Sample records for water balance parameters

  1. A Four-parameter Budyko Equation for Mean Annual Water Balance

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Wang, D.

    2016-12-01

    In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.

  2. Parameter regionalization of a monthly water balance model for the conterminous United States

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2016-01-01

    A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash–Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  3. Parameter regionalization of a monthly water balance model for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2016-07-01

    A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  4. Parameter regionalization of a monthly water balance model for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bock, A. R.; Hay, L. E.; McCabe, G. J.; Markstrom, S. L.; Atkinson, R. D.

    2015-09-01

    A parameter regionalization scheme to transfer parameter values and model uncertainty information from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe Efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  5. Catchment Water-Energy Balance Model: Development and Applications

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.

    2017-12-01

    International Hydrological community has widely recognized that the catchment water-energy balance exists, which can be expressed as a general form of E/P = f(E0/P, c), where P is precipitation, E0 is potential evaporation, and c is a parameter. Many empirical/rational formulations of the catchment water-energy balance have been proposed. Several analytical solutions of the water-energy balance equation E/P = f(E0/P, c) have been derived by using dimensional analysis and mathematic reasoning and introducing additional boundary conditions. This paper will summarize the catchment water-energy balance equations and discuss their advantages and limitations. Catchment hydrology has been greatly influenced by the intensive variability in land use/cover, precipitation and air temperature due to climate change and local human activities. The water-energy balance equation, which are usually called the Budyko framework is widely used to analyze the impacts of climate and landscape changes on regional hydrology especially the annual runoff change. In order to quantify impacts of climate change and landscape change on the catchment runoff, the climate elasticity and landscape elasticity are estimated theoretically from the catchment water-energy balance equation. The elasticity of runoff has less of a dependency on the aridity index when the climate is drier (larger aridity index). The precipitation elasticity of runoff was close to 1.0 and that of potential evaporation close to 0.0 in the extreme humid climate with no relation to the landscape conditions, which implies that catchment water balance under extremely wet condition is controlled mainly by the climate condition. We establishes a relationship between the change in the landscape parameter in the catchment water-energy balance equation and vegetation change represented by fPAR, the fraction of Photosynthetically Active Radiation absorbed by vegetation. The fPAR elasticity of runoff is introduced and estimated over

  6. Impact of Uncertainties in Meteorological Forcing Data and Land Surface Parameters on Global Estimates of Terrestrial Water Balance Components

    NASA Astrophysics Data System (ADS)

    Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.

    2009-04-01

    Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were

  7. The Water Balance Portal in Saxony - An interactive web application concerning the impact of climate change on the water balance

    NASA Astrophysics Data System (ADS)

    Hauffe, Corina; Schwarze, Robert; Röhm, Patric; Müller, Ruben; Dröge, Werner; Gurova, Anastasia; Winkler, Peter; Baldy, Agnes

    2016-04-01

    Changes in weather and climate lead to increasing discussions about reasons and possible future impacts on the hydrological cycle. The question of a changed distribution of water also concerns the federal state of Saxony in the eastern part of Germany. Especially with a look at the different and increased requirements for water authorities, water economy and the public. To define and prepare these future requirements estimations of the future development of the natural water resources are necessary. Therefore data, information, and forecast concerning the development of the several components of the water balance are needed. And to make the obtained information easily available for experts and the public, tools like the internet have to be used. Under these frame conditions the water balance portal Saxony (www.wasserhaushaltsportal.sachsen.de) was developed within the project KliWES. The overall approach of the project was devided into the so-called „3 pillars".The first pillar focused on the evaluation of the status quo water balance from 1951-2005 by using a complex area-wide analysis of measured data. Also it contained the generating of a database and the development of a physically based parameter model. Furthermore an extensive model evaluation has been conducted with a number of objective assessment criteria, to select an appropriate model for the project. The second pillar included the calibration of the water balance model and the impact study of climate and land use change (1961-2100) on the water balance of Saxonian catchments. In this context 13 climate scenarios and three land use scenarios were simulated. The web presence of these two pillars represents a classical information service, which provides finalized results at the spatial resolution of sub-catchments using GIS-based webpages. The third pillar focused on the development of an interactive expert system. It allows the user (public, officials and consulting engineers) to simulate the water

  8. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  9. A Bayesian Framework for Coupled Estimation of Key Unknown Parameters of Land Water and Energy Balance Equations

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.

    2015-12-01

    The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states

  10. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  11. The climatic water balance in an ecological context

    NASA Astrophysics Data System (ADS)

    Stephenson, N. L.

    2011-12-01

    Because the climatic water balance describes the seasonal interactions of energy (heat and solar radiation) and water in biologically meaningful ways, it provides a powerful tool for understanding and predicting the effects of climatic changes on the terrestrial biosphere. I begin with a brief overview of the definitions and interpretations of the biologically most important water balance parameters -- actual evapotranspiration (AET) and climatic water deficit (Deficit) -- and how the particular approach used to calculate these parameters depends both on the goals of the study and on the available climatic data. Some authors have attempted to represent aspects of the climatic water balance with indices based on annual potential evapotranspiration (PET) and precipitation (P), such at P/PET or PET - P. However, these and related indices do not reflect soil water dynamics, snow dynamics, or the seasonal interactions of energy and water, and therefore have no biological interpretation. Consequently, such indices are more poorly correlated with ecological patterns and processes than AET and Deficit. Of critical importance, the effects of changing energy and water supplies on the climatic water balance are nearly orthogonal. For example, a plant community growing on shallow soils on a shaded slope and one growing on deep soils on a sunward slope often may have the same amount of measured soil moisture available to them. However, the dynamics of energy and water that resulted in the identical soil moistures were fundamentally different (decreased evaporative demand on the shaded slope versus increased water supply on the deep soils); the associated differences in AET and Deficit will therefore result in different plant communities occupying the sites, in spite of identical soil moistures. In the context of climatic change, the orthogonal effects of energy and water mean that increasing precipitation cannot be expected to counteract the effects of increasing temperature

  12. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  13. Management of the water balance and quality in mining areas

    NASA Astrophysics Data System (ADS)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  14. Global sensitivity analysis of a local water balance model predicting evaporation, water yield and drought

    NASA Astrophysics Data System (ADS)

    Speich, Matthias; Zappa, Massimiliano; Lischke, Heike

    2017-04-01

    Evaporation and transpiration affect both catchment water yield and the growing conditions for vegetation. They are driven by climate, but also depend on vegetation, soil and land surface properties. In hydrological and land surface models, these properties may be included as constant parameters, or as state variables. Often, little is known about the effect of these variables on model outputs. In the present study, the effect of surface properties on evaporation was assessed in a global sensitivity analysis. To this effect, we developed a simple local water balance model combining state-of-the-art process formulations for evaporation, transpiration and soil water balance. The model is vertically one-dimensional, and the relative simplicity of its process formulations makes it suitable for integration in a spatially distributed model at regional scale. The main model outputs are annual total evaporation (TE, i.e. the sum of transpiration, soil evaporation and interception), and a drought index (DI), which is based on the ratio of actual and potential transpiration. This index represents the growing conditions for forest trees. The sensitivity analysis was conducted in two steps. First, a screening analysis was applied to identify unimportant parameters out of an initial set of 19 parameters. In a second step, a statistical meta-model was applied to a sample of 800 model runs, in which the values of the important parameters were varied. Parameter effect and interactions were analyzed with effects plots. The model was driven with forcing data from ten meteorological stations in Switzerland, representing a wide range of precipitation regimes across a strong temperature gradient. Of the 19 original parameters, eight were identified as important in the screening analysis. Both steps highlighted the importance of Plant Available Water Capacity (AWC) and Leaf Area Index (LAI). However, their effect varies greatly across stations. For example, while a transition from a

  15. Digestive parameters and water turnover of the leopard tortoise.

    PubMed

    McMaster, Megan K; Downs, Colleen T

    2008-09-01

    Leopard tortoises (Stigmochelys pardalis) experience wide fluctuations in environmental conditions and unpredictable availability of food and water within the Nama-Karoo biome. It was hypothesised that tortoises fed two diets differing in preformed water and fibre content would have differing food intake, gut transit rate, assimilation efficiency, faecal and urinary water loss, and urine concentrations. It was predicted that tortoises fed these contrasting diets would attempt to maintain energy and water balance by altering their digestive parameters. Leopard tortoises fed lucerne (Medicago sativa) had a low food intake coupled with long gut transit times, which resulted in the lowest amount of faecal energy and faecal water lost. Tortoises fed tomatoes (Solanum lycopersicum) had higher food intake and faster gut transit times, but more energy and water was lost in the faeces. However, daily energy assimilated and assimilation efficiency were comparable between tortoises fed the two diets. Urine osmolality was significantly different between tortoises on the two diets. Results indicate that leopard tortoises can adjust parameters such as transit rate, food intake, water loss and urine osmolality to maintain body mass, water and energy balance in response to a high fibre, low water content and a low fibre, high water content diet. This study suggests that this digestive flexibility allows leopard tortoises in the wild to take advantage of unpredictable food and water resources.

  16. Assessing the Importance of Incorporating Spatial and Temporal Variability of Soil and Plant Parameters into Local Water Balance Models for Precision Agriculture: Investigations within a California Vineyard

    NASA Astrophysics Data System (ADS)

    Hubbard, S.; Pierce, L.; Grote, K.; Rubin, Y.

    2003-12-01

    Due Due to the high cash crop nature of premium winegrapes, recent research has focused on developing a better understanding of the factors that influence winegrape spatial and temporal variability. Precision grapevine irrigation schemes require consideration of the factors that regulate vineyard water use such as (1) plant parameters, (2) climatic conditions, and (3) water availability in the soil as a function of soil texture. The inability to sample soil and plant parameters accurately, at a dense enough resolution, and over large enough areas has limited previous investigations focused on understanding the influences of soil water and vegetation on water balance at the local field scale. We have acquired several novel field data sets to describe the small scale (decimeters to a hundred meters) spatial variability of soil and plant parameters within a 4 acre field study site at the Robert Mondavi Winery in Napa County, California. At this site, we investigated the potential of ground penetrating radar data (GPR) for providing estimates of near surface water content. Calibration of grids of 900 MHz GPR groundwave data with conventional soil moisture measurements revealed that the GPR volumetric water content estimation approach was valid to within 1 percent accuracy, and that the data grids provided unparalleled density of soil water content over the field site as a function of season. High-resolution airborne multispectral remote sensing data was also collected at the study site, which was converted to normalized difference vegetation index (NDVI) and correlated to leaf area index (LAI) using plant-based measurements within a parallel study. Meteorological information was available from a weather station of the California Irrigation management Information System, located less than a mile from our study area. The measurements were used within a 2-D Vineyard Soil Irrigation Model (VSIM), which can incorporate the spatially variable, high-resolution soil and plant

  17. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  18. Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in

  19. Water balance model for Kings Creek

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1990-01-01

    Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.

  20. Parameter Balancing in Kinetic Models of Cell Metabolism†

    PubMed Central

    2010-01-01

    Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants needed for a model could be collected from ever-growing literature and public web resources, but they are often incomplete, incompatible, or simply not available. We address this lack of information by parameter balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep the estimated quantities within plausible ranges. An online service and free software for parameter balancing with models provided in SBML format (Systems Biology Markup Language) is accessible at www.semanticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and discuss its possible applications and limitations. In the future, parameter balancing could become an important routine step in the kinetic modeling of large metabolic networks. PMID:21038890

  1. A continuous high resolution water isotope dataset to constrain Alpine water balance estimates

    NASA Astrophysics Data System (ADS)

    Michelon, Anthony; Ceperley, Natalie; Beria, Harsh; Larsen, Josh; Schaefli, Bettina

    2017-04-01

    Water delivered from Alpine environments is a crucial resource for many countries around the world. Precipitation accumulated during cold seasons as snowpack or glaciers is often an important source of water during warm (dry) season but also a dominant contributor to the annual water balance. In Switzerland, water from high Alpine, glacier-fed catchments provides a large portion of both the hydroelectric power and water supply. However, large uncertainties regarding changes in glacier volume and snow accumulation can have significant impacts on hydrologic, biologic, physical and economic understanding, modeling, and predictions. Accurately quantifying these water resources is therefore an on-going challenge. Given the well-known difficulty observing solid precipitation (snowfall), it can be assumed that most of the uncertainty in water balance estimates for snow-dominated environments is due to: 1) Poor measurement of winter precipitation and 2) A poor estimation of timing and amount of snow melt. It is noteworthy that the timing of melt plays a crucial role even for annual water balance estimates since it might significantly influence melt runoff flow paths and thereby groundwater recharge. We use continuous monitoring of water stable isotopes over the entire annual cycle in an Alpine catchment to shed light on how such observations can constrain water balance estimates. The selected catchment is the experimental Vallon de Nant catchment in the Vaud Alps of Switzerland, where detailed hydrologic observations have recently started in addition to the existing vegetation and soil investigations. The Vallon de Nant (14 km2, and an altitude ranging from 1200 to 3051 m) is a narrow valley that accumulates large amounts of snow during winter. In spring and summer, the river discharge is mainly supplied by snowmelt, with additional inputs from a small glacier and rainfall. Continuous monitoring of water stable isotopes (δO18 and δD) is combined with measurements of

  2. Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.

    2000-04-01

    A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.

  3. Water and sodium balance in space.

    PubMed

    Drummer, C; Norsk, P; Heer, M

    2001-09-01

    We have previously shown that fluid balances and body fluid regulation in microgravity (microG) differ from those on Earth (Drummer et al, Eur J Physiol 441:R66-R72, 2000). Arriving in microG leads to a redistribution of body fluid-composed of a shift of fluid to the upper part of the body and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless, cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary sodium excretion is diminished and a considerable amount of sodium is retained-without accumulating in the intravascular space. An enormous storage capacity for sodium in the extravascular space and a mechanism that allows the dissociation between water and sodium handling likely contribute to the fluid balance adaptation in weightlessness.

  4. The water balance questionnaire: design, reliability and validity of a questionnaire to evaluate water balance in the general population.

    PubMed

    Malisova, Olga; Bountziouka, Vassiliki; Panagiotakos, Demosthenes B; Zampelas, Antonis; Kapsokefalou, Maria

    2012-03-01

    There is a need to develop a questionnaire as a research tool for the evaluation of water balance in the general population. The water balance questionnaire (WBQ) was designed to evaluate water intake from fluid and solid foods and drinking water, and water loss from urine, faeces and sweat at sedentary conditions and physical activity. For validation purposes, the WBQ was administrated in 40 apparently healthy participants aged 22-57 years (37.5% males). Hydration indices in urine (24 h volume, osmolality, specific gravity, pH, colour) were measured through established procedures. Furthermore, the questionnaire was administered twice to 175 subjects to evaluate its reliability. Kendall's τ-b and the Bland and Altman method were used to assess the questionnaire's validity and reliability. The proposed WBQ to assess water balance in healthy individuals was found to be valid and reliable, and it could thus be a useful tool in future projects that aim to evaluate water balance.

  5. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    PubMed

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  6. Climate, soil water storage, and the average annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability

  7. SENSITIVITY OF THE REGIONAL WATER BALANCE IN THE COLUMBIA RIVER BASIN TO CLIMATE VARIABILITY: APPLICATION OF A SPATIALLY DISTRIBUTED WATER BALANCE MODEL

    EPA Science Inventory

    A one-dimensional water balance model was developed and used to simulate water balance for the Columbia River Basin. he model was run over a 10 km X 10 km grid for the United State's portion of the basin. he regional water balance was calculated using a monthly time-step for a re...

  8. Evaluation of alternative model-data fusion approaches in water balance estimation across Australia

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Renzullo, L. J.

    2009-04-01

    Australia's national agencies are developing a continental modelling system to provide a range of water information services. It will include rolling water balance estimation to underpin national water accounts, water resources assessments that interpret current water resources availability and trends in a historical context, and water resources predictions coupled to climate and weather forecasting. The nation-wide coverage, currency, accuracy, and consistency required means that remote sensing will need to play an important role along with in-situ observations. Different approaches to blending models and observations can be considered. Integration of on-ground and remote sensing data into land surface models in atmospheric applications often involves state updating through model-data assimilation techniques. By comparison, retrospective water balance estimation and hydrological scenario modelling to date has mostly relied on static parameter fitting against observations and has made little use of earth observation. The model-data fusion approach most appropriate for a continental water balance estimation system will need to consider the trade-off between computational overhead and the accuracy gains achieved when using more sophisticated synthesis techniques and additional observations. This trade-off was investigated using a landscape hydrological model and satellite-based estimates of soil moisture and vegetation properties for aseveral gauged test catchments in southeast Australia.

  9. A Water Balance Approach to Characterizing the Hydroclimatology of a Mountainous Semi-arid Catchment

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Flerchinger, G.; Marks, D.; Link, T.

    2004-12-01

    A long-term water balance is needed to understand the hydrology of mountainous semi-arid catchments, which exhibit considerable interannual variability in precipitation and temperature as well as spatial variation in snow accumulation, soils, and vegetation. Long-term data sets reduce the uncertainty associated with estimating water balance quantities that are difficult to measure in practice. In this study, the data required to compute a long-term water balance are assembled from on-site and nearby locations to create a continuous 21-year hourly record of precipitation, meteorological parameters, and streamflow for the Upper Sheep Creek (USC) catchment, a 26 ha, snow-fed, semi-arid rangeland headwater drainage within the Reynolds Creek Experimental Watershed in southwestern Idaho, USA. This study will allow us to extend a previous 10-year water balance (water years 1985-1994) computed for the USC catchment, enabling a more thorough consideration of climate variability including periods of drought and flood. It also sets the stage for analyzing the hydrologic response of the USC catchment to a prescribed fire planned for 2006. Statistical correlations between on-site and nearby meteorological stations were used to develop a complete 21-year hourly data set (water years 1984-2004) of climate and precipitation records. These data will be used to drive the Simultaneous Heat and Water (SHAW) model to simulate evaporation and transpiration, precipitation, storage, and stream discharge. Water balance quantities will be computed for separate landscape units and then aggregated for the overall watershed. This research will improve our ability to manage water resources in semi-arid mountain regions.

  10. Landscape-Scale water balance of cotton fields

    USDA-ARS?s Scientific Manuscript database

    Information on the temporal and spatial distribution of the components of the water balance of a production field is necessary to manage agronomic inputs. Furthermore, factors that determine crop yield require knowledge of the energy, water, nutrient and carbon balance and their interaction. The in...

  11. Quantifying catchment water balances and their uncertainties by expert elicitation

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten

    2017-04-01

    The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure

  12. Regional patterns of interannual variability of catchment water balances across the continental U.S.: A Budyko framework

    NASA Astrophysics Data System (ADS)

    Carmona, Alejandra M.; Sivapalan, Murugesu; Yaeger, Mary A.; Poveda, Germán.

    2014-12-01

    Patterns of interannual variability of the annual water balance are explored using data from 190 MOPEX catchments across the continental U.S. This analysis has led to the derivation of a quantitative, dimensionless, Budyko-type framework to characterize the observed interannual variability of annual water balances. The resulting model is expressed in terms of a humidity index that measures the competition between water and energy availability at the annual time scale, and a similarity parameter (α) that captures the net effects of other short-term climate features and local landscape characteristics. This application of the model to the 190 study catchments revealed the existence of space-time symmetry between spatial (between-catchment) variability and general trends in the temporal (between-year) variability of the annual water balances. The MOPEX study catchments were classified into eight similar catchment groups on the basis of magnitudes of the similarity parameter α. Interesting regional trends of α across the continental U.S. were brought out through identification of similarities between the spatial positions of the catchment groups with the mapping of distinctive ecoregions that implicitly take into account common climatic and vegetation characteristics. In this context, this study has introduced a deep sense of similarity that is evident in observed space-time variability of water balances that also reflect the codependence and coevolution of climate and landscape properties.

  13. A Stochastic Water Balance Framework for Lowland Watersheds

    NASA Astrophysics Data System (ADS)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  14. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  15. R package CityWaterBalance | Science Inventory | US EPA

    EPA Pesticide Factsheets

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this package and dependencies, geoknife and dataRetrieval. Urban water flows are difficult to comprehensively quantify. Although many important data sources are openly available, they are published by a variety of agencies in different formats, units, spatial and temporal resolutions. Increasingly, open data are made available via web services, which allow for automated, current retrievals. Integrating data streams and estimating the values of unmeasured urban water flows, however, remains needlessly time-consuming. In order to streamline a reproducible analysis, we have developed the CityWaterBalance package for the open source R language. The CityWaterBalance package for R is based on a simple model of the network of urban water flows and storages. The model may be run with data that has been pre-assembled by the user, or data can be retrieved by functions in CityWaterBalance and dependencies. CityWaterBalance can be used to quickly assemble a quantitative portrait of any urban water system. The systemic effects of water management decisions can be readily explored. Much of the data acquisition process for US cities can already be automated, while the package serves as a place-hold

  16. An efficient soil water balance model based on hybrid numerical and statistical methods

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  17. Variations in surface water-ground water interactions along a headwater mountain stream : comparisons between transient storage and water balance analyses

    USGS Publications Warehouse

    Ward, Adam S.; Payn, Robert A.; Gooseff, Michael N.; McGlynn, Brian L.; Bencala, Kenneth E.; Kelleher, Christa A.; Wondzell, Steven M.; Wagener, Thorsten

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We conducted transient storage and mass recovery analyses of artificial tracer studies completed for 28 contiguous 100 m reaches along a stream valley, repeated under four base-flow conditions. We calculated net and gross gains and losses, temporal moments of tracer breakthrough curves, and best fit transient storage model parameters (with uncertainty estimates) for 106 individual tracer injections. Results supported predictions that gross loss of channel water would decrease with increased discharge. However, results showed no clear relationship between discharge and transient storage, and further analysis of solute tracer methods demonstrated that the lack of this relation may be explained by uncertainty and equifinality in the transient storage model framework. Furthermore, comparison of water balance and transient storage approaches reveals complications in clear interpretation of either method due to changes in advective transport time, which sets a the temporal boundary separating transient storage and channel water balance. We have little ability to parse this limitation of solute tracer methods from the physical processes we seek to study. We suggest the combined analysis of both transient storage and channel water balance more completely characterizes transport of solutes in stream networks than can be inferred from either method alone.

  18. Water balance models in one-month-ahead streamflow forecasting

    USGS Publications Warehouse

    Alley, William M.

    1985-01-01

    Techniques are tested that incorporate information from water balance models in making 1-month-ahead streamflow forecasts in New Jersey. The results are compared to those based on simple autoregressive time series models. The relative performance of the models is dependent on the month of the year in question. The water balance models are most useful for forecasts of April and May flows. For the stations in northern New Jersey, the April and May forecasts were made in order of decreasing reliability using the water-balance-based approaches, using the historical monthly means, and using simple autoregressive models. The water balance models were useful to a lesser extent for forecasts during the fall months. For the rest of the year the improvements in forecasts over those obtained using the simpler autoregressive models were either very small or the simpler models provided better forecasts. When using the water balance models, monthly corrections for bias are found to improve minimum mean-square-error forecasts as well as to improve estimates of the forecast conditional distributions.

  19. Virtual water balance estimation in Tunisia

    NASA Astrophysics Data System (ADS)

    Stambouli, Talel; Benalaya, Abdallah; Ghezal, Lamia; Ali, Chebil; Hammami, Rifka; Souissi, Asma

    2015-04-01

    The water in Tunisia is limited and unevenly distributed in the different regions, especially in arid zones. In fact, the annual rainfall average varies from less than 100 mm in the extreme South to over 1500 mm in the extreme North of the country. Currently, the conventional potential of water resources of the country is estimated about 4.84 billion m³ / year of which 2.7 billion cubic meters / year of surface water and 2.14 billion cubic meters / year of groundwater, characterizing a structural shortage for water safety in Tunisia (under 500m3/inhabitant/year). With over than 80% of water volumes have been mobilized for agriculture. The virtual water concept, defined by Allan (1997), as the amount of water needed to generate a product of both natural and artificial origin, this concept establish a similarity between product marketing and water trade. Given the influence of water in food production, virtual water studies focus generally on food products. At a global scale, the influence of these product's markets with water management was not seen. Influence has appreciated only by analyzing water-scarce countries, but at the detail level, should be increased, as most studies consider a country as a single geographical point, leading to considerable inaccuracies. The main objective of this work is the virtual water balance estimation of strategic crops in Tunisia (both irrigated and dry crops) to determine their influence on the water resources management and to establish patterns for improving it. The virtual water balance was performed basing on farmer's surveys, crop and meteorological data, irrigation management and regional statistics. Results show that the majority of farmers realize a waste of the irrigation water especially at the vegetable crops and fruit trees. Thus, a good control of the cultural package may result in lower quantities of water used by crops while ensuring good production with a suitable economic profitability. Then, the virtual water

  20. A study of water balances over the Tigris-Euphrates watershed

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Chen, Z. Q.; Anderson, M. L.; Ohara, N.; Yoon, J. Y.; Xiang, Fu

    Tigris-Euphrates watershed was considered as one hydrologic unit, and a scientific assessment of its water resources was performed. Accordingly, (a) an inventory of land use/land cover, vegetation, soils, and existing hydraulic structures in the watershed was performed; (b) a regional hydroclimate model, RegHCM-TE, of the watershed was developed, and used to reconstruct historical precipitation data, to perform land hydrologic water balance computations for infiltration, soil water storage, actual evapotranspiration, direct runoff as input for streamflow computations, and to estimate irrigation water demands; and (c) a hydrologic model was developed to route streamflows within the river network of the watershed. Also, an algorithm for operating the reservoirs within the watershed was developed, and utilized to perform dynamic water balance studies under various water supply/demand scenarios to establish efficient utilization of the watershed’s water resources to meet the water demands of the riparian countries in the basin. Within this dynamic water balance framework, it is possible to assess and quantify the effect of sequential river flows on the chronologically sequential water balances over the watershed. The water balance study for the natural flow conditions prior to the development of large dams within TE basin, during the 1957-1969 critical period is presented.

  1. Development of a 5-Component Balance for Water Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.

    1999-01-01

    The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a

  2. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  3. A Monthly Water-Balance Model Driven By a Graphical User Interface

    USGS Publications Warehouse

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  4. Water balance at a low-level radioactive-waste disposal site

    USGS Publications Warehouse

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  5. Assessment of Seasonal Water Balance Components over India Using Macroscale Hydrological Model

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Raju, P. V.; Hakeem, K. A.; Rao, V. V.; Yadav, A.; Issac, A. M.; Diwakar, P. G.; Dadhwal, V. K.

    2016-12-01

    Hydrological models provide water balance components which are useful for water resources assessment and for capturing the seasonal changes and impact of anthropogenic interventions and climate change. The study under description is a national level modeling framework for country India using wide range of geo-spatial and hydro-meteorological data sets for estimating daily Water Balance Components (WBCs) at 0.15º grid resolution using Variable Infiltration Capacity model. The model parameters were optimized through calibration of model computed stream flow with field observed yielding Nash-Sutcliffe efficiency between 0.5 to 0.7. The state variables, evapotranspiration (ET) and soil moisture were also validated, obtaining R2 values of 0.57 and 0.69, respectively. Using long-term meteorological data sets, model computation were carried to capture hydrological extremities. During 2013, 2014 and 2015 monsoon seasons, WBCs were estimated and were published in web portal with 2-day time lag. In occurrence of disaster events, weather forecast was ingested, high surface runoff zones were identified for forewarning and disaster preparedness. Cumulative monsoon season rainfall of 2013, 2014 and 2015 were 105, 89 and 91% of long period average (LPA) respectively (Source: India Meteorological Department). Analysis of WBCs indicated that corresponding seasonal surface runoff was 116, 81 and 86% LPA and evapotranspiration was 109, 104 and 90% LPA. Using the grid-wise data, the spatial variation in WBCs among river basins/administrative regions was derived to capture the changes in surface runoff, ET between the years and in comparison with LPA. The model framework is operational and is providing periodic account of national level water balance fluxes which are useful for quantifying spatial and temporal variation in basin/sub-basin scale water resources, periodical water budgeting to form vital inputs for studies on water resources and climate change.

  6. On the Capabilities of Using AIRSAR Data in Surface Energy/Water Balance Studies

    NASA Technical Reports Server (NTRS)

    Moreno, Jose F.; Saatchi, Sasan S.

    1996-01-01

    In this paper an algorithm is described that allows derivation of three fundamental parameters from synthetic aperture radar (SAR) data: soil moisture, soil roughness, and canopy water content, accounting for the effects of vegetation cover by using optical (Landsat) data as auxiliary. The capabilities and limitations of the data and algorithms are discussed, as well as possibilities to use these data in energy/water balance modeling studies. All of the data used in this study was acquired as part of the European Field Experiment in a Desertification Threatened Area.

  7. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    PubMed

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  8. Temporal and spatial variability of global water balance

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  9. The Great Lakes Water Balance: Data availability and annotated bibliography of selected references

    USGS Publications Warehouse

    Neff, Brian P.; Killian, Jason R.

    2003-01-01

    Water balance calculations for the Great Lakes have been made for several decades and are a key component of Great Lakes water management. Despite the importance of the water balance, little has been done to inventory and describe the data available for use in water balance calculations. This report provides a catalog and brief description of major datasets that are used to calculate the Great Lakes water balance. Several additional datasets are identified that could be used to calculate parts of the water balance but currently are not being used. Individual offices and web pages that are useful for attaining these datasets are included. Four specific data gaps are also identified. An annotated bibliography of important publications dealing with the Great Lakes water balance is included. The findings of this investigation permit resource managers and scientists to access data more easily, assess shortcomings of current datasets, and identify which data are not currently being utilized in water balance calculations.

  10. CityWaterBalance: Track Flows of Water Through an Urban System

    EPA Science Inventory

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this p...

  11. Effects of evapotranspiration heterogeneity on catchment water balance in the Southern Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Kelly, A. E.; Lucas, R. G.; Son, K.; Glaser, S. D.; Bales, R. C.

    2011-12-01

    Heterogeneity of Evapotranspiration (ET) is the result of poorly understood interactions between climate, topography, vegetation and soil. Accurate predictions of ET, and thus improved water balance estimates, hinge directly upon an improved understanding of the processes that drive ET across a wide spatio-temporal range. Recent warming trends in the Western US are shifting precipitation toward more rain-dominated patterns, significantly increasing vegetation water stress in historically snow-dominated regimes due to reduced soil moisture and increased vapor deficit during warm summer months. We investigate dominant controls that govern ET variability in a highly instrumented 1km2 mountain catchment at the Southern Sierra Critical Zone Observatory, co-located in the Kings River Experimental Watershed. Various ET estimates are derived from a number of measurement approaches: an eddy flux covariance tower, ET chambers, stream flumes, groundwater monitoring wells, matric potential sensors, as well as data from a distributed wireless sensor network with over 300 sensors. Combined with precipitation data, and high-density distributed soil moisture and snowdepth readings, the ET estimates are utilized to reconstruct the overall catchment water balance. We also apply the Regional Hydro-Ecologic Simulation System (RHESSys), a physically based, spatially distributed hydrologic model, to estimate water balance components. The model predictions are compared with the water budget calculated from field data, and used to identify the key variables controlling spatial and temporal patterns of ET at multiple scales. Initial results show that ET estimates are scale-, and vegetation-dependent, with significant ET variability between vegetation types and physiographic parameters such as elevation, slope, and aspect. In mixed conifer forests terrain, ET is more dependent on soil moisture, while in the meadows, where the soil is generally saturated for the duration of the growing

  12. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    PubMed

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    USGS Publications Warehouse

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.

  14. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    PubMed Central

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  15. Development of a simplified urban water balance model (WABILA).

    PubMed

    Henrichs, M; Langner, J; Uhl, M

    2016-01-01

    During the last decade, water sensitive urban design (WSUD) has become more and more accepted. However, there is not any simple tool or option available to evaluate the influence of these measures on the local water balance. To counteract the impact of new settlements, planners focus on mitigating increases in runoff through installation of infiltration systems. This leads to an increasing non-natural groundwater recharge and decreased evapotranspiration. Simple software tools which evaluate or simulate the effect of WSUD on the local water balance are still needed. The authors developed a tool named WABILA (Wasserbilanz) that could support planners for optimal WSUD. WABILA is an easy-to-use planning tool that is based on simplified regression functions for established measures and land covers. Results show that WSUD has to be site-specific, based on climate conditions and the natural water balance.

  16. Water balance dynamics in the Nile Basin

    USGS Publications Warehouse

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  17. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy.

    PubMed

    Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T

    2015-01-01

    The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  18. Myths and methodologies: Making sense of exercise mass and water balance.

    PubMed

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass

  19. Regional estimation of base recharge to ground water using water balance and a base-flow index.

    PubMed

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2003-01-01

    Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.

  20. Water balance throughout the adult life span in a German population.

    PubMed

    Manz, Friedrich; Johner, Simone A; Wentz, Andreas; Boeing, Heiner; Remer, Thomas

    2012-06-01

    Mild dehydration, defined as a 1-2% loss in body mass caused by fluid deficit, is associated with risks of functional impairments and chronic diseases. Whether water requirements change with increasing age remains unclear. Therefore, the aim of the present investigation is to quantify hydration status and its complex determining factors from young to old adulthood to analyse age-related alterations and to provide a reliable database for the derivation of dietary recommendations. Urine samples collected over a 24 h period and dietary records from 1528 German adults (18-88 years; sub-sample of the first National Food Consumption Survey) were used to calculate water intake (beverages, food and metabolic water) and water excretion parameters (non-renal water losses (NRWL), urine volume, obligatory urine volume) and to estimate hydration status (free-water-reserve) and 'adequate intake (AI)'. Median total water intake (2483 and 2054ml/d, for men and women, respectively (P<0·0001)), decreased with increasing age only in males (P=0·001). Obligatory urine volume increased in both sexes (P<0·0001) due to decreased renal concentration capacity. The latter was balanced by a decrease of NRWL (P<0·05), leaving the free-water-reserve and therefore hydration status almost unchanged. Calculated 'AI' of total water was the same for young (18-24 years) and elderly (≥65 years) adults (2910 and 2265ml/d, for men and women, respectively). The present study is the first population-based examination showing that total water requirements do not change with age although ageing affects several parameters of water metabolism. Reduced sweat loss with increasing age appears to be primarily responsible for this observation.

  1. Regenerative (Regen) ECLSS Operations Water Balance

    NASA Technical Reports Server (NTRS)

    Tobias, Barry

    2010-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."

  2. Spacebased Observation of Water Balance Over Global Oceans

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xie, X.

    2008-12-01

    We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.

  3. Evaluation of a spatially-distributed Thornthwaite water-balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lough, J.A.

    1993-03-01

    A small watershed of low relief in coastal New Hampshire was divided into hydrologic sub-areas in a geographic information system on the basis of soils, sub-basins and remotely-sensed landcover. Three variables were spatially modeled for input to 49 individual water-balances: available water content of the root zone, water input and potential evapotranspiration (PET). The individual balances were weight-summed to generate the aggregate watershed-balance, which saw 9% (48--50 mm) less annual actual-evapotranspiration (AET) compared to a lumped approach. Analysis of streamflow coefficients suggests that the spatially-distributed approach is more representative of the basin dynamics. Variation of PET by landcover accounted formore » the majority of the 9% AET reduction. Variation of soils played a near-negligible role. As a consequence of the above points, estimates of landcover proportions and annual PET by landcover are sufficient to correct a lumped water-balance in the Northeast. If remote sensing is used to estimate the landcover area, a sensor with a high spatial resolution is required. Finally, while the lower Thornthwaite model has conceptual limitations for distributed application, the upper Thornthwaite model is highly adaptable to distributed problems and may prove useful in many earth-system models.« less

  4. Evapotranspiration management based on the application of SWAT for balancing water consumption: A case study in Guantao, China

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gan, Hong

    2018-06-01

    Rapid social and economic development results in increased demand for water resources. This can lead to the unsustainable development and exploitation of water resources which in turn causes significant environmental problems. Conventional water resource management approaches, such as supply and demand management strategies, frequently fail to restore regional water balance. This paper introduces the concept of water consumption balance, the balance between actual evapotranspiration (ET) and target ET, and establishes a framework to realize regional water balance. The framework consists of three stages: (1) determination of target ET and actual ET; (2) quantification of the water-saving requirements for the region; and (3) reduction of actual ET by implementing various water saving management strategies. Using this framework, a case study was conducted for Guantao County, China. The SWAT model was utilized to aid in the selection of the best water saving management strategy by comparing the ET of different irrigation methods and crop pattern adjustments. Simulation results revealed that determination of SWAT model parameters using remote sensing ET is feasible and that the model is a valuable tool for ET management. Irrigation was found to have a greater influence on the ET of winter wheat as compared to that of maize, indicating that reduction in winter wheat cultivation is the most effective way to reduce regional ET. However, the effect of water-saving irrigation methods on the reduction of ET was not obvious. This indicates that it would be difficult to achieve regional ET reduction using water-saving irrigation methods only. Furthermore, selecting the best water saving management strategy by relying solely on the amount of reduced ET was insufficient, because it ignored the impact of water conservation measures on the livelihood of the agricultural community. Incorporating these considerations with our findings, we recommend changing the current irrigation

  5. Assessment of Cropland Water and Nitrogen Balance from Climate Change in Korea Peninsular

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Song, C.; Kim, T.; Lee, W. K.; Jeon, S. W.

