Sample records for water barrier function1cwoa

  1. Wet Work and Barrier Function.

    PubMed

    Fartasch, Manigé

    2016-01-01

    Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours. © 2016 S. Karger AG, Basel.

  2. A chaos wolf optimization algorithm with self-adaptive variable step-size

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  3. Hippophae rhamnoides oil-in-water (O/W) emulsion improves barrier function in healthy human subjects.

    PubMed

    Khan, Barkat Ali; Akhtar, Naveed

    2014-11-01

    This study aimed to investigate the changes in skin barrier function in human subjects, following long-term topical application of Hippophae rhamnoides oil-in-water (O/W) emulsion whereas effects were measred using non-invasive probes like tewameter and corneometer. For this purpose, two stable oil-in-water (O/W) emulsions were formulated one with 5% Hippophae rhamnoides extract and other without extracts. Thirteen healthy, male subjects with a mean age 27 ± 4.8 years were enrolled after their informed consents. The subjects were instructed to apply either the active formulation or the base formulation over 84 days while they were not known with the contents of either formulation. Biometrological measurements of skin hydration and transepidermal water loss (TEWL) were performed on both sides of the face in each volunteer at baseline and on day 07, 14, 21, 28, 42, 56, 70 and 84. The statistical analysis revealed formulation with 5% plant extract was superior compared to placebo (base formulation) as formulation with extract have shown extremely significant improvements in skin hydration (p=0.0003) and TEWL (p=0.0087) throughout treatment course. Moreover, a significant (p<0.05) correlation between the active formulation and the improvement of the skin barrier functions was observed. The active formulation found to be superior to that of placebo. Results affirmed that future studies are necessary to clinically evaluate the active formulation hence it can be proposed that Hippophae rhamnoides emulsion could be an alternative pharmacological tool in treating barrier compromised conditions of skin.

  4. Could tight junctions regulate the barrier function of the aged skin?

    PubMed

    Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš

    2016-03-01

    The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Direct visualization of the arterial wall water permeability barrier using CARS microscopy

    PubMed Central

    Lucotte, Bertrand M.; Powell, Chloe; Knutson, Jay R.; Combs, Christian A.; Malide, Daniela; Yu, Zu-Xi; Knepper, Mark; Patel, Keval D.; Pielach, Anna; Johnson, Errin; Borysova, Lyudmyla; Balaban, Robert S.

    2017-01-01

    The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies. PMID:28373558

  6. Water permeability of the mammalian cochlea: functional features of an aquaporin-facilitated water shunt at the perilymph-endolymph barrier.

    PubMed

    Eckhard, A; Müller, M; Salt, A; Smolders, J; Rask-Andersen, H; Löwenheim, H

    2014-10-01

    The cochlear duct epithelium (CDE) constitutes a tight barrier that effectively separates the inner ear fluids, endolymph and perilymph, thereby maintaining distinct ionic and osmotic gradients that are essential for auditory function. However, in vivo experiments have demonstrated that the CDE allows for rapid water exchange between fluid compartments. The molecular mechanism governing water permeation across the CDE remains elusive. We computationally determined the diffusional (PD) and osmotic (Pf) water permeability coefficients for the mammalian CDE based on in silico simulations of cochlear water dynamics integrating previously derived in vivo experimental data on fluid flow with expression sites of molecular water channels (aquaporins, AQPs). The PD of the entire CDE (PD = 8.18 × 10(-5) cm s(-1)) and its individual partitions including Reissner's membrane (PD = 12.06 × 10(-5) cm s(-1)) and the organ of Corti (PD = 10.2 × 10(-5) cm s(-1)) were similar to other epithelia with AQP-facilitated water permeation. The Pf of the CDE (Pf = 6.15 × 10(-4) cm s(-1)) was also in the range of other epithelia while an exceptionally high Pf was determined for an epithelial subdomain of outer sulcus cells in the cochlear apex co-expressing AQP4 and AQP5 (OSCs; Pf = 156.90 × 10(-3) cm s(-1)). The Pf/PD ratios of the CDE (Pf/PD = 7.52) and OSCs (Pf/PD = 242.02) indicate an aqueous pore-facilitated water exchange and reveal a high-transfer region or "water shunt" in the cochlear apex. This "water shunt" explains experimentally determined phenomena of endolymphatic longitudinal flow towards the cochlear apex. The water permeability coefficients of the CDE emphasise the physiological and pathophysiological relevance of water dynamics in the cochlea in particular for endolymphatic hydrops and Ménière's disease.

