturating C4 photosynthesis under relatively low intercellular CO2 concentrations. In addition, photorespired CO2 is likely to be refixed before escaping the bundle sheath. This is followed by a mixed stomatal and non-stomatal phase and, finally, a mainly non-stomatal phase. The main non-stomatal factors include reduced activity of photosynthetic enzymes; inhibition of nitrate assimilation, induction of early senescence, and changes to the leaf anatomy and ultrastructure. Results from the literature about CO2 enrichment indicate that when C4 plants experience drought in their natural environment, elevated CO2 concentration alleviates the effect of water stress on plant productivity indirectly via improved soil moisture and plant water status as a result of decreased stomatal conductance and reduced leaf transpiration. Conclusions It is suggested that there is a

  13. Grafting improves cucumber water stress tolerance in Saudi Arabia.

    PubMed

    Al-Harbi, Abdulaziz R; Al-Omran, Abdulrasoul M; Alharbi, Khadiga

    2018-02-01

    Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F 1 cucumber cultivar ( Cucumis sativus L.) was grafted onto Affyne ( Cucumis sativus L.) and Shintoza A90 ( Cucurbitamaxima × C. moschata ) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F 1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant -1 in non-grafted treatment to 6.149 kg plant -1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.

  14. Selective attention and avoidance on a pictorial cueing task during stress in clinically anxious and depressed participants.

    PubMed

    Ellenbogen, Mark A; Schwartzman, Alex E

    2009-02-01

    Although it is well established that attentional biases exist in anxious populations, the specific components of visual orienting towards and away from emotional stimuli are not well delineated. The present study was designed to examine these processes. We used a modified spatial cueing task to assess the speed of engagement and disengagement from supraliminal and masked pictorial cues depicting threat, dysphoria, or neutral content in 36 clinically anxious, 41 depressed and 41 control participants. Participants were randomly assigned to a stress or neutral condition. During stress, anxious participants were slow to disengage from masked left hemifield pictures depicting threat or dysphoria, but were quick to disengage from supraliminal threat pictures. Information processing in anxious participants during stress was characterized by early selective attention of emotional stimuli, occurring prior to full conscious awareness, followed by effortful avoidance of threat. Depressed participants were distinct from the anxious group, displaying selective attention for stimuli depicting dysphoria, but not threat, during the neutral condition. In sum, attentional biases in clinical populations are associated with difficulties in the disengagement component of visual orienting. Further, a vigilant-avoidant pattern of attentional bias may represent a strategic attempt to compensate for the early activation of a fear response.

  15. Sectoral contributions to surface water stress in the coterminous United States

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Meldrum, J.; Caldwell, P.; Sun, G.; McNulty, S.; Huber-Lee, A.; Madden, N.

    2013-09-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast.

  16. Effects of parents' experiential avoidance and PTSD on adolescent disaster-related posttraumatic stress symptomatology.

    PubMed

    Polusny, Melissa A; Ries, Barry J; Meis, Laura A; DeGarmo, David; McCormick-Deaton, Catherine M; Thuras, Paul; Erbes, Christopher R

    2011-04-01

    Despite the importance of family context to adolescents' reactions following disaster, little research has examined the role of parents' functioning on adolescents' disaster-related posttraumatic stress disorder (PTSD) symptoms. Using data from 288 adolescents (ages 12 to 19 years) and 288 parents exposed to a series of severe tornadoes in a rural Midwestern community, this study tested a conceptual model of the interrelationships between individual and parental risk factors on adolescents' disaster-related PTSD symptoms using structural equation modeling. Results showed that the psychological process of experiential avoidance mediated the relationship between family disaster exposure and PTSD for both adolescents and their parents. Parents' PTSD symptoms independently predicted adolescents' PTSD symptoms. Further, parents' postdisaster functioning amplified the effects of adolescent experiential avoidance on adolescents' disaster-related PTSD symptoms. Findings highlight the importance of family context in understanding adolescents' postdisaster reactions. Clinical implications are discussed.

  17. Relationships of alcohol use, stress, avoidance coping, and other factors with mental health in a highly educated workforce.

    PubMed

    Koopman, Cheryl; Wanat, Stanley F; Whitsell, Shelly; Westrup, Darrah; Matano, Robert A

    2003-01-01

    The relationships of drinking, stress, life satisfaction, coping style, and antidepressant use to mental health were examined in a highly educated workforce. This study used a one-time mail-out, mail-back cross-sectional survey design to examine the relationships of mental health with three kinds of stress (life events, work stress, home stress); two kinds of life satisfaction (work and home); use of avoidance coping; and antidepressant use. This study was conducted at a large worksite in northern California in which the workforce was comprised of predominantly highly educated employees. Questionnaires were mailed to a random sample of 10% of 8567 employees, and 504 were completed and returned by participants (59%). Complete data were provided by 460 participants (53%). Respondents completed the Mental Health Index, the Alcohol Use Disorders Identification Test (AUDIT), and measures of coping style, work and home stress and satisfaction, stressful life events, and antidepressant use. Mean Mental Health Index scores were at the 32nd percentile of the U.S. population-based norms, with low percentile values associated with worse mental health. Using multiple regression analysis, the factors examined in this study were significantly related to Mental Health Index scores as the dependent variable [F(16, 443) = 27.41, p < .001, adjusted overall R2 = .48]. Poor mental health scores were significantly related to the following: age (p < .05); screening positively for current harmful or hazardous drinking (p < .05); having high levels of stress at work (p < .05) or home (p < .01); experiencing dissatisfaction with work (p < .001) or home life (p = .01); engaging in avoidance coping (p < .001); and using antidepressants (p < .001). Employees currently using antidepressants had significantly more outpatient medical and mental health visits, indicating higher health costs. Furthermore, mental health status was also significantly related to the interactions between several pairs

  18. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index

    USDA-ARS?s Scientific Manuscript database

    Precision irrigation management in wine grape production is hindered by the lack of a reliable method to easily quantify and monitor vine water status. Mild to moderate water stress is desirable in wine grape for controlling vine vigor and optimizing fruit yield and quality. A crop water stress ind...

  19. Optical fluorescence biosensor for plant water stress detection

    NASA Astrophysics Data System (ADS)

    Chong, Jenny P. C.; Liew, O. W.; Li, B. Q.; Asundi, A. K.

    2007-05-01

    Precision farming in arable agriculture and horticulture allows conservative use of resources that are applied according to plant needs. The growing concern for sustainability in crop production has accentuated the significance of our work to develop a rapid, sensitive and non-destructive spectroscopic method for real-time monitoring of plant water stress. Elucidation of crop water status before the onset of irreversible cellular damage is critical for effective water management to ensure maximum crop yield and profit margin. A two-component bio-sensing system comprising transgenic 'Indicator Plants' and a spectrometer-linked stereoscopic microscope was developed to detect early signs of water stress before the permanent wilting point is reached. The 'Indicator Plants' are transgenic Petunia hybrida genetically engineered with a drought-responsive promoter-linked enhanced green fluorescent protein marker gene (EGFP). No EGFP fluorescence was detected prior to induction of dehydration stress. Fluorescence emission intensity increased with dehydration period and was found mainly in the stems, leaf veins and leaf tips. While fluorescence emission above endogenous background was detectable after 2 hours of water stress treatment, the plants reached permanent wilting point after 6 hours, showing that our system was able to detect water stress prior to plant entry into the stage of irreversible damage. Future work will be geared towards overcoming biological and instrument-related difficulties encountered in our initial detection system.

  20. Avoidant coping moderates the relationship between paternal involvement in the child's type 1 diabetes (T1D) care and parenting stress.

    PubMed

    Teasdale, Ashley; Limbers, Christine

    2018-01-01

    Fathers may experience greater parenting stress and anxiety when they are more involved in their child's type 1 diabetes (T1D) care. The present study evaluated whether seeking social support and avoidant coping strategies moderate the relationship between paternal involvement in the child's T1D care and parenting stress in an international sample. Two hundred forty-nine fathers of young children with T1D completed the Parenting Stress Index (PSI), Pediatric Inventory for Parents (PIP), Dads' Active Disease Support scale (DADS), COPE Inventory, Self-Care Inventory (SCI-R), and a demographic questionnaire online. Pearson's product moment correlations were computed, and multiple linear regression analysis was conducted with three separate models in which the PSI Child Domain, PIP Frequency, and PIP Difficulty scores represented different parenting stress outcomes. The interaction between use of denial coping and DADS Involvement was significantly correlated with general parenting stress ( p < .05). There were no significant interactions between instrumental social support and DADS Involvement; however, use of instrumental social support coping was significantly correlated with difficulty of pediatric parenting stress ( p < .05), DADS Involvement ( p < .001), and SCI-R better adherence to the child diabetes treatment regimen ( p < .001). Avoidant coping strategies are associated with more general parenting stress, especially when fathers are more involved in T1D management.

  1. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    PubMed

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  2. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  3. Straightforward assay for quantification of social avoidance in Drosophila melanogaster.

    PubMed

    Fernandez, Robert W; Nurilov, Marat; Feliciano, Omar; McDonald, Ian S; Simon, Anne F

    2014-12-13

    Drosophila melanogaster is an emerging model to study different aspects of social interactions. For example, flies avoid areas previously occupied by stressed conspecifics due to an odorant released during stress known as the Drosophila stress odorant (dSO). Through the use of the T-maze apparatus, one can quantify the avoidance of the dSO by responder flies in a very affordable and robust assay. Conditions necessary to obtain a strong performance are presented here. A stressful experience is necessary for the flies to emit dSO, as well as enough emitter flies to cause a robust avoidance response to the presence of dSO. Genetic background, but not their group size, strongly altered the avoidance of the dSO by the responder flies. Canton-S and Elwood display a higher performance in avoiding the dSO than Oregon and Samarkand strains. This behavioral assay will allow identification of mechanisms underlying this social behavior, and the assessment of the influence of genes and environmental conditions on both emission and avoidance of the dSO. Such an assay can be included in batteries of simple diagnostic tests used to identify social deficiencies of mutants or environmental conditions of interest.

  4. Drought genetics have varying influence on corn water stress under differing water availability

    USDA-ARS?s Scientific Manuscript database

    Irrigated corn (Zea mays L.) in the Great Plains will be increasingly grown under limited irrigation management and greater water stress. Hybrids with drought genetics may decrease the impacts of water stress on yield. The objective of this experiment was to evaluate the effect of drought genetics o...

  5. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.

    PubMed

    Johnson, Jon D; Tognetti, Roberto; Paris, Piero

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.

  6. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants.

    PubMed

    Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina

    2008-07-01

    The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline

  7. Role of Stressful Life Events, Avoidant Coping Styles, and Neuroticism in Online Game Addiction among College Students: A Moderated Mediation Model.

    PubMed

    Li, Huanhuan; Zou, Yingmin; Wang, Jiaqi; Yang, Xuelin

    2016-01-01

    Online game addiction (OGA) is becoming a significant problem worldwide. The aim of this study was to explore the incidence of OGA and the roles of stressful life events, avoidant coping styles (ACSs), and neuroticism in OGA. A total of 651 Chinese college students were selected by random cluster sampling. Subjects completed the Chinese version of Young's eight-item Internet Addiction Scale (CIAS), Online Game Cognition Addiction Scale (OGCAS), Revised Eysenck Personality Questionnaire Short Scale in Chinese (EPQ-RSC), Chinese College-student Stress Questionnaire, and Coping Style Questionnaire. Structural equation modeling (SEM) was used to explore the interactive effects of stressful life events, ACSs, and neuroticism on OGA. Of the 651 participants in the sample, 31 (4.8%) were identified as addicts. The incidence of OGA was two times higher for males than females. The addicts had markedly higher scores on the neuroticism subscale of the EPQ-RSC than non-addicts. Compared to non-addicts, addicts were more apt to use ACSs. Having an avoidant coping strategy mediated the effect of stressful life events on OGA. Furthermore, neuroticism moderated the indirect effect of stressful life events on OGA via ACSs. Applications of these findings to etiological research and clinical treatment programs are discussed.

  8. Role of Stressful Life Events, Avoidant Coping Styles, and Neuroticism in Online Game Addiction among College Students: A Moderated Mediation Model

    PubMed Central

    Li, Huanhuan; Zou, Yingmin; Wang, Jiaqi; Yang, Xuelin

    2016-01-01

    Online game addiction (OGA) is becoming a significant problem worldwide. The aim of this study was to explore the incidence of OGA and the roles of stressful life events, avoidant coping styles (ACSs), and neuroticism in OGA. A total of 651 Chinese college students were selected by random cluster sampling. Subjects completed the Chinese version of Young’s eight-item Internet Addiction Scale (CIAS), Online Game Cognition Addiction Scale (OGCAS), Revised Eysenck Personality Questionnaire Short Scale in Chinese (EPQ-RSC), Chinese College-student Stress Questionnaire, and Coping Style Questionnaire. Structural equation modeling (SEM) was used to explore the interactive effects of stressful life events, ACSs, and neuroticism on OGA. Of the 651 participants in the sample, 31 (4.8%) were identified as addicts. The incidence of OGA was two times higher for males than females. The addicts had markedly higher scores on the neuroticism subscale of the EPQ-RSC than non-addicts. Compared to non-addicts, addicts were more apt to use ACSs. Having an avoidant coping strategy mediated the effect of stressful life events on OGA. Furthermore, neuroticism moderated the indirect effect of stressful life events on OGA via ACSs. Applications of these findings to etiological research and clinical treatment programs are discussed. PMID:27920734

  9. m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: Contribution of opioid receptors and MAPKs.

    PubMed

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Nogueira, Cristina Wayne

    2018-03-02

    Depressive symptoms precipitated by stress are prevalent in population. In experimental models of social stress, endogenous opioids mediate different aspects of defensive and submissive behaviors. The present study investigated the opioid receptors, mitogen-activated protein kinase (MAPKs) and protein kinase B (Akt) contribution to m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on social avoidance induced by social defeat stress (SDS). Adult Swiss mice were subjected to SDS and treated with (m-CF 3 -PhSe) 2 (5 to 25mg/kg) for 7days. After that, the mice performed locomotor and social avoidance tests. The opioid receptors, MAPKs and Akt protein contents were determined in the prefrontal cortical samples of mice. Firstly, the mice were segregated in susceptible or resilient subpopulation based on their social avoidance induced by stress. (m-CF 3 -PhSe) 2 (25mg/kg) was effective against the stress-induced social avoidance and improved social interaction behavior in mice. SDS increased the μ and κ protein contents but reduced those of δ opioid receptors in susceptible mice. Resilient and (m-CF 3 -PhSe) 2 -treated mice had no alteration in the levels of opioid receptors. Moreover, (m-CF 3 -PhSe) 2 was effective against the increase of c-Jun N-terminal kinase (JNK) and the decrease of Akt phosphorylation protein contents induced by SDS in susceptible mice. The protein content of extracellular signal-regulated kinase (ERK) phosphorylation was reduced in both susceptible and resilient mice, whereas p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation was increased only in resilient mice. (m-CF 3 -PhSe) 2 was partially effective against the pERK decrease and ineffective against the increase in p38 MAPK phosphorylation in mice subjected to SDS. These results suggest that the modulation of protein contents of opioid receptors, JNK and Akt phosphorylation is associated with resilience to SDS promoted by (m-CF 3 -PhSe) 2 in mice. Copyright

  10. Water vs. carbon: An evaluation of SMAP soil moisture and OCO-2 solar-induced fluorescence to characterize global plant stress

    NASA Astrophysics Data System (ADS)

    Purdy, A. J.; Fisher, J.; Goulden, M.; Randerson, J. T.; Famiglietti, J. S.

    2017-12-01

    Plants link the carbon and water cycles through photosynthesis and evapotranspiration (ET). When plants take in CO2 for photosynthesis, water evaporates to the atmosphere. This exchange of carbon and water is sensitive to a number of environmental variables including: soil water availability, temperature, atmospheric water vapor, and radiation. When the atmospheric demand for water is high, plants avoid hydraulic failure by regulating the amount of water exiting leaves at the expense of inhibiting carbon uptake. Over time, stress caused by this response limits plant growth and can even result in death by carbon starvation. With increasing atmospheric demand for water, impending expansion of arid regions, and more frequent droughts, understanding how vegetation responds to regulate photosynthesis and ET is important to quantify potential feedbacks between the carbon and water cycles. Despite its importance, to what extent plants respond to stressful conditions is an open science question. An important step forward is to characterize the dominant controls in these stress events and identify geographic areas that are vulnerable to climate change. The 2015-2016 El Nino and subsequent 2016-2017 La Nina transition provides an opportunity to quantify the extent and magnitude of vegetation regulation of these carbon and water variables in response to changes in environmental conditions. We present results from a space-based analysis using global observations of solar induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2), soil moisture from Soil Moisture Active Passive (SMAP), and two widely used ET models (PT-JPL and MOD-16) to characterize the dominant controls on gross primary production and ET.

  11. Attentional avoidance of fearful facial expressions following early life stress is associated with impaired social functioning.

    PubMed

    Humphreys, Kathryn L; Kircanski, Katharina; Colich, Natalie L; Gotlib, Ian H

    2016-10-01

    Early life stress is associated with poorer social functioning. Attentional biases in response to threat-related cues, linked to both early experience and psychopathology, may explain this association. To date, however, no study has examined attentional biases to fearful facial expressions as a function of early life stress or examined these biases as a potential mediator of the relation between early life stress and social problems. In a sample of 154 children (ages 9-13 years) we examined the associations among interpersonal early life stressors (i.e., birth through age 6 years), attentional biases to emotional facial expressions using a dot-probe task, and social functioning on the Child Behavior Checklist. High levels of early life stress were associated with both greater levels of social problems and an attentional bias away from fearful facial expressions, even after accounting for stressors occurring in later childhood. No biases were found for happy or sad facial expressions as a function of early life stress. Finally, attentional biases to fearful faces mediated the association between early life stress and social problems. Attentional avoidance of fearful facial expressions, evidenced by a bias away from these stimuli, may be a developmental response to early adversity and link the experience of early life stress to poorer social functioning. © 2016 Association for Child and Adolescent Mental Health.

  12. Greater avoidance behavior in individuals with posttraumatic stress disorder symptoms

    PubMed Central

    Sheynin, Jony; Shind, Christine; Radell, Milen; Ebanks-Williams, Yasheca; Gilbertson, Mark W.; Beck, Kevin D.; Myers, Catherine E.

    2017-01-01

    While avoidance is a core symptom of PTSD, little is known about whether individuals with PTSD show a general cognitive bias to acquire and express avoidance, in situations not related to trauma or fear. Here, we used a computer-based task to examine operant acquisition and extinction of avoidance in participants with and without severe self -reported PTSD symptoms. A total of 119 participants (77 male, 42 female; 74 veteran, 45 civilian) with symptoms (PTSS; n=63) or with few/no symptoms (noPTSS; n=56) performed a task, in which they controlled a spaceship and could shoot a target to gain points or hide in “safe areas” to escape or avoid on-screen aversive events. Results show that participants with PTSS exhibited more avoidance across trials than no PTSS participants, particularly due to more avoidance behavior in PTSS females compared to noPTSS females. Avoidance behavior decreased across extinction trials but interactions with PTSS and gender fell short of significance. Overall, PTSD symptoms were associated with propensity to acquire and express avoidance behavior, in both civilians and veterans, and even in a cognitive task that does not explicitly involve trauma or fear. This effect was more pronounced in females, highlighting the role of gender differences in PTSD symptomatology. Importantly, this study also demonstrates the potential of an objective assessment of avoidance behavior, which could be used to supplement the common but limited self-report tools. PMID:28322068

  13. Greater avoidance behavior in individuals with posttraumatic stress disorder symptoms.

    PubMed

    Sheynin, Jony; Shind, Christine; Radell, Milen; Ebanks-Williams, Yasheca; Gilbertson, Mark W; Beck, Kevin D; Myers, Catherine E

    2017-05-01

    While avoidance is a core symptom of PTSD, little is known about whether individuals with PTSD show a general cognitive bias to acquire and express avoidance, in situations not related to trauma or fear. Here, we used a computer-based task to examine operant acquisition and extinction of avoidance in participants with and without severe self-reported PTSD symptoms. A total of 119 participants (77 male, 42 female; 74 veteran, 45 civilian) with symptoms (PTSS; n = 63) or with few/no symptoms (noPTSS; n = 56) performed a task, in which they controlled a spaceship and could shoot a target to gain points or hide in "safe areas" to escape or avoid on-screen aversive events. Results show that participants with PTSS exhibited more avoidance across trials than noPTSS participants, particularly due to more avoidance behavior in PTSS females compared to noPTSS females. Avoidance behavior decreased across extinction trials but interactions with PTSS and gender fell short of significance. Overall, PTSD symptoms were associated with propensity to acquire and express avoidance behavior, in both civilians and veterans, and even in a cognitive task that does not explicitly involve trauma or fear. This effect was more pronounced in females, highlighting the role of gender differences in PTSD symptomatology. Importantly, this study also demonstrates the potential of an objective assessment of avoidance behavior, which could be used to supplement the common but limited self-report tools.

  14. Turgidity-dependent petiole flexibility enables efficient water use by a tree subjected to water stress.

    PubMed

    Gonzalez-Rodriguez, David; Cournède, Paul-Henry; de Langre, Emmanuel

    2016-06-07

    Water stress is a major cause of tree mortality. In response to drought, leaves wilt due to an increase in petiole flexibility. We present an analytical model coupling petiole mechanics, thermal balance, and xylem hydraulics to investigate the role of petiole flexibility in protecting a tree from water stress. Our model suggests that turgidity-dependent petiole flexibility can significantly attenuate the minimal xylem pressure and thus reduce the risk of cavitation. Moreover, we show that petiole flexibility increases water use efficiency by trees under water stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Isolation and identification of peanut leaf proteins regulated by water stress.

    PubMed

    Akkasaeng, Chutipong; Tantisuwichwong, Napaporn; Chairam, Issariya; Prakrongrak, Narumon; Jogloy, Sanun; Pathanothai, Aran

    2007-05-15

    Water deficits trigger signaling cascades leading to modulation of protein expression in plant tissues. Identification of peanut leaf proteins regulated by water stress provides some insights of cellular and molecular response of peanut plants to drought stress. Peanut variety Khon Kaen 4, a water-stress sensitive variety, was grown in a growth chamber under controlled environment. Water stress was imposed on day 30 after seedling emergence by withholding watering peanut plants for 6 days as compared to plants adequately supplied with water. Total protein were prepared from a leaflet of fully expanded leaf on the main stem. Proteins were separated in duplicated gels using two-dimensional gel electrophoresis and visualized by silver nitrate staining. Image analysis was performed using ImageMaster 2D Platinum 5.0 to determine proteins regulated by water stress. Molecular mass and isoelectric point of each regulated protein were used in database queries for protein identification. One protein was induced under water stress and the homologous protein was identified as Serine/threonine-protein phosphatase PP 1. Five proteins were down-regulated by water deficit. The homologous proteins were chaperone protein DNAJ, auxin-responsive protein IAA29, peroxidase 43, caffeoyl-CoA O-methyltransferase and SNF1-related protein kinase regulatory subunit beta-2. Down-regulated proteins may be associated with sensitivity of the peanut variety to water stress.

  16. Temporal versus spatial variation in leaf reflectance under changing water stress conditions

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.

    1991-01-01

    Leaf reflectance changes associated with changes in water stress were analyzed in two separate experiments. Results indicate that the variation in reflectance among collections of leaves of a given species all at the same level of water stress is at least as great as the variation in reflectance associated with changes in water stress for a given leaf collection of that species. The implications is that results from leaf reflectance-water stress studies have only limited applicability to the remote sensing of plant canopy water stress.

  17. EFFECTS OF OZONE AND WATER STRESS ON CANOPY TEMPERATURE, WATER USE, AND WATER USE EFFICIENCY OF ALFALFA

    EPA Science Inventory

    Ozone (O3) and soil water deficit are two environmental stresses that significantly affect the growth and yield of alfalfa. However, little is known of the responses of field-grown alfalfa to O3, and the effects of the interaction between O3 and water stress on canopy temperature...

  18. The future of global water stress: An integrated assessment

    NASA Astrophysics Data System (ADS)

    Schlosser, C. Adam; Strzepek, Kenneth; Gao, Xiang; Fant, Charles; Blanc, Élodie; Paltsev, Sergey; Jacoby, Henry; Reilly, John; Gueneau, Arthur

    2014-08-01

    We assess the ability of global water systems, resolved at 282 assessment subregions (ASRs), to the meet water requirements under integrated projections of socioeconomic growth and climate change. We employ a water resource system (WRS) component embedded within the Massachusetts Institute of Technology Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimate changes out to 2050. For many developing nations, water demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living under at least moderate water stress, with 80% of these located in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress. The strongest climate impacts on water stress are observed in Africa, but strong impacts also occur over Europe, Southeast Asia, and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0-1.3 billion increase of the world's 2050 projected population living with overly exploited water conditions—where total potential water requirements will consistently exceed surface water supply. This would imply that adaptive measures would be taken to meet these surface water shortfalls and include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional interbasin transfers, and overdraw from flow intended to maintain environmental requirements.

  19. Increased sugarcane water productivity in Brazil avoids land use change and related environmental impacts

    NASA Astrophysics Data System (ADS)

    Scarpare, F. V.; Galdos, M. V.; Kolln, O.; Gava, G.; Franco, H.; Trivelin, P.

    2012-12-01

    Fábio V. Scarparea, Marcelo V. Galdosa, Oriel T. Kollna, Glauber J.C. Gavab, Henrique J. Francoa, Paulo C.O. Trivelinc a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, C.P. 6170, Campinas, SP, 13083-970, Brazil. E-mail: fabio.scarpare@bioetanol.org.br b APTA - Polo Centro Oeste. Rod. SP 304, km 304, CP 66, Jaú, SP, 17201-970, Brazil. c Laboratório de Isótopos Estáveis, Centro de Energia Nuclear na Agricultura, CENA/USP, C.P. 9, Piracicaba, SP, 13418-900, Brazil. Increasing crop water productivity is a key factor where water is scarce compared with land and other resources. A widespread method for water use assessment is the water productivity (WP) approach which is the ratio between biomass production per unit of water utilized. WP is useful to evaluate water utilization and to identify where and when water can be saved in an irrigation system. Traditionally, field experiments are conducted to quantify and evaluate water management practices in irrigation systems. This field trial was conducted in Jaú - São Paulo State (Lat 22.17° S, Long 48.32° W) during first and second ratoon cycles. Four treatments were appraised; rainfed only (R0); rainfed + 150 kg ha-1 of N (RN); irrigation only (I0) and irrigation + 150 kg ha-1 of N (IN). The subsurface drip irrigation was carried out considering the crop evapotranspiration (ETc) to restore 100% of evapotranspired water. The irrigation frequency was considered the water supply to the soil by precipitation and the atmospheric demand for sugarcane ETc, with a maximum soil storage capacity of 70 mm. Our results point that the WP in irrigated condition was 13% higher than rainfed field whereas for N application, WP reached even higher values, 40%. WP among all treatments showed better results for IN (~28 kg mm-1) followed by RN (~23 kg mm-1); I0 (~16 kg mm-1) and R0 (~15 kg mm-1). Those results are in agreement with some studies which suggest high synergy between water and nitrogen for the

  20. The water-water cycle is essential for chloroplast protection in the absence of stress.

    PubMed

    Rizhsky, Ludmila; Liang, Hongjian; Mittler, Ron

    2003-10-03

    Maintaining electron flow through the photosynthetic apparatus, even in the absence of a sufficient amount of NADP+ as an electron acceptor, is essential for chloroplast protection from photooxidative stress. At least two different pathways are thought to participate in this process, i.e. cyclic electron flow and the water-water cycle. Although the function of the water-water cycle was inferred from a number of biochemical and physiological studies, genetic evidence for the function of this cycle is very limited. Here we show that knockdown Arabidopsis plants with suppressed expression of the key water-water cycle enzyme, thylakoid-attached copper/zinc superoxide dismutase (KD-SOD), are suppressed in their growth and development. Chloroplast size, chlorophyll content, and photosynthetic activity were also reduced in KD-SOD plants. Microarray analysis of KD-SOD plants, grown under controlled conditions, revealed changes in transcript expression consistent with an acclimation response to light stress. Although a number of transcripts involved in the defense of plants from oxidative stress were induced in KD-SOD plants, and seedlings of KD-SOD plants were more tolerant to oxidative stress, these mechanisms were unable to compensate for the suppression of the water-water cycle in mature leaves. Thus, the localization of copper/zinc superoxide dismutase at the vicinity of photosystem I may be essential for its function. Our studies provide genetic evidence for the importance of the water-water cycle in protecting the photosynthetic apparatus of higher plants from photooxidative damage.

  1. Cytokinin Activity in Water-stressed Shoots 1

    PubMed Central

    Itai, Chanan; Vaadia, Yoash

    1971-01-01

    Water stress applied to the plant shoot through enhanced evaporative demands reduced cytokinin activity in extracts of xylem exudate and leaves. This reduction resembled the changes in cytokinin activity caused by water stress applied to the root. Cytokinin activity in detached wilting leaves decreased rapidly. Recovery took place after several hours in a humid chamber. Experiments with 14C-kinetin indicated that the mechanism of the inactivation and its reversal involve a chemical transformation of the cytokinin molecule. PMID:16657585

  2. Root xylem plasticity to improve water use and yield in water-stressed soybean

    PubMed Central

    Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover

    2017-01-01

    Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176

  3. Attachment avoidance predicts inflammatory responses to marital conflict

    PubMed Central

    Gouin, Jean-Philippe; Glaser, Ronald; Loving, Timothy J.; Malarkey, William B.; Stowell, Jeffrey; Houts, Carrie; Kiecolt-Glaser, Janice K.

    2009-01-01

    Marital stress has been associated with immune dysregulation, including increased production of interleukin-6 (IL-6). Attachment style, one’s expectations about the availability and responsiveness of others in intimate relationships, appears to influence physiological stress reactivity and thus could influence inflammatory responses to marital conflict. Thirty-five couples were invited for two 24-hour admissions to a hospital research unit. The first visit included a structured social support interaction, while the second visit comprised the discussion of a marital disagreement. A mixed effect within-subject repeated measure model indicated that attachment avoidance significantly influenced IL-6 production during the conflict visit but not during the social support visit. Individuals with higher attachment avoidance had on average an 11% increase in total IL-6 production during the conflict visit as compared to the social support visit, while individuals with lower attachment avoidance had, on average, a 6% decrease in IL-6 production during the conflict visit as compared to the social support visit. Furthermore, greater attachment avoidance was associated with a higher frequency of negative behaviors and a lower frequency of positive behaviors during the marital interaction, providing a mechanism by which attachment avoidance may influence inflammatory responses to marital conflict. In sum, these results suggest that attachment avoidance modulates marital behavior and stress-induced immune dysregulation. PMID:18952163

  4. Electrodermal Activity Is Sensitive to Cognitive Stress under Water.

    PubMed

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Chon, Ki H

    2017-01-01

    When divers are at depth in water, the high pressure and low temperature alone can cause severe stress, challenging the human physiological control systems. The addition of cognitive stress, for example during a military mission, exacerbates the challenge. In these conditions, humans are more susceptible to autonomic imbalance. Reliable tools for the assessment of the autonomic nervous system (ANS) could be used as indicators of the relative degree of stress a diver is experiencing, which could reveal heightened risk during a mission. Electrodermal activity (EDA), a measure of the changes in conductance at the skin surface due to sweat production, is considered a promising alternative for the non-invasive assessment of sympathetic control of the ANS. EDA is sensitive to stress of many kinds. Therefore, as a first step, we tested the sensitivity of EDA, in the time and frequency domains, specifically to cognitive stress during water immersion of the subject (albeit with their measurement finger dry for safety). The data from 14 volunteer subjects were used from the experiment. After a 4-min adjustment and baseline period after being immersed in water, subjects underwent the Stroop task, which is known to induce cognitive stress. The time-domain indices of EDA, skin conductance level (SCL) and non-specific skin conductance responses (NS.SCRs), did not change during cognitive stress, compared to baseline measurements. Frequency-domain indices of EDA, EDASymp (based on power spectral analysis) and TVSymp (based on time-frequency analysis), did significantly change during cognitive stress. This leads to the conclusion that EDA, assessed by spectral analysis, is sensitive to cognitive stress in water-immersed subjects, and can potentially be used to detect cognitive stress in divers.

  5. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  6. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    PubMed

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Daytime soybean transcriptome fluctuations during water deficit stress.

    PubMed

    Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima

    2015-07-07

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves

  8. Multiple trial inhibitory avoidance acquisition and retrieval are resistant to chronic stress.

    PubMed

    Raya, J; Girardi, C E N; Esumi, L A; Ferreira, L B T; Hipólide, D C

    2018-02-01

    Chronic mild stress (CMS) is a widely accepted animal model relevant to depression that among other consequences, is chiefly known to induce anhedonia, often assessed as decreased preference for sucrose solution. CMS is also known to affect cognition, particularly memory tasks. In this study we have employed the multiple-trial inhibitory avoidance memory task (MTIA) to assess CMS effects on memory acquisition and retrieval. MTIA consists of repeated exposures to the unconditioned stimulus until a learning criterion is reached. Wistar rats underwent CMS for 5 weeks, and sucrose consumption was assessed once a week. At the end of CMS, animals were evaluated in the MTIA task. Overall decreased sucrose solution preference was highly variable. Further analyses showed that a subset of animals expressed resilience while another subset was sensitive to stress. CMS did not affect the number of acquisition sessions before reaching criterion or retrieval latency of MTIA task in neither sensitive nor resilient groups. Although tasks that assess learning ability in animal models relevant to depression indicate cognitive deficits, the ability to learn the association between compartment crossing and the aversive electric foot shock, which is strongly dependent on emotional aspects, was intact. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sectoral contributions to surface water stress in the coterminous United States

    Treesearch

    K. Averyt; J. Meldrum; P. Caldwell; G. Sun; S. McNulty; A. Huber-Lee; N. Madden

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model...

  10. Machine vision extracted plant movement for early detection of plant water stress.

    PubMed

    Kacira, M; Ling, P P; Short, T H

    2002-01-01

    A methodology was established for early, non-contact, and quantitative detection of plant water stress with machine vision extracted plant features. Top-projected canopy area (TPCA) of the plants was extracted from plant images using image-processing techniques. Water stress induced plant movement was decoupled from plant diurnal movement and plant growth using coefficient of relative variation of TPCA (CRV[TPCA)] and was found to be an effective marker for water stress detection. Threshold value of CRV(TPCA) as an indicator of water stress was determined by a parametric approach. The effectiveness of the sensing technique was evaluated against the timing of stress detection by an operator. Results of this study suggested that plant water stress detection using projected canopy area based features of the plants was feasible.

  11. Prior exposure influences the behavioural avoidance by an intertidal gastropod, Bembicium auratum, of acidified waters

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Cabral, Henrique N.; Bishop, Melanie J.

    2014-01-01

    Phenotypic plasticity may be critical to the maintenance of viable populations under future environmental change. Here we examined the role of behavioural avoidance of sub-optimal conditions in enabling the intertidal gastropod, Bembicium auratum, to persist in mangrove forests affected by the low pH runoff from acid sulphate soils (ASS). Behaviourally, the gastropod may be able to avoid periods of particularly high acidity by using pneumatophores and/or mangrove trunks to vertically migrate above the water line or by retreating into its shell. We hypothesised that (1) B. auratum would display greater and more rapid vertical migration out of acidified than reference estuarine waters, and (2) responses would be more pronounced in gastropods collected from acidified than reference sites. Gastropods from acidified sites showed significantly higher activity in and more rapid migration out of acidified waters of pH 6.2-7.0, than reference waters or waters of pH < 5.0. Gastropods from reference locations showed a significantly weaker response to acidified water than those from acidified waters, and which did not significantly differ from their response to reference water. At extremely low pHs, <5.0, a higher proportion of both acidified and reference gastropods retreated into their shell than at higher pHs. Both the migration of gastropods out of acidified waters and retraction into their shells serves to reduce exposure time to acidified waters and may reduce the impact of this stressor on their populations. The stronger response to acidification of gastropods from populations previously exposed to this stressor suggests that the response may be learned, inherited or induced over multiple exposures. Our study adds to growing evidence that estuarine organisms may exhibit considerable physiological and behaviour adaptive capacity to acidification. The potential for such adaptive capacity should be incorporated into studies seeking to forecast impacts to marine organisms

  12. Assessing the ecological effects of water stress and pollution in a temporary river - Implications for water management.

    PubMed

    Karaouzas, Ioannis; Smeti, Evangelia; Vourka, Aikaterini; Vardakas, Leonidas; Mentzafou, Aggeliki; Tornés, Elisabet; Sabater, Sergi; Muñoz, Isabel; Skoulikidis, Nikolaos Th; Kalogianni, Eleni

    2018-03-15

    Temporary rivers are dynamic and complex ecosystems that are widespread in arid and semi-arid regions, such as the Mediterranean. Biotic communities adapted in their intermittent nature could withstand recurrent drought events. However, anthropogenic disturbances in the form of water stress and chemical pollution challenge biota with unpredictable outcomes, especially in view of climate change. In this study we assess the response of the biotic community of a temporary river to environmental stressors, focusing on water stress and pollution. Towards this aim, several metrics of four biotic groups (diatoms, macrophytes, macroinvertebrates and fish) were applied. All biotic groups responded to a pollution gradient mainly driven by land use, distinct functional groups of all biota responded to water stress (a response related to the rheophilic nature of the species and their resistance to shear stress), while the combined effects of water stress and pollution were apparent in fish. Biotic groups presented a differential temporal response to water stress, where diatom temporal assemblage patterns were explained by water stress variables of short-time response (15days), while the responses of the other biota were associated to longer time periods. There were two time periods of fish response, a short (15days) and a long-time response (60-75days). When considering management decisions, our results indicate that, given the known response of river biota to pollution, biomonitoring of temporary rivers should also involve metrics that can be utilized as early warnings of water stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Paraheliotropism can protect water-stressed bean (Phaseolus vulgaris L.) plants against photoinhibition.

    PubMed

    Pastenes, Claudio; Porter, Victor; Baginsky, Cecilia; Horton, Peter; González, Javiera

    2004-12-01

    In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.

  14. Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress.