    2015-12-01

    If crop growth is based on cropland productivity, the changes are due to changes in water and nitrogen balance from climate. In this study, order to estimation the change in cropland water and nitrogen balance in Korea peninsular using meteorological data observed last 30 years(1984-2013y). And we used soil, topography and management data about cropland. So as to estimating water and nitrogen variables, we used to the GIS based EPIC model that is major crop model in agro-ecosystem modelling field. Among the much of water and nitrogen variables, we selected to evapotranspiration, runoff, precipitation, nitrification, N lost, N contents and denitrification for this analysis. This selected variables associate with cropland water and nitrogen balance.First result, we can found the water balance changes in Korea peninsular, especially South Korea better condition than North Korea. In North Korea, evapotranspiration and precipitation result were lower than South Korea, but runoff result was bigger than South Korea. And we got a result about nitrogen balance changes in Korea peninsular from climate. In spatially, South and North Korea showed to similar condition on nitrogen balance in whole period. But in temporally, showed negative trends as time goes on, it caused by climate change. Overall condition of water and nitrogen balance on last 30 years in Korea peninsular, South Korea showed better condition than North Korea. Water and nitrogen balance change means have to be changed on agriculture management action, such as irrigation and fertilizer. In future period, climate change will cause a large effect to cropland water and nitrogen balance in mid-latitude area, so we have to prepare the change of this field for wise adaptation by climate change.

  6. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers

  7. Semi-arid vegetation response to antecedent climate and water balance windows

    USGS Publications Warehouse

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  8. Target Water Consumption Calculation for Human Water Management based on Water Balance

    NASA Astrophysics Data System (ADS)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  9. Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2005-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.

  10. Estimating system parameters for solvent-water and plant cuticle-water using quantum chemically estimated Abraham solute parameters.

    PubMed

    Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M

    2018-04-18

    Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.

  11. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    NASA Astrophysics Data System (ADS)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  12. Storing and sharing water in sand rivers: a water balance modelling approach

    NASA Astrophysics Data System (ADS)

    Love, D.; van der Zaag, P.; Uhlenbrook, S.

    2009-04-01

    Sand rivers and sand dams offer an alternative to conventional surface water reservoirs for storage. The alluvial aquifers that make up the beds of sand rivers can store water with minimal evaporation (extinction depth is 0.9 m) and natural filtration. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin. The lower Mzingwane aquifer, which is currently underutilised, is recharged by managed releases from Zhovhe Dam (capacity 133 Mm3). The volume of water released annually is only twice the size of evaporation losses from the dam; the latter representing nearly one third of the dam's storage capacity. The Lower Mzingwane valley currently support commercial agro-businesses (1,750 ha irrigation) and four smallholder irrigation schemes (400 ha with provision for a further 1,200 ha). In order to support planning for optimising water use and storage over evaporation and to provide for more equitable water allocation, the spreadsheet-based balance model WAFLEX was used. It is a simple and userfriendly model, ideal for use by institutions such as the water management authorities in Zimbabwe which are challenged by capacity shortfalls and inadequate data. In this study, WAFLEX, which is normally used for accounting the surface water balance, is adapted to incorporate alluvial aquifers into the water balance, including recharge, baseflow and groundwater flows. Results of the WAFLEX modelling suggest that there is surplus water in the lower Mzingwane system, and thus there should not be any water conflicts. Through more frequent timing of releases from the dam and maintaining the alluvial aquifers permanently saturated, less evaporation losses will occur in the system and the water resources can be better shared to provide more irrigation water for smallholder farmers in the highly resource-poor communal lands along the river. Sand dams are needed to augment the aquifer storage system and improve access to water. An

  13. Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.

    PubMed

    Charalambous, Katerina; Bruggeman, Adriana; Lange, Manfred A

    2012-01-01

    Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.

  14. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    NASA Astrophysics Data System (ADS)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water

  15. Use of a stochastic approach for description of water balance and runoff production dynamics

    NASA Astrophysics Data System (ADS)

    Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M.

    2009-04-01

    The present study exploits an analytical model (Manfreda, NHESS [2008]) for the description of the probability density function of soil water balance and runoff generation over a set of river basins belonging to Southern Italy. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance; the watershed heterogeneity is described exploiting the conceptual lumped watershed Xinanjiang model (widely used in China) that uses a parabolic curve for the distribution of the soil water storage capacity (Zhao et al. [1980]). The model, characterized by parameters that depend on soil, vegetation and basin morphology, allowed to derive the probability density function of the relative saturation and the surface runoff of a basin accounting for the spatial heterogeneity in soil water storage. Its application on some river basins belonging to regions of Southern Italy, gives interesting insights for the investigation of the role played by the dynamical interaction between climate, soil, and vegetation in soil moisture and runoff production dynamics. Manfreda, S., Runoff Generation Dynamics within a Humid River Basin, Natural Hazard and Earth System Sciences, 8, 1349-1357, 2008. Zhao, R. -J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS Pub. 129, 351-356, 1980.

  16. Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models

    NASA Astrophysics Data System (ADS)

    Niemand, C.; Kuhn, K.; Schwarze, R.

    2010-12-01

    SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for

  17. Climatic change impacts on water balance of the Upper Jordan River

    NASA Astrophysics Data System (ADS)

    Heckl, A.; Kunstmann, H.

    2009-04-01

    The Eastern Mediterranean and Near East (EM/NE) is an extremely water scarce environment. It is expected that problems will increase due to climate change and population growth. The impact of climate change on water availability in EM/NE and in particular the Jordan River catchment is investigated in this study. Focus is set on the Upper Jordan River catchment (UJC) as it provides 1/3rd of freshwater resources in Israel and Palestine. It is a hydro-geologically extremely complex region with karstic groundwater flow and an orography with steep gradients. The methods used are high resolution coupled regional climate - hydrology simulations. Two IPCC scenarios (A2 and B2) of the global climate model ECHAM4 have been dynamically downscaled using the non-hydrostatic meteorological model MM5 in two nesting steps with resolutions of 54x54 km2 and 18x18 km2 for the period 1961-2099, whereby the time slice 1961-1989 represents the current climate. The meteorological fields are used to drive the physically based hydrological model WaSiM applied to the UJC. The hydrological model computes in detail the surface and subsurface water flow and water balance in a horizontal resolution of 450 x 450 m2 and dynamically couples to a 2-dim numerical groundwater model. Parameters like surface runoff, groundwater recharge, soil moisture and evapotranspiration can be extracted. Results show in both scenarios increasing yearly mean temperatures up to 4-5 K until 2099 and decreasing yearly precipitation amounts up to 25% (scenario A2). The effect on the water balance of the UJC are reduced discharge and groundwater recharge, increased evaporation and reduction of snow cover in the mountains which usually serves as an important freshwater reservoir for the summer discharge.

  18. Hormonal Contraception, Body Water Balance and Thermoregulation

    DTIC Science & Technology

    1997-10-01

    Schreiber, and M. D. Lindheimer. Effect of ovarian sex steroids on osmoregulation and vasopressin secretion in the rat. Am. J. Physiol. 250 (Endocrinol...two widely used oral contraceptive preparations differ significantly in their estrogenicity. Estrogens have potent effects on the regulation of body...water balance (1, 4), so these two forms of oral contraceptive pills may differ in their effects on water regulation, and hence on physical performance

  19. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  20. Monitoring the water balance of Lake Victoria, East Africa, from space

    NASA Astrophysics Data System (ADS)

    Swenson, Sean; Wahr, John

    2009-05-01

    SummaryUsing satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003-2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as 60 {mm}/{year}, while altimetric data show that lake levels in some large lakes dropped by as much as 1-2 m. The largest declines occurred in Lake Victoria, the Earth's second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake's decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria's water balance to within 17 {mm}/{month}. The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a

  1. A TEN-YEAR WATER BALANCE OF A MOUNTAINOUS SEMI-ARID WATERSHED. (R824784)

    EPA Science Inventory

    Quantifying water balance components, which is particularly challenging in snow-fed, semi-arid regions, is crucial to understanding the basic hydrology of a watershed. In this study, a water balance was computed using 10 years of data collected at the Upper Sheep Creek Water...

  2. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  3. The evolution of water balance in Glossina (Diptera: Glossinidae): correlations with climate.

    PubMed

    Kleynhans, Elsje; Terblanche, John S

    2009-02-23

    The water balance of tsetse flies (Diptera: Glossinidae) has significant implications for understanding biogeography and climate change responses in these African disease vectors. Although moisture is important for tsetse population dynamics, evolutionary responses of Glossina water balance to climate have been relatively poorly explored and earlier studies may have been confounded by several factors. Here, using a physiological and GIS climate database, we investigate potential interspecific relationships between traits of water balance and climate. We do so in conventional and phylogenetically independent approaches for both adults and pupae. Results showed that water loss rates (WLR) were significantly positively related to precipitation in pupae even after phylogenetic adjustment. Adults showed no physiology-climate correlations. Ancestral trait reconstruction suggests that a reduction in WLR and increased size probably evolved from an intermediate ancestral state and may have facilitated survival in xeric environments. The results of this study therefore suggest an important role for water balance physiology of pupae in determining interspecific variation and lend support to conclusions reached by early studies of tsetse physiology.

  4. Climate, interseasonal storage of soil water, and the annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    The effects of annual totals and seasonal variations of precipitation and potential evaporation on the annual water balance are explored. It is assumed that the only other factor of significance to annual water balance is a simple process of water storage, and that the relevant storage capacity is the plant-available water-holding capacity of the soil. Under the assumption that precipitation and potential evaporation vary sinusoidally through the year, it is possible to derive an analytic solution of the storage problem, and this yields an expression for the fraction of precipitation that evaporates (and the fraction that runs off) as a function of three dimensionless numbers: the ratio of annual potential evaporation to annual precipitation (index of dryness); an index of the seasonality of the difference between precipitation and potential evaporation; and the ratio of plant-available water-holding capacity to annual precipitation. The solution is applied to the area of the United States east of 105??W, using published information on precipitation, potential evaporation, and plant-available water-holding capacity as inputs, and using an independent analysis of observed river runoff for model evaluation. The model generates an areal mean annual runoff of only 187 mm, which is about 30% less than the observed runoff (263 mm). The discrepancy is suggestive of the importance of runoff-generating mechanisms neglected in the model. These include intraseasonal variability (storminess) of precipitation, spatial variability of storage capacity, and finite infiltration capacity of land. ?? 1994.

  5. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  6. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  7. 30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...

  8. 30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...

  9. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was

  10. Utilization of a balanced steady state free precession signal model for improved fat/water decomposition.

    PubMed

    Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F

    2016-03-01

    Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.

  11. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  12. Effect of low sea water temperature on water balance in the Atlantic salmon, (Salmo salar L.).

    PubMed

    Lega, Y V; Chernitsky, A G; Belkovsky, N M

    1992-08-01

    The water balance in Atlantic salmon (Salmo salar L.) overwintering in sea water (34 ‰) was investigated. With a decrease of temperature from 5.6 to 1.0°C the drinking rate decreased from 13.9 to 5.7 ml/kg/day, and the absolute amount of water absorbed decreased from 8.9 to 5.0 ml/kg/day. A decrease in temperature led, however, to an increase in the proportion of water absorbed in the intestines from 60 to 96%. Blood serum osmolarity increased from 320 to 440 mosm/1 with decreasing temperature and there was a reduction in tissue water content from 75 to 69% The disturbance of water balance at low temperature may be one of the factors responsible for mortality of salmon overwintering in sea water.

  13. Student Misconceptions in Writing Balanced Equations for Dissolving Ionic Compounds in Water

    ERIC Educational Resources Information Center

    Naah, Basil M.; Sanger, Michael J.

    2012-01-01

    The goal of this study was to identify student misconceptions and difficulties in writing symbolic-level balanced equations for dissolving ionic compounds in water. A sample of 105 college students were asked to provide balanced equations for dissolving four ionic compounds in water. Another 37 college students participated in semi-structured…

  14. Water--Problems and Solutions. A Report Concerning the Problems and Solutions of Negative Water Balance.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Outdoor leaders constantly face problems created by water shortage and, to act effectively, must thoroughly understand the body's use of water and the ways to delay dehydration when water shortage occurs. Dehydration begins when there is a negative water balance, or more water lost than ingested, and progresses from the stage of dryness, to the…

  15. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias.

    PubMed

    Shah, Sanjeev R; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na + ] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na + ], while isotonic changes do not modify plasma [Na + ]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na + ]. EFWB is mathematically proportional to the rate of change in plasma [Na + ] (dP Na /dt) and, therefore, is actively regulated to zero so that plasma [Na + ] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dP Na /dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dP Na /dt as a desired rate of correction of plasma [Na + ] to define a stepwise approach for the treatment of dysnatremias.

  16. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias

    PubMed Central

    Shah, Sanjeev R.; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na+] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na+], while isotonic changes do not modify plasma [Na+]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na+]. EFWB is mathematically proportional to the rate of change in plasma [Na+] (dPNa/dt) and, therefore, is actively regulated to zero so that plasma [Na+] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dPNa/dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dPNa/dt as a desired rate of correction of plasma [Na+] to define a stepwise approach for the treatment of dysnatremias. PMID:29740578

  17. An Evaluation Tool for CONUS-Scale Estimates of Components of the Water Balance

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hay, L.; Farmer, W. H.; Markstrom, S. L.; Kiang, J. E.

    2016-12-01

    Numerous research groups are independently developing data products to represent various components of the water balance (e.g. runoff, evapotranspiration, recharge, snow water equivalent, soil moisture, and climate) at the scale of the conterminous United States. These data products are derived from a range of sources, including direct measurement, remotely-sensed measurement, and statistical and deterministic model simulations. An evaluation tool is needed to compare these data products and the components of the water balance they contain in order to identify the gaps in the understanding and representation of continental-scale hydrologic processes. An ideal tool will be an objective, universally agreed upon, framework to address questions related to closing the water balance. This type of generic, model agnostic evaluation tool would facilitate collaboration amongst different hydrologic research groups and improve modeling capabilities with respect to continental-scale water resources. By adopting a comprehensive framework to consider hydrologic modeling in the context of a complete water balance, it is possible to identify weaknesses in process modeling, data product representation and regional hydrologic variation. As part of its National Water Census initiative, the U.S. Geological survey is facilitating this dialogue to developing prototype evaluation tools.

  18. The springs of Lake Pátzcuaro: chemistry, salt-balance, and implications for the water balance of the lake

    USGS Publications Warehouse

    Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.

    2004-01-01

    Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  20. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  1. Optimization of water balance within the martian crew life support system

    NASA Astrophysics Data System (ADS)

    Sychev, V.; Levinskikh, M.

    The present-day scenarios of the first exploration mission differ in the total length crew size period of the stay on Mars etc However no matter the scenario one of the common problems is optimization of water balance within the crew life support system Water balance optimization implies in addition to regeneration of atmospheric moisture and urine also dehydration of biowastes In this mission all wastes will be stored and for this reason safe storage is prerequisite Investigations of two-component laboratory BLSS in which the autotrophic component was composed of algae Spirulina platensis and the heterotrophic component was represented by Japanese quail Coturnix coturnix japonica dom showed that optimization of the autotrophic and heterotrophic gas exchange and water regeneration from quail biowastes could raise the system susbstance balance to 76 of the total balance during autonomic cultivation of algae and birds In these investigations dehydration of quail biowastes caused significant pollution of water and air by organics toxic for humans It was demonstrated that the sorption technologies applied on the Russian space station MIR and ISS cannot fully absorb organic contaminants released in the process of quail wastes drying Algal suspension as a hydrobiological filter was able to control the organic pollination of both air and water These results are in agreement with the data of ground-based simulation studies with participation of human subjects at IBMP According to the simulation data intensive

  2. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  3. Molybdenum disulfide and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.

    2017-09-01

    Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.

  4. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  5. Global, continental and regional water balance estimates from HYPE catchment modelling

    NASA Astrophysics Data System (ADS)

    Arheimer, Berit; Andersson, Jafet; Crochemore, Louise; Donnelly, Chantal; Gustafsson, David; Hasan, Abdoulghani; Isberg, Kristina; Pechlivanidis, Ilias; Pimentel, Rafael; Pineda, Luis

    2017-04-01

    In the past, catchment modelling mainly focused on simulating the lumped hydrological cycle at local to regional domains with high precision in a specific point of a river. Today, the level of maturity in hydrological process descriptions, input data and methods for parameter constraints makes it possible to apply these models also for multi-basins over large domains, still using the catchment modellers approach with high demands on agreement with observed data. HYPE is a process-oriented, semi-distributed and open-source model concept that is developed and used operationally in Sweden since a decade. Its finest calculation unit is hydrological response units (HRUs) in a catchment and these are assumed to give the same rainfall-runoff response. HRUs are normally made up of similar land cover and management, combined with soil type or elevation. Water divides are retrieved from topography and calculations are integrated for catchments, which can be of different spatial resolution and are coupled along the river network. In each catchment, HYPE calculates the water balance of a given time-step separately for various hydrological storages, such glaciers, active soil, groundwater, river channels, wetlands, floodplains, and lakes. The model is calibrated in a step-wise manner (following the water path-ways) against various sources additional data sources, including in-situ observations, Earth Observation products, soft information and expert judgements (Arheimer et al., 2012; Donnelly et al, 2016; Pechlivanidis and Arheimer 2015). Both the HYPE code and the model set-ups (i.e. input data and parameter values) are frequently released in new versions as they are continuously improved and updated. This presentation will show the results of aggregated water-balance components over large domains, such as the Arctic basin, the European continent, the Indian subcontinent and the Niger River basin. These can easily be compared to results from other kind of large-scale modelling

  6. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    NASA Astrophysics Data System (ADS)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  7. Iron and aluminum solid phase dynamics and carbon storage across a water balance gradient in volcanic soils

    NASA Astrophysics Data System (ADS)

    Bateman, J. B.; Fendorf, S. E.; Vitousek, P.

    2017-12-01

    Iron (Fe) and Aluminum (Al) are major components of volcanic soils, and strongly influence the stability of soil carbon (C). The stability of Fe and Al phases is dictated by the redox conditions and pH of soils, respectively. The water balance of a soil, defined as annual precipitation minus evapotranspiration, ultimately controls pH and redox conditions. Consequently, we hypothesize that water balance influences Fe/Al solid phase dynamics in volcanic soils when the climatic regime has persisted on timescales of 20 ky. To test this hypothesis, we collected soils from a naturally occurring water balance gradient on the windward side of Mauna Kea Volcano in Hawaii, across which water balance ranges from -1270 mm/y to +2000 mm/y. Sampling included complete soil profiles, and 30 cm surface soil samples. We determined the solid phases of Fe/Al with selective extractions and total C via combustion. Extracted Fe/Al were then partitioned into operational pools: organically bound, amorphous, crystalline, primary mineral, primary glass, and residual. All soils in the study were acidic, with pH between 3.4 and 6.4. Soil C varied considerably across the gradient, from <1% C to >15% C by weight. Across sites, soil pH, Fe in primary minerals and glasses, and residual Al are negatively correlated with water balance, while soil C, organic Fe and Al, and crystalline Fe correlated positively with water balance. Organically bound Al increases linearly with water balance, while organically bound Fe is uncorrelated with water balance in soils where water balance is negative and is positively correlated with water balance in wetter sites. These results show that soils developing from the same parent material, though under different water balance regimes, range from lightly weathered ash deposits with little C accumulation in the driest regions, to heavily weathered soils composed of crystalline Fe, organic matter, and organically bound Fe/Al in the wettest regions. Al appears to be the

  8. Meal consumption is ineffective at maintaining or correcting water balance in a desert lizard, Heloderma suspectum.

    PubMed

    Wright, Christian D; Jackson, Marin L; DeNardo, Dale F

    2013-04-15

    Many xeric organisms maintain water balance by relying on dietary and metabolic water rather than free water, even when free water may be available. For such organisms, hydric state may influence foraging decisions, since meal consumption is meeting both energy and water demands. To understand foraging decisions it is vital to understand the role of dietary water in maintaining water balance. We investigated whether meal consumption was sufficient to maintain water balance in captive Gila monsters (Heloderma suspectum) at varying levels of dehydration. Gila monsters could not maintain water balance over long time scales through meal consumption alone. Animals fed a single meal took no longer to dehydrate than controls when both groups were deprived of free water. Additionally, meal consumption imparts an acute short-term hydric cost regardless of hydration state. Meal consumption typically resulted in a significant elevation in osmolality at 6 h post-feeding, and plasma osmolality never fell below pre-feeding levels despite high water content (~70%) of meals. These results failed to support our hypothesis that dietary water is valuable to Gila monsters during seasonal drought. When considered in conjunction with previous research, these results demonstrate that Gila monsters, unlike many xeric species, are heavily reliant on seasonal rainfall and the resulting free-standing water to maintain water balance.

  9. Habitat assortment of sexes and water balance in a dioecious grass.

    PubMed

    Fox, J F; Harrison, A Tyrone

    1981-05-01

    For a dioecious plant species in which males are associated with more xeric habitats and females with more mesic ones, (a) the xeric-mesic habitat difference was confirmed by measuring plant water potential, (b) and males and females had similar water balances and seemed to have no different adaptations to drought. There are slight differences in water potential between the sexes of dioecious plant species, but water balance can be more favorable in either the male or the female. On this account, we reject the "disruptive selection" hypothesis of Freeman et al. (1975) as an explanation for habitat assortment of sexes in dioecious plants. Alternative explanations, based upon parental determination of offspring sex ratios, or environmentally determined sex change, seem more likely.

  10. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    NASA Astrophysics Data System (ADS)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in

  11. Identifying dominant controls on the water balance of partly sealed surfaces

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Schübl, Marleen; Siebert, Caroline; Weiler, Markus

    2017-04-01

    It is the challenge of modern urban development to obtain a near natural state for the urban water balance. For this purpose permeable alternatives to conventional surface sealing have been established during the last decades. A wealth of studies - under laboratory as well as field conditions - has emerged around the globe to examine the hydrological characteristics of different types of pavements. The main results of these studies - measured infiltration and evaporation rates, vary to a great extent between single studies and pavement types due to methodological approaches and local conditions. Within this study we analyze the controls of water balance components of partly sealed urban surfaces derived from an extensive literature review and a series of infiltration experiments conducted on historical and modern pavements within the city of Freiburg, Germany. Measured values published in 48 studies as well as the results of 30 double-ring infiltration experiments were compiled and sorted according to the measured parameter, the pavement type, pavement condition, age of the pavement, porosity of the pavement material and joint filling material as well as joint proportion of joint pavements. The main influencing factors on infiltration / hydraulic conductivity, evaporation rates and groundwater recharge of permeable pavements were identified and quantified using multiple linear regression methods. The analysis showed for both the literature study and our own infiltration experiments that condition and age of the pavement have the major influence on the pavement's infiltration capacity and that maintenance plays an important role for the long-term effectiveness of permeable pavements. For pavements with joints, the porosity of the pavement material seemed to have a stronger influence on infiltration capacity than the proportion of joint surface for which a clear influence could not be observed. Evaporation rates were compared for different surface categories as not

  12. Large Scale Evapotranspiration Estimates: An Important Component in Regional Water Balances to Assess Water Availability

    NASA Astrophysics Data System (ADS)

    Garatuza-Payan, J.; Yepez, E. A.; Watts, C.; Rodriguez, J. C.; Valdez-Torres, L. C.; Robles-Morua, A.

    2013-05-01

    Water security, can be defined as the reliable supply in quantity and quality of water to help sustain future populations and maintaining ecosystem health and productivity. Water security is rapidly declining in many parts of the world due to population growth, drought, climate change, salinity, pollution, land use change, over-allocation and over-utilization, among other issues. Governmental offices (such as the Comision Nacional del Agua in Mexico, CONAGUA) require and conduct studies to estimate reliable water balances at regional or continental scales in order to provide reasonable assessments of the amount of water that can be provided (from surface or ground water sources) to supply all the human needs while maintaining natural vegetation, on an operational basis and, more important, under disturbances, such as droughts. Large scale estimates of evapotranspiration (ET), a critical component of the water cycle, are needed for a better comprehension of the hydrological cycle at large scales, which, in most water balances is left as the residual. For operational purposes, such water balance estimates can not rely on ET measurements since they do not exist, should be simple and require the least ground information possible, information that is often scarce or does not exist at all. Given this limitation, the use of remotely sensed data to estimate ET could supplement the lack of ground information, particularly in remote regions In this study, a simple method, based on the Makkink equation is used to estimate ET for large areas at high spatial resolutions (1 km). The Makkink model used here is forced using three remotely sensed datasets. First, the model uses solar radiation estimates obtained from the Geostationary Operational Environmental Satellite (GOES); Second, the model uses an Enhanced Vegetation Index (EVI) obtained from the Moderate-resolution Imaging Spectroradiometer (MODIS) normalized to get an estimate for vegetation amount and land use which was

  13. A water balance model to estimate flow through the Old and Middle River corridor

    USGS Publications Warehouse

    Andrews, Stephen W.; Gross, Edward S.; Hutton, Paul H.

    2016-01-01

    We applied a water balance model to predict tidally averaged (subtidal) flows through the Old River and Middle River corridor in the Sacramento–San Joaquin Delta. We reviewed the dynamics that govern subtidal flows and water levels and adopted a simplified representation. In this water balance approach, we estimated ungaged flows as linear functions of known (or specified) flows. We assumed that subtidal storage within the control volume varies because of fortnightly variation in subtidal water level, Delta inflow, and barometric pressure. The water balance model effectively predicts subtidal flows and approaches the accuracy of a 1–D Delta hydrodynamic model. We explore the potential to improve the approach by representing more complex dynamics and identify possible future improvements.

  14. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  15. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  16. Effects of Water-Based Training on Static and Dynamic Balance of Older Women.

    PubMed

    Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F

    2015-08-01

    The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; p<0.01). The water-based training was effective in improving dynamic balance, but not static balance.

  17. Evaporation estimates from the Dead Sea and their implications on its water balance

    NASA Astrophysics Data System (ADS)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  18. Comparison of model performance and simulated water balance using NASIM and SWAT for the Wupper River Basin, Germany

    NASA Astrophysics Data System (ADS)

    Lorza, Paula; Nottebohm, Martin; Scheibel, Marc; aus der Beek, Tim

    2017-04-01

    Under the framework of the Horizon 2020 project BINGO (Bringing INnovation to onGOing water management), climate change impacts on the water cycle in the Wupper catchment area are being studied. With this purpose, a set of hydrological models in NASIM and SWAT have been set up, calibrated, and validated for past conditions using available data. NASIM is a physically-based, lumped, hydrological model based on the water balance equation. For the upper part of the Dhünn catchment area - Wupper River's main tributary - a SWAT model was also implemented. Observed and simulated discharge by NASIM and SWAT for the drainage area upstream of Neumühle hydrometric station (close to Große Dhünn reservoir's inlet) are compared. Comparison of simulated water balance for several hydrological years between the two models is also carried out. While NASIM offers high level of detail for modelling of complex urban areas and the possibility of entering precipitation time series at fine temporal resolution (e.g. minutely data), SWAT enables to study long-term impacts offering a huge variety of input and output variables including different soil properties, vegetation and land management practices. Beside runoff, also sediment and nutrient transport can be simulated. For most calculations, SWAT operates on a daily time step. The objective of this and future work is to determine catchment responses on different meteorological events and to study parameter sensitivity of stationary inputs such as soil parameters, vegetation or land use. Model performance is assessed with different statistical metrics (relative volume error, coefficient of determination, and Nash-Sutcliffe Efficiency).

  19. Biodiversity effects on the water balance of an experimental grassland

    NASA Astrophysics Data System (ADS)

    Leimer, Sophia; Kreutziger, Yvonne; Rosenkranz, Stephan; Beßler, Holger; Engels, Christof; Oelmann, Yvonne; Weisser, Wolfgang W.; Wirth, Christian; Wilcke, Wolfgang

    2013-04-01

    Plant species richness increases aboveground biomass production in biodiversity experiments. Biomass production depends on and feeds back to the water balance, but it remains unclear how plant species richness influences soil water contents and water fluxes (actual evapotranspiration (ETa), downward flux (DF), and upward flux (UF)). Our objective was to determine the effects of plant species and functional richness and functional identity on soil water contents and water fluxes for two soil depths (0-0.3 and 0.3.-0.7 m). To achieve this, we used a water balance model in connection with Bayesian hierarchical modeling. We monitored soil water contents on 86 plots of a grassland plant diversity experiment in Jena, Germany between July 2002 and January 2006. In the field experiment, plant species richness (0, 1, 2, 4, 8, 16, 60) and functional group composition (0-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Climate data (air temperature, precipitation, wind velocity, relative humidity, global radiation, soil moisture) was measured at a central climate station between July 2002 and December 2007. Root biomass data from July 2006 was available per plot. Missing water contents per plot and depth were estimated in weekly resolution for the years 2003-2007 with a Bayesian hierarchical model using measured water contents per plot and centrally measured soil moisture. To obtain ETa, DF, and UF of the two different soil depths, we modified a soil water balance model which had been developed for our study site. The model is based on changes in soil water content between subsequent observation dates and modeled potential evapotranspiration which was partitioned between soil layers according to percentage of root biomass. The presence of specific functional groups significantly changed water contents and fluxes with partly opposing effects in the two soil depths. Presence of grasses

  20. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    PubMed Central

    2015-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104

  1. Water balance of pine forests: Synthesis of new and published results

    Treesearch

    Pantana Tor-ngern; Ram Oren; Sari Palmroth; Kimberly Novick; Andrew Oishi; Sune Linder; Mikaell Ottosson-Lofvenius; Torgny Nasholm

    2018-01-01

    The forest hydrologic cycle is expected to have important feedback responses to climate change, impacting processes ranging from local water supply and primary productivity to global water and energy cycles. Here, we analyzed water budgets of pine forests worldwide. We first estimated local water balance of forests dominated by two wide-ranging species: Pinus...

  2. Controlling Factors of the Surface Energy and Water Balances in cities located in cold climate regions

    NASA Astrophysics Data System (ADS)

    Järvi, L.; Grimmond, S. B.; Christen, A.; McFadden, J. P.; Strachan, I. B.

    2016-12-01

    Urban effects on climate are often pronounced in winter due to large anthropogenic heat releases and differences in snow cover between urban and surrounding rural areas. In this study, we simulate energy and water balances in cities characterized by cold winter climates with snow. Eleven urban sites from Helsinki (Finland), Basel (Switzerland), Montreal (Canada) and Minneapolis (USA) are analysed. The sites were selected based on the availability of either measured turbulent fluxes (from eddy covariance) or surface runoff to be used for model evaluation. The sites vary with respect to land cover fractions, irrigation habits and population densities. For example, the plan area fraction of impervious surface varies from 5% in Minneapolis to 84% in Basel. To simulate urban energy and water balances, we use the Surface Urban Energy and Water balance Scheme (SUEWS) model, which has been designed to minimize the number of required input variables and model parameters. For each site, the model is run in an offline mode using measured hourly meteorological data with a time step of 5-min. As the modelled time periods range from one (Basel) to 7.5 years (Helsinki), a wide range of meteorological conditions occur. Our results show how both evaporation and surface runoff are highly dependent on the fraction of impervious surface cover (r > |0.8|) during snow-free periods. However, high year-to-year variability in simulated evaporation and runoff indicates that climatological factors are also important. In winter, the amount and duration of snow cover become import controlling factor in determining the two components of water balance. The shorter the snow cover period is, the larger the cumulative runoff tends to be. Thus, our results suggest that warmer winters with less snow will increase the stress on drainage systems and modify the urban ecosystem via changes in evaporation and Bowen ratio. Also, our results indicate that simply using the fraction of impervious or pervious

  3. Testing the generalized complementary relationship of evaporation with continental-scale long-term water-balance data

    NASA Astrophysics Data System (ADS)

    Szilagyi, Jozsef; Crago, Richard; Qualls, Russell J.

    2016-09-01

    The original and revised versions of the generalized complementary relationship (GCR) of evaporation (ET) were tested with six-digit Hydrologic Unit Code (HUC6) level long-term (1981-2010) water-balance data (sample size of 334). The two versions of the GCR were calibrated with Parameter-Elevation Regressions on Independent Slopes Model (PRISM) mean annual precipitation (P) data and validated against water-balance ET (ETwb) as the difference of mean annual HUC6-averaged P and United States Geological Survey HUC6 runoff (Q) rates. The original GCR overestimates P in about 18% of the PRISM grid points covering the contiguous United States in contrast with 12% of the revised version. With HUC6-averaged data the original version has a bias of -25 mm yr-1 vs the revised version's -17 mm yr-1, and it tends to more significantly underestimate ETwb at high values than the revised one (slope of the best fit line is 0.78 vs 0.91). At the same time it slightly outperforms the revised version in terms of the linear correlation coefficient (0.94 vs 0.93) and the root-mean-square error (90 vs 92 mm yr-1).

  4. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  5. Implementation and evaluation of a monthly water balance model over the US on an 800 m grid

    USGS Publications Warehouse

    Hostetler, Steven W.; Alder, Jay R.

    2016-01-01

    We simulate the 1950–2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales.

  6. Efficacy of an extravascular lung water-driven negative fluid balance protocol.

    PubMed

    Díaz-Rubia, L; Ramos-Sáez, S; Vázquez-Guillamet, R; Guerrero-López, F; Pino-Sánchez, F; García-Delgado, M; Gómez-Jiménez, F J; Fernández-Mondéjar, E

    2015-01-01

    To analyze the efficacy of negative fluid balance in hypoxemic patients with an elevated extravascular lung water index (EVLWI). A retrospective observational study was made. Intensive Care Unit of Virgen de las Nieves Hospital (Spain). Forty-four patients participated in the study. We analyzed our database of hypoxemic patients covering a period of 11 consecutive months. We included all hemodynamically stable and hypoxemic patients with EVLWI>9ml/kg. The protocol dictates a negative fluid balance between 500 and 1500ml/day. We analyzed the impact of this negative fluid balance strategy upon pulmonary, hemodynamic, and renal function. Demographic data, severity scores, clinical, hemodynamic, pulmonary, metabolic and renal function data. Thirty-three patients achieved negative fluid balance (NFB group) and 11 had a positive fluid balance (PFB group). In the former group, PaO2/FiO2 improved from 145 (IQR 106, 200) to 210mmHg (IQR 164, 248) (p<0.001), and EVLWI decreased from 14 (11, 18) to 10ml/kg (8, 14) (p<0.001). In the PFB group, EVLWI also decreased from 11 (10, 14) to 10ml/kg (8, 14) at the end of the protocol (p=0.004). For these patients there were no changes in oxygenation, with a PaO2/FiO2 of 216mmHg (IQR 137, 260) at the beginning versus 205mmHg (IQR 99,257) at the end of the study (p=0.08). Three out of four hypoxic patients with elevated EVLWI tolerated the NFB protocol. In these subjects, the improvement of various analyzed physiological parameters was greater and faster than in those unable to complete the protocol. Patients who did not tolerate the protocol were usually in more severe condition, though a larger sample would be needed to detect specific characteristics of this group. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  7. An examination of the spatial variability of the United States surface water balance using the Budyko relationship for current and projected climates

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Abatzoglou, J. T.

    2017-12-01

    The spatial variability in the balance between surface runoff (Q) and evapotranspiration (ET) is critical for understanding water availability. The Budyko framework suggests that this balance is solely a function of aridity. Observed deviations from this framework for individual watersheds, however, can vary significantly, resulting in uncertainty in using the Budyko framework in ungauged catchments and under future climate and land use scenarios. Here, we model the spatial variability in the partitioning of precipitation into Q and ET using a set of climatic, physiographic, and vegetation metrics for 211 near-natural watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. Using a generalized additive model, we found that precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow explained 81.2% of the variability in ω. This ω model applied to the Budyko framework explained 97% of the spatial variability in long-term Q for an independent set of near-natural watersheds. The developed ω model was also used to estimate the entire CONUS surface water balance for both contemporary and mid-21st century conditions. The contemporary CONUS surface water balance compared favorably to more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western US. The Budyko framework using the modeled ω lends itself to an alternative approach for assessing the potential response of catchment water balance to climate change to complement other approaches.

  8. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Treesearch

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  9. Membrane reactor for water detritiation: a parametric study on operating parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarade, J.; Liger, K.; Troulay, M.

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependencemore » of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.« less

  10. Water availability and environmental temperature correlate with geographic variation in water balance in common lizards.

    PubMed

    Dupoué, Andréaz; Rutschmann, Alexis; Le Galliard, Jean François; Miles, Donald B; Clobert, Jean; DeNardo, Dale F; Brusch, George A; Meylan, Sandrine

    2017-12-01

    Water conservation strategies are well documented in species living in water-limited environments, but physiological adaptations to water availability in temperate climate environments are still relatively overlooked. Yet, temperate species are facing more frequent and intense droughts as a result of climate change. Here, we examined variation in field hydration state (plasma osmolality) and standardized evaporative water loss rate (SEWL) of adult male and pregnant female common lizards (Zootoca vivipara) from 13 natural populations with contrasting air temperature, air humidity, and access to water. We found different patterns of geographic variation between sexes. Overall, males were more dehydrated (i.e. higher osmolality) than pregnant females, which likely comes from differences in field behaviour and water intake since the rate of SEWL was similar between sexes. Plasma osmolality and SEWL rate were positively correlated with environmental temperature in males, while plasma osmolality in pregnant females did not correlate with environmental conditions, reproductive stage or reproductive effort. The SEWL rate was significantly lower in populations without access to free standing water, suggesting that lizards can adapt or adjust physiology to cope with habitat dryness. Environmental humidity did not explain variation in water balance. We suggest that geographic variation in water balance physiology and behaviour should be taken account to better understand species range limits and sensitivity to climate change.