  7. Diabetic and sympathetic influences on the water permeability barrier function of human skin as measured using transepidermal water loss: A case-control study.

    PubMed

    Han, Seung Hoon; Park, Ji Woong

    2017-11-01

    The presence of long-standing hyperglycemic conditions has been suggested to lead to many skin problems associated with an impaired skin barrier function. However, the relationship between impaired skin barrier status and altered peripheral nervous system function has not yet been determined. The purpose of this study was to investigate the water evaporation rate as a measure of the permeability barrier function of diabetic skin and its relationship to diabetic sensorimotor polyneuropathy (DSPN) and peripheral autonomic neuropathy (PAN) using well-controlled confounding variables.This case-control study included 42 participants with chronic diabetes and 43 matched healthy controls. The diabetic group underwent a nerve conduction study and sympathetic skin response (SSR) test to confirm the presence of DSPN and PAN, respectively. Different skin regions were analyzed using the noninvasive Tewameter instrument (Courage + Khazaka Electronic GmbH, Cologne, Germany). The impacts of PAN, DSPN, age, and diabetes duration on the values of transepidermal water loss (TEWL) were each analyzed and compared between the groups.Regardless of the presence of DSPN or PAN, the TEWL values as measured on the distal extremities were significantly lower in the diabetic group than in the control group. In the diabetic group, participants with abnormal SSR test results showed decreased TEWL values in the finger, sole, and first toe, as compared with participants with normal SSR test results. In the control group, age showed a negative correlation with the TEWL values with respect to some measured regions. However, in the diabetic group, there was no significant correlation between either patient age or diabetes duration and TEWL values.The presence of a long-term hyperglycemic state can reduce the permeability barrier function of the skin, a phenomenon that might be related to the presence of an impaired peripheral sympathetic nervous system, rather than peripheral sensorimotor

  8. Skin barrier function recovery after diamond microdermabrasion.

    PubMed

    Kim, Hei Sung; Lim, Sook Hee; Song, Ji Youn; Kim, Mi-Yeon; Lee, Ji Ho; Park, Jong Gap; Kim, Hyung Ok; Park, Young Min

    2009-10-01

    Microdermabrasion is a popular method for facial rejuvenation and is performed worldwide. Despite its extensive usage, there are few publications on skin barrier change after microdermabrasion and none concerning diamond microdermabrasion. Our object was to see changes in transepidermal water loss (TEWL), hydration and erythema of the face following diamond microdermabrasion. Twenty-eight patients were included in this spilt face study. TEWL, stratum corneum hydration and the degree of erythema were measured from the right and left sides of the face (forehead and cheek) at baseline. One side of the face was treated with diamond microdermabrasion and the other side was left untreated. Measurements were taken right after the procedure and repeated at set time intervals. Diamond microdermabrasion was associated with a statistically significant increase in TEWL immediately after the procedure and at 24 h. However, on day 2, levels of TEWL were back to baseline. An increase in hydration and erythema was observed right after microdermabrasion, but both returned to baseline on day 1. The results show that skin barrier function of the forehead and cheek recovers within 2 days of diamond microdermabrasion. Diamond microdermabrasion performed on a weekly basis, as presently done, is expected to allow sufficient time for the damaged skin to recover its barrier function in most parts of the face.

  9. Defenders and Challengers of Endothelial Barrier Function

    PubMed Central

    Rahimi, Nader

    2017-01-01

    Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721

  10. Free energy barriers to evaporation of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  11. The angiopoietin1-Akt pathway regulates barrier function of the cultured spinal cord microvascular endothelial cells through Eps8.