    PubMed

    Borba, M E A; Maciel, G M; Fraga Júnior, E F; Machado Júnior, C S; Marquez, G R; Silva, I G; Almeida, R S

    2017-06-20

    Water stress can affect the yield in tomato crops and, despite this, there are few types of research aiming to select tomato genotypes resistant to the water stress using physiological parameters. This experiment aimed to study the variables that are related to the gas exchanges and the efficiency in water use, in the selection of tomato genotypes tolerant to water stress. It was done in a greenhouse, measuring 7 x 21 m, in a randomized complete block design, with four replications (blocks), being five genotypes in the F 2 BC 1 generation, which were previously obtained from an interspecific cross between Solanum pennellii versus S. lycopersicum and three check treatments, two susceptible [UFU-22 (pre-commercial line) and cultivar Santa Clara] and one resistant (S. pennellii). At the beginning of flowering, the plants were submitted to a water stress condition, through irrigation suspension. After that CO 2 assimilation, internal CO 2 , stomatal conductance, transpiration, leaf temperature, instantaneous water use efficiency, intrinsic efficiency of water use, instantaneous carboxylation efficiency, chlorophyll a and b, and the potential leaf water (Ψf) were observed. Almost all variables that were analyzed, except CO 2 assimilation and instantaneous carboxylation efficiency, demonstrated the superiority of the wild accession, S. pennellii, concerning the susceptible check treatments. The high photosynthetic rate and the low stomatal conductance and transpiration, presented by the UFU22/F 2 BC 1 #2 population, allowed a better water use efficiency. Because of that, these physiological characteristics are promising in the selection of tomato genotypes tolerant to water stress.

  15. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem

    Treesearch

    Heidi Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schafer

    2014-01-01

    Oak species are well suited to water-limited conditions by either avoiding water stress through deep rooting or tolerating water stress through tight stomatal control. In co-occurring species where resources are limited, species may either partition resources in space and/or time or exhibit differing efficiencies in the use of limited resources. Therefore, this study...

  16. Conventional and simplified canopy temperature indices predict water stress in sunflower

    USDA-ARS?s Scientific Manuscript database

    Two indicators based on remotely-sensed canopy temperature were used in northern Colorado to monitor water stress in sunflower under six levels of regulated deficit irrigation. The two indicators included the widely-used Crop Water Stress Index (CWSI) and the new Degrees Above Non-stressed Canopy at...

  17. Plant responses to water stress

    PubMed Central

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  18. The mediation effect of experiential avoidance between coping and psychopathology in chronic pain.

    PubMed

    Costa, Joana; Pinto-Gouveia, José

    2011-01-01

    This study explores experiential avoidance as a mediator in the relationship between coping (rational coping, avoidant coping and detached/ emotional coping) and psychopathology (depression, anxiety and stress). A battery of self-report questionnaires was used to assess coping, experiential avoidance and depression, anxiety and stress in 70 participants with a chronic pain from Portuguese primary health care units. Regression analyses were performed and showed preliminary evidence supporting the mediation role of experiential avoidance in a Portuguese sample with chronic pain. Results show that experiential avoidance partially or fully mediate the effects of rational coping and detached/emotional coping on depression and stress. Implications for clinical practice were discussed and suggest that psychopathology is not necessary direct product of coping and other processes, such as experiential avoidance, are likely involved. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Physiological performance of two contrasting rice varieties under water stress.

    PubMed

    Khan, Furqan; Upreti, Priyanka; Singh, Ruchi; Shukla, Pradeep Kumar; Shirke, Pramod Arvind

    2017-01-01

    Two rice varieties PR-115 and Super-7 were imposed to water stress and different physiological traits were monitored to evaluate the performance of these varieties under drought. Under water stress condition although the relative water content, osmotic potential, chlorophyll content, photosynthesis rate, carbon discrimination and biomass decreased in both the varieties however, the reduction was more pronounced in Super-7 variety. Oryzanol a trans-ester of ferulic acid functions as antioxidant and it increased along with total phenolic and anthocyanin content in both the varieties under drought stress. However, gallic acid, 4 hydroxy benzoic acid, syringic acid and chlorogenic acid showed differential pattern in both of the varieties under water limiting conditions. Under drought, grain yield was penalized by 17 and 54% in PR-115 and Super-7 varieties, respectively in comparison to watered plants. Super-7 variety showed pronounced electrolyte leakage and MDA enhancement under water stress condition. High non photochemical quenching and reduction in Y(NO) and Y(II) indicated balanced energy management in tolerant PR-115 variety. The studies showed that PR-115 is a drought tolerant variety while Super-7 is drought sensitive in nature.

  20. Effect of Water Stress on Cotton Leaves 1

    PubMed Central

    Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.

    1982-01-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of

  1. Stress increases descending inhibition in mouse and human colon.

    PubMed

    Reed, D E; Zhang, Y; Beyak, M J; Lourenssen, S; Blennerhassett, M G; Paterson, W G; Vanner, S J

    2016-04-01

    A relationship between stress and the symptoms of irritable bowel syndrome (IBS) has been well established but the cellular mechanisms are poorly understood. Therefore, we investigated effects of stress and stress hormones on colonic descending inhibition and transit in mouse models and human tissues. Stress was applied using water avoidance stress (WAS) in the animal model or mimicked using stress hormones, adrenaline (5 nM), and corticosterone (1 μM). Intracellular recordings were obtained from colonic circular smooth muscle cells in isolated smooth muscle/myenteric plexus preparations and the inhibitory junction potential (IJP) was elicited by nerve stimulation or balloon distension oral to the site of recording. Water avoidance stress increased the number of fecal pellets compared to control (p < 0.05). WAS also caused a significant increase in IJP amplitude following balloon distension. Stress hormones also increased the IJP amplitude following nerve stimulation and balloon distension (p < 0.05) in control mice but had no effect in colons from stressed mice. No differences were observed with application of ATP between stress and control tissues, suggesting the actions of stress hormones were presynaptic. Stress hormones had a large effect in the nerve stimulated IJP in human colon (increased >50%). Immunohistochemical studies identified alpha and beta adrenergic receptor immunoreactivity on myenteric neurons in human colon. These studies suggest that WAS and stress hormones can signal via myenteric neurons to increase inhibitory neuromuscular transmission. This could lead to greater descending relaxation, decreased transit time, and subsequent diarrhea. © 2016 John Wiley & Sons Ltd.

  2. Water stress detection in the Amazon using radar

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  3. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    NASA Astrophysics Data System (ADS)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  4. Role of chromatin in water stress responses in plants

    PubMed Central

    Han, Soon-Ki; Wagner, Doris

    2014-01-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth. PMID:24302754

  5. [Effects of water stress on red-edge parameters and yield in wheat cropping].

    PubMed

    He, Ke-Xun; Zaho, Shu-He; Lai, Jian-Bin; Luo, Yun-Xiao; Qin, Zhi-Hao

    2013-08-01

    The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period.

  6. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  7. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  8. Chloroplast Osmotic Adjustment and Water Stress Effects on Photosynthesis 1

    PubMed Central

    Gupta, Ashima Sen; Berkowitz, Gerald A.

    1988-01-01

    Previous studies have suggested that chloroplast stromal volume reduction may mediate the inhibition of photosynthesis under water stress. In this study, the effects of spinach (Spinacia oleracea, var `Winter Bloomsdale') plant water deficits on chloroplast photosynthetic capacity, solute concentrations in chloroplasts, and chloroplast volume were studied. In situ (gas exchange) and in vitro measurements indicated that chloroplast photosynthetic capacity was maintained during initial leaf water potential (Ψw) and relative water content (RWC) decline. During the latter part of the stress period, photosynthesis dropped precipitously. Chloroplast stromal volume apparently remained constant during the initial period of decline in RWC, but as leaf Ψw reached −1.2 megapascals, stromal volume began to decline. The apparent maintenance of stromal volume over the initial RWC decline during a stress cycle suggested that chloroplasts are capable of osmotic adjustment in response to leaf water deficits. This hypothesis was confirmed by measuring chloroplast solute levels, which increased during stress. The results of these experiments suggest that stromal volume reduction in situ may be associated with loss of photosynthetic capacity and that one mechanism of photosynthetic acclimation to low Ψw may involve stromal volume maintenance. PMID:16666266

  9. A UAS-based remote sensing platform for crop water stress detection

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wang, D.; Ayars, J. E.

    2014-12-01

    The remote detection of water stress in a biofuel crop field was investigated using canopy temperature measurements. An experimental trial was set up in the central valley of Maui, Hawaii, comprising different sugarcane varieties and irrigation regimes. An unmanned aerial system (UAS) was equipped with a FLIR A615 thermal camera to acquire canopy temperature imagery. Images were mosaicked and processed to show spatial temperature difference of entire field. A weather station was installed in a full irrigation plot to collect meteorological parameters. The sensitivity of canopy to air temperature difference and crop water stress index were investigated on detecting cop water stress levels. The results showed that low irrigation level treatment plots resulted in higher canopy temperatures compared to the high irrigation level treatment plots. Canopy temperatures also showed differences in water stress in different sugarcane varieties. The study demonstrated the feasibility of UAS-based thermal method to quantify plant water status of sugar canes used for biofuel crops.

  10. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    PubMed

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling

  11. A multimodal image sensor system for identifying water stress in grapevines

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  12. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    PubMed

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Teacher Distress and the Role of Experiential Avoidance

    ERIC Educational Resources Information Center

    Hinds, Erika; Jones, Laura Backen; Gau, Jeffrey M.; Forrester, Kathleen K.; Biglan, Anthony

    2015-01-01

    Teachers' psychological well-being is important for teachers and students, but teaching is highly stressful, particularly in special education. We examined the role of experiential avoidance (EA) in the well-being of 529 middle and elementary school teachers. EA involves the tendency to avoid thoughts, feelings, and other internal experiences,…

  14. Seasonal water storage, stress modulation and California seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Burgmann, R.; Fu, Y.

    2017-12-01

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  15. Water stress strengthens mutualism among ants, trees, and scale insects.

    PubMed

    Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M

    2013-11-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  16. Polyamines induce adaptive responses in water deficit stressed cucumber roots.

    PubMed

    Kubiś, Jan; Floryszak-Wieczorek, Jolanta; Arasimowicz-Jelonek, Magdalena

    2014-01-01

    The aim of this study was to investigate the effect of exogenous polyamines (PAs) on the membrane status and proline level in roots of water stressed cucumber (Cucumis sativus cv. Dar) seedlings. It was found that water shortage resulted in an increase of membrane injury, lipoxygenase (LOX) activity, lipid peroxidation and proline concentration in cucumber roots during progressive dehydration. PA pretreatment resulted in a distinct reduction of the injury index, and this effect was reflected by a lower stress-evoked LOX activity increase and lipid peroxide levels at the end of the stress period. In contrast, PA-supplied stressed roots displayed a higher proline accumulation. The presented results suggest that exogenous PAs are able to alleviate water deficit-induced membrane permeability and diminish LOX activity. Observed changes were accompanied by an accumulation of proline, suggesting that the accumulation of this osmolyte might be another possible mode of action for PAs to attain higher membrane stability, and in this way mitigate water deficit effects in roots of cucumber seedlings.

  17. Water Stress Strengthens Mutualism Among Ants, Trees, and Scale Insects

    PubMed Central

    Pringle, Elizabeth G.; Akçay, Erol; Raab, Ted K.; Dirzo, Rodolfo; Gordon, Deborah M.

    2013-01-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant–plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant–plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism. PMID:24223521

  18. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased

  19. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies

  20. Oxidation of Proline by Mitochondria Isolated from Water-Stressed Maize Shoots 1

    PubMed Central

    Sells, Gary D.; Koeppe, David E.

    1981-01-01

    Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates. The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity. PMID:16662051

  1. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly

  2. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE PAGES

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.; ...

    2018-02-15

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly

  3. Neuropeptide Receptors NPR-1 and NPR-2 Regulate Caenorhabditis elegans Avoidance Response to the Plant Stress Hormone Methyl Salicylate

    PubMed Central

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-01-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. PMID:25527285

  4. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  5. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering.

    PubMed

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO 2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO 2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.

  6. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  7. Pain-catastrophizing and fear-avoidance beliefs as mediators between post-traumatic stress symptoms and pain following whiplash injury - A prospective cohort study.

    PubMed

    Andersen, T E; Karstoft, K-I; Brink, O; Elklit, A

    2016-09-01

    Knowledge about the course of recovery after whiplash injury is important. Most valuable is identification of prognostic factors that may be reversed by intervention. The mutual maintenance model outlines how post-traumatic stress symptoms (PTSS) and pain may be mutually maintained by attention bias, fear, negative affect and avoidance behaviours. In a similar vein, the fear-avoidance model describes how pain-catastrophizing (PCS), fear-avoidance beliefs (FA) and depression may result in persistent pain. These mechanisms still need to be investigated longitudinally in a whiplash cohort. A longitudinal cohort design was used to assess patients for pain intensity and psychological distress after whiplash injury. Consecutive patients were all contacted within 3 weeks after their whiplash injury (n = 198). Follow-up questionnaires were sent 3 and 6 months post-injury. Latent Growth Mixture Modelling was used to identify distinct trajectories of recovery from pain. Five distinct trajectories were identified. Six months post-injury, 64.6% could be classified as recovered and 35.4% as non-recovered. The non-recovered (the medium stable, high stable and very high stable trajectories) displayed significantly higher levels of PTSS, PCS, FA and depression at all time points compared to the recovered trajectories. Importantly, PCS and FA mediated the effect of PTSS on pain intensity. The present study adds important knowledge about the development of psychological distress and pain after whiplash injury. The finding, that PCS and FA mediated the effect of PTSS on pain intensity is a novel finding with important implications for prevention and management of whiplash-associated disorders. WHAT DOES THIS STUDY ADD?: The study confirms the mechanisms as outlined in the fear-avoidance model and the mutual maintenance model. The study adds important knowledge of pain-catastrophizing and fear-avoidance beliefs as mediating mechanisms in the effect of post-traumatic stress on pain

  8. Everyday Strivings in War Veterans With Posttraumatic Stress Disorder: Suffering From a Hyper-Focus on Avoidance and Emotion Regulation

    PubMed Central

    Kashdan, Todd B.; Breen, William E.; Julian, Terri

    2014-01-01

    This research investigated whether combat veterans' daily strivings are related to the presence of post-traumatic stress disorder (PTSD) and well-being. Veterans created a list of their most important strivings, which were content-analyzed for emotion regulation and approach or avoidance themes. It was hypothesized that veterans pursuing strivings with themes of emotion regulation or avoidance experience deleterious consequences compared with other veterans. For all veterans, devoting finite time and energy in daily life to regulating emotions was associated with less purpose, meaning, and joy compared with other strivings. Veterans with PTSD endorsed more strivings related to emotion regulation and devoted considerable effort to emotion regulation and avoidance strivings. Yet, these efforts failed to translate into any discernible benefits; veterans without PTSD derived greater joy and meaning from strivings focusing on approac- oriented behavior and themes other than emotion regulation. The presence of PTSD and a high rate of emotion regulation strivings led to the lowest global well-being and daily self-esteem during a 14-day assessment period. The presence of PTSD and a high rate of avoidance strivings also led to lower emotional well-being. Results indicate that strivings devoted to regulating emotions or avoidance efforts influence the mental health of veterans with and without PTSD. Studying personality at different levels of analysis—traits, strivings, and life narratives—allows for a fine-grained understanding of emotional disorders. PMID:20569784

  9. Impacts of a water stress followed by an early frost event on beech (Fagus sylvatica L.) susceptibility to Scolytine ambrosia beetles - Research strategy and first results

    NASA Astrophysics Data System (ADS)

    La Spina, Sylvie; de Cannière, Charles; Molenberg, Jean-Marc; Vincke, Caroline; Deman, Déborah; Grégoire, Jean-Claude

    2010-05-01

    Climate change tends to induce more frequent abiotic and biotic extreme events, having large impacts on tree vitality. Weakened trees are then more susceptible to secondary insect outbreaks, as it happened in Belgium in the early 2000s: after an early frost event, secondary Scolytine ambrosia beetles attacks were observed on beech trees. In this study, we test if a combination of stress, i.e. a soil water deficit preceding an early frost, could render trees more attractive to beetles. An experimental study was set in autumn 2008. Two parcels of a beech forest were covered with plastic tents to induce a water stress by rain interception. The parcels were surrounded by 2-meters depth trenches to avoid water supply by streaming. Soil water content and different indicators of tree water use (sap flow, predawn leaf water potential, tree radial growth) were followed. In autumn 2010, artificial frost injuries will be inflicted to trees using dry ice. Trees attractivity for Scolytine insects, and the success of insect colonization will then be studied. The poster will focus on experiment setting and first results (impacts of soil water deficit on trees).

  10. Yield, quality and biochemical properties of various strawberry cultivars under water stress.

    PubMed

    Adak, Nafiye; Gubbuk, Hamide; Tetik, Nedim

    2018-01-01

    Although strawberry (Fragaria x ananassa Duch.) species are sensitive to abiotic stress conditions, some cultivars are known to be tolerant to different environmental conditions. We examined the response of different strawberry cultivars to water stress conditions in terms of yield, quality and biochemical features. The trial was conducted under two different irrigation regimes: in grow bags containing cocopeat (control, 30%; water stress, 15% drainage) with four different cultivars (Camarosa, Albion, Amiga and Rubygem). Fruit weight declined by 59.72% and the yield per unit area by 63.62% under water stress conditions as compared to control. Albion and Rubygem were found to be more tolerant and Amiga the most sensitive in terms of yield under stress conditions. Water stress increased all biochemical features in fruits such as total phenol, total anthocyanin, antioxidant activity and sugar contents. Among the cultivars, glucose and fructose was higher in Albion. Considering the rise in global warming, identification of resistant and tolerant cultivars to stress conditions are crucial for future breeding programmes. Our results showed that some of the fruit's physical features were affected negatively by stress conditions whereas many of the biochemical features such as total anthocyanin content, total phenolic content and antioxidant activity were positively modulated. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering

    PubMed Central

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C.

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars (‘Scarletprince’ and ‘CaroTiger’). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed ‘Scarletprince’ trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed ‘Scarletprince’ trees was improved to values similar to control trees. On the other hand, water-stressed ‘CaroTiger’ trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with ‘Scarletprince’ trees preferentially using proline as compatible solute and ‘CaroTiger’ trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes. PMID:28979284

  12. The effect of water stress on super-high- density 'Koroneiki' olive oil quality.

    PubMed

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar

    2015-08-15

    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  13. Multi-modal sensor system for plant water stress assessment

    USDA-ARS?s Scientific Manuscript database

    Plant stress critically affects plant growth and causes significant loss of productivity and quality. When the plant is under water stress, it impedes photosynthesis and transpiration, resulting in changes in leaf color and temperature. Leaf discoloration in photosynthesis can be assessed by measu...

  14. Burden shifting of water quantity and quality stress from megacity Shanghai

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Liu, Junguo; Yang, Hong; Duarte, Rosa; Tillotson, Martin R.; Hubacek, Klaus

    2016-09-01

    Much attention has been paid to burden shifting of CO2 emissions from developed regions to developing regions through trade. However, less discussed is that trade also acts as a mechanism enabling wealthy consumers to shift water quantity and quality stress to their trading partners. In this study, we investigate how Shanghai, the largest megacity in China, draws water resources from all over China and outsources its pollution through virtual quantity and quality water flows associated with trade. The results show that Shanghai's consumption of goods and services in 2007 led to 11.6 billion m3 of freshwater consumption, 796 thousand tons of COD, and 16.2 thousand tons of NH3-N in discharged wastewater. Of this, 79% of freshwater consumption, 82.9% of COD and 82.5% of NH3-N occurred in other Chinese Provinces which provide goods and services to Shanghai. Thirteen Provinces with severe and extreme water quantity stress accounted for 60% of net virtual water import to Shanghai, while 19 Provinces experiencing water quality stress endured 79% of net COD outsourcing and 75.5% of net NH3-N outsourcing from Shanghai. In accordance with the three "redlines" recently put forward by the Chinese central government to control water pollution and cap total water use in all provinces, we suggest that Shanghai should share its responsibility for reducing water quantity and quality stress in its trading partners through taking measures at provincial, industrial, and consumer levels. In the meantime, Shanghai needs to enhance demand side management by promoting low water intensity consumption.

  15. Revealing Water Stress by the Thermal Power Industry in China Based on a High Spatial Resolution Water Withdrawal and Consumption Inventory.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Wang, Jiao; Wu, Zhixuan

    2016-02-16

    This study reveals the spatial distribution of water withdrawal and consumption by thermal power generation and the associated water stress at catchment level in China based on a high-resolution geodatabase of electric generating units and power plants. We identified three groups of regions where the baseline water stress exerted by thermal power generation is comparatively significant: (1) the Hai River Basin/East Yellow River Basin in the north; (2) some arid catchments in Xinjiang Autonomous Region in the northwest; and (3) the coastal city clusters in the Yangtze River Delta, Pearly River Delta, and Zhejiang Province. Groundwater stress is also detected singularly in a few aquifers mainly in the Hai River Basin and the lower reaches of the Yellow River Basin. As China accelerates its pace of coal mining and coal-fired power generation in the arid northwest regions, the energy/water priorities in catchments under high water stress are noteworthy. We conclude that promotion of advanced water-efficient technologies in the energy industry and more systematic analysis of the water stress of thermal power capacity expansion in water scarce regions in inland China are needed. More comprehensive and transparent data monitoring and reporting are essential to facilitate such water stress assessment.

  16. Ways to Manage Stress and Avoid Teacher Burnout.

    ERIC Educational Resources Information Center

    Hylton, John

    1989-01-01

    Suggests strategies for dealing with job stress and for prolonging career satisfaction. Stresses time management as a prime coping tool. Encourages reviewing objectives, and planning and setting priorities. Points out value of good physical health to development of mental fitness. (LS)

  17. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil.

    PubMed

    Mickan, Bede S; Abbott, Lynette K; Stefanova, Katia; Solaiman, Zakaria M

    2016-08-01

    Biochar may alleviate plant water stress in association with arbuscular mycorrhizal (AM) fungi but research has not been conclusive. Therefore, a glasshouse experiment was conducted to understand how interactions between AM fungi and plants respond to biochar application under water-stressed conditions. A twin chamber pot system was used to determine whether a woody biochar increased root colonisation by a natural AM fungal population in a pasture soil ('field' chamber) and whether this was associated with increased growth of extraradical AM fungal hyphae detected by plants growing in an adjacent ('bait') chamber containing irradiated soil. The two chambers were separated by a mesh that excluded roots. Subterranean clover was grown with and without water stress and harvested after 35, 49 and 63 days from each chamber. When biochar was applied to the field chamber under water-stressed conditions, shoot mass increased in parallel with mycorrhizal colonisation, extraradical hyphal length and shoot phosphorus concentration. AM fungal colonisation of roots in the bait chamber indicated an increase in extraradical mycorrhizal hyphae in the field chamber. Biochar had little effect on AM fungi or plant growth under well-watered conditions. The biochar-induced increase in mycorrhizal colonisation was associated with increased growth of extraradical AM fungal hyphae in the pasture soil under water-stressed conditions.

  18. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.

    PubMed

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2010-07-01

    The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.

  19. The impacts of water stress on phloem transport in Douglas-fir trees

    Treesearch

    David Woodruff

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water...

  20. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    PubMed

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  1. Can Degradation of Adhesive Interfaces Due to Water Storage Affect Stress Distributions? A Finite-Element Stress Analysis Study.

    PubMed

    Belli, Sema; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan

    The aim of this finite-element stress analysis (FEA) was to determine the effect of degradation due to water storage on stress distributions in root-filled premolar models restored with composite using either a self-etch (SE) or an etch-and-rinse (E&R) adhesive. Four premolar FEA models including root filling, MOD cavity, and composite restorations were created. The cavities were assumed to be treated by SE or E&R adhesives and stored in water for 18 months. The elastic properties of the adhesive-dentin interface after 24-h and 18-month water storage were obtained from the literature and applied to the FEA models. A 300-N load was applied on the functional cusps of the models. The SolidWorks/Cosmosworks structural analysis program was used and the results were presented considering the von Mises stresses. Stresses in the cervical region increased over time on the load-application side of the main tooth models (SE: 84.11 MPa to 87.51 MPa; E&R: 100.24 MPa to 120.8 MPa). When the adhesive interfaces (hybrid layer, adhesive layer) and dentin were evaluated separately, the stresses near the root canal orifices increased over time in both models; however, this change was more noticeable in the E&R models. Stresses at the cavity corners decreased in the E&R model (within the adhesive layer), while SE models showed the opposite (within the hybrid layer). Change in the elastic modulus of the adhesive layer, hybrid layer, and dentin due to water storage has an effect on stresses in root-filled premolar models. The location and the level of the stresses differed depending on the adhesive used.

  2. Gastric mucosal damage in water immersion stress: mechanism and prevention with GHRP-6.

    PubMed

    Guo, Shu; Gao, Qian; Jiao, Qing; Hao, Wei; Gao, Xue; Cao, Ji-Min

    2012-06-28

    To investigate the mechanism of gastric mucosal demage induced by water immersion restraint stress (WRS) and its prevention by growth hormone releasing peptide-6 (GHRP-6). Male Wistar rats were subjected to conscious or unconscious (anesthetized) WRS, simple restraint (SR), free swimming (FS), non-water fluid immersion, immersion without water contact, or rats were placed in a cage surrounded by sand. To explore the sensitivity structures that influence the stress reaction besides skin stimuli, a group the rats had their eyes occluded. Cervical bilateral trunk vagotomy or atropine injection was performed in some rats to assess the parasympathetic role in mucosal damage. Gastric mucosal lesions, acid output and heart rate variability were measured. Plasma renin, endothelin-1 and thromboxane B2 and gastric heat shock protein 70 were also assayed. GHRP-6 was injected [intraperitoneal (IP) or intracerebroventricular (ICV)] 2 h before the onset of stress to observe its potential prevention of the mucosal lesion. WRS for 6 h induced serious gastric mucosal lesion [lesion area, WRS 81.8 ± 6.4 mm² vs normal control 0.0 ± 0.0 mm², P < 0.01], decreased the heart rate, and increased the heart rate variability and gastric acid secretion, suggesting an increase in vagal nerve-carrying stimuli. The mucosal injury was inversely correlated with water temperature (lesion area, WRS at 35 °C 56.4 ± 5.2 mm² vs WRS at 23 °C 81.8 ± 6.4 mm², P < 0.01) and was consciousness-dependent. The injury could not be prevented by eye occlusion, but could be prevented by avoiding contact of the rat body with the water by dressing it in an impermeable plastic suit. When water was replaced by vegetable oil or liquid paraffin, there were gastric lesions in the same grade of water immersion. When rat were placed in a cage surrounded by sand, there were no gastric lesions. All these data point to a remarkable importance of cutenuous information transmitted to the high neural center that by

  3. Hydraulic failure defines the recovery and point of death in water-stressed conifers.

    PubMed

    Brodribb, Tim J; Cochard, Hervé

    2009-01-01

    This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Psileaf) were monitored. Stomatal responses to Psileaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to <50% loss of leaf hydraulic conductance (Kleaf) and a highly Psileaf-dependent phase in plants stressed to >50% loss of Kleaf. Maximum recoverable water stress (Psimin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species.

  4. Cryosphere, climate and capitalism: drivers of Central Asian water stress

    NASA Astrophysics Data System (ADS)

    Hill, A. F.; Minbaeva, C.; Wilson, A. M.; Satylkanov, R.; Armstrong, R. L.

    2017-12-01

    The importance of meltwater to Central Asia's trans-boundary rivers and groundwater reserves suggests future water stress for the region. Climate is likely to induce shifts in water supply volume and delivery timing, while a complex fabric of socio-political factors complicates water management and adaptation strategies. To clarify the drivers of water stress over a large scale (440km, 4,200m elevation change), we conducted a socio-hydrologic study of Krygyzstan's Naryn River in the Tien Shan mountains, headwater stem of the Syr Darya and source of the disappearing Aral Sea. Using a combination of geochemical sampling, hydro-chemical mixing models, remote sensing image processing and community surveys, we characterized both the social and hydrologic controls of water supplies from glacier snout to downstream areas where people, hydropower and agriculture utilize water. We find melt-sourced water dominates hydrologic inputs to both surface flow and groundwater from headwaters to reservoir, suggesting high sensitivity of water supply to a warming climate. On a regional scale, the importance of melt to trans-boundary river flow serving thirsty downstream countries may increase hostility between already tense neighbors. Water stress on the basin level, however, is currently less impacted by supply than by access, agricultural knowledge deficiencies and infrastructure issues that are relic from the post-Soviet transition in the 1990s. The interplay of these factors suggests the need for creative and proactive water management adaptation planning in the Naryn basin and throughout similar melt-reliant areas of arid Central Asia.

  5. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  6. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  7. Measuring near infrared spectral reflectance changes from water stressed conifer stands with AIS-2

    NASA Technical Reports Server (NTRS)

    Riggs, George; Running, Steven W.

    1987-01-01

    Airborne Imaging Spectrometer-2 (AIS-2) data was acquired over two paired conifer stands for the purpose of detecting differences in spectral reflectance between stressed and natural canopies. Water stress was induced in a stand of Norway spruce and white pine by severing the sapwood near the ground. Water stress during the AIS flights was evaluated through shoot water potential and relative water content measurements. Preliminary analysis with raw AIS-2 data using SPAM indicates that there were small, inconsistent differences in absolute spectral reflectance in the near infrared 0.97 to 1.3 micron between the stressed and natural canopies.

  8. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture

  9. Relationships among Stress, Experiential Avoidance and Depression in Psychiatric Patients.

    PubMed

    Rueda, Beatriz; Valls, Esperanza

    2016-05-23

    This study investigated the specific association of stressful life events (SLE) and experiential avoidance (EA) with depression in patients with mental disorders. It also analyzed the possible mediating role of depression in the relation of EA to well-being and life satisfaction. A total of 147 patients (mean age = 40.16 years) diagnosed with anxiety, mood or adjustment disorder were recruited from a mental health centre. They completed measures of SLE, EA, depression, well-being and life satisfaction. Regression analyses showed that SLE and EA were positively related to depression (R 2 = .45), although the contribution made by EA was higher (β = .61, p < .001) than the one made by SLE (β = .19, p < .01). Bootstrap mediation analyses revealed that there was an indirect effect from EA to physical well-being (B = -4.52, SE = .70, p < .001, 95% CI [-6.03, -3.20]) and satisfaction (B = -.14, SE = .02, p < .001, 95%, CI [-.19 -.09]) through depression. This indirect effect was less consistently supported with respect to emotional well-being (B = -3.33, SE = .48, p < .001, 95%, CI [-4.30, -2.41]). These findings give support to the hypothesis that EA could be an important factor contributing to depression in patients with mental disorders. The results also provide evidence that depression seems to play an important mediational role when considering the negative impact that EA exerts on patients´ well-being and satisfaction.

  10. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress

    USDA-ARS?s Scientific Manuscript database

    Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse dro...

  11. Time pressure undermines performance more under avoidance than approach motivation.

    PubMed

    Roskes, Marieke; Elliot, Andrew J; Nijstad, Bernard A; De Dreu, Carsten K W

    2013-06-01

    Four experiments were designed to test the hypothesis that performance is particularly undermined by time pressure when people are avoidance motivated. The results supported this hypothesis across three different types of tasks, including those well suited and those ill suited to the type of information processing evoked by avoidance motivation. We did not find evidence that stress-related emotions were responsible for the observed effect. Avoidance motivation is certainly necessary and valuable in the self-regulation of everyday behavior. However, our results suggest that given its nature and implications, it seems best that avoidance motivation is avoided in situations that involve (time) pressure.

  12. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. Betaine accumulation and (/sup 14/C)formate metabolism in water-stressed barley leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Nelsen, C.E.

    1978-01-01

    Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of -19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline-remained at a high concentrationmore » in drought-killed leaf zones, but betaine did not disappear as rapidly as proline during recovery. When (methyl-/sup 14/C)choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more /sup 14/C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of (/sup 14/C)formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more /sup 14/C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with (/sup 14/C)formate for about 18 hours in darkness, betaine was always the principal /sup 14/C-labeled soluble metabolite. This /sup 14/C label was located exclusively in the N-methyl groups of betaine; thus, reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of /sup 14/C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from (/sup 14/C)formate. These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress and indicate that the betaine so accumulated may be a metabolically inert end product.« less

  14. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions

    PubMed Central

    Ferreira, Thais H. S.; Tsunada, Max S.; Bassi, Denis; Araújo, Pedro; Mattiello, Lucia; Guidelli, Giovanna V.; Righetto, Germanna L.; Gonçalves, Vanessa R.; Lakshmanan, Prakash; Menossi, Marcelo

    2017-01-01

    Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments. PMID:28690620

  15. Contrasting extremes in water-related stresses determine species survival

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R. P.; Witte, J. P. M.; van Bodegom, P. M.; van Dam, J. C.; Aerts, R.

    2012-04-01

    In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. Especially the occurrence of both excessive dry and wet moisture conditions at a particular site has strong implications for the survival of species, because plants need traits that allow them to respond to such counteracting conditions. However, adapting to one stress may go at the cost of the other, i.e. there exists a trade-off in the tolerance for wet conditions and the tolerance for dry conditions. Until now, both large-scale (global) and plot-scale effects of soil moisture conditions on plant species composition have mostly been investigated through indirect environmental measures, which do not include the key soil physical and plant physiological processes in the soil-plant-atmosphere system. Moreover, researchers only determined effects of one of the water-related stresses, i.e. either oxygen or drought stress. In order to quantify both oxygen and drought stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. High variability and extremes in resource availability can be highly detrimental to plant species ('you can only die once'). We show that co-occurrence of oxygen and drought stress reduces the percentage of specialists within a vegetation plot. The percentage of non-specialists within a vegetation plot, however, decreases significantly with increasing stress as long as only one of the stresses prevails, but increases significantly with an

  16. Water insecurity in a syndemic context: Understanding the psycho-emotional stress of water insecurity in Lesotho, Africa.

    PubMed

    Workman, Cassandra L; Ureksoy, Heather

    2017-04-01

    Syndemics occur when populations experience synergistic and multiplicative effects of co-occurring epidemics. Proponents of syndemic theory highlight the importance of understanding the social context in which diseases spread and cogently argue that there are biocultural effects of external stresses such as food insecurity and water insecurity. Thus, a holistic understanding of disease or social vulnerability must incorporate an examination of the emotional and social effects of these phenomena. This paper is a response to the call for a renewed focus on measuring the psycho-emotional and psychosocial effects of food insecurity and water insecurity. Using a mixed-method approach of qualitative interviews and quantitative assessment, including a household demographic, illness, and water insecurity scale, the Household Food Insecurity Access Scale, and the Hopkins Symptoms Checklist-25, this research explored the psycho-emotional effects of water insecurity, food insecurity, and household illness on women and men residing in three low-land districts in Lesotho (n = 75). Conducted between February and November of 2011, this exploratory study first examined the complicated interaction of water insecurity, food insecurity and illness to understand and quantify the relationship between these co-occurring stresses in the context of HIV/AIDS. Second, it sought to separate the role of water insecurity in predicting psycho-emotional stress from other factors, such as food insecurity and household illness. When asked directly about water, qualitative research revealed water availability, access, usage amount, and perceived water cleanliness as important dimensions of water insecurity, creating stress in respondents' daily lives. Qualitative and quantitative data show that water insecurity, food insecurity and changing household demographics, likely resulting from the HIV/AIDS epidemic, are all associated with increased anxiety and depression, and support the conclusion that

  17. Honey Bee (Apis mellifera) Drones Survive Oxidative Stress due to Increased Tolerance instead of Avoidance or Repair of Oxidative Damage

    PubMed Central

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K.; Tarpy, David R.; Rueppell, Olav

    2016-01-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  18. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Teacher Distress and the Role of Experiential Avoidance

    PubMed Central

    Hinds, Erika; Jones, Laura Backen; Gau, Jeffrey M.; Forrester, Kathleen K.; Biglan, Anthony

    2015-01-01

    Teachers’ psychological wellbeing is important for teachers and students, but is highly stressful, particularly in special education. We examined the role of experiential avoidance (EA) in the wellbeing of 529 middle and elementary school teachers. EA involves the tendency to avoid thoughts, feelings, and other internal experiences even when doing so causes long-range consequences. Using a teacher-specific measure, we investigated its relationship to stress associated with student misbehavior and limited social support. We assessed EA’s relationship to burnout and depression, finding EA significantly and moderately correlated with depression and all scales of Maslach’s Burnout Inventory. Mediation analyses showed EA mediated the relationship between stress associated with student behavior and measures of wellbeing. We found 26.8% of teachers mildly, 8.9% moderately, and 2.8% moderately severely or severely depressed. This evidence concurs with studies showing the value of mindfulness-based interventions and points to the utility of implementing interventions aimed at decreasing EA in teachers. PMID:25691804

  20. Modeling Avoidance in Mood and Anxiety Disorders Using Reinforcement Learning.

    PubMed

    Mkrtchian, Anahit; Aylward, Jessica; Dayan, Peter; Roiser, Jonathan P; Robinson, Oliver J

    2017-10-01

    Serious and debilitating symptoms of anxiety are the most common mental health problem worldwide, accounting for around 5% of all adult years lived with disability in the developed world. Avoidance behavior-avoiding social situations for fear of embarrassment, for instance-is a core feature of such anxiety. However, as for many other psychiatric symptoms the biological mechanisms underlying avoidance remain unclear. Reinforcement learning models provide formal and testable characterizations of the mechanisms of decision making; here, we examine avoidance in these terms. A total of 101 healthy participants and individuals with mood and anxiety disorders completed an approach-avoidance go/no-go task under stress induced by threat of unpredictable shock. We show an increased reliance in the mood and anxiety group on a parameter of our reinforcement learning model that characterizes a prepotent (pavlovian) bias to withhold responding in the face of negative outcomes. This was particularly the case when the mood and anxiety group was under stress. This formal description of avoidance within the reinforcement learning framework provides a new means of linking clinical symptoms with biophysically plausible models of neural circuitry and, as such, takes us closer to a mechanistic understanding of mood and anxiety disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Corrosion and stress corrosion cracking in supercritical water

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  2. Estimating anthropogenic ecological water stress in the US great lakes region

    USDA-ARS?s Scientific Manuscript database

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g...

  3. Implications of vegetation hydraulic capacitance as an indicator of water stress and drought recovery

    NASA Astrophysics Data System (ADS)

    Matheny, A. M.; Bohrer, G.