  11. Evaluation of water balance in a population of older adults. A case control study.

    PubMed

    Malisova, Olga; Poulia, Kalliopi-Anna; Kolyzoi, Kleoniki; Lysandropoulos, Athanasios; Sfendouraki, Kalliopi; Kapsokefalou, Maria

    2018-04-01

    Older adults are at risk for dehydration and its' potentially life-threatening consequences. Unrecognized dehydration can complicate chronic medical problems and increase morbidity. The objective of the study was to estimate water balance, intake and loss in elderly people living in Greece using the Water Balance Questionnaire (WBQ). WBQ was administered in winter to 108 independents (65-81yrs) (Group A), 94 independents (82-92yrs) (Group B) and 51 hospitalized (65-92yrs) (Group C). A database from previous study of 335 adults (18-65yrs) (Control Group) used for comparison. Mean estimates of water balance, intake and loss were, respectively, for Group A -749 ± 1386 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group B -38 ± 933 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group C 64 ± 1399 mL/day, 2586 ± 1071 mL/day and 2522 ± 1048 mL/day and for Control Group -253 ± 1495 mL/day, 2912 ± 1025 mL/day and 3492 ± 2099 mL/day. Significant differences were detected in water balance, intake and loss (p < 0.01). Water balance and water intake in Group A was the lowest. For Groups A, B, C and Control, contribution of solid foods to water intake was 36%, 29%, 32%, 25%, of drinking water was 32%, 48%, 45%, 47%, of beverages was 32%, 23%, 23% and 28% respectively. Significant differences observed in the contribution of drinking water and beverages (p < 0.01). Group A had lower water balance and water intake. Groups B and C had lower water intake from beverages. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  12. Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    A simple model of large-scale land (continental) water and energy balances is presented. The model is an extension of an earlier scheme with a record of successful application in climate modeling. The most important changes from the original model include 1) introduction of non-water-stressed stomatal control of transpiration, in order to correct a tendency toward excessive evaporation: 2) conversion from globally constant parameters (with the exception of vegetation-dependent snow-free surface albedo) to more complete vegetation and soil dependence of all parameters, in order to provide more realistic representation of geographic variations in water and energy balances and to enable model-based investigations of land-cover change; 3) introduction of soil sensible heat storage and transport, in order to move toward realistic diurnal-cycle modeling; 4) a groundwater (saturated-zone) storage reservoir, in order to provide more realistic temporal variability of runoff; and 5) a rudimentary runoff-routing scheme for delivery of runoff to the ocean, in order to provide realistic freshwater forcing of the ocean general circulation model component of a global climate model. The new model is tested with forcing from the International Satellite Land Surface Climatology Project Initiative I global dataset and a recently produced observation-based water-balance dataset for major river basins of the world. Model performance is evaluated by comparing computed and observed runoff ratios from many major river basins of the world. Special attention is given to distinguishing between two components of the apparent runoff ratio error: the part due to intrinsic model error and the part due to errors in the assumed precipitation forcing. The pattern of discrepancies between modeled and observed runoff ratios is consistent with results from a companion study of precipitation estimation errors. The new model is tuned by adjustment of a globally constant scale factor for non-water

  13. Increased fat catabolism sustains water balance during fasting in zebra finches.

    PubMed

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  14. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if

  15. Using Water Isotope Tracers to Investigate Past and Present Water Balance Conditions in the Old Crow Flats, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Turner, K.; Wolfe, B. B.; Edwards, T. W.

    2010-12-01

    The Old Crow Flats (OCF), Yukon Territory, is a wetland of international significance that comprises approximately 2700 shallow thermokarst lakes. Located near the northern limit of the boreal forest, the OCF provides vital habitat for abundant wildlife including waterfowl, moose, muskrat, and the Porcupine Caribou Herd, which support the traditional lifestyle of the Vuntut Gwitchin First Nation. Thermokarst lakes, which occupy vast northern regions, are greatly influenced by climate conditions. In the OCF and other regions there have been observations of decreasing water levels and an increase in frequency of lake drainage events over recent decades. Though there is widespread concern that thermokarst landscape changes are accelerating as a result of ongoing climate change, there are few studies that have investigated current and past variability of lake water balances and climate interactions at the landscape scale. As part of a Government of Canada International Polar Year multidisciplinary project, the present and past hydrology of lakes spanning the OCF are being investigated using water isotope tracers and paleolimnological approaches. Water samples were obtained from 57 lakes three times over three ice-free seasons (2007-09) and analyzed for oxygen and hydrogen isotope composition in order to capture seasonal and interannual changes in water balance conditions. Results highlight strong diversity in the hydrology of lakes throughout the OCF. Based on patterns of isotopic evolution and calculations of input source compositions and evaporation-to-inflow ratios, we identified snowmelt-dominated, rainfall-dominated, groundwater-influenced, evaporation-dominated and drained lake types, which represent the dominant hydrological processes influencing lake water balances. Lake physical and catchment land cover characteristics influence dominant input type (rain or snow). Snowmelt-dominated catchments are large relative to lake surface areas and typically contain

  16. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs.

    PubMed

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids

  17. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs

    PubMed Central

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids

  18. Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models

    USGS Publications Warehouse

    Susong, D.; Marks, D.; Garen, D.

    1999-01-01

    Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited

  19. Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Robertson, Franklin R.; Takacs, Lawrence; Molod, Andrea; Mocko, David

    2017-01-01

    Closing and balancing Earths global water cycle remains a challenge for the climate community. Observations are limited in duration, global coverage, and frequency, and not all water cycle terms are adequately observed. Reanalyses aim to fill the gaps through the assimilation of as many atmospheric water vapor observations as possible. Former generations of reanalyses have demonstrated a number of systematic problems that have limited their use in climate studies, especially regarding low-frequency trends. This study characterizes the NASA Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) water cycle relative to contemporary reanalyses and observations. MERRA-2 includes measures intended to minimize the spurious global variations related to in homogeneity in the observational record. The global balance and cycling of water from ocean to land is presented, with special attention given to the water vapor analysis increment and the effects of the changing observing system. While some systematic regional biases can be identified,MERRA-2 produces temporally consistent time series of total column water and transport of water from ocean to land. However, the interannual variability of ocean evaporation is affected by the changing surface-wind-observing system, and precipitation variability is closely related to the evaporation. The surface energy budget is also strongly influenced by the interannual variability of the ocean evaporation. Furthermore, evaluating the relationship of temperature and water vapor indicates that the variations of water vapor with temperature are weaker in satellite data reanalyses, not just MERRA-2, than determined by observations, atmospheric models, or reanalyses without water vapor assimilation.

  20. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    NASA Astrophysics Data System (ADS)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  1. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries

    PubMed Central

    Clearwater, Michael J.; Luo, Zhiwei; Ong, Sam Eng Chye; Blattmann, Peter; Thorp, T. Grant

    2012-01-01

    Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis ‘Hort16A’) exhibiting a pre-harvest ‘shrivel’ disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (Da) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high Da. Phloem flows were required for growth, with gradual recovery after a step increase in Da. Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to Da-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined. PMID:22155631

  2. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment.

    PubMed

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-08-27

    Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Ethical Committee of the Erasme Hospital (CCB B406201215142

  3. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment

    PubMed Central

    Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-01-01

    Background Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. Objective The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. Methods A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Results Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Conclusions Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Trial

  4. Animal water balance drives top-down effects in a riparian forest—implications for terrestrial trophic cascades

    PubMed Central

    Sabo, John L.

    2016-01-01

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. PMID:27534953

  5. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  6. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  7. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available

  8. Farm water budgets for semiarid irrigated floodplains of northern New Mexico: characterizing the surface water-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.

    2013-12-01

    KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.

  9. Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders.

    PubMed

    Noda, Yumi

    2014-08-01

    The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.

  10. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses.

    PubMed

    Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C

    2011-10-01

    The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the

  11. The effect of exercise on water balance in premenopausal physically active women.

    PubMed

    Weinheimer, Eileen M; Martin, Berdine R; Weaver, Connie M; Welch, Jo M; Campbell, Wayne W

    2008-10-01

    This controlled feeding study examined the effects of exercise on daily water intake (particularly ad libitum water intake), water output, whole-body water balance, and hydration status in physically active, premenopausal women. The randomized crossover design consisted of three 8-day trials: placebo and no exercise, placebo and exercise (1-hour cycling bout per day at 65%-70% of heart rate reserve), and 800 mg calcium supplementation and exercise. During each trial, controlled quantities of the same foods and beverages were provided and ad libitum water intake was quantified. Water input included measured water from foods and beverages, measured ad libitum intake, and estimated metabolic production. Water output included measured losses in urine and stool, and estimated insensible losses from respiration and non-sweating perspiration (insensible diffusion through the skin). Participants were 26 women, age 25+/-5 years, body mass index 22+/-2, and VO(2peak) 43+/-6 mLxkg(-1)xmin(-1) (mean+/-standard deviation). Ad libitum water intake was 363 g/day more (P<0.05) for the placebo and exercise (1,940+/-654 g/day) and calcium supplementation and exercise (1,935+/-668 g/day) trials, compared with placebo and no exercise trial (1,575+/-667 g/day), and total water input was correspondingly higher in placebo and exercise and calcium supplementation and exercise trials compared with the placebo and no exercise trial. Urine, stool, and total water outputs were not different among trials. Apparent net water balance (representative of sweat water output) was 367 g/day more (P<0.05) in placebo and exercise (679+/-427 g/day) and calcium supplementation and exercise (641+/-519 g/day) trials compared with placebo and no exercise trial (293+/-419 g/day). Hydration status was clinically normal during all three trials. Calcium supplementation did not influence water balance. These results support that young, physically active women can completely compensate for exercise-induced sweat

  12. On the Capabilities of Using AIRSAR Data in Surface Energy/Water Balance Studies

    NASA Technical Reports Server (NTRS)

    Moreno, Jose F.; Saatchi, Susan S.

    1996-01-01

    The capabilities of using remote sensing data, and in particular multifrequency/multipolarization SAR data, like AIRSAR, for the retrieval of surface parameters, depend considerably on the specificity of each application. The potentials, and limitations, of SAR data in ecological investigations are well known. Because the chemistry is a major component in such studies and because of the almost lacking chemical information at the wavelengths of SAR data, the capabilities of using SAR-derived information in such studies are considerably limited. However, in the case of surface energy/water balance studies, the determination of the amount of water content, both in the soil and in the plants, is a major component in all modeling approaches. As the information about water content is present in the SAR signal, then the role of SAR data in studies where water content is to be determined becomes clearly predominant. Another situation where the role of SAR data becomes dominant over other remote sensing systems is the case of dense canopies. Because of the penetration capabilities of microwave data, which is especially superior as compared to optical data, information about the canopy as a whole and even the underlying soil is contained in the SAR data, while only the top canopy provides the information content in the case of optical data. In the case of relatively dense canopies, as has been demonstrated in this study, such different penetration capabilities provide very different results in terms of the derived total canopy water content, for instance. However, although all such capabilities are well known, unfortunately there are also well known limitations. Apart from calibration-related aspects (that we will not consider in this study), and apart from other intrinsic problems (like image noise, topographic corrections, etc.) which also significantly affect the derived results, we will concentrate on the problem of extracting information from the data. Even at this

  13. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index

    Treesearch

    Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher Lee

    2003-01-01

    Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...

  14. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    PubMed

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  16. On the sources of vegetation activity variation, and their relation with water balance in Mexico

    Treesearch

    F. Mora; L.R. Iverson

    1998-01-01

    Natural landscape surface processes are largely controlled by the relationship between climate and vegetation. Water balance integrates the effects of climate on patterns of vegetation distribution and productivity, and for that season, functional relationships can be established using water balance variables as predictors of vegetation response. In this study, we...

  17. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. © 2016 The Author(s).

  18. The effect of water-based exercises on balance in persons post-stroke: a randomized controlled trial.

    PubMed

    Chan, Kelvin; Phadke, Chetan P; Stremler, Denise; Suter, Lynn; Pauley, Tim; Ismail, Farooq; Boulias, Chris

    2017-05-01

    Water-based exercises have been used in the rehabilitation of people with stroke, but little is known about the impact of this treatment on balance. This study examined the effect of water-based exercises compared to land-based exercises on the balance of people with sub-acute stroke. In this single-blind randomized controlled study, 32 patients with first-time stroke discharged from inpatient rehabilitation at West Park Healthcare Centre were recruited. Participants were randomized into W (water-based + land; n = 17) or L (land only; n = 15) exercise groups. Both groups attended therapy two times per week for six weeks. Initial and progression protocols for the water-based exercises (a combination of balance, stretching, and strengthening and endurance training) and land therapy (balance, strength, transfer, gait, and stair training) were devised. Outcomes included the Berg Balance Score, Community Balance and Mobility Score, Timed Up and Go Test, and 2 Minute Walk Test. Baseline characteristics of groups W and L were similar in age, side of stroke, time since stroke, and wait time between inpatient discharge and outpatient therapy on all four outcomes. Pooled change scores from all outcomes showed that significantly greater number of patients in the W-group showed improvement post-training compared to the L-group (p < 0.05). More patients in W-group showed change scores exceeding the published minimal detectable change scores. A combination of water- and land-based exercises has potential for improving balance. The results of this study extend the work showing benefit of water-based exercise in chronic and less-impaired stroke groups to patients with sub-acute stroke.

  19. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  20. Modeling the Impact of Soil Conditions on Global Water Balance

    NASA Astrophysics Data System (ADS)

    Wang, P. L.; Feddema, J. J.

    2016-12-01

    The amount of water the soil can hold for plant use, defined as soil water-holding capacity (WHC), has a large influence on the water cycle and climatic variables. Although soil properties vary widely worldwide, many climate modeling applications assume WHC to be spatially invariant. This study explores how a more realistic soil WHC estimate affects the global water balance relative to commonly assumed soil properties. We use a modified Thornthwaite water balance model combined with a newly developed soil WHC and soil thickness data at a 30 arc second resolution. The soil WHC data was obtained by integrating WHCs to a depth of 2 m and modified by the soil thickness data on a grid-by-grid basis, and then resampling to the 0.5 degree climatology data. We observed that down scaling soils data before modifying soil depths greatly increases global soil WHCs. This new dataset is compared to WHC information with a fixed 2-m soil depth, and a constant 150-mm soil WHC. Results indicate higher soil WHC results in increased soil moisture, decreased moisture surplus and deficits, and increased actual evapotranspiration (AE), and vice-versa. However, due to high variability in soil characteristics across climate gradients, this generalization does not hold true for regionally averaged outcomes. Compared to using a constant 150-mm WHC, more realistic soil WHC increases global averaged AE 1%, and decreases deficit 2% and surplus 3%. Most change is observed in areas with pronounced wet and dry seasons; using a constant 2-m soil depth doubles the differences. Regionally, Europe was most affected: AE increases 4%, and the deficit and surplus decrease 20% and 12%. Australia shows that regionally averaged results are not equivocal for moisture surplus and deficit; deficit decreases 0.4%, while surplus decreases 9%. This research highlights the importance of soil condition for climate modeling and how a better representation of soil moisture conditions affects global water balance

  1. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Consequences of declining snow accumulation for water balance of mid-latitude dry regions

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Widespread documentation of positive winter temperature anomalies, declining snowpack and earlier snow melt in the Northern Hemisphere have raised concerns about the consequences for regional water resources as well as wildfire. A topic that has not been addressed with respect to declining snowpack is effects on ecosystem water balance. Changes in water balance dynamics will be particularly pronounced at low elevations of mid-latitude dry regions because these areas will be the first to be affected by declining snow as a result of rising temperatures. As a model system, we used simulation experiments to investigate big sagebrush ecosystems that dominate a large fraction of the semiarid western United States. Our results suggest that effects on future ecosystem water balance will increase along a climatic gradient from dry, warm and snow-poor to wet, cold and snow-rich. Beyond a threshold within this climatic gradient, predicted consequences for vegetation switched from no change to increasing transpiration. Responses were sensitive to uncertainties in climatic prediction; particularly, a shift of precipitation to the colder season could reduce impacts of a warmer and snow-poorer future, depending on the degree to which ecosystem phenology tracks precipitation changes. Our results suggest that big sagebrush and other similar semiarid ecosystems could decrease in viability or disappear in dry to medium areas and likely increase only in the snow-richest areas, i.e. higher elevations and higher latitudes. Unlike cold locations at high elevations or in the arctic, ecosystems at low elevations respond in a different and complex way to future conditions because of opposing effects of increasing water-limitation and a longer snow-free season. Outcomes of such nonlinear interactions for future ecosystems will likely include changes in plant composition and productivity, dynamics of water balance, and availability of water resources.

  3. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Harshan, Suraj; Järvi, Leena; Roth, Matthias; Betham Grimmond, Christine Susan; Masson, Valéry; Oleson, Keith; Velasco Saldana, Hector Erik; Wouters, Hendrik

    2017-04-01

    This paper provides the first comparative evaluation of four urban land surface models for a tropical residential neighbourhood in Singapore. The simulations are performed offline, for an 11-month period, using the bulk scheme TERRA_URB and three models of intermediate complexity (CLM, SURFEX and SUEWS). In addition, information from three different parameter lists are added to quantify the impact (interaction) of (between) external parameter settings and model formulations on the modelled urban energy balance components. Overall, the models' performance using the reference parameters aligns well with previous findings for mid- and high-latitude sites against (for) which the models are generally optimised (evaluated). The various combinations of models and different parameter values suggest that error statistics tend to be more dominated by the choice of the latter than the choice of model. Stratifying the observation period into dry / wet periods and hours since selected precipitation events reveals that the models' skill generally deteriorates during dry periods while e.g. CLM/SURFEX has a positive bias in the latent heat flux directly after a precipitation event. It is shown that the latter is due to simple representation of water intercepted on the impervious surfaces. In addition, the positive bias in modelled outgoing longwave radiation is attributed to neglecting the interactions between water vapor and radiation between the surface and the tower sensor. These findings suggest that future developments in urban climate research should continue the integration of more physically-based processes in urban canopy models, ensure the consistency between the observed and modelled atmospheric properties and focus on the correct representation of urban morphology and thermal and radiative characteristics.

  4. Annual safe groundwater yield in a semiarid basin using combination of water balance equation and water table fluctuation

    NASA Astrophysics Data System (ADS)

    Rezaei, Abolfazl; Mohammadi, Zargham

    2017-10-01

    The safe groundwater yield plays a major role in the appropriate management of groundwater systems, particularly in (semi-)arid areas like Iran. This study incorporates both the water balance equation and the water table fluctuation to estimate the annual safe yield of the unconfined aquifer in the eastern part of the Kaftar Lake, an Iranian semiarid region. Firstly, the water balance year 2002-03, owing same water table elevation at the beginning and year-end, was chosen from the monthly representative groundwater hydrograph of the aquifer to be taken into account as a basic water year for determining the safe yield. Then the ratio of the total groundwater pumping to the annual groundwater recharge in the selected water balance year together with the quantity of total recharge occurred in the wet period (October to May) of the year of interest were applied to evaluate the annual safe yield at the initiation of the dry period (June to September) of the year of interest. Knowing the annual safe groundwater withdrawal rate at the initiation of each dry period could be helpful to decision makers in managing groundwater resources conservation. Analysis results indicate that to develop a safe management strategy in the aquifer; the ratio of the annual groundwater withdrawal to the annually recharged volume should not exceed 0.69. In the water year 2003-04 where the ratio is equal to 0.52, the water table raised up (about 0.48 m) while the groundwater level significantly declined (about 1.54 m) over the water year 2007-08 where the ratio of the annual groundwater withdrawal to the annually recharged volume (i.e., 2.76) is larger than 0.69.

  5. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  6. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  7. Assessment of check-dam groundwater recharge with water-balance calculations

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  8. Development of a multicomponent force and moment balance for water tunnel applications, volume 1

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-01-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. An internal balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The five-components to applied loads, low interactions between the sections and no hysteresis. Static experiments (which are discussed in this Volume) were conducted in the Eidetics water tunnel with delta wings and a model of the F/A-18. Experiments with the F/A-18 model included a thorough baseline study and investigations of the effect of control surface deflections and of several Forebody Vortex Control (FVC) techniques. Results were compared to wind tunnel data and, in general, the agreement is very satisfactory. The results of the static tests provide confidence that loads can be measured accurately in the water tunnel with a relatively simple multicomponent internal balance. Dynamic experiments were also performed using the balance, and the results are discussed in detail in Volume 2 of this report.

  9. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  10. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  11. Measurement of surface physical properties and radiation balance for KUREX-91 study

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.

    1992-01-01

    Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.

  12. Correlations of water quality parameters with mutagenicity of chlorinated drinking water samples.

    PubMed

    Schenck, Kathleen M; Sivaganesan, Mano; Rice, Glenn E

    2009-01-01

    Adverse health effects that may result from chronic exposure to mixtures of disinfection by-products (DBPs) present in drinking waters may be linked to both the types and concentrations of DBPs present. Depending on the characteristics of the source water and treatment processes used, both types and concentrations of DBPs found in drinking waters vary substantially. The composition of a drinking-water mixture also may change during distribution. This study evaluated the relationships between mutagenicity, using the Ames assay, and water quality parameters. The study included information on treatment, mutagenicity data, and water quality data for source waters, finished waters, and distribution samples collected from five full-scale drinking water treatment plants, which used chlorine exclusively for disinfection. Four of the plants used surface water sources and the fifth plant used groundwater. Correlations between mutagenicity and water quality parameters are presented. The highest correlation was observed between mutagenicity and the total organic halide concentrations in the treated samples.

  13. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  14. Hydrological balance and water transport processes of partially sealed soils

    NASA Astrophysics Data System (ADS)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  15. Thermoregulation and water balance as affected by water and food restrictions in Sudanese desert goats fed good-quality and poor-quality diets.

    PubMed

    Ahmed, Muna M M; El Kheir, I M

    2004-02-01

    Nine desert goats were used in a 3 x 3 Latin square design in which they were subjected to (a) ad libitum water and food (control), (b) ad libitum food and water restricted to about 40% of the control, and (c) ad libitum water and restricted food (same amount as given to group b). Parameters measured were dry matter intake (DMI), water intake, rectal temperature (Tr), respiration rate (RR), water balance and body weight (BW) changes. The acute effects of the above treatments on these parameters were monitored during the dry summer using two types of feed. The ratio of DMI to water intake decreased (p < 0.01) due to water restriction but increased (p < 0.01) with Lucerne hay compared to grass hay. With both feeds, BW decreased (p < 0.01) with water restriction, with a further decrease (p < 0.01) observed with food restriction. The control group showed a higher (p < 0.01) gain with Lucerne hay than grass hay. Tr and RR increased (p < 0.01) from morning to afternoon; Tr decreased due to food restriction during both morning and afternoon with Lucerne hay (p < 0.05) and grass hay (p < 0.05), whereas RR decreased (p < 0.01) with both types of feeds. For all groups of animals, Tr was higher (p < 0.05) with Lucerne hay than with grass hay, this effect being more pronounced (p < 0.01) with the control group. With both feeds, water restriction decreased (p < 0.01) water turnover rate and evaporative losses, with decreased (p < 0.05) faecal losses observed in the water-restricted groups on Lucerne hay but higher (p < 0.05) losses of urine. The tolerance of desert goats to thermal stress and their coping with shortage of water and food depended on their capacity to lose heat through panting and cutenaous evaporation as well as their ability to concentrate urine.

  16. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  17. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  18. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    PubMed

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Use of the Wii Gaming System for Balance Rehabilitation: Establishing Parameters for Healthy Individuals.

    PubMed

    Burns, Melissa K; Andeway, Kathleen; Eppenstein, Paula; Ruroede, Kathleen

    2014-06-01

    This study was designed to establish balance parameters for the Nintendo(®) (Redmond, WA) "Wii Fit™" Balance Board system with three common games, in a sample of healthy adults, and to evaluate the balance measurement reproducibility with separation by age. This was a prospective, multivariate analysis of variance, cohort study design. Seventy-five participants who satisfied all inclusion criteria and completed an informed consent were enrolled. Participants were grouped into age ranges: 21-35 years (n=24), 36-50 years (n=24), and 51-65 years (n=27). Each participant completed the following games three consecutive times, in a randomized order, during one session: "Balance Bubble" (BB) for distance and duration, "Tight Rope" (TR) for distance and duration, and "Center of Balance" (COB) on the left and right sides. COB distributed weight was fairly symmetrical across all subjects and trials; therefore, no influence was assumed on or interaction with other "Wii Fit" measurements. Homogeneity of variance statistics indicated the assumption of distribution normality of the dependent variables (rates) were tenable. The multivariate analysis of variance included dependent variables BB and TR rates (distance divided by duration to complete) with age group and trials as the independent variables. The BB rate was statistically significant (F=4.725, P<0.005), but not the TR rate. The youngest group's BB rate was significantly larger than those of the other two groups. "Wii Fit" can discriminate among age groups across trials. The results show promise as a viable tool to measure balance and distance across time (speed) and center of balance distribution.

  20. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas; Reich, Marvin; Mikolaj, Michal; Creutzfeldt, Benjamin; Schroeder, Stephan; Wziontek, Hartmut

    2017-04-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first deployment of an iGrav superconducting gravimeter (SG) in a minimized field enclosure on a grassland site for integrative monitoring of water storage changes. Results of the field SG were compared to data provided by a nearby SG located in the controlled environment of an observatory building. For wet-temperate climate conditions, the system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily time scales. With about 99% and 85% of the gravity signal originating within a radius of 4000 and 200 meter around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field monitoring technique at the landscape scale.

  1. Soil moisture assimilation using a modified ensemble transform Kalman filter with water balance constraint

    NASA Astrophysics Data System (ADS)

    Wu, Guocan; Zheng, Xiaogu; Dan, Bo

    2016-04-01

    The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.

  2. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure.

    PubMed

    Des Marteaux, Lauren E; Sinclair, Brent J

    2016-06-01

    Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na(+)] and Na(+) content in the first few hours of chilling actually increased. Patterns of Na(+) balance suggest that Na(+) migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K(+)] progressed gradually over 12h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na(+)], or [K(+)] balance during the first 12h of chilling. Gryllus veletis better maintained balance of Na(+) content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  4. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas; Reich, Marvin; Mikolaj, Michal; Creutzfeldt, Benjamin; Schroeder, Stephan; Wziontek, Hartmut

    2017-06-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  5. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    NASA Astrophysics Data System (ADS)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  6. Modelling the water balance of a precise weighable lysimeter for short time scales

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot; Rock, Gerhard

    2015-04-01

    Precise knowledge of the water fluxes between the atmosphere and the soil-plant system and the percolation to the groundwater system is of great importance for understanding and modeling water, solute and energy transfer in the atmosphere-plant-soil-groundwater system. Weighable lysimeters yield the most precise and realistic measures for the change of stored water volume (ΔS), Precipitation (P) which can be rain, irrigation, snow and dewfall and evapotranspiration (ET) as the sum of soil evaporation, evaporation of intercepted water and transpiration. They avoid systematic errors of standard gauges and class-A pans. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise (C) and leachate (L) on short time scales. Precise weighable large scale (surface >= 1 m2) monolithic lysimeters avoiding oasis effects allow to solve the water balance equation (P - ET - L + C ± ΔS = 0) for a 3D-section of a natural atmosphere-plant-soil-system for a certain time period. Precision and accuracy of the lysimeter measurements depend not only on the precision of the weighing device but also on external conditions, which cannot be controlled or turned off. To separate the noise in measured data sets from signals the adaptive window and adaptive threshold (AWAT) filter (Peters et al., 2014) is used. The data set for the years 2010 and 2011 from the HYDRO-lysimeter (surface = 1 m2, depth = 1 m) in Wagna, Austria (Klammler and Fank, 2014) with a resolution of 0,01 mm for the lysimeter scale and of 0,001 mm for the leachate tank scale is used to evaluate the water balance. The mass of the lysimeter and the mass of the leachate tank is measured every two seconds. The measurements are stored as one minute arithmetic means. Based on calculations in a calibration period from January to May 2010 with different widths of moving window the wmax - Parameter for the AWAT filter was set to 41 minutes. A time series for the system mass ('upper boundary') of the

  7. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    PubMed

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  8. A Monthly Water-Balance Model through a Two-Stage Partitioning of Precipitation Quantified by Budyko Equation and Hedging Rule

    NASA Astrophysics Data System (ADS)

    Kheimi, M.; Wang, D.

    2017-12-01

    Water operating in reservoir system is similar to natural catchment systems in water regulations. The most contributing role in both systems is found to be mitigating of available water deficits from excessive and keeping it away from prolonged droughts. In this paper, Bodyko equation and hedging rule are presented by two stage portioning monthly water balance model. The first stage is the partitioning of precipitation to evapotranspiration (E) plus future storage (S1) and runoff (Q); the second stage is using hedging rule where evapotranspiration and future storage to be recognized by a tradeoff between evapotranspiration and future water storage. The model introduces a linear two point hedging parameters: starting water availability (y1) and ending of water availability (y2).The calibration of the model is based on five parameters: three derived from Budyko equation (S0, ξ, and Yp) and two from hedging rule (y1 and y2).The catchment climate zone along with its physical properties have an effect on the degree of hedging. The y1 and y2 parameters are indicators of the amount of hedging in dry and wet zones. The span between the starting point (y1) and ending point (y2) of hedging indicate there is hedging against future evapotranspiration shortage. Observation of 187 catchments was examined using this model concept for the period of 21 years starting from 1983 to 2003. After calibration and validation using a genetic algorithm it shows that hedging effect in catchment against future evapotranspiration shortages exists with an abundance of hedging effect in dry areas more than wet areas.

  9. A worldwide analysis of trends in water-balance evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Prentice, I. C.

    2013-05-01

    Climate change is expected to alter the global hydrological cycle, with inevitable consequences for freshwater availability to people and ecosystems. But the attribution of recent trends in the terrestrial water balance remains disputed. This study attempts to account statistically for both trends and interannual variability in water-balance evapotranspiration (ET), estimated from the annual observed streamflow in 109 river basins during "water years" 1961-1999 and two gridded precipitation datasets. The basins were chosen based on the availability of streamflow time-series data in the Dai et al. (2009) synthesis. They were divided into water-limited "dry" and energy-limited "wet" basins following the Budyko framework. We investigated the potential roles of precipitation, aerosol-corrected solar radiation, land-use change, wind speed, air temperature, and atmospheric CO2. Both trends and variability in ET show strong control by precipitation. There is some additional control of ET trends by vegetation processes, but little evidence for control by other factors. Interannual variability in ET was overwhelmingly dominated by precipitation, which accounted on average for 52-54% of the variation in wet basins (ranging from 0 to 99%) and 84-85% in dry basins (ranging from 13 to 100%). Precipitation accounted for 39-42% of ET trends in wet basins and 69-79% in dry basins. Cropland expansion increased ET in dry basins. Net atmospheric CO2 effects on transpiration, estimated using the Land-surface Processes and eXchanges (LPX) model, did not contribute to observed trends in ET because declining stomatal conductance was counteracted by slightly but significantly increasing foliage cover.

  10. A worldwide analysis of trends in water-balance evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Prentice, I. C.

    2013-10-01

    Climate change is expected to alter the global hydrological cycle, with inevitable consequences for freshwater availability to people and ecosystems. But the attribution of recent trends in the terrestrial water balance remains disputed. This study attempts to account statistically for both trends and interannual variability in water-balance evapotranspiration (ET), estimated from the annual observed streamflow in 109 river basins during "water years" 1961-1999 and two gridded precipitation data sets. The basins were chosen based on the availability of streamflow time-series data in the Dai et al. (2009) synthesis. They were divided into water-limited "dry" and energy-limited "wet" basins following the Budyko framework. We investigated the potential roles of precipitation, aerosol-corrected solar radiation, land use change, wind speed, air temperature, and atmospheric CO2. Both trends and variability in ET show strong control by precipitation. There is some additional control of ET trends by vegetation processes, but little evidence for control by other factors. Interannual variability in ET was overwhelmingly dominated by precipitation, which accounted on average for 54-55% of the variation in wet basins (ranging from 0 to 100%) and 94-95% in dry basins (ranging from 69 to 100%). Precipitation accounted for 45-46% of ET trends in wet basins and 80-84% in dry basins. Net atmospheric CO2 effects on transpiration, estimated using the Land-surface Processes and eXchanges (LPX) model, did not contribute to observed trends in ET because declining stomatal conductance was counteracted by slightly but significantly increasing foliage cover.

  11. Extraction of chemical warfare agents from water with hydrophilic-lipophilic balance and C18 cartridges: comparative study.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Gupta, A K; Dubey, D K

    2007-01-19

    Efficient extraction of chemical warfare agents (CWAs) from water is essential before subjecting them to gas chromatographic and spectral analysis aiming towards verification of the Chemical Weapons Convention (CWC). It requires development of fast, reliable, simple and reproducible sample preparation of CWAs from water which is likely to be contaminated during deliberate or inadvertent spread of CWAs. This work describes development of a solid-phase extraction method using hydrophilic-lipophilic balance (HLB) cartridges for extraction of CWAs from water. The extraction efficiencies of HLB and C18 cartridges were compared and the results revealed that HLB sorbents performed better. Extracts were analyzed by gas chromatography-mass spectrometry. Extraction parameters, such as extraction solvent, its volume and rinsing solvent were optimized. Best recoveries of target analytes were obtained using 1mL methanol and limits of detection were achieved up to 0.05microg/mL with dichloromethane. Precision of the method was found to be less than 9.2% RSD.

  12. Water temperature, voluntary drinking and fluid balance in dehydrated taekwondo athletes.

    PubMed

    Khamnei, Saeed; Hosseinlou, Abdollah; Zamanlu, Masumeh

    2011-01-01

    Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C) for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C) does not improve voluntary drinking and hydration status. Key pointsFor athletes dehydrated in hot environments, maximum voluntary drinking and best hydration state occurs with 16°C water.Provision of fluid needs and thermal needs could be balanced using 16°C water.Drinking 16°C water (nearly the temperature of cool tap water) could be recommended for exercise in the heat.

  13. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

    PubMed

    Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C

    2018-01-09

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  14. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  15. The Effect of Obstacle Training in Water on Static Balance of Chronic Stroke Patients

    PubMed Central

    Jung, JaeHyun; Lee, JiYeun; Chung, EunJung; Kim, Kyoung

    2014-01-01

    [Purpose] This study evaluated the effects of water and land-based obstacle training on static balance of chronic stroke patients. [Subjects] The subjects were randomly allocated to an aqua group (n=15) and a land group (n=15). [Methods] Both groups trained for 40 minutes, 3 times a week for 12 weeks. Static balance was assessed by measuring the mean velocities of mediolateral (ML) and anteroposterior (AP), and sway area with the eyes closed. [Results] Following the intervention, both groups showed significant changes in ML velocity, AP velocity, and sway area. The static balance of the aqua group was significantly better than the land group. [Conclusion] The results of this study suggest the feasibility and suitability of obstacle training in water for stroke patients. PMID:24707102

  16. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    NASA Astrophysics Data System (ADS)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  17. Modeling the Monthly Water Balance of a First Order Coastal Forested Watershed

    Treesearch

    S. V. Harder; Devendra M. Amatya; T. J. Callahan; Carl C. Trettin

    2006-01-01

    A study has been conducted to evaluate a spreadsheet-based conceptual Thornthwaite monthly water balance model and the process-based DRAINMOD model for their reliability in predicting monthly water budgets of a poorly drained, first order forested watershed at the Santee Experimental Forest located along the Lower Coastal Plain of South Carolina. Measured precipitation...

  18. Improved soil water deficit estimation through the integration of canopy temperature measurements into a soil water balance model

    USDA-ARS?s Scientific Manuscript database

    Correct prediction of the dynamics of total available water in the root zone (TAWr) is critical for irrigation management as shown in the soil water balance model presented in FAO paper 56 (Allen et al., 1998). In this study, we propose a framework to improve TAWr estimation by incorporating the cro...

  19. Water balance and soil losses in an irrigated catchment under conservation tillage in Southern Spain

    NASA Astrophysics Data System (ADS)

    Cid, Patricio; Mateos, Luciano; Taguas, Encarnación V.; Gómez-Macpherson, Helena

    2013-04-01

    Conservation tillage based on permanent beds with crop-residue retention and controlled traffic has been recently introduced in irrigated annual crops in Southern Spain as one way to improve water infiltration, reduce soil losses, and save energy. The water balance and soil losses in water runoff have been monitored during 4 years in a 28-ha catchment within a production farm where this kind of soil conservation practice was established in 2004 for a maize-cotton-wheat rotation. The catchment average slope is 6 %. Soils are Typic Calcixerept and Typic Haploxerert. The water balance components that were measured include: applied irrigation water, rainfall, and runoff. Runoff was measured at the outlet of the catchment by means of a hydrological station that consisted of long-throated flume, ultrasonic water level sensor, automatic water sampler, data logger and transmission system, weather station, and ancillary equipment. We present here results from three hydrological seasons (October to September): 2009-10, 2010-11, and 2011-12. The first season the catchment was grown with wheat, thus the irrigation depth was small (25 mm); rainfall above average, 1103 mm; and the runoff coefficient was 26 %. In the season 2010-11, the catchment was grown with cotton, the irrigation depth was 503 mm, rainfall was 999 mm, and the seasonal runoff coefficient was 7 %. The last season, the crop was maize, rainfall was below average (368 mm), irrigation 590 mm, and the runoff coefficient as the previous year, 7 %. Soil losses were very small: 0.05, 1.26, and 1.33 t per ha and year, the first, second, and third monitored seasons, respectively. A simple water balance model allowed simulating evapotranspiration, deep percolation and runoff. The Curve Number for the catchment was calibrated using the balance model.

  20. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    NASA Astrophysics Data System (ADS)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  1. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Yeung, Chiu W.