    PubMed

    Liu, Xinchun; Zhou, Xiaoshu; Yuan, Wei

    2014-10-15

    In mammalian central nervous system (CNS), the integrity of the blood-spinal cord barrier (BSCB), formed by tight junctions (TJs) between adjacent microvascular endothelial cells near the basement membrane of capillaries and the accessory structures, is important for relatively independent activities of the cellular constituents inside the spinal cord. The barrier function of the BSCB are tightly regulated and coordinated by a variety of physiological or pathological factors, similar with but not quite the same as its counterpart, the blood-brain barrier (BBB). Herein, angiopoietin 1 (Ang1), an identified ligand of the endothelium-specific tyrosine kinase receptor Tie-2, was verified to regulate barrier functions, including permeability, junction protein interactions and F-actin organization, in cultured spinal cord microvascular endothelial cells (SCMEC) of rat through the activity of Akt. Besides, these roles of Ang1 in the BSCB in vitro were found to be accompanied with an increasing expression of epidermal growth factor receptor pathway substrate 8 (Eps8), an F-actin bundling protein. Furthermore, the silencing of Eps8 by lentiviral shRNA resulted in an antagonistic effect vs. Ang1 on the endothelial barrier function of SCMEC. In summary, the Ang1-Akt pathway serves as a regulator in the barrier function modulation of SCMEC via the actin-binding protein Eps8. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Free energy barriers for escape of water molecules from protein hydration layer.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2012-03-08

    Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these "slow" water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.

  13. Determinants of hand dermatitis, urticaria and loss of skin barrier function in professional cleaners in New Zealand.

    PubMed

    Douwes, Jeroen; Slater, Tania; Shanthakumar, Mathangi; McLean, Dave; Firestone, Ridvan Tua; Judd, Lissa; Pearce, Neil

    2017-04-01

    This study assessed the risk of dermatitis, urticaria and loss of skin barrier function in 425 cleaners and 281 reference workers (retail workers and bus drivers). Symptoms, atopy and skin barrier function were assessed by questionnaire, skin prick tests, and measurement of transepidermal water loss. Cleaners had an increased risk of current (past 3 months) hand/arm dermatitis (14.8% vs. 10.0%; OR = 1.9, p < 0.05) and urticaria (11% vs. 5.3%; OR = 2.4, p < 0.05) and were more likely to have dermatitis as adults (17.6% vs. 11.4%; OR = 1.8, p < 0.05). The risk of atopy was not increased, but associations with symptoms were more pronounced in atopics. Transepidermal water loss was significantly higher in cleaners. Wet-work was a significant risk factor for dermatitis and hand washing and drying significantly reduced the risk of urticaria. In conclusion, cleaners have an increased risk of hand/arm dermatitis, urticaria and loss of skin barrier function.

  14. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction

    PubMed Central

    Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark

    2016-01-01

    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853

  15. Human Intestinal Barrier Function in Health and Disease

    PubMed Central

    König, Julia; Wells, Jerry; Cani, Patrice D; García-Ródenas, Clara L; MacDonald, Tom; Mercenier, Annick; Whyte, Jacqueline; Troost, Freddy; Brummer, Robert-Jan

    2016-01-01

    The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed. PMID:27763627

  16. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes

    PubMed Central

    Ghatak, Subhadip; Chan, Yuk Cheung; Khanna, Savita; Banerjee, Jaideep; Weist, Jessica; Roy, Sashwati; Sen, Chandan K

    2015-01-01

    Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21Waf1/Cip1 expression. Adenoviral and pharmacological suppression of p21Waf1/Cip1 in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21Waf1/Cip1. This work upholds p21Waf1/Cip1 as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult. PMID:25896246

  17. Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia.