    2017-12-01

    Above-ground water storage in vegetation plays an integral role in the avoidance of hydraulic impairment to transpiration. New high temporal resolution measurements of dynamic changes in tree hydraulic capacitance are facilitating insights into vegetation water use strategies. Diurnal withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. The ability to store and use water varies based on soil- and root-water availability, tree size, wood vessel anatomy and density, and stomatal response strategy (i.e. isohydricity). We present results from a three-year long study of stem capacitance dynamics in five species in a mixed deciduous forest in Michigan. The site receives 800mm of rainfall annually, but water potential in the well-drained sandy soil nears the permanent wilting point several times annually. We demonstrate radical differences in stored water use between drought tolerant and intolerant species. Red maple, a drought intolerant, isohydric species, showed a strong dependence on stem capacitance for transpiration during both wet and dry periods. Red oak, a more drought hearty, deep rooted, anisohydric species, was much less reliant on withdrawal from water storage during all conditions. During well-watered conditions, withdrawal from storage by red maple was 10 kg day-1, yet storage withdrawal from similarly sized red oaks was 1 kg day-1. Red oaks only drew strongly upon stored water during the driest extremes. Metrics of hydration status derived from capacitance provide a means to explore drought response and recovery. Declines in consecutive days' maximum capacitance indicate an inability to restore lost water and can be used to mark the onset of water stress. Drought recovery can be quantified as the time required for stem water content to return to pre-drought volumes. Capacitance withdrawal and depletion exhibit a clear threshold response to declining soil water

  4. Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress.

    PubMed

    Milano, Marianne; Reynard, Emmanuel; Köplin, Nina; Weingartner, Rolf

    2015-12-01

    Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Impacts of Climate Variability on the Spatio-temporal Characteristics of Water Stress in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Soojun; Devineni, Naresh; Lall, Upmanu; Kim, Hung Soo

    2017-04-01

    This study intended to evaluate water stress quantitatively targeted at the Korean Peninsula and to analyze the spatial and temporal characteristics of its occurrence. First, the severity and multiyear influence of water stress were analyzed by realizing water balance based on water supply and demand and by calculating the normalized deficit index (NDI) and the normalized deficit cumulated (NDC) for 113 small basins in the Korean Peninsula. Next, a change in the periodic characteristics of water stress was analyzed using wavelet transform of the NDI by small basins and 3 bands of periods of 1 year, 2-4 years, and 4-8 years were separated. Through an analysis of the empirical orthogonal function (EOF) on each band, it was found that water stress occurring in the Korean Peninsula has the characteristics of spatial distribution that it is extended from the south coast to the northern area and inland as its period gets longer. An analysis of the band with a period of 2-8 years for water stress showed that it has a relationship with El Niño-Southern Oscillation (ENSO). Acknowledgment This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  6. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-08-01

    During the past decades, human water use more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water scarcity considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which is subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes and reservoirs by means of the global hydrological model PCR-GLOBWB. The results show a drastic increase in the global population living under water-stressed conditions (i.e., moderate to high water stress) due to the growing water demand, primarily for irrigation, which more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27 % of the global population were under water-stressed conditions for 1960. This number increased to 2.6 billion or 43 % for 2000. Our results indicate that increased water demand is the decisive factor for the heightened water stress, enhancing the intensity of water stress up to 200 %, while climate variability is often the main determinant of onsets for extreme events, i.e. major droughts. However, our results also suggest that in several emerging and developing economies (e.g., India, Turkey, Romania and Cuba) some of the past observed droughts were anthropogenically driven due to increased water demand rather than being climate-induced. In those countries, it can be seen

  7. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats.

    PubMed

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y; Owyang, Chung

    2014-02-01

    Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction (PCR) and 454 pyrosequencing were used to analyze bacterial 16S ribosomal RNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats

    PubMed Central

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung

    2014-01-01

    Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699

  9. Effects of Water Stress on the Endophytic Fungal Communities of Pinus koraiensis Needles Infected by Cenangium ferruginosum

    PubMed Central

    Lee, Sun Keun; Lee, Seung Kyu; Bae, Hanhong; Seo, Sang-Tae

    2014-01-01

    To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings. PMID:25606004

  10. Interspecific interference competition at the resource patch scale: do large herbivores spatially avoid elephants while accessing water?

    PubMed

    Ferry, Nicolas; Dray, Stéphane; Fritz, Hervé; Valeix, Marion

    2016-11-01

    Animals may anticipate and try to avoid, at some costs, physical encounters with other competitors. This may ultimately impact their foraging distribution and intake rates. Such cryptic interference competition is difficult to measure in the field, and extremely little is known at the interspecific level. We tested the hypothesis that smaller species avoid larger ones because of potential costs of interference competition and hence expected them to segregate from larger competitors at the scale of a resource patch. We assessed fine-scale spatial segregation patterns between three African herbivore species (zebra Equus quagga, kudu Tragelaphus strepsiceros and giraffe Giraffa camelopardalis) and a megaherbivore, the African elephant Loxodonta africana, at the scale of water resource patches in the semi-arid ecosystem of Hwange National Park, Zimbabwe. Nine waterholes were monitored every two weeks during the dry season of a drought year, and observational scans of the spatial distribution of all herbivores were performed every 15 min. We developed a methodological approach to analyse such fine-scale spatial data. Elephants increasingly used waterholes as the dry season progressed, as did the probability of co-occurrence and agonistic interaction with elephants for the three study species. All three species segregated from elephants at the beginning of the dry season, suggesting a spatial avoidance of elephants and the existence of costs of being close to them. However, contrarily to our expectations, herbivores did not segregate from elephants the rest of the dry season but tended to increasingly aggregate with elephants as the dry season progressed. We discuss these surprising results and the existence of a trade-off between avoidance of interspecific interference competition and other potential factors such as access to quality water, which may have relative associated costs that change with the time of the year. © 2016 The Authors. Journal of Animal Ecology

  11. Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones

    NASA Astrophysics Data System (ADS)

    Dewers, Thomas; Hajash, Andrew

    1995-07-01

    Mineral-water interactions under conditions of nonhydrostatic stress play a role in subjects as diverse as ductile creep in fault zones, phase relations in metamorphic rocks, mass redistribution and replacement reactions during diagenesis, and loss of porosity in deep sedimentary basins. As a step toward understanding the fundamental geochemical processes involved, using naturally rounded St. Peter sand, we have investigated the kinetics of pore volume loss and quartz-water reactions under nonhydrostatic, hydrothermal conditions in flow-through reactors. Rate laws for creep and mineral-water reaction are derived from the time rate of change of pore volume, sand-water dissolution kinetics, and (flow rate independent) steady state silica concentrations, and reveal functional dependencies of rates on grain size, volume strain, temperature, effective pressure (confining minus pore pressure), and specific surface areas. Together the mechanical and chemical rate laws form a self-consistent model for coupled deformation and water-rock interaction of porous sands under nonhydrostatic conditions. Microstructural evidence shows a progressive widening of nominally circular and nominally flat grain-grain contacts with increasing strain or, equivalently, porosity loss, and small quartz overgrowths occurring at grain contact peripheries. The mechanical and chemical data suggest that the dominant creep mechanism is due to removal of mass from grain contacts (termed pressure solution or solution transfer), with a lesser component of time-dependent crack growth and healing. The magnitude of a stress-dependent concentration increase is too large to be accounted for by elastic or dislocation strain energy-induced supersaturations, favoring instead the normal stress dependence of molar Gibbs free energy associated with grain-grain interfaces.

  12. Transcriptomic Analysis of the Primary Roots of Alhagi sparsifolia in Response to Water Stress

    PubMed Central

    Pei, Xinwu; Zhang, Chao; Jia, Shirong; Li, Weimin

    2015-01-01

    Background Alhagi sparsifolia is a typical desert phreatophyte and has evolved to withstand extreme dry, cold and hot weather. While A. sparsifolia represents an ideal model to study the molecular mechanism of plant adaption to abiotic stress, no research has been done in this aspect to date. Here we took advantage of Illumina platform to survey transcriptome in primary roots of A. sparsifolia under water stress conditions in aim to facilitate the exploration of its genetic basis for drought tolerance. Methodology and Principal Findings We sequenced four primary roots samples individually collected at 0, 6, 24 and 30h from the A. sparsifolia seedlings in the course of 24h of water stress following 6h of rehydration. The resulting 38,763,230, 67,511,150, 49,259,804 and 54,744,906 clean reads were pooled and assembled into 33,255 unigenes with an average length of 1,057 bp. All-unigenes were subjected to functional annotation by searching against the public databases. Based on the established transcriptome database, we further evaluated the gene expression profiles in the four different primary roots samples, and identified numbers of differently expressed genes (DEGs) reflecting the early response to water stress (6h vs. 0h), the late response to water stress (24h vs. 0h) and the response to post water stress rehydration (30h vs. 24h). Moreover, the DEGs specifically regulated at 6, 24 and 30h were captured in order to depict the dynamic changes of gene expression during water stress and subsequent rehydration. Functional categorization of the DEGs indicated the activation of oxidoreductase system, and particularly emphasized the significance of the ‘Glutathione metabolism pathway’ in response to water stress. Conclusions This is the first description of the genetic makeup of A. sparsifolia, thus providing a substantial contribution to the sequence resources for this species. The identified DEGs offer a deep insight into the molecular mechanism of A. sparsifolia

  13. Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers[OA

    PubMed Central

    Brodribb, Tim J.; Cochard, Hervé

    2009-01-01

    This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Ψleaf) were monitored. Stomatal responses to Ψleaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to <50% loss of leaf hydraulic conductance (Kleaf) and a highly Ψleaf-dependent phase in plants stressed to >50% loss of Kleaf. Maximum recoverable water stress (Ψmin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species. PMID:19011001

  14. Seasonal water storage, stress modulation, and California seismicity.

    PubMed

    Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland

    2017-06-16

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.

  15. Blunted hypothalamo-pituitary adrenal axis response to predator odor predicts high stress reactivity.

    PubMed

    Whitaker, Annie M; Gilpin, Nicholas W

    2015-08-01

    Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as 'Avoiders' or 'Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24h and 11days), anxiety-like behavior (48h and 5days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24h that persisted 11days post-stress. Both Avoiders and Non-Avoiders exhibited a heightened anxiety-like behavior at 48h and 5days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and build on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. Copyright © 2015. Published by Elsevier Inc.

  16. Parental decisions, child health and valuation of avoiding arsenic in drinking water in rural Bangladesh.

    PubMed

    Aziz, Sonia N; Boyle, Kevin J; Crocker, Tom

    2015-03-01

    Arsenic contamination of groundwater in Bangladesh is a widespread public health hazard. Water sources without high arsenic levels are scarce, affecting people's availability for work and other activities when they have to seek safe water to drink. While children are particularly susceptible to chronic arsenic exposure, limited information and heavy constraints on resources may preclude people in developing countries from taking protective actions. Since parents are primary decision-makers for children, a model of stochastic decision-making analytically linking parent health and child health is used to frame the valuation of avoiding arsenic exposure using an averting behavior model. The results show that safe drinking water programs do work and that people do take protective actions. The results can help guide public health mitigation policies, and examine whether factors such as child health and time required for remediation have an effect on mitigation measures.

  17. Stuck in the spin cycle: Avoidance and intrusions following breast cancer diagnosis.

    PubMed

    Bauer, Margaret R; Wiley, Joshua F; Weihs, Karen L; Stanton, Annette L

    2017-09-01

    Theories and research regarding cognitive and emotional processing during the experience of profound stressors suggest that the presence of intrusive thoughts and feelings predicts greater use of avoidance and that the use of avoidance paradoxically predicts more intrusions. However, empirical investigations of their purported bidirectional relationship are limited. This study presents a longitudinal investigation of the reciprocal relationship between intrusions and avoidance coping over a 6-month period in the year following breast cancer diagnosis. Breast cancer patients (N = 460) completed measures of cancer-related intrusions and avoidance at study entry, 3 months, and 6 months later (i.e., an average of 2, 5, and 8 months after diagnosis, respectively). Cross-lagged panel analyses revealed that intrusive thoughts, feelings, and images at study entry predicted greater avoidance 3 months later, and avoidance coping at study entry predicted intrusions 3 months later, controlling for the stability of intrusions and avoidance as well as time since diagnosis. Findings were not statistically significant for avoidance predicting intrusions, or vice versa, between the 3-month and the 6-month assessment period, during which they declined. These findings provide empirical support for the theoretical contention that avoidance and intrusive thoughts and emotions reciprocally influence one another following stressful events. Additionally, in the months shortly after breast cancer diagnosis, intrusions and avoidance are positively related. However, the relationships attenuate over time, which could indicate resolved cognitive and emotional processing of the cancer experience. Statement of contribution What is already known on this subject? Following stressful life events, individuals often experience intrusive thoughts and feelings related to the event and they report avoidance of such reminders. Many studies demonstrate that greater intrusions predict more

  18. Water Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.)

    PubMed Central

    Mewis, Inga; Khan, Mohammed A. M.; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian

    2012-01-01

    Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid. PMID:23144921

  19. Blunted Hypothalamo-pituitary Adrenal Axis Response to Predator Odor Predicts High Stress Reactivity

    PubMed Central

    Whitaker, Annie M.; Gilpin, Nicholas W.

    2015-01-01

    Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as ‘Avoiders’ or Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24 hours and 11 days), anxiety-like behavior (48 hours and 5 days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24 hours that persisted 11 days post-stress. Both Avoiders and Non-Avoiders exhibited heightened anxiety-like behavior at 48 hours and 5 days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and builds on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. PMID:25824191

  20. Carbon isotope discrimination and water stress in trembling aspen following variable retention harvesting.

    PubMed

    Bladon, Kevin D; Silins, Uldis; Landhäusser, Simon M; Messier, Christian; Lieffers, Victor J

    2007-07-01

    Variable retention harvesting (VRH) has been proposed as a silvicultural practice to maintain biodiversity and ecosystem integrity. No previous study has examined tree carbon isotope discrimination to provide insights into water stress that could lead to dieback and mortality of trees following VRH. We measured and compared the carbon isotope ratios (delta(13)C) in stem wood of trembling aspen (Populus tremuloides Michx.) before and after VRH. Eight trees were sampled from isolated residual, edge and control (interior of unharvested stand) positions from each of seven plots in three regions (Calling Lake and Drayton Valley, Alberta and Lac Duparquet, Québec). After VRH, the general trend in mean delta(13)C was residual > edge > control trees. Although this trend is indicative of water stress in residual trees, it also suggests that edge trees received some sheltering effect, reducing their stress compared with that of residuals. A strong inverse relationship was found between the delta(13)C values and the mean annual precipitation in each region. The trend in mean delta(13)C signature was Calling Lake > Drayton Valley > Lac Duparquet trees. These results suggest that residual or edge trees in drier regions are more likely to suffer water stress following VRH. We also observed a trend of greater delta(13)C in stout trees compared with slender trees, both before and after VRH. The evidence of greater water stress in stout trees likely occurred because of a positive relationship between stem diameter and crown volume per basal area. Our results provide evidence that water stress could be the driving mechanism leading to dieback and mortality of residual trees shortly after VRH. Additionally, the results from edge trees indicate that leaving hardwood residuals in larger patches or more sheltered landscape positions could reduce the water stress to which these trees are subjected, thereby reducing dieback and mortality.

  1. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses[OPEN

    PubMed Central

    Robbins, Neil E.

    2016-01-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  2. Evaluation of water stress and groundwater storage using a global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  3. Osmotic Adjustment in Cotton (Gossypium hirsutum L.) Leaves and Roots in Response to Water Stress 1

    PubMed Central

    Oosterhuis, Derrick M.; Wullschleger, Stan D.

    1987-01-01

    The relative magnitude of adjustment in osmotic potential (ψs) of water-stressed cotton (Gossypium hirsutum L.) leaves and roots was studied using plants raised in pots of sand and grown in a growth chamber. One and three water-stress preconditioning cycles were imposed by withholding water, and the subsequent adjustment in solute potential upon relief of the stress and complete rehydration was monitored with thermocouple psychrometers. Both leaves and roots exhibited a substantial adjustment in ψs in response to water stress with the former exhibiting the larger absolute adjustment. The osmotic adjustment of leaves was 0.41 megapascal compared to 0.19 megapascal in the roots. The roots, however, exhibited much larger percentage osmotic adjustments of 46 and 63% in the one and three stress cycles, respectively, compared to 22 and 40% in the leaves in similar stress cycles. The osmotically adjusted condition of leaves and roots decreased after relief of the single cycle stress to about half the initial value within 3 days, and to the well-watered control level within 6 days. In contrast, increasing the number of water-stress preconditioning cycles resulted in significant percentage osmotic adjustment still being present after 6 days in roots but not in the leaves. The decrease in ψs of leaves persisted longer in field-grown cotton plants compared to plants of the same age grown in the growth chamber. The advantage of decreased ψs in leaves and roots of water-stressed cotton plants was associated with the maintenance of turgor during periods of decreasing water potentials. PMID:16665577

  4. Ecophysiological responses of three evergreen woody Mediterranean species to water stress

    NASA Astrophysics Data System (ADS)

    Abril, Mireia; Hanano, Ralph

    1998-08-01

    The ecophysiological response to drought in three different evergreen Mediterranean species were compared. For a better interpretation of the mechanisms regulating physiological processes, the choice of species was based on evident differences in morphological and structural features (leaf size, leaf specific weight, water-conducting system). Seedlings of Ceanothus thyrsiflorus, Quercus agrifolia and Buxus microphylla grown in pots were subjected to natural stressing conditions during late spring in Southern California. Gas exchange, xylem water potential and abscisic acid concentration in xylem sap were measured in control (irrigated) and water-stressed plants, from predawn to sunset. Environmental, hydraulic and hormonal effects on water control and limitations to photosynthesis were analyzed. Q. agrifolia had the highest maximums of net photosynthesis, stomatal conductance and transpiration, which were significantly different from C. thyrsiflorus and B. microphylla. B. microphylla had the lowest values. Stressed individuals of C. thyrsiflorus and B. microphylla reached absolute minimum water potentials during the day and at predawn. Q. agrifolia plants had a water conservative behaviour and did not show these low values. Control plants from Q. agrifolia had the lowest values of hydraulic resistance with high maximum stomatal conductance, while B. microphylla control plants had the lowest maximum stomatal conductance due to higher hydraulic resistance. Changes in plant hydraulic resistance during soil drying were found, which differed among the species. In general, water-use efficiency was reduced during the day by water stress but increased as seasonal drought proceeded. On a long-term basis, Q. agrifolia was the most efficient species in water use. The results support the hypothesis that information on abscisic acid concentration in xylem sap may be one of the most important physiological keys when modelling stomatal conductance and canopy gas exchange over

  5. Water stress effects on spatially referenced cotton crop canopy properties

    USDA-ARS?s Scientific Manuscript database

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  6. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  7. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation?

    PubMed

    Galle, Alexander; Florez-Sarasa, Igor; Tomas, Magdalena; Pou, Alicia; Medrano, Hipolito; Ribas-Carbo, Miquel; Flexas, Jaume

    2009-01-01

    While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during

  8. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    PubMed

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  9. Hyperspectral Detection of a Subsurface CO2 Leak in the Presence of Water Stressed Vegetation

    PubMed Central

    Bellante, Gabriel J.; Powell, Scott L.; Lawrence, Rick L.; Repasky, Kevin S.; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool. PMID:25330232

  10. Physiological Assessment of Water Stress in Potato Using Spectral Information

    PubMed Central

    Romero, Angela P.; Alarcón, Andrés; Valbuena, Raúl I.; Galeano, Carlos H.

    2017-01-01

    Water stress in potato (Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H2Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs. PMID:28979277

  11. Water stress from high-volume hydraulic fracturing potentially threatens aquatic biodiversity and ecosystem services in Arkansas, United States

    USGS Publications Warehouse

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly O.; Fargione, Joseph; Kiesecker, Joseph M.; Baruch-Mordo, Sharon; Konschnik, Katherine E.; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N.

    2018-01-01

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and “frack” ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7–51% of catchments from June–November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  12. Water Stress from High-Volume Hydraulic Fracturing Potentially Threatens Aquatic Biodiversity and Ecosystem Services in Arkansas, United States.

    PubMed

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly; Fargione, Joseph; Kiesecker, Joseph; Baruch-Mordo, Sharon; Konschnik, Katherine; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N

    2018-02-20

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and "frack" ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7-51% of catchments from June-November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  13. Remote sensing of water and nitrogen stress in broccoli

    NASA Astrophysics Data System (ADS)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  14. Physiological response of Pinus halepensis needles under ozone and water stress conditions.

    PubMed

    Manes, Fausto; Donato, Eugenio; Vitale, Marcello

    2001-10-01

    The aim of this study was to evaluate how physiological processes of potted Pinus halepensis plants, grown under controlled conditions, were affected by ozone (O3) and/or water stress, integrating the gas exchange and biochemical data with fluorescence OJIP polyphasic transient data. Plants submitted to only water stress (T1) and with ozone (T3) showed a strong decrease in stomatal conductance and gas exchange, coinciding with a reduction of maximum yield of photochemistry (varphipo) and very negative values of leaf water potential. Simultaneously, a great increase of both PSII antenna size, indicated by absorption per reaction centre, and electron transport per reaction centre were found. The reduction of photosynthesis in the O3-treated plants (T2) by a slowing down of the Calvin cycle was supported by the increase of related fluorescence parameters such as relative variable fluorescence, heat de-excitation constant, energy de-excitation by spillover, and the decrease of varphipo. We suggest an antagonistic effect between the two stresses to explain the delayed ozone-induced decrease of stomatal conductance values for T3 with respect to T1 plants, by an alteration of the physiological mechanisms of stomatal opening, which involve the increase of intra-cellular free-calcium induced by ABA under co-occurring water shortage. We emphasise the importance of considering the intensity of the individual stress factor in studies concerning the interaction of stresses.

  15. Water availability as dominant control of heat stress responses in two contrasting tree species.

    PubMed

    Ruehr, Nadine K; Gast, Andreas; Weber, Christina; Daub, Baerbel; Arneth, Almut

    2016-02-01

    Heat waves that trigger severe droughts are predicted to increase globally; however, we lack an understanding of how trees respond to the combined change of extreme temperatures and water availability. Here, we studied the impacts of two consecutive heat waves as well as post-stress recovery in young Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Robinia pseudoacacia L. (black locust) growing under controlled conditions. Responses were compared under water supply close to the long-term average and under reduced irrigation to represent drought. Exposure to high temperatures (+10 °C above ambient) and vapour pressure deficit strongly affected the trees in terms of water relations, photosynthesis and growth. Douglas-fir used water resources conservatively, and transpiration decreased in response to mild soil water limitation. In black locust, heat stress led to pronounced tree water deficits (stem diameter shrinkage), accompanied by leaf shedding to alleviate stress on the hydraulic system. The importance of water availability during the heat waves became further apparent by a concurrent decline in photosynthesis and stomatal conductance with increasing leaf temperatures in both species, reaching the lowest rates in the heat-drought treatments. Stress severity determined both the speed and the amount of recovery. Upon release of stress, photosynthesis recovered rapidly in drought-treated black locust, while it remained below control rates in heat (t = -2.4, P < 0.05) and heat-drought stressed trees (t = 2.96, P < 0.05). In Douglas-fir, photosynthesis recovered quickly, while water-use efficiency increased in heat-drought trees because stomatal conductance remained reduced (t = -2.92, P < 0.05). Moreover, Douglas-fir was able to compensate for stem-growth reductions following heat (-40%) and heat-drought stress (-68%), but most likely at the expense of storage and other growth processes. Our results highlight the importance of studying heat waves alongside

  16. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the

  17. Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values.

    PubMed

    Escher, Beate I; van Daele, Charlotte; Dutt, Mriga; Tang, Janet Y M; Altenburger, Rolf

    2013-07-02

    The induction of adaptive stress response pathways is an early and sensitive indicator of the presence of chemical and non-chemical stressors in cells. An important stress response is the Nrf-2 mediated oxidative stress response pathway where electrophilic chemicals or chemicals that cause the formation of reactive oxygen species initiate the production of antioxidants and metabolic detoxification enzymes. The AREc32 cell line is sensitive to chemicals inducing oxidative stress and has been previously applied for water quality monitoring of organic micropollutants and disinfection byproducts. Here we propose an algorithm for the derivation of effect-based water quality trigger values for this end point that is based on the combined effects of mixtures of regulated chemicals. Mixture experiments agreed with predictions by the mixture toxicity concept of concentration addition. The responses in the AREc32 and the concentrations of 269 individual chemicals were quantified in nine environmental samples, ranging from treated effluent, recycled water, stormwater to drinking water. The effects of the detected chemicals could explain less than 0.1% of the observed induction of the oxidative stress response in the sample, affirming the need to use effect-based trigger values that account for all chemicals present.

  18. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean

    PubMed Central

    Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.

    2016-01-01

    Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid

  19. Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells.

    PubMed

    Sharkey, T D; Badger, M R

    1982-12-01

    Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.

  20. Keep your eyes open: dispositional vigilance moderates the relationship between operational police stress and stress symptoms.

    PubMed

    Kubiak, Jeanette; Krick, Annika; Egloff, Boris

    2017-09-01

    Vigilant coping is characterized by a deep processing of threat-related information. In many cases, vigilant coping increases stress symptoms, whereas avoidant coping decreases negative affect. However, vigilance may be beneficial when stress-eliciting situations involve a risk of injury or escalation as is usually the case in police operations. We investigated the roles of vigilance and cognitive avoidance in police operations in a cross-sectional survey. The participants were 137 students (104 men, M age  = 28.54, SD = 8.04) from the Federal University of Applied Administrative Sciences; 76 of them were already police officers (work experience: M = 12.59 years), and 61 were police officer candidates who had completed a 3- to 6-month police internship. Participants completed a paper-and-pencil survey and reported their operational stress, dispositional vigilance and cognitive avoidance in police operations, and stress symptoms. We found that vigilance was negatively associated with stress symptoms and moderated the relationship between operational stress and stress symptoms. Cognitive avoidance, on the other hand, just missed the level of statistical significance in our test of whether it was positively associated with stress symptoms. Our findings demonstrate that vigilance may protect against the negative consequences of stress in police operations.

  1. Dental Resin Cements-The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion.

    PubMed

    Sokolowski, Grzegorz; Szczesio, Agata; Bociong, Kinga; Kaluzinska, Karolina; Lapinska, Barbara; Sokolowski, Jerzy; Domarecka, Monika; Lukomska-Szymanska, Monika

    2018-06-08

    Resin matrix dental materials undergo contraction and expansion changes due to polymerization and water absorption. Both phenomena deform resin-dentin bonding and influence the stress state in restored tooth structure in two opposite directions. The study tested three composite resin cements (Cement-It, NX3, Variolink Esthetic DC), three adhesive resin cements (Estecem, Multilink Automix, Panavia 2.0), and seven self-adhesive resin cements (Breeze, Calibra Universal, MaxCem Elite Chroma, Panavia SA Cement Plus, RelyX U200, SmartCem 2, and SpeedCEM Plus). The stress generated at the restoration-tooth interface during water immersion was evaluated. The shrinkage stress was measured immediately after curing and after 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Water sorption and solubility were also studied. All tested materials during polymerization generated shrinkage stress ranging from 4.8 MPa up to 15.1 MPa. The decrease in shrinkage strain (not less than 57%) was observed after water storage (56 days). Self-adhesive cements, i.e., MaxCem Elite Chroma, SpeedCem Plus, Panavia SA Plus, and Breeze exhibited high values of water expansion stress (from 0 up to almost 7 MPa). Among other tested materials only composite resin cement Cement It and adhesive resin cement Panavia 2.0 showed water expansion stress (1.6 and 4.8, respectively). The changes in stress value (decrease in contraction stress or built up of hydroscopic expansion) in time were material-dependent.

  2. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.

    PubMed

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  3. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    NASA Technical Reports Server (NTRS)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  4. Response of antioxidant system to drought stress and re-watering in Alfalfa during branching

    NASA Astrophysics Data System (ADS)

    Tina, R. R.; Shan, X. R.; Wang, Y.; Guo, S. Y.; Mao, B.; Wang, W.; Wu, H. Y.; Zhao, T. H.

    2017-11-01

    This paper aimed to reveal the response mechanism of active oxygen metabolism and antioxidant enzyme activities in Alfalfa under drought stress and re-watering, and the pot experiment was used, to explore the changes of H2O2, O2·-, electrolyte leakage conductivity and MDA, SOD, POD, CAT activity in Golden Empress (tolerant cultivar) and Sanditi (non-tolerant cultivar) under drought stress and re-watering during branching stage. Three water gradients were set up: CK (Maximum field capacity of 75%±5%), T1 (Maximum field capacity of 45%±5%), T2 (Maximum field capacity of 35%±5%) to compare, and the drought rehydration was also studied. Results: the results indicated that H2O2 content, O2·-production rate, relative conductivity and MDA content were higher than the control, and the increase extent of Golden Empress was higher than the Sanditi under drought stress and after re-watering the recovery capability of Golden Empress was also higher than the Sanditi. After 7 days of re-watering, all indexes were restored to the control level, indicating that the re-watering have compensation effect after drought. After drought stress, to weaken the damage of active oxygen Golden Empress was mainly by increasing the activity of POD and SOD, but Sanditi was mainly through the POD and CAT activity increased to effectively remove ROS. Under drought stress, active oxygen in leaves of Alfalfa increased, and thus the membrane system was damaged which lead to the increase of MDA content and relative electric conductivity. Plants play a defensive role by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. After re-watering, the stress effect was reduced, and the physiological indexes of plants were restored to the control level. In general, tolerant cultivar has stronger antioxidant properties under drought and re-watering.

  5. Transient water stress in a vegetation canopy - Simulations and measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Belles, James E.; Gillies, Robert R.

    1991-01-01

    Consideration is given to observational and modeling evidence of transient water stress, the effects of the transpiration plateau on the canopy radiometric temperature, and the factors responsible for the onset of the transpiration plateau, such as soil moisture. Attention is also given to the point at which the transient stress can be detected by remote measurement of surface temperature.

  6. Consistent inter-individual differences in common marmosets (Callithrix jacchus) in Boldness-Shyness, Stress-Activity, and Exploration-Avoidance.

    PubMed

    Šlipogor, Vedrana; Gunhold-de Oliveira, Tina; Tadić, Zoran; Massen, Jorg J M; Bugnyar, Thomas

    2016-09-01

    The study of animal personality, defined as consistent inter-individual differences in correlated behavioral traits stable throughout time and/or contexts, has recently become one of the fastest growing areas in animal biology, with study species ranging from insects to non-human primates. The latter have, however, only occasionally been tested with standardized experiments. Instead their personality has usually been assessed using questionnaires. Therefore, this study aimed to test 21 common marmosets (Callithrix jacchus) living in three family groups, in five different experiments, and their corresponding controls. We found that behavioral differences between our animals were not only consistent over time, but also across different contexts. Moreover, the consistent behaviors formed a construct of four major non-social personality components: Boldness-Shyness in Foraging, Boldness-Shyness in Predation, Stress-Activity, and Exploration-Avoidance. We found no sex or age differences in these components, but our results did reveal differences in Exploration-Avoidance between the three family groups. As social environment can have a large influence on behavior of individuals, our results may suggest group-level similarity in personality (i.e., "group personality") in common marmosets, a species living in highly cohesive social groups. Am. J. Primatol. 78:961-973, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Molecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea).

    PubMed

    Perdiguero, Pedro; Barbero, María Del Carmen; Cervera, María Teresa; Collada, Carmen; Soto, Alvaro

    2013-06-01

    Adaptation to water stress has determined the evolution and diversification of vascular plants. Water stress is forecasted to increase drastically in the next decades in certain regions, such as in the Mediterranean basin. Consequently, a proper knowledge of the response and adaptations to drought stress is essential for the correct management of plant genetic resources. However, most of the advances in the understanding of the molecular response to water stress have been attained in angiosperms, and are not always applicable to gymnosperms. In this work we analyse the transcriptional response of two emblematic Mediterranean pines, Pinus pinaster and Pinus pinea, which show noticeable differences in their performance under water stress. Using microarray analysis, up to 113 genes have been detected as significantly induced by drought in both species. Reliability of expression patterns has been confirmed by RT-PCR. While induced genes with similar profiles in both species can be considered as general candidate genes for the study of drought response in conifers, genes with diverging expression patterns can underpin the differences displayed by these species under water stress. Most promising candidate genes for drought stress response include genes related to carbohydrate metabolism, such as glycosyltransferases or galactosidases, sugar transporters, dehydrins and transcription factors. Additionally, differences in the molecular response to drought and polyethylene-glycol-induced water stress are also discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    PubMed

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., <50 μm(3)) and larger (i.e., >600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200

  9. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  10. U.S. power generation, water stress, and climate change: using science to understand "water-smart" electricity-sector decision making

    NASA Astrophysics Data System (ADS)

    Rogers, J. H.; Frumhoff, P. C.; Averyt, K.; Newmark, R. L.

    2012-12-01

    In 2011, nearly 90 percent of U.S. electricity came from thermoelectric (steam-producing) power plants that use water for cooling. These water demands can tax rivers and aquifers, threaten fish and wildlife, and spark conflicts between power plants and other water users. Climate change, driven by in large part by emissions from fossil fuel-based electricity generation, is adding to the strain. Higher temperatures raise electricity demand and lower cooling-system efficiency, while drought and changes in precipitation patterns may make freshwater supplies less reliable. Here we report new findings on the impacts, present and projected, of power-plant water use on local water stress across the United States, and its implications for understanding what constitutes "water-smart" energy decision making. This work was carried out under the auspices of the Energy and Water in a Warming World initiative (EW3), a research and outreach collaboration designed to inform and motivate U.S. public awareness and science-based public policy at the energy-water nexus. The research has involved cataloguing the water use characteristics of virtually every U.S. power generator in the nation to develop a robust assessment of the water resource implications of cooling the nation's power plants. By analyzing local water supply and demand conditions across the nation, we identified water basins where current power plant water use appears to contribute strongly to local water supply stress, and where water-intensive electricity choices could substantially exacerbate water stress. We also identified other potential approaches to considering stress, particularly related to water temperature. The research has also involved analyzing the water implications of different electricity pathways in the United States over the next 40 years. We used a high-resolution electricity model to generate a range of electricity mixes, particularly in the context of a carbon budget, and assessed the water

  11. Posttraumatic Intrusion, Avoidance, and Social Functioning: A 20-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Solomon, Zahava; Mikulincer, Mario

    2007-01-01

    The study assesses posttraumatic intrusion, avoidance, and social functioning among 214 Israeli combat veterans from the first Lebanon War with and without combat stress reaction (CSR) 1, 2, 3, and 20 years after the war. CSR veterans reported higher intrusion and avoidance than did non-CSR veterans. With time, there was a decline in these…

  12. Avoidant Personality Disorder: a Current Review.

    PubMed

    Weinbrecht, Anna; Schulze, Lars; Boettcher, Johanna; Renneberg, Babette

    2016-03-01

    This review focuses on recent research on diagnostic aspects, etiology, and treatment of avoidant personality disorder (AVPD). Current studies stress the close relation between AVPD and social anxiety disorder, the influence of genetic factors in the development of AVPD, and the relative stability of symptoms. Treatment approaches should target the pervasive patterns of social inhibition, feelings of inadequacy, and hypersensitivity to negative evaluation. Empirical evidence for cognitive-behavior and schema therapy is promising. Few other therapeutic approaches have been developed, but until now, these have only been investigated in case studies. We conclude that AVPD qualifies as a neglected disorder and that more research specifically on avoidant personality disorder symptoms and its treatment is needed.

  13. The relationship between water loss, mechanical stress, and molecular structure of human stratum corneum ex vivo.

    PubMed

    Vyumvuhore, Raoul; Tfayli, Ali; Biniek, Krysta; Duplan, Hélène; Delalleau, Alexandre; Manfait, Michel; Dauskardt, Reinhold; Baillet-Guffroy, Arlette

    2015-03-01

    Proper hydration of the stratum corneum (SC) is important for maintaining skin's vital functions. Water loss causes development of drying stresses, which can be perceived as 'tightness', and plays an important role in dry skin damage processes. However, molecular structure modifications arising from water loss and the subsequent development of stress has not been established. We investigated the drying stress mechanism by studying, ex vivo, the behaviors of the SC components during water desorption from initially fully hydrated samples using Raman spectroscopy. Simultaneously, we measure the SC mechanical stress with a substrate curvature instrument. Very good correlations of water loss to the mechanical stress of the stratum corneum were obtained, and the latter was found to depend mainly on the unbound water fraction. In addition to that, the water loss is accompanied with an increase of lipids matrix compactness characterized by lower chain freedom, while protein structure showed an increase in amount of α-helices, a decline in α-sheets, and an increase in folding in the tertiary structure of keratin. The drying process of SC involves a complex interplay of water binding, molecular modifications, and mechanical stress. This article provides a better understanding of the molecular mechanism associated to SC mechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon dioxide gas exchange and the energy status of leaves of Primula palinuri under water stress.

    PubMed

    Dietz, K J; Heber, U

    1983-08-01

    The photosynthetic rate of water stressed leaves of Primula palinuri was reduced drastically by stomatal closure, not by limitations imposed on the capacity of the photosynthetic apparatus, when water loss exceeded 20% of the water content of turgid leaves. The sudden decrease in phtosynthesis was not observed when the lower epidermis of the leaves had been removed. In these 'stripped' leaves, inhibition of photosynthesis increased only gradually during the wilting caused by increasing water stress and was complete when the relative water content was as low as 20% compared with the initial value. This corresponded to a water potential of about-40 bar. The light intensity at which half-maximum rates of photosynthesis were observed decreased as stress increased. In intact leaves photosynthesizing in the presence of CO2, light scattering, which is a measure of thylakoid energization, increased steeply during stomatal closure. The observed increase corresponded to the light scattering level measured in the absence of CO2. When the lower epidermis was removed, no sudden increase in thylakoid energization could be observed during dehydration. Thylakoid energization remained high even at low water potentials. It decreased drastically only below a relative water content of 20%. Irrespective, of the extent of water stress, CO2 fixation of stripped leaves increased when the oxygen content of air was reduced from 21% to 2%. Usually the transition from 21 to 2% O2 was accompanied by increased thylakoid energization. The increase in energization was more pronounced below than above a relative water content of 50%. The data show that energy-dissipating photorespiratory CO2 turnover in the in tercellular space of water-stressed leaves whose stomata are closed decreases only slowly as water stress increases. Respiratory CO2 production by leaves in the dark was even more resistant to water stress than photosynthesis. It was still significant at water potentials as low as-80 bar.

  15. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests

    NASA Astrophysics Data System (ADS)

    Chemura, Abel; Mutanga, Onisimo; Dube, Timothy

    2017-08-01

    Water management is an important component in agriculture, particularly for perennial tree crops such as coffee. Proper detection and monitoring of water stress therefore plays an important role not only in mitigating the associated adverse impacts on crop growth and productivity but also in reducing expensive and environmentally unsustainable irrigation practices. Current methods for water stress detection in coffee production mainly involve monitoring plant physiological characteristics and soil conditions. In this study, we tested the ability of selected wavebands in the VIS/NIR range to predict plant water content (PWC) in coffee using the random forest algorithm. An experiment was set up such that coffee plants were exposed to different levels of water stress and reflectance and plant water content measured. In selecting appropriate parameters, cross-correlation identified 11 wavebands, reflectance difference identified 16 and reflectance sensitivity identified 22 variables related to PWC. Only three wavebands (485 nm, 670 nm and 885 nm) were identified by at least two methods as significant. The selected wavebands were trained (n = 36) and tested on independent data (n = 24) after being integrated into the random forest algorithm to predict coffee PWC. The results showed that the reflectance sensitivity selected bands performed the best in water stress detection (r = 0.87, RMSE = 4.91% and pBias = 0.9%), when compared to reflectance difference (r = 0.79, RMSE = 6.19 and pBias = 2.5%) and cross-correlation selected wavebands (r = 0.75, RMSE = 6.52 and pBias = 1.6). These results indicate that it is possible to reliably predict PWC using wavebands in the VIS/NIR range that correspond with many of the available multispectral scanners using random forests and further research at field and landscape scale is required to operationalize these findings.