    2005-01-01

    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10

  2. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  3. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1986-1991 balance years

    USGS Publications Warehouse

    Krimmel, Robert M.

    2000-01-01

    Mass balance and climate variables are reported for South Cascade Glacier, Washington, for the years 1986-91. These variables include air temperature, precipitation, water runoff, snow accumulation, snow and ice melt terminus position, surface level, and ice speed. Data are reduced to daily and monthly values where appropriate. The glacier-averaged values of spring snow accumulation and fall net balance given in this report differ from previous results because amore complete analysis is made. Snow accumulation values for the1986-91 period ranged from 3.54 (water equivalent) meters in 1991 to2.04 meters in 1987. Net balance values ranged from 0.07 meters in1991 to -2.06 meters in 1987. The glacier became much smaller during the 1986-91 period and retreated a cumulative 50 meters.

  4. Combining remote sensing and water-balance evapotranspiration estimates for the conterminous United States

    USGS Publications Warehouse

    Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.

    2017-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.

  5. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels

    NASA Astrophysics Data System (ADS)

    Qian, Shouguo; Li, Gang; Shao, Fengjing; Xing, Yulong

    2018-05-01

    We construct and study efficient high order discontinuous Galerkin methods for the shallow water flows in open channels with irregular geometry and a non-flat bottom topography in this paper. The proposed methods are well-balanced for the still water steady state solution, and can preserve the non-negativity of wet cross section numerically. The well-balanced property is obtained via a novel source term separation and discretization. A simple positivity-preserving limiter is employed to provide efficient and robust simulations near the wetting and drying fronts. Numerical examples are performed to verify the well-balanced property, the non-negativity of the wet cross section, and good performance for both continuous and discontinuous solutions.

  6. Conjoint Analysis of the Surface and Atmospheric Water Balances of the Andes-Amazon System

    NASA Astrophysics Data System (ADS)

    Builes-Jaramillo, Alejandro; Poveda, Germán

    2017-04-01

    Acknowledging the interrelation between the two branches of the hydrological cycle, we perform a comprehensive analysis of the long-term mean surface and atmospheric water balances in the Amazon-Andes River basins system. We estimate the closure of the water budgets based on the long-term approximation of the water balance equations, and estimate the imbalance between both atmospheric and surface budgets. The analysis was performed with observational and reanalysis datasets for the entire basin, for several sub-catchments inside the entire Amazon River basin and for two physical and geographical distinctive subsystems of the basin, namely upper Andean the low-lying Amazon River basin. Our results evidence that for the entire Amazon River basin the surface water balance can be considered to be in balance (P = 2225 mm.yr-1, ET= 1062 mm.yr-1, R= 965 mm.yr-1), whereas for the separated subsystems it not so clear, showing high discrepancies between observations and reanalysis datasets. In turn, the atmospheric budget does not close regardless of datasets or geographical disaggregation. Our results indicate that the amount of imbalance of the atmospheric branch of the water balance depends on the evaporation data source used. The imbalance calculated as I=(C/R)-1, where C is net moisture convergence (C= -∇Q where ∇Q is the net vertically integrated moisture divergence) and R the runoff,represents the difference between the two branches of the hydrological cycle. For the entire Amazon River basin we found a consistent negative imbalance driven by higher values of runoff, and when calculated for monthly time scales the imbalance is characterized by a high dependence on the Amazon dry season. The separated analysis performed to the Andes and Low-lying Amazonia subsystems unveils two shortcomings of the available data, namely a poor quality of the representation of surface processes in the reanalysis models (including precipitation and evapotranspiration), and the

  7. Hexagonal boron nitride and water interaction parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less

  8. [Water balance of different density artificial Caragana microphylla shrubs in Horqin sand land].

    PubMed

    Lamusa, A; Longjun, C I; Yang, Xiaohui; Jiang, Deming

    2006-01-01

    Employing water balance equation, this paper estimated the evapotranspiration of different density Caragana microphylla shrubs during their growing season. The results showed that during this season, the soil water content under artificial C. microphylla shrubs decreased with their increasing planting density. The average soil water content of 0.5 m x 1 m and 1 m x 2 m density artificial C. microphylla shrubs was below wilting humidity (1.55%), while that of 2 m x 2 m density and natural shrubs was kept above 1.60% which could meet the demand of shrubs growth. The evapotranspiration increased with increasing planting densities, being the highest (297.81 mm) in 0.5 m x 1 m density artificial C. microphylla shrubs, which accounted for 97.90% of the total rainfall during growing season, and the lowest (279.71 mm) in 2 m x 2 m density shrubs. By the end of growth phase, soil water content had a surplus of 24.49 mm. According to the soil water status and water balance theory, the appropriate planting density of C. microphylla shrubs in Horqin sand land should be 2 m x 2 m.

  9. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  10. An effective parameter optimization with radiation balance constraints in the CAM5

    NASA Astrophysics Data System (ADS)

    Wu, L.; Zhang, T.; Qin, Y.; Lin, Y.; Xue, W.; Zhang, M.

    2017-12-01

    Uncertain parameters in physical parameterizations of General Circulation Models (GCMs) greatly impact model performance. Traditional parameter tuning methods are mostly unconstrained optimization, leading to the simulation results with optimal parameters may not meet the conditions that models have to keep. In this study, the radiation balance constraint is taken as an example, which is involved in the automatic parameter optimization procedure. The Lagrangian multiplier method is used to solve this optimization problem with constrains. In our experiment, we use CAM5 atmosphere model under 5-yr AMIP simulation with prescribed seasonal climatology of SST and sea ice. We consider the synthesized metrics using global means of radiation, precipitation, relative humidity, and temperature as the goal of optimization, and simultaneously consider the conditions that FLUT and FSNTOA should satisfy as constraints. The global average of the output variables FLUT and FSNTOA are set to be approximately equal to 240 Wm-2 in CAM5. Experiment results show that the synthesized metrics is 13.6% better than the control run. At the same time, both FLUT and FSNTOA are close to the constrained conditions. The FLUT condition is well satisfied, which is obviously better than the average annual FLUT obtained with the default parameters. The FSNTOA has a slight deviation from the observed value, but the relative error is less than 7.7‰.

  11. Applying GOES-derived fog frequency indices to water balance modeling for the Russian River Watershed, California

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.; Flint, L. E.; Flint, A. L.; Peters, J.; Combs, C.

    2014-12-01

    Coastal fog modifies the hydrodynamic and thermodynamic properties of California watersheds with the greatest impact to ecosystem functioning during arid summer months. Lowered maximum temperatures resulting from inland penetration of marine fog are probably adequate to capture fog effects on thermal land surface characteristics however the hydrologic impact from lowered rates of evapotranspiration due to shade, fog drip, increased relative humidity, and other factors associated with fog events are more difficult to gauge. Fog products, such as those derived from National Weather Service Geostationary Operational Environmental Satellite (GOES) imagery, provide high frequency (up to 15 min) views of fog and low cloud cover and can potentially improve water balance models. Even slight improvements in water balance calculations can benefit urban water managers and agricultural irrigation. The high frequency of GOES output provides the opportunity to explore options for integrating fog frequency data into water balance models. This pilot project compares GOES-derived fog frequency intervals (6, 12 and 24 hour) to explore the most useful for water balance models and to develop model-relevant relationships between climatic and water balance variables. Seasonal diurnal thermal differences, plant ecophysiological processes, and phenology suggest that a day/night differentiation on a monthly basis may be adequate. To explore this hypothesis, we examined discharge data from stream gages and outputs from the USGS Basin Characterization Model for runoff, recharge, potential evapotranspiration, and actual evapotranspiration for the Russian River Watershed under low, medium, and high fog event conditions derived from hourly GOES imagery (1999-2009). We also differentiated fog events into daytime and nighttime versus a 24-hour compilation on a daily, monthly, and seasonal basis. Our data suggest that a daily time-step is required to adequately incorporate the hydrologic effect of

  12. The effect of using a geotextile in a monolithic (evapotranspiration) alternative landfill cover on the resulting water balance.

    PubMed

    Sun, Jianlei; Yuen, Samuel T S; Fourie, Andy B

    2010-11-01

    This paper examines the potential effects of a geotextile layer used in a lysimeter pan experiment conducted in a monolithic (evapotranspiration) soil cover trial on its resulting water balance performance. The geotextile was added to the base of the lysimeter to serve as a plant root barrier in order to delineate the root zone depth. Both laboratory data and numerical modelling results indicated that the geotextile creates a capillary barrier under certain conditions and retains more water in the soil above the soil/geotextile interface than occurs without a geotextile. The numerical modelling results also suggested that the water balance of the soil cover could be affected by an increase in plant transpiration taking up this extra water retained above the soil/geotextile interface. This finding has a practical implication on the full-scale monolithic cover design, as the absence of the geotextile in the full-scale cover may affect the associated water balance and hence cover performance. Proper consideration is therefore required to assess the final monolithic cover water balance performance if its design is based on the lysimeter results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A conceptual water balance model to explore the impact of different soil management on water availability for vineyards under contrasting environments

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Guzman, Gema; Lorite, Ignacio

    2016-04-01

    Vines are one of the most extended tree crops in Europe covering a wide range of environmental and management conditions. Soil management is a key element in maintaining vines in adequate agronomic conditions, as well as in determining not only yield but also grape quality. The soil management practices adopted in vineyards could favor accelerated erosion. Particularly, cultivation with rows running up-and-down the slope on sloping vineyards, maintenance of bare soil, compaction due to high traffic of machinery are some of the vineyard's management practices that expose soil to degradation, favoring runoff and soil erosion processes. In fact high erosion rates in vines have been recently reported by Gomez et al., (2011). The adoption of grass cover in vineyards as a soil management technique has a fundamental role in soil protection against erosion, but it can have a major impact on water balance and then in grape yield and quality. This effect, the possibility of competition for soil water with the vine, is in fact mentioned by vine growers as a limiting factor for use of cover crops in vineyards under semiarid conditions or during dry periods even in sub-humid climates. To evaluate the interaction between the use of cover crops and soil management adjustments (eg. spatial extension in the vineyard and time for seeding and mowing) In order to achieve an optimum equilibrium between soil protection and grape production we developed a conceptual water balance model that reproduces the major processes in vineyards, WABYN. This model simulates the effect of different soil management alternatives, as for instance conventional tillage or cover crop, on soil water balance components. It has been implemented in a user friendly interface in order to allow its use by technicians and other stakeholders in the vine sector. It follows the methodology of a previous model specific for olive orchards (Abazi et al., 2012) using a model called WABOL. In spite of this simplified

  14. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  15. On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models

    USGS Publications Warehouse

    Alley, William M.

    1984-01-01

    Several two- to six-parameter regional water balance models are examined by using 50-year records of monthly streamflow at 10 sites in New Jersey. These models include variants of the Thornthwaite-Mather model, the Palmer model, and the more recent Thomas abcd model. Prediction errors are relatively similar among the models. However, simulated values of state variables such as soil moisture storage differ substantially among the models, and fitted parameter values for different models sometimes indicated an entirely different type of basin response to precipitation. Some problems in parameter identification are noted, including difficulties in identifying an appropriate time lag factor for the Thornthwaite-Mather-type model for basins with little groundwater storage, very high correlations between upper and lower storages in the Palmer-type model, and large sensitivity of parameter a of the abcd model to bias in estimates of precipitation and potential evapotranspiration. Modifications to the threshold concept of the Thornthwaite-Mather model were statistically valid for the six stations in northern New Jersey. The abcd model resulted in a simulated seasonal cycle of groundwater levels similar to fluctuations observed in nearby wells but with greater persistence. These results suggest that extreme caution should be used in attaching physical significance to model parameters and in using the state variables of the models in indices of drought and basin productivity.

  16. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau

    PubMed Central

    Li, Yuntao; Adams, Jonathan; Shi, Yu; Wang, Hao; He, Jin-Sheng; Chu, Haiyan

    2017-01-01

    Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem. PMID:28401921

  17. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Yuntao; Adams, Jonathan; Shi, Yu; Wang, Hao; He, Jin-Sheng; Chu, Haiyan

    2017-04-01

    Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem.

  18. Water and salt balance in young male football players in training during the holy month of Ramadan.

    PubMed

    Shirreffs, Susan M; Maughan, Ronald J

    2008-12-01

    The aim of this study was to assess water and salt balance in young football players in training during Ramadan. Measurements were made in 92 young male football players before and during the month of Ramadan. Fifty-five participants were observing Ramadan fasting, while the other 37 participants were eating and drinking without restriction. In week 3 of Ramadan, water and salt balance measures were made during a training session of 60-70 min duration that was performed at an ambient temperature of 25-28 degrees C and relative humidity of 50-53%. Body mass was recorded before and after training. Fluid intake was assessed in non-fasting players by weighing drink bottles before and after training, and the volume of any urine output was recorded. Sweat composition was estimated from absorbent patches applied to four skin sites for the duration of training. Mean sweat loss of players amounted to 1.41 litres (s = 0.36) in fasting players and 1.61 litres (s = 0.51) in non-fasting players (P = 0.038). Mean fluid intake during training in non-fasting players was 1.92 litres (s = 0.66). Sweat sodium concentration was 20 mmol . l(-1) (s = 8) in fasting players and 17 mmol . l(-1) (s = 7) in non-fasting players, and total sweat sodium loss during training was 0.67 g (s = 0.41) and 0.65 g (s = 0.37) [corresponding to a salt loss of 1.7 g (s = 1.1) and 1.7 g (s = 0.9)] respectively, with no difference between fasting and non-fasting players. Sweat sodium loss was not related to estimated dietary sodium intake (r = -0.07). These descriptive data show large individual variations in all measured parameters with relatively little difference in sweat parameters between fasting and non-fasting individuals.

  19. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    PubMed

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  20. Automated gait and balance parameters diagnose and correlate with severity in Parkinson disease.

    PubMed

    Dewey, D Campbell; Miocinovic, Svjetlana; Bernstein, Ira; Khemani, Pravin; Dewey, Richard B; Querry, Ross; Chitnis, Shilpa; Dewey, Richard B

    2014-10-15

    To assess the suitability of instrumented gait and balance measures for diagnosis and estimation of disease severity in PD. Each subject performed iTUG (instrumented Timed-Up-and-Go) and iSway (instrumented Sway) using the APDM(®) Mobility Lab. MDS-UPDRS parts II and III, a postural instability and gait disorder (PIGD) score, the mobility subscale of the PDQ-39, and Hoehn & Yahr stage were measured in the PD cohort. Two sets of gait and balance variables were defined by high correlation with diagnosis or disease severity and were evaluated using multiple linear and logistic regressions, ROC analyses, and t-tests. 135 PD subjects and 66 age-matched controls were evaluated in this prospective cohort study. We found that both iTUG and iSway variables differentiated PD subjects from controls (area under the ROC curve was 0.82 and 0.75 respectively) and correlated with all PD severity measures (R(2) ranging from 0.18 to 0.61). Objective exam-based scores correlated more strongly with iTUG than iSway. The chosen set of iTUG variables was abnormal in very mild disease. Age and gender influenced gait and balance parameters and were therefore controlled in all analyses. Our study identified sets of iTUG and iSway variables which correlate with PD severity measures and differentiate PD subjects from controls. These gait and balance measures could potentially serve as markers of PD progression and are under evaluation for this purpose in the ongoing NIH Parkinson Disease Biomarker Program. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Automated Gait and Balance Parameters Diagnose and Correlate with Severity in Parkinson Disease

    PubMed Central

    Dewey, Daniel C.; Miocinovic, Svjetlana; Bernstein, Ira; Khemani, Pravin; Dewey, Richard B.; Querry, Ross; Chitnis, Shilpa; Dewey, Richard B.

    2014-01-01

    Objective To assess the suitability of instrumented gait and balance measures for diagnosis and estimation of disease severity in PD. Methods Each subject performed iTUG (instrumented Timed-Up-and-Go) and iSway (instrumented Sway) using the APDM® Mobility Lab. MDS-UPDRS parts II and III, a postural instability and gait disorder (PIGD) score, the mobility subscale of the PDQ-39, and Hoehn & Yahr stage were measured in the PD cohort. Two sets of gait and balance variables were defined by high correlation with diagnosis or disease severity and were evaluated using multiple linear and logistic regressions, ROC analyses, and t-tests. Results 135 PD subjects and 66 age-matched controls were evaluated in this prospective cohort study. We found that both iTUG and iSway variables differentiated PD subjects from controls (area under the ROC curve was 0.82 and 0.75 respectively) and correlated with all PD severity measures (R2 ranging from 0.18 to 0.61). Objective exam-based scores correlated more strongly with iTUG than iSway. The chosen set of iTUG variables was abnormal in very mild disease. Age and gender influenced gait and balance parameters and were therefore controlled in all analyses. Interpretation Our study identified sets of iTUG and iSway variables which correlate with PD severity measures and differentiate PD subjects from controls. These gait and balance measures could potentially serve as markers of PD progression and are under evaluation for this purpose in the ongoing NIH Parkinson Disease Biomarker Program. PMID:25082782

  2. Modelling the water balance of irrigated fields in tropical floodplain soils using Hydrus-1D

    NASA Astrophysics Data System (ADS)

    Beyene, Abebech; Frankl, Amaury; Verhoest, Niko E. C.; Tilahun, Seifu; Alamirew, Tena; Adgo, Enyew; Nyssen, Jan

    2017-04-01

    Accurate estimation of evaporation, transpiration and deep percolation is crucial in irrigated agriculture and the sustainable management of water resources. Here, the Hydrus-1D process-based numerical model was used to estimate the actual transpiration, soil evaporation and deep percolation from irrigated fields of floodplain soils. Field experiments were conducted from Dec 2015 to May 2016 in a small irrigation scheme (50 ha) called 'Shina' located in the Lake Tana floodplains of Ethiopia. Six experimental plots (three for onion and three for maize) were selected along a topographic transect to account for soil and groundwater variability. Irrigation amount (400 to 550 mm during the growing period) was measured using V-notches installed at each plot boundary and daily groundwater levels were measured manually from piezometers. There was no surface runoff observed in the growing period and rainfall was measured using a manual rain gauge. All daily weather data required for the evapotranspiration calculation using Pen Man Monteith equation were collected from a nearby metrological station. The soil profiles were described for each field to include the vertical soil heterogeneity in the soil water balance simulations. The soil texture, organic matter, bulk density, field capacity, wilting point and saturated moisture content were measured for all the soil horizons. Soil moisture monitoring at 30 and 60 cm depths was performed. The soil hydraulic parameters for each horizon was estimated using KNN pedotransfer functions for tropical soils and were effectively fitted using the RETC program (R2= 0.98±0.011) for initial prediction. A local sensitivity analysis was performed to select and optimize the most important hydraulic parameters for soil water flow in the unsaturated zone. The most sensitive parameters were saturated hydraulic conductivity (Ks), saturated moisture content (θs) and pore size distribution (n). Inverse modelling using Hydrus-1D further optimized

  3. Assessment of the water balance over France using regionalized Turc-Pike formula

    NASA Astrophysics Data System (ADS)

    Le Lay, Matthieu; Garçon, Rémy; Gailhard, Joël; Garavaglia, Federico

    2016-04-01

    With extensive use of hydrological models over a wide range of hydro-climatic contexts, bias in hydro-climatic data may lead to unreliable models and thus hydrological forecasts and projections. This issue is particularly pregnant when considering mountainous areas with great uncertainties on precipitations, or when considering complex unconservative catchments (e.g. karstic systems). The Turc-Pike water balance formula, analogous to the classical Budyko formula, is a simple and efficient mathematical formulation relating long-term average streamflow to long-term average precipitation and potential evaporation. In this study, we propose to apply this framework to assess and eventually adjust the water-balance before calibrating an operational hydrologic model (MORDOR model). Considering a large set of 350 french catchments, the Turc-Pike formula is regionalized based on ecohydrologic criterions to handle various hydro-climatic contexts. This interannual regional model is then applied to assess the water-balance over numerous catchments and various conditions, such as karstic, snow-driven or glaciarized and even anthropized catchments. Results show that it is possible to obtain pretty realistic corrections of meteorological inputs (precipitations, temperature or potential evaporation) or hydrologic surface (or runoff). These corrections can often be confirmed a posteriori by exogenous information. Positive impacts on hydrologic model's calibration are also demonstrated. This methodology is now operational for hydrologic applications at EDF (Electricité de France, French electric utility company), and therefore applied on hundreds of catchments.

  4. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  5. Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology

    NASA Astrophysics Data System (ADS)

    Rivera, Diego; Rivas, Yessica; Godoy, Alex

    2015-02-01

    Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s-1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.

  6. Cloud water interception and canopy water balance in the Hawaiian Islands: preliminary results and emerging patterns

    NASA Astrophysics Data System (ADS)

    Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.

    2017-12-01

    Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and

  7. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the

  8. Drinking and water balance during exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  9. Two-dimensional advective transport in ground-water flow parameter estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of

  10. A Multifunctional Surface That Simultaneously Balances Hydrophilic Enzyme Catalysis and Hydrophobic Water Repellency.

    PubMed

    Lawton, Timothy J; Uzarski, Joshua R; Filocamo, Shaun F

    2016-08-16

    The compatibility of multiple functions at a single interface is difficult to achieve, but is even more challenging when the functions directly counteract one another. This study provides insight into the creation of a simultaneously multifunctional surface formed by balancing two orthogonal functions; water repellency and enzyme catalysis. A partially fluorinated thiol is used to impart bulk hydrophobicity on the surface, and an N-hydroxysuccinimide ester-terminated thiol provides a specific anchoring sites for the covalent enzyme attachment. Different ratios of the two thiols are mixed together to form amphiphilic self-assembled monolayers, which are characterized with polarization-modulation infrared reflection-absorption spectroscopy and contact angle goniometry. The enzyme activity is measured by a fluorescence assay. With the results collected here, specific surface compositions are identified at which the orthogonal functions of water repellency and enzyme catalysis are balanced and exist simultaneously. An understanding of how to effectively balance orthogonal functions at surfaces can be extended to a number of higher-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong

    It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter to series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and to variations. Results indicated that (1)more » the omega variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of omega series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and to series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and omega series; (3) vegetation dynamics show significantly negative correlations with omega variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter omega changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance. (C) 2017 Elsevier B.V. All rights reserved.« less

  12. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  13. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  14. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  15. Strike a Balance: Optimization of Backbone Torsion Parameters of AMBER Polarizable Force Field for Simulations of Proteins and Peptides

    PubMed Central

    WANG, ZHI-XIANG; ZHANG, WEI; WU, CHUN; LEI, HONGXING; CIEPLAK, PIOTR; DUAN, YONG

    2014-01-01

    Based on the AMBER polarizable model (ff02), we have reoptimized the parameters related to the main-chain (Φ, Ψ) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of the important regions (i.e., β, PII, αR, and αL regions). Following the naming convention of the AMBER force field series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For Ace-Ala-Nme, the simulated populations in the β, PII and αR regions were approximately 30, 43, and 26%, respectively. For Ace-(Ala)7-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field, ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization. PMID:16526038

  16. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    NASA Astrophysics Data System (ADS)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  17. Estimation of water balance in two forests dominated, steep catchments of western Japan, using SWAT model

    NASA Astrophysics Data System (ADS)

    Admajaya, F. T.; Onodera, S. I.; Shimizu, Y.; Saito, M.

    2017-12-01

    To estimate hydrological responses under various meteorological conditions in forests dominated, steep catchments, it is necessary to apply the model approach. The purpose of this study is to estimate water balance in Ota river and Gonokawa river watersheds, using SWAT Model. SWAT-CUP SUFI2 was used for model calibration for five years (2006-2010) and validation periods of four years (2011-2014). Evapotranspiration was estimated by the Penman-Monteith method. The water balance of the Ota river and Gonokawa river have been analyzed for last nine years. The results of the daily calibration period were ranging between satisfactory to very good. The mean annual water balance for long-term period and monthly seasonal variation in two catchments were similar as follows, precipitation, evapotranspiration, discharge, and groundwater recharge were 1,852.7 mm, 718.8 mm (38.8% of the precipitation), 776.3 mm (41.9%), and 358.2 mm (19.2%), and seasonal variation pattern of water balance which summer season was high, respectively. The difference of seasonal variations and annual variation between a flood and a drought year of Ota river and Gono river was slightly big. Decreasing rates of precipitation during a drought year was 23% in Ota river as compared with 18% in Gono river catchments. In addition, the decreasing rate in river discharge was 43% in Ota river, but 36% in Gono river

  18. Important observations and parameters for a salt water intrusion model

    USGS Publications Warehouse

    Shoemaker, W.B.

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  19. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  20. Modelling Parameters Characterizing Selected Water Supply Systems in Lower Silesia Province

    NASA Astrophysics Data System (ADS)

    Nowogoński, Ireneusz; Ogiołda, Ewa

    2017-12-01

    The work presents issues of modelling water supply systems in the context of basic parameters characterizing their operation. In addition to typical parameters, such as water pressure and flow rate, assessing the age of the water is important, as a parameter of assessing the quality of the distributed medium. The analysis was based on two facilities, including one with a diverse spectrum of consumers, including residential housing and industry. The carried out simulations indicate the possibility of the occurrence of water quality degradation as a result of excessively long periods of storage in the water supply network. Also important is the influence of the irregularity of water use, especially in the case of supplying various kinds of consumers (in the analysed case - mining companies).

  1. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado

    USDA-ARS?s Scientific Manuscript database

    Deforestation of the Brazilian cerrado region has caused major changes in hydrological processes. These changes in water balance components are still poorly understood but are important for making land management decisions in this region. To better understand pre-deforestation conditions, we determi...

  2. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with

  3. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    USDA-ARS?s Scientific Manuscript database

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  4. Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i

    USGS Publications Warehouse

    Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.

    2011-01-01

    The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites

  5. Ultraendurance cycling in a hot environment: thirst, fluid consumption, and water balance.

    PubMed

    Armstrong, Lawrence E; Johnson, Evan C; McKenzie, Amy L; Ellis, Lindsay A; Williamson, Keith H

    2015-04-01

    The purpose of this field investigation was to identify and clarify factors that may be used by strength and conditioning professionals to help athletes drink adequately but not excessively during endurance exercise. A universal method to accomplish this goal does not exist because the components of water balance (i.e., sweat rate, fluid consumed) are different for each athlete and endurance events differ greatly. Twenty-six male cyclists (mean ± SD; age, 41 ± 8 years; height, 177 ± 7 cm; body mass, 81.85 ± 8.95 kg) completed a summer 164-km road cycling event in 7.0 ± 2.1 hours (range, 4.5-10.4 hours). Thirst ratings, fluid consumed, indices of hydration status, and body water balance (ingested fluid volume - [urine excreted + sweat loss]) were the primary outcome variables. Measurements were taken before the event, at designated aid stations on the course (52, 97, and 136 km), and at the finish line. Body water balance during exercise was not significantly correlated with exercise time on the course, height, body mass, or body mass index. Thirst ratings were not significantly correlated with any variable. We also observed a wide range of total sweat losses (4.9-12.7 L) and total fluid intakes (2.1-10.5 L) during this ultraendurance event. Therefore, we recommend that strength and conditioning professionals develop an individualized drinking plan for each athlete, by calculating sweat rate (milliliter per hour) on the basis of body mass change (in kilograms), during field simulations of competition.

  6. Balancing Ground-Water Withdrawals and Streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin, Rhode Island

    USGS Publications Warehouse

    Barlow, Paul M.; Dickerman, David C.

    2001-01-01

    Ground water withdrawn for water supply reduces streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin in Rhode Island. These reductions may adversely affect aquatic habitats. A hydrologic model was prepared by the U.S. Geological Survey in cooperation with the Rhode Island Water Resources Board, Town of North Kingstown, Rhode Island Department of Environmental Management, and Rhode Island Economic Development Corporation to aid water-resource planning in the basin. Results of the model provide information that helps water suppliers and natural-resource managers evaluate strategies for balancing ground-water development and streamflow reductions in the basin.

  7. Distribution of water quality parameters in Dhemaji district, Assam (India).

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P

    2010-07-01

    The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.

  8. A Well-Balanced Central-Upwind Scheme for the 2D Shallow Water Equations on Triangular Meshes

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We are interested in approximating solutions of the two-dimensional shallow water equations with a bottom topography on triangular meshes. We show that there is a certain flexibility in choosing the numerical fluxes in the design of semi-discrete Godunov-type central schemes. We take advantage of this fact to generate a new second-order, central-upwind method for the two-dimensional shallow water equations that is well-balanced. We demonstrate the accuracy of our method as well as its balance properties in a variety of examples.

  9. Variations in water balance and recharge potential at three western desert sites

    USGS Publications Warehouse

    Gee, G.W.; Wierenga, P.J.; Andraski, Brian J.; Young, M.H.; Fayer, M.J.; Rockhold, M.L.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to >50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication for waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential.

  10. Development of a multicomponent force and moment balance for water tunnel applications, volume 2

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-01-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. Static experiments (which are discussed in Volume 1 of this report) were conducted, and the results showed good agreement with wind tunnel data on similar configurations. Dynamic experiments, which are the main topic of this Volume, were also performed using the balance. Delta wing models and two F/A-18 models were utilized in a variety of dynamic tests. This investigation showed that, as expected, the values of the inertial tares are very small due to the low rotating rates required in a low-speed water tunnel and can, therefore, be ignored. Oscillations in pitch, yaw and roll showed hysteresis loops that compared favorably to data from dynamic wind tunnel experiments. Pitch-up and hold maneuvers revealed the long persistence, or time-lags, of some of the force components in response to the motion. Rotary-balance experiments were also successfully performed. The good results obtained in these dynamic experiments bring a whole new dimension to water tunnel testing and emphasize the importance of having the capability to perform simultaneous flow visualization and force/moment measurements during dynamic situations.

  11. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  12. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  13. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  14. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  15. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    NASA Astrophysics Data System (ADS)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  16. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  17. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  18. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed.

    PubMed

    Wendland, Edson; Gomes, Luis H; Troeger, Uwe

    2015-01-01

    The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.

  19. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    USDA-ARS?s Scientific Manuscript database

    Understanding the role of ecosystems in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. This study compares and contrasts the seasonal surface fluxes of sensible heat, latent heat and carbon fluxes measur...

  20. THE SIGNIFICANCE OF CUMULATIVE WATER BALANCE IN THE DEVELOPMENT OF EARLY COMPLICATIONS AFTER MAJOR ABDOMINAL SURGERY.

    PubMed

    Musaeva, T S; Karipidi, M K; Zabolotskikh, I B

    2016-11-01

    a comprehensive assessment of the water balance on the basis of daily, cumulative balance and 10% of the body weight gain and their role in the development of early complications after major abdominal surgery. A retrospective study of the perioperative period in 150 patients who underwent major abdomi- nal surgery was performed. The physical condition of the patients corresponded to ASA 3 class. The average age was 46 (38-62) years. The following stages ofresearch: an analysis of daily balance and cumulative balance in complicated and uncomplicated group and their role in the development of complications; the timing of development ofcomplications and possible relationship with fluid overload and the development of complications; changes in the level of albumin within 10 days of the postoperative period. The analysis of complications didn't show significant differences between complicated and uncomplicated groups according to the water balance during the surgery and by the end of the first day. When constructing the area under the ROC curve (A UROC) low resolution ofthe balance in intraoperative period and the first day and the balance on the second day to predict complications was shown. Significant diferences according to the cumulative balance was observed from the third day of the postoperative period Also with the third day of the postoperative period there is a good resolution for prediction ofpostoperative complications according to the cumulative balance with the cut-offpoint > of 50,7 ml/kg. the excessive infusion therapy is a predictor of adverse outcome in patients after major abdominal surgery. Therefore, after 3 days of postoperative period it is important to maintain mechanisms for the excretion of excess fluid or limitations of infusion therapy.

  1. Importance of ecohydrological modelling approaches in the prediction of plant behaviour and water balance at different scales

    NASA Astrophysics Data System (ADS)

    García-Arias, Alicia; Ruiz-Pérez, Guiomar; Francés, Félix

    2017-04-01

    Vegetation plays a main role in the water balance of most hydrological systems. However, in the past it has been barely considered the effect of the interception and evapotranspiration for hydrological modelling purposes. During the last years many authors have recognised and supported ecohydrological approaches instead of traditional strategies. This contribution is aimed to demonstrate the pivotal role of the vegetation in ecohydrological models and that a better understanding of the hydrological systems can be achieved by considering the appropriate processes related to plants. The study is performed in two scales: the plot scale and the reach scale. At plot scale, only zonal vegetation was considered while at reach scale both zonal and riparian were taken into account. In order to assure the main role of the water on the vegetation development, semiarid environments have been selected for the case studies. Results show an increase of the capabilities to predict plant behaviour and water balance when interception and evapotranspiration are taken into account in the soil water balance

  2. Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    2001-11-01

    A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained

  3. Estimation of octanol/water partition coefficients using LSER parameters

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  4. A Water Balance Model for Hill reservoir - Aquifer Exchange Water Flux Quantification and Uncertainty Analysis - Application to the Kamech catchment, Tunisia

    NASA Astrophysics Data System (ADS)

    Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme

    2013-04-01

    In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two

  5. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    NASA Astrophysics Data System (ADS)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  6. Effects of dietary electrolyte balance and addition of electrolyte-betaine supplements in feed or water on performance, acid-base balance and water retention in heat-stressed broilers.

    PubMed

    Sayed, M A M; Downing, J

    2015-04-01

    The effects of dietary electrolyte balance (DEB) and electrolyte-betaine (El-Be) supplements on heat-stressed broiler performance, acid-base balance and water retention were evaluated during the period 31-40 d of age in a 2 × 3 factorial arrangement of treatments. A total of 240 broilers were assigned to 6 treatment groups each with 8 replicates of 5 birds per cage and were exposed to cyclic high temperature (32 - 24 ± 1°C). Birds were provided with diets having DEB of either 180 or 220 mEq/kg. El-Be supplements were either added to the diet, water or not added to either of them to complete the array of 6 treatment groups. An additional 80 birds were kept at thermoneutral temperature (20 ± 1°C) and were provided with tap water and diets with DEB of either 180 or 220 mEq/kg to serve as negative controls. Exposure to high temperature depressed growth performance, increased rectal temperature and decreased potassium (K(+)) retention. In high-temperature room, birds fed on diets with DEB of 220 mEq/kg tended to increase BW from 35-40 d of age. However, at thermoneutral temperature, broilers fed on diets with DEB of 220 mEq/kg increased K(+) retention. Adding El-Be supplements in feed or water improved feed conversion ratio (FCR), enhanced water consumption and increased K(+) and sodium (Na(+)) retention. Interactions between DEB and El-Be supplements tended to affect body weight gain and FCR during the periods 35-40 and 31-40 d of age, respectively. It is suggested that when using a diet with DEB of 180 mEq/kg, adding the El-Be supplements in drinking water was more beneficial than in feed. Adding the supplements in feed or water was equally useful when using DEB of 220 mEq/kg.

  7. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers.

    PubMed

    Shim, M Y; Song, E; Billard, L; Aggrey, S E; Pesti, G M; Sodsee, P

    2013-10-01

    The effects of a series of balanced dietary protein levels on egg production and egg quality parameters of laying hens from 18 through 74 wk of age were investigated. One hundred forty-four pullets (Bovans) were randomly assigned to individual cages with separate feeders including 3 different protein level series of isocaloric diets. Diets were separated into 4 phases of 18-22, 23-32, 33-44, and 45-74 wk of age. The high protein (H) series contained 21.62, 19.05, 16.32, and 16.05% CP, respectively. Medium protein (M) and low protein (L) series were 2 and 4% lower in balanced dietary protein. The results clearly demonstrated that the balanced dietary protein level was a limiting factor for BW, ADFI, egg weight, hen day egg production (HDEP), and feed per kilogram of eggs. Feeding with the L series resulted in lower ADFI and HDEP (90.33% peak production) and more feed per kilogram of eggs compared with the H or M series (HDEP; 93.23 and 95.68% peak production, monthly basis). Egg weight responded in a linear manner to balanced dietary protein level (58.78, 55.94, and 52.73 g for H, M, and L, respectively). Feed intake of all hens, but especially those in the L series, increased considerably after wk 54 when the temperature of the house decreased due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house temperature to maintain BW, ADFI, and HDEP. For egg quality parameters, percent yolk, Haugh units, and egg specific gravity were similar regardless of diets. Haugh units were found to be greatly affected by the variation of housing temperature (P = 0.025). Maximum performance cannot always be expected to lead to maximum profits. Contrary to the idea of a daily amino acid requirement for maximum performance, these results may be used to determine profit-maximizing levels of balanced dietary protein based on the cost of protein and returns from different possible protein levels that may be fed.

  8. Automated optimization of water-water interaction parameters for a coarse-grained model.

    PubMed

    Fogarty, Joseph C; Chiu, See-Wing; Kirby, Peter; Jakobsson, Eric; Pandit, Sagar A

    2014-02-13

    We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment.

  9. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods

    PubMed Central

    Benoit, Joshua B.; Denlinger, David L.

    2010-01-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the prefeeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the nonfeeding, off-host state. PMID:20206630

  10. Three-parameter optical studies in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    McKee, David; Cunningham, Alex; Jones, Ken

    1997-02-01

    A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.