    PubMed

    Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S

    2015-01-01

    We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0

  18. Thiolated silicone oils as adhesive skin protectants for improved barrier function.

    PubMed

    Partenhauser, A; Zupančič, O; Rohrer, J; Bonengel, S; Bernkop-Schnürch, A

    2016-06-01

    The purpose of this study was the evaluation of thiolated silicone oil as novel skin protectant exhibiting prolonged residence time, enhanced barrier function and reinforced occlusivity. Two silicone conjugates were synthesized with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) as thiol ligands. Adhesion, protection against artificial urine and water vapour permeability with both a Payne cup set-up and transepidermal water loss (TEWL) measurements on porcine skin were assessed. Silicone thiomers showed pronounced substantivity on skin with 22.1 ± 6.3% and 39.2 ± 6.7% remaining silicone after 8 h for silicone-TGA and silicone-MPA, respectively, whereas unmodified silicone oil and dimethicone were no longer detectable. In particular, silicone-MPA provided a protective shield against artificial urine penetration with less than 25% leakage within 6 h. An up to 2.5-fold improved water vapour impermeability for silicone-MPA in comparison with unmodified control was discovered with the Payne cup model. In addition, for silicone-MPA a reduced TEWL by two-thirds corresponding to non-thiolated control was determined for up to 8 h. Thiolation of silicone oil leads to enhanced skin adhesiveness and barrier function, which is a major advantage compared to commonly used silicones and might thus be a promising treatment modality for various topical applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Link, Steven O.; Hasan, Nazmul

    2009-09-01

    A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above themore » surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils

  20. Abnormal Barrier Function in Gastrointestinal Disorders.

    PubMed

    Farré, Ricard; Vicario, María

    2017-01-01

    There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.

  1. Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function.

    PubMed

    Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S

    2017-08-15

    The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.

  2. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635).

  3. The relationship between skin function, barrier properties, and body-dependent factors.

    PubMed

    Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M

    2018-05-01

    Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    PubMed

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function.

    PubMed

    Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2012-08-01

    Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.

  6. Effects of Fe particle irradiation on human endothelial barrier structure and function

    NASA Astrophysics Data System (ADS)

    Sharma, Preety; Guida, Peter; Grabham, Peter

    2014-07-01

    Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have

  7. Treating SCA1 Mice with Water-Soluble Compounds to Non-Specifically Boost Mitochondrial Function.

    PubMed

    Ferro, Austin; Carbone, Emily; Marzouk, Evan; Siegel, Asher; Nguyen, Donna; Polley, Kailen; Hartman, Jessilyn; Frederick, Kimberley; Ives, Stephen; Lagalwar, Sarita

    2017-01-22

    Mitochondrial dysfunction plays a significant role in the aging process and in neurodegenerative diseases including several hereditary spinocerebellar ataxias and other movement disorders marked by progressive degeneration of the cerebellum. The goal of this protocol is to assess mitochondrial dysfunction in Spinocerebellar ataxia type 1 (SCA1) and assess the efficacy of pharmacological targeting of metabolic respiration via the water-soluble compound succinic acid to slow disease progression. This approach is applicable to other cerebellar diseases and can be adapted to a host of water-soluble therapies. Ex vivo analysis of mitochondrial respiration is used to detect and quantify disease-related changes in mitochondrial function. With genetic evidence (unpublished data) and proteomic evidence of mitochondrial dysfunction in the SCA1 mouse model, we evaluate the efficacy of treatment with the water-soluble metabolic booster succinic acid by dissolving this compound directly into the home cage drinking water. The ability of the drug to pass the blood brain barrier can be deduced using high performance liquid chromatography (HPLC). The efficacy of these compounds can then be tested using multiple behavioral paradigms including the accelerating rotarod, balance beam test and footprint analysis. Cytoarchitectural integrity of the cerebellum can be assessed using immunofluorescence assays that detect Purkinje cell nuclei and Purkinje cell dendrites and soma. These methods are robust techniques for determining mitochondrial dysfunction and the efficacy of treatment with water-soluble compounds in cerebellar neurodegenerative disease.

  8. Water dissociation on Mn(1×1)/Ag(100)

    DOE PAGES

    Arble, Chris; Tong, Xiao; Giordano, Livia; ...

    2016-08-19

    In this work we utilize experimental and simulation techniques to examine the molecular level interaction of water with a MnO(1×1) thin film deposited onto Ag(100). The formation of MnO(1×1)/Ag(100) was characterized by low energy electron diffraction and scanning tunneling microscopy. Density functional theory (DFT) shows MnO(1×1) is thermodynamically more stable than MnO(2×1) by –0.4 eV per MnO. Upon exposure to 2.5 Torr water vapor at room temperature, X-ray photoemission spectroscopy results show extensive surface hydroxylation attributed to reactivity at MnO(1×1) terrace sites. DFT calculations of a water monomer on MnO(1×1)/Ag(100) show the dissociated form is energetically more favorable than molecularmore » adsorption, with a hydroxylation activation barrier 0.4 eV per H 2O. Lastly, these results are discussed and contrasted with previous studies of MgO/Ag(100) which show a stark difference in behavior for water dissociation.« less