  16. Spinach biomass yield and physiological response to interactive salinity and water stress

    USDA-ARS?s Scientific Manuscript database

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  17. Antioxidant Defenses against Activated Oxygen in Pea Nodules Subjected to Water Stress.

    PubMed Central

    Gogorcena, Y.; Iturbe-Ormaetxe, I.; Escuredo, P. R.; Becana, M.

    1995-01-01

    The involvement of activated oxygen in the drought-induced damage of pea (Pisum sativum L. cv Frilene) nodules was examined. To this purpose, various pro-oxidant factors, antioxidant enzymes and related metabolites, and markers of oxidative damage were determined in nodules of well-watered (nodule water potential approximately -0.29 MPa) and water-stressed (nodule water potential approximately -2.03 MPa) plants. Water-stressed nodules entered senescence as evidenced by the 30% decrease in leghemoglobin and total soluble protein. Drought also caused a decrease in the activities of catalase (25%), ascorbate peroxidase (18%), dehydroascorbate reductase (15%), glutathione reductase (31%), and superoxide dismutase (30%), and in the contents of ascorbate (59%), reduced (57%) and oxidized (38%) glutathione, NAD+ and NADH (43%), NADP+ (31%), and NADPH (17%). The decline in the antioxidant capacity of nodules may result from a restricted supply of NAD(P)H in vivo for the ascorbate-glutathione pathway and from the Fe-catalyzed Fenton reactions of ascorbate and glutathione with activated oxygen. The 2-fold increase in the content of "catalytic Fe" would also explain the augmented levels of lipid peroxides (2.4-fold) and oxidatively modified proteins (1.4-fold) found in water-stressed nodules because of the known requirement of lipid and protein oxidation for a transition catalytic metal. PMID:12228507

  18. Mechanical analysis of the strains generated by water tension in plant stems. Part I: stress transmission from the water to the cell walls.

    PubMed

    Alméras, Tancrède; Gril, Joseph

    2007-11-01

    Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the outer border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.

  19. An attachment-based model of complicated grief including the role of avoidance

    PubMed Central

    Monk, Timothy; Houck, Patricia; Melhem, Nadine; Frank, Ellen; Reynolds, Charles; Sillowash, Russell

    2009-01-01

    Introduction Complicated grief is a prolonged grief disorder with elements of a stress response syndrome. We have previously proposed a biobehavioral model showing the pathway to complicated grief. Avoidance is a component that can be difficult to assess and pivotal to treatment. Therefore we developed an avoidance questionnaire to characterize avoidance among patients with CG. Methods We further explain our complicated grief model and provide results of a study of 128 participants in a treatment study of CG who completed a 15-item Grief-related Avoidance Questionnaire (GRAQ). Results of Avoidance Assessment Mean (SD) GRAQ score was 25. 0 ± 12.5 with a range of 0–60. Cronbach's alpha was 0.87 and test re-test correlation was 0.88. Correlation analyses showed good convergent and discriminant validity. Avoidance of reminders of the loss contributed to functional impairment after controlling for other symptoms of complicated grief. Discussion In this paper we extend our previously described attachment-based biobehavioral model of CG. We envision CG as a stress response syndrome that results from failure to integrate information about death of an attachment figure into an effectively functioning secure base schema and/or to effectively re-engage the exploratory system in a world without the deceased. Avoidance is a key element of the model. PMID:17629727

  20. Reductions in Traumatic Stress Following a Coping Intervention Were Mediated by Decreases in Avoidant Coping for People Living with HIV/AIDS and Childhood Sexual Abuse

    ERIC Educational Resources Information Center

    Sikkema, Kathleen J.; Ranby, Krista W.; Meade, Christina S.; Hansen, Nathan B.; Wilson, Patrick A.; Kochman, Arlene

    2013-01-01

    Objective: To examine whether (a) Living in the Face of Trauma (LIFT), a group intervention to address coping with HIV and childhood sexual abuse (CSA), significantly reduced traumatic stress over a 1-year follow-up period more than an attention-matched support group comparison intervention; and (b) reductions in avoidant coping over time mediated…

  1. Theoretical Study on Stress Sensitivity of Fractal Porous Media with Irreducible Water

    NASA Astrophysics Data System (ADS)

    Lei, Gang; Dong, Zhenzhen; Li, Weirong; Wen, Qingzhi; Wang, Cai

    The couple flow deformation behavior in porous media has drawn tremendous attention in various scientific and engineering fields. However, though the coupled flow deformation mechanism has been intensively investigated in the last decades, the essential controls on stress sensitivity are not determined. It is of practical significance to use analytic methods to study stress sensitivity of porous media. Unfortunately, because of the disordered and extremely complicated microstructures of porous media, the theoretical model for stress sensitivity is scarce. The goal of this work is to establish a novel and reasonable quantitative model to determine the essential controls on stress sensitivity. The predictions of the theoretical model, derived from the Hertzian contact theory and fractal geometry, agree well with the available experimental data. Compared with the previous models, our model takes into account more factors, including the influence of the water saturation and the microstructural parameters of the pore space. The proposed models can reveal more mechanisms that affect the coupled flow deformation behavior in fractal porous media. The results show that the irreducible water saturation increases with the increase of effective stress, and decreases with the increased rock elastic modulus (or increased power law index) at a given effective stress. The effect of stress variation on porosity is smaller than that on permeability. Under a given effective stress, the normalized permeability (or the normalized porosity) becomes smaller with the decrease of rock elastic modulus (or the decrease of power law index). And a lower capillary pressure will correspond to an increased rock elastic modulus (or an increased power law index) under a given water saturation.

  2. Post-traumatic stress disorder, social anxiety disorder, and depression in survivors of the Kosovo War: Experiential avoidance as a contributor to distress and quality of life

    PubMed Central

    Kashdan, Todd B.; Morina, Nexhmedin; Priebe, Stefan

    2009-01-01

    Few studies have been conducted on psychological disorders other than post-traumatic stress disorder (PTSD) in war survivors. The aim of this study was to examine PTSD, social anxiety disorder (SAD), and major depressive disorder (MDD) and their associations with distress and quality of life in 174 Albanian civilian survivors of the Kosovo war. This included testing of conceptual models suggesting that experiential avoidance might influence associations between anxiety and mood disorders with psychological functioning. Each of the three psychiatric disorders was associated with greater experiential avoidance and psychological distress, and lower quality of life. Being a refugee was associated with a higher likelihood of having SAD and MDD. We found evidence for experiential avoidance as a partial mediator of the respective effects of SAD and PTSD on quality of life; experiential avoidance did not mediate the effects of disorders on global distress. We also found support for a moderation model showing that only war survivors without SAD and low experiential avoidance reported elevated quality of life; people with either SAD or excessive reliance on experiential avoidance reported compromised, low quality of life. This is the third independent study, each using a different methodology, to find empirical support for this moderation model (Kashdan & Breen, 2008; Kashdan & Steger, 2006). Overall, we provided initial evidence for the importance of addressing PTSD, SAD, MDD, and experiential avoidance in primarily civilian war survivors. PMID:18676121

  3. Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp.

    PubMed

    Warren, Charles R; Aranda, Ismael; Cano, F Javier

    2011-10-01

    Studies of water stress commonly examine either gas exchange or leaf metabolites, and many fail to quantify the concentration of CO₂ in the chloroplasts (C(c)). We redress these limitations by quantifying C(c) from discrimination against ¹³CO₂ and using gas chromatography-mass spectrometry (GC-MS) for leaf metabolite profiling. Five Eucalyptus and two Acacia species from semi-arid to mesic habitats were subjected to a 2 month water stress treatment (Ψ(pre-dawn) = -1.7 to -2.3 MPa). Carbohydrates dominated the leaf metabolite profiles of species from dry areas, whereas organic acids dominated the metabolite profiles of species from wet areas. Water stress caused large decreases in photosynthesis and C(c), increases in 17-33 metabolites and decreases in 0-9 metabolites. In most species, fructose, glucose and sucrose made major contributions to osmotic adjustment. In Acacia, significant osmotic adjustment was also caused by increases in pinitol, pipecolic acid and trans-4-hydroxypipecolic acid. There were also increases in low-abundance metabolites (e.g. proline and erythritol), and metabolites that are indicative of stress-induced changes in metabolism [e.g. γ-aminobutyric acid (GABA) shunt, photorespiration, phenylpropanoid pathway]. The response of gas exchange to water stress and rewatering is rather consistent among species originating from mesic to semi-arid habitats, and the general response of metabolites to water stress is rather similar, although the specific metabolites involved may vary. © 2011 Blackwell Publishing Ltd.

  4. Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles.

    PubMed

    Navarro-Ródenas, Alfonso; Lozano-Carrillo, M Cecilia; Pérez-Gilabert, Manuela; Morte, Asunción

    2011-05-01

    The ability of two species of desert truffle, Terfezia claveryi strain TcS2 and Picoa lefebvrei strain OL2, to tolerate water stress in pure culture has been investigated. Both T. claveryi and P. lefebvrei strains exhibited a mycelium growth pattern characteristic of drought tolerant species. However, they were only tolerant to moderate water stress, below -1.07 MPa, with the P. lefebvrei isolate being slightly more drought tolerant than the T. claveryi isolate. The increased alkaline phosphatase (ALP) activity observed in both fungi at moderate water stress with respect to the control indicated the functional adaptation of these mycelia to these drought conditions. ALP activity can be used as an indicator of the metabolic activity of these fungi. Slight water stress (-0.45 MPa) could improve mycelial inoculum production of these desert truffles. Moreover, P. lefebvrei could be a good candidate for further desert truffle mycorrhizal plant cultivation programmes in semiarid Mediterranean areas.

  5. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    PubMed

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  6. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE PAGES

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; ...

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  7. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  8. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata

    Treesearch

    Paul F. Gugger; Juan Manuel Peñaloza-Ramírez; Jessica W. Wright; Victoria L. Sork; Jörg-Peter Schnitzler

    2016-01-01

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née...

  9. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    NASA Astrophysics Data System (ADS)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results

  10. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    PubMed

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade.

    PubMed

    Ben, G Y; Osmond, C B; Sharkey, T D

    1987-06-01

    We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O(2) electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO(2) saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O(2) per mole photons) was slightly, if at all, affected by mild water stress (>-1.5 megapascals). (c) Severe water stress (<-1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (F(v)/F(m)) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred.

  12. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions.

    PubMed

    Hatami, Mehrnaz

    2017-08-01

    The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL -1 ) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks.

    PubMed

    Bolat, Ibrahim; Dikilitas, Murat; Ercisli, Sezai; Ikinci, Ali; Tonkaz, Tahsin

    2014-01-01

    The effects of different water stress (control, medium, and severe) on some morphological, physiological, and biochemical characteristics and bud success of M9 apple and MA quince rootstocks were determined. The results showed that water stress significantly affected most morphological, physiological, and biochemical characteristics as well as budding success on the both rootstocks. The increasing water stress decreased the relative shoot length, diameter, and plant total fresh and dry weights. Leaf relative water content and chlorophyll index decreased while electrolyte leakage increased with the increase of water stress in both rootstocks. An increase in water stress also resulted in reduction in budding success in Vista Bella/M9 (79.33% and 46.67%) and Santa Maria/MA (70.33% and 15.33%) combinations. However, the water stress in Santa Maria/MA was more prominent. The increase in water stress resulted in higher peroxidase activities as well as phenol contents in both rootstocks. Although catalase activity, anthocyanin, and proline contents increased with the impact of stress, this was not statistically significant. The results suggest that the impact of stress increased with the increase of water stress; therefore, growers should be careful when using M9 and MA rootstocks in both nursery and orchards where water scarcity is present.

  14. Pure culture response of ectomycorrhizal fungi to imposed water stress

    Treesearch

    Mark D. Coleman; Caroline S. Bledsoe; William Lopushinsky

    1989-01-01

    The ability of ectomycorrhizal fungal isolates to tolerate imposed water stress in pure culture was examined in 55 isolates of 18 species. Water potential treatments, adjusted with polyethylene glycol, were applied to Petri dish units. These units allowed colony diameter measurements of fungi grown on liquid media. Delayed growth initiation and inhibition of growth...

  15. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress.

    PubMed

    Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  16. The relationship of attachment insecurity to subjective stress and autonomic function during standardized acute stress in healthy adults.

    PubMed

    Maunder, Robert G; Lancee, William J; Nolan, Robert P; Hunter, Jonathan J; Tannenbaum, David W

    2006-03-01

    The purpose of this study was to test predicted relationships between adult attachment and stress using subjective and physiological measures. Sixty-seven healthy adults completed measures of adult attachment and perceived chronic stress. Subjective stress and the high-frequency (HF) and low-frequency (LF) spectral bandwidths of heart rate variability (HRV) were measured during a standardized stress protocol. Attachment anxiety is associated with between-subject differences in chronic perceived stress (P=.001) and subjective acute stress (P=.01). There is a main effect of attachment avoidance on between-subject differences in HF HRV (P=.004). Attachment avoidance is inversely associated with HF HRV, independent of age and variability in respiration. Attachment anxiety is associated with self-reported distress. Attachment avoidance is inversely associated with HF HRV, a marker of vagal influence on cardiac activity, but is not associated with subjective stress.

  17. A Root water uptake model to compensate disease stress in citrus trees

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kambhammettu, B. P.; Lad, R. S.; Suradhaniwar, S.

    2017-12-01

    Plant root water uptake (RWU) controls a number of hydrologic fluxes in simulating unsaturated flow and transport processes. Variable saturated models that simulate soil-water-plant interactions within the rizhosphere do not account for the health of the tree. This makes them difficult to analyse RWU patterns for diseased trees. Improper irrigation management activities on diseased (Phytopthora spp. affected) citrus trees of central India has resulted in a significant reduction in crop yield accompanied by disease escalation. This research aims at developing a quantitative RWU model that accounts for the reduction in water stress as a function of plant disease level (hereafter called as disease stress). A total of four research plots with varying disease severity were considered for our field experimentation. A three-dimensional electrical resistivity tomography (ERT) was performed to understand spatio-temporal distribution in soil moisture following irrigation. Evaporation and transpiration were monitored daily using micro lysimeter and sap flow meters respectively. Disease intensity was quantified (on 0 to 9 scale) using pathological analysis on soil samples. Pedo-physocal and pedo-electric relations were established under controlled laboratory conditions. A non-linear disease stress response function for citrus trees was derived considering phonological, hydrological, and pathological parameters. Results of numerical simulations conclude that the propagation of error in RWU estimates by ignoring the health condition of the tree is significant. The developed disease stress function was then validated in the presence of deficit water and nutrient stress conditions. Results of numerical analysis showed a good agreement with experimental data, corroborating the need for alternate management practices for disease citrus trees.

  18. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters.

    PubMed

    Nõges, Peeter; Argillier, Christine; Borja, Ángel; Garmendia, Joxe Mikel; Hanganu, Jenică; Kodeš, Vit; Pletterbauer, Florian; Sagouis, Alban; Birk, Sebastian

    2016-01-01

    We reviewed 219 papers and built an inventory of 532 items of ecological evidence on multiple stressor impacts in rivers, lakes, transitional and coastal waters, as well as groundwaters. Our review revealed that, despite the existence of a huge conceptual knowledge base in aquatic ecology, few studies actually provide quantitative evidence on multi-stress effects. Nutrient stress was involved in 71% to 98% of multi-stress situations in the three types of surface water environments, and in 42% of those in groundwaters. However, their impact manifested differently along the groundwater-river-lake-transitional-coastal continuum, mainly determined by the different hydro-morphological features of these ecosystems. The reviewed papers addressed two-stressor combinations most frequently (42%), corresponding with the actual status-quo of pressures acting on European surface waters as reported by the Member States in the WISE WFD Database (EEA, 2015). Across all biological groups analysed, higher explanatory power of the stress-effect models was discernible for lakes under multi-stressor compared to single stressor conditions, but generally lower for coastal and transitional waters. Across all aquatic environments, the explanatory power of stress-effect models for fish increased when multi-stressor conditions were taken into account in the analysis, qualifying this organism group as a useful indicator of multi-stress effects. In contrast, the explanatory power of models using benthic flora decreased under conditions of multiple stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Moderating Effect of Interaction Avoidance Between Abusive Supervision and Subordinates' Job Promotions.

    PubMed

    Peltokorpi, Vesa

    2017-10-03

    While abusive supervision is shown to have negative stress-related effects on targets, less is known about the factors capable of mitigating these negative effects and their career-related outcomes. In this paper, we drew on the transactional model of stress and coping (Lazarus & Folkman, 1986) and the upward mobility theory (Turner, 1960) to explore the moderating effect of subordinates' interaction avoidance between abusive supervision and job promotions. To test this moderating effect, we collected data from 604 full-time employees at three points in time over a 12-month time period in Japan. The findings suggest that interaction avoidance moderates the relationship between abusive supervision and promotions, such that this relationship will be less negative as interaction avoidance increases.

  20. Wind Stress Variability Observed Over Coastal Waters

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  1. Water and Salt Stresses, Kinetin and Protein Synthesis in Tobacco Leaves 1

    PubMed Central

    Ben-Zioni, Aliza; Itai, C.; Vaadia, Y.

    1967-01-01

    The capacity of tobacco (Nicotiana rustica) leaf discs to incorporate l-leucine 14C into proteins was measured. Leaf discs were obtained from plants which experienced soil water depletion, or which were exposed to a saline or osmotic stress in the root medium. The stresses were brief of relatively short duration and water potential did not decrease below 4 bars in the root media. Leaf discs were sampled 2 hours after stress removal, achieved by reirrigation, or replacement of saline and osmotic solutions with normal nutrient solution. Plants were always turgid when leaves were sampled. All stressed tissues showed reduced capacity to incorporate l-leucine 14C into protein. The reduction was about 50% and could not be attributed either to reduced uptake into the discs, or to possible isotopic dilution. Incorporation decreased progressively with leaf age in control discs as well as in stressed leaf discs. At all ages tested, incorporation in stressed discs was lower than that of the control. Full recovery of incorporation capacity in stressed discs was obtained when discs were sampled 72 hours after stress removal but not earlier. Kinetin pretreatment prior to incubation with labelled leucine partially restored incorporation in stressed discs. The differences in response to kinetin of stressed and control discs suggest a lower endogenous level of cytokinins in the stressed discs. The results were qualitatively similar regardless of the kind of stress given to the plants during pretreatment. This supports the hypothesis that the normal supply of root cytokinins is important in shoot metabolism. PMID:16656515

  2. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    PubMed

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  3. Avoidance of selenium-treated food by mallards

    USGS Publications Warehouse

    Heinz, G.H.; Sanderson, C.J.

    1990-01-01

    Adult, male mallards (Anas platyrhynchos) were given a choice between a control diet and a diet containing 5, 10 or 20 ppm selenium as selenomethionine dissolved in water and mixed into the diet. At 10 and 20 ppm, selenium-treated diets were avoided. Avoidance appeared to be caused by a conditioned response, probably to illness caused by the selenium and not to an aversion to the taste of the selenium.

  4. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  5. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  6. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  7. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  8. Effects of Forced Swimming Stress on ERK and Histone H3 Phosphorylation in Limbic Areas of Roman High- and Low-Avoidance Rats.

    PubMed

    Morello, Noemi; Plicato, Ornella; Piludu, Maria Antonietta; Poddighe, Laura; Serra, Maria Pina; Quartu, Marina; Corda, Maria Giuseppa; Giorgi, Osvaldo; Giustetto, Maurizio

    2017-01-01

    Stressful events evoke molecular adaptations of neural circuits through chromatin remodeling and regulation of gene expression. However, the identity of the molecular pathways activated by stress in experimental models of depression is not fully understood. We investigated the effect of acute forced swimming (FS) on the phosphorylation of the extracellular signal-regulated kinase (ERK)1/2 (pERK) and histone H3 (pH3) in limbic brain areas of genetic models of vulnerability (RLA, Roman low-avoidance rats) and resistance (RHA, Roman high-avoidance rats) to stress-induced depression-like behavior. We demonstrate that FS markedly increased the density of pERK-positive neurons in the infralimbic (ILCx) and the prelimbic area (PrLCx) of the prefrontal cortex (PFCx), the nucleus accumbens, and the dorsal blade of the hippocampal dentate gyrus to the same extent in RLA and RHA rats. In addition, FS induced a significant increase in the intensity of pERK immunoreactivity (IR) in neurons of the PFCx in both rat lines. However, RHA rats showed stronger pERK-IR than RLA rats in the ILCx both under basal and stressed conditions. Moreover, the density of pH3-positive neurons was equally increased by FS in the PFCx of both rat lines. Interestingly, pH3-IR was higher in RHA than RLA rats in PrLCx and ILCx, either under basal conditions or upon FS. Finally, colocalization analysis showed that in the PFCx of both rat lines, almost all pERK-positive cells express pH3, whereas only 50% of the pH3-positive neurons is also pERK-positive. Moreover, FS increased the percentage of neurons that express exclusively pH3, but reduced the percentage of cells expressing exclusively pERK. These results suggest that (i) the distinctive patterns of FS-induced ERK and H3 phosphorylation in the PFCx of RHA and RLA rats may represent molecular signatures of the behavioural traits that distinguish the two lines and (ii) FS-induced H3 phosphorylation is, at least in part, ERK-independent.

  9. Effects of Forced Swimming Stress on ERK and Histone H3 Phosphorylation in Limbic Areas of Roman High- and Low-Avoidance Rats

    PubMed Central

    Piludu, Maria Antonietta; Poddighe, Laura; Serra, Maria Pina; Quartu, Marina; Corda, Maria Giuseppa; Giorgi, Osvaldo

    2017-01-01

    Stressful events evoke molecular adaptations of neural circuits through chromatin remodeling and regulation of gene expression. However, the identity of the molecular pathways activated by stress in experimental models of depression is not fully understood. We investigated the effect of acute forced swimming (FS) on the phosphorylation of the extracellular signal-regulated kinase (ERK)1/2 (pERK) and histone H3 (pH3) in limbic brain areas of genetic models of vulnerability (RLA, Roman low-avoidance rats) and resistance (RHA, Roman high-avoidance rats) to stress-induced depression-like behavior. We demonstrate that FS markedly increased the density of pERK-positive neurons in the infralimbic (ILCx) and the prelimbic area (PrLCx) of the prefrontal cortex (PFCx), the nucleus accumbens, and the dorsal blade of the hippocampal dentate gyrus to the same extent in RLA and RHA rats. In addition, FS induced a significant increase in the intensity of pERK immunoreactivity (IR) in neurons of the PFCx in both rat lines. However, RHA rats showed stronger pERK-IR than RLA rats in the ILCx both under basal and stressed conditions. Moreover, the density of pH3-positive neurons was equally increased by FS in the PFCx of both rat lines. Interestingly, pH3-IR was higher in RHA than RLA rats in PrLCx and ILCx, either under basal conditions or upon FS. Finally, colocalization analysis showed that in the PFCx of both rat lines, almost all pERK-positive cells express pH3, whereas only 50% of the pH3-positive neurons is also pERK-positive. Moreover, FS increased the percentage of neurons that express exclusively pH3, but reduced the percentage of cells expressing exclusively pERK. These results suggest that (i) the distinctive patterns of FS-induced ERK and H3 phosphorylation in the PFCx of RHA and RLA rats may represent molecular signatures of the behavioural traits that distinguish the two lines and (ii) FS-induced H3 phosphorylation is, at least in part, ERK-independent. PMID:28107383

  10. US Power Production at Risk from Water Stress in a Changing Climate.

    PubMed

    Ganguli, Poulomi; Kumar, Devashish; Ganguly, Auroop R

    2017-09-20

    Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

  11. Water Stress Enhances Expression of an α-Amylase Gene in Barley Leaves

    PubMed Central

    Jacobsen, John V.; Hanson, Andrew D.; Chandler, Peter C.

    1986-01-01

    The amylases of the second leaves of barley seedlings (Hordeum vulgare L. cv Betzes) were resolved into eight isozymes by isoelectric focusing, seven of which were β-amylase and the other, α-amylase. The α-amylase had the same isoelectric point as one of the gibberellin-induced α-amylase isozymes in the aleurone layer. This and other enzyme characteristics indicated that the leaf isozyme corresponded to the type A aleurone α-amylase (low pI group). Crossing experiments indicated that leaf and type A aleurone isozymes resulted from expression of the same genes. In unwatered seedlings, leaf α-amylase increased as leaf water potential decreased and ABA increased. Water stress had no effect on β-amylase. α-Amylase occurred uniformly along the length of the leaf but β-amylase was concentrated in the basal half of the leaf. Cell fractionation studies indicated that none of the leaf α-amylase occurred inside chloroplasts. Leaf radiolabeling experiments followed by extraction of α-amylase by affinity chromatography and immunoprecipitation showed that increase of α-amylase activity involved synthesis of the enzyme. However, water stress caused no major change in total protein synthesis. Hybridization of a radiolabeled α-amylase-related cDNA clone to size fractionated RNA showed that water-stressed leaves contained much more α-amylase mRNA than unstressed plants. The results of these and other studies indicate that regulation of gene expression may be a component in water-stress induced metabolic changes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:16664625

  12. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    PubMed

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

  13. Modeling U.S. water resources under climate change

    NASA Astrophysics Data System (ADS)

    Blanc, Elodie; Strzepek, Kenneth; Schlosser, Adam; Jacoby, Henry; Gueneau, Arthur; Fant, Charles; Rausch, Sebastian; Reilly, John

    2014-04-01

    Water is at the center of a complex and dynamic system involving climatic, biological, hydrological, physical, and human interactions. We demonstrate a new modeling system that integrates climatic and hydrological determinants of water supply with economic and biological drivers of sectoral and regional water requirement while taking into account constraints of engineered water storage and transport systems. This modeling system is an extension of the Massachusetts Institute of Technology (MIT) Integrated Global System Model framework and is unique in its consistent treatment of factors affecting water resources and water requirements. Irrigation demand, for example, is driven by the same climatic conditions that drive evapotranspiration in natural systems and runoff, and future scenarios of water demand for power plant cooling are consistent with energy scenarios driving climate change. To illustrate the modeling system we select "wet" and "dry" patterns of precipitation for the United States from general circulation models used in the Climate Model Intercomparison Project (CMIP3). Results suggest that population and economic growth alone would increase water stress in the United States through mid-century. Climate change generally increases water stress with the largest increases in the Southwest. By identifying areas of potential stress in the absence of specific adaptation responses, the modeling system can help direct attention to water planning that might then limit use or add storage in potentially stressed regions, while illustrating how avoiding climate change through mitigation could change likely outcomes.

  14. Stress

    MedlinePlus

    ... the flu or common cold. Vaccines, such as the flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  15. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  16. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions.

    PubMed

    Klunklin, Warinporn; Savage, Geoffrey

    2017-07-25

    Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics-such as dry matter, total soluble solids, and pH parameters-but there were no differences in the quality characteristics between the two treatments of the fruits ( p > 0.05); however, there were significant differences ( p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions.

  17. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    NASA Astrophysics Data System (ADS)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  18. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress

    PubMed Central

    Aparicio-Tejo, P.; Sánchez-Díaz, Manuel

    1982-01-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3−. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3−. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3−, while with rewatering, leaf NRA recovery was quite important especially in the NO3−-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3− and in those without NO3− contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3−. This phenomenon was not observed in nodules of plants given water only. Upon rewatering, it was observed that in plants watered with NO3− the nodular NRA increased again, while in plants watered but not given NO3−, such activity began to decrease. Nitrogen fixation increased only in plants without NO3−. PMID:16662233

  19. Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Di Rocco, Richard; Belanger, Cowan; Imre, István; Brown, Grant; Johnson, Nicholas S.

    2014-01-01

    Sea lamprey (Petromyzon marinus) avoid damage-released and predator chemosensory cues at night, but their response to these cues during the day is unknown. Here, we explored (i) whether sea lamprey avoid these cues during the day and (ii) the effect of water temperature on the avoidance of chemosensory alarm cues in two diurnal laboratory experiments. We hypothesized that daytime activity would be temperature-dependent and that only sea lamprey vulnerable to predation (i.e., not hiding) would behaviourally respond to chemosensory alarm cues. Ten groups of ten sea lamprey were exposed to one of a variety of potential chemosensory cues. The experiments were conducted over a range of temperatures to quantify the effect of temperature on avoidance behaviour. Consistent with our hypothesis, a higher proportion of animals were active during daytime as water temperature increased. Moving sea lamprey showed an avoidance response to 2-phenylethylamine (a compound found in mammalian urine) and human saliva once water temperatures had risen to mean (±SD) = 13.7 (±1.4) °C. Resting and hiding sea lamprey did not show an avoidance response to any of the experimental stimuli.

  20. Biochemical response of hybrid black poplar tissue culture (Populus × canadensis) on water stress.

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tari, I; Csiszár, J; Gallé, Á; Poór, P; Galović, V; Trudić, B; Orlović, S

    2017-05-01

    In this study, poplar tissue culture (hybrid black poplar, M1 genotype) was subjected to water stress influenced by polyethyleneglycol 6000 (100 and 200 mOsm PEG 6000). The aim of the research was to investigate the biochemical response of poplar tissue culture on water deficit regime. Antioxidant status was analyzed including antioxidant enzymes, superoxide-dismutase (SOD), catalase (CAT), guiacol-peroxidase (GPx), glutathione-peroxidase (GSH-Px), glutathione-reductase, reduced glutathione, total phenol content, Ferric reducing antioxidant power and DPPH radical antioxidant power. Polyphenol oxidase and phenylalanine-ammonium-lyase were determined as enzymatic markers of polyphenol metabolism. Among oxidative stress parameters lipid peroxidation, carbonyl-proteins, hydrogen-peroxide, reactive oxygen species, nitric-oxide and peroxynitrite were determined. Proline, proline-dehydrogenase and glycinebetaine were measured also as parameters of water stress. Cell viability is finally determined as a biological indicator of osmotic stress. It was found that water stress induced reactive oxygen and nitrogen species and lipid peroxidation in leaves of hybrid black poplar and reduced cell viability. Antioxidant enzymes including SOD, GPx, CAT and GSH-Px were induced but total phenol content and antioxidant capacity were reduced by PEG 6000 mediated osmotic stress. The highest biochemical response and adaptive reaction was the increase of proline and GB especially by 200 mOsm PEG. While long term molecular analysis will be necessary to fully address the poplar potentials for water stress adaptation, our results on hybrid black poplar suggest that glycine-betaine, proline and PDH enzyme might be the most important markers of poplar on water stress and that future efforts should be focused on these markers and strategies to enhance their concentration in poplar.

  1. WATER STRESS REDUCES OZONE INJURY VIA A STOMATAL MECHANISM

    EPA Science Inventory

    Various studies have shown that water-stressed plants are more tolerant of ozone exposures than are unstressed plants. Two probable explanations for this tolerance are (a) stomatal closure which reduces ozone uptake and (b) biochemical or anatomical changes within the leaves. Pha...

  2. SEMIPERMEABLE MEMBRANE SYSTEM FOR SUBJECTING PLANTS TO WATER STRESS

    EPA Science Inventory

    A system was evaluated for growing plants at reproducible levels of water stress. Beans (Phaseolus vulgaris L.) were grown in vermiculite, transferred to a semipermeable membrane system that encased the root vermiculate mass, and then placed into nutrient solutions to which vario...

  3. Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: Implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor

    PubMed Central

    Johnston, Caitlin E.; Herschel, Daniel; Lasek, Amy W.; Hammer, Ronald P.; Nikulina, Ella M.

    2014-01-01

    Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse. PMID:25446676

  4. Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade 1

    PubMed Central

    Ben, Gui-Ying; Osmond, C. Barry; Sharkey, Thomas D.

    1987-01-01

    We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O2 electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO2 saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O2 per mole photons) was slightly, if at all, affected by mild water stress (>−1.5 megapascals). (c) Severe water stress (<−1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (Fv/Fm) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred. PMID:16665465

  5. Hydrogen Peroxide Formation and pH Changes at Rock-Water Interface during Stressing

    NASA Astrophysics Data System (ADS)

    Xie, S.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Balk, M.; Rothschild, L. J.; Freund, F. T.

    2008-12-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which become activated when stressed. They release electronic charge carriers, in particular defect electrons associated with O- states in a matrix of O2-. Known as 'positive holes' or pholes for short, the O- states can spread out of the stressed rock volume, travel along stress gradients over distances on the order of meters in the lab and probably over kilometers in the field. They carry a current, which can flow through meters of rock in the laboratory, probably tens of kilometers in the field. At rock-water interfaces the O- states turn into O radicals, which subtract H from H2O, forming OH- in the rock surface and PH radicals in the water. Two OH combine to H2O2. In the process the pH becomes more acidic. The discovery of H2O2 formation at rock-water interfaces as part of stress- activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life.

  6. Palatable food avoidance and acceptance learning with different stressors in female rats

    PubMed Central

    Liang, Nu-Chu; Smith, Megan E.; Moran, Timothy H.

    2013-01-01

    Stress activates the hypothalamus- pituitary-adrenal (HPA) axis leading to the release of glucocorticoids (GC). Increased activity of the HPA axis and GC exposure has been suggested to facilitate the development of obesity and metabolic syndrome. Nonetheless, different stressors can produce distinct effects on food intake and may support different directions of food learning e.g. avoidance or acceptance. This study examined whether interoceptive (LiCl and exendin-4) and restraint stress support similar or distinct food learning. Female rats were exposed to different stressors after their consumption of a palatable food (butter icing). After 4 palatable food-stress pairings, distinct intakes of the butter icing were observed in rats treated with different stressors. Rats that received butter icing followed by intraperitoneal injections of LiCl (42.3 mg/Kg) and exendin-4 (10 μg/Kg) completely avoided the palatable food with subsequent presentations. In contrast, rats experiencing restraint stress paired with the palatable food increased their consumption of butter icing across trials and did so to a greater degree than rats receiving saline injections. These data indicate that interoceptive and psychosocial stressors support conditioned food avoidance and acceptance, respectively. Examination of c-Fos immunoreactivity revealed distinct neural activation by interoceptive and psychosocial stressors that could provide the neural basis underlying opposite direction of food acceptance learning. PMID:23380501

  7. Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants.

    PubMed

    Turner, Stephanie Lynn; Ray, Anandasankar

    2009-09-10

    The fruitfly Drosophila melanogaster exhibits a robust and innate olfactory-based avoidance behaviour to CO(2), a component of odour emitted from stressed flies. Specialized neurons in the antenna and a dedicated neuronal circuit in the higher olfactory system mediate CO(2) detection and avoidance. However, fruitflies need to overcome this avoidance response in some environments that contain CO(2) such as ripening fruits and fermenting yeast, which are essential food sources. Very little is known about the molecular and neuronal basis of this unique, context-dependent modification of innate olfactory avoidance behaviour. Here we identify a new class of odorants present in food that directly inhibit CO(2)-sensitive neurons in the antenna. Using an in vivo expression system we establish that the odorants act on the Gr21a/Gr63a CO(2) receptor. The presence of these odorants significantly and specifically reduces CO(2)-mediated avoidance behaviour, as well as avoidance mediated by 'Drosophila stress odour'. We propose a model in which behavioural avoidance to CO(2) is directly influenced by inhibitory interactions of the novel odours with CO(2) receptors. Furthermore, we observe differences in the temporal dynamics of inhibition: the effect of one of these odorants lasts several minutes beyond the initial exposure. Notably, animals that have been briefly pre-exposed to this odorant do not respond to the CO(2) avoidance cue even after the odorant is no longer present. We also show that related odorants are effective inhibitors of the CO(2) response in Culex mosquitoes that transmit West Nile fever and filariasis. Our findings have broader implications in highlighting the important role of inhibitory odorants in olfactory coding, and in their potential to disrupt CO(2)-mediated host-seeking behaviour in disease-carrying insects like mosquitoes.

  8. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  9. Effect of water deprivation on baseline and stress-induced corticosterone levels in the Children's python (Antaresia childreni).

    PubMed

    Dupoué, Andréaz; Angelier, Frédéric; Lourdais, Olivier; Bonnet, Xavier; Brischoux, François

    2014-02-01

    Corticosterone (CORT) secretion is influenced by endogenous factors (e.g., physiological status) and environmental stressors (e.g., ambient temperature). Heretofore, the impact of water deprivation on CORT plasma levels has not been thoroughly investigated. However, both baseline CORT and stress-induced CORT are expected to respond to water deprivation not only because of hydric stress per se, but also because CORT is an important mineralocorticoid in vertebrates. We assessed the effects of water deprivation on baseline CORT and stress-induced CORT, in Children's pythons (Antaresia childreni), a species that experiences seasonal droughts in natural conditions. We imposed a 52-day water deprivation on a group of unfed Children's pythons (i.e., water-deprived treatment) and provided water ad libitum to another group (i.e., control treatment). We examined body mass variations throughout the experiment, and baseline CORT and stress-induced CORT at the end of the treatments. Relative body mass loss averaged ~10% in pythons without water, a value 2 to 4 times higher compared to control snakes. Following re-exposition to water, pythons from the water-deprived treatment drank readily and abundantly and attained a body mass similar to pythons from the control treatment. Together, these results suggest a substantial dehydration as a consequence of water deprivation. Interestingly, stress-induced but not baseline CORT level was significantly higher in water-deprived snakes, suggesting that baseline CORT might not respond to this degree of dehydration. Therefore, possible mineralocorticoid role of CORT needs to be clarified in snakes. Because dehydration usually induces adjustments (reduced movements, lowered body temperature) to limit water loss, and decreases locomotor performances, elevated stress-induced CORT in water-deprived snakes might therefore compensate for altered locomotor performances. Future studies should test this hypothesis. Copyright © 2013 Elsevier Inc

  10. Protective effect of cerium ion against ultraviolet B radiation-induced water stress in soybean seedlings.

    PubMed

    Mao, Chun Xia; Chen, Min Min; Wang, Lei; Zou, Hua; Liang, Chan Juan; Wang, Li Hong; Zhou, Qing

    2012-06-01

    Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280-320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L(-1) Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.