  11. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  12. Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

    2014-05-01

    There is a growing need for improved access to reliable water in Africa as population and food production increases. Currently approximately 300 million people do not have access to a secure source of safe drinking water. To meet these current and future demands, groundwater will need to be increasingly abstracted; groundwater is more reliable than surface water sources due to its relatively long response time to meteorological stresses and therefore is likely to be a more secure water resource in a more variable climate. Recent studies also quantified the volumes of groundwater potentially available which suggest that, if exploited, groundwater could help to meet the demand for fresh water. However, there is still considerable uncertainty as to how these resources may respond in the future due to changes in groundwater recharge and abstraction. Understanding and quantifying groundwater recharge is vital as it forms a primary indicator of the sustainability of underlying groundwater resources. Computational hydrological models provide a means to do this, but the complexity of recharge processes in Africa mean that these simulations are often highly uncertain. This study aims to evaluate our confidence in simulating groundwater recharge over Africa based on a sensitivity analysis using a distributed hydrological model developed by the British Geological Survey, ZOODRM. The model includes land surface, canopy, river, soil and groundwater components. Each component is able to exchange water and as such, forms a distributed water balance of Africa. The components have been parameterised using available spatial datasets of African vegetation, land-use, soil and hydrogeology while the remaining parameters have been estimated by calibrating the model to available river flow data. Continental-scale gridded precipitation and potential evapotranspiration datasets, based on remotely sensed and ground observations, have been used to force the model. Following calibration, the

  13. Soil Water Balance and Water Use Efficiency of Dryland Wheat in Different Precipitation Years in Response to Green Manure Approach

    PubMed Central

    Zhang, Dabin; Yao, Pengwei; Na, Zhao; Cao, Weidong; Zhang, Suiqi; Li, Yangyang; Gao, Yajun

    2016-01-01

    Winter wheat (Triticum aestivum L.) monoculture is conventionally cultivated followed by two to three months of summer fallow in the Loess Plateau. To develop a sustainable cropping system, we conducted a six-year field experiment to investigate the effect of leguminous green manure (LGM) instead of bare fallow on the yield and water use efficiency (WUE) of winter wheat and the soil water balance (SWB) in different precipitation years in a semi-arid region of northwest China. Results confirmed that planting LGM crop consumes soil water in the fallow season can bring varied effects to the subsequent wheat. The effect is positive or neutral when the annual precipitation is adequate, so that there is no significant reduction in the soil water supplied to wheat. If this is not the case, the effect is negative. On average, the LGM crop increased wheat yield and WUE by 13% and 28%, respectively, and had considerable potential for maintaining the SWB (0–200 cm) compared with fallow management. In conclusion, cultivation of the LGM crop is a better option than fallow to improve the productivity and WUE of the next crop and maintain the soil water balance in the normal and wet years in the Loess Plateau. PMID:27225842

  14. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    PubMed

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  15. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  16. From Drought to Flood: An Analysis of the Water Balance of the Tuolumne River Basin During Extreme Conditions (2015 - 2017)

    NASA Astrophysics Data System (ADS)

    Hedrick, A. R.; Marks, D. G.; Havens, S.; Robertson, M.; Johnson, M.; Sandusky, M.; Bormann, K. J.; Painter, T. H.

    2017-12-01

    Closing the water balance of a snow-dominated mountain basin has long been a focal point of the hydrologic sciences. This study attempts to more precisely quantify the solid precipitation inputs to a basin using the iSnobal energy balance snowmelt model and assimilated snow depth information from the Airborne Snow Observatory (ASO). Throughout the ablation seasons of three highly dissimilar consecutive water years (2015 - 2017), the ASO captured high resolution snow depth snapshots over the Tuolumne River Basin in California's Central Sierra Nevada. These measurements were used to periodically update the snow depth state variable of iSnobal, thereby nudging the estimates of water storage (snow water equivalent, or SWE) and melt (surface water input, or SWI) toward a more accurate solution. Once precipitation inputs and streamflow outputs are better constrained, the additional loss terms of the water mass balance equation (i.e. groundwater recharge and evapotranspiration) can be estimated with less uncertainty.

  17. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Water and sodium balances and their relation to body mass changes in microgravity.

    PubMed

    Drummer, C; Hesse, C; Baisch, F; Norsk, P; Elmann-Larsen, B; Gerzer, R; Heer, M

    2000-12-01

    Since the very beginning of space physiology research, the deficit in body mass that is often observed after landing has always been interpreted as an indication of the absolute fluid loss early during space missions. However, in contrast to central hypervolemic conditions on Earth, the acute shift of blood volume from the legs to the upper part of the body in astronauts entering microgravity (microG) has neither stimulated diuresis and natriuresis nor resulted in negative water-and sodium-balances. We therefore examined the kinetics of body mass changes in astronauts (n = 3) during their several weeks aboard the space station MIR. A continuous diet monitoring was performed during the first mission (EuroMIR94, 30 days). The second mission (MIR97, 19 days) comprised a 15-day metabolic ward period (including predefined constant energy and sodium intake). Water and sodium balances were calculated and the kinetic of changes in basal concentrations of fluid-balance-related hormones during flight were determined. The data suggest firstly that loss of body mass during space flight is rather a consequence of hypocaloric nutrition. Secondly, microG provokes a sodium retaining hormonal status and may lead to sodium storage without an accompanying fluid retention.

  19. An investigation of energy balances in palladium cathode electrolysis experiments

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.

    1990-09-01

    A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.

  20. Seawater drinking restores water balance in dehydrated harp seals.

    PubMed

    How, Ole-Jakob; Nordøy, Erling S

    2007-07-01

    The purpose of this study was to answer the question of whether dehydrated harp seals (Phoca groenlandica) are able to obtain a net gain of water from the intake of seawater. Following 24 h of fasting, three subadult female harp seals were dehydrated by intravenous administration of the osmotic diuretic, mannitol. After another 24 h of fasting, the seals were given 1,000 ml seawater via a stomach tube. Urine and blood were collected for measurement of osmolality and osmolytes, while total body water (TBW) was determined by injections of tritiated water. In all seals, the maximum urinary concentrations of Na(+) and Cl(-) were higher than in seawater, reaching 540 and 620 mM, respectively, compared to 444 and 535 mM in seawater. In another experiment, the seals were given ad lib access to seawater for 48 h after mannitol-induced hyper-osmotic dehydration. In animals without access to seawater, the mean blood osmolality increased from 331 to 363 mOsm kg(-1) during dehydration. In contrast, the blood osmolality, hematocrit and TBW returned to normal when the seals were permitted ad lib access to seawater after dehydration. In conclusion, this study shows that harp seals have the capacity to gain net water from mariposa (voluntarily drinking seawater) and are able to restore water balance after profound dehydration by drinking seawater.

  1. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  2. Climate change impact on the annual water balance in the northwest Florida coastal

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.

    2012-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the

  3. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    PubMed Central

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  4. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.

    PubMed

    Hember, Robbie A; Kurz, Werner A; Coops, Nicholas C

    2017-04-01

    Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (P m ) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (W s,z ) and reference evapotranspiration (ET r,z ) at each field plot. The models additionally tested for interactions between the water-balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross-validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water-balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole-plant, leaf-specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr -1 in 1951 to 2.0% yr -1 in 2014 (a net change of 0.9 ± 0.3% yr -1 ). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak-to-moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This 'learn-as-we-go' approach - defined by sampling rare drought events as they continue to intensify - will help to constrain the hydraulic limits of dominant tree

  5. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  6. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    NASA Astrophysics Data System (ADS)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  7. Temporal Variation in Water Quality Parameters under Different Vegetative Communities in Two Flooded Forests of the Northern Pantanal, Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Couto, E. G.; Dalmagro, H. J.; Lathuilliere, M. J.; Pinto Junior, O. B.; Johnson, M. S.

    2013-12-01

    The Pantanal is one of the largest flood plains in the world, and is characterized by large variability in vegetative communities and flooding dynamics. Some woody plant species have been observed to colonize large areas forming monospecific stands. We measured chemical parameters of flood waters including dissolved organic carbon (DOC), nitrate (NO3), dissolved oxygen (DO), and carbon dioxide (CO2) as well as physical parameters such as photosynthetically active radiation (PAR), temperature (Tw), turbidity (Turb) and water levels (WL). These chemical and physical measurements were conducted with the intent to characterize spatial and temporal differences of monospecific stands in order to understand if these different formations alter the biogeochemistry of the Pantanal waters. Water sample campaigns were conducted during the inundation period of January to May 2013 in two areas located in the Private Reserve of the Brazilian Social Service of Commerce (RPPN-SESC) near Poconé, Mato Grosso. Research sites included: (1) a flooded tall-stature forest (known as Cambarazal) dominated by the Vochysia divergens species; and (2) in a flooded scrub forest (known as Baia das Pedras) dominated by the Combretum lanceolatum species. Results showed three principal factors which explained 80% of variance in aquatic physical and chemical parameters. The first factor (PCA-1) explained 38% of variance (DO, PAR and WL), PCA-2 explained 23% (NO3, Tw, DOC), while PCA-3 explained only 19% of variance (CO2 and Turb). During the entire study period, the major concentration of variables were observed in the flooded forest. Physical variables presented small alterations, with the exception of water levels, that were greater in the flooded forest. With respect to temporal variables, all chemical parameters were greater at the beginning of the inundation and gradually dropped with the water level. With this work, we observed that the different monospecific formations influenced water

  8. Spatial variability in water-balance model performance in the conterminous United States

    USGS Publications Warehouse

    Hay, L.E.; McCabe, G.J.

    2002-01-01

    A monthly water-balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil-moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R-square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long-term mean and standard deviation of annual precipitation; temperature and runoff; and low-flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R-square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.

  9. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  10. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated

  11. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Anderson, R. G.; Shiflett, S. A.; Jenerette, G. D.

    2017-08-01

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical for urban water management and conservation, especially in arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We observed the relationship between evaporative fraction and satellite derived vegetation index across 29 sites, which was then used to map whole-city ET for a representative mid-summer period. Resulting ET distributions were strongly associated with both neighborhood population density and income. By comparing 2014 and 2015 summer-period water uses, our results show 7.8% reductions in evapotranspiration, which were also correlated with neighborhood demographic characteristics. Our findings suggest a mobile energy balance measurement platform coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use at neighborhood to whole city scales.

  12. Assessing topographic patterns in moisture use and stress using a water balance approach

    Treesearch

    James M. Dyer

    2009-01-01

    Through its control on soil moisture patterns, topography's role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily...

  13. Relation between Water Balance and Climatic Variables Associated with the Geographical Distribution of Anurans

    PubMed Central

    Titon, Braz; Gomes, Fernando Ribeiro

    2015-01-01

    Amphibian species richness increases toward the equator, particularly in humid tropical forests. This relation between amphibian species richness and environmental water availability has been proposed to be a consequence of their high rates of evaporative water loss. In this way, traits that estimate water balance are expected to covary with climate and constrain a species’ geographic distribution. Furthermore, we predicted that coexisting species of anurans would have traits that are adapted to local hydric conditions. We compared the traits that describe water balance in 17 species of anurans that occur in the mesic Atlantic Forest and xeric Cerrado (savannah) habitats of Brazil. We predicted that species found in the warmer and dryer areas would show a lower sensitivity of locomotor performance to dehydration (SLPD), increased resistance to evaporative water loss (REWL) and higher rates of water uptake (RWU) than species restricted to the more mesic areas. We estimated the allometric relations between the hydric traits and body mass using phylogenetic generalized least squares. These regressions showed that REWL scaled negatively with body mass, whereas RWU scaled positively with body mass. Additionally, species inhabiting areas characterized by higher and more seasonally uniform temperatures, and lower and more seasonally concentrated precipitation, such as the Cerrado, had higher RWU and SLPD than species with geographical distributions more restricted to mesic environments, such as the Atlantic Forest. These results support the hypothesis that the interspecific variation of physiological traits shows an adaptation pattern to abiotic environmental traits. PMID:26469787

  14. Failure to improve energy balance or dehydration by drenching transition cows with water and electrolytes at calving.

    PubMed

    Enemark, J M D; Schmidt, H B; Jakobsen, J; Enevoldsen, C

    2009-02-01

    The disease risk is very high among transition cows that may suffer from poor appetite. The aim of the present study was therefore to investigate the effect of drenching on energy balance, hydration state and selected production parameters in fresh cows. Twenty-one Danish Holstein-Friesian dairy cows in late pregnancy were randomly allocated to either treatment (TG) or control group (CG). TG cows were drenched twice with 20 l of water containing a mixture of calcium propionate, MgSO(4), and KCL specifically developed for prophylactic treatment of fresh cows. The results indicated that cows become dehydrated around calving, losing on average 53 l (TG) and 24.5 l (CG) of extra-cellular fluid, respectively. The drenching volume applied in the present study did not affect the degree of hydration after calving. Based on blood NEFA and BHB values it was shown that drenching caused a reduction in the degree of negative energy balance (NEB). Somatic cell count (SCC) for cows in first lactation was lower in the TG compared to CG. Milk yield was unaffected by treatment. We conclude that prophylactic drenching added little to the health promotion in the transition cows in the present study. Instead, increased focus on management routines would probably be of more value.

  15. Modeling the Soil Water and Energy Balance of a Mixed Grass Rangeland and Evaluating a Soil Water Based Drought Index in Wyoming

    NASA Astrophysics Data System (ADS)

    Engda, T. A.; Kelleners, T. J.; Paige, G. B.

    2013-12-01

    Soil water content plays an important role in the complex interaction between terrestrial ecosystems and the atmosphere. Automated soil water content sensing is increasingly being used to assess agricultural drought conditions. A one-dimensional vertical model that calculates incoming solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil heat exchange is applied to calculate water flow and heat transport in a Rangeland soil located near Lingel, Wyoming. The model is calibrated and validated using three years of measured soil water content data. Long-term average soil water content dynamics are calculated using a 30 year historical data record. The difference between long-term average soil water content and observed soil water content is compared with plant biomass to evaluate the usefulness of soil water content as a drought indicator. Strong correlation between soil moisture surplus/deficit and plant biomass may prove our hypothesis that soil water content is a good indicator of drought conditions. Soil moisture based drought index is calculated using modeled and measured soil water data input and is compared with measured plant biomass data. A drought index that captures local drought conditions proves the importance of a soil water monitoring network for Wyoming Rangelands to fill the gap between large scale drought indices, which are not detailed enough to assess conditions at local level, and local drought conditions. Results from a combined soil moisture monitoring and computer modeling, and soil water based drought index soil are presented to quantify vertical soil water flow, heat transport, historical soil water variations and drought conditions in the study area.

  16. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  17. Temporal variation and scaling of parameters for a monthly hydrologic model

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  18. Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.

    This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography andmore » vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.« less

  19. Hydrological and Meteorological Role of Forests: Implications for the Regulation of Water and Energy Balances

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Bettin, D. M.; Molina, R.; Henao, J. J.; Rodríguez, E.; Rendón, A.; Hoyos, I.; Poveda, G.

    2016-12-01

    In last decades, there has been increasing debate about the hydrological and meteorological role of forests, particularly regarding its role in the regulation of the energy and water balances. Here we summarize results from an ongoing research program studying this problem. First, we introduce the notion of ecohydrological scaling to show the existence of two alternative states of regulated or unregulated streamflows in the main tributaries of the Amazon river basin. The transition between both states is associated with the loss of forest cover, with a potential critical threshold at around 40% forest loss in the Amazon. These results imply that large-scale forest loss can force the entire Amazon basin system beyond a critical threshold where its natural streamflow regulation is lost. More generally, our proposed framework provides insights for a physical interpretation of the scaling relations in river basins, as well as foundations and tools to develop early warnings of critical transitions in river basins. Second, we show that long-term rainfall-streamflow ratios converge to low values with low spatial variability in forested basins of the world, independent of location, climatic regime, basin size or forest type. We interpret this as evidence that high forest cover provides long-term regulation of the water balance. Third, we examine the linkage between the presence of tropical forests in South America and the long-term spatial distribution of continental precipitation, and found evidence suggesting that the Amazon forests enhance the atmospheric rivers flowing inland from the Atlantic ocean, particularly during the austral and boreal summers. The associated effects on precipitation may be highly relevant for water availability in river basins located downstream such atmospheric rivers, such as the La Plata and the Orinoco river basins. Finally, we explore the linkage between forest-induced temperature inversions and the vertical transport of atmospheric

  20. Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Stolp, B. J.; Danskin, W. R.

    2012-03-01

    The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr-1 from the San Diego River basin for the calibration period (1982-2009) to 48.8 million m3 yr-1 from all major river basins for the entire coastal plain for the long-term period 1940-2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.

  1. Discovering local order parameters in liquid water using machine learning

    NASA Astrophysics Data System (ADS)

    Soto, Adrian; Lu, Deyu; Yoo, Shinjae; Fernandez-Serra, Marivi

    The local arrangement of water molecules in liquid phase is still being discussed and questioned. The prevailing view is that water is composed of a mixture of two structurally different liquids. One of the main challenges has been to find order parameters that are able to discriminate the complex structures of these distinct molecular environments. Several local order parameters have been proposed and studied in all sorts of atomistic simulations of liquid water but, to date, none has been able to capture the predicted dual character. This presents an ideal problem to treat with methods capable of unveiling information from complex data. In this talk we will discuss how local order parameters can be constructed from molecular dynamics trajectories by using machine learning and other related techniques. Work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.

  2. An updated view of global water cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Schlosser, A.; Lehr, J.

    2009-04-01

    Unprecedented new observation capacities combined with revolutions in modeling, we are poised to make huge advances in water cycle assessment, understanding, and prediction. To realize this goal, we must develop a discipline of prediction and verification through the integration of water and energy cycle observations and models, and to verify model predictions against observed phenomena to ensure that research delivers reliable improvements in prediction skill. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability, through integration of all necessary observations and research tools. A brief history of the lineage of the conventional water balance and a summary accounting of all major parameters of the water balance using highly respected secondary sources will be presented. Principally, recently published peer reviewed papers reporting results of original work involving direct measurements and new data generated by high-tech devices (e.g. satellite / airborne instruments, supercomputers, geophysical tools) will be employed. This work lends credence to the conventional water balance ideas, but also reveals anachronistic scientific concepts/models, questionable underlying data, longstanding oversights and outright errors in the water balance.

  3. Direct and indirect effects of development temperature on adult water balance traits of Eldana saccharina (Lepidoptera: Pyralidae).

    PubMed

    Kleynhans, Elsje; Conlong, Des E; Terblanche, John S

    2014-09-01

    For water balance physiology, prior thermal history may pre-condition individuals to be more sparing in their water consumption at a given temperature upon subsequent exposure, or alternatively, may relax constraints on water economy leading to more frivolous use of water at a later stage. Here we test these two major alternative hypotheses on the adult life stage of Eldana saccharina Walker (Lepidoptera: Pyralidae) by exposing them to different rearing temperatures (acclimation treatments) during immature stage development and comparing adult physiological performance (water loss rates, time to death) and water-balance related traits (body size, water content). Developmental acclimation at 20°C, 25°C or 30°C throughout the larval and pupal stage resulted in significant effects on water balance traits of two-day old adult male and female E. saccharina. In summary, lower developmental acclimation resulted in a 61% increase in water loss rate (range: 0.78mg/h) and a 26% reduction in survival time (6.8h). Initial body water content and initial body mass generally remained similar across male acclimation groups while higher developmental acclimation reduced female body mass significantly. High developmental acclimation resulted in significantly higher (∼23%) body water content at death possibly indicating a better overall ability to withstand desiccating conditions, although there was no difference in time to death compared to the intermediate group. The relationship between time to death and body mass was altered from negative at 25°C and 30°C acclimation, to positive at 20°C acclimation. These results show pervasive effects of rearing temperature on adult physiological performance, with low temperature relaxing what appear to be substantial constraints on water economy at higher temperatures for E. saccharina. Furthermore, they are significant for understanding the recent range expansion of E. saccharina into cooler environments in southern Africa and for

  4. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  5. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  6. Injection of Contaminants into a Simulated Water Distribution System Equipped with Continuous Multi-Parameter Water Monitors

    EPA Science Inventory

    The U.S. EPA’s Technology Testing and Evaluation Program has been charged by EPA to evaluate the performance of commercially available water security-related technologies. Multi-parameter water monitors for distributions systems have been evaluated as such a water security techn...

  7. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    PubMed

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  8. A catchment scale water balance model for FIFE

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  9. Hydrogeological framework and water balance studies in parts of Krishni Yamuna interstream area, Western Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Ahmed, Izrar; Umar, Rashid

    2008-02-01

    The Krishni Yamuna interstream area is a micro-watershed in the Central Ganga Plain and a highly fertile track of Western Uttar Pradesh. The Sugarcane and wheat are the major crops of the area. Aquifers of Quaternary age form the major source of Irrigation and municipal water supplies. A detailed hydrogeological investigation was carried out in the study area with an objective to assess aquifer framework, groundwater quality and its resource potential. The hydrogeological cross section reveals occurrence of alternate layers of clay and sand. Aquifer broadly behaves as a single bodied aquifer down to the depth of 100 m bgl (metre below ground level) as the clay layers laterally pinch out. The depth to water in the area varies between 5 and 16.5 m bgl. The general groundwater flow direction is from NE to SW with few local variations. An attempt has been made to evaluate groundwater resources of the area. The water budget method focuses on the various components contributing to groundwater flow and groundwater storage changes. Changes in ground water storage can be attributed to rainfall recharge, irrigation return flow and ground water inflow to the basin minus baseflow (ground water discharge to streams or springs), evapotranspiration from ground water, pumping and ground water outflow from the basin. The recharge is obtained in the study area using Water table fluctuation and Tritium methods. The results of water balance study show that the total recharge in to the interstream region is of the order of 185.25 million m3 and discharge from the study area is of the order of 203.24 million m3, leaving a deficit balance of -17.99 million m3. Therefore, the present status of groundwater development in the present study area has acquired the declining trend. Thus, the hydrogeological analysis and water balance studies shows that the groundwater development has attained a critical state in the region.

  10. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  11. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifei; Zhu, Liang; Li, Yuguang C.

    Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.

  12. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes

    DOE PAGES

    Yan, Zhifei; Zhu, Liang; Li, Yuguang C.; ...

    2018-01-01

    Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.

  13. Understanding the relationship between actual and potential evapotranspirations from long- term water balance analysis and flux observation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.; Sun, F.

    2007-12-01

    Increase in air temperature and decrease in pan evaporation was found to be common worldwide during the past half century. This results in controversy in view of the changes to the hydrological cycle. Increases in precipitation have been expected due to the Clausius¡§CClapyeron relation in that the specific humidity increases exponentially with the greenhouse-gas induced temperature increasing and confirmed by measurements over northern extratropical land areas. The hydrologic cycle is expected to be intensified (or accelerated). However, the decreased pan evaporation is found to be well related to the global dimming, i.e., the decreased solar radiation induced by the pollution increasing, thus evaporation (i.e., the latent heat flux) should be steadily decreasing from the energy balance perspective. Many researchers explained that the potential evaporation (usually measured by pan) is decreased with increasing of precipitation; however, the increased soil moisture (due to precipitation increasing) can be evaporated because of extra energy available. Therefore, the actual and potential evaporation are in complementary relationship, which is expected to unify the controversy between global warming and dimming. This means that pan evaporation decrease implicates acceleration of the global hydrologic cycle, i.e., increase in the terrestrial evaporation. Based on the complementary theory, many operational formulae have been introduced to estimated actual evaporation from the potential evaporation. Our recent water balance analysis of 108 catchments in non-humid regions of China has shown that there are no general opposite trends between potential and actual evaporation in the same period. A novel phenomenon has been found that the complementary relationships in evaporation are distinctly confirmed when the annual actual and potential evaporation are plotted against annual precipitation; However, complementary relationships disappear in many catchments when actual and

  14. Physicochemical parameters affecting the perception of borehole water quality in Ghana.

    PubMed

    Kulinkina, Alexandra V; Plummer, Jeanine D; Chui, Kenneth K H; Kosinski, Karen C; Adomako-Adjei, Theodora; Egorov, Andrey I; Naumova, Elena N

    2017-08-01

    Rural Ghanaian communities continue using microbiologically contaminated surface water sources due in part to undesirable organoleptic characteristics of groundwater from boreholes. Our objective was to identify thresholds of physical and chemical parameters associated with consumer complaints related to groundwater. Water samples from 94 boreholes in the dry season and 68 boreholes in the rainy season were analyzed for 18 parameters. Interviews of consumers were conducted at each borehole regarding five commonly expressed water quality problems (salty taste, presence of particles, unfavorable scent, oily sheen formation on the water surface, and staining of starchy foods during cooking). Threshold levels of water quality parameters predictive of complaints were determined using the Youden index maximizing the sum of sensitivity and specificity. The probability of complaints at various parameter concentrations was estimated using logistic regression. Exceedances of WHO guidelines were detected for pH, turbidity, chloride, iron, and manganese. Concentrations of total dissolved solids (TDS) above 172mg/L were associated with salty taste complaints. Although the WHO guideline is 1000mg/L, even at half the guideline, the likelihood of salty taste complaint was 75%. Iron concentrations above 0.11, 0.14 and 0.43mg/L (WHO guideline value 0.3mg/L) were associated with complaints of unfavorable scent, oily sheen, and food staining, respectively. Iron and TDS concentrations exhibited strong spatial clustering associated with specific geological formations. Improved groundwater sources in rural African communities that technically meet WHO water quality guidelines may be underutilized in preference of unimproved sources for drinking and domestic uses, compromising human health and sustainability of improved water infrastructure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Investigation of water quality parameters at selected points on the Tennessee River

    NASA Technical Reports Server (NTRS)

    Manger, M. C.

    1973-01-01

    Physical, chemical, and biological water quality parameters have been investigated at the Widow's Creek steam plant. The water quality parameters and field site locations have been selected so as to be compatible with the interests and needs of the Environmental Application Office at Marshall Space Flight Center. All sampling and testing was conducted as directed in the 13th Edition of Standard Methods of Analysis for Water and Waste Water or as suggested by NASA'S Technical Officer. Data is presented in a form compatible with that presently being collected by other agencies.

  16. Terrestrial Water Balances in the Face of Variable Climate over 49 years in Southern Michigan

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.

    2014-12-01

    The difference between precipitation and stream discharge over annual periods provides an indication of the total water loss to evaporation and evapotranspiration. The response of evaporative water loss to climate variability and change affects groundwater recharge, stream flow, and lake levels, and is a topic of ongoing debate in the upper Midwest US region and elsewhere. This study examined the watershed water balance for Augusta Creek, which drains a 95-km2 glacial landscape in southwestern Michigan covered by cropland, grassland, forest, and wetlands. The climate is humid and temperate; between 1964-2012 the water-year precipitation averaged 947 mm and ranged from 695-1386 mm. Comparison of precipitation on the upland watershed to baseflow discharge (USGS data; baseflow estimation by WHAT model) across the 49-year record shows that total evaporative water loss averaged 562 +/- 104 mm and ranged from 385-897 mm, with no apparent trend over the record. The evaporative water loss accounts for a mean (s.d.) of 59 +/- 6% of precipitation (range, 48-70%). Evaporative water loss was positively related to total precipitation (r2 = 0.73), but the percentage of precipitation lost to evaporation was only weakly (r2 = 0.12) related to total precipitation. This water balance approach to infer evaporative water loss compares well with direct measurements in the same watershed since 2009 using eddy covariance (grasslands and crops) and soil moisture monitoring by time-domain reflectometry (grasslands, crops, and forest). Thus the evaporative water loss, which is predominantly by evapotranspiration, is linearly related to total precipitation, leaving a relatively consistent proportion for groundwater recharge and streamflow.

  17. Simulation of the hydrogeologic effects of oil-shale mining on the neighbouring wetland water balance: case study in north-eastern Estonia

    NASA Astrophysics Data System (ADS)

    Marandi, Andres; Karro, Enn; Polikarpus, Maile; Jõeleht, Argo; Kohv, Marko; Hang, Tiit; Hiiemaa, Helen

    2013-11-01

    The water balance of wetlands plays an integral role in their function. Developments adjacent to wetlands can affect their water balance through impacts on groundwater flow and increased discharge in the area, and they can cause lowering of the wetland water table. A 430 km2 area was selected for groundwater modelling to asses the effect of underground mining on the water balance of wetlands in north-eastern Estonia. A nature conservation area (encompassing Selisoo bog) is within 3 km of an underground oil-shale mine. Two future mining scenarios with different areal extents of mining were modeled and compared to the present situation. Results show that the vertical hydraulic conductivity of the subsurface is of critical importance to potential wetland dewatering as a result of mining. Significant impact on the Selisoo bog water balance will be caused by the approaching mine but there will be only minor additional impacts from mining directly below the bog. The major impact will arise before that stage, when the underground mine extension reaches the border of the nature conservation area; since the restriction of activities in this area relates to the ground surface, the conservation area’s border is not sufficiently protective in relation to underground development.

  18. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    USGS Publications Warehouse

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  19. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948-1997

    NASA Astrophysics Data System (ADS)

    Makarieva, Olga; Nesterova, Nataliia; Lebedeva, Lyudmila; Sushansky, Sergey

    2018-04-01

    In 2018, 70 years have passed since the beginning of observations at the Kolyma Water-Balance Station (KWBS), a unique scientific research hydrological and permafrost catchment. The volume and duration (50 continuous years) of hydrometeorological standard and experimental data, characterizing the natural conditions and processes occurring in mountainous permafrost conditions, significantly exceed any counterparts elsewhere in the world. The data are representative of mountainous territory of the North-East of Russia. In 1997, the station was terminated, thereby leaving Russia without operating research watersheds in the permafrost zone. This paper describes the dataset containing the series of daily runoff from 10 watersheds with an area from 0.27 to 21.3 km2, precipitation, meteorological observations, evaporation from soil and snow, snow surveys, soil thaw and freeze depths, and soil temperature for the period 1948-1997. It also highlights the main historical stages of the station's existence, its work and scientific significance, and outlines the prospects for its future, where the Kolyma Water-Balance Station could be restored to the status of a scientific research watershed and become a valuable international centre for hydrological research in permafrost. The data are available at https://doi.org/10.1594/PANGAEA.881731.

  20. Geostatistical Characteristic of Space -Time Variation in Underground Water Selected Quality Parameters in Klodzko Water Intake Area (SW Part of Poland)

    NASA Astrophysics Data System (ADS)

    Namysłowska-Wilczyńska, Barbara

    2016-04-01

    This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed

  1. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in

  2. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  3. Hydrology beyond closing the water balance: energy conservative scaling of gradient flux relations

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Loritz, Ralf; Jackisch, Conrad

    2017-04-01

    The value of physically-based models has been doubted since their idea was introduced by Freeze and Harlan. Physically-based models like typically rely on the Darcy-Richards concept for soil water dynamics, the Penman-Monteith equation for soil-vegetation-atmosphere exchange processes and hydraulic approaches for overland and stream flow. Each of these concepts is subject to limitations arising from our imperfect understanding of the related processes and is afflicted by the restricted transferability of process descriptions from idealized laboratory conditions to heterogeneous natural systems. Particularly the non-linearity of soil water characteristics in concert with the baffling heterogeneity subsurface properties is usually seen as the dead end for a meaningful application of physically based models outside of well observed research catchments and, more importantly, for an upscaling of point scale flux - gradient relation-ships. This study provides evidence that an energy conservative scaling of topographic gradients and soil water retention curves allows derivation of useful effective catchment scale topography and retention curve from distributed data, which allow successful simulations of the catchment water balance in two distinctly different landscapes. The starting point of our approach is that subsurface water fluxes are driven by differences in potential energy and chemical/capillary binding energy. The relief of a single hillslope controls the potential energy gradients driving downslope flows of free water, while catchment scale variability in hillslope relief is associated with differences in driving potential energy. It is more important to note that the soil water retention curve characterises the density of capillary binding energy of soil water (usually named soil water potential) at a given soil water content. Spatially variable soil water characteristics hence reflect fluctuations in capillary binding energy of soil water at a given soil water

  4. Infiltration and water balance modeling along a toposequence in a rubber tree plantation of NE Thailand

    NASA Astrophysics Data System (ADS)

    Hammecker, Claude; Seltacho, Siwaporn; Suvanang, Nopmanee; Do, Frederic; Angulo-Jaramillo, Rafael

    2015-04-01

    Northeast of Thailand, is a plateau at 200 m AMSL with a typical undulating landscape. Traditionally the lowlands were dedicated to paddy fields and the uplands covered by Dipterocarpus forest. However development of cash crops during the last decades has led to intensive land clearing in the uplands and to modifications at a regional scale of the water balance in the critical zone with increasing runoff and soil erosion. Recent international demand increase for natural rubber motivated many local farmers to shift from these cash crops towards rubber-tree (Heva Brasiliensis) plantations. However these land use changes have been undertaken without considering the climatic and edaphic specificity of the region, which are not well adapted to the growth of rubber tree (rainfall lower than recommended and sandy soils with low fertility). Therefore, in order to assess and try to predict the environmental consequences (water resources, water-table, ..) of the development of rubber tree plantations in this area, a small watershed in the region ok Khon Kaen has been selected to follow the infiltration and to monitor the different components of the water balance along a toposequence. A six years monitoring of the main components of water balance along a toposequence associated to numerical simulation were used to quantify and try to forecast the evolution of the water use and water resources. Unsaturated soil properties were determined at different depths, in various positions along the toposequence. Experimental results supported by modeling of 2D water flow with HYDRUS3D show clearly that infiltration is blocked by a clayey layer on top of the bedrock and conditioned the occurrence of a perched watertable during the rainy seasons. Most of the soil water flow was found to be directed laterally during the rainy season. The deep groundwater was found to be fed from the lower part of toposequence in the thalweg. The transpiration rate measured on the trees at this stage of

  5. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    PubMed

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  6. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    USGS Publications Warehouse

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  7. Seasonal energy and water balance of a Phragmites australis-dominated wetland in the Republican River basin of south-central Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Cutrell, G. J.; Istanbulluoglu, E.; Scott, D. T.; Herrman, K. S.; Irmak, A.; Eisenhauer, D. E.

    2011-09-01

    SummaryClimate and vegetation strongly influence the water cycle on local to regional scales. A change in the surface energy and water balance, especially in dry climatic regions, can have a significant impact on local water availability and, therefore, water resource management. The purpose of this study is to quantify the energy and water balance of a riparian wetland in a subhumid region of the central US, as well as the role of seasonal climate variability and vegetation phenology. The site is located in the Republican River basin in south-central Nebraska, where decreases in streamflow have been observed in recent decades. In an effort to reduce consumptive water use from evapotranspiration (ET), and thereby reclaim surface water, invasive species such as Phragmites australis have been removed throughout the riparian corridor of the river basin. In this study, we used energy/water balance monitoring stations, a Large Aperture Scintillometer (LAS), and numerous water and soil temperature probes to determine the energy and water balance during the 2009 growing season (April 11-October 3). Sensible heat flux was measured using the LAS, while ET was calculated as a residual of the energy balance (i.e., net radiation minus sensible heat flux and heat storage rates in the canopy, water, and soil). Rigorous quality control and uncertainty analyses were performed, and comparisons were also made with ET rates calculated via the simpler Priestley-Taylor method. Results of the energy budget analysis indicate that the average ET rate for the wetland during the growing season was 4.4 mm day -1, with a maximum daily rate of 8.2 mm day -1 (occurring on June 29). Precipitation during the same 176-day period averaged 2.7 mm day -1. Net radiation and vegetation phenology were found to be the two largest drivers of seasonal variability in ET. Sensible heat flux was significantly larger than latent heat flux early in the season, when standing vegetation in the wetland was still

  8. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    USGS Publications Warehouse

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    measured values for the gaging stations on the Almagosa, Maulap, and Imong Rivers—tributaries to the Fena Valley Reservoir—with Nash-Sutcliffe efficiency values of 0.87 or higher. The southern Guam watershed model simulated the total volume of the critical dry season (January to May) streamflow for the entire simulation period within –0.54 percent at the Almagosa River, within 6.39 percent at the Maulap River, and within 6.06 percent at the Imong River.The recalibrated water-balance model of the Fena Valley Reservoir generally simulated monthly reservoir storage volume with reasonable accuracy. For the calibration and verification periods, errors in end-of-month reservoir-storage volume ranged from 6.04 percent (284.6 acre-feet or 92.7 million gallons) to –5.70 percent (–240.8 acre-feet or –78.5 million gallons). Monthly simulation bias ranged from –0.48 percent for the calibration period to 0.87 percent for the verification period; relative error ranged from –0.60 to 0.88 percent for the calibration and verification periods, respectively. The small bias indicated that the model did not consistently overestimate or underestimate reservoir storage volume.In the entirety of southern Guam, the watershed model has a “satisfactory” to “very good” rating when simulating monthly mean streamflow for all but one of the gaged watersheds during the verification period. The southern Guam watershed model uses a more sophisticated climate-distribution scheme than the older model to make use of the sparse climate data, as well as includes updated land-cover parameters and the capability to simulate closed depression areas.The new Fena Valley Reservoir water-balance model is useful as an updated tool to forecast short-term changes in the surface-water resources of Guam. Furthermore, the now spatially complete southern Guam watershed model can be used to evaluate changes in streamflow and recharge owing to climate or land-cover changes. These are substantial

  9. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?

    PubMed

    Vanham, D

    2012-01-01

    Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.