  9. Helminths and intestinal barrier function

    PubMed Central

    McKay, Derek M.; Shute, Adam; Lopes, Fernando

    2017-01-01

    ABSTRACT Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease. PMID:28452686

  10. A fast method to produce strong NFC films as a platform for barrier and functional materials.

    PubMed

    Osterberg, Monika; Vartiainen, Jari; Lucenius, Jessica; Hippi, Ulla; Seppälä, Jukka; Serimaa, Ritva; Laine, Janne

    2013-06-12

    In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease. At a relative humidity below 65%, oxygen permeability of the pure and unmodified NFC films was below 0.6 cm(3) μm m(-2) d(-1) kPa(-1), and no grease penetrated the film. However, the largest advantage of these films was their resistance to various solvents, such as water, methanol, toluene, and dimethylacetamide. Although they absorbed a substantial amount of solvent, the films could still be handled after 24 h of solvent soaking. Hot-pressing was introduced as a convenient method to not only increase the drying speed of the films but also enhance the robustness of the films. The wet strength of the films increased due to the pressing. Thus, they can be chemically or physically modified through adsorption or direct chemical reaction in both aqueous and organic solvents. Through these modifications, the properties of the film can be enhanced, introducing, for example, functionality, hydrophobicity, or bioactivity. Herein, a simple method using surface coating with wax to improve hydrophobicity and oxygen barrier properties at very high humidity is described. Through this modification, the oxygen permeability decreased further and was below 17 cm(3) μm m(-2) d(-1) kPa(-1) even at 97.4% RH, and the water vapor transmission rate decreased from 600 to 40 g/m(2) day. The wax treatment did not deteriorate the dry strength of the film. Possible reasons for the unique properties are discussed. The developed robust NFC films can be used as a generic, environmentally sustainable platform for functional materials.

  11. Simultaneous assessment of glomerular filtration and barrier function in live zebrafish

    PubMed Central

    Kotb, Ahmed M.; Müller, Tobias; Xie, Jing; Anand-Apte, Bela; Endlich, Nicole

    2014-01-01

    The zebrafish pronephros is a well-established model to study glomerular development, structure, and function. A few methods have been described to evaluate glomerular barrier function in zebrafish larvae so far. However, there is a need to assess glomerular filtration as well. In the present study, we extended the available methods by simultaneously measuring the intravascular clearances of Alexa fluor 647-conjugated 10-kDa dextran and FITC-conjugated 500-kDa dextran as indicators of glomerular filtration and barrier function, respectively. After intravascular injection of the dextrans, mean fluorescence intensities of both dextrans were measured in the cardinal vein of living zebrafish (4 days postfertilization) by confocal microscopy over time. We demonstrated that injected 10-kDa dextran was rapidly cleared from the circulation, became visible in the lumen of the pronephric tubule, quickly accumulated in tubular cells, and was detectably excreted at the cloaca. In contrast, 500-kDa dextran could not be visualized in the tubule at any time point. To check whether alterations in glomerular function can be quantified by our method, we injected morpholino oligonucleotides (MOs) against zebrafish nonmuscle myosin heavy chain IIA (zMyh9) or apolipoprotein L1 (zApol1). While glomerular filtration was reduced in zebrafish nonmuscle myosin heavy chain IIA MO-injected larvae, glomerular barrier function remained intact. In contrast, in zebrafish apolipoprotein L1 MO-injected larvae, glomerular barrier function was compromised as 500-kDa dextran disappeared from the circulation and became visible in tubular cells. In summary, we present a novel method that allows to simultaneously assess glomerular filtration and barrier function in live zebrafish. PMID:25298528