  11. Research on the fiber Bragg grating sensor for the shock stress measurement

    PubMed Central

    Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun

    2011-01-01

    A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282

  12. Water stress index for alkaline fen habitat based on UAV and continuous tower measurements of canopy infrared temperature

    NASA Astrophysics Data System (ADS)

    Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata

    2017-04-01

    This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  13. Evaluation of Water Stress Coefficient Methods to Estimate Actual Corn Evapotranspiration in Colorado

    USDA-ARS?s Scientific Manuscript database

    Abstract for Kullberg Hydrology Days: Abstract. Increased competition for water resources is placing pressure on the agricultural sector to remain profitable while reducing water use. Remote sensing techniques have been developed to monitor crop water stress and produce information for evapotranspi...

  14. Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaertn.) plants.

    PubMed

    Satish, Lakkakula; Rency, Arockiam Sagina; Ramesh, Manikandan

    2018-01-01

    Severe drought stress (water deficit) in finger millet ( Eleusine coracana L. Gaertn.) plants significantly reduced total leaf chlorophyll and relative water content in shoots and roots, whereas electrolyte leakage, concentrations of proline and hydrogen peroxide, as well as caspase-like activity were significantly increased. The role of spermidine in plant defence to water-stress was investigated after subjected to various drought treatments. Three weeks of daily spermidine sprays (0.2 mM) at early flowering stage significantly changed shoot and root growth, in both fresh and dry weights terms. At 75% of water deficit stress, leaves accumulated twice as much proline as unstressed plants, and roots accumulated thrice. Plants treated with spermidine under water stress showed lower electrolyte leakage, hydrogen peroxide and caspase-like activity than unstressed and untreated control.

  15. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  16. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  17. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality

    PubMed Central

    Davis, R. F.; Earl, H. J.; Timper, P.

    2014-01-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  18. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was

  19. [Effects of water stress and temperature on gas exchange and chlorophyll fluorescence of Sinocalycanthus chinensis leaves].

    PubMed

    Ke, Shi-sheng; Jin, Ze-xin

    2008-01-01

    Sinocalycanthus chinensis is an endangered species in Sinocalycanthus, and only distributed in Zhejiang Province of China. This paper studied the photosynthetic responses of 2-year-old pot-cultured S. chinensis to different levels of water stress and temperature. The results indicated that under mild and moderate water stress, the net photosynthetic rate (Pn) of S. chinensis leaves was decreased to 92.3% and 74.3% of the control, respectively, which was mainly attributed to stomatal limitation; and under severe water stress, the Pn was decreased to 44.4% of the control, which might be mainly linked to non-stomatal limitation. The appropriate temperature for S. chinensis photosynthesis was from 20 degrees C to 28 degrees C. At 39 degrees C, the Pn, water use efficiency (WUE), and maximal photochemistry efficiency (Fv/Fm) were decreased significantly, while the dark respiration rate (Rd) and transpiration rate (Tr) were enhanced significantly. With increasing water stress and temperature, some photosynthetic parameters including light saturation point (LSP), apparent quantum yield (AQY) and maximal CO2 assimilation rate (Pmax) decreased to certain extents, while light compensation point (LCP) increased, suggesting that both severe water stress and higher temperature were the important environmental factors affecting the survival of S. chinensis.

  20. Longitudinal Changes in Combat-Related Posttraumatic Stress Disorder Among Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn Veterans With Hazardous Alcohol Use: The Role of Avoidance Coping.

    PubMed

    Lee, Joohyun; Possemato, Kyle; Ouimette, Paige C

    2017-10-01

    Military personnel who have experienced combat trauma are at risk for developing posttraumatic stress disorder (PTSD). A greater recognition of the complex array of vulnerability factors that contribute to PTSD severity has led researchers to examine other non-combat-related factors. This longitudinal study examined a number of pre-, peri-, and postdeployment factors hypothesized to contribute to PTSD symptomatology among returning Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn veterans presenting with at least subthreshold PTSD symptoms and hazardous alcohol use in a primary care setting. Purported risk factors included childhood family environment, severity of combat exposure, postdeployment social support, alcohol dependence severity, and an avoidant coping style. At baseline, postdeployment social support and avoidant coping contributed to PTSD severity. Only avoidant coping was associated with changes in PTSD symptom at 1-year follow-up. Reducing avoidant coping may deter the maintenance of PTSD among veterans with PTSD symptoms and hazardous alcohol use.

  1. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    PubMed Central

    2013-01-01

    Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between our empirical knowledge of the physiological changes observed in the field in response to nitrogen and water stresses, and our limited understanding of the molecular processes leading to those changes. Results This work examines in particular the impact of simultaneous stresses on the transcriptome. In a greenhouse setting, corn plants were grown under tightly controlled nitrogen and water conditions, allowing sampling of various tissues and stress combinations. A microarray profiling experiment was performed using this material and showed that the concomitant presence of nitrogen and water limitation affects gene expression to an extent much larger than anticipated. A clustering analysis also revealed how the interaction between the two stresses shapes the patterns of gene expression over various levels of water stresses and recovery. Conclusions Overall, this study suggests that the molecular signature of a specific combination of stresses on the transcriptome might be as unique as the impact of individual stresses, and hence underlines the difficulty to extrapolate conclusions obtained from the study of individual stress responses to more complex settings. PMID:23324127

  2. Effectiveness of Avoidant Thinking and Redefinition in Coping with Stress.

    ERIC Educational Resources Information Center

    Burish, Thomas G.; And Others

    After receiving a sample shock, subjects in a Threat Condition were told that they would receive additional painful shocks while subjects in a Nonthreat Condition were not threatened with additional shocks. Subjects in an Avoidant Thinking Condition were then instructed to read and think about an amusing story, subjects in a Situation Redefinition…

  3. Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization.

    PubMed

    Perdiguero, Pedro; Collada, Carmen; Barbero, María Del Carmen; García Casado, Gloria; Cervera, María Teresa; Soto, Alvaro

    2012-01-01

    Climate change is a major challenge particularly for forest tree species, which will have to face the severe alterations of environmental conditions with their current genetic pool. Thus, an understanding of their adaptive responses is of the utmost interest. In this work we have selected Pinus pinaster as a model species. This pine is one of the most important conifers (for which molecular tools and knowledge are far more scarce than for angiosperms) in the Mediterranean Basin, which is characterised in all foreseen scenarios as one of the regions most drastically affected by climate change, mainly because of increasing temperature and, particularly, by increasing drought. We have induced a controlled, increasing water stress by adding PEG to a hydroponic culture. We have generated a subtractive library, with the aim of identifying the genes induced by this stress and have searched for the most reliable expressional candidate genes, based on their overexpression during water stress, as revealed by microarray analysis and confirmed by RT-PCR. We have selected a set of 67 candidate genes belonging to different functional groups that will be useful molecular tools for further studies on drought stress responses, adaptation, and population genomics in conifers, as well as in breeding programs. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training.

    PubMed

    Sandi, Carmen; Davies, Heather A; Cordero, M Isabel; Rodriguez, Jose J; Popov, Victor I; Stewart, Michael G

    2003-06-01

    The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2-3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity.

  5. Survival, Reproduction, Avoidance Behavior and Oxidative Stress Biomarkers in the Earthworm Octolasion cyaneum Exposed to Glyphosate.

    PubMed

    Salvio, Carla; Menone, Mirta L; Rafael, Sergio; Iturburu, Fernando G; Manetti, Pablo L

    2016-03-01

    The massive use of glyphosate (GLY) in several countries has increased the interest in investigating its potential adverse effects in non-target organisms. The aim of the present study was to assess the potential effects in survival and reproduction; avoidance behavior and oxidative stress under short-term (48 h) and subchronic exposures (28 days) to GLY in the earthworm Octolasion cyaneum. After 48 h no significant changes in the behavior was observed. In addition, a lower catalase activity at 498 μg GLY kg(-1) dry soil section relative to earthworms from the control section was obtained. After 28 days of exposure inhibition of glutathione S-transferase activity was observed at 535 μg GLY kg(-1) dry soil while no changes in the other endpoints were detected. These results indicate that environmentally relevant concentrations of GLY (up to 996 µg GLY kg(-1) dry soil) did not exert a toxic effect to O. cyaneum.

  6. Sugarcane Leaf Photosynthesis and Growth Characters during Development of Water-Deficit Stress

    USDA-ARS?s Scientific Manuscript database

    Yield and profitability of sugarcane grown on sand soils are much lower than on organic soils in Florida due to biotic and abiotic stresses. A greenhouse study was conducted using a sand soil to identify effects of water deficit stress (WS) during sugarcane early growth on leaf photosynthetic compon...

  7. Water accounting for stressed river basins based on water resources management models.

    PubMed

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.

    PubMed

    Zegaoui, Zahia; Planchais, Séverine; Cabassa, Cécile; Djebbar, Reda; Abrous Belbachir, Ouzna; Carol, Pierre

    2017-11-01

    Many landraces of cowpea [Vigna unguiculata (L.) Walp.] are adapted to particular geographical and climatic conditions. Here we describe two landraces grown respectively in arid and temperate areas of Algeria and assess their physiological and molecular responses to drought stress. As expected, when deprived of water cowpea plants lose water over time with a gradual reduction in transpiration rate. The landraces differed in their relative water content (RWC) and whole plant transpiration rate. The landrace from Menia, an arid area, retained more water in adult leaves. Both landraces responded to drought stress at the molecular level by increasing expression of stress-related genes in aerial parts, including proline metabolism genes. Expression of gene(s) encoding proline synthesis enzyme P5CS was up regulated and gene expression of ProDH, a proline catabolism enzyme, was down regulated. Relatively low amounts of proline accumulated in adult leaves with slight differences between the two landraces. During drought stress the most apical part of plants stayed relatively turgid with a high RWC compared to distal parts that wilted. Expression of key stress genes was higher and more proline accumulated at the apex than in distal leaves indicating that cowpea has a non-uniform stress response at the whole plant level. Our study reveals a developmental control of water stress through preferential proline accumulation in the upper tier of the cowpea plant. We also conclude that cowpea landraces display physiological adaptations to water stress suited to the arid and temperate climates in which they are cultivated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions

    PubMed Central

    Klunklin, Warinporn; Savage, Geoffrey

    2017-01-01

    Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics—such as dry matter, total soluble solids, and pH parameters—but there were no differences in the quality characteristics between the two treatments of the fruits (p > 0.05); however, there were significant differences (p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions. PMID:28757563

  10. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    PubMed Central

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  11. Extensive but not Limited Repeated Trials in Passive Avoidance Task Induce Stress-like Symptoms and Affect Memory Function in Rats.

    PubMed

    Tabassum, Saiqa; Haider, Saida

    2018-02-10

    Stressful and emotionally arousing experiences are remembered, and previous reports show that repeated exposure to stressful condition enhances emotional learning. However, the usefulness of the repeated exposure depends on the intensity and duration. Although repeated training as a strategy to improve memory performance is receiving increased attention from researchers, repeated training may induce stressful effects that have not yet been considered. The present study investigated whether exposure to repetitive learning trials with limited or extensive durations in a passive avoidance task (PAT) would be beneficial or harmful to emotional memory performance in rats. Rats were exposed to repetitive learning trials for two different durations in the limited exposure (exposure to four repetitive trials) and extensive exposure groups (exposure to 16 repetitive trials) in a single day to compare the impact of both conditions on rat emotional memory performance. Alterations in corticosterone content and associated oxidative and neurochemical systems were assessed to explore the underlying mechanism responsible for changes in emotional memory. Following extensive exposure, a negative impact on emotional memory was observed compared with the limited exposure group. A lack of any further improvement in memory function following extensive training exposure was supported by increased corticosterone levels, decreased 5-hydroxytryptamine (5-HT) levels and abnormal oxidative stress levels, which may induce negative effects on memory consolidation. It is suggested that limited exposure to repetitive learning trials is more useful for studying improvement in emotional memory, whereas extensive exposure may produce chronic stress-like condition that can be detrimental and responsible for compromised memory performance. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Strains and stresses in the rock around and unlined hot water cavern

    NASA Astrophysics Data System (ADS)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  13. Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut

    PubMed Central

    Cochard, Hervé; Coll, Lluis; Le Roux, Xavier; Améglio, Thierry

    2002-01-01

    The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia × nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Ψsoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (Prachis) above −1.4 MPa and the leaf water potential (Ψleaf) above −1.6 MPa. The same dependence of Eplant and gs on Prachis or Ψleaf was always observed. This suggested that stomata were not responding to changes in Ψsoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on Prachis and/or Ψleaf. Leaf rachis was the most vulnerable organ, with a threshold Prachis for embolism induction of −1.4 MPa. The minimum Ψleaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that Prachis might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. PMID:11788773

  14. Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects.

    PubMed

    Steimer, Thierry; Driscoll, Peter

    2003-06-01

    The Swiss sublines of Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats have been genetically selected for good vs. poor performance in two-way active avoidance since 1972. RLA/Verh rats show increased stress responses (e.g. freezing behaviour, ACTH, corticosterone and prolactin secretion) and adopt a more passive (or reactive) coping style when confronted with a novel environment. In the open field, elevated plus-maze, black/white box test, and in a new light/dark open field test, RLA/Verh rats appear to be more anxious than their RHA/Verh counterparts. Anxiety may result from their particular psychophysiological profile, i.e. increased emotionality combined with a passive coping style. In contrast, RHA/Verh rats are less responsive to stress, they show little anxiety in novel situations and tend to be impulsive and novelty (sensation) seekers. Some behavioural differences are already noticeable shortly after birth, but the full pattern appears to stabilize only after puberty. Gene-environment interactions are critical in establishing this pattern. The data reviewed indicate that the differences between RHA/Verh and RLA/Verh rats probably result from a complex interaction among divergent anxiety/emotionality characteristics, differences in locomotor activity and novelty/reward seeking, as well as active vs. passive coping styles. It is proposed further that these divergent personality types are to be found not only in other selective breeding programs but in the form of individual differences in most populations of rats used for this type of research.

  15. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  16. Photoprotection regulated by phosphorus application can improve photosynthetic performance and alleviate oxidative damage in dwarf bamboo subjected to water stress.

    PubMed

    Liu, Chenggang; Wang, Yanjie; Jin, Yanqiang; Pan, Kaiwen; Zhou, Xingmei; Li, Na

    2017-09-01

    Water and nutrients, particularly phosphorus (P), are the two most limiting factors for dwarf bamboo growth in tropical and subtropical areas. Dwarf bamboo is highly sensitive to water stress and often causes severe P deficiency in its growing soils due to the characteristics of shallower roots and expeditious growth. However, little is known about its photoprotective response to soil water deficit and the underlying mechanisms regulated by P application. In this study, a completely randomized design with two factors of two water regimes (well-watered and water-stressed) and two P levels (with and without P application) was arranged to investigate this issue in dwarf bamboo (Fargesia rufa) plants. Water stress not only decreased water status and photochemical activity but also increased lipid peroxidation due to reactive oxygen species (ROS) accumulation irrespective of P application. In this case, thermal dissipation and antioxidative defense were promoted. Moreover, the role of the water-water cycle under this stress still could not be ignored because it accounted for a large proportion of total energy (J PSII ). P application significantly enhanced photochemical activity accompanied by increased chlorophyll content in water-stressed plants. Meanwhile, P application remarkably reduced thermal dissipation and hardly affected photorespiration and the water-water cycle under water stress. Although P application only enhanced ascorbate (AsA) level, ROS, particularly hydrogen peroxide (H 2 O 2 ), and lipid peroxidation were significantly reduced in water-stressed plants. Therefore, P application can improve the photosynthetic capacity by regulating the redistribution of energy absorbed by PSII antennae and independently activating of the H 2 O 2 -scavenging function of AsA to alleviate oxidative damage in F. rufa plants, thereby improving their survival under water stress conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    PubMed

    Kadam, Niteen N; Yin, Xinyou; Bindraban, Prem S; Struik, Paul C; Jagadish, Krishna S V

    2015-04-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  19. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    USGS Publications Warehouse

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  20. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions

    PubMed Central

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365

  1. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  2. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  3. Seasonal Water Storage, the Resulting Deformation and Stress, and Occurrence of Earthquakes in California

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Burgmann, R.; Fu, Y.; Dutilleul, P.

    2015-12-01

    In California the accumulated winter snow pack in the Sierra Nevada, reservoirs and groundwater water storage in the Central Valley follow an annual periodic cycle and each contribute to the resulting surface deformation, which can be observed using GPS time series. The ongoing drought conditions in the western U.S. amplify the observed uplift signal as the Earth's crust responds to the mass changes associated with the water loss. The near surface hydrological mass loss can result in annual stress changes of ~1kPa at seismogenic depths. Similarly, small static stress perturbations have previously been associated with changes in earthquake activity. Periodicity analysis of earthquake catalog time series suggest that periods of 4-, 6-, 12-, and 14.24-months are statistically significant in regions of California, and provide documentation for the modulation of earthquake populations at periods of natural loading cycles. Knowledge of what governs the timing of earthquakes is essential to understanding the nature of the earthquake cycle. If small static stress changes influence the timing of earthquakes, then one could expect that events will occur more rapidly during periods of greater external load increases. To test this hypothesis we develop a loading model using GPS derived surface water storage for California and calculate the stress change at seismogenic depths for different faulting geometries. We then evaluate the degree of correlation between the stress models and the seismicity taking into consideration the variable amplitude of stress cycles, the orientation of transient load stress with respect to the background stress field, and the geometry of active faults revealed by focal mechanisms.

  4. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    PubMed

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  5. Life-history responses of insects to water-deficit stress: a case study with the aphid Sitobion avenae.

    PubMed

    Liu, Deguang; Dai, Peng; Li, Shirong; Ahmed, Syed Suhail; Shang, Zheming; Shi, Xiaoqin

    2018-05-29

    Drought may become one of the greatest challenges for cereal production under future warming scenarios, and its impact on insect pest outbreaks is still controversial. To address this issue, life-history responses of the English grain aphid, Sitobion avenae (Fabricius), from three areas of different drought levels were compared under three water treatments. Significant differences were identified in developmental time, fecundity and adult weight among S. avenae clones from moist, semiarid and arid areas under all the three water treatments. Semiarid and arid area clones tended to have higher heritability for test life-history traits than moist area clones. We identified significant selection of water-deficit on the developmental time of 1st instar nymphs and adult weight for both semiarid and arid area clones. The impact of intermediate and severe water-stress on S. avenae's fitness was neutral and negative (e.g., decreased fecundity and weight), respectively. Compared with arid-area clones, moist- and semiarid-area clones showed higher extents of adaptation to the water-deficit level of their respective source environment. Adult weight was identified as a good indicator for S. avenae's adaptation potential under different water-stress conditions. After their exposure to intermediate water-deficit stress for only five generations, adult weight and fecundity tended to decrease for moist- and semiarid-area clones, but increase for arid-area clones. It is evident from our study that S. avenae clones from moist, semiarid and arid areas have diverged under different water-deficit stress, and such divergence could have a genetic basis. The impact of drought on S. avenae's fitness showed a water-level dependent pattern. Clones of S. avenae were more likely to become adapted to intermediate water-deficit stress than severe water-deficit stress. After continuous water-deficit stress of only five generations, the adaptation potential of S. avenae tended to decrease for moist

  6. Water Stress Impacts Tree-Atmosphere Interaction in the Amazon

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Oliveira, R. S.; Van De Giesen, N.

    2017-12-01

    Land-atmosphere interactions depend on momentum exchange from the atmosphere to the canopy, which depends on the tree drag coefficient. It is known that the drag coefficient, and thus tree-atmosphere interaction, can vary strongly within a canopy. Yet, only few measurements are available to study the variation of tree-atmosphere interaction in time and space, and in response to vegetation water stress. Recent work [1] demonstrated how accelerometers can be used to study tree properties and responses. For this study, accelerometers were used to derive a measure of tree-atmosphere interaction for 19 individual trees of seven different species in the Brazilian Amazon. This study demonstrates that under field conditions, tree-atmosphere interaction can vary considerably in time and space. The five month measurement period included the transitioning from the wet to the dry season. We demonstrate that increased tree water deficit, measured with dendrometers, is related to observed changes in tree-atmosphere interaction, which is hypothesized to be caused by water stress induced changes in tree mass. References [1]. van Emmerik, T.; Steele-Dunne, S.; Hut, R.; Gentine, P.; Guerin, M.; Oliveira, R.S.; Wagner, J.; Selker, J.; van de Giesen, N. Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors 2017, 17, 1098.

  7. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata.

    PubMed

    Gugger, Paul F; Peñaloza-Ramírez, Juan Manuel; Wright, Jessica W; Sork, Victoria L

    2017-05-01

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née, by measuring changes in gene expression profiles before and after a simulated drought stress treatment through water deprivation of seedlings in a greenhouse setting. Using whole-transcriptome sequencing from nine samples from three collection localities, we identified which genes are involved in response to drought stress and tested the hypothesis that seedlings sampled from climatically different regions of the species range respond to water stress differently. We observed a surprisingly massive transcriptional response to drought: 35,347 of 68,434 contigs (52%) were differentially expressed before versus after drought treatment, of which 18,111 were down-regulated and 17,236 were up-regulated. Genes functionally associated with abiotic stresses and death were enriched among the up-regulated genes, whereas metabolic and cell part-related genes were enriched among the down-regulated. We found 56 contigs that exhibited significantly different expression responses to the drought treatment among the three populations (treatment × population interaction), suggesting that those genes may be involved in local adaptation to drought stress. These genes have stress response (e.g., WRKY DNA-binding protein 51 and HSP20-like chaperones superfamily protein), metabolic (e.g., phosphoglycerate kinase and protein kinase superfamily protein), transport/transfer (e.g., cationic amino acid transporter 7 and K+ transporter) and regulatory functions (e.g., WRKY51 and Homeodomain-like transcriptional regulator). Baseline expression levels of 1310 unique contigs also differed among pairs of populations, and they were

  8. Characterization of the Symbiotic Nitrogen-Fixing Common Bean Low Phytic Acid (lpa1) Mutant Response to Water Stress.

    PubMed

    Chiozzotto, Remo; Ramírez, Mario; Talbi, Chouhra; Cominelli, Eleonora; Girard, Lourdes; Sparvoli, Francesca; Hernández, Georgina

    2018-02-15

    The common bean ( Phaseolus vulgaris L.) low phytic acid ( lpa1 ) biofortified genotype produces seeds with improved nutritional characteristics and does not display negative pleiotropic effects. Here we demonstrated that lpa1 plants establish an efficient nitrogen-fixing symbiosis with Rhizobium etli CE3. The lpa1 nodules showed a higher expression of nodule-function related genes than the nodules of the parental wild type genotype (BAT 93). We analyzed the response to water stress of lpa1 vs. BAT 93 plants grown under fertilized or under symbiotic N₂-fixation conditions. Water stress was induced by water withholding (up to 14% soil moisture) to fertilized or R. etli nodulated plants previously grown with normal irrigation. The fertilized lpa1 plants showed milder water stress symptoms during the water deployment period and after the rehydration recovery period when lpa1 plants showed less biomass reduction. The symbiotic water-stressed lpa1 plants showed decreased nitrogenase activity that coincides with decreased sucrose synthase gene expression in nodules; lower turgor weight to dry weight (DW) ratio, which has been associated with higher drought resistance index; downregulation of carbon/nitrogen (C/N)-related and upregulation of stress-related genes. Higher expression of stress-related genes was also observed in bacteroids of stressed lpa1 plants that also displayed very high expression of the symbiotic cbb ₃ oxidase ( fixN d).

  9. Towards Estimating Water Stress through Leaf and Canopy Water Content Derived from Optical and Thermal Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Corbin, Amie; Timmermans, Joris; van der Tol, Christiaan; Verhoef, Wout

    2015-04-01

    A competition for available (drinkable) water has arisen. This competition originated due to increasing global population and the respective needs of this population. The water demand for human consumption and irrigation of food producing crops and biofuel related vegetation, has led to early indication of drought as a key issue in many studies. However, while drought monitoring systems might provide some reasonable predictions, at the time of visible symptoms of plant stress, a plant may already be critically affected. Consequently, pre-symptomatic non-destructive monitoring of plants is needed. In many studies of plant stress, this is performed by examining internal plant physiology through existing remote sensing techniques, with varying applications. However, a uniform remote sensing method for identifying early plant stress under drought conditions is still developing. In some instances, observations of vegetation water content are used to assess the impact of soil water deficit on the health of a plant or canopy. When considering water content as an indicator of water stress in a plant, this comments not only on the condition of the plant itself, but also provides indicators of photosynthetic activity and the susceptibility to drought. Several indices of canopy health currently exists (NDVI, DVI, SAVI, etc.) using optical and near infrared reflectance bands. However, these are considered inadequate for vegetation health investigations because such semi-empirical models result in less accuracy for canopy measurements. In response, a large amount of research has been conducted to estimate canopy health directly from considering the full spectral behaviour. In these studies , the canopy reflectance has been coupled to leaf parameters, by using coupling leaf radiative transfer models (RTM), such as PROSPECT, to a canopy RTM such as SAIL. The major shortcomings of these researches is that they have been conducted primarily for optical remote sensing. Recently

  10. Effect of seasonal and long-term changes in stress on sources of water to wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Pollock, David W.

    1995-01-01

    The source of water to wells is ultimately the location where the water flowing to a well enters the boundary surface of the ground-water system . In ground-water systems that receive most of their water from areal recharge, the location of the water entering the system is at the water table . The area contributing recharge to a discharging well is the surface area that defines the location of the water entering the groundwater system. Water entering the system at the water table flows to the well and is eventually discharged from the well. Many State agencies are currently (1994) developing wellhead-protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. In the analyses of ground-water flow systems, steady-state average conditions are frequently used to simplify the problem and make a solution tractable. Recharge is usually cyclic in nature, however, having seasonal cycles and longer term climatic cycles. A hypothetical system is quantitatively analyzed to show that, in many cases, these cyclic changes in the recharge rates apparently do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to indicate whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. Noncyclic long-term transient changes in water use, however, and cyclic stresses on systems with ratios less than 1 can and do affect the

  11. Statistical analysis of short-term water stress conditions at Riggs Creek OzFlux tower site

    NASA Astrophysics Data System (ADS)

    Azmi, Mohammad; Rüdiger, Christoph; Walker, Jeffrey P.

    2017-10-01

    A large range of indices and proxies are available to describe the water stress conditions of an area subject to different applications, which have varying capabilities and limitations depending on the prevailing local climatic conditions and land cover. The present study uses a range of spatio-temporally high-resolution (daily and within daily) data sources to evaluate a number of drought indices (DIs) for the Riggs Creek OzFlux tower site in southeastern Australia. Therefore, the main aim of this study is to evaluate the statistical characteristics of individual DIs subject to short-term water stress conditions. In order to derive a more general and therefore representative DI, a new criterion is required to specify the statistical similarity between each pair of indices to allow determining the dominant drought types along with their representative DIs. The results show that the monitoring of water stress at this case study area can be achieved by evaluating the individual behaviour of three clusters of (i) vegetation conditions, (ii) water availability and (iii) water consumptions. This indicates that it is not necessary to assess all individual DIs one by one to derive a comprehensive and informative data set about the water stress of an area; instead, this can be achieved by analysing one of the DIs from each cluster or deriving a new combinatory index for each cluster, based on established combination methods.

  12. Seasonal water stress and the resistance of Pinus yunnanensis to a bark-beetle-associated fungus.

    PubMed

    Salle, Aurelien; Ye, Hui; Yart, Annie; Lieutier, François

    2008-05-01

    We examined the influence of seasonal water stress on the resistance of Pinus yunnanensis (Franch.) to inoculation with Leptographium yunnanense, a pathogenic fungus associated with the aggressive bark beetle, Tomicus n. sp. Experiments took place between October 1997 and November 1999 in two plots located at the top and at the foot of a hill in Shaogiu, China, a region characterized by dry winters and wet summers. Following isolated and mass fungal inoculations, we observed the reaction zone length, fungal growth in the phloem, and the occlusion, blue-staining and specific hydraulic conductivity of the sapwood. Measurements of soil and needle water contents and predawn needle water potentials confirmed that trees were subject to mild water stress during winter, especially at the drier hilltop site. Measures of tree resistance to fungal infection of phloem and sapwood were congruent and indicated that trees were most susceptible to inoculation during the wet summer, especially at the lower-elevation plot. Specific hydraulic conductivity decreased after inoculation in summer. The results indicate that mild seasonal water stress is not likely responsible for the recent extensive damage to young P. yunnanensis stands by Tomicus n. sp. in the vicinity of our study plots. Rather, the results suggest that mild water stress enhances tree resistance to fungal pathogens associated with Tomicus n. sp.

  13. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure.

    PubMed

    Jutfelt, Fredrik; Hedgärde, Maria

    2013-12-27

    The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.

  14. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure

    PubMed Central

    2013-01-01

    Introduction The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Results Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. Conclusions As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content. PMID:24373523

  15. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress

    PubMed Central

    Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd

    2013-01-01

    An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815

  16. Climate change threatens endangered plant species by stronger and interacting water-related stresses

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2011-12-01

    Atmospheric CO2-concentration, temperature and rainfall variability are all expected to increase in the near future. The resulting increased dynamics of soil moisture contents, together with increased plant physiological demands for both oxygen and water, will lead to an increased occurrence of wet and dry extremes of plant stresses, i.e., of oxygen and drought stress, respectively, alone and in interaction. The use of indirect environmental variables in previous studies and a focus on individual stresses rather than their combined effects has hampered understanding of the causal impact of climate change on plant species composition through changes in abiotic site conditions. Here, we use process-based simulations of oxygen and drought stresses in conjunction with a downscaled national version of IPCC scenarios in order to show that these stresses will increase (on average by ˜20% at sites where both stresses occur) in a warmer and more variable future (2050) climate. These two types of stresses will increasingly coincide, i.e. both stresses will occur more often (but not at the same time) within a single vegetation plot. We further show that this increased coincidence of water-related stresses will negatively affect the future occurrence of currently endangered plant species (causing a reduction of ˜16%), while apparently no such decrease will occur among common species. Individual stresses did not appear to affect the occurrence of endangered plant species. Consequently, our study demonstrates that species that are already threatened under the current climate will suffer most from the effects of climate change.

  17. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  18. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    PubMed

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  19. Addition of posttraumatic stress and sensory hypersensitivity more accurately estimates disability and pain than fear avoidance measures alone after whiplash injury.

    PubMed

    Pedler, Ashley; Kamper, Steven J; Sterling, Michele

    2016-08-01

    The fear avoidance model (FAM) has been proposed to explain the development of chronic disability in a variety of conditions including whiplash-associated disorders (WADs). The FAM does not account for symptoms of posttraumatic stress and sensory hypersensitivity, which are associated with poor recovery from whiplash injury. The aim of this study was to explore a model for the maintenance of pain and related disability in people with WAD including symptoms of PTSD, sensory hypersensitivity, and FAM components. The relationship between individual components in the model and disability and how these relationships changed over the first 12 weeks after injury were investigated. We performed a longitudinal study of 103 (74 female) patients with WAD. Measures of pain intensity, cold and mechanical pain thresholds, symptoms of posttraumatic stress, pain catastrophising, kinesiophobia, and fear of cervical spine movement were collected within 6 weeks of injury and at 12 weeks after injury. Mixed-model analysis using Neck Disability Index (NDI) scores and average 24-hour pain intensity as the dependent variables revealed that overall model fit was greatest when measures of fear of movement, posttraumatic stress, and sensory hypersensitivity were included. The interactive effects of time with catastrophising and time with fear of activity of the cervical spine were also included in the best model for disability. These results provide preliminary support for the addition of neurobiological and stress system components to the FAM to explain poor outcome in patients with WAD.

  20. Estimating yields of salt- and water-stressed forages with remote sensing in the visible and near infrared.

    PubMed

    Poss, J A; Russell, W B; Grieve, C M

    2006-01-01

    In arid irrigated regions, the proportion of crop production under deficit irrigation with poorer quality water is increasing as demand for fresh water soars and efforts to prevent saline water table development occur. Remote sensing technology to quantify salinity and water stress effects on forage yield can be an important tool to address yield loss potential when deficit irrigating with poor water quality. Two important forages, alfalfa (Medicago sativa L.) and tall wheatgrass (Agropyron elongatum L.), were grown in a volumetric lysimeter facility where rootzone salinity and water content were varied and monitored. Ground-based hyperspectral canopy reflectance in the visible and near infrared (NIR) were related to forage yields from a broad range of salinity and water stress conditions. Canopy reflectance spectra were obtained in the 350- to 1000-nm region from two viewing angles (nadir view, 45 degrees from nadir). Nadir view vegetation indices (VI) were not as strongly correlated with leaf area index changes attributed to water and salinity stress treatments for both alfalfa and wheatgrass. From a list of 71 VIs, two were selected for a multiple linear-regression model that estimated yield under varying salinity and water stress conditions. With data obtained during the second harvest of a three-harvest 100-d growing period, regression coefficients for each crop were developed and then used with the model to estimate fresh weights for preceding and succeeding harvests during the same 100-d interval. The model accounted for 72% of the variation in yields in wheatgrass and 94% in yields of alfalfa within the same salinity and water stress treatment period. The model successfully predicted yield in three out of four cases when applied to the first and third harvest yields. Correlations between indices and yield increased as canopy development progressed. Growth reductions attributed to simultaneous salinity and water stress were well characterized, but the

  1. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    PubMed

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    PubMed Central

    Becerra-Moreno, Alejandro; Redondo-Gil, Mónica; Benavides, Jorge; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A.

    2015-01-01

    The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid) and secondary (phenylpropanoid) metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota) was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds, and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary metabolites when plants are

  3. [Stress and attitudes toward negative emotions in adolescence].

    PubMed

    Ozawa, Eiji

    2010-12-01

    This study investigated the relationship between stress and attitudes toward negative emotions in adolescents. Adolescent students (N=1500) completed a questionnaire that measured attitudes toward negative emotions, emotional-stress reactions, and stress coping. Analysis of date yielded, two factors of the attitudes toward negative emotions: "Negative feelings about negative emotions" and "Capabilities of switching of negative emotions". In order to examine the theoretical relationships among attitudes toward negative emotions, emotional-stress reactions, and stress coping, a hypothetical model was tested by covariance structure analysis. This model predicted that students who have a high level of attitudes toward negative emotions would report enhanced problem solving which promoted stress coping. The results indicated that "Negative feelings about negative emotions" enhanced avoidable coping, and avoidable coping enhanced stress reactions. "Capabilities of switching of negative emotions" was related to a decrease of avoidable coping. Based on the results from covariance structure analysis and a multiple population analysis, the clinical significance and developmental characteristics were discussed.

  4. Under-Pressured and Avoiding Interaction: How Magmatic Storage Regions Can Deflect Dikes

    NASA Astrophysics Data System (ADS)

    Pansino, S.; Taisne, B.

    2017-12-01

    It has been shown through numerical techniques that ascending dikes can be attracted to a pressurized magma storage region. This is due to the state of stresses around such a region, in which the minimum compressive stress is tangential to reservoir boundary and dikes thereby prefer to propagate radially. We show that the reverse scenario has a reverse effect. A storage region that has under-pressurized, perhaps due to an eruption, rotates the stresses in the crust to deflect dikes away; this inhibits interaction with the reservoir and favors other behaviors like intrusion or monogenetic eruptions. We demonstrate through analogue experiments the ability for a dike to avoid a magmatic reservoir, which depends in part on the internal pressure as well as on the initial dike orientation. We show that dikes have the potential to change orientation, curling and twisting to avoid the pressure sink, or to propagate preferentially at their sides, allowing them to slide away laterally.

  5. Teachers Avoiding Learners' Avoidance: Is It Possible?

    ERIC Educational Resources Information Center

    Tadayyon, Maedeh; Zarrinabadi, Nourollah; Ketabi, Saeed

    2016-01-01

    Dealing with learners who prefer to take the back seat and avoid classroom participation can be every teacher's nightmare. This lack of participation may cause teacher frustration, and possibly the only way to reduce this lack of participation is to access the concept of avoidance strategy. Avoidance strategy is the abandonment of a classroom task…

  6. [A model of the effects of child sexual abuse on post-traumatic stress: the mediating role of attributions of blame and avoidance coping].

    PubMed

    Cantón-Cortés, David; Cantón, José; Justicia, Fernando; Cortés, María Rosario

    2011-02-01

    Employing structural equation modeling, the direct and indirect effects of the severity of Child Sexual Abuse (CSA), attributions of blame for the abuse, and coping strategies on Post-traumatic Stress Disorder (PTSD) symptomatology are analyzed. The effects of other types of child maltreatment on PTSD were also controlled. The sample comprised 163 female college students who were victims of CSA. The results suggested that victims of more severe abuse showed higher levels of avoidant coping, self blame, and family blame. Having suffered other kinds of abuse or neglect was also related to higher family blame attributions. Lastly, both attributions of blame scales were indirectly related to PTSD symptomatology through avoidant coping. The strong relationships between attributions of blame, coping strategies, and PTSD suggest that it might be useful to intervene early with children who have suffered CSA in an effort to modify the attributions they make about the abuse and the way they cope with it.

  7. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  8. The effect of water on thermal stresses in polymer composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  9. Water stress as a trigger of demand change: exploring the implications for drought planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.; Portney, K. E.

    2015-12-01

    Drought in the Anthropocene is a function of both supply and demand. Despite its importance, demand is typically incorporated into planning models exogenously using a single scenario of demand change over time. Alternatively, demand is incorporated endogenously in hydro-economic models based on the assumption of rationality. However, actors are constrained by limited information and information processing capabilities, casting doubt on the rationality assumption. Though the risk of water shortage changes incrementally with demand growth and hydrologic change, significant shifts in management are punctuated and often linked to periods of stress. The observation of lasting decreases in per capita demands in a number of cities during periods of water stress prompts an alternate hypothesis: the occurrence of water stress increases the tendency of cities to promote and enforce efficient technologies and behaviors and the tendency of users to adopt them. We show the relevance of this hypothesis by building a model of a hypothetical surface water system to answer the following question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? The model links the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under HP, water releases are reduced in anticipation of a deficit to decrease the risk of a large shortfall. The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decrease during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies.

  10. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    PubMed

    Saia, Sergio; Amato, Gaetano; Frenda, Alfonso Salvatore; Giambalvo, Dario; Ruisi, Paolo

    2014-01-01

    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  11. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    PubMed

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  12. Combinations of plant water-stress and neonicotinoids can lead to secondary outbreaks of Banks grass mite (Oligonychus pratensis Banks)

    PubMed Central

    Allen, L. Niel; Ramirez, Ricardo A.