  10. Body water balance and body temperature in vasopressin V1b receptor knockout mice.

    PubMed

    Daikoku, R; Kunitake, T; Kato, K; Tanoue, A; Tsujimoto, G; Kannan, H

    2007-10-30

    In an attempt to determine whether there is a specific vasopressin receptor (V(1b)) subtype involved in the regulation of body water balance and temperature, vasopressin V(1b) receptor knockout mice were used. Daily drinking behavior and renal excretory function were examined in V(1b)-deficient (V(1b)(-/-)) and control (V(1b)(+/+)) mice under the basal and stress-induced condition. In addition, body temperature and locomotor activity were measured with a biotelemetry system. The baseline daily water intake and urine volume were larger in V(1b)(-/-) mice than in V(1b)(+/+) mice. V(1b)(-/-) mice (V(1b)(-/-)) had significantly higher locomotor activity than wild-type, whereas the body temperature and oxygen consumption were lower in V(1b)(-/-) than in the V(1b)(+/+) mice. Next, the V(1b)(-/-) and V(1b)(+/+) mice were subjected to water deprivation for 48 hr. Under this condition, their body temperature decreased with the time course, which was significantly larger for V(1b)(-/-) than for V(1b)(+/+) mice. Central vasopressin has been reported to elicit drinking behavior and antipyretic action, and the V(1b) receptor has been reported to be located in the kidney. Thus, the findings suggest that the V(1b) receptor may be, at least in part, involved in body water balance and body temperature regulation.

  11. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    PubMed

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  12. Effects of different heel-raise-lower exercise interventions on the strength of plantarflexion, balance, and gait parameters in stroke survivors.

    PubMed

    Lee, Seung-Mi; Cynn, Heon-Seock; Yoon, Tae-Lim; Lee, Ji-Hyun

    2017-09-01

    The objective of this study was to investigate the effects of Heel-Raise-Lower Exercise (HRLE) interventions on the strength of plantarflexion, balance, and gait parameters in people with stroke. Specifically, this study compared the two different HRLEs to identify whether heels raise-lower with forefoot on a block (HRB) is more effective or ineffective to enhance strength and functional capacities than heels raise-lower on a level floor (HRL) exercise in people with stroke. Repetitive heel raise-lower is a common exercise for improving the strength and power of ankle plantarflexors. It is a simple movement, requires no equipment, and can be performed at home. Each group of 10 people with stroke was given either HRB training or HRL training. The subjects performed the exercise 100 times per day, 5 days per week for 6 weeks. The strength of plantarflexors, static/dynamic balance, and gait parameters were measured using the manual muscle test (MMT), a Biodex Balance System (BBS) SD, and the GAITRite system. After 6 weeks of treatment, there were significant increases in the plantarflexors strength in both groups: by 34% in the HRB group and by 21% in the HRL group. Static and dynamic balance and gait speed also increased significantly in both groups. However, cadence, the paretic side single limb support period (SLSP), paretic side step length, and paretic side stride length significantly increased only in the HRB group. The HRB improved significantly the plantar flexor strength of the paretic side, gait speed, and cadence compared to the HRL.

  13. Determination of nitrogen balance in agroecosystems.

    PubMed

    Sainju, Upendra M

    2017-01-01

    Nitrogen balance in agroecosystems provides a quantitative framework of N inputs and outputs and retention in the soil that examines the sustainability of agricultural productivity and soil and environmental quality. Nitrogen inputs include N additions from manures and fertilizers, atmospheric depositions including wet and dry depositions, irrigation water, and biological N fixation. Nitrogen outputs include N removal in crop grain and biomass and N losses through leaching, denitrification, volatilization, surface runoff, erosion, gas emissions, and plant senescence. Nitrogen balance, which is the difference between N inputs and outputs, can be reflected in changes in soil total (organic + inorganic) N during the course of the experiment duration due to N immobilization and mineralization. While increased soil N retention and mineralization can enhance crop yields and decrease N fertilization rate, reduced N losses through N leaching and gas emissions (primarily NH 4 and NO x emissions, out of which N 2 O is a potent greenhouse gas) can improve water and air quality. •This paper discusses measurements and estimations (for non-measurable parameters due to complexity) of all inputs and outputs of N as well as changes in soil N storage during the course of the experiment to calculate N balance.•The method shows N flows, retention in the soil, and losses to the environment from agroecosystems.•The method can be used to measure agroecosystem performance and soil and environmental quality from agricultural practices.

  14. An Approach to Modeling the Water Balance Sensitivity to Landscape Vegetation Changes

    NASA Astrophysics Data System (ADS)

    Mohammed, I. N.; Tarboton, D. G.

    2008-12-01

    Watershed development and management require an understanding of how hydrological processes affect water balance components. The study of water resources management, especially in Western United States, is currently motivated by climate change, the impact of vegetation cover change on water production, and the need to manage water supplies. Vegetation management and its relation to runoff has been well documented, as reduction of forest cover, reducing evapotranspiration, increases water yield and in contrast the establishment of forest cover on sparsely vegetated land, increasing evapotranspiration, deceases water yield. This paper presents a water balance model developed to quantify the sensitivity of runoff production to changes in vegetation based on differences in evapotranspiration from different land cover types. The model is intended to provide a simple framework for estimating long term yield changes due to managed vegetation change. The model assumes that relative potential evapotranspiration from specific land cover can be quantified by a set of potential evapotranspiration coefficients for each land cover type. The model uses the Budyko curve to partition precipitation into evapotranspiration and runoff over the long term. Potential evapotranspiration is estimated from the Budyko curve for present conditions, then adjusted for land cover changes using the relative potential evapotranspiration coefficients for each land cover type. The adjusted potential evapotranspiration is then partitioned using the Budyko curve to provide estimates of long term runoff and evapotranspiration for the changed conditions. We found that the changes in runoff were in general close to being linearly proportional to the changes in land cover. In Utah study watersheds, reducing 50% of the present coniferous forests resulted in runoff increase that ranged from 0.5 to 38 mm/year, while the transition of 50% of area present as range/shrub/other to forest resulted in runoff

  15. The Water, Energy and Food Nexus: Finding the Balance in Infrastructure Investment

    NASA Astrophysics Data System (ADS)

    Huber-lee, A. T.; Wickel, B.; Kemp-Benedict, E.; Purkey, D. R.; Hoff, H.; Heaps, C.

    2013-12-01

    There is increasing evidence that single-sector infrastructure planning is leading to severely stressed human and ecological systems. There are a number of cross-sectoral impacts in these highly inter-linked systems. Examples include: - Promotion of biofuels that leads to conversion from food crops, reducing both food and water security. - Promotion of dams solely built for hydropower rather than multi-purpose uses, that deplete fisheries and affect saltwater intrusion dynamics in downstream deltas - Historical use of water for cooling thermal power plants, with increasing pressure from other water uses, as well as problems of increased water temperatures that affect the ability to cool plants efficiently. This list can easily be expanded, as these inter-linkages are increasing over time. As developing countries see a need to invest in new infrastructure to improve the livelihoods of the poor, developed countries face conditions of deteriorating infrastructure with an opportunity for new investment. It is crucial, especially in the face of uncertainty of climate change and socio-political realities, that infrastructure planning factors in the influence of multiple sectors and the potential impacts from the perspectives of different stakeholders. There is a need for stronger linkages between science and policy as well. The Stockholm Environment Institute is developing and implementing practical and innovative nexus planning approaches in Latin America, Africa and Asia that brings together stakeholders and ways of integrating uncertainty in a cross-sectoral quantitative framework using the tools WEAP (Water Evaluation and Planning) and LEAP (Long-range Energy Alternatives Planning). The steps used include: 1. Identify key actors and stakeholders via social network analysis 2. Work with these actors to scope out priority issues and decision criteria in both the short and long term 3. Develop quantitative models to clarify options and balances between the needs and

  16. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  17. Uncertainty analyses of the calibrated parameter values of a water quality model

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.; Lindenschmidt, K.-E.

    2003-04-01

    For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.

  18. [Weight parameters of water quality impact and risk grade determination of water environmental sensitive spots in Jiashan].

    PubMed

    Xie, Rong-Rong; Pang, Yong; Zhang, Qian; Chen, Ke; Sun, Ming-Yuan

    2012-07-01

    For the safety of the water environment in Jiashan county in Zhejiang Province, one-dimensional hydrodynamic and water quality models are established based on three large-scale monitoring of hydrology and water quality in Jiashan county, three water environmental sensitive spots including Hongqitang dam Chijia hydrological station and Luxie pond are selected to investigate weight parameters of water quality impact and risk grade determination. Results indicate as follows (1) Internal pollution impact in Jiashan areas was greater than the external, the average weight parameters of internal chemical oxygen demand (COD) pollution is 55.3%, internal ammonia nitrogen (NH(4+)-N) is 67.4%, internal total phosphor (TP) is 63.1%. Non-point pollution impact in Jiashan areas was greater than point pollution impact, the average weight parameters of non-point COD pollutions is 53.7%, non-point NH(4+)-N is 65.9%, non-point TP is 57.8%. (2) The risk of Hongqitang dam and Chijia hydrological station are in the middle risk. The risk of Luxie pond is also in the middle risk in August, and in April and December the risk of Luxie pond is low. The strategic decision will be suggested to guarantee water environment security and social and economic security in the study.

  19. A short history of the development of the Turc-Mezentsev water balance formula

    NASA Astrophysics Data System (ADS)

    Andréassian, Vazken; Lebecherel, Laure

    2013-04-01

    In the 1950s, a formula linking long term average evaporation to long-term average precipitation and potential evaporation was quasi-simultaneously proposed in France and in the Soviet Union. However, because Turc and Mezentsev published in French and Russian respectively, their work has received limited attention, and the formula they proposed is often given different names. • Work of Lucien Turc in France (1954) Lucien Turc, a French soil scientist, worked at the Versailles soil science laboratory of the French National Agronomical Research Institute. For agronomic purposes, he was interested in developing a formula to estimate actual evapotranspiration from precipitation and temperature data. Since lysimeter data were so scarce at that time, he had the idea to derive such a formula from catchment water balance. With the help of the hydrologist Maurice Pardé, he assembled a set of data on 254 catchments from all over the world. He derived long-term average actual evapotranspiration (E) from estimates of long-term average precipitation (P) and long-term average discharge (Q). Then, Turc looked for a mathematical function linking two non-dimensional terms: the aridity index (the ratio of precipitation P and potential evapotranspiration E0) and the evapotranspiration rate (the ratio of E and E0). He proposed the following formulation: E/P=1/[1+(P/E0)**n]**(1/n) in which n is an exponent to estimate. Turc graphically looked for the most convenient value for n, and concluded that the best fit was "with n=3, or may be n=2" (Turc, 1954, p.563). • Work of Varfolomeï Mezentsev in the Soviet Union (1955) Mezentsev (1955) worked at the University of Omsk in Siberia. He started his analysis from a formula proposed by Bagrov (1953): dE/dP=1-(E/E0)**n (Eq.1) This formula presents the interesting property to integrate into the Schreiber (1904) water balance formula for n=1:and into the Ol'Dekop (1911) water balance formula for n=2. But it had no analytical solution for

  20. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  1. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful

  2. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.

  3. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  4. Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers.

    PubMed

    Gao, Zeyong; Niu, Fujun; Lin, Zhanju; Luo, Jing; Yin, Guoan; Wang, Yibo

    2018-04-24

    Thermokarst lakes are a ubiquitous landscape feature, which widely distributed in the pan-arctic and some low latitude regions, and are associated with regional hydrological processes. The studies were taken to obtain a better understanding of the water balance of thermokarst lakes in the Qinghai-Tibet Plateau (QTP) in order to gain insight of the regional hydrological cycle. The characteristics of the stable isotopes δ 18 O and δ D were investigated in precipitation, permafrost meltwater, and thermokarst lake water in the continuous permafrost region of the QTP and analyzed the lake water balance using the isotope mass model. The results showed that the δ D-δ 18 O relationship in the thermokarst lakes (δ D = 5.45 δ 18 O - 18.95) differed from that of the local precipitation (δ D = 8.30 δ 18 O + 18.49) and permafrost meltwater (δ D = 5.78 δ 18 O - 23.41), and the mean isotope compositions in the thermokarst lakes were -7.2‰ in δ 18 O and -58.0‰ in δ D. The more positive isotope signals in thermokarst lakes than in the precipitation and permafrost meltwater revealed that the lakes had experienced stronger isotope enrichment. Additionally, the evaporation-to-inflow ratio (E/I) values were < 1 in most of the thermokarst lakes (84%), which might be explained by the recent expansion of the lake surfaces. However, 16% of the thermokarst lakes had shrunk, owing to thermokarst erosion, lateral expansion as the temperature increases, and lower recharge volume. Moreover, precipitation on the lake surface was only 14-18% of the inflow volume in the thermokarst lakes, and the surface-subsurface inflow and permafrost meltwater are very important for recharging the lakes and maintaining the water balance. The results of this study provide a comprehensive understanding of the influence of climate warming on hydrological processes in the permafrost regions in the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Ecohydrology of saltcedar (Tamarix spp.) in the western United States and implications of water balance following a biocontrol agent introduction

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E. P.

    2012-12-01

    With increased demand on water sources for human use and likely diminished supplies due to climate change, it is important to understand the variation in evapotranspiration (ET) and vegetation water use by transpiration (T) in arid and semi-arid zone riparian areas in the western U.S. Understanding riparian plant water use is critical for accuracy of climate models, predictions used in water resources management, and assessment of land use change impacts on the water balance of ecosystems. Moore and Heilman (2011) suggested the following three principles for predicting when vegetation changes will impact the local or regional water budget: (i) variation will result if energy balance partitioning has been altered, (ii) if deeper or shallower active rooting depth has changed the amount of soil moisture accessible to plants, or (iii) if temporary changes in water use add up over longer time scales. They note that large changes in vegetation types do not necessarily result in changes in water discharge. We will use these principles to consider the case of saltcedar (Tamarix spp.) on western U.S. rivers. Once considered a high-water-use plant that out-competed native trees, research over the past two decades has shown that saltcedar water use is low to moderate, and less than native trees. Consequently, the prospects of salvaging water for human use by replacing saltcedar with native trees, once thought to be bright, now appear questionable. Furthermore, saltcedar has come to occupy ecohydrological niches on altered river systems that are no longer available to native plants. However, with the widespread introduction and spread of saltcedar leaf beetles (Diorhabda carinulata) on western rivers, introduced in part to reduce riparian water use through reduction of saltcedar abundance, saltcedar ecology has now entered a new phase. The talk will present a synthesis of the recent literature on saltcedar water use and provide an overview of saltcedar ecohydrology in terms of

  6. The Impact of Global Warming on Precipitation Patterns in Ilorin and the Hydrological Balance of the Awun Basin

    NASA Astrophysics Data System (ADS)

    Ayanshola, Ayanniyi; Olofintoye, Oluwatosin; Obadofin, Ebenezer

    2018-03-01

    This study presents the impact of global warming on precipitation patterns in Ilorin, Nigeria, and its implications on the hydrological balance of the Awun basin under the prevailing climate conditions. The study analyzes 39 years of rainfall and temperature data of relevant stations within the study areas. Simulated data from the Coupled Global Climate model for historical and future datasets were investigated under the A2 emission scenario. Statistical regression and a Mann-Kendall analysis were performed to determine the nature of the trends in the hydrological variables and their significance levels, while a Soil and Water Assessment Tool (SWAT) was used to estimate the water balance and derive the stream flow and yield of the Awun basin. The study revealed that while minimum and maximum temperatures in Ilorin are increasing, rainfall is generally decreasing. The assessment of the trends in the water balance parameters in the basin indicates that there is no improvement in the water yield as the population increases. This may result in major stresses to the water supply in the near future.

  7. A water balance based, spatiotemporal evaluation of terrestrial evapotranspiration products across the contiguous United States

    USDA-ARS?s Scientific Manuscript database

    Accurate gridded estimates of evapotranspiration (ET) are essential to the analysis of terrestrial water budgets. In this study, ET estimates from three gridded energy-balance based products (ETEB) with independent model formations and data forcings are evaluated for their ability to capture long te...

  8. Influence of design parameters in Water-Alternating-Gas Injection on enhancement of CO2 trapping in heterogeneous formations: A numerical study

    NASA Astrophysics Data System (ADS)

    Joodaki, S.; Yang, Z.; Niemi, A. P.

    2016-12-01

    CO2 trapping in saline aquifers can be enhanced by applying specific injection strategies. Water-alternating-gas (WAG) injection, in which intermittent slugs of CO2 and water are injected, is one of the suggested methods to increase the trapping of CO2 as a result of both capillary forces (residual trapping) and dissolution into the ambient water (dissolution trapping). In this study, 3D numerical modeling was used to investigate the importance of parameters needed to design an effective WAG injection sequence including (i) CO2 and water injection rates, (ii) WAG ratio, (iii) number of cycles and their duration. We employ iTOUGH2-EOS17 model to simulate the CO2 injection and subsequent trapping in heterogeneous formations. Spatially correlated random permeability fields are generated using GSLIB based on available data at the Heletz, a pilot injection site in Israel, aimed for scientifically motivated CO2 injection experiments. Hysteresis effects on relative permeability and capillary pressure function are taken into account based on the Land model (1968). The results showed that both residual and dissolution trapping can be enhanced by increasing in CO2 injection rate due to the fact that higher CO2 injection rate reduces the gravity segregation and increases the reservoir volume swept by CO2. Faster water injection will favor the residual and dissolution trapping due to improved mixing. Increasing total amount of water injection will increase the dissolution trapping but also the cost of the injection. It causes higher pressure increases as well. Using numerical modeling, it is possible to predict the best parameter combination to optimize the trapping and find the balance between safety and cost of the injection process.

  9. Relationship between foot posture measurements and force platform parameters during two balance tasks in older and younger subjects

    PubMed Central

    Carvalho, Carlos E.; da Silva, Rubens A.; Gil, André W.; Oliveira, Márcio R.; Nascimento, Juliana A.; Pires-Oliveira, Deise A. A.

    2015-01-01

    [Purpose] The aim of this study was to compare age-related differences in balance and anthropometric posture measurements of the foot and to determine any relationship between them. [Subjects and Methods] Sixty-eight older and 42 younger adults participated in this study. Foot posture was tested for four domains: 1) hallux flexion and extension range of motion using a goniometer, 2) navicular height and 3) length of the foot using a pachymeter, and 4) footprint (width of forefoot, arch index and hallux valgus). Balance was tested under two conditions on a force platform: bipodal in 60-s trials and unipodal in 30-s trials. The sway area of the center of pressure and velocity in the anteroposterior and mediolateral directions were computed. [Results] Older individuals showed significantly poorer balance compared with younger adults under in the unipodal condition (center of pressure area 9.97 vs. 7.72 cm2). Older people presented a significantly lower hallux mobility and higher values for width of the forefoot and transverse arch index than younger adults. The correlations between all foot posture and center of pressure parameters varied across groups, from weak to moderate (r −0.01 to −0.46). Low hallux mobility was significantly related to higher center of pressure values in older people. [Conclusion] These results have clinical implications for balance and foot posture assessments. PMID:25931713

  10. Relationship between foot posture measurements and force platform parameters during two balance tasks in older and younger subjects.

    PubMed

    Carvalho, Carlos E; da Silva, Rubens A; Gil, André W; Oliveira, Márcio R; Nascimento, Juliana A; Pires-Oliveira, Deise A A

    2015-03-01

    [Purpose] The aim of this study was to compare age-related differences in balance and anthropometric posture measurements of the foot and to determine any relationship between them. [Subjects and Methods] Sixty-eight older and 42 younger adults participated in this study. Foot posture was tested for four domains: 1) hallux flexion and extension range of motion using a goniometer, 2) navicular height and 3) length of the foot using a pachymeter, and 4) footprint (width of forefoot, arch index and hallux valgus). Balance was tested under two conditions on a force platform: bipodal in 60-s trials and unipodal in 30-s trials. The sway area of the center of pressure and velocity in the anteroposterior and mediolateral directions were computed. [Results] Older individuals showed significantly poorer balance compared with younger adults under in the unipodal condition (center of pressure area 9.97 vs. 7.72 cm(2)). Older people presented a significantly lower hallux mobility and higher values for width of the forefoot and transverse arch index than younger adults. The correlations between all foot posture and center of pressure parameters varied across groups, from weak to moderate (r -0.01 to -0.46). Low hallux mobility was significantly related to higher center of pressure values in older people. [Conclusion] These results have clinical implications for balance and foot posture assessments.

  11. Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Burke, Ingrid C.

    2014-01-01

    5. Synthesis. This study provides a novel, regional-scale assessment of how plant functional type transitions may impact ecosystem water balance in sagebrush-dominated ecosystems of North America. Results illustrate that the ecohydrological consequences of changing vegetation depend strongly on climate and suggest that decreasing woody plant abundance may have only limited impact on evapotranspiration and water yield.

  12. Evaluation of a distributed catchment scale water balance model

    NASA Technical Reports Server (NTRS)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  13. QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Benfenati, Emilio

    2010-04-01

    Three different splits into the subtraining set (n = 22), the set of calibration (n = 21), and the test set (n = 12) of 55 antineoplastic agents have been examined. By the correlation balance of SMILES-based optimal descriptors quite satisfactory models for the octanol/water partition coefficient have been obtained on all three splits. The correlation balance is the optimization of a one-variable model with a target function that provides both the maximal values of the correlation coefficient for the subtraining and calibration set and the minimum of the difference between the above-mentioned correlation coefficients. Thus, the calibration set is a preliminary test set. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  14. Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales

    NASA Astrophysics Data System (ADS)

    Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.

    2016-12-01

    Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.

  15. Evaluating the potential of improving residential water balance at building scale.

    PubMed

    Agudelo-Vera, Claudia M; Keesman, Karel J; Mels, Adriaan R; Rijnaarts, Huub H M

    2013-12-15

    Earlier results indicated that, for an average household, self-sufficiency in water supply can be achieved by following the Urban harvest Approach (UHA), in a combination of demand minimization, cascading and multi-sourcing. To achieve these results, it was assumed that all available local resources can be harvested. In reality, however, temporal, spatial and location-bound factors pose limitations to this harvest and, thus, to self-sufficiency. This article investigates potential spatial and temporal limitations to harvest local water resources at building level for the Netherlands, with a focus on indoor demand. Two building types were studied, a free standing house (one four-people household) and a mid-rise apartment flat (28 two-person households). To be able to model yearly water balances, daily patterns considering household occupancy and presence of water using appliances were defined per building type. Three strategies were defined. The strategies include demand minimization, light grey water (LGW) recycling, and rainwater harvesting (multi-sourcing). Recycling and multi-sourcing cater for toilet flushing and laundry machine. Results showed that water saving devices may reduce 30% of the conventional demand. Recycling of LGW can supply 100% of second quality water (DQ2) which represents 36% of the conventional demand or up to 20% of the minimized demand. Rainwater harvesting may supply approximately 80% of the minimized demand in case of the apartment flat and 60% in case of the free standing house. To harvest these potentials, different system specifications, related to the household type, are required. Two constraints to recycle and multi-source were identified, namely i) limitations in the grey water production and available rainfall; and ii) the potential to harvest water as determined by the temporal pattern in water availability, water use, and storage and treatment capacities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  17. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  18. A Sensitivity Analysis of an Inverted Pendulum Balance Control Model.

    PubMed

    Pasma, Jantsje H; Boonstra, Tjitske A; van Kordelaar, Joost; Spyropoulou, Vasiliki V; Schouten, Alfred C

    2017-01-01

    Balance control models are used to describe balance behavior in health and disease. We identified the unique contribution and relative importance of each parameter of a commonly used balance control model, the Independent Channel (IC) model, to identify which parameters are crucial to describe balance behavior. The balance behavior was expressed by transfer functions (TFs), representing the relationship between sensory perturbations and body sway as a function of frequency, in terms of amplitude (i.e., magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled by a neuromuscular system, described by several parameters. Local sensitivity of each parameter was determined for both the magnitude and phase using partial derivatives. Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies (0.1-1 Hz). The derivative gain shapes the peak and slope of the magnitude between 0.5 and 0.9 Hz. The sensory weight influences the overall magnitude, and does not have any effect on the phase. The effect of the time delay becomes apparent in the phase above 0.6 Hz. The force feedback parameters and intrinsic stiffness have a small effect compared with the other parameters. All parameters shape the TF magnitude and phase and therefore play a role in the balance behavior. The sensory weight, time delay, derivative gain, and the proportional gain have a unique effect on the TFs, while the force feedback parameters and intrinsic stiffness contribute less. More insight in the unique contribution and relative importance of all parameters shows which parameters are crucial and critical to identify underlying differences in balance behavior between different patient groups.

  19. Contrasting conditions of surface water balance in wet years and dry years as a possible land surface-atmosphere feedback mechanism in the West African Sahel

    NASA Technical Reports Server (NTRS)

    Lare, A. R.; Nicholson, S. E.

    1994-01-01

    The climate of West Africa, in particular the Sahel, is characterized by multiyear persistence of anomalously wet or dry conditions. Its Southern Hemisphere counterpart, the Kalahari, lacks the persistence that is evident in the Sahel even though both regions are subject to similar large-scale forcing. It has been suggested that land surface-atmosphere feedback contributes to this persistence and to the severity of drought. In this study, surface energy and water balance are quantified for nine stations along a latitudinal transect that extends from the Sahara to the Guinea coast. In the wetter regions of West Africa, the difference between wet and dry years is primarily reflected in the magnitude of runoff. For the Sahel and drier locations, evapotranspiration and soil moisture are more sensitive to rainfall anomalies. The increase in evapotranspiration, and hence latent heating, over the Sahel in wet years alters the thermal structure and gradients of the overlying atmosphere and thus the strength of the African easterly jet (AEJ) at 700 mb. The difference between dry and wet Augusts corresponds to a decrease in magnitude of the AEJ at 15 deg N on the order of 2.6 m/s, which is consistent with previous studies of observed winds. Spatial patterns were also developed for surface water balance parameters for both West Africa and southern Africa. Over southern Africa, the patterns are not as spatially homogeneous as those over West Africa and are lower in magnitude, thus supporting the suggestion that the persistence of rainfall anomalies in the Sahel might be due, at least in part, to land-atmosphere feedback, and that the absence of such persistence in the Kalahari is a consequence of less significant changes in surface water and energy balance.

  20. Multivariate analysis of drinking water quality parameters in Bhopal, India.

    PubMed

    Parashar, Charu; Verma, Neelam; Dixit, Savita; Shrivastava, Rajneesh

    2008-05-01

    Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico-chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.

  1. Land Use Changes and the Possible Impacts Over the Water and Energy Balance in the South America

    NASA Astrophysics Data System (ADS)

    do Nascimento, M. G.; Herdies, D. L.

    2011-12-01

    In this work were performed two numerical experiments with the ETA regional model for South America trying to understand what the possible impacts of the land use changes on the water and energy balance, with an emphasis over the La Plata Basin. Thus, the experiments were performed for the period of 10 years, starting at 01/01/1999 until 12/31/2008. The differences between the experiments were the vegetation and land use map used as initial condition. On The control experiment (EXPCTRL) the vegetation and land use map was based on year 2000 and for the second experiment (EXPI) on conditions observed during the year 2008. The new NCEP-CFSR reanalysis were used in simulations as the initial and boundary condition. Since deforestation occurred in the Amazon Basin region affect the components of the water and energy balance in remote locations like the La Plata Basin, considering the transport of moisture between the tropics and subtropics through the Low Level Jets, the aim of this work is to analyze these results. The differences between EXP1 and EXPCTRL were observed in the components of the water and energy balance, for example, in the temperature, evapotranspiration, latent heat and sensible heat fluxes. These changes occurred primarily due to the better representation of land use changes as evidenced by the new map, with improved vegetation characteristics.

  2. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    PubMed

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experimental determination of solvent-water partition coefficients and Abraham parameters for munition constituents.

    PubMed

    Liang, Yuzhen; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M

    2016-10-01

    There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2

  4. Investigation of water quality parameters at selected points on the Tennessee River

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The thermal and water quality parameters in the vicinity of widows Creek Steam Generation Plant were investigated. The water quality analysis and temperature profiles are presented for 24 sampling sites.

  5. Using an integrated approach between hydrological and crop models to assess surface water balance in ungauged basin

    NASA Astrophysics Data System (ADS)

    Negm, Amro; D'Agostino, Daniela; Lamaddalena, Nicola; Bacchi, Baldassare; Iacobellis, Vito

    2013-04-01

    redistribution function weighted by the wetness index. The calibration process was done by adjusting a specific parameter of the water balance, the subsurface flow (through a subsurface flow coefficient C), by exploiting the results of soil moisture content provided by AQUACROP model. Then, the outputs of daily soil water content obtained by DREAM model were compared with the estimations of soil behaviour provided by the AQUACROP model. The simulations were done for a certain number of cells in the study area, for different years. The chosen factors were used to obtain an average value of C in time and space, which in this study is equal to 0.5. Finally, the results of the DREAM model in terms of evapotranspiration provided a satisfactory approximation of those obtained by AQUACROP model, while the Canopy Cover, an output of AQUACROP, was compared with the LAI used as input for the DREAM model.

  6. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-08-16

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

  7. Water and Energy Balance in Response to the Removal of Invasive Phragmites Australis in a Riparian Wetland

    NASA Astrophysics Data System (ADS)

    Mykleby, P.; Lenters, J. D.; Cutrell, G. J.; Herrman, K.; Istanbulluoglu, E.; Scott, D.

    2011-12-01

    Vegetation plays an important role in the surface energy and water balance of wetlands. Transpiration from phreatophytes, in particular, withdraws water directly from groundwater, often impacting streamflow rates in adjacent tributaries. In the Republican River basin of the Central Plains (USA), streamflow has declined significantly in the past 30-40 years. Invasive vegetation species (such as Phragmites australis) have been removed from portions of the riparian corridor in an effort to halt or reverse the downward trend in streamflow. In this study, we investigated the energy and water balance of a P. australis-dominated riparian wetland in south-central Nebraska to assess the potential effectiveness of such an approach. Evapotranspiration (ET) rates were measured during two growing seasons - one being 2009, when the P. australis was at full growth, and the other during 2010, after the vegetation had been sprayed with herbicide (and remained only as dead, standing biomass). Energy balance measurements at the field site included net radiation, heat storage rates in the canopy, soil, and standing water, and sensible heat flux, which was measured using a large-aperture scintillometer (LAS). Latent heat flux (i.e., ET) was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons. As a result of the spraying of the P. australis vegetation, season-mean ET rates dropped from 4.4 mm day-1 in 2009 to 3.0 mm day-1 in 2010. This decrease in ET was associated with a large increase in sensible heat flux, which more than doubled between the two years (from 33 W m-2 in 2009 to 76 W m-2 in 2010). Meteorological conditions at the site were slightly different from one year to the next, but the differences were not large enough to account for the dramatic changes in latent and sensible heat flux that were observed. We conclude, therefore, that the majority of the ~30% decrease in ET (and ~130% increase in sensible heat flux) was the

  8. THE WATER BALANCE OF THE SUSQUEHANNA RIVER BASIN AND ITS RESPONSE TO CLIMATE CHANGE. (R824995)

    EPA Science Inventory

    Abstract

    Historical precipitation, temperature and streamflow data for the Susquehanna River Basin (SRB) are analyzed with the objective of developing simple statistical and water balance models of streamflow at the watershed's outlet. Annual streamflow is highly corre...

  9. Chemometric studies of water quality parameters of Sankarankovil block of Tirunelveli, Tamilnadu.

    PubMed

    Alagumuthu, G; Rajan, M

    2010-09-01

    The fluoride concentration in ground water was determined in Sankarankovil block of Tirunelveli district of Tamilnadu (India) where it is the only source of drinking water. Various other water quality parameters such as pH, electrical conductivity total hardness and total alkalinity as well as calcium, magnesium, carbonate, bicarbonate and chloride concentrations were also measured. A systematic calculation of correlation coefficient among different physico-chemical parameters was performed. The analytical results indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO water quality standards. The fluoride concentration in the ground water of these villages varied from 0.66 to 3.84 mg l(-1), causes dental fluorosis among people especially children of these villages. The high and low fluoride containing areas were located using isopleth mapping technique. Overall water quality was found unsatisfactory for drinking purposes without any prior treatment except at few locations out of 50 villages.

  10. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    NASA Astrophysics Data System (ADS)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  11. Validation of the Balance Board for Clinical Evaluation of Balance During Serious Gaming Rehabilitation Exercises.

    PubMed

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Sholukha, Victor; Van Sint Jan, Serge

    2016-09-01

    Balance and posture can be affected in various conditions or become decreased with aging. A diminution of balance control induces an increase of fall's risk. The Nintendo Wii Balance Board™ (WBB) is used in rehabilitation to perform balance exercises (using commercial video games). The WBB has also been validated to assess balance and posture in static conditions. However, there is currently no study investigating the use of WBB to assess balance during the realization of balance exercises using this device. The aim of this study was to validate the use of WBB, coupled with specially developed serious games, to assess dynamic balance during rehabilitation exercises. Thirty five subjects participated in this study. Subjects were asked to play two specially developed serious games. Center of pressure (CP) displacements were simultaneously recorded with a WBB and a gold standard force plate (FP). Nine parameters were derived from CP displacement. Bland and Altman plots, paired-sample t tests, intraclass correlation coefficient's, and Pearson's coefficient correlations were computed. Excellent correlation between both devices was found for each parameter for the two games (R = 0.95 and 0.96). Unlike previous work on the WBB, these excellent results were obtained without using any calibration procedure. Despite this, results were highly correlated between the WBB and the FP. The WBB could be used in clinics to assess balance during rehabilitation exercises and, thus, allows a more regular patient follow-up.

  12. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    NASA Astrophysics Data System (ADS)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  13. Quantification of soil water retention parameters using multi-section TDR-waveform analysis

    NASA Astrophysics Data System (ADS)

    Baviskar, S. M.; Heimovaara, T. J.

    2017-06-01

    Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.

  14. Role of water balance in the enhanced potassium excretion and hypokalaemia of rats with diabetes insipidus.

    PubMed Central

    Fernández-Repollet, E; Martínez-Maldonado, M; Opava-Stitzer, S

    1980-01-01

    1. The role of water balance in the hypokalaemia of rats with diabetes insipidus (DI rats) was studied. 2. After a 3-day balance study DI rats had a lower muscle potassium content, and plasma [K+], and the urinary excretion of potassium in response to oral KCl loading was reduced when compared to normal rats. The hypokalaemia was found to be associated with elevated concentrations of potassium in renal medulla and papilla when compared to values in normal Long-Evans rats. 3. During a 9-day balance study urinary potassium excretion was higher than that of normal rats on days 1-3, but not different on days 4-9; this transient elevation was observed in DI rats on normal, high and low potassium diets. On a low potassium diet the urinary potassium excretion of DI rats fell to minimal levels, making unlikely the existence of a renal defect in potassium handling. 4. Muscle potassium content and plasma [K+] were normal after 9 days in metabolism cages. This spontaneous reversal of the hypokalaemia of DI rats was associated with increased water content of renal medulla and papilla, and decreased potassium concentration in these zones. 5. The effect of acute mild dehydration on potassium handling of DI rats was evaluated. Water deprivation for 1-8 hr was sufficient to raise the urinary potassium excretion of DI rats above that of DI rats drinking ad lib. Renal tissue [K+] was significantly increased after 8 hr of dehydration. Water deprivation also enhanced the response of DI rats to an oral KCl load. Two days of chronic dehydration in the form of water rationing also significantly enhanced the urinary potassium excretion of DI rats. 6. These data suggest that chronic mild dehydration may be responsible for the modest potassium deficiency observed in DI rats via alterations in renal tissue [K+] and consequently in urinary potassium excretion. Correction of dehydration during prolonged periods in metabolism cages may account for the spontaneous reversal of the hypokelaemic

  15. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  16. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters

    PubMed Central

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-01-01

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837

  17. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  18. Systems for monitoring and digitally recording water-quality parameters

    USGS Publications Warehouse

    Smoot, George F.; Blakey, James F.

    1966-01-01

    Digital recording of water-quality parameters is a link in the automated data collection and processing system of the U.S. Geological Survey. The monitoring and digital recording systems adopted by the Geological Survey, while punching all measurements on a standard paper tape, provide a choice of compatible components to construct a system to meet specific physical problems and data needs. As many as 10 parameters can be recorded by an Instrument, with the only limiting criterion being that measurements are expressed as electrical signals.

  19. The estimation of soil water fluxes using lysimeter data

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  20. Climate Change Impact on Water Balance at the Chipola River Watershed in Florida

    NASA Astrophysics Data System (ADS)

    Griffen, J. M.; Chen, X.; Wang, D.; Hagen, S. C.

    2013-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through the Florida Panhandle and drains into the Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with an aridity index of approximately 1.0. However, climate change affects the hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this watershed. This research is mainly focused on assessing climate change impact on the partitioning of rainfall and the following runoff generation in Chipola watershed, from long-term mean annual to inter-annual and to seasonal and monthly scales. A comprehensive water balance model at inter-annual scale is built in this study based on Budyko's framework, two-stage runoff theory and proportionality hypothesis. The inter-annual scale model considers the impact of storage change, seasonality and landscape controls, which are normally assumed to be negligible on a long-term scale. The model is applied to the Chipola River Watershed in Florida to project future water balance pattern with the input from a Regional Climate Model projection. Based on the projection results: evaporation will increase in the future in all 12 months; runoff will increase only in dry months of July to October, while significantly decrease in wet months of December to April; storage change will increase in wet months of January to April, while decrease in the dry months of August to November.

  1. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  2. Effect of preexercise soup ingestion on water intake and fluid balance during exercise in the heat.

    PubMed

    Johannsen, Neil M; Sullivan, Zebblin M; Warnke, Nicole R; Smiley-Oyen, Ann L; King, Douglas S; Sharp, Rick L

    2013-06-01

    To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water. Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg-1 · min-1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color-word task before, every 30 min during, and immediately after the time trial. Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p < .03). Total urine volume was similar in both trials (p = .13), resulting in a trend for greater water retention in SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (-0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (-106 ± 603 vs. -478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (<1%), and physical performance was not different between treatments (p = .77). The number of errors in the Stroop color-word task was lower in SOUP throughout the entire trial (treatment effect; p = .04). SOUP before exercise increased ad libitum water intake and may alter kidney function.