    2018-01-01

    Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient. PMID:29489819

  13. An innovative pot system for monitoring the effects of water stress on grapevines and grape quality

    NASA Astrophysics Data System (ADS)

    Puccioni, Sergio; Leprini, Marco; Mocali, Stefano; Perria, Rita; Priori, Simone; Storchi, Paolo; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    The advantage of a pot system is the possibility to control many variables and factors with a large number of replicates, obtaining statistically significant results in only one year of experimentation. An innovative pot system for the monitoring of grapevine water stress was set up. The system consists of 99 pots of 70 liters, filled by 3 different soils collected from premium vineyards of the Chianti Classico district (Tuscany). The soils showed different texture (clay-loam, loam and sandy-loam), different gravel and carbonate content, and different available water capacity (AWC). The same soils had been field monitored for grapevine water stress; therefore it was possible to compare the grapevine behaviour both in pot and in field conditions. The grapevine cultivar was Pinot noir clone ENTAV 115, which can be used to investigate the genetic expression in response to environmental factors, since its genome has been sequenced. Different rootstocks theses were compared: not grafted, 1103 Paulsen and M101-14. Each combination rootstock-soil was repeated 9 times. Every pot was equipped for drip irrigation and with electrodes for soil moisture determination by TDR. A non-stop automated control unit recorded meteorological data (temperature and rainfalls), soil temperature and water potential on 9 selected pots. These 9 selected pots were also used to calibrate a model for soil water volume/tension curve. Soil, leaves and grapes samples from each pot were collected for microbial community determination, through NGS analysis. A preliminary study was based on testing the ability of the system to simulate the natural growing conditions of the grapevines. Therefore the grape performances of the potted plants were compared to those of plants cultivated in the vineyards where the soils were taken. In July 2015 three levels of water supply were tested during 5 weeks (up to veraison) in order to study the effects of water stress on the plants and the grape. Later, all the pots

  14. An improved water budget for the El Yunque National Forest, Puerto Rico, as determined by the Water Supply Stress Index Model

    Treesearch

    Liangxia Zhang; Ge Sun; Erika Cohen; Steven McNulty; Peter Caldwell; Suzanne Krieger; Jason Christian; Decheng Zhou; Kai Duan; Keren J. Cepero-Pérez

    2018-01-01

    Quantifying the forest water budget is fundamental to making science-based forest management decisions. This study aimed at developing an improved water budget for the El Yunque National Forest (ENF) in Puerto Rico, one of the wettest forests in the United States. We modified an existing monthly scale water balance model, Water Supply Stress Index (WaSSI), to reflect...

  15. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants.

    PubMed

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover ( Trifolium repens L.) Kunitz Proteinase Inhibitor ( Tr-KPI ) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1 , Tr-KPI2 , and Tr-KPI5 , was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1 , a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs , particularly Tr-KPI5 , have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  16. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants

    PubMed Central

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P.; McManus, Michael T.

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L.) Kunitz Proteinase Inhibitor (Tr-KPI) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress. PMID:29046678

  17. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    PubMed

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  18. Post-traumatic stress disorder, social anxiety disorder, and depression in survivors of the Kosovo War: experiential avoidance as a contributor to distress and quality of life.

    PubMed

    Kashdan, Todd B; Morina, Nexhmedin; Priebe, Stefan

    2009-03-01

    Few studies have been conducted on psychological disorders other than post-traumatic stress disorder (PTSD) in war survivors. The aim of this study was to examine PTSD, social anxiety disorder (SAD), and major depressive disorder (MDD) and their associations with distress and quality of life in 174 Albanian civilian survivors of the Kosovo War. This included testing of conceptual models suggesting that experiential avoidance might influence associations between anxiety and mood disorders with psychological functioning. Each of the three psychiatric disorders was associated with greater experiential avoidance and psychological distress, and lower quality of life. Being a refugee was associated with a higher likelihood of having SAD and MDD. We found evidence for experiential avoidance as a partial mediator of the respective effects of SAD and PTSD on quality of life; experiential avoidance did not mediate the effects of disorders on global distress. We also found support for a moderation model showing that only war survivors without SAD and low experiential avoidance reported elevated quality of life; people with either SAD or excessive reliance on experiential avoidance reported compromised, low quality of life. This is the third independent study, each using a different methodology, to find empirical support for this moderation model [Kashdan, T. B., & Breen, W. E. (2008). Social anxiety and positive emotions: a prospective examination of a self-regulatory model with tendencies to suppress or express emotions as a moderating variable. Behavior Therapy, 39, 1-12; Kashdan, T. B., & Steger, M. F. (2006). Expanding the topography of social anxiety: an experience sampling assessment of positive emotions and events, and emotion suppression. Psychological Science, 17, 120-128]. Overall, we provided initial evidence for the importance of addressing PTSD, SAD, MDD, and experiential avoidance in primarily civilian war survivors.

  19. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  20. Acute exposure to offshore produced water has an effect on stress- and secondary stress responses in three-spined stickleback Gasterosteus aculeatus.

    PubMed

    Knag, Anne Christine; Taugbøl, Annette

    2013-09-01

    Pollution is one of today's greatest problems, and the release of contaminants into the environment can cause adverse changes in vitally important biological pathways. In this study, we exposed three-spined stickleback Gasterosteus aculeatus to produced water (PW), i.e. wastewater from offshore petroleum production. PW contains substances such as alkylphenols (APs) and aromatic hydrocarbons (PAHs) known to induce toxicant stress and endocrine disruption in a variety of organisms. Following exposure to PW, a standardized confinement treatment was applied as a second stressor (PW-stress), testing how fish already under stress from the pollutant would respond to an additional stressor. The endpoint for analysis was a combination of blood levels of cortisol and glucose, in addition to transcribed levels of a set of genes related to toxicant stress, endocrine disruption and general stress. The findings of this study indicate that low doses of PW do not induce vitellogenin in immature female stickleback, but do cause an upregulation of cytochrome (CYP1A) and UDP-glucuronsyltransferase (UDP-GT), two biomarkers related to toxicant stress. However, when the second stressor was applied, both genes were downregulated, indicating that the confinement exposure had a suppressive effect on the expression of toxicant biomarkers (CYP1A and UDP-GT). Further, two of the stress related genes, heat shock protein 90 (HSP90) and stress-induced phosphoprotein (STIP), were upregulated in both PW- and PW-stress-treatment, but not in the water control confinement treatment, indicating that PW posed as a larger stress-factor than confinement for these genes. The confinement stressor caused an increased level of glucose in both control and PW-treated fish, indicating hyperglycemia, a commonly reported stress response in fish. © 2013.

  1. CO2 enrichment affects eco-physiological growth of maize and alfalfa under different water stress regimes in the UAE.

    PubMed

    Ksiksi, Taoufik Saleh; Ppoyil, Shaijal Babu Thru; Palakkott, Abdul Rasheed

    2018-03-01

    Water stress has been reported to alter morphology and physiology of plants affecting chlorophyll content, stomatal size and density. In this study, drought stress mitigating effects of CO 2 enrichment was assessed in greenhouse conditions in the hot climate of UAE. Commercially purchased maize ( Zea mays L.) and alfalfa ( Medicago sativa L.) were seeded in three different custom-built cage structures, inside a greenhouse. One cage was kept at 1000 ppm CO 2 , the second at 700 ppm CO 2 , and the third at ambient greenhouse CO 2 environment (i.e. 435 ppm). Three water stress treatments HWS (200 ml per week), MWS (400 ml per week), and CWS (600 ml per week) were given to each cage so that five maize pots and five alfalfa pots in each cage received same water stress treatments. In maize, total chlorophyll content was similar or higher in water stress treatments compared to control for all CO 2 concentrations. Stomatal lengths were higher in enriched CO 2 environments under water stress. At 700 ppm CO 2 , stomatal widths decreased as water stress increased from MWS to HWS. At both enriched CO 2 environments, stomatal densities decreased compared to ambient CO 2 environment. In alfalfa, there was no significant increase in total chlorophyll content under enriched CO 2 environments, even though a slight increase was noticed.

  2. Water Stress Affects Development Time but Not Takeoff Performance in the Butterfly Pararge aegeria.

    PubMed

    Lailvaux, Simon P; Breuker, Casper J; Van Damme, Raoul

    Most organisms are limited in the amount and type of resources they are able to extract from the environment. The juvenile environment is particularly important in this regard, as conditions over ontogeny can influence the adult phenotype. Whole-organism performance traits, such as locomotion, are susceptible to such environmental effects, yet the specific biotic and abiotic factors driving performance plasticity have received little attention. We tested whether speckled wood Pararge aegeria L. butterflies reared under conditions of water stress exhibited poorer flight morphology and performance than control individuals. Despite large differences in mortality between treatments, we found no effects of water stress treatment on takeoff performance and only minor treatment effects on flight morphology. However, butterflies reared on water-stressed diets exhibited both significantly greater mortality and longer development times than did control individuals. Pararge aegeria larvae may compensate for this stress by prolonging development, resulting in similar realized performance capacities at least in takeoff performance in surviving adult butterflies; other measures of flight performance remain to be considered. Alternatively, the adult phenotype may be insulated from environmental effects at the larval stage in these insects.

  3. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress

    PubMed Central

    Galmés, Jeroni; Ribas-Carbó, Miquel; Medrano, Hipólito; Flexas, Jaume

    2011-01-01

    Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO2. In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering. The results confirmed species-specific patterns in the decrease in the initial activity and activation state of Rubisco as drought stress and leaf dehydration intensified. Nevertheless, all species followed roughly the same trend when Rubisco activity was related to stomatal conductance (gs) and chloroplastic CO2 concentration (Cc), suggesting that deactivation of Rubisco sites could be induced by low Cc, as a result of water stress. The threshold level of Cc that triggered Rubisco deactivation was dependent on leaf characteristics and was related to the maximum attained for each species under non-stressing conditions. Those species adapted to low Cc were more capable of maintaining active Rubisco as drought stress intensified. PMID:21115663

  4. Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress.

    PubMed

    Nieves-Cordones, Manuel; Caballero, Fernando; Martínez, Vicente; Rubio, Francisco

    2012-02-01

    The Arabidopsis thaliana inward-rectifier K(+) channel AKT1 plays an important role in root K(+) uptake. Recent results show that the calcineurin B-like (CBL)-interacting protein kinase (CIPK) 23-CBL1/9 complex activates AKT1 in the root to enhance K(+) uptake. In addition, this CIPK-CBL complex has been demonstrated to regulate stomatal movements and plant transpiration. However, a role for AKT1 in plant transpiration has not yet been demonstrated. Here we show that disruption of AKT1 conferred an enhanced response to water stress in plants. Experiments performed in hydroponics showed that, when water potential was diminished by adding polyethylene glycol, akt1 adult plants lost less water than wild-type (WT) plants. Under long-term water stress in soil, adult akt1 plants displayed lower transpiration and less water consumption than WT plants. Finally, akt1 stomata closed more efficiently in response to ABA. Such results were also observed in cipk23 plants. The similar responses shown by cipk23 and akt1 plants to water stress denote that the regulation of AKT1 by CIPK23 may also take place in stomata and has a negative impact on plant performance under water stress conditions.

  5. Palatable food avoidance and acceptance learning with different stressors in female rats.

    PubMed

    Liang, N-C; Smith, M E; Moran, T H

    2013-04-03

    Stress activates the hypothalamus-pituitary-adrenal (HPA) axis leading to the release of glucocorticoids (GC). Increased activity of the HPA axis and GC exposure has been suggested to facilitate the development of obesity and metabolic syndrome. Nonetheless, different stressors can produce distinct effects on food intake and may support different directions of food learning e.g. avoidance or acceptance. This study examined whether interoceptive (LiCl and exendin-4) and restraint stress (RS) support similar or distinct food learning. Female rats were exposed to different stressors after their consumption of a palatable food (butter icing). After four palatable food-stress pairings, distinct intakes of the butter icing were observed in rats treated with different stressors. Rats that received butter icing followed by intraperitoneal injections of LiCl (42.3mg/kg) and exendin-4 (10μg/kg) completely avoided the palatable food with subsequent presentations. In contrast, rats experiencing RS paired with the palatable food increased their consumption of butter icing across trials and did so to a greater degree than rats receiving saline injections. These data indicate that interoceptive and psychosocial stressors support conditioned food avoidance and acceptance, respectively. Examination of c-Fos immunoreactivity revealed distinct neural activation by interoceptive and psychosocial stressors that could provide the neural basis underlying opposite direction of food acceptance learning. Published by Elsevier Ltd.

  6. Infrared thermometry of water-stressed crops - emerging methods and technologies

    USDA-ARS?s Scientific Manuscript database

    Infrared thermometry has shown potential to quantify water stress in crop canopy. This presentation will outline the limited irrigation experiments by the USDA-ARS in northern Colorado, which is used for a framework to evaluate canopy temperature. Recent methods have been introduced that may be accu...

  7. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    USDA-ARS?s Scientific Manuscript database

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  8. Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice.

    PubMed

    Joshee, N; Kisaka, H; Kitagawa, Y

    1998-01-01

    One of the water stress-specific cDNA clones of rice characterised previously, wsi18, was selected for further study. The wsi18 gene can be induced by water stress conditions such as mannitol, NaCl, and dryness, but not by ABA, cold, or heat. A genomic clone for wsi18, pwsi18, contained about 1.7 kbp of the 5' upstream sequence, two introns, and the full coding sequence. The 5'-upstream sequence of pwsi18 contained putative cis-acting elements, namely an ABA-responsive element (ABRE), three G-boxes, three E-boxes, a MEF-2 sequence, four direct and two inverted repeats, and four sequences similar to DRE, which is involved in the dehydration response of Arabidopsis genes. The gusA reporter gene under the control of the pwsi18 promoter showed transient expression in response to water stress. Deletion of the downstream DRE-like sequence between the distal G-boxes-2 and -3 resulted in rather low GUS expression.

  9. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  10. Estimating a Global Hydrological Carrying Capacity Using GRACE Observed Water Stress

    NASA Astrophysics Data System (ADS)

    An, K.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    Global population is expected to reach 9 billion people by the year 2050, causing increased demands for water and potential threats to human security. This study attempts to frame the overpopulation problem through a hydrological resources lens by hypothesizing that observed groundwater trends should be directly attributed to human water consumption. This study analyzes the relationships between available blue water, population, and cropland area on a global scale. Using satellite data from NASA's Gravity Recovery and Climate Experiment (GRACE) along with land surface model data from the Global Land Data Assimilation System (GLDAS), a global groundwater depletion trend is isolated, the validity of which has been verified in many regional studies. By using the inherent distributions of these relationships, we estimate the regional populations that have exceeded their local hydrological carrying capacity. Globally, these populations sum to ~3.5 billion people that are living in presently water-stressed or potentially water-scarce regions, and we estimate total cropland is exceeding a sustainable threshold by about 80 million km^2. Key study areas such as the North China Plain, northwest India, and Mexico City were qualitatively chosen for further analysis of regional water resources and policies, based on our distributions of water stress. These case studies are used to verify the groundwater level changes seen in the GRACE trend . Tfor the many populous, arid regions of the world that have already begun to experience the strains of high water demand.he many populous, arid regions of the world have already begun to experience the strains of high water demand. It will take a global cooperative effort of improving domestic and agricultural use efficiency, and summoning a political will to prioritize environmental issues to adapt to a thirstier planet. Global Groundwater Depletion Trend (Mar 2003-Dec 2011)

  11. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.

    PubMed

    Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M

    1986-01-01

    This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.

  12. Avoidance Symptom Presentation of Preschoolers Exposed to Intimate Partner Violence in a Group Therapy Setting

    ERIC Educational Resources Information Center

    Galano, Maria M.; Miller, Laura E.; Graham-Bermann, Sandra A.

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a serious problem for children exposed to intimate partner violence (IPV). Recent changes to diagnostic criteria for PTSD include a reduction in avoidance symptom criteria from three to one and the separation of emotional numbing from avoidance symptoms, thus creating a need to better understand how…

  13. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  14. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  15. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    USDA-ARS?s Scientific Manuscript database

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  16. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery

    USDA-ARS?s Scientific Manuscript database

    A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...

  17. Changes in crack shape and saturation during water penetration into stressed rock

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Nishizawa, O.

    2012-12-01

    Open cracks and cavities in rocks play important roles in fluid transport. Water penetration induced microcrack activities and caused the failure of rocks. Fluids in cracks affect earthquake generation mechanism through physical and physicochemical effects. Methods of characterizing crack shape and water saturation of rocks underground are needed for many scientific and industrial applications. It would be desirable to estimate the status of cracks using readily observable data such as elastic-wave velocities. We demonstrate a laboratory method for estimating crack status inside a cylindrical rock sample based on least-squares fitting of a cracked solid model to measured P- and S-wave velocities, and porosity derived from strain data. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of 370 MPa, which corresponds to about 70% of fracture strength, to the rock sample under 30 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emission (AE) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 25 MPa until macroscopic fracture occurred. During water migration, we measured P waves and S waves (Sv and Sh), in five directions parallel to the top and bottom surfaces of the sample. We also measured strains of the sample surface and monitored AE. We created X-ray computer tomography (CT) images of the rock sample after the experiment in order to recognize the location and shape of fractured surfaces. We observed the different patterns of velocity changes in the upper and lower portions of the rock sample. Changes in P-wave velocities can be interpreted based on the crack density. S-waves showed the splitting with Vsv being faster than Vsh, corresponding to the second kind of anisotropy. We estimated two crack characteristics, crack shape and the degree of water

  18. Does Morphological and Anatomical Plasticity during the Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than Rice?1[OPEN

    PubMed Central

    Kadam, Niteen N.; Yin, Xinyou; Bindraban, Prem S.; Struik, Paul C.; Jagadish, Krishna S.V.

    2015-01-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice ‘IR64’ and ‘Apo’ adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice ‘Nagina 22’ had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. PMID:25614066

  19. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.

    PubMed

    Hember, Robbie A; Kurz, Werner A; Coops, Nicholas C

    2017-04-01

    Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (P m ) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (W s,z ) and reference evapotranspiration (ET r,z ) at each field plot. The models additionally tested for interactions between the water-balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross-validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water-balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole-plant, leaf-specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr -1 in 1951 to 2.0% yr -1 in 2014 (a net change of 0.9 ± 0.3% yr -1 ). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak-to-moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This 'learn-as-we-go' approach - defined by sampling rare drought events as they continue to intensify - will help to constrain the hydraulic limits of dominant tree

  20. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.

    PubMed

    Vadez, V; Rao, J S; Bhatnagar-Mathur, P; Sharma, K K

    2013-01-01

    Water deficit is a major yield-limiting factor for many crops, and improving the root system has been proposed as a promising breeding strategy, although not in groundnut (Arachis hypogaea L.). The present work was carried out mainly to assess how root traits are influenced under water stress in groundnut, whether transgenics can alter root traits, and whether putative changes lead to water extraction differences. Several transgenic events, transformed with DREB1A driven by the rd29 promoter, along with wild-type JL24, were tested in a lysimeter system that mimics field conditions under both water stress (WS) and well-watered (WW) conditions. The WS treatment increased the maximum rooting depth, although the increase was limited to about 20% in JL24, compared to 50% in RD11. The root dry weight followed a similar trend. Consequently, the root dry weight and length density of transgenics was higher in layers below 100-cm depth (Exp. 1) and below 30 cm (Exp. 2). The root diameter was unchanged under WS treatment, except a slight increase in the 60-90-cm layer. The root diameter increased below 60 cm in both treatments. In the WW treatment, total water extraction of RD33 was higher than in JL24 and other transgenic events, and somewhat lower in RD11 than in JL24. In the WS treatment, water extraction of RD2, RD11 and RD33 was higher than in JL24. These water extraction differences were mostly apparent in the initial 21 days after treatment imposition and were well related to root length density in the 30-60-cm layer (R(2) = 0.68), but not to average root length density. In conclusion, water stress promotes rooting growth more strongly in transgenic events than in the wild type, especially in deep soil layers, and this leads to increased water extraction. This opens an avenue for tapping these characteristics toward the improvement of drought adaptation in deep soil conditions, and toward a better understanding of genes involved in rooting in groundnut. © 2012

  1. Water conservation features of ova of Agrilus planipennis (Coleoptera: Buprestidae).

    PubMed

    Rigsby, Chad M; Cipollini, Don; Amstutz, Evan M; Smith, Terrance J; Yoder, Jay A

    2013-04-01

    The emerald ash borer, Agrilus planipennis Fairmaire, has destroyed millions of ash trees (Fraxinus spp.) in North America since first identified in Detroit in 2002. With species of ash distributed throughout North America, it is easy to speculate the extinction of all susceptible species of ash on the continent given a lack of physical, environmental, or climactic barrier for dispersal of the insect. We investigated water balance characteristics of emerald ash borer ova by using gravimetric methods in an effort to measure their response to heat- and water-stress and explore possible influences this stress may have on the ecology and physiology of the ovum. We also explored the possible water balance benefit of a peculiar, "clustering," oviposition behavior, as well as the difference in responses to stress between ova from a laboratory colony and ova from two wild populations. We found no evidence of water vapor absorption as a water balance strategy; rather enhanced water retention, resistance to desiccation, and viability with low water content were important survival strategies for these ova. Surface lipids resist thermal breakdown as indicated by ova having no detectable critical transition temperature, maintaining their water-proofing function as temperature rises. The observed "clustering" behavior had no desiccation-avoidance benefit and ova from the wild populations behaved almost identically to the ova from the lab colony, although the lab ova were slightly larger and more sensitive to dehydration. Given this new information, there appears to be no heat- or water-stress barriers for the dispersal of this devastating pest at the ovum stage.

  2. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange.

    PubMed

    Nardini, Andrea; Salleo, Sebastiano

    2005-12-01

    The hydraulic architecture, water relationships, and gas exchange of leaves of sunflower plants, grown under different levels of water stress, were measured. Plants were either irrigated with tap water (controls) or with PEG600 solutions with osmotic potential of -0.4 and -0.8 MPa (PEG04 and PEG08 plants, respectively). Mature leaves were measured for hydraulic resistance (R(leaf)) before and after making several cuts across minor veins, thus getting the hydraulic resistance of the venation system (R(venation)). R(leaf) was nearly the same in controls and PEG04 plants but it was reduced by about 30% in PEG08 plants. On the contrary, R(venation) was lowest in controls and increased in PEG04 and PEG08 plants as a likely result of reduction in the diameter of the veins' conduits. As a consequence, the contribution of R(venation) to the overall R(leaf) markedly increased from controls to PEG08 plants. Leaf conductance to water vapour (g(L)) was highest in controls and significantly lower in PEG04 and PEG08 plants. Moreover, g(L) was correlated to R(venation) and to leaf water potential (psi(leaf)) with highly significant linear relationships. It is concluded that water stress has an important effect on the hydraulic construction of leaves. This, in turn, might prove to be a crucial factor in plant-water relationships and gas exchange under water stress conditions.

  3. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  4. Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover.

    PubMed

    Li, Zhou; Li, Yaping; Zhang, Yan; Cheng, Bizhen; Peng, Yan; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2018-06-09

    Endogenous hormones and polyamines (PAs) could interact to regulate growth and tolerance to water stress in white clover. The objective of this study was to investigate whether the alteration of endogenous indole-3-acetic acid (IAA) level affected other hormones level and PAs metabolism contributing to the regulation of tolerance to water stress in white clover. Plants were pretreated with IAA or L-2-aminooxy-3-phenylpropionic acid (L-AOPP, the inhibitor of IAA biosynthesis) for 3 days and then subjected to water-sufficient condition and water stress induced by 15% polyethylene glycol 6000 for 8 days in growth chambers. Exogenous application of IAA significantly increased endogenous IAA, gibberellin (GA), abscisic acid (ABA), and polyamine (PAs) levels, but had no effect on cytokinin content under water stress. The increase in endogenous IAA level enhanced PAs anabolism via the improvement of enzyme activities and transcript level of genes including arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. Exogenous application of IAA also affected PAs catabolism, as manifested by an increase in diamine oxidase and a decrease in polyamine oxidase activities and genes expression. More importantly, the IAA deficiency in white clover decreased endogenous hormone levels (GA, ABA, and PAs) and PAs anabolism along with decline in antioxidant defense and osmotic adjustment (OA). On the contrary, exogenous IAA effectively alleviated stress-induced oxidative damage, growth inhibition, water deficit, and leaf senescence through the maintenance of higher chlorophyll content, OA, and antioxidant defense as well as lower transcript levels of senescence marker genes SAG101 and SAG102 in leaves under water stress. These results indicate that IAA-induced the crosstalk between endogenous hormones and PAs could be involved in the improvement of antioxidant defense and OA conferring tolerance to water stress in white clover. Copyright © 2018 Elsevier

  5. Stress-Related Gene Expression Reflects Morphophysiological Responses to Water Deficit.

    PubMed

    Rymaszewski, Wojciech; Vile, Denis; Bediee, Alexis; Dauzat, Myriam; Luchaire, Nathalie; Kamrowska, Dominika; Granier, Christine; Hennig, Jacek

    2017-07-01

    Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis ( Arabidopsis thaliana ) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1 , a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 ( NDL1 ), in response to WD Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1 , CHALCONE SYNTHASE , and MYB DOMAIN PROTEIN44 ) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    PubMed

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response. © 2015 John Wiley & Sons Ltd.

  7. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    PubMed

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Responses of growth and primary metabolism of water-stressed barley roots to rehydration

    USDA-ARS?s Scientific Manuscript database

    Barley seedlings [Hordeum vulgare L. Brant] were grown in pots in controlled environment chambers and drought treatments were imposed 11 days after sowing. Soil water content decreased from 92% to 10% after an additional 14 days of water stress. Shoot and root growth ceased after 4 and 9 days of wat...

  9. Avoidance behavior of ruffe exposed to selected formulations of piscicides

    USGS Publications Warehouse

    Dawson, Verdel K.; Bills, Terry D.; Boogaard, Michael A.

    1998-01-01

    Ruffe were introduced into Duluth Harbor, Minnesota in the early 1980s, probably by release of ballast water from sea-going freighters. Since then, it has become the most abundant species in the fish community. The sensitivity of ruffe to a number of piscicides has been demonstrated, however, the feasibility of using piscicides to control populations depends on whether ruffe cart detect piscicides and move to untreated water, We used a two-choice preference resting system to evaluate avoidance or attraction reactions of ruffe during exposures to the lampricides TFM and bayluscide and the general fish toxicants rotenone and antimycin. We used a second testing system to evaluate the potential for benthic ruffe to move vertically in the water column to avoid piscicides dissolving from experimental bottom-release formulations of bayluscide and antimycin. Near-lethal concentrations of TFM and rotenone tended to repel ruffe. Antimycin and bayluscide did not seem to repel ruffe in the avoidance chamber, but bottom-release formulations (antimycin granules-0.25% a.i. And bayluscide granules-3.2% a.i.) did cause increased swimming and surfacing activity among ruffe in column tests. We conclude that TFM and rotenone could be used to trent entire bodies of water, while bottom-release formulations of antimycin and bayluscide may have more application for treating localized concentrations of ruffe.

  10. Water stress impacts on bacterial carbon monoxide oxidation on recent volcanic deposits.

    PubMed

    Weber, Carolyn F; King, Gary M

    2009-12-01

    Water availability oscillates dramatically on young volcanic deposits, and may control the distribution and activity of microbes during early stages of biological succession. Carbon monoxide (CO)-oxidizing bacteria are among the pioneering colonists on volcanic deposits and are subjected to these water stresses. We report here the effects of water potential on CO-oxidizing bacteria in unvegetated (bare) and vegetated (canopy) sites on a 1959 volcanic deposit on Kilauea Volcano (Hawai'i). Time course measurements of water potential showed that average water potentials in the surface layer (0-1 cm) of canopy soil remained between -0.1 and 0 MPa, whereas dramatic diurnal oscillations (for example, between -60 and 0 MPa) occur in bare site surface cinders. During a moderate drying event in situ (-1.7 to 0 MPa), atmospheric CO consumption by intact bare site cores decreased 2.7-fold. For bare and canopy surface samples, maximum potential CO oxidation rates decreased 40 and 60%, respectively, when water potentials were lowered from 0 to -1.5 MPa in the laboratory. These observations indicated that CO oxidation is moderately sensitive to changes in water potential. Additional analyses showed that CO oxidation resumes within a few hours of rehydration, even after desiccation at -150 MPa for 63 days. Samples from both sites exposed to multiple cycles of drying and rewetting (-80 to 0 MPa), lost significant activity after the first cycle, but not after subsequent cycles. Similar responses of CO oxidation in both sites suggested that active CO-oxidizing communities in bare and canopy sites do not express differential adaptations to water stress.

  11. Steps to Take with the Board to Avoid Walking the Plank.

    ERIC Educational Resources Information Center

    Papallo, William R.

    1990-01-01

    A veteran superintendent outlines an eight-step method for achieving success, including assessing the situation, avoiding board overload, coping with stress, deemphasizing egoism, learning to live in the gray zone between policy formation and administration, ensuring effective board decisions, identifying prospective board members, and knowing…

  12. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops

    NASA Astrophysics Data System (ADS)

    Panigada, C.; Rossini, M.; Meroni, M.; Cilia, C.; Busetto, L.; Amaducci, S.; Boschetti, M.; Cogliati, S.; Picchi, V.; Pinto, F.; Marchesi, A.; Colombo, R.

    2014-08-01

    Narrow-band multispectral remote sensing techniques and thermal imagery were investigated for water stress detection in cereal crops. Visible and near infrared AISA Eagle (Specim, Finland) and thermal AHS-160 (Sensytech Inc., USA) imageries were acquired with an airborne survey on a farm-level experimental site where maize (Zea mays L.) and sorghum (Sorghum bicolor L.) were grown with three different irrigation treatments. Vegetation biophysical and eco-physiological measurements were collected concurrently with the airborne campaign. Leaf fluorescence yield (ΔF/Fm‧) resulted to be a good indirect measure of water stress. Therefore, ΔF/Fm‧ measurements were compared against remotely sensed indicators: (i) the Photochemical Reflectance Index (PRI), (ii) the sun-induced chlorophyll fluorescence at 760 nm (F760), retrieved by the Fraunhofer line depth method and (iii) the canopy temperature (TC) calculated decoupling soil and vegetation contributions. TC was related to ΔF/Fm‧ with the highest determination coefficient (R2 = 0.65), followed by PRI586 (reference band at 586 nm) (R2 = 0.51). The relationship with F760 was significant but weaker (R2 = 0.36). The coefficient of determination increased up to 0.54 when pigment concentration was considered by multiplying ΔF/Fm‧ and chlorophyll content, confirming the close relationship between passive fluorescence signal, pigment content and light photosystem efficiency. PRI586, F760 and TC maps were produced in maize and sorghum plots. The differences in the average values of PRI586, F760 and TC extracted from the plots with different water treatments showed that water treatments were well discriminated in maize plots by the three remotely sensed indicators. This was confirmed by the visual observation of the PRI586, F760 and TC maps, while in sorghum plots, F760 and TC appeared more sensitive to water stress compared to PRI586.

  13. Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance.

    PubMed

    Rivas, Rebeca; Oliveira, Marciel T; Santos, Mauro G

    2013-02-01

    The main objective of this study was to assess whether recurring water stress occurring from seed germination to young plants of Moringa oleifera Lam. are able to mitigate the drought stress effects. Germination, gas exchange and biochemical parameters were analysed after three cycles of water deficit. Young plants were used 50 days after germination under three osmotic potentials (0.0, -0.3 and -0.4 MPa). For each germination treatment, control (irrigated) and stressed (10% of water control) plants were compared for a total of six treatments. There were two cycles of drought interspersed with 10 days of rehydration. The young plants of M. oleifera showed increased tolerance to repeated cycles of drought, maintaining high relative water content (RWC), high water use efficiency (WUE), increased photosynthetic pigments and increased activity of antioxidant enzymes. There was rapid recovery of the photosynthetic rate during the rehydration period. The stressed plants from the -0.3 and -0.4 MPa treatments showed higher tolerance compared to the control plants. The results suggest that seeds of M. oleifera subjected to mild water deficit have had increased the ability for drought tolerance when young plant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Solar-Induced Fluorescence of Maize Across A Water Stress Gradient in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Miao, G.; Guan, K.; Suyker, A.; Yang, X.; Benarcchi, C. J.; Gamon, J. A.; Berry, J. A.; DeLucia, E.; Franz, T.; Arkebauer, T. J.; Zygielbaum, A. I.; Walter-Shea, E. A.; Moore, C.; Zhang, Y.; Kim, H.; Hmimina, G.

    2017-12-01

    In the coming decades, agricultural ecosystems will be challenged by rising temperatures, changing rainfall patterns, and increasing extreme weather. Understanding how crops respond to weather variability and how humans manage agriculture to mitigate and adapt to climate change is critical for improving agricultural sustainability and supporting increasing global food demands. Accurately estimating gross primary productivity (GPP) of crops is of importance to evaluate their sustainability and capability but remains a challenge. The recent development of solar-induced fluorescence (SIF) technology is stimulating studies to use SIF to approximate GPP. It has been observed that agricultural lands have remarkably high SIF and the SIF signal could be used as an indicator of vegetation stress, which is particularly valuable for improved monitoring of crop productivity and stress. To investigate the applicability of SIF for detecting maize stress and estimating GPP, we deployed three FluoSpec2 systems in 2017 at three long-term eddy covariance flux sites across the US Corn Belt, a rain-fed maize field (AmeriFlux sites US-NE3) and an irrigated maize field (US-NE2) at Mead, Nebraska and a rain-fed maize field at Urbana, Illinois. Together these form a water stress gradient. Variations in GPP, SIF, photosynthetic efficiency (LUE), SIF yield (SIFy), and relationships between GPP and SIF, LUE and SIFy will be compared as indications of the difference in maize growth across the water stress gradient. More importantly, differences in GPP and SIF signals will be examined over multiple growth stages to assess the potential of SIF in identifying the growth stages that are mostly affected by water stress and the ones that play the most important roles on the crop yield.

  15. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  16. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  17. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  18. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  19. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  20. Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test.

    PubMed

    Gross, Moshe; Pinhasov, Albert

    2016-02-01

    In the Chronic Mild Stress (CMS) protocol, rodents are exposed to unpredictable stressors to induce anxiety-like behavior and hedonic deficit in the Sucrose Preference test (SPT). Since CMS-induced anxiety- and anhedonic-like behavior may depend upon individual vulnerability to stress, we hypothesized that selectively bred Submissive (Sub) mice would exhibit heightened anxiety- and anhedonic-like behavior, in response to CMS exposure. We anticipated that the testing of Sub mice alongside their Wt counterparts in a battery of behavioral assays would identify parameters most sensitive to CMS effects. To test these assumptions, Sub mice and their outbred Sabra (Wt) counterparts underwent a five-week CMS-SPT regimen. CMS exposure led to reduced preference for sucrose (sucrose-sweetened water as percent of total intake) among both mouse strains (p<0.01 Wt; p<0.05 Sub). However, this effect was attributed to CMS-induced polydipsia, indicated by mice's increased water consumption, (p<0.01 Wt and Sub), without changes in sucrose intake. Furthermore, CMS-exposed Sub mice, but not Wt, demonstrated impaired social exploration in the Three Chamber test (p<0.05) and anxiety-like effects in the Elevated Plus Maze (p<0.05). Moreover, in a separate experiment, social isolation alone was sufficient to induce polydipsia in Sub mice, without affecting Wt mice's drinking behavior. The present findings suggest that the EPM and Three Chamber tests may be valuable complementary measures of CMS effects, alongside the Sucrose Preference test, and introduce the Sub mouse strain for use in study of susceptibility to stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Water stress and social vulnerability in the southern United States, 2010-2040

    Treesearch

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  2. Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress

    PubMed Central

    O'Toole, John C.; Cruz, Rolando T.

    1980-01-01

    Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206

  3. Climate change and the vulnerability of electricity generation to water stress in the European Union

    NASA Astrophysics Data System (ADS)

    Behrens, Paul; van Vliet, Michelle T. H.; Nanninga, Tijmen; Walsh, Brid; Rodrigues, João F. D.

    2017-08-01

    Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

  4. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis.

    PubMed

    Mouri, Akihiro; Ukai, Mayu; Uchida, Mizuki; Hasegawa, Sho; Taniguchi, Masayuki; Ito, Takahiro; Hida, Hirotake; Yoshimi, Akira; Yamada, Kiyofumi; Kunimoto, Shohko; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-05-01

    Adverse juvenile experiences, including physical abuse, often have negative health consequences later in life. We investigated the influence of social defeat stress exposure as juveniles on neuropsychological behaviors, and the causal role of glucocorticoids in abnormal behaviors and impairment of neurogenesis in mice exposed to the stress. The juvenile (24-day-old) and adult (70-day-old) male C57BL/6J mice were exposed to social defeat stress induced by an aggressive ICR mouse. Social defeat stress exposure as juveniles, even for 1 day, induced persistent social avoidance to the unfamiliar ICR mouse in the social interaction test, but that was not observed in mice exposed to the stress as adults. Social avoidance by the stress exposure as juveniles for 10 consecutive days was observed, when the target mouse was not only unfamiliar ICR but also another C57BL/J mouse, but not an absent or an anesthetized ICR mouse. The stress exposure did not induce anxiety- and depression-like behaviors in spontaneous locomotor activity, elevated plus-maze test, marble-burying test, forced swimming test, or sucrose preference test. Serum corticosterone levels increased immediately after the stress exposure. The hippocampal neurogenesis was suppressed 1 day and 4 weeks after the stress exposure. Administration of mifepristone, a glucocorticoid receptor antagonist, prior to each stress exposure, blocked the persistent social avoidance and suppression of neurogenesis. In conclusion, social avoidance induced by social defeat stress exposure as juveniles are more persistent than that as adults. These social avoidances are associated with suppression of hippocampal neurogenesis via glucocorticoid receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Freshwater Vulnerability beyond Local Water Stress: Heterogeneous Effects of Water-Electricity Nexus Across the Continental United States.

    PubMed

    Wang, Ranran; Zimmerman, Julie B; Wang, Chunyan; Font Vivanco, David; Hertwich, Edgar G

    2017-09-05

    Human health and economic prosperity are vulnerable to freshwater shortage in many parts of the world. Despite a growing literature that examines the freshwater vulnerability in various spatiotemporal contexts, existing knowledge has been conventionally constrained by a territorial perspective. On the basis of spatial analyses of monthly water and electricity flows across 2110 watersheds and three interconnected power systems, this study investigates the water-electricity nexus (WEN)'s transboundary effects on freshwater vulnerability in the continental United States in 2014. The effects are shown to be considerable and heterogeneous across time and space. For at least one month a year, 58 million people living in water-abundant watersheds were exposed to additional freshwater vulnerability by relying on electricity generated by freshwater-cooled thermal energy conversion cycles in highly stressed watersheds; for 72 million people living in highly stressed watersheds, their freshwater vulnerability was mitigated by using imported electricity generated in water-abundant watersheds or power plants running dry cooling or using nonfreshwater for cooling purposes. On the country scale, the mitigation effects were the most significant during September and October, while the additional freshwater vulnerability was more significant in February, March, and December. Due to the WEN's transboundary effects, overall, the freshwater vulnerability was slightly worsened within the Eastern Interconnection, substantially improved within the Western Interconnection, and least affected within the ERCOT Interconnection.

  6. INFLUENCE OF PEROXYACETYL NITRATE (PAN) ON WATER STRESS IN BEAN PLANTS

    EPA Science Inventory

    Bean plants (Phaseolus vulgaris) were exposed to 395 micrograms/cu m (0.08 ppm) peroxyacetyl nitrate (PAN) for 0.5 hr and subjected to drought stress following exposure. PAN influenced the plant water potential of PAN-sensitive 'Provider' resulting in visible wilting and reduced ...

  7. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress.

    PubMed

    Tang, Yanping; Sun, Xin; Wen, Tao; Liu, Mingjie; Yang, Mingyan; Chen, Xuefei

    2017-03-01

    The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress. Copyright © 2016

  8. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.

    PubMed

    Ogino, Tetsuya; Maegawa, Shingo; Shigeno, Shuichi; Fujikura, Katsunori; Toyohara, Haruhiko

    2018-01-01

    The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida) are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP) channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.

  9. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.

    PubMed

    Cornish, K; Zeevaart, J A

    1985-07-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  10. Unconventional oil and gas development and its stresses on water resources in the context of Water-Energy-Food Nexus: The case of Weld County, Colorado

    NASA Astrophysics Data System (ADS)

    Oikonomou, P. D.; Waskom, R.; Boone, K.; Ryan, J. N.

    2015-12-01

    The development of unconventional oil and gas resources in Colorado started to rapidly increase since the early 2000's. The recent oil price plunge resulted in a decline of well starts' rate in the US, but in Weld County, Colorado, it is currently at the 2013-levels. The additional water demand, despite its insignificant percentage in overall state's demand (0.1% in 2012), it competes with traditional ones, since Colorado's water is almost fully appropriated. Presently, the state has 53,597 active producing oil and gas wells. More than 40% of these are located in Weld County, which happens also to be one of top food production U.S. counties. The competition for land and water resources between the energy and agricultural sectors in water stressed areas, like the western U.S., is further intensified if recycle and reuse practices are not preferred to water disposal by the energy industry. Satisfying the multiple objectives of the Water-Energy-Food Nexus in order to achieve sustainable economic development requires balanced management of these resources. Identifying pressures on key areas that food and energy sectors are competing for water, is essential for prudent water management and developing appropriate policies. Weld County, as a water stressed and fossil fuel producing area, was selected for investigating current stresses on local water resources alongside with future climatic and water demand scenarios for exploring probable long-term effects.

  11. Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin

    NASA Astrophysics Data System (ADS)

    León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka

    2017-04-01

    Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.

  12. Effects of diet quality on vulnerability to mild subchronic social defeat stress in mice.

    PubMed

    Goto, Tatsuhiko; Kubota, Yoshifumi; Toyoda, Atsushi

    2016-09-01

    The chronic social defeat stress (CSDS) mouse model is a potentially useful system for understanding stress responses to social environments. We previously developed a mouse model of subchronic and mild social defeat stress (sCSDS) that exhibits increased body weight gain and food intake following polydipsia-like features. sCSDS mice also show avoidance behavior in a social interaction test. In this study, we examined the effects of diet quality on susceptibility to sCSDS by feeding these mice semi- and non-purified diets. Male C57BL/6J (B6; n = 82) mice were exposed to sCSDS using male ICR mice. The B6 mice were divided into four test groups: semi-purified pellet diet + sCSDS, non-purified pellet diet + sCSDS, semi-purified diet + control (no sCSDS), and non-purified diet + control. Although increased body weight, and food and water intake following sCSDS exposure were consistently observed in the groups that were fed semi- and non-purified diets, social avoidance behavior was influenced by food type (i.e., sCSDS mice fed semi-purified diet showed the greatest social avoidance behavior). In addition, the rates of stress susceptibility were estimated at 73.9 and 34.8% in sCSDS mice fed semi-purified and non-purified diets, respectively (P < 0.05). For comparison, the susceptible-like phenotype rates were estimated at 12.5 and 8.3% in healthy control mice fed semi-purified and non-purified diets, respectively. These results suggest that diet quality affects the vulnerability of mice to social defeat stress.

  13. Vicarious social defeat stress: Bridging the gap between physical and emotional stress.

    PubMed

    Sial, Omar K; Warren, Brandon L; Alcantara, Lyonna F; Parise, Eric M; Bolaños-Guzmán, Carlos A

    2016-01-30

    Animal models capable of differentiating the neurobiological intricacies between physical and emotional stress are scarce. Current models rely primarily on physical stressors (e.g., chronic unpredictable or mild stress, social defeat, learned helplessness), and neglect the impact of psychological stress alone. This is surprising given extensive evidence that a traumatic event needs not be directly experienced to produce enduring perturbations on an individual's health and psychological well-being. Post-traumatic stress disorder (PTSD), a highly debilitating neuropsychiatric disorder characterized by intense fear of trauma-related stimuli, often occurs in individuals that have only witnessed a traumatic event. By modifying the chronic social defeat stress (CSDS) paradigm to include a witness component (witnessing the social defeat of another mouse), we demonstrate a novel behavioral paradigm capable of inducing a robust behavioral syndrome reminiscent of PTSD in emotionally stressed adult mice. We describe the vicarious social defeat stress (VSDS) model that is capable of inducing a host of behavioral deficits that include social avoidance and other depressive- and anxiety-like phenotypes in adult male mice. VSDS exposure induces weight loss and spike in serum corticosterone (CORT) levels. A month after stress, these mice retain the social avoidant phenotype and have an increased CORT response when exposed to subsequent stress. The VSDS is a novel paradigm capable of inducing emotional stress by isolating physical stress/confrontation in mice. The VSDS model can be used to study the short- and long-term neurobiological consequences of exposure to emotional stress in mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.

    PubMed

    Cornish, K; Zeevaart, J A

    1985-11-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv ;Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots.Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium.Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed.

  15. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    NASA Astrophysics Data System (ADS)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  16. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    PubMed

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Response of Thematic Mapper bands to plant water stress

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.; Zetka, E. F.; Rickman, D. L.

    1992-01-01

    Changes in leaf reflectance as water content decreases have been hypothesized to occur in the 1.55-1.75 and 2.08-2.35 micron wavelength regions. To evaluate this hypothesis, studies were conducted on ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.), which were grown in a controlled, outdoor situation. Both fully-watered control beds and water-stressed beds were periodically examined with a spectroradiometer calibrated against a reflectance reference of polytetrafluoroethylene. The observed changes correspond to those predicted by stochastic leaf models employed by other investigators (leaf reflection increases in the 1.55-1.75 micron region as leaf water content decreases). Although the percentage changes in TM bands 1-3 are nearly as great as those found in TM bands 5 and 7, the absolute values of reflectance change are much lower. It is believed that these patterns are probably characteristic of a broad range of vegetation types. In terms of phenomena detection, these patterns should be considered in any practical remote sensing sensor scenario.

  18. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    PubMed

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  19. Adapting FAO-56 Spreadsheet Program to estimate olive orchard transpiration fluxes under soil water stress condition

    NASA Astrophysics Data System (ADS)

    Rallo, G.; Provenzano, G.; Manzano-Juárez, J.

    2012-04-01

    In the Mediterranean environment, where the period of crops growth does not coincide with the rainy season, the crop is subject to water stress periods that may be amplified with improper irrigation management. Agro-hydrological models can be considered an economic and simple tool to optimize irrigation water use, mainly when water represents a limiting factor for crop production. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system (Feddes et al., 1978; Bastiaanssen et al., 2007). Unfortunately these models, although very reliable, as a consequence of the high number of required variables and the complex computational analysis, cannot often be used. Therefore, simplified agro-hydrological models may represent an useful and simple tool for practical irrigation scheduling. The main objective of the work is to assess, for an olive orchard, the suitability of FAO-56 spreadsheet agro-hydrological model to estimate a long time series of field transpiration, soil water content and crop water stress dynamic. A modification of the spreadsheet is suggested in order to adapt the simulations to a crop tolerant to water stress. In particular, by implementing a new crop water stress function, actual transpiration fluxes and an ecophysiological stress indicator, i. e. the relative transpiration, are computed in order to evaluate a plant-based irrigation scheduling parameter. Validation of the proposed amendment is carried out by means of measured sap fluxes, measured on different plants and up-scaled to plot level. Spatial and temporal variability of soil water contents in the plot was measured, at several depths, using the Diviner 2000 capacitance probe (Sentek Environmental Technologies, 2000) and TDR-100 (Campbell scientific, Inc.) system. The detailed measurements of soil water content, allowed to explore the high spatial variability of soil water content due

  20. Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring.

    PubMed

    Roiloa, S R; Antelo, B; Retuerto, R

    2014-08-01

    One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium). The experimental design consisted of three factors, 'integration' (connected, severed) 'water status' (well watered, water stressed) and 'nitrogen form' (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies. Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (δ(15)N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, δ(15)N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis. This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions experienced by a member clone. Water consumption was lower

  1. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress.

    PubMed

    Hu, Ling; Xie, Yan; Fan, Shoujin; Wang, Zongshuai; Wang, Fahong; Zhang, Bin; Li, Haosheng; Song, Jie; Kong, Lingan

    2018-07-01

    Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    PubMed

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  3. How Stressful Is "Deep Bubbling"?

    PubMed

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  5. [Influence of stress on learning and memory].

    PubMed

    Ukai, M

    2000-08-01

    This paper describes the influence of stress on learning and memory. The mice receiving inescapable electroshock fail to perform the active conditioned avoidance response of lever-pressing. This is called learned helplessness, which is ameliorated by treatment with antidepressants including one of the selective serotonin reuptake inhibitors (SSRIs). It is of particular interest that posttraumatic stress disease (PTSD) accompanied by memory impairment could be improved by treatment with SSRIs. The different kinds of stress including ischemia, footshock, psychological stress, and forced swimming influence learning and memory as indexed by spontaneous alternation performance as well as passive avoidance learning. In addition, a variety of stresses influence the activity of hormones and neurotransmitters like monoamines, neuropeptides, and excitatory amino acids resulting in changes in learning and memory. Finally, the accumulation of data is necessary to clarify the exact mechanism of stress on learning and memory.

  6. Public speaking avoidance as a treatment moderator for social anxiety disorder.

    PubMed

    Mesri, Bita; Niles, Andrea N; Pittig, Andre; LeBeau, Richard T; Haik, Ethan; Craske, Michelle G

    2017-06-01

    Cognitive behavioral therapy (CBT) and acceptance and commitment therapy (ACT) have both garnered empirical support for the effective treatment of social anxiety disorder. However, not every patient benefits equally from either treatment. Identifying moderators of treatment outcome can help to better understand which treatment is best suited for a particular patient. Forty-nine individuals who met criteria for social anxiety disorder were assessed as part of a randomized controlled trial comparing 12 weeks of CBT and ACT. Pre-treatment avoidance of social situations (measured via a public speaking task and clinician rating) was investigated as a moderator of post-treatment, 6-month follow-up, and 12-month follow-up social anxiety symptoms, stress reactivity, and quality of life. Public speaking avoidance was found to be a robust moderator of outcome measures, with more avoidant individuals generally benefitting more from CBT than ACT by 12-month follow-up. In contrast, clinician-rated social avoidance was not found to be a significant moderator of any outcome measure. Results were found only at 12-month follow-up. More comprehensive measures of avoidance would be useful for the field moving forward. Findings inform personalized medicine, suggesting that social avoidance measured behaviorally via a public speaking task may be a more robust factor in treatment prescription compared to clinician-rated social avoidance. Published by Elsevier Ltd.

  7. Unified Stress Tensor of the Hydration Water Layer

    NASA Astrophysics Data System (ADS)

    Kim, Bongsu; Kim, QHwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-01

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  8. Unified stress tensor of the hydration water layer.

    PubMed

    Kim, Bongsu; Kim, Qhwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-13

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  9. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  10. Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation.

    PubMed

    Ghassemi Nejad, Jalil; Sung, Kyung-Il

    2017-01-01

    This study was conducted to investigate the behavioral and physiological changes of heat stressed Corriedale ewes exposed to water deprivation. Nine Corriedale ewes (average BW = 45 ± 3.7 kg) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned into three groups (9 sheep per treatment) according to a 3 × 3 Latin square design for 3 periods with 21-d duration for each period. The control (CON) group was given free access to water, 2 h water deprivation (2hWD), and 3 h water deprivation (3hWD) following feeding. No differences were found in fecal excretion frequency, standing frequency (number/d), and sitting frequency among the groups ( p  > 0.05). Measurements of standing duration (min/d) and urine excretion frequency (number/d) showed a significant decrease whereas sitting duration (min/d) showed a significant increase in the 2hWD and 3hWD groups when compared with the CON group ( p  < 0.05). Fecal score and heart rate (number/min) were not different among the groups ( p  > 0.05). However, respiratory rate (number/min) and panting score were found to be significantly higher in the 2hWD and 3hWD groups than in the CON group ( p  < 0.05). It is concluded that water deprivation following feeding intensifies physiological heat stress related indicators such as respiratory rate and panting score and changes behavioral parameters such as water intake and urine excretion frequency in heat stressed ewes. Daily adaptation to the extreme environmental conditions may occur actively in ewes.

  11. Violence Exposure and Psychopathology in Latino Youth: The Moderating Role of Active and Avoidant Coping.

    PubMed

    Gudiño, Omar G; Stiles, Allison A; Diaz, Kathleen I

    2018-06-01

    Despite high rates of exposure to community violence among Latino youth in urban communities, there is considerable variability in individual outcomes. This study examined (a) associations between coping and indices of Latino culture, (b) main effects of active/avoidant coping on psychopathology, and (c) whether coping moderates the impact of violence exposure on mental health in Latino youth. Participants included 168 Latino youth (56% female; ages 11-14) that took part in a short-term longitudinal study. Results indicate that youth acculturation was positively associated with active coping, but enculturation level and immigrant status were not associated with coping. Structural equation models suggested that active coping was negatively associated with internalizing problems (p = .046) while avoidant coping was positively associated with internalizing problems (p = .013) and posttraumatic stress symptoms (p = .024). Moderation analyses revealed that violence exposure was more strongly associated with internalizing problems as reliance on avoidance coping increased. However, at high levels of violence exposure, a greater reliance on active coping was related to increased posttraumatic stress problems. Findings suggest that consideration of the specific stressor, level of stress exposure, and mental health problem-type may be crucial in determining the effectiveness of a coping strategy. Implications for future research and intervention are discussed.

  12. Victimization and depressive symptomology in transgender adults: The mediating role of avoidant coping

    PubMed Central

    Hughto, Jaclyn M. White; Pachankis, John E.; Willie, Tiara C.; Reisner, Sari L.

    2016-01-01

    Victimization and depressive distress symptoms represent serious and interconnected public health problems facing transgender communities. Avoidant coping is hypothesized to temporarily alleviate the stress of victimization, but has potential long-term mental and behavioral health costs, such as increasing the probability of depressive symptoms. A community sample of 412 transgender adults (M age = 32.7, SD = 12.8) completed a one-time survey capturing multiple forms of victimization (i.e., everyday discrimination, bullying, physical assault by family, verbal harassment by family, childhood sexual abuse, intimate partner violence), avoidant coping, and past-week depressive symptomology. Structural equation modeling examined the mediating role of avoidant coping in the association between victimization and depressive symptomology. A latent victimization variable composed of six measures of victimization was positively associated with avoidant coping, which in turn was positively associated with depressive symptoms. Victimization was also positively associated with depressive symptomology both directly and indirectly through avoidant coping. Avoidant coping represents a potentially useful intervention target for clinicians aiming to reduce the mental health sequelae of victimization in this highly stigmatized and vulnerable population. PMID:28068130

  13. Response of Ajowan to water stress induced by polyethylene glycol (PEG) 6000 during seed germination and seedling growth.

    PubMed

    Rohamare, Yogita; Dhumal, K N; Nikam, T D

    2014-09-01

    Seed germination and subsequent metabolic changes in Ajowan (Trachyspermum ammi L.) (NRCSS AA-2) seedlings was studied under water limiting conditions, imposed by increasing concentrations of polyethylene glycol (PEG 6000). Five water stress conditions (0, -0.05, -0.1, -0.15 and -0.2 MPa) were created in the laboratory in a completely randomized design. The results revealed that water stress (-0.2 MPa) significantly reduced seed germination components like final germination percent (80%) radical (64%) and plumule (63%) length, fresh (63%) and dry (74%) weight of seedlings and vigor index (SVI) by 92% over control. Decrease in osmotic potential resulted in decreased protein content (56%) with concomitant increase in total sugars (55%) at -0.2 MPa as compared to control. Significant increase in free proline and glycine betaine content by 1.5 to 2 folds was observed at the highest water stress condition. The seedlings exhibited increased activity of superoxide dismutase and peroxidase under stressed condition. In the present study, it was found that Ajowan was a moderately drought tolerant species at laboratory level.

  14. Response of vegetation indices to changes in three measures of leaf water stress

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.

    1991-01-01

    The responses of vegetation indices to changes in water stress were evaluated in two separate laboratory experiments. In one experiment the normalized difference vegetation index (NDVI), the near-IR to red ratio (near-IR/red), the Infrared Index (II), and the Moisture Stress Index (MSI) were more highly correlated to leaf water potential in lodgepole pine branches than were the Leaf Water Content Index (LWCI), the mid-IR ratio (Mid-IR), or any of the single Thematic Mapper (TM) bands. In the other experiment, these six indices and the TM Tasseled Cap brightness, greenness, and wetness indices responded to changes in leaf relative water content (RWC) differently than they responded to changes in leaf water content (WC) of three plant species, and the responses were dependent on how experimental replicates were pooled. With no pooling, the LWCI was the most highly correlated index to both RWC and WC among replications, followed by the II, MSI, and wetness. Only the LWCI was highly correlated to RWC and WC when replications were pooled within species. With among species pooling the LWCI was the only index highly correlated with RWC, while the II, MSI, Mid-IR, and wetness were most highly correlated with WC.

  15. Projections of water stress based on an ensemble of socioeconomic growth and climate change scenarios: A case study in Asia

    DOE PAGES

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; ...

    2016-03-30

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify themore » primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Lastly, tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.« less

  16. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    PubMed

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

  17. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia

    PubMed Central

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  18. Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.).

    PubMed

    Xu, Ling; Islam, Faisal; Ali, Basharat; Pei, Zengfei; Li, Juanjuan; Ghani, Muhammad Awais; Zhou, Weijun

    2017-08-01

    Plants combat drought stress by coordinating various metabolic enzymes, and endogenous phytohormones, such as indole acetic acid (IAA) and abscisic acid (ABA). In the present study, 37-day-old wheat seedlings were subjected to the Hoagland solution with 20% PEG for 7 days (to create the artificial osmotic stress environment) in the greenhouse, and were supplemented with an optimized concentration (1.0 mM) of silicon (Si) to alleviate the negative effects of former stress on physiological, biochemical and phytohormones contents. Exogenous Si significantly improved plant growth parameters under osmotic stress compared to PEG treatment alone (the increase was up to 6 and 9% for shoot and root fresh weight, 4 and 12% for shoot and root dry weight, respectively). Moreover, Si significantly decreased the H 2 O 2 , MDA contents, electrolyte leakage, antioxidant enzyme activity (POD), and mineral contents (K and Ca) under osmotic stress but markedly increased the ascorbic acid(AsA), soluble sugar and mineral (Mg and Si) contents. Interestingly, Si application under water-deficit stress differently modulated the endogenous levels of ABA, IAA and JA in wheat plants compared to PEG treatment alone. This study suggests that exogenous Si improves the plant growth by modulating the nutrient (Na, Mg and Si) uptake and phytohormone levels in wheat under water-deficit stress.

  19. Garden Banks 388 deepwater pipeline span avoidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.W.; Sawyer, M.A.; Kenney, T.D.

    1995-12-31

    This paper will describe the span avoidance measures taken for the installation of the Garden Banks 388 deepwater oil and gas gathering pipelines. The two 12 inch pipelines connect a shallow water facility in EI-315 to a deep water subsea template in GB-388. These pipelines run across the irregular continental slope typically found in moderate to deep water in the Gulf of Mexico. To minimize pipeline spans, steps were taken during design, survey, and installation phases of the project. During each phase, as additional information became available, analyses and resulting recommended approaches were refined. This continuity, seldom easily obtained, provedmore » beneficial in translating design work into field results.« less

  20. Examining Adaptations to Water Stress Among Farming Households in Sri Lanka's Dry Zone

    NASA Astrophysics Data System (ADS)

    Williams, N. E.; Carrico, A.

    2016-12-01

    Climate change is increasing water scarcity in Sri Lanka's primary rice-farming zone. Whether these changes will undermine the national-level food security that Sri Lanka has worked to develop since their independence depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Using household survey data collected in 13 rice farming communities throughout Sri Lanka, this research explores how water stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Our analyses reveal that farmers' abilities to access irrigation infrastructure is the most important factor shaping the rice yields of water stressed Sri Lanka farmers. Notably, however, our research also identified farmers' use of hybrid, 'short duration' seed varietals to be the only climate adaptation strategy being promoted by agricultural extension services to have a significant positive impact on farmers' yields. These findings provide encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change.

  1. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    USDA-ARS?s Scientific Manuscript database

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  2. INFLUENCE OF STRESSFUL LIFE EVENTS AND COPING STRATEGIES IN DEPRESSION

    PubMed Central

    Satija, Y.K.; Advani, G.B.; Nathawat, S.S.

    1998-01-01

    The influence of stressful life events and coping strategies was studied in 50 depressed and 50 non-depressed persons. It was observed that depressives experienced significantly more stressful life events and were also using significantly more avoidance coping strategies as compared to their non-depressed counterparts. The moderate and severely depressed patients were exposed to more stressful life events and were using more avoidance coping strategies as compared to mildly depressed patients. PMID:21494464

  3. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    NASA Astrophysics Data System (ADS)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  4. Effects of ethanol on social avoidance induced by chronic social defeat stress in mice.

    PubMed

    Favoretto, Cristiane A; Macedo, Giovana C; Quadros, Isabel M H

    2017-01-01

    In rodents, chronic social defeat stress promotes deficits in social interest and social interaction. We further explored these antisocial effects by comparing the consequences of two different defeat stress protocols (episodic vs. continuous stress) in a social investigation test. We expected that continuous, but not episodic, stress would induce social deficits in this model. Furthermore, we tested whether a potentially anxiolytic dose of ethanol reverses social deficits induced by defeat stress. Male Swiss mice were exposed to a 10-day social defeat protocol, using daily confrontations with an aggressive resident mouse. Episodic stress consisted of brief defeat episodes, after which the defeated mouse was returned to its home cage, until the next defeat 24 h later (n = 7-11/group). For continuous stress, similar defeat episodes were followed by cohabitation with the aggressive resident for 24 h, separated by a perforated divider, until the following defeat (n = 8-14/group). Eight days after stress termination, defeated and control mice were assessed in a social investigation test, after treatment with ethanol (1.0 g/kg, i.p.) or 0.9% saline. Considering the time spent investigating a social target, mice exposed to episodic or continuous social stress showed less social investigation than controls (p < .05). Deficits in social interest were not reversed by acute ethanol treatment. However, ethanol reduced time spent in social interaction in one control group (p < .05). Locomotor activity was not affected by social stress or ethanol. Thus, a history of social defeat stress, whether episodic or continuous, promotes deficits in social investigation that were not reversed by acute treatment with ethanol.

  5. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress 1

    PubMed Central

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv `Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots. Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium. Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed. PMID:16664467

  6. Experimental modification of interpretation bias about animal fear in young children: effects on cognition, avoidance behavior, anxiety vulnerability, and physiological responding.

    PubMed

    Lester, Kathryn J; Field, Andy P; Muris, Peter

    2011-01-01

    This study investigated the effects of experimentally modifying interpretation biases for children's cognitions, avoidance behavior, anxiety vulnerability, and physiological responding. Sixty-seven children (6-11 years) were randomly assigned to receive a positive or negative interpretation bias modification procedure to induce interpretation biases toward or away from threat about ambiguous situations involving Australian marsupials. Children rapidly learned to select outcomes of ambiguous situations, which were congruent with their assigned condition. Furthermore, following positive modification, children's threat biases about novel ambiguous situations significantly decreased, whereas threat biases significantly increased after negative modification. In response to a stress-evoking behavioral avoidance test, positive modification attenuated behavioral avoidance compared to negative modification. However, no significant effects of bias modification on anxiety vulnerability or physiological responses to this stress-evoking Behavioral Avoidance Task were observed.

  7. [Effects of drought stress on growth and water use efficiency of two medicinal plants].

    PubMed

    Chen, Ping; Meng, Ping; Zhang, Jin-Song; He, Chun-Xia; Jia, Chang-Rong; Li, Jian-Zhong

    2014-05-01

    Growth characteristics, stable carbon isotope discrimination (Delta13C), water use efficiency (WUE), and their correlation of Cassia obtusifolia and Isatis indigotica were measured at three soil water levels, i. e., 30%, 50% and 75% of field water holding capacity (FWHC), and at three growth stages. The growth indices of the two medicinal plants at 75% of FWHC were higher than those at 30% and 50% of FWHC, suggesting that the two medicinal plants could obtain high production under sufficient moisture condition. The Delta13C(A) (aboveground biomass-based Delta13C) and Delta13C(T) (total biomass-based Delta13C) decreased, and the WUE(A) (aboveground biomass-based WUE) and WUE(T) (total biomass-based WUE) of C. obtusifolia and I. indigotica increased with the increasing degree of drought stress. The growth indices of the two medicinal plants had little difference in the different water treatments, which indicated that the two medicinal plants were insensitive to drought stress. Water use efficiency of I. indigotica had significant negative relationships with aboveground biomass and total biomass, while that of C. obtusifolia had a significant positive correlation with the root/shoot ratio.

  8. Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis.

    PubMed

    Ghosh Dasgupta, Modhumita; Dharanishanthi, Veeramuthu

    2017-09-05

    Ecophysiological studies in Eucalyptus have shown that water is the principal factor limiting stem growth. Effect of water deficit conditions on physiological and biochemical parameters has been extensively reported in Eucalyptus. The present study was conducted to identify major polyethylene glycol induced water stress responsive transcripts in Eucalyptus grandis using gene co-expression network. A customized array representing 3359 water stress responsive genes was designed to document their expression in leaves of E. grandis cuttings subjected to -0.225MPa of PEG treatment. The differentially expressed transcripts were documented and significantly co-expressed transcripts were used for construction of network. The co-expression network was constructed with 915 nodes and 3454 edges with degree ranging from 2 to 45. Ninety four GO categories and 117 functional pathways were identified in the network. MCODE analysis generated 27 modules and module 6 with 479 nodes and 1005 edges was identified as the biologically relevant network. The major water responsive transcripts represented in the module included dehydrin, osmotin, LEA protein, expansin, arabinogalactans, heat shock proteins, major facilitator proteins, ARM repeat proteins, raffinose synthase, tonoplast intrinsic protein and transcription factors like DREB2A, ARF9, AGL24, UNE12, WLIM1 and MYB66, MYB70, MYB 55, MYB 16 and MYB 103. The coordinated analysis of gene expression patterns and coexpression networks developed in this study identified an array of transcripts that may regulate PEG induced water stress responses in E. grandis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strategies for Dealing with Stress: Taking Care of Yourself.

    ERIC Educational Resources Information Center

    Gmelch, Walter H.

    University department chairs need to manage stress to their advantage. Myths pertaining to stress include: (1) stress is harmful; (2) stress should be avoided; (3) stress correlates with level of responsibility; (4) stress is predominantly a male phenomenon; and (5) there is one appropriate coping method. The Chair Stress Cycle provides a broad…

  10. Gaming machine addiction: the role of avoidance, accessibility and social support.

    PubMed

    Thomas, Anna C; Allen, Felicity L; Phillips, James; Karantzas, Gery

    2011-12-01

    Commonality in etiology and clinical expression plus high comorbidity between pathological gambling and substance use disorders suggest common underlying motives. It is important to understand common motivators and differentiating factors. An overarching framework of addiction was used to examine predictors of problem gambling in current electronic gaming machine (EGM) gamblers. Path analysis was used to examine the relationships between antecedent factors (stressors, coping habits, social support), gambling motivations (avoidance, accessibility, social) and gambling behavior. Three hundred and forty seven (229 females: M = 29.20 years, SD = 14.93; 118 males: M = 29.64 years, SD = 12.49) people participated. Consistent with stress, coping and addiction theory, situational life stressors and general avoidance coping were positively related to avoidance-motivated gambling. In turn, avoidance-motivated gambling was positively related to EGM gambling frequency and problems. Consistent with exposure theory, life stressors were positively related to accessibility-motivated gambling, and accessibility-motivated gambling was positively related to EGM gambling frequency and gambling problems. These findings are consistent with other addiction research and suggest avoidance-motivated gambling is part of a more generalized pattern of avoidance coping with relative accessibility to EGM gambling explaining its choice as a method of avoidance. Findings also showed social support acted as a direct protective factor in relation to gambling frequency and problems and indirectly via avoidance and accessibility gambling motivations. Finally, life stressors were positively related to socially motivated gambling but this motivation was not related to either social support or gambling behavior suggesting it has little direct influence on gambling problems.

  11. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    PubMed

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  12. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Narkawicz, Anthony; Hagen, George; Upchurch, Jason; Dutle, Aaron; Consiglio, Maria; Chamberlain, James

    2015-01-01

    This paper presents DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference implementation of a detect and avoid concept intended to support the integration of Unmanned Aircraft Systems into civil airspace. DAIDALUS consists of self-separation and alerting algorithms that provide situational awareness to UAS remote pilots. These algorithms have been formally specified in a mathematical notation and verified for correctness in an interactive theorem prover. The software implementation has been verified against the formal models and validated against multiple stressing cases jointly developed by the US Air Force Research Laboratory, MIT Lincoln Laboratory, and NASA. The DAIDALUS reference implementation is currently under consideration for inclusion in the appendices to the Minimum Operational Performance Standards for Unmanned Aircraft Systems presently being developed by RTCA Special Committee 228.

  13. Effects of multiple acute stressors on the predator avoidance ability and physiology of juvenile Chinook salmon

    USGS Publications Warehouse

    Mesa, Matthew G.

    1994-01-01

    Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation

  14. Differential use of danger and safety signals in an animal model of anxiety vulnerability: The behavioral economics of avoidance.

    PubMed

    Spiegler, Kevin M; Fortress, Ashley M; Pang, Kevin C H

    2018-03-02

    Differential processing of danger and safety signals may underlie symptoms of anxiety disorders and posttraumatic stress disorder. One symptom common to these disorders is pathological avoidance. The present study examined whether danger and safety signals influence avoidance differently in anxiety-vulnerable Wistar-Kyoto (WKY) rats and Sprague Dawley (SD) rats. SD and WKY rats were tested in a novel progressive ratio avoidance task with and without danger or safety signals. Two components of reinforcement, hedonic value and motivation, were determined by fitting an exponentiated demand equation to the data. Hedonic value of avoidance did not differ between SD and WKY rats, but WKY rats had greater motivation to avoid than SD rats. Removal of the safety signal reduced motivation to avoid in SD, but not WKY, rats. Removal of the danger signal did not alter avoidance in either strain. When danger and safety signals were presented simultaneously, WKY rats responded to the danger signals, whereas SD rats responded to the safety signal. The results provide evidence that 1) safety signals enhance motivation to avoid in SD rats, 2) both danger and safety signals influence motivation in WKY rats, and 3) danger signals take precedence over safety signals when presented simultaneously in WKY rats. Thus, anxiety vulnerability is associated with preferential use of danger signals to motivate avoidance. The differential use of danger and safety signals has important implications for the etiology and treatment of pathological avoidance in anxiety disorders and posttraumatic stress disorder. Copyright © 2017. Published by Elsevier Inc.

  15. Proposal on a sustainable strategy to avoid point source pollution of water with plant protection products.

    PubMed

    Mestdagh, Inge; Bonicelli, Bernard; Laplana, Ramon; Roettele, Manfred

    2009-01-01

    Based on the results and lessons learned from the TOPPS project (Training the Operators to prevent Pollution from Point Sources), a proposal on a sustainable strategy to avoid point source pollution from Plant Protection Products (PPPs) was made. Within this TOPPS project (2005-2008), stakeholders were interviewed and research and analysis were done in 6 pilot catchment areas (BE, FR, DE, DK, IT, PL). Next, there was a repeated survey on operators' perception and opinion to measure changes resulting from TOPPS activities and good and bad practices were defined based on the Best Management Practices (risk analysis). Aim of the proposal is to suggest a strategy considering the differences between countries which can be implemented on Member State level in order to avoid PPP pollution of water through point sources. The methodology used for the up-scaLing proposal consists of the analysis of the current situation, a gap analysis, a consistency analysis and organisational structures for implementation. The up-scaling proposal focuses on the behaviour of the operators, on the equipment and infrastructure available with the operators. The proposal defines implementation structures to support correct behaviour through the development and updating of Best Management Practices (BMPs) and through the transfer and the implementation of these BMPs. Next, the proposal also defines requirements for the improvement of equipment and infrastructure based on the defined key factors related to point source pollution. It also contains cost estimates for technical and infrastructure upgrades to comply with BMPs.

  16. On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery.

    PubMed

    Sun, Pengsen; Wahbi, Said; Tsonev, Tsonko; Haworth, Matthew; Liu, Shirong; Centritto, Mauro

    2014-01-01

    Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), mesophyll conductance (gm), total conductance (gt), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress.

  17. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Predictors of avoiding medical care and reasons for avoidance behavior.

    PubMed

    Kannan, Viji Diane; Veazie, Peter J

    2014-04-01

    Delayed medical care has negative health and economic consequences; interventions have focused on appraising symptoms, with limited success in reducing delay. To identify predictors of care avoidance and reasons for avoiding care. Using the Health Information National Trends Survey (2007), we conducted logistic regressions to identify predictors of avoiding medical visits deemed necessary by the respondents; and, we then conducted similar analyses on reasons given for avoidance behavior. Independent variables included geographic, demographic, socioeconomic, personal health, health behavior, health care system, and cognitive characteristics. Approximately one third of adults avoided doctor visits they had deemed necessary. Although unadjusted associations existed, avoiding needed care was not independently associated with geographic, demographic, and socioeconomic characteristics. Avoidance behavior is characterized by low health self-efficacy, less experience with both quality care and getting help with uncertainty about health, having your feelings attended to by your provider, no usual source of care, negative affect, smoking daily, and fatalistic attitude toward cancer. Reasons elicited for avoidance include preference for self-care or alternative care, dislike or distrust of doctors, fear or dislike of medical treatments, time, and money; respondents also endorsed discomfort with body examinations, fear of having a serious illness, and thoughts of dying. Distinct predictors distinguish each of these reasons. Interventions to reduce patient delay could be improved by addressing the health-related behavioral, belief, experiential, and emotional traits associated with delay. Attention should also be directed toward the interpersonal communications between patients and providers.

  19. Response of Carbon Dioxide Fixation to Water Stress

    PubMed Central

    Plaut, Z.; Bravdo, B.

    1973-01-01

    Application of water stress to isolated spinach (Spinacia oleracea) chloroplasts by redutcion of the osmotic potentials of CO2 fixation media below −6 to −8 bars resulted in decreased rates of fixation regardless of solute composition. A decrease in CO2 fixation rate of isolated chloroplasts was also found when leaves were dehydrated in air prior to chloroplast isolation. An inverse response of CO2 fixation to osmotic potential of the fixation medium was found with chloroplasts isolated from dehydrated leaves—namely, fixation rate was inhibited at −8 bars, compared with −16 or −24 bars. Low leaf water potentials were found to inhibit CO2 fixation of intact leaf discs to almost the same degree as they did CO2 fixation by chloroplasts isolated from those leaves. CO2 fixation by intact leaves was decreased by 50 and 80% when water potentials were reduced from −7.1 to −9.6 and from −7.1 to −17.6 bars, respectively. Transpiration was decreased by only 40 and 60%, under the same conditions. However, correction for the increase in leaf temperature indicated transpiration decreases of 57 and 80%, similar to the relative decreases in CO2 fixation. Despite the 4-fold increase in leaf resistance to CO2 diffusion in the gas phase when the water potential of leaves was reduced from −6.5 to −14.0 bars, an additional increase of about 50% in mesophyll resistance was obtained. CO2 concentration at compensation also increased when leaf water potential was reduced. PMID:16658493

  20. Circulating oxidative stress caused by Psoroptes natalensis infestation in Indian water buffaloes.

    PubMed

    Mahajan, Sumit; Panigrahi, Padma Nibash; Dey, Sahadeb; Dan, Ananya; Kumar, Akhilesh; Mahendran, K; Maurya, P S

    2017-09-01

    The present study reports the circulating oxidative stress associated with Psoroptes natalensis infestation in Indian water buffaloes. Three non-descriptive water buffaloes, age ranging between 4 and 9 years, presented to Referral Veterinary Polyclinic, IVRI, for treatment served as clinical subject. The infested animals were treated with Ivermectin subcutaneously and Amitraz topically along with antioxidant like ascorbic acid, Vitamin E and selenium. The level of lipid peroxidase was significantly higher (3.94 ± 0.34) in Psoroptes infested buffalo and was reduced significantly ( P  ≤ 0.05) after treatment (1.56 ± 0.40). The significantly higher levels of MDA before treatment signify the role of lipid peroxide mediated skin lesions in P. natalensis infested buffaloes. Similarly the activities of the body antioxidant like GSH and CAT were significantly higher ( P  ≤ 0.05) after treatment. The less level of the body antioxidant (GSH) and reduced activities of the antioxidant enzymes like CAT and SOD before treatment imply that Psoroptes mite-infested buffaloes were in a state of significant oxidative stress. The study provides information on oxidative stress indices in P. natalensis infested buffaloes and gives additional insight regarding the pathogenesis of the disease and its management.

  1. Prior Learning of Relevant Nonaversive Information Is a Boundary Condition for Avoidance Memory Reconsolidation in the Rat Hippocampus.