  3. Optimization of Modeled Land-Atmosphere Exchanges of Water and Energy in an Isotopically-Enabled Land Surface Model by Bayesian Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Wong, T. E.; Noone, D. C.; Kleiber, W.

    2014-12-01

    The single largest uncertainty in climate model energy balance is the surface latent heating over tropical land. Furthermore, the partitioning of the total latent heat flux into contributions from surface evaporation and plant transpiration is of great importance, but notoriously poorly constrained. Resolving these issues will require better exploiting information which lies at the interface between observations and advanced modeling tools, both of which are imperfect. There are remarkably few observations which can constrain these fluxes, placing strict requirements on developing statistical methods to maximize the use of limited information to best improve models. Previous work has demonstrated the power of incorporating stable water isotopes into land surface models for further constraining ecosystem processes. We present results from a stable water isotopically-enabled land surface model (iCLM4), including model experiments partitioning the latent heat flux into contributions from plant transpiration and surface evaporation. It is shown that the partitioning results are sensitive to the parameterization of kinetic fractionation used. We discuss and demonstrate an approach to calibrating select model parameters to observational data in a Bayesian estimation framework, requiring Markov Chain Monte Carlo sampling of the posterior distribution, which is shown to constrain uncertain parameters as well as inform relevant values for operational use. Finally, we discuss the application of the estimation scheme to iCLM4, including entropy as a measure of information content and specific challenges which arise in calibration models with a large number of parameters.

  4. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  5. Quantitative Determination of Spring Water Quality Parameters via Electronic Tongue.

    PubMed

    Carbó, Noèlia; López Carrero, Javier; Garcia-Castillo, F Javier; Tormos, Isabel; Olivas, Estela; Folch, Elisa; Alcañiz Fillol, Miguel; Soto, Juan; Martínez-Máñez, Ramón; Martínez-Bisbal, M Carmen

    2017-12-25

    The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold) housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9-115 mg/L), sulfate (32-472 mg/L), fluoride (0.08-0.26 mg/L), chloride (17-190 mg/L), and sodium (11-94 mg/L) as well as pH (7.3-7.8). These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS) analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC) was applied in the preprocessing step. Calibration (67%) and validation (33%) sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R² and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%.

  6. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    PubMed

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Water quality parameters controlling the photodegradation of two herbicides in surface waters of the Columbia Basin, Washington.

    PubMed

    Furman, Olha S; Yu, Miao; Teel, Amy L; Watts, Richard J

    2013-11-01

    The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h(-1) for atrazine and 0.039 h(-1) for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.

    PubMed

    Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun

    2013-01-01

    Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.

  9. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  10. Evaluating the Impact of Global Warming on Water Balance of Maize by High-precision Controlled Experiment and MLCan model

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Kumar, P.; Wu, Y.; Woo, D.; Le, P. V.; Ma, C.

    2016-12-01

    Increased temperature affects the agricultural hydrologic cycle not only by changing precipitation levels, evapotranspiration and the magnitude and timing of run-off, but also by impacting water flows and soil water dynamics. Accurate prediction of hydrologic change under global warming requires high-precision experiment and mathematical model to determine water interaction between interfaces in the soil-plant-atmosphere continuum. In this study, the weighting lysimeter and chamber were coupled to monitor water balance component dynamics of maize under controlled ambient temperature and elevated temperature of 2°C conditions. A mechanistic multilayer canopy-soil-root system model (MLCan) was used to predict hydrologic fluxes variation under different elevated temperature scenarios after calibration with experimental results. The results showed that maize growth period reduced 8 days under increased temperature of 2°C. The mean daily evapotranspiration, soil water storage change, and drainage was 2.66 mm, -2.75 mm, and 0.22 mm under controlled temperature condition, respectively. When temperature was elevated by 2°C, the average daily ET for maize significantly increased about 6.7% (p<0.05). However, there were non-significant impacts of increased temperature on the daily soil water storage change and drainage (p>0.05). Quantification of changes in water balance components induced by temperature increase for maize is critical for optimizing irrigation water management practices and improving water use efficiency.

  11. Soil-Water Balance (SWB) model estimates of soil-moisture variability and groundwater recharge in the South Platte watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, A. M.; Walker, E. L.; Hogue, T. S.; Ruybal, C. J.

    2015-12-01

    Unconventional energy production in semi-arid regions places additional stress on already over-allocated water systems. Production of shale gas and oil resources in northern Colorado has rapidly increased since 2010, and is expected to continue growing due to advances in horizontal drilling and hydraulic fracturing. This unconventional energy production has implications for the availability of water in the South Platte watershed, where water demand for hydraulic fracturing of unconventional shale resources reached ~16,000 acre-feet in 2014. Groundwater resources are often exploited to meet water demands for unconventional energy production in regions like the South Platte basin, where surface water supply is limited and allocated across multiple uses. Since groundwater is often a supplement to surface water in times of drought and peak demand, variability in modeled recharge estimates can significantly impact projected availability. In the current work we used the Soil-Water Balance Model (SWB) to assess the variability in model estimates of actual evapotranspiration (ET) and soil-moisture conditions utilized to derive estimates of groundwater recharge. Using both point source and spatially distributed data, we compared modeled actual ET and soil-moisture derived from several potential ET methods, such as Thornthwaite-Mather, Jense-Haise, Turc, and Hargreaves-Samani, to historic soil moisture conditions obtained through sources including the Gravity Recovery and Climate Experiment (GRACE). In addition to a basin-scale analysis, we divided the South Platte watershed into sub-basins according to land cover to evaluate model capabilities of estimating soil-moisture parameters with variations in land cover and topography. Results ultimately allow improved prediction of groundwater recharge under future scenarios of climate and land cover change. This work also contributes to complementary subsurface groundwater modeling and decision support modeling in the South Platte.

  12. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    USGS Publications Warehouse

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  13. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    PubMed

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  14. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment

    PubMed Central

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  15. Subsurface water parameters: optimization approach to their determination from remotely sensed water color data.

    PubMed

    Jain, S C; Miller, J R

    1976-04-01

    A method, using an optimization scheme, has been developed for the interpretation of spectral albedo (or spectral reflectance) curves obtained from remotely sensed water color data. This method used a two-flow model of the radiation flow and solves for the albedo. Optimization fitting of predicted to observed reflectance data is performed by a quadratic interpolation method for the variables chlorophyll concentration and scattering coefficient. The technique is applied to airborne water color data obtained from Kawartha Lakes, Sargasso Sea, and Nova Scotia coast. The modeled spectral albedo curves are compared to those obtained experimentally, and the computed optimum water parameters are compared to ground truth values. It is shown that the backscattered spectral signal contains information that can be interpreted to give quantitative estimates of the chlorophyll concentration and turbidity in the waters studied.

  16. The water balance components of Mediterranean pine trees on a steep mountain slope during two hydrologically contrasting years

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek W.; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2018-07-01

    Pines in semi-arid mountain environments manage to survive and thrive despite the limited soil water, due to shallow soil depths, and overall water scarcity. This study aims to develop a method for computing soil evaporation, bedrock water uptake and transpiration from a natural, open forest, based on sap flow (Heat Ratio Method), soil moisture and meteorological observations. The water balance of individual trees was conceptualized with a geometric approach, using canopy projected areas and Voronoi (Thiesen) polygons. The canopy approach assumes that the tree's root area extent is equal to its canopy projected area, while the Voronoi approach assumes that the tree roots exploit the open area that is closer to the tree than to any other tree. The methodology was applied in an open Pinus brutia forest (68% canopy cover) in Cyprus, characterized by steep slopes and fractured bedrock, during two hydrologically contrasting years (2015 wet, 2016 dry). Sap flow sensors, soil moisture sensors, throughfall and stemflow gauges were installed on and around eight trees. Rainfall was 507 mm in 2015 and 359 mm in 2016. According to the canopy approach, the sum of tree transpiration and soil evaporation exceeded the throughfall in both years, which implies that the trees' bedrock water uptake exceeds the surface runoff and drainage losses. This indicated that trees extend their roots beyond the canopy-projected areas and the use of the Voronoi polygons captures this effect. According to the stand scale water balance, average throughfall during the two years was 81% of the rainfall. Transpiration was 61% of the rainfall in 2015, but only 32% in 2016. On the contrary, the soil evaporation fraction increased from 26% in 2015 to 35% in the dry year of 2016. The contribution of bedrock water to tree transpiration was 77% of rainfall in 2015 and 66% in 2016. During the summer months, trees relied 100% on the uptake of water from the fractured bedrock to cover their transpiration needs

  17. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study.

    PubMed

    Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas

    2014-07-01

    This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.

  18. Changes in water quality parameters due to in-sewer processes.

    PubMed

    Boxall, J; Shepherd, W; Guymer, I; Fox, K

    2003-01-01

    Combined sewer systems contain a large number of organic and inorganic pollutants from both domestic and industrial sources. These pollutants are often retained within the combined sewer system for significant lengths of time before entering sewage treatment works, or being spilt to a watercourse via a combined sewer overflow (CSO) during storm conditions. Currently little knowledge exists concerning the effects of in sewer processes on pollutants. Understanding of in-sewer processes is important for the effective and efficient design of treatment works and CSO chambers and for impact assessments on receiving waters. A series of studies covering storm and dry weather flow conditions were undertaken with the aim of investigating the nature of in-sewer processes. These studies consisted of marking a body of water with a fluorescent tracer. The tracer was then monitored at a series of downstream sites, and discrete samples collected from the body of water as it progressed through the sewer. The samples were analysed for water quality parameters and these results investigated in tandem with the detailed hydraulic information gained through the tracer studies. The results highlight the hydraulic differences between storm and dry weather conditions such as increased travel times and mixing under storm conditions. The Advection Dispersion Equation (ADE) and Aggregated Dead Zone (ADZ) model parameters have been quantified for the tracer data. The ADE mixing coefficient is shown to increase by an order of magnitude for storm conditions. The ADZ dispersive fraction parameter is shown to be approximately constant with flow. Chemical reactions and decay within the sewer system were found to be consistent with oxygen limitation.

  19. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    NASA Astrophysics Data System (ADS)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  20. Water balance creates a threshold in soil pH at the global scale.

    PubMed

    Slessarev, E W; Lin, Y; Bingham, N L; Johnson, J E; Dai, Y; Schimel, J P; Chadwick, O A

    2016-11-21

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  1. Water balance creates a threshold in soil pH at the global scale

    NASA Astrophysics Data System (ADS)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  2. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    NASA Astrophysics Data System (ADS)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced

  3. Quantitative Determination of Spring Water Quality Parameters via Electronic Tongue

    PubMed Central

    Carbó, Noèlia; López Carrero, Javier; Garcia-Castillo, F. Javier; Olivas, Estela; Folch, Elisa; Alcañiz Fillol, Miguel; Soto, Juan

    2017-01-01

    The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold) housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9–115 mg/L), sulfate (32–472 mg/L), fluoride (0.08–0.26 mg/L), chloride (17–190 mg/L), and sodium (11–94 mg/L) as well as pH (7.3–7.8). These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS) analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC) was applied in the preprocessing step. Calibration (67%) and validation (33%) sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R2 and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%. PMID:29295592

  4. Identification of hydrological model parameter variation using ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao

    2016-12-01

    Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.

  5. Assessing Mechanisms of Climate Change Impact on the Upland Forest Water Balance of the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Conklin, D. R.; Vache, K. B.; Schwartz, C.; Nolin, A. W.; Chang, H.; Watson, E.; John, B.

    2016-12-01

    Projected changes in air temperature, precipitation, and vapor pressure for the Willamette River Basin (Oregon, USA) over the next century will have significant impacts on the river basin water balance, notably on the amount of evapotranspiration (ET). Mechanisms of impact on ET will be both direct and indirect, but there is limited understanding of their absolute and relative magnitudes. Here we developed a spatially-explicit, daily time-step, modeling infrastructure to simulate the basin-wide water balance that accounts for meteorological influences, as well as effects mediated by changing vegetation cover type, leaf area, and ecophysiology. Three CMIP5 climate scenarios (LowClim, Reference, HighClim) were run for the 2010 to 2100 period. Besides warmer temperatures, the climate scenarios were characterized by wetter winters and increasing vapor pressure deficits. In the mid-range Reference scenario, our landscape simulation model (Envision) projected a continuation of forest cover on the uplands but a 3-fold increase in area burned per year. A decline (12-30%) in basin-wide mean leaf area index (LAI) in forests was projected in all scenarios. The lower LAIs drove a corresponding decline in ET. In a sensitivity test, the effect of increasing CO2 on stomatal conductance induced a further substantial decrease (11-18%) in basin-wide mean ET. The net effect of decreases in ET and increases in winter precipitation was an increase in annual streamflow. These results support the inclusion of changes in land cover, land use, LAI, and ecophysiology in efforts to anticipate impacts of climate change on basin-scale water balances.

  6. Geochemical studies of fluoride and other water quality parameters of ground water in Dhule region Maharashtra, India.

    PubMed

    Patil, Dilip A; Deshmukh, Prashant K; Fursule, Ravindra A; Patil, Pravin O

    2010-07-01

    This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra State in India. The analysis was carried out for the parameters pH, DO (dissolved oxygen), BOD (biological oxygen demand), Cl-, NO3-, F-, S(2)-, total alkalinity, total solid, total dissolved solids (TDS), total suspended solids (TSS), total hardness, calcium, magnesium, carbonate and noncarbonate hardness, and concentrations of calcium and magnesium. These parameters were compared against the standards laid down by World Health Organization (WHO) and Indian Council of Medical Research (ICMR) for drinking water quality. High levels of NO(3)-, Cl-, F-, S(2)-, total solid, TDS, TSS, total hardness, magnesium and calcium have been found in the collected samples. From these observations, it has been found that fluoride is present as per the permissible limit (WHO 2003) in some of the villages studied, but both fluoride and nitrate levels are unacceptable in drinking water samples taken from several villages in Dhule. This is a serious problem and, therefore, requires immediate attention. Excess of theses impurities in water causes many diseases in plants and animals. This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra.

  7. Estimates of Ground-Water Recharge in Wadis of Arid, Mountainous Areas Using the Chloride Mass-Balance Approach

    NASA Astrophysics Data System (ADS)

    Wood, W. W.; Wood, W. W.

    2001-05-01

    Evaluation of ground-water supply in arid areas requires estimation of annual recharge. Traditional physical-based hydrologic estimates of ground-water recharge result in large uncertainties when applied in arid, mountainous environments because of infrequent, intense rainfall events, destruction of water-measuring structures associated with those events, and consequent short periods of hydrologic records. To avoid these problems and reduce the uncertainty of recharge estimates, a chloride mass-balance (CMB) approach was used to provide a time-integrated estimate. Seven basins exhibiting dry-stream beds (wadis) in the Asir and Hijaz Mountains, western Saudi Arabia, were selected to evaluate the method. Precipitation among the basins ranged from less than 70 mm/y to nearly 320 mm/y. Rain collected from 35 locations in these basins averaged 2.0 mg/L chloride. Ground water from 140 locations in the wadi alluvium averaged 200 mg/L chloride. This chloride concentration ratio of precipitation to ground water suggests that on average, approximately 1 percent of the rainfall is recharged, while the remainder is lost to evaporation. Ground-water recharge from precipitation in individual basins ranged from less than 1 to nearly 4 percent and was directly proportional to total precipitation. Independent calculations of recharge using Darcy's Law were consistent with these findings and are within the range typically found in other arid areas of the world. Development of ground water has lowered the water level beneath the wadis and provided more storage thus minimizing chloride loss from the basin by river discharge. Any loss of chloride from the basin results in an overestimate of the recharge flux by the chloride-mass balance approach. In well-constrained systems recharge in arid, mountainous areas where the mass of chloride entering and leaving the basin is known or can be reasonably estimated, the CMB approach provides a rapid, inexpensive method for estimating time

  8. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  9. Present Day and Future Population Dynamics of the Dengue Vector Mosquito Aedes aegypti Using a Water Container Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2017-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and adults is largely dependent on the availability of water and the thermal properties of the water in the containers. An energy balance container model termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM) solves for water temperature and height for user-specified containers with readily available meteorological data. Output from WHATCH'EM is used to estimate development parameters for the immature life stages of the Ae. aegypti mosquito, allowing for assessment of habitat suitability across varying natural environments. Variability amongst different artificial containers (e.g., size, color, material, shape), shading scenarios, and water availability scenarios is also addressed. WHATCH'EM is also coupled with an Ae. aegypti life cycle model to include the effects of the aforementioned factors on survival. Projections of future climate scenarios that take into account changes not only in temperature but also precipitation, humidity, and radiative effects are used in WHATCH'EM to estimate how Ae. aegypti population dynamics may change.

  10. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    NASA Astrophysics Data System (ADS)

    Drewnowski, Jakub; Zaborowska, Ewa; Hernandez De Vega, Carmen

    2018-02-01

    Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  11. On the parameters influencing air-water gas exchange

    NASA Astrophysics Data System (ADS)

    JäHne, Bernd; Münnich, Karl Otto; BöSinger, Rainer; Dutzi, Alfred; Huber, Werner; Libner, Peter

    1987-02-01

    Detailed gas exchange measurements from two circular and one linear wind/wave tunnels are presented. Heat, He, CH4, CO2, Kr, and Xe have been used as tracers. The experiments show the central importance of waves for the water-side transfer process. With the onset of waves the Schmidt number dependence of the transfer velocity k changes from k ∝ Sc-⅔ to k ∝ Sc-½indicating a change in the boundary conditions at the surface. Moreover, energy put into the wave field by wind is transferred to near-surface turbulence enhancing gas transfer. The data show that the mean square slope of the waves is the best parameter to characterize the free wavy surface with respect to water-side transfer processes.

  12. Water balance monitoring for two bioretention gardens in Omaha, Nebraska, 2011–14

    USGS Publications Warehouse

    Strauch, Kellan R.; Rus, David L.; Holm, Kent E.

    2016-01-29

    Bioretention gardens are used to help mitigate stormwater runoff in urban settings in an attempt to restore the hydrologic response of the developed land to a natural predevelopment response in which more water is infiltrated rather than routed directly to urban drainage networks. To better understand the performance of bioretention gardens in facilitating infiltration of stormwater in eastern Nebraska, the U.S. Geological Survey, in cooperation with the Douglas County Environmental Services and the Nebraska Environmental Trust, assessed the water balance of two bioretention gardens located in Omaha, Nebraska by monitoring the amount of stormwater entering and leaving the gardens. One garden is on the Douglas County Health Center campus, and the other garden is on the property of the Eastern Nebraska Office on Aging.For the Douglas County Health Center, bioretention garden performance was evaluated on the basis of volume reduction by comparing total inflow volume to total outflow volume. The bioretention garden reduced inflow volumes from a minimum of 33 percent to 100 percent (a complete reduction in inflow volume) depending on the size of the event. Although variable, the percent reduction of the inflow volume tended to decrease with increasing total event rainfall. To assess how well the garden reduces stormwater peak inflow rates, peak inflows were plotted against peak outflows measured at the bioretention garden. Only 39 of the 255 events had any overflow, indicating 100 percent peak reduction in the other events. Of those 39 events having overflow, the mean peak reduction was 63 percent.No overflow events were recorded at the bioretention garden at the Eastern Nebraska Office on Aging; therefore, data were not available for an event-based overflow analysis.Monitoring period summary of the water balance at both bio-retention gardens indicates that most of the stormwater in the bioretention gardens is stored in the subsurface.Evapotranspiration was attributed

  13. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andy

    2017-03-16

    Simulations of future climate suggest profiles of temperature and precipitation may differ significantly from those in the past. These changes in climate will likely lead to changes in the hydrologic cycle. As such, natural resource managers are in need of tools that can provide estimates of key components of the hydrologic cycle, uncertainty associated with the estimates, and limitations associated with the climate forcing data used to estimate these components. To help address this need, the U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) provides a user friendly interface to deliver hydrologic and meteorological variables for monthly historic and potential future climatic conditions across the continental United States.

  14. History of water quality parameters - a study on the Sinos River/Brazil.

    PubMed

    Konzen, G B; Figueiredo, J A S; Quevedo, D M

    2015-05-01

    Water is increasingly becoming a valuable resource, constituting one of the central themes of environmental, economic and social discussions. The Sinos River, located in southern Brazil, is the main river from the Sinos River Basin, representing a source of drinking water supply for a highly populated region. Considering its size and importance, it becomes necessary to conduct a study to follow up the water quality of this river, which is considered by some experts as one of the most polluted rivers in Brazil. As for this study, its great importance lies in the historical analysis of indicators. In this sense, we sought to develop aspects related to the management of water resources by performing a historical analysis of the Water Quality Index (WQI) of the Sinos River, using statistical methods. With regard to the methodological procedures, it should be pointed out that this study performs a time analysis of monitoring data on parameters related to a punctual measurement that is variable in time, using statistical tools. The data used refer to analyses of the water quality of the Sinos River (WQI) from the State Environmental Protection Agency Henrique Luiz Roessler (Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler, FEPAM) covering the period between 2000 and 2008, as well as to a theoretical analysis focusing on the management of water resources. The study of WQI and its parameters by statistical analysis has shown to be effective, ensuring its effectiveness as a tool for the management of water resources. The descriptive analysis of the WQI and its parameters showed that the water quality of the Sinos River is concerning low, which reaffirms that it is one of the most polluted rivers in Brazil. It should be highlighted that there was an overall difficulty in obtaining data with the appropriate periodicity, as well as a long complete series, which limited the conduction of statistical studies such as the present one.

  15. Hydrological functioning and water balance in a heavily modified hydrographic system

    NASA Astrophysics Data System (ADS)

    Carbonnel, Vincent; Brion, Natacha; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Rivers and canals are often the location for the historical settlement of cities and the backbone for their expansion, as they permit the transport of goods and people, the access to water for industrial activities and energy production, and the evacuation of the domestic and industrial wastewaters. In turn, human activities can result in modifications of the natural river systems to allow for instance ship transport or protection against flooding. The complex interconnected hydrographic network composed of the Zenne and the parallel Charleroi-Brussels-Scheldt Canal, which supports the development of the economy and urbanization of Brussels Metropolitan Area (Belgium), is a good example of such an altered system. The natural water course has been profoundly modified by the deviation of rivers to feed the canal, the control of the water flow in the canal by locks and pumps and the overflow exchange of water between the river and the canal for flood protection purposes. Also, the functioning of this system is strongly impacted by urban hydrology in Brussels, which results in amounts of wastewater discharged in the Zenne River that are nearly equivalent to the natural riverine flow. Water and water quality management in such complex and altered systems correspond to difficult tasks. They require, as a first step, a deep understanding of their hydrological functioning. Building an accurate water budget is also a necessary step in the investigation of the pollution sources, sinks, dynamics and mass-balance. In order to assess the water quality and provide insights for water management in the Zenne-Canal hydrographic network (cf. other contributions in this session), we established a detailed box-model representation of the water budget for the whole system, with a particular interest on the importance and the effects of the exchanges of water between the river and the canal. A particularity of this study is that, in contrast to the widespread use of hydrological

  16. Aquatic environmental assessment of Lake Balaton in the light of physical-chemical water parameters.

    PubMed

    Sebestyén, Vitkor; Németh, József; Juzsakova, Tatjana; Domokos, Endre; Kovács, Zsófia; Rédey, Ákos

    2017-11-01

    One of the issues of the Hungarian Water Management Strategy is the improvement and upgrading of the water of Lake Balaton. The Water Framework Directive (WFD) specifies and sets forth the achievement of the good ecological status. However, the assessment of the water quality of the lake as a complex system requires a comprehensive monitoring and evaluation procedure. Measurements were carried out around the Lake Balaton at ten different locations/sites and 13 physical-chemical parameters were monitored at each measurement site.For the interpretation of the water chemistry parameters the Aquatic Environmental Assessment (AEA) method devised by authors was used for the water body of the Lake Balaton. The AEA method can be used for all types of the water bodies since it is flexible and using individual weighting procedure for the water chemistry parameters comprehensive information can be obtain. The AEA method was compared with existing EIA methods according to a predefined criterion system and proved to be the most suitable tool for evaluating the environmental impacts in our study.On the basis of the results it can be concluded that the status of the quality of studied area on the Lake Balaton can be categorized as proper quality (from the outcome of the ten measurement sites this conclusion was reached at seven sites).

  17. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    2000-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  18. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    1997-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or "time to drying" (t(sub d)), is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage 1 drying (as water is removed from storage), and then become more or less constant during soil limited, or "stage 2" drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  19. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  20. Substituting whole grains for refined grains in a 6-week randomized trial favorably affects energy balance parameters in healthy men and post-menopausal women

    USDA-ARS?s Scientific Manuscript database

    Background: The effect of whole grains on the regulation of energy balance remains controversial. Objective: To determine the effects of substituting whole grains for refined grains, independent of body weight change, on energy metabolism parameters and glycemic control. Design: A randomized, con...

  1. Water flow and energy balance for a tropical dry semideciduous forest

    NASA Astrophysics Data System (ADS)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  2. Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya

    NASA Astrophysics Data System (ADS)

    Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.

    2016-12-01

    Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.

  3. Using aerial images for establishing a workflow for the quantification of water management measures

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg

    2017-04-01

    Quantified landscape characteristics, such as morphology, land use or hydrological conditions, play an important role for hydrological investigations as landscape parameters directly control the overall water balance. A powerful assimilation and geospatial analysis of remote sensing datasets in combination with hydrological modeling allows to quantify landscape parameters and water balances efficiently. This study focuses on the development of a workflow to extract hydrologically relevant data from aerial image datasets and derived products in order to allow an effective parametrization of a hydrological model. Consistent and self-contained data source are indispensable for achieving reasonable modeling results. In order to minimize uncertainties and inconsistencies, input parameters for modeling should be extracted from one remote-sensing dataset mainly if possbile. Here, aerial images have been chosen because of their high spatial and spectral resolution that permits the extraction of various model relevant parameters, like morphology, land-use or artificial drainage-systems. The methodological repertoire to extract environmental parameters range from analyses of digital terrain models, multispectral classification and segmentation of land use distribution maps and mapping of artificial drainage-systems based on spectral and visual inspection. The workflow has been tested for a mesoscale catchment area which forms a characteristic hydrological system of a young moraine landscape located in the state of Brandenburg, Germany. These dataset were used as input-dataset for multi-temporal hydrological modelling of water balances to detect and quantify anthropogenic and meteorological impacts. ArcSWAT, as a GIS-implemented extension and graphical user input interface for the Soil Water Assessment Tool (SWAT) was chosen. The results of this modeling approach provide the basis for anticipating future development of the hydrological system, and regarding system changes for

  4. Balance Performance Is Task Specific in Older Adults.

    PubMed

    Dunsky, Ayelet; Zeev, Aviva; Netz, Yael

    2017-01-01

    Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1-40.4% of the variance of TUG scores and 14.6-24% of the variance of FR scores. For men, age and static balance parameters explained 9.5-31.2% of the variance of TUG scores and 23.9-41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.

  5. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    USGS Publications Warehouse

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  6. The effects of changes of water balance on the renal pelvic epithelium of the rat.

    PubMed

    Khorshid, M R; Moffat, D B

    1975-01-01

    The effects of changes of water balance on the renal pelvic epithelium of the rat. The fine structure of the various epithelia which line the renal pelvis was investigated in five hydropenic rats and five rats undergoing a water diuresis. In the former, the thin epithelium which covers the outer medulla showed dilated intercellular spaces and an increased number of cytoplasmic vacuoles whereas the intercellular spaces were tightly closed and there were few vacuoles in the diuretic rats. It was considered that these changes indicate an exchange of water and solute between pelvic urine and the outer since medulla they are similar to those occurring in epithelia elsewhere which are engaged in transport of salt or water. Similar but less marked changes were found in the papillary epithelium. Changes in the transitional epithelium were similar to those which have previously been described elsewhere in the urinary tract.

  7. The relationship between Fibroblast Growth Factor-21 and characteristic parameters related to energy balance in dairy cows.

    PubMed

    Xu, Chuang; Xu, Qiushi; Chen, Yuanyuan; Yang, Wei; Xia, Cheng; Yu, Hongjiang; Zhu, Kuilin; Shen, Taiyu; Zhang, Ziyang

    2015-10-24

    Negative energy balance (NEB) is a common pathological foundation of ketosis and fatty liver. Liver and fat tissue are the major organs of lipid metabolism and take part in modulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB develop during perinatal period. Fibroblast growth factor-21 (FGF-21) is a recently discovered protein hormone that plays an important and specific regulating role in adipose lipid metabolism and liver gluconeogenesis for human and mouse. Our aim is to investigate the variation and relationship between serum FGF-21 concentration and characteristic parameters related to negative energy balance in different energy metabolism state. In this research, five non-pregnant, non-lactating Holstein-Friesian dairy cows were randomly allocated into two groups. The interventions were a controlled-energy diet (30% of maintenance energy requirements) and a moderate-energy diet (120% of predicted energy requirements) that lasted for the duration of the experiment. We measured biochemical parameters, serum FGF-21, leptin and insulin levels by commercial ELISA kits. The results showed that serum FGF-21 levels were significantly higher in both groups treated with a controlled-energy diet, while FGF-21 levels in both groups treated with moderate-energy diet were low. FGF-21 levels exhibited a significant positive correlation with serum leptin levels, while an inverse relationship was found between FGF-21 and blood glucose and β-hydroxybutyrate acid (BHBA) levels. An increase in FGF-21 levels after a controlled-energy diet treatment may contribute to a positive metabolic effect which could result in a new theoretical and practical basis for the preventive strategy of dairy cows with NEB.

  8. Spacebased Observations of Oceanic Influence on the Annual Variation of South American Water Balance

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu; Tang, Wenqing; Zlotnicki, Victor

    2006-01-01

    The mass change of South America (SA) continent measured by the Gravity Recovery and Climate Experiment (GRACE) imposes a constraint on the uncertainties in estimating the annual variation of rainfall measured by Tropical Rain Measuring Mission (TRMM) and ocean moisture influx derived from QuikSCAT data. The approximate balance of the mass change rate with the moisture influx less climatological river discharge, in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The annual variation of rainfall is found to be in phase with the mass change rate in the Amazon and the La Plata basins, and the moisture advection across relevant segments of the Pacific and Atlantic coasts agrees with the annual cycle of rainfall in the two basins and the Andes mountains.

  9. Sustainability, hydrologic science and the balance between water supply and demand in the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Bales, R.; Brookshire, D.; Brown, C.; Gupta, H.; Hogan, J.; Phillips, F.; Sorooshian, S.; Villinski, J.; Washburne, J.; Woodard, G.

    2003-04-01

    Water resources managers in the rapidly growing southwestern U.S. are increasingly addressing over-stressed rivers and aquifers as population and water demands grow. A current regional drought (1999-2002) has raised new concerns about how to sustain the combination of agricultural, urban and in-stream uses of water that underlie the socio-economic and ecological structure in the region. Sustainability implies that supply and demand balance through a basin, not just for the basin as a whole. The need to move water around a basin such as the Rio Grande or Colorado River to achieve this balance has created the stimulus for water transfers, and for accurate hydrologic information to sustain transfers. Key within-basin fluxes of water are poorly known, including: i) the amount and variability in time and space of precipitation and evapotranspiration/sublimation across the basin, ii) groundwater-surface water exchange, and iii) the partitioning of snowmelt and rain between runoff, infiltration, evapotranspiration and recharge. Given the strong physical linkages between these processes, and the physical-social and ecophysiological interactions that influence basin-scale water cycles, a research agenda with a high degree of integration was needed to address the critical knowledge gaps in these areas. Beginning in 1999, natural and social science researchers at several universities in the region began collaborative research to address these supply and demand issues in an integrated framework, under the Science and Technology Center for the Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA). Recent scientific advances are narrowing critical knowledge gaps, and providing a better quantitative understanding of water supply, water-demand and water-quality characteristics. Examples include: i) more accurate snowpack, rainfall and evapotranspiration estimates through improved and targeted remote-sensing and ground-based measurements, ii) the role of vegetation type

  10. Water Intake in a Sample of Greek Adults Evaluated with the Water Balance Questionnaire (WBQ) and a Seven-Day Diary

    PubMed Central

    Athanasatou, Adelais; Malisova, Olga; Kandyliari, Aikaterini; Kapsokefalou, Maria

    2016-01-01

    Awareness on the importance of hydration in health has created an unequivocal need to enrich knowledge on water intake of the general population and on the contribution of beverages to total water intake. We evaluated in the past water intake in a sample of Greek adults using two approaches. In study A, volunteers completed the Water Balance Questionnaire (WBQ), a food frequency questionnaire, designed to evaluate water intake (n = 1092; 48.1% males; 43 ± 18 years). In study B, a different population of volunteers recorded water, beverage, and food intake in seven-day diaries (n = 178; 51.1% males; 37 ± 12 years). Herein, data were reanalyzed with the objective to reveal the contribution of beverages in total water intake with these different methodologies. Beverage recording was grouped in the following categories: Hot beverages; milk; fruit and vegetable juices; caloric soft drinks; diet soft drinks; alcoholic drinks; other beverages; and water. Total water intake and water intake from beverages was 3254 (SE 43) mL/day and 2551 (SE 39) mL/day in study A; and 2349 (SE 59) mL/day and 1832 (SE 56) mL/day in study B. In both studies water had the highest contribution to total water intake, approximately 50% of total water intake, followed by hot beverages (10% of total water intake) and milk (5% of total water intake). These two approaches contribute information on water intake in Greece and highlight the contribution of different beverages; moreover, they point out differences in results obtained from different methodologies attributed to limitations in their use. PMID:27626443

  11. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    PubMed

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the

  12. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  13. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  14. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  15. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  16. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  17. [Effects of water stress on red-edge parameters and yield in wheat cropping].

    PubMed

    He, Ke-Xun; Zaho, Shu-He; Lai, Jian-Bin; Luo, Yun-Xiao; Qin, Zhi-Hao

    2013-08-01

    The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period.

  18. DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model

    Treesearch

    G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya

    2006-01-01

    A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...

  19. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    NASA Astrophysics Data System (ADS)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  20. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  1. Comparison of Effects of a Proprioceptive Exercise Program in Water and on Land the Balance of Chronic Stroke Patients

    PubMed Central

    Han, Seul Ki; Kim, Myung Chul; An, Chang Sik

    2013-01-01

    [Purpose] The purpose of this study was to compare changes in balance ability of land exercise and underwater exercise on chronic stroke patients. [Subjects] A total of 60 patients received exercise for 40 minutes, three times a week, for 6 weeks. [Methods] Subjects from both groups performed general conventional treatment during the experimental period. In addition, all subjects engaged in extra treatment sessions. This extra treatment consisted of unstable surface exercise. The underwater exercise group used wonder boards in a pool (depth 1.1m, water temperature 33.5 °C, air temperature 27 °C) dedicated to underwater exercise, and the land exercise group used balance mats. [Result] The joint position sense, sway area, Berg Balance Scale showed significant improvements in both groups. However, the joint position sense test, sway area, and Berg Balance Scale showed there was more improvement in the underwater exercise group than in the land exercise group. [Conclusion] The results suggest that underwater exercise is more effective than land exercise at improving the joint position sense and balance of stroke patients. PMID:24259761

  2. Comparison of effects of a proprioceptive exercise program in water and on land the balance of chronic stroke patients.

    PubMed

    Han, Seul Ki; Kim, Myung Chul; An, Chang Sik

    2013-10-01

    [Purpose] The purpose of this study was to compare changes in balance ability of land exercise and underwater exercise on chronic stroke patients. [Subjects] A total of 60 patients received exercise for 40 minutes, three times a week, for 6 weeks. [Methods] Subjects from both groups performed general conventional treatment during the experimental period. In addition, all subjects engaged in extra treatment sessions. This extra treatment consisted of unstable surface exercise. The underwater exercise group used wonder boards in a pool (depth 1.1m, water temperature 33.5 °C, air temperature 27 °C) dedicated to underwater exercise, and the land exercise group used balance mats. [Result] The joint position sense, sway area, Berg Balance Scale showed significant improvements in both groups. However, the joint position sense test, sway area, and Berg Balance Scale showed there was more improvement in the underwater exercise group than in the land exercise group. [Conclusion] The results suggest that underwater exercise is more effective than land exercise at improving the joint position sense and balance of stroke patients.

  3. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils

    NASA Astrophysics Data System (ADS)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-04-01

    The impacts of climate and management on the water balance and nutrient leaching of montane grasslands have rarely been investigated, though such ecosystems may represent a major source for ground and surface water nitrates. In this study nitrogen (nitrate, ammonium, dissolved organic nitrogen) and dissolved organic carbon leaching as well as water balance components (precipitation, evapotranspiration, and groundwater recharge) were quantified (2012-2014) by means of replicated (N=3 per site/ treatment) measurements of weighable grassland lysimeters (1 m2 area, 1.2 m soil depth) at three sites (E860: 860 m a.s.l., E770: 770 m a.s.l. and E600: 600 m a.s.l.) in the pre-alpine region of S-Germany. Two grassland management strategies were investigated: a) intensive management with 5 cuts per year and cattle slurry application rates of 280 kg N ha-1 yr-1, and b) extensive management with 3 cuts per year and cattle slurry application rates of 56 kg N ha-1 yr-1. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the E860 site, i.e. the site with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). On the other hand groundwater recharge was substantial lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of grassland management on water balance components were negligible. However, intensive management significantly increased mean total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7 %) and equally less by ammonium (14.6 %) and DON (20.7 %). The rather low rates of N leaching (0.8 - 6.9 % of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest

  4. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  5. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions

    USGS Publications Warehouse

    Schilling, Keith E.; Jha, Manoj K.; Zhang, You‐Kuan; Gassman, Philip W.; Wolter, Calvin F.