    PubMed

    Radiske, Andressa; Gonzalez, Maria Carolina; Conde-Ocazionez, Sergio A; Feitosa, Anatildes; Köhler, Cristiano A; Bevilaqua, Lia R; Cammarota, Martín

    2017-10-04

    Reactivated memories can be modified during reconsolidation, making this process a potential therapeutic target for posttraumatic stress disorder (PTSD), a mental illness characterized by the recurring avoidance of situations that evoke trauma-related fears. However, avoidance memory reconsolidation depends on a set of still loosely defined boundary conditions, limiting the translational value of basic research. In particular, the involvement of the hippocampus in fear-motivated avoidance memory reconsolidation remains controversial. Combining behavioral and electrophysiological analyses in male Wistar rats, we found that previous learning of relevant nonaversive information is essential to elicit the participation of the hippocampus in avoidance memory reconsolidation, which is associated with an increase in theta- and gamma-oscillation power and cross-frequency coupling in dorsal CA1 during reactivation of the avoidance response. Our results indicate that the hippocampus is involved in memory reconsolidation only when reactivation results in contradictory representations regarding the consequences of avoidance and suggest that robust nesting of hippocampal theta-gamma rhythms at the time of retrieval is a specific reconsolidation marker. SIGNIFICANCE STATEMENT Posttraumatic stress disorder (PTSD) is characterized by maladaptive avoidance responses to stimuli or behaviors that represent or bear resemblance to some aspect of a traumatic experience. Disruption of reconsolidation, the process by which reactivated memories become susceptible to modifications, is a promising approach for treating PTSD patients. However, much of what is known about fear-motivated avoidance memory reconsolidation derives from studies based on fear conditioning instead of avoidance-learning paradigms. Using a step-down inhibitory avoidance task in rats, we found that the hippocampus is involved in memory reconsolidation only when the animals acquired the avoidance response in an

  2. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    USDA-ARS?s Scientific Manuscript database

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  3. Carryover effects associated with the single-trial passive avoidance learning task in the young chick.

    PubMed

    Crowe, Simon F; Hale, Matthew W

    2002-09-01

    The single-trial passive avoidance task is a useful procedure for examining learning and memory in the young chick. However, it has recently been suggested that discrepant results reported by different laboratories are due to differences in training procedure. The present study investigated a number of parameters surrounding the passive avoidance task, using day-old White Leghorn, Black Australorp cockerels. The results suggested that presentation of a water-dipped bead immediately after the aversive bead significantly altered retention levels. In addition, when the water-dipped bead was presented after the aversive bead, chicks failed to discriminate between beads for a period of 10 min following exposure to the aversant experience. A novel variant of the passive avoidance procedure, involving pretraining with a water-dipped red bead, training with an aversant-coated red bead, and testing with a dry red bead, was evaluated. A measure of avoidance was calculated using all three trials. It is suggested that the use of a single bead, measured both before and after the training experience and using both aversant- and water-trained controls, results in the most concise characterization of memory-related phenomena in the chick which is not contaminated by a carryover effect from the aversive training experience to the nonaversive bead.

  4. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L. 1

    PubMed Central

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. PMID:16664294

  5. Coping with Physiological Oxidative Stress: A Review of Antioxidant Strategies in Seals

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Elsner, Robert; Ortiz, Rudy M.

    2012-01-01

    While diving, seals are exposed to apnea-induced hypoxemia and repetitive cycles of ischemia/reperfusion. While on land, seals experience sleep apnea, as well as prolonged periods of food and water deprivation. Prolonged fasting, sleep apnea, hypoxemia and ischemia/reperfusion increase oxidant production and oxidative stress in terrestrial mammals. In seals, however, neither prolonged fasting nor apnea-induced hypoxemia or ischemia/reperfusion increase systemic or local oxidative damage. The strategies seals evolved to cope with increased oxidant production are reviewed in the present manuscript. Among these strategies, high antioxidant capacity and the oxidant-mediated activation of hormetic responses against hypoxia and oxidative stress are discussed. In addition to expanding our knowledge of the evolution of antioxidant defenses and adaptive responses to oxidative stress, understanding the mechanisms that allow adapted mammals to avoid oxidative damage has the potential to advance our knowledge of oxidative stress-induced pathologies and to enhance the translative value of biomedical therapies in the long term. PMID:22327141

  6. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment

    PubMed Central

    del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470

  7. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment.

    PubMed

    Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.

  8. Stress-Related Gene Expression Reflects Morphophysiological Responses to Water Deficit1[OPEN

    PubMed Central

    Vile, Denis; Bediee, Alexis; Dauzat, Myriam; Luchaire, Nathalie; Kamrowska, Dominika; Granier, Christine

    2017-01-01

    Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis (Arabidopsis thaliana) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1, a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD. The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 (NDL1), in response to WD. Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1, CHALCONE SYNTHASE, and MYB DOMAIN PROTEIN44) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns. PMID:28522456

  9. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    PubMed

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  10. High water-stressed population estimated by world water resources assessment including human activities under SRES scenarios

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Shen, Y.; Kanae, S.; Oki, T.

    2009-04-01

    In an argument of the reduction and the adaptation for the climate change, the evaluation of the influence by the climate change is important. When we argue in adaptation plan from a damage scale and balance with the cost, it is particularly important. Parry et al (2001) evaluated the risks in shortage of water, malaria, food, the risk of the coast flood by temperature function and clarified the level of critical climate change. According to their evaluation, the population to be affected by the shortage of water suddenly increases in the range where temperature increases from 1.5 to 2.0 degree in 2080s. They showed how much we need to reduce emissions in order to draw-down significantly the number at risk. This evaluation of critical climate change threats and targets of water shortage did not include the water withdrawal divided by water availability. Shen et al (2008a) estimated the water withdrawal of projection of future world water resources according to socio-economic driving factors predicted for scenarios A1b, A2, B1, and B2 of the Special Report on Emission Scenarios (SRES). However, these results were in function of not temperature but time. The assessment of the highly water-stressed population considered the socioeconomic development is necessary for a function of the temperature. Because of it is easy to understand to need to reduce emission. We present a multi-GCM analysis of the global and regional populations lived in highly water-stressed basin for a function of the temperature using the socioeconomic data and the outputs of GCMs. In scenario A2, the population increases gradually with warming. On the other hand, the future projection population in scenario A1b and B1 increase gradually until the temperature anomaly exceeds around from +1 to +1.5 degree. After that the population is almost constant. From Shen et al (2008b), we evaluated the HWSP and its ratio in the world with temperature function for scenarios A1B, A2, and B1 by the index of W

  11. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

    PubMed

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  12. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions

    PubMed Central

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon’s response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  13. Detecting drawdowns masked by environmental stresses with water-level models

    USGS Publications Warehouse

    Garcia, C.A.; Halford, K.J.; Fenelon, J.M.

    2013-01-01

    Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water-level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water-level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water-level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three-dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping-induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.

  14. The Relationship between Personality, Sense of Efficacy, and Stress in Korean Teachers

    PubMed Central

    Park, Subin; Song, Yul-Mai; Ko, Guy-Nueo; Jhung, Kyungun; Ha, Kyooseob; Lee, Young-Ryeol

    2016-01-01

    Several studies have linked teachers' personality characteristics and sense of efficacy to stress. However, investigating the relationship between these three constructs in this context was limited. This study aims to investigate the relationship between personality, sense of efficacy and perceived stress among Korean teachers. A total of 137 teachers working in elementary, middle, and high schools located in Seoul, South Korea were recruited for the study. The participants were administered Temperament and Character Inventory, Teacher's Sense of Efficacy Scale (TSES), and Perceived Stress Scale. The TSES was negatively correlated with harm avoidance and positively correlated with persistence, self-directedness, cooperativeness, and self-transcendence. Perceived stress was positively correlated with harm avoidance and negatively correlated with persistence and self-directedness. The path analysis showed that harm avoidance directly predicted perceived stress (β=0.37, 95% CI=0.21–0.53, p=0.002), and self-directedness and persistence predicted one's sense of efficacy (β=0.18, 95% CI=0.01–0.39 and β=0.31, 95% CI=0.10–0.47), which predicted perceived stress (β=-0.21, 95% CI=-0.39 to -0.02). The results of the present study indicate that harm avoidance might be associated with stress-proneness, while persistence, self-directedness, and sense of efficacy might act as protective resources against stress in Korean teachers. PMID:27757136

  15. The Relationship between Personality, Sense of Efficacy, and Stress in Korean Teachers.

    PubMed

    Park, Subin; Song, Yul-Mai; Ko, Guy-Nueo; Jhung, Kyungun; Ha, Kyooseob; Lee, Young-Ryeol; Kim, Yeni

    2016-09-01

    Several studies have linked teachers' personality characteristics and sense of efficacy to stress. However, investigating the relationship between these three constructs in this context was limited. This study aims to investigate the relationship between personality, sense of efficacy and perceived stress among Korean teachers. A total of 137 teachers working in elementary, middle, and high schools located in Seoul, South Korea were recruited for the study. The participants were administered Temperament and Character Inventory, Teacher's Sense of Efficacy Scale (TSES), and Perceived Stress Scale. The TSES was negatively correlated with harm avoidance and positively correlated with persistence, self-directedness, cooperativeness, and self-transcendence. Perceived stress was positively correlated with harm avoidance and negatively correlated with persistence and self-directedness. The path analysis showed that harm avoidance directly predicted perceived stress (β=0.37, 95% CI=0.21-0.53, p=0.002), and self-directedness and persistence predicted one's sense of efficacy (β=0.18, 95% CI=0.01-0.39 and β=0.31, 95% CI=0.10-0.47), which predicted perceived stress (β=-0.21, 95% CI=-0.39 to -0.02). The results of the present study indicate that harm avoidance might be associated with stress-proneness, while persistence, self-directedness, and sense of efficacy might act as protective resources against stress in Korean teachers.

  16. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress.

    PubMed

    Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A

    2017-06-01

    Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.

  17. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-01

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768

  18. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  19. Can a canopy temperature-based stress index enhance water use efficiency in irrigated wine grape under arid conditions?

    USDA-ARS?s Scientific Manuscript database

    Enhancement of irrigation water use efficiency and water productivity in arid wine grape production regions is hindered by a lack of automated, real-time methods for monitoring and interpreting vine water status. A normalized, water stress index calculated from real-time vine canopy temperature meas...

  20. Effects of Fusarium culmorum and water stress on durum wheat in Tunisia

    USDA-ARS?s Scientific Manuscript database

    The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and...

  1. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    NASA Astrophysics Data System (ADS)

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  2. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed Central

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-01-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398

  3. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae).

    PubMed

    Carroll, A B; Pallardy, S G; Galen, C

    2001-03-01

    In a controlled environment, we artificially induced drought during flowering of Epilobium angustifolium, an animal-pollinated plant. Leaf water potential (ψ(l)) and floral traits were monitored over a 12-d period of soil moisture depletion. Soil moisture depletion induced drought stress over time, as revealed by significant treatment × day interactions for predawn and midday ψ(l). Nectar volume and flower size showed significant negative responses to drought stress, but nectar sugar concentration did not vary between treatments. Floral traits were more buffered from drought than leaf water potentials. We used path analysis to examine direct and indirect effects of ψ(l) on floral traits for plants in well-watered (control) vs. drought treatments. According to the best-fit path models, midday ψ(l) has significant positive effects on flower size and nectar volume in both environments. However, for controls midday ψ(l) also had a significant negative effect on nectar sugar concentration. Results indicate that traits influencing floral attractiveness to pollinators in E. angustifolium vary with plant water status, such that pollinator-mediated selection could indirectly target physiological or biochemical controls on ψ(l). Moreover, under mesic conditions selection for greater nectar sugar reward may be constrained by the antagonistic effects of plant water status on nectar volume and sugar concentration.

  4. Dispositional and Situational Avoidance and Approach as Predictors of Physical Symptom Bother Following Breast Cancer Diagnosis

    PubMed Central

    Bauer, Margaret R.; Harris, Lauren N.; Wiley, Joshua F.; Crespi, Catherine M.; Krull, Jennifer L.; Weihs, Karen L.; Stanton, Annette L.

    2016-01-01

    Background Few studies examine whether dispositional approach and avoidance coping and stressor-specific coping strategies differentially predict physical adjustment to cancer-related stress. Purpose This study examines dispositional and situational avoidance and approach coping as unique predictors of the bother women experience from physical symptoms after breast cancer treatment, as well as whether situational coping mediates the prediction of bother from physical symptoms by dispositional coping. Method Breast cancer patients (N=460) diagnosed within the past 3 months completed self-report measures of dispositional coping at study entry and of situational coping and bother from physical symptoms every 6 weeks through 6 months. Results In multilevel structural equation modeling analyses, both dispositional and situational avoidance predict greater symptom bother. Dispositional, but not situational, approach predicts less symptom bother. Supporting mediation models, dispositional avoidance predicts more symptom bother indirectly through greater situational avoidance. Dispositional approach predicts less symptom bother through less situational avoidance. Conclusion Psychosocial interventions to reduce cancer-related avoidance coping are warranted for cancer survivors who are high in dispositional avoidance and/or low in dispositional approach. PMID:26769023

  5. Dispositional and Situational Avoidance and Approach as Predictors of Physical Symptom Bother Following Breast Cancer Diagnosis.

    PubMed

    Bauer, Margaret R; Harris, Lauren N; Wiley, Joshua F; Crespi, Catherine M; Krull, Jennifer L; Weihs, Karen L; Stanton, Annette L

    2016-06-01

    Few studies examine whether dispositional approach and avoidance coping and stressor-specific coping strategies differentially predict physical adjustment to cancer-related stress. This study examines dispositional and situational avoidance and approach coping as unique predictors of the bother women experience from physical symptoms after breast cancer treatment, as well as whether situational coping mediates the prediction of bother from physical symptoms by dispositional coping. Breast cancer patients (N = 460) diagnosed within the past 3 months completed self-report measures of dispositional coping at study entry and of situational coping and bother from physical symptoms every 6 weeks through 6 months. In multilevel structural equation modeling analyses, both dispositional and situational avoidance predict greater symptom bother. Dispositional, but not situational, approach predicts less symptom bother. Supporting mediation models, dispositional avoidance predicts more symptom bother indirectly through greater situational avoidance. Dispositional approach predicts less symptom bother through less situational avoidance. Psychosocial interventions to reduce cancer-related avoidance coping are warranted for cancer survivors who are high in dispositional avoidance and/or low in dispositional approach.

  6. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Qin, Shengwei; Zhang, Jiazhi; Wang, Ying; Rong, Yonghua; Zuo, Xunwei; Chen, Nailu

    2017-10-01

    Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.

  7. Effect of water stress on cotton leaves : I. An electron microscopic stereological study of the palisade cells.

    PubMed

    Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L

    1982-07-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of

  8. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress

    PubMed Central

    Nelson, Sven K.; Oliver, Melvin J.

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits. PMID

  9. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress.

    PubMed

    Nelson, Sven K; Oliver, Melvin J

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits.

  10. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.

    PubMed

    Cornish, K; Zeevaart, J A

    1984-12-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained.Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days.Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all

  11. Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress.

    PubMed

    Li, Zhen; Wu, Na; Liu, Ting; Chen, Hui; Tang, Ming

    2015-02-27

    Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (ΦPSII), non-photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well-watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions. © 2015 Scandinavian Plant Physiology Society.

  12. Water stress projections for the northeastern and Midwestern United States in 2060: anthropogenic and ecological consequences

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Peter Caldwell; Ge Sun

    2013-01-01

    Future climate and land-use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast...

  13. On the Use of Leaf Spectral Indices to Assess Water Status and Photosynthetic Limitations in Olea europaea L. during Water-Stress and Recovery

    PubMed Central

    Sun, Pengsen; Wahbi, Said; Tsonev, Tsonko; Haworth, Matthew; Liu, Shirong; Centritto, Mauro

    2014-01-01

    Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (g s), mesophyll conductance (g m), total conductance (g t), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A 1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A 1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress. PMID:25136798

  14. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress

    NASA Astrophysics Data System (ADS)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan

    2017-04-01

    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  15. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress

    PubMed Central

    Zandalinas, Sara I.; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio; Inupakutika, Madhuri A.; Mittler, Ron

    2016-01-01

    Abscisic acid (ABA) plays a key role in plant acclimation to abiotic stress. Although recent studies suggested that ABA could also be important for plant acclimation to a combination of abiotic stresses, its role in this response is currently unknown. Here we studied the response of mutants impaired in ABA signalling (abi1-1) and biosynthesis (aba1-1) to a combination of water deficit and heat stress. Both mutants displayed reduced growth, biomass, and survival when subjected to stress combination. Focusing on abi1-1, we found that although its stomata had an impaired response to water deficit, remaining significantly more open than wild type, its stomatal aperture was surprisingly reduced when subjected to the stress combination. Stomatal closure during stress combination in abi1-1 was accompanied by higher levels of H2O2 in leaves, suggesting that H2O2 might play a role in this response. In contrast to the almost wild-type stomatal closure phenotype of abi1-1 during stress combination, the accumulation of ascorbate peroxidase 1 and multiprotein bridging factor 1c proteins, required for acclimation to a combination of water deficit and heat stress, was significantly reduced in abi1-1. Our findings reveal a key function for ABA in regulating the accumulation of essential proteins during a combination of water deficit and heat stress. PMID:27497287

  16. [Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage].

    PubMed

    Yang, Ming-da; Ma, Shou-chen; Yang, Shen-jiao; Zhang, Su-yu; Guan, Xiao-kang; Li, Xue-mei; Wang, Tong-chao; Li, Chun-xi

    2015-11-01

    A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.

  17. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes

    PubMed Central

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition. PMID:26098564

  18. Managing Stress and Maintaining Well-Being: Social Support, Problem-Focused Coping, and Avoidant Coping

    ERIC Educational Resources Information Center

    Chao, Ruth Chu-Lien

    2011-01-01

    This study tested a model that links stress, social support, problem-focused coping, and well-being. First, it looks at how high support significantly moderated the association between stress and well-being. Next, the students' problem-focused coping was seen as mediating this moderated association. Finally, a 3-way interaction of stress, social…

  19. Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging

    USDA-ARS?s Scientific Manuscript database

    Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...

  20. Avoidance of strobe lights by zooplankton

    USGS Publications Warehouse

    Hamel, Martin J.; Richards, Nathan S.; Brown, Michael L.; Chipps, Steven R.

    2010-01-01

    Underwater strobe lights can influence the behavior and distribution of fishes and are increasingly used as a technique to divert fish away from water intake structures on dams. However, few studies examine how strobe lights may affect organisms other than targeted species. To gain insight on strobe lighting effects on nontarget invertebrates, we investigated whether underwater strobe lights influence zooplankton distributions and abundance in Lake Oahe, South Dakota. Zooplankton were collected using vertical tows at 3 discrete distances from an underwater strobe light to quantify the influence of light intensity on zooplankton density. Samples were collected from 3 different depth ranges (0–10 m, 10–20 m and 20–30 m) at <1 m, 15 m and ⩾100 m distance intervals away from the strobe light. Copepods represented 67.2% and Daphnia spp. represented 23.3% of all zooplankton sampled from 17 August to 15 September 2004. Night time zooplankton densities significantly decreased in surface waters when strobe lights were activated. Copepods exhibited the greatest avoidance patterns, while Daphnia avoidance varied throughout sampling depths. These results indicate that zooplankton display negative phototaxic behavior to strobe lights and that researchers must be cognizant of potential effects to the ecosystem such as altering predator–prey interactions or affecting zooplankton distribution and growth.

  1. Experiential Avoidance and Rumination in Parents of Children on Cancer Treatment: Relationships with Posttraumatic Stress Symptoms and Symptoms of Depression.

    PubMed

    Cernvall, Martin; Skogseid, Ellen; Carlbring, Per; Ljungman, Lisa; Ljungman, Gustaf; von Essen, Louise

    2016-03-01

    We conducted a cross-sectional survey study to investigate whether there is a relationship between experiential avoidance (EA), rumination, post-traumatic stress symptoms (PTSS), and symptoms of depression, in parents of children on cancer treatment. Data from 79 parents (55 mothers) of 79 children with a median of three months since their cancer diagnosis were included in cross-sectional analyses. EA and rumination were positively correlated with PTSS and symptoms of depression. EA and rumination did not provide incremental explained variance in PTSS over and above that explained by symptoms of depression, while controlling for symptoms of anxiety and demographic characteristics. However, EA and rumination provided incremental explained variance in symptoms of depression over and above that explained by PTSS, while controlling for symptoms of anxiety and demographic characteristics. Rumination and EA are important constructs in the understanding of PTSS and symptoms of depression in parents of children on cancer treatment. Future research should delineate the temporal relationships between these constructs.

  2. Traumatic exposure and posttraumatic stress disorder in borderline, schizotypal, avoidant, and obsessive-compulsive personality disorders: findings from the collaborative longitudinal personality disorders study.

    PubMed

    Yen, Shirley; Shea, M Tracie; Battle, Cynthia L; Johnson, Dawn M; Zlotnick, Caron; Dolan-Sewell, Regina; Skodol, Andrew E; Grilo, Carlos M; Gunderson, John G; Sanislow, Charles A; Zanarini, Mary C; Bender, Donna S; Rettew, Jennifer Bame; McGlashan, Thomas H

    2002-08-01

    The association between trauma and personality disorders (PDs), while receiving much attention and debate, has not been comprehensively examined for multiple types of trauma and PDs. The authors examined data from a multisite study of four PD groups: schizotypal, borderline (BPD), avoidant, and obsessive-compulsive, and a major depression comparison group. Rates of traumatic exposure to specific types of trauma, age of first trauma onset, and rates of posttraumatic stress disorder are compared. Results indicate that BPD participants reported the highest rate of traumatic exposure (particularly to sexual traumas, including childhood sexual abuse), the highest rate of posttraumatic stress disorder, and youngest age of first traumatic event. Those with the more severe PDs (schizotypal, BPD) reported more types of traumatic exposure and higher rates of being physically attacked (childhood and adult) when compared to other groups. These results suggest a specific relationship between BPD and sexual trauma (childhood and adult) that does not exist among other PDs. In addition, they support an association between severity of PD and severity of traumatic exposure, as indicated by earlier trauma onset, trauma of an assaultive and personal nature, and more types of traumatic events.

  3. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress.

    PubMed

    Islam, M Robiul; Hu, Yuegao; Mao, Sishuai; Jia, Pengfei; Eneji, A Egrinya; Xue, Xuzhang

    2011-03-30

    Drought is the most important abiotic stress factor limiting corn (Zea mays L.) growth and productivity. Therefore efficient management of soil moisture and study of metabolic changes in response to drought are important for improved production of corn. The objective of the present study was to gain a better understanding of drought tolerance mechanisms and improve soil water management strategies using a water-saving superabsorbent polymer (SAP) at 30 kg ha(-1) under three irrigation levels (adequate, moderate and deficit) using a new type of hydraulic pressure-controlled auto-irrigator. The results showed that relative water content and leaf water potential were much higher in corn treated with SAP. Although application of SAP reduced biomass accumulation by 11.1% under adequate irrigation, it increased the biomass markedly by 39.0% under moderate irrigation and 98.7% under deficit irrigation. Plants treated with SAP under deficit irrigation showed a significant decrease in superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase activities in leaves compared with control plants. The results of this study suggest that drought stress causes the production of oxygen radicals, leading to increased lipid peroxidation and oxidative stress in plants, and the application of a superabsorbent polymer could conserve soil water, making it available to plants for quenching oxidative stress and increasing biomass accumulation, especially under severe water stress. Copyright © 2010 Society of Chemical Industry.

  4. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    PubMed

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  5. Expression of stress hormones AVP and CRH in the hypothalamus of Mus musculus following water and food deprivation.

    PubMed

    Yadawa, Arun Kumar; Chaturvedi, Chandra Mohini

    2016-12-01

    Neurohypophyseal hormone, arginine vasopressin (AVP), in addition to acting as antidiuretic hormone is also considered to be stress hormone like hypothalamic corticotropin-releasing hormone (CRH). Present study was designed to investigate the relative response of these stress hormones during water and food deprivation. In this study, male laboratory mice of Swiss strain were divided in 5 groups, control - provided water and food ad libitum, two experimental groups water deprived for 2 and 4days respectively (WD2 and WD4) and another two groups food deprived for 2 and 4days respectively (FD2 and FD4). Results indicate an increased expression of AVP mRNA as well as peptide in the hypothalamus of WD2 mice and the expression was further upregulated after 4days of water deprivation but the expression of CRH remained unchanged compare to their respective controls. On the other hand no change was observed in the expression of hypothalamic AVP mRNA while AVP peptide increased significantly in FD2 and FD4 mice compare to control. Further, the expression of CRH mRNA although increased in hypothalamus of both FD2 and FD4 mice, the immunofluorescent staining shows decreased expression of CRH in PVN of food deprived mice. Based on these findings it is concluded that since during osmotic stress only AVP expression is upregulated but during metabolic stress i.e. food deprivation transcription and translation of both the stress hormones are differentially regulated. Further, it is suggested that role of AVP and CRH may be stress specific. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species.

    PubMed

    Cano, F Javier; López, Rosana; Warren, Charles R

    2014-11-01

    Water stress (WS) slows growth and photosynthesis (A(n)), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (g(sw)) decreased to two pre-defined values for 24 d, WS was maintained at the target g(sw) for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (g(m)) of accounting for the resistance to refixation of CO(2). The diffusive limitations to CO(2), dominated by the stomata, were the most important constraints to A(n). Full recovery of A(n) was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of g(sw). The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering. © 2014 John Wiley & Sons Ltd.

  7. Avoidance in hypochondriasis.

    PubMed

    Doherty-Torstrick, Emily R; Walton, Kate E; Barsky, Arthur J; Fallon, Brian A

    2016-10-01

    The DSM-5 diagnosis of illness anxiety disorder adds avoidance as a component of a behavioral response to illness fears - one that was not present in prior DSM criteria of hypochondriasis. However, maladaptive avoidance as a necessary or useful criterion has yet to be empirically supported. 195 individuals meeting DSM-IV criteria for hypochondriasis based on structured interview completed a variety of self-report and clinician-administered assessments. Data on maladaptive avoidance were obtained using the six-item subscale of the clinician-administered Hypochondriasis - Yale Brown Obsessive Compulsive Scale - Modified. To determine if avoidance emerged as a useful indicator in hypochondriasis, we compared the relative fit of continuous latent trait, categorical latent class, and hybrid factor mixture models. A two-class factor mixture model fit the data best, with Class 1 (n=147) exhibiting a greater level of severity of avoidance than Class 2 (n=48). The more severely avoidant group was found to have higher levels of hypochondriacal symptom severity, functional impairment, and anxiety, as well as lower quality of life. These results suggest that avoidance may be a valid behavioral construct and a useful component of the new diagnostic criteria of illness anxiety in the DSM-5, with implications for somatic symptom disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE PAGES

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...

    2017-04-27

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  9. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  10. Can overeating induce conditioned taste avoidance in previously food restricted rats?

    PubMed

    Hertel, Amanda; Eikelboom, Roelof

    2010-03-30

    While feeding is rewarding, the feeling of satiation has been theorized to have a mixed affect. Using a food restriction model of overeating we examined whether bingeing was capable of supporting conditioned taste avoidance (CTA). Adult male Sprague-Dawley rats were maintained on either an ad lib (n=8) or restricted (50% of regular consumption; n=24) food access for 20 days. On Days 9, 14, and 19 all rats were given access to a novel saccharin solution in place of water, and two groups of food restricted rats were given access to either 100% of regular food consumption or ad lib food. Ad lib access in the restricted rats induced significant overeating on all three exposures. After all rats were returned to ad lib feeding, a 24h two-bottle saccharin/water choice test displayed significantly reduced saccharin consumption in the overeating rats, compared to those in the other 3 groups. To determine whether this avoidance was due to a learned association, a second experiment used a latent inhibition paradigm, familiarizing half the rats with the saccharin for 8 days prior to pairing it with overeating. Using the design of Experiment 1, with only the continuously ad lib and the restricted to ad lib feeding groups, it was found that the overeating-induced saccharin avoidance was attenuated by the pre-exposure. These results suggest that self-induced overeating is capable of supporting a learned avoidance of a novel solution suggestive of a conditioned satiety or taste avoidance. (c) 2009 Elsevier Inc. All rights reserved.

  11. Confirmatory factor analysis of posttraumatic stress symptoms in sexually harassed women.

    PubMed

    Palmieri, Patrick A; Fitzgerald, Louise F

    2005-12-01

    Posttraumatic stress disorder (PTSD) factor analytic research to date has not provided a clear consensus on the structure of posttraumatic stress symptoms. Seven hypothesized factor structures were evaluated using confirmatory factor analysis of the Posttraumatic Stress Disorder Checklist, a paper-and-pencil measure of posttraumatic stress symptom severity, in a sample of 1,218 women who experienced a broad range of workplace sexual harassment. The model specifying correlated re-experiencing, effortful avoidance, emotional numbing, and hyperarousal factors provided the best fit to the data. Virtually no support was obtained for the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV; American Psychiatric Association, 1994) three-factor model of re-experiencing, avoidance, and hyperarousal factors. Different patterns of correlations with external variables were found for the avoidance and emotional numbing factors, providing further validation of the supported model.

  12. Assimilation, Distribution, and Root Exudation of 14C by Ponderosa Pine Seedlings under Induced Water Stress 1

    PubMed Central

    Reid, C. P. Patrick

    1974-01-01

    The effect of specific levels of induced water stress on the root exudation of 14C from 9-month-old and 12-month-old ponderosa pine (Pinus ponderosa Laws.) seedlings was examined. Polyethylene glycol (PEG-4000) was used to decrease root solution water potentials by 0, −1.9, −2.6, −5.5, −9.6 and −11.9 bars in either aerated 0.25X Hoagland's nutrient solution or aerated distilled water. Assimilation of 14CO2 by plants under stress and subsequent translocation of 14C label to the roots were both inhibited by a decrease in substrate water potential. Six days after 14CO2 introduction essentially no 14C was detected in the roots of plants maintained at solution potentials of −5.5 bars or below. In subsequent studies 14CO2 was introduced 4 days prior to induction of stress. This allowed sufficient time for distribution of 14C label throughout the root system. Root exudation of 14C-labeled sugars, amino acids, and organic acids from plants in nutrient solution showed an increase from 0 to −1.9 bars, a decline from −1.9 to about −5.5 bars, and then an increase again from −5.5 to −11.9 bars. As substrate potential decreased, sugars as a percentage of total exudate increased, organic acids decreased and amino acids showed a slight decrease. Marked changes in percentages occurred between 0 and −2.6 bars. The exudation of sugars, amino acids, and organic acids from plants in distilled water showed similar trends in response to water stress as those in nutrient solution, but the quantity of total 14C exuded was greater. Images PMID:16658835

  13. Water stress, CO2 and photoperiod influence hormone levels in wheat

    NASA Technical Reports Server (NTRS)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  14. Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L.

    PubMed Central

    Berger, J. D.; Ludwig, C.

    2014-01-01

    Our understanding of within-species annual plant adaptation to rainfall gradients is fragmented. Broad-scale ecological applications of Grime’s C-S-R triangle are often superficial, while detailed drought physiology tends to be narrow, focusing on elite cultivars. The former lack the detail to explain how plants respond, while the latter provide little context to investigate trade-offs among traits, to explain where/why these might be adaptive. Ecophysiology, combining the breadth of the former with the detail of the latter, can resolve this disconnect and is applied here to describe adaptive strategies in the Mediterranean legume Lupinus luteus. Wild and domesticated material from low- and high-rainfall environments was evaluated under contrasting terminal drought. These opposing environments have selected for contrasting, integrated, adaptive strategies. Long-season, high-rainfall habitats select for competitive (C) traits: delayed phenology, high above- and below-ground biomass, productivity, and fecundity, leading to high water-use and early stress onset. Terminal drought-prone environments select for the opposite: ruderal (R) traits that facilitate drought escape/avoidance but limit reproductive potential. Surprisingly, high-rainfall ecotypes generate lower critical leaf water potentials under water deficit, maintaining higher relative water content than the latter. Given that L. luteus evolved in sandy, low-water-holding capacity soils, this represents a bet-hedging response to intermittent self-imposed water-deficits associated with a strongly C-selected adaptive strategy that is therefore redundant in R-selected low-rainfall ecotypes. Domesticated L. luteus is even more R-selected, reflecting ongoing selection for early maturity. Introgression of appropriate C-selected adaptive traits from wild germplasm may widen the crop production range. PMID:24591050

  15. A Couple-Based Approach to the Reduction of PTSD Avoidance Symptoms: Preliminary Findings

    ERIC Educational Resources Information Center

    Sautter, Frederic J.; Glynn, Shirley M.; Thompson, Karin E.; Franklin, Laurel; Han, Xiaotong

    2009-01-01

    This study reports preliminary findings regarding the feasibility and efficacy of a novel couple-based treatment, named Strategic Approach Therapy (SAT), for reducing avoidance symptoms of posttraumatic stress disorder (PTSD). Six male Vietnam combat veterans diagnosed with PTSD and their cohabitating marital partners participated in 10 weeks of…

  16. Posttraumatic Stress Symptom Severity and Cognitive-Based Smoking Processes Among Trauma-Exposed Treatment-Seeking Smokers: The Role of Perceived Stress

    PubMed Central

    Garey, Lorra; Bakhshaie, Jafar; Vujanovic, Anka A.; Reitzel, Lorraine R.; Schmidt, Norman B.; Zvolensky, Michael J.

    2016-01-01

    Trauma exposure and smoking co-occur at an alarmingly high rate. However, there is little understanding of the mechanisms underlying this clinically significant relation. The present study examined perceived stress as an explanatory mechanism linking posttraumatic stress symptom severity and smoking-specific avoidance/inflexibility, perceived barriers to smoking cessation, and negative affect reduction/negative reinforcement expectancies from smoking among trauma-exposed smokers. Participants were trauma-exposed, treatment-seeking daily cigarette smokers (n = 179; 48.0% female; Mage = 41.17; SD = 12.55). Results indicated that posttraumatic stress symptom severity had an indirect significant effect on each of the dependent variables via perceived stress. The present results provide empirical support that perceived stress may be an underlying mechanism that indirectly explains posttraumatic symptoms relation to smoking-specific avoidance/inflexibility, perceived barriers to smoking cessation, and negative affect reduction/negative reinforcement expectancies among trauma-exposed smokers. These findings suggest that there may be clinical utility in targeting perceived stress among trauma-exposed smokers via stress management psychoeducation and skills training. PMID:27100473

  17. Life without water: cross-resistance of anhydrobiotic cell line to abiotic stresses

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg

    2016-07-01

    Anhydrobiosis is an intriguing phenomenon of natural ability of some organisms to resist water loss. The larvae of Polypedilum vanderplanki, the sleeping chironomid is the largest and most complex anhydrobionts known to date. The larvae showed ability to survive variety of abiotic stresses, including outer space environment. Recently cell line (Pv11) derived from the embryonic mass of the chironomid was established. Initially sensitive to desiccation cells, are capable to "induced" anhydrobiosis, when the resistance to desiccation can be developed by pre-treatment of the cells with trehalose followed by quick desiccation. We have further conducted complex analysis of the whole genome transcription response of Pv11 cells to different abiotic stresses, including oxidative stress and irradiation. Comparative analysis showed that the gene set, responsible for formation of desiccation resistance (ARID regions in the genome) is also activated in response to other types of stresses and likely to contribute to general enhancing of the resistance of the cells to harsh environment. We have further demonstrated that the cells are able to protect recombinant proteins from harmful effect of desiccation

  18. Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism

    PubMed Central

    Deng, Yuanyuan; Tang, Qin; Zhang, Yan; Zhang, Ruifen; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-01-01

    ABSTRACT Background: Momordica charantia is used in China for its jianghuo (heat-clearing and detoxifying) effects. The concept of shanghuo (the antonym of jianghuo, excessive internal heat) in traditional Chinese medicine is considered a type of stress response of the body. The stress process involves internal organs, especially the liver. Objective: We hypothesized that Momordica charantia water extract (MWE) has a hepatoprotective effect and can protect the body from stress. The aim of this study was to investigate the possible effects of MWE against liver injury in restraint-stressed mice. Design: The mice were intragastrically administered with MWE (250, 500 and 750 mg/kg bw) daily for 7 days. The Normal Control (NC) and Model groups were administered distilled water. A positive control group was intragastrically administered vitamin C 250 mg/kg bw. After the last administration, mice were restrained for 20 h. Results: MWE reduced the serum AST and ALT, reduced the NO content and the protein expression level of iNOSin the liver; significantly reduced the mitochondrial ROS content, increased the mitochondrial membrane potential and the activities of mitochondrial respiratory chain complexes I and II in restraint-stressed mice. Conclusions: The results indicate that MWE has a protective effect against liver injury in restraint-stressed mice. Abbreviations: MWE: Momordica charantia water extract; M. charantia: Momordica charantia L.; ROS: reactive oxygen species; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin-1 beta; TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; IFN-γ: interferon gamma; VC: vitamin C; ALT: alanine transaminase; AST: aspartate aminotransferase; GSH: glutathione; GSH-PX: glutathione peroxidase; MDA: malondialdehyde; BCA: bicinchoninic acid; TBARS: thiobarbituric acid reactive substances; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; JC-B: Janus Green B; DW: dry weight; FC: Folin

  19. Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism.

    PubMed

    Deng, Yuanyuan; Tang, Qin; Zhang, Yan; Zhang, Ruifen; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-01-01

    Background : Momordica charantia is used in China for its jianghuo (heat-clearing and detoxifying) effects. The concept of shanghuo (the antonym of jianghuo , excessive internal heat) in traditional Chinese medicine is considered a type of stress response of the body. The stress process involves internal organs, especially the liver. Objective : We hypothesized that Momordica charantia water extract (MWE) has a hepatoprotective effect and can protect the body from stress. The aim of this study was to investigate the possible effects of MWE against liver injury in restraint-stressed mice. Design : The mice were intragastrically administered with MWE (250, 500 and 750 mg/kg bw) daily for 7 days. The Normal Control (NC) and Model groups were administered distilled water. A positive control group was intragastrically administered vitamin C 250 mg/kg bw. After the last administration, mice were restrained for 20 h. Results : MWE reduced the serum AST and ALT, reduced the NO content and the protein expression level of iNOSin the liver; significantly reduced the mitochondrial ROS content, increased the mitochondrial membrane potential and the activities of mitochondrial respiratory chain complexes I and II in restraint-stressed mice. Conclusions : The results indicate that MWE has a protective effect against liver injury in restraint-stressed mice. Abbreviations : MWE: Momordica charantia water extract; M. charantia: Momordica charantia L.; ROS: reactive oxygen species; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin-1 beta; TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; IFN-γ: interferon gamma; VC: vitamin C; ALT: alanine transaminase; AST: aspartate aminotransferase; GSH: glutathione; GSH-PX: glutathione peroxidase; MDA: malondialdehyde; BCA: bicinchoninic acid; TBARS: thiobarbituric acid reactive substances; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; JC-B: Janus Green B; DW: dry weight; FC: Folin

  20. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    PubMed

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.