    2009-01-01

    Over the last century, land use and land cover (LULC) in the United States Corn Belt region shifted from mixed perennial and annual cropping systems to primarily annual crops. Historical LULC change impacted the annual water balance in many Midwestern basins by decreasing annual evapotranspiration (ET) and increasing streamflow and base flow. Recent expansion of the biofuel industry may lead to future LULC changes from increasing corn acreage and potential conversion of the industry to cellulosic bioenergy crops of warm or cool season grasses. In this paper, the Soil and Water Assessment Tool (SWAT) model was used to evaluate potential impacts from future LULC change on the annual and seasonal water balance of the Raccoon River watershed in west‐central Iowa. Three primary scenarios for LULC change and three scenario variants were evaluated, including an expansion of corn acreage in the watershed and two scenarios involving expansion of land using warm season and cool season grasses for ethanol biofuel. Modeling results were consistent with historical observations. Increased corn production will decrease annual ET and increase water yield and losses of nitrate, phosphorus, and sediment, whereas increasing perennialization will increase ET and decrease water yield and loss of nonpoint source pollutants. However, widespread tile drainage that exists today may limit the extent to which a mixed perennial‐annual land cover would ever resemble pre‐1940s hydrologic conditions. Study results indicate that future LULC change will affect the water balance of the watershed, with consequences largely dependent on the future LULC trajectory.

  6. What is the Imbalance of Water in Nature?

    NASA Astrophysics Data System (ADS)

    Kontar, V. A.

    2011-12-01

    Look at any lake. Water comes into the lake from the atmosphere, from surface and groundwater sources. Water leaves the lake to the atmosphere, surface and underground drains, as well as for consumption by human society, wild plants and animals if they are within the boundaries of the lake's system. If quantity of water coming into the lake is equally of the quantity of water which flow from the lake, so the lake level has not changed and we have a state of equilibration or balance. The bookkeeper's book also has name "balance". But this is just a play on words. If the water is coming into the lake more than the water is coming away from lake, therefore the lake level will increase and we have a state of the imbalance of the increase type. If the water is coming into the lake less than the water is coming away from lake, therefore the lake level will decrease and we have a state of the imbalance of the decrease type. Everyone knows that the lake level rises or falls, for example during the year. Sometimes it is happened some balance. But the state of balance is rare and in of the short duration. The lake is of most the time in the conditions of the imbalance increases or the imbalance decreases type. The balance as a state of equilibrium, in the language of mathematics, is the point of the extremum between the periods of rise and fall. The balance is a special condition, which is existing very rare and a very short period of time. The people sometimes to do the great efforts for maintain the constant level of the lakes. But these facts don't change the situation. On the contrary, the human's struggle for maintain the lake in constant level just shows how difficult and expensive to go against the natural laws of Nature. When water was plentiful, these facts could be ignored. But now when the global water shortage is quickly growing, many previously ignored details are becoming crucial. There are very important to do the correct definitions of the borders and

  7. Global and regional aspects for genesis of catastrophic floods - the problems of forecasting and estimates for mass and water balance (surface and groundwater contribution)

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei; Trifonov, Dmitriy; Abrakhin, Sergei

    2017-04-01

    1. The principal goal of present talk is, to discuss the existing uncertainty and discrepancy between water balance estimation for the area under heavy rain flood, on the one hand from the theoretical approach and reasonable data base due to rainfall going from atmosphere and, on the other hand the real practicle surface water flow parameters measured by some methods and/or fixed by some eye-witness (cf. [1]). The vital item for our discussion is that the last characteristics sometimes may be noticeably grater than the first ones. Our estimations show the grater water mass discharge observation during the events than it could be expected from the rainfall process estimation only [2]. The fact gives us the founding to take into account the groundwater possible contribution to the event. 2. We carried out such analysis, at least, for two catastrophic water events in 2015, i.e. (1) torrential rain and catastrophic floods in Lousiana (USA), June 16-20; (2) Assam flood (India), Aug. 22 - Sept. 8. 3. Groundwater flood of a river terrace discussed e.g. in [3] but in respect when rise of the water table above the land surface occurs coincided with intense rainfall and being as a relatively rare phenomenon. In our hypothesis the principal part of possible groundwater exit to surface is connected with a crack-net system state in earth-crust (including deep layers) as a water transportation system, first, being in variated pressure field for groundwater basin and, second, modified by different reasons ( both suddenly (the Krimsk-city flash flood event, July 2012, Russia) and/or smoothly (the Amur river flood event, Aug.-Sept. 2013, Russia) ). Such reconstruction of 3D crack-net under external reasons (resulting even in local variation of pressures in any crack-section) is a principal item for presented approach. 4. We believe that in some cases the interconnection of floods and preceding earthquakes may occur. The problem discuss by us for certain events ( e.g. in addition to

  8. A water balance approach to enhance national (GB) Daily Landslide Hazard Assessments

    NASA Astrophysics Data System (ADS)

    Dijkstra, Tom; Reeves, Helen; Freeborough, Katy; Dashwood, Claire; Pennington, Catherine; Jordan, Hannah; Hobbs, Peter; Richardson, Jennifer; Banks, Vanessa; Cole, Steven; Wells, Steven; Moore, Robert

    2017-04-01

    The British Geological Survey (BGS) is a member of the Natural Hazards Partnership (NHP) and delivers a national (GB) daily landslide hazard assessment (DLHA). The DLHA is based largely on 'expert' driven evaluations of the likelihood of landslides in response to antecedent ground conditions, adverse weather and reported landslide events. It concentrates on shallow translational slides and debris flows - events that most frequently have societal consequences by disrupting transport infrastructure and affecting buildings. Considerable experience with the issuing of DLHAs has been gained since 2012. However, it remains very difficult to appropriately assess changing ground conditions throughout GB even when good quality precipitation forecasts are available. Soil moisture sensors are available, but the network is sparse and not yet capable of covering GB to the detail required to underpin the forecasts. Therefore, we developed an approach where temporal and spatial variations in soil moisture can be obtained from a water balance model, representing processes in the near-surface and configured on a relatively coarse grid of 1 km2. Model outputs are not intended to be relevant to the slope scale. The assumption is that the likelihood of landslides being triggered by rainfall is dependent upon the soil moisture conditions of the near-surface, in combination with how much rain is forecast to occur for the following day. These variables form the basis for establishing thresholds to guide the issuing of DLHA and early warnings. The main aim is to obtain an insight into regional patterns of change and threshold exceedance. The BGS water balance model is still in its infancy and it requires substantial work to fine-tune and validate it. To test the performance of the BGS model we focused on an analysis of Scottish landslides (2004-2015) comprising translational slides and debris flows where the BGS model is conditionally evaluated against the Grid-to-Grid (G2G) Model. G2G is

  9. An Analysis of the Energy, Water, and Salt Balance of a Saline Lake in the Sandhills Region of Semi-Arid Western Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.

    2009-12-01

    The Sandhills region of western Nebraska comprises the largest stabilized dune field in the western hemisphere. Although situated in a semi-arid climate, the sandy soils allow a significant fraction of the ambient precipitation to drain through and recharge the underlying Ogallala aquifer. As part of the larger High Plains aquifer that extends from South Dakota down to Texas, the Sandhills region provides an abundant groundwater resource for the surrounding area and is heavily utilized for irrigation. Located within a semi-arid climate, fluctuations in groundwater recharge in the Sandhills are likely to be highly sensitive to changes in climate and the regional water balance. Important to this water balance are the numerous seepage lakes which exist throughout the region. Where present, however, these lakes evaporate rapidly as a result of the warm, dry, sunny, and windy conditions. Many of the lakes are highly saline and often support a diverse wetland ecosystem. A field study of one of these lakes was initiated in 2007 to examine the effects of climate variability on the energy and water balance of the lake. In particular, we measured incoming and outgoing solar and longwave radiation over the surface of the lake, as well as lake and sediment temperatures, salinity, water levels, and ancillary meteorological variables. The lake is shallow, with a depth of roughly 30 cm, but is observed to undergo significant variations in water level relative to its mean depth and is almost completely drying up during some periods. Salinity values undergo similarly large variations and are found to respond relatively rapidly to precipitation and evaporation “events.” Energy balance estimates of lake evaporation yield values that are well in excess of the ambient precipitation, suggesting significant inputs from groundwater. These evaporation measurements correspond closely with mass-transfer estimates, except during periods when the lake becomes dry enough to elevate surface

  10. Quantum Chemically Estimated Abraham Solute Parameters Using Multiple Solvent-Water Partition Coefficients and Molecular Polarizability.

    PubMed

    Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M

    2017-09-05

    Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.

  11. Seasonal patterns in the soil water balance of a Spartina marsh site at North Inlet, South Carolina, USA

    USGS Publications Warehouse

    Gardner, L.R.; Reeves, H.W.

    2002-01-01

    Time series of ground-water head at a mid-marsh site near North Inlet, South Carolina, USA can be classified into five types of forcing signatures based on the dominant water flux governing water-level dynamics during a given time interval. The fluxes that can be recognized are recharge by tides and rain, evapotranspiration (ET), seepage into the near surface soil from below, and seepage across the soil surface to balance either ET losses or seepage influxes from below. Minimal estimates for each flux can be made by multiplying the head change induced by it by the measured specific yield of the soil. These flux estimates are provide minimal values because ET fluxes resulting from this method are about half as large as those estimated from calculated potential evapotranspiration (PET), which place an upper limit on the actual ET. As evapotranspiration is not moisture-limited at this regularly submerged site, the actual ET is probably nearly equal to PET. Thus, all of the other fluxes are probably twice as large as those given by this method. Application of this method shows that recharge by tides and rain only occurs during spring and summer when ET exceeds upward seepage from below and is thereby able to draw down the water table below the marsh surface occasionally. During fall and winter, seepage of fresh water from below is largely balanced by seepage out of the soil into overlying tidal water or into sheet flow during tidal exposure. The resulting reduction in soil water salinity may thereby enhance the growth of Spartina in the following spring. ?? 2002, The Society of Wetland Scientists.

  12. Global modeling of land water and energy balances. Part III: Interannual variability

    USGS Publications Warehouse

    Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.

    2002-01-01

    The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.

  13. Water-tunnel studies of heat balance in swimming mako sharks.

    PubMed

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  14. Effects of supplementing glycerol and soybean oil in drinking water on feed and water intake, energy balance, and production performance of periparturient dairy cows.

    PubMed

    Osborne, V R; Odongo, N E; Cant, J P; Swanson, K C; McBride, B W

    2009-02-01

    The objective of this study was to determine the effects of supplementing glycerol and soybean oil in drinking water on feed and water intake, calculated energy balance, and production performance of periparturient dairy cows. Ninety multiparous Holstein dairy cows were randomly assigned to 1 of 3 treatments: 1) no nutrients supplemented in the drinking water (control); 2) 20 g/L of glycerin supplemented in the drinking water (glycerol); and 3) 10 g/L of soybean oil supplemented in the drinking water (SBO). The trial lasted from 7 d prepartum to 7 d postpartum. Cows were offered a close-up and milking cow TMR for ad libitum intake, pre- and postpartum, respectively. The dry matter intake of cows supplemented with glycerol and SBO was lower than for the control cows throughout the experimental period but not different from each other. Water intake for the control cows was greater than the average for the glycerol and SBO cows prepartum, and greater than for SBO cows but similar to that of glycerol cows postpartum. Glycerol cows consumed more water than SBO cows. There were no differences in energy intake and energy balance of the cows pre- and postpartum. Serum triacylglycerol concentration for glycerol cows was lower than for the control and SBO cows prepartum and was lower than for the SBO cows postpartum. There were no differences in the serum nonesterified fatty acids and glucose concentrations throughout the experiment. There were no differences in the serum beta-hydroxybutyrate (BHBA) concentrations at parturition, but serum BHBA concentration of the glycerol cows was greater than for control and SBO cows during the prepartum period. However, during the postpartum period, serum BHBA concentrations of the control cows were greater than for glycerol and SBO cows. There were no differences in calf birth weights or milk yield and composition. Although the glucogenic property of glycerol supplemented in the drinking water at 20 g/L may not have been sufficient to

  15. A mass-balance code for the quantitative interpretation of fluid column profiles in ground-water studies

    NASA Astrophysics Data System (ADS)

    Paillet, Frederick

    2012-08-01

    A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.

  16. Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus.

    PubMed

    Pinisetty, D; Huang, C; Dong, Q; Tiersch, T R; Devireddy, R V

    2005-06-01

    This study reports the subzero water transport characteristics (and empirically determined optimal rates for freezing) of sperm cells of live-bearing fishes of the genus Xiphophorus, specifically those of the southern platyfish Xiphophorus maculatus. These fishes are valuable models for biomedical research and are commercially raised as ornamental fish for use in aquariums. Water transport during freezing of X. maculatus sperm cell suspensions was obtained using a shape-independent differential scanning calorimeter technique in the presence of extracellular ice at a cooling rate of 20 degrees C/min in three different media: (1) Hanks' balanced salt solution (HBSS) without cryoprotective agents (CPAs); (2) HBSS with 14% (v/v) glycerol, and (3) HBSS with 10% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder with a length of 52.35 microm and a diameter of 0.66 microm with an osmotically inactive cell volume (Vb) of 0.6 V0, where V0 is the isotonic or initial cell volume. This translates to a surface area, SA to initial water volume, WV ratio of 15.15 microm(-1). By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the best fit membrane permeability parameters (reference membrane permeability to water at 0 degrees C, Lpg or Lpg [cpa] and the activation energy, E(Lp) or E(Lp) [cpa]) were found to range from: Lpg or Lpg [cpa] = 0.0053-0.0093 microm/minatm; E(Lp) or E(Lp) [cpa] = 9.79-29.00 kcal/mol. By incorporating these membrane permeability parameters in a recently developed generic optimal cooling rate equation (optimal cooling rate, [Formula: see text] where the units of B(opt) are degrees C/min, E(Lp) or E(Lp) [cpa] are kcal/mol, L(pg) or L(pg) [cpa] are microm/minatm and SA/WV are microm(-1)), we determined the optimal rates of freezing X. maculatus sperm cells to be 28 degrees C/min (in HBSS), 47 degrees C/min (in HBSS+14% glycerol) and 36 degrees C/min (in HBSS+10% DMSO). Preliminary empirical

  17. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  18. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    NASA Astrophysics Data System (ADS)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  19. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, M. R.; Vargas-Luna, F. M.; Delgadillo-Holtfort, I.

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies.

  20. Linking xylem water storage with anatomical parameters in five temperate tree species.

    PubMed

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights

  1. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    PubMed

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    NASA Astrophysics Data System (ADS)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  3. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Century-scale variability in global annual runoff examined using a water balance model

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  5. Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications

    NASA Astrophysics Data System (ADS)

    Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.

    2018-01-01

    The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.

  6. Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors

    NASA Astrophysics Data System (ADS)

    Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.

    2006-06-01

    Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.

  7. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    PubMed

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  8. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  9. Water-balance wodel of a wetland on the Fort Berthold Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.

    2007-01-01

    A numerical water-balance model was developed to simulate the responses of a wetland on the Fort Berthold Reservation, North Dakota, to historical and possible extreme hydrological inputs and to changes in hydrological inputs that might occur if a proposed refinery is built on the reservation. Results from model simulations indicated that the study wetland would likely contain water during most historical and extreme-precipitation events with the addition of maximum potential discharges of 0.6 acre-foot per day from proposed refinery holding ponds. Extended periods with little precipitation and above-normal temperatures may result in the wetland becoming nearly dry, especially if potential holding-pond discharges are near zero. Daily simulations based on the historical-enhanced climate data set for May and June 2005, which included holding-pond discharges of 0.6 acre-foot per day, indicated that the study-wetland maximum simulated water volume was about 16.2 acre-feet and the maximum simulated water level was about 1.2 feet at the outlet culvert. Daily simulations based on the extreme summer data set, created to represent an extreme event with excessive June precipitation and holding-pond discharges of 0.6 acre-foot per day, indicated that the study-wetland maximum simulated water volume was about 38.6 acre-feet and the maximum simulated water level was about 2.6 feet at the outlet culvert. A simulation performed using the extreme winter climate data set and an outlet culvert blocked with snow and ice resulted in the greatest simulated wetland water volume of about 132 acre-feet and the greatest simulated water level, which would have been about 6.2 feet at the outlet culvert, but water was not likely to overflow an adjacent highway.

  10. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    USDA-ARS?s Scientific Manuscript database

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  11. Tracking unaccounted water use in data sparse arid environment

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Edraki, M.; Ullah, M. K.; Chemin, Y.; Sixsmith, J.; Faux, R.

    2009-12-01

    Hydrological knowledge of irrigated farms within the inundation plains of the Murray Darling Basin (MDB) is very limited in quality and reliability of the observation network that has been declining rapidly over the past decade. This paper focuses on Land Surface Diversions (LSD) that encompass all forms of surface water diversion except the direct extraction of water from rivers, watercourses and lakes by farmers for the purposes of irrigation and stock and domestic supply. Its accurate measurement is very challenging, due to the practical difficulties associated with separating the different components of LSD and estimating them accurately for a large catchment. The inadequacy of current methods of measuring and monitoring LSD poses severe limitations on existing and proposed policies for managing such diversions. It is commonly believed that LSD comprises 20-30% of total diversions from river valleys in the MDB areas. But, scientific estimates of LSD do not exist, because they were considered unimportant prior the onset of recent draught in Australia. There is a need to develop hydrological water balance models through the coupling of hydrological variables derived from on ground hydrological measurements and remote sensing techniques to accurately model LSD. Typically, the hydrological water balance components for farm/catchment scale models includes: irrigation inflow, outflow, rainfall, runoff, evapotranspiration, soil moisture change and deep percolation. The actual evapotranspiration (ETa) is the largest and single most important component of hydrological water balance model. An accurate quantification of all components of hydrological water balance model at farm/catchment scale is of prime importance to estimate the volume of LSD. A hydrological water balance model is developed to calculate LSD at 6 selected pilot farms. The catchment hydrological water balance model is being developed by using selected parameters derived from hydrological water balance

  12. REGIONAL RELATIONSHIPS BETWEEN GEOMORPHIC/HYDROLOGIC PARAMETERS AND SURFACE WATER CHEMISTRY RELATIVE TO ACIDIC DEPOSITION

    EPA Science Inventory

    We determined geomorphic and hydrologic parameters for 144 forested, lake watersheds in the Northeast (NE) of the United States based primarily on measurements from topographic maps. hese parameters were used to test for relationships with selected surface water chemistry relevan...

  13. Estimation of water quality parameters of inland and coastal waters with the use of a toolkit for processing of remote sensing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less

  14. Balance evaluation in haemophilic preadolescent patients using Nintendo Wii Balance Board®.

    PubMed

    Pérez-Alenda, S; Carrasco, J J; Aguilar-Rodríguez, M; Martínez-Gómez, L; Querol-Giner, M; Cuesta-Barriuso, R; Torres-Ortuño, A; Querol, F

    2017-01-01

    Alterations in the musculoskeletal system, especially in the lower limbs, limit physical activity and affect balance and walking. Postural impairments in haemophilic preteens could increase the risk of bleeding events and deteriorate the physical condition, promoting the progression of haemophilic arthropathy. This study aims to evaluate static postural balance in haemophilic children, assessed by means of the Wii Balance Board ® (WBB). Nineteen children with haemophilia and 19 without haemophilia aged 9-10 years, have participated in this study. Postural balance was assessed by performing four tests, each one lasting 15 s: bipodal eyes open (BEO), bipodal eyes closed (BEC), monopodal dominant leg (MD) and monopodal non-dominant leg (MND). Two balance indices, standard deviation of amplitude (SDA) and standard deviation of velocity (SDV) were calculated in the anterior-posterior (AP) and medial-lateral (ML) directions. Index values were higher in haemophilic group and the differences were statistically significant (P < 0.05) in only six (SDAAP in BEO, BEC and MD conditions, SDAML in BEO, SDVAP in BEO and SDVML in MND condition) of 16 parameters analysed. Tests performed indicate a poorer static postural balance in the haemophilic cohort compared to the control group. Accordingly, physiotherapy programmes, physical activity and sports should be designed to improve the postural balance with the aim of preventing joint deterioration and improving quality of life. © 2016 John Wiley & Sons Ltd.

  15. Water and solute mass balance of five small, relatively undisturbed watersheds in the U.S.

    USGS Publications Warehouse

    Peters, N.E.; Shanley, J.B.; Aulenbach, Brent T.; Webb, R.M.; Campbell, D.H.; Hunt, R.; Larsen, M.C.; Stallard, R.F.; Troester, J.; Walker, J.F.

    2006-01-01

    Geochemical mass balances were computed for water years 1992-1997 (October 1991 through September 1997) for the five watersheds of the U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) Program to determine the primary regional controls on yields of the major dissolved inorganic solutes. The sites, which vary markedly with respect to climate, geology, physiography, and ecology, are: Allequash Creek, Wisconsin (low-relief, humid continental forest); Andrews Creek, Colorado (cold alpine, taiga/tundra, and subalpine boreal forest); Ri??o Icacos, Puerto Rico (lower montane, wet tropical forest); Panola Mountain, Georgia (humid subtropical piedmont forest); and Sleepers River, Vermont (humid northern hardwood forest). Streamwater output fluxes were determined by constructing empirical multivariate concentration models including discharge and seasonal components. Input fluxes were computed from weekly wet-only or bulk precipitation sampling. Despite uncertainties in input fluxes arising from poorly defined elevation gradients, lack of dry-deposition and occult-deposition measurements, and uncertain sea-salt contributions, the following was concluded: (1) for solutes derived primarily from rock weathering (Ca, Mg, Na, K, and H4SiO4), net fluxes (outputs in streamflow minus inputs in deposition) varied by two orders of magnitude, which is attributed to a large gradient in rock weathering rates controlled by climate and geologic parent material; (2) the net flux of atmospherically derived solutes (NH4, NO3, SO4, and Cl) was similar among sites, with SO4 being the most variable and NH4 and NO3 generally retained (except for NO 3 at Andrews); and (3) relations among monthly solute fluxes and differences among solute concentration model parameters yielded additional insights into comparative biogeochemical processes at the sites. ?? 2005 Elsevier B.V. All rights reserved.

  16. The groundwater balance in alluvial plain aquifer at Dehgolan, Kurdistan, Iran

    NASA Astrophysics Data System (ADS)

    Amini, Ata; Homayounfar, Vafa

    2017-10-01

    In this research, groundwater balance in Dehgolan plain, Kurdistan, Iran was carried out to assess changes in the level and volume of groundwater and water resources management. For this purpose, water resources supplies and consumption data, amount of charging and discharge and water level data recorded from wells and piezometers from 2010 to 2011 water year were gathered and analyzed. Rainfall and water losses of the study area were determined and required maps, including Iso-maps of the temperature, the evaporation, the groundwater level and the aquifer conductivity, were drawn by GIS software. Using the information and drawn maps and the equality of inputs and outputs data, the aquifer water balance was calculated. The results of balance equations showed that the balance is negative indicated a notably decline of groundwater equal to 15.029 million cubic meter (MCM). Such rate of decline is due to the large number of agricultural wells in the region, without considering the hydrological potential of the aquifer.

  17. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    PubMed

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  18. Hysteresis and uncertainty in soil water-retention curve parameters

    USGS Publications Warehouse

    Likos, William J.; Lu, Ning; Godt, Jonathan W.

    2014-01-01

    Accurate estimates of soil hydraulic parameters representing wetting and drying paths are required for predicting hydraulic and mechanical responses in a large number of applications. A comprehensive suite of laboratory experiments was conducted to measure hysteretic soil-water characteristic curves (SWCCs) representing a wide range of soil types. Results were used to quantitatively assess differences and uncertainty in three simplifications frequently adopted to estimate wetting-path SWCC parameters from more easily measured drying curves. They are the following: (1) αw=2αd, (2) nw=nd, and (3) θws=θds, where α, n, and θs are fitting parameters entering van Genuchten’s commonly adopted SWCC model, and the superscripts w and d indicate wetting and drying paths, respectively. The average ratio αw/αd for the data set was 2.24±1.25. Nominally cohesive soils had a lower αw/αd ratio (1.73±0.94) than nominally cohesionless soils (3.14±1.27). The average nw/nd ratio was 1.01±0.11 with no significant dependency on soil type, thus confirming the nw=nd simplification for a wider range of soil types than previously available. Water content at zero suction during wetting (θws) was consistently less than during drying (θds) owing to air entrapment. The θws/θds ratio averaged 0.85±0.10 and was comparable for nominally cohesive (0.87±0.11) and cohesionless (0.81±0.08) soils. Regression statistics are provided to quantitatively account for uncertainty in estimating hysteretic retention curves. Practical consequences are demonstrated for two case studies.

  19. Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management

    USGS Publications Warehouse

    Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.

    2014-01-01

    Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.

  20. Critical discussion on the "observed" water balances of five sub-basins in the Everest region

    NASA Astrophysics Data System (ADS)

    Chevallier, P.; Eeckman, J.; Nepal, S.; Delclaux, F.; Wagnon, P.; Brun, F.; Koirala, D.

    2017-12-01

    The hydrometeorological components of five Dudh Koshi River sub-basins on the Nepalese side of the Mount Everest have been monitored during four hydrological years (2013-2017), with altitudes ranging from 2000 m to Everest top, areas between 4.65 and 1207 km², and proportions of glaciated areas between nil and 45%. This data set is completed with glacier mass balance observations. The analysis of the observed data and the resulting water balances show large uncertainties of different types: aleatory, epistemic or semantic, following the classification proposed by Beven (2016). The discussion is illustrated using results from two modeling approaches, physical (ISBA, Noilhan and Planton, 1996) and conceptual (J2000, Krause, 2001), as well as large scale glacier mass balances obtained by the way of a recent remote sensing processing method. References: Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652-1665. doi:10.1080/02626667.2015.1031761 Krause, P., 2001. Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in groen Flueinzugsgebieten, Schriften des Forschungszentrum Jülich. Reihe Umwelt/Environment; Band 29. Noilhan, J., Planton, S., 1989. A single parametrization of land surface processes for meteorological models. Monthly Weather Review 536-549.

  1. Water and sediment quality parameters in the Chalan Beel, the largest wetland of Bangladesh

    NASA Astrophysics Data System (ADS)

    Sayeed, Md. Abu; Hossain, Mostafa Ali Reza; Wahab, Md. Abdul; Hasan, Md. Tawheed; Simon, Kumar Das; Mazumder, Sabuj Kanti

    2015-07-01

    A study was conducted to investigate the status of the water and sediment quality in the Chalan Beel-a major fresh water fish reservoir of the country for a period of one year from July 2007 to June 2008. The mean values of water quality parameters (depth: 214.73±152.22 cm, temperature 27.68±4.26°C, transparency 123±82 cm, pH 9.7±0.47, total alkalinity 137±42 mg/L, conductivity 307±147 μs/cm, total dissolved solids 183±89 mg/L, ammonia-N 0.27±0.39 mg/L, nitrate-N 0.09±0.07 mg/L, phosphate-P 2.01±2.53 mg/L) and sediment quality parameters (pH 7.21±0.35, organic matter 2.59±0.52%, total nitrogen 0.09±0.04%, available phosphorus 5.4±3.6 Meq./100 g and exchangeable potassium 0.43±0.14 Meq./100 g) were within the range recommended for most of the inland fishes of Bangladesh. Although the water and sediment quality parameters except ammonia and phosphate are in the suitable range, the overall results suggest that better management techniques should be practiced in order to overcome the declining trend of associated aquatic life (fauna and flora) of this important fresh water body of Bangladesh.

  2. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance

    PubMed Central

    2012-01-01

    Introduction Capillary leak in critically ill patients leads to interstitial edema. Fluid overload is independently associated with poor prognosis. Bedside measurement of intra-abdominal pressure (IAP), extravascular lung water index (EVLWI), fluid balance, and capillary leak index (CLI) may provide a valuable prognostic tool in mechanically ventilated patients. Methods We performed an observational study of 123 mechanically ventilated patients with extended hemodynamic monitoring, analyzing process-of-care variables for the first week of ICU admission. The primary outcome parameter was 28-day mortality. ΔmaxEVLWI indicated the maximum difference between EVLWI measurements during ICU stay. Patients with a ΔmaxEVLWI <−2 mL/kg were called 'responders'. CLI was defined as C-reactive protein (milligrams per deciliter) over albumin (grams per liter) ratio and conservative late fluid management (CLFM) as even-to-negative fluid balance on at least two consecutive days. Results CLI had a biphasic course. ΔmaxEVLWI was lower if CLFM was achieved and in survivors (−2.4 ± 4.8 vs 1.0 ± 5.5 mL/kg, p = 0.001; −3.3 ± 3.8 vs 2.5 ± 5.3 mL/kg, p = 0.001, respectively). No CLFM achievement was associated with increased CLI and IAPmean on day 3 and higher risk to be nonresponder (odds ratio (OR) 2.76, p = 0.046; OR 1.28, p = 0.011; OR 5.52, p = 0.001, respectively). Responders had more ventilator-free days during the first week (2.5 ± 2.3 vs 1.5 ± 2.3, p = 0.023). Not achieving CLFM and being nonresponder were strong independent predictors of mortality (OR 9.34, p = 0.001 and OR 7.14, p = 0.001, respectively). Conclusion There seems to be an important correlation between CLI, EVLWI kinetics, IAP, and fluid balance in mechanically ventilated patients, associated with organ dysfunction and poor prognosis. In this context, we introduce the global increased permeability syndrome. PMID:22873410

  3. Hydrophysical correlation and water mass indication of optical physiological parameters of picophytoplankton in Prydz Bay during autumn 2008.

    PubMed

    Zhang, Fang; Ma, Yuxin; Lin, Ling; He, Jianfeng

    2012-12-01

    Flow cytometry (FCM) is efficient in detecting both abundance and optical physiological parameters including cell size and cellular carbon content-side scatter (SSC), carotenoids-green and orange fluorescence (FL1 and FL2), and red fluorescence-chlorophylls (FL3) can be obtained by FCM. The utilization of these physiological parameters in indicating water masses in Prydz Bay was investigated for the first time. Picophytoplankton were very sensitive to hydrophysical changes and present distinct characteristics of water masses: Picophytoplankton in water closer to the Amery Ice Shelf were more affected by salinity than by temperature, while temperature became more important than salinity the nearer the picophytoplankton were to the deep sea. The picophytoplankton dealt with declines in light by increasing the size of cells, which increase the fixation of carbon. This can also be increased by high temperature and salinity. Pure water masses can increase the content of chlorophylls and cellular carbon. Generally, the distributions of all the five parameters at upper water depths were less affected by temperature and salinity than by water masses; and these parameters can be as indicators to Summer Surface Water (SSW), Winter Water (WW) and Continental Shelf Water (CSW). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  5. Estimation of distributional parameters for censored trace-level water-quality data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1984-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less

  6. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    NASA Astrophysics Data System (ADS)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  7. [The design and experiment of multi-parameter water quality monitoring microsystem based on MOEMS microspectrometer].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-Yu; Guo, Jian; Chen, Song-Bo

    2012-07-01

    Aiming at the monitoring and protecting of water resource environment, a multi-parameter water quality monitoring microsystem based on microspectrometer was put forward in the present paper. The microsystem is mainly composed of MOEMS microspectrometer, flow paths system and embedded measuring & controlling system. It has the functions of self-injecting samples and detection regents, automatic constant temperature, self -stirring, self- cleaning and samples' spectrum detection. The principle prototype machine of the microsystem was developed, and its structure principle was introduced in the paper. Through experiment research, it was proved that the principle prototype machine can rapidly detect quite a few water quality parameters and can meet the demands of on-line water quality monitoring, moreover, the principle prototype machine has strong function expansibility.

  8. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications.

    PubMed

    McClain, Michael E

    2013-09-01

    Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.

  9. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization.

    PubMed

    Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A

    2018-05-05

    New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation.

    PubMed

    Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako

    2005-01-27

    The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.

  11. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  12. Habitat moisture is an important driver of patterns of sap flow and water balance in tropical montane cloud forest epiphytes.

    PubMed

    Darby, Alexander; Draguljić, Danel; Glunk, Andrew; Gotsch, Sybil G

    2016-10-01

    Microclimate in the tropical montane cloud forest (TMCF) is variable on both spatial and temporal scales and can lead to large fluctuations in both leaf-level transpiration and whole plant water use. While variation in transpiration has been found in TMCFs, the influence of different microclimatic drivers on plant water relations in this ecosystem has been relatively understudied. Within the TMCF, epiphytes may be particularly affected by natural variation in microclimate due to their partial or complete disassociation from soil resources. In this study, we examined the effects of seasonal microclimate on whole plant water balance in epiphytes in both an observational and a manipulative experiment. We also evaluated the effects of different microclimatic drivers using three hierarchical linear (mixed) models. On average, 31 % of total positive sap flow was recovered via foliar water uptake (FWU) over the course of the study. We found that precipitation was the greatest driver of foliar water uptake and nighttime sap flow in our study species and that both VPD and precipitation were important drivers to daytime sap flow. We also found that despite adaptations to withstand seasonal drought, an extended dry period caused severe desiccation in most plants despite a large reduction in leaf-level and whole plant transpiration. Our results indicate that the epiphytes studied rely on FWU to maintain positive water balance in the dry season and that increases in dry periods in the TMCF may be detrimental to these common members of the epiphyte community.

  13. Hydrological responses in water loss due to thinning of forested watersheds in Japan using the short-term water balance method

    NASA Astrophysics Data System (ADS)

    Sano, K.; Gomi, T.; Hiraoka, M.; Sato, T.; Onda, Y.

    2015-12-01

    We examined the changes in seasonal patterns of catchment-scale evapotranspiration (i.e., water loss) using Short-Term Water Balance Model (STWBM) developed. STWBM is applied to estimate the value of water loss based on precipitation minus discharge volume during short-periods(8 to 80 days). This method can be applicable for examining seasonal characteristics of water loss that relets to ET. We applied STWBM for investigating the effects of 50% thinning in nested headwater catchments draining Japanese cypress (Cryptomeria japonica) and cedar (Chamaecyparis obtusa) forests. Study areas is located to 70 km north of Tokyo with 1250 mm annual precipitation and 14℃ mean annual temperature. 50% of the stems (46% of timber volume) were removed by strip thinning in 17 ha treatment catchment, 9 ha catchment remained untreated as a control. We installed 4 nested gauging stations in treated and control catchments with 3 to 10 ha of drainage areas. Runoff in each nested gauging station was measured in the pre- (from April, 2010 to June 2011) and the post-thinning periods (from January 2012 to December 2012). Total runoff coefficient in treated and control catchment was 54% and 26%, respectively. , . Estimated annual water loss by STWBM was 585 mm in treated and 969 mm in control catchments. Because annual evapotranspiration of Japanese cypress and cedar was about ranging from 400 to 800 mm in this catchment, our estimated water loss mostly associated with ET and partially by water loss by deep bedrock percolation. Estimated water loss after thinning in growth season (May to October) decreased 45 to 60 (in 2012) % and 51 to 60 (in 2013) % for all nested gauging station, while estimated water loss in control catchment was consistent. This result suggested that 50% of thinning decreased water loss by ET but changes can be varied among nested gauging station.

  14. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    PubMed

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  15. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Doye, Jonathan P. K.; Noya, Eva G.; Vega, Carlos

    2012-11-01

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.

  16. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    PubMed

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights

  17. On-Line Water Quality Parameters as Indicators of Distribution System Contamination

    EPA Science Inventory

    At a time when the safety and security of services we have typically taken for granted are under question, a real-time or near real-time method of monitoring changes in water quality parameters could provide a critical line of defense in protecting public health. This study was u...

  18. [Water quality and microbiological status of the distribution system: traditional parameters and emerging parameters].

    PubMed

    Scoglio, M E; Grillo, O C; Munaò, F; Di Pietro, A; Squeri, L

    1989-01-01

    Most pollution of drinking water is caused by inadequacy of the uptake and distribution systems, by insufficient upkeep of the sewage system and by defects or breaks in the disinfection processes. This may be the cause of waterborne epidemic outbreaks and therefore it is necessary carry out routine controls by simple and rapid tests for the detection of intestinal organisms. In the light of minor hepatitis A epidemics occurred in the town of Messina, we have carried out a study to determine the drinking water quality. To this end, in addition to the traditional tests recommended by CEE and required by the 8/2/1985 DPCM (37 degrees C and 20 degrees C viable count, total and faecal coliforms and faecal streptococci), we have carried out P. aeruginosa, coliphages and gram-negative endotoxins tests, in 74 water samples drawn on way in and way out of the tanks and along the piping system. Only 12.5% of the sixteen water samples drawn on way in (before disinfection system) was in compliance with the law. 75% of these samples showed positivity for faecal streptococci. The water quality was lower in the fourteen water samples drawn on way out of the tanks (7.1% was in compliance with the law). The percent of positivity along the piping system for total and faecal coliforms and for faecal streptococci was 34.1, 15.9 and 59.1 respectively. Coliphages were always absent. P. aeruginosa was almost always present in way in water (93.7%). Moreover this microorganism was recovered in 85.7% of the samples drawn on the way out and in 77.3% along the piping system. In the same drawing places endotoxins were present at high percentage (100%, 85.7% and 90.9%). These values come from high test sensitivity and poor water quality. Finally we have pointed out the importance of all the parameters examined. The significance of coliform bacteria is known, but we consider very important, as organisms indicative of pollution, the enterococci, since they P. aeruginosa may survive long time in

  19. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  20. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.