  12. A sea water barrier to coral gene flow.

    PubMed

    Lessios, H A

    2012-11-01

    Land is not the only barrier to dispersal encountered by marine organisms. For sedentary shallow water species, there is an additional, marine barrier, 5000 km of uninterrupted deep-water stretch between the central and the eastern Pacific. This expanse of water, known as the ‘Eastern Pacific Barrier’, has been separating faunas of the two oceanic regions since the beginning of the Cenozoic. Species with larvae that cannot stay in the plankton for the time it takes to cross between the two sides have been evolving independently. That the eastern Pacific does not share species with the rest of the Pacific was obvious to naturalists two centuries ago (Darwin 1860). Yet, this rule has exceptions. A small minority of species are known to straddle the Eastern Pacific Barrier. One such exception is the scleractinian coral Porites lobata (Fig. 1). This species is spread widely throughout the Indo-Pacific, where it is one of the major reef-builders, but it is also encountered in the eastern Pacific. Are eastern and central Pacific populations of this coral connected by gene flow? In this issue of Molecular Ecology, Baums et al. (2012) use microsatellite data to answer this question. They show that P. lobata populations in the eastern Pacific are cut off from genetic influx from the rest of the Pacific. Populations within each of the two oceanic regions are genetically connected (though those in the Hawaiian islands are also isolated). Significantly, the population in the Clipperton Atoll, the westernmost island in the eastern Pacific, genetically groups with populations from the central Pacific, suggesting that crossing the Eastern Pacific Barrier by P. lobata propagules does occasionally occur.

  13. Standards for the Protection of Skin Barrier Function.

    PubMed

    Giménez-Arnau, Ana

    2016-01-01

    The skin is a vital organ, and through our skin we are in close contact with the entire environment. If we lose our skin we lose our life. The barrier function of the skin is mainly driven by the sophisticated epidermis in close relationship with the dermis. The epidermal epithelium is a mechanically, chemically, biologically and immunologically active barrier submitted to continuous turnover. The barrier function of the skin needs to be protected and restored. Its own physiology allows its recovery, but many times this is not sufficient. This chapter is focused on the standards to restore, treat and prevent barrier function disruption. These standards were developed from a scientific, academic and clinical point of view. There is a lack of standardized administrative recommendations. Still, there is a walk to do that will help to reduce the social and economic burden of diseases characterized by an abnormal skin barrier function. © 2016 S. Karger AG, Basel.

  14. Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers.

    PubMed

    Notman, Rebecca; Anwar, Jamshed; Briels, W J; Noro, Massimo G; den Otter, Wouter K

    2008-11-15

    Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.

  15. Simulations of Skin Barrier Function: Free Energies of Hydrophobic and Hydrophilic Transmembrane Pores in Ceramide Bilayers

    PubMed Central

    Notman, Rebecca; Anwar, Jamshed; Briels, W. J.; Noro, Massimo G.; den Otter, Wouter K.

    2008-01-01

    Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening. PMID:18708461

  16. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    PubMed

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  17. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.

    PubMed

    Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T

    2012-01-01

    Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.

  18. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    PubMed

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  19. Dietary Milk Sphingomyelin Prevents Disruption of Skin Barrier Function in Hairless Mice after UV-B Irradiation.

    PubMed

    Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya

    2015-01-01

    Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.

  20. Clinical characteristics and epidermal barrier function of papulopustular rosacea: A comparison study with acne vulgaris.

    PubMed

    Zhou, Maosong; Xie, Hongfu; Cheng, Lin; Li, Ji

    2016-01-01

    To evaluate the clinical characteristics and epidermal barrier function of papulopustular rosacea by comparing with acne vulgaris. Four hundred and sixty-three papulopustular rosacea patients and four hundred and twelve acne vulgaris patients were selected for the study in Xiangya Hospital of Central South University from March 2015 to May 2016. They were analyzed for major facial lesions, self-conscious symptoms and epidermal barrier function. Erythema, burning, dryness and itching presented in papulopustular rosacea patients were significantly higher than that in acne vulgaris patients ( P <0.001). The clinical scores of erythema, burning, dryness and itching in papulopustular rosacea patients were significantly higher than those in acne vulgaris patients ( P <0.001). The water content of the stratum cornuem and skin surface lipid level were both significantly lower in papulopustular rosacea patients than that of the acne vulgaris patients ( P <0.001) and healthy subjects ( P <0.001); Water content of the stratum cornuem and skin surface lipid level were higher in acne vulgaris patients in comparison with that of healthy subjects ( P >0.05, P <0.001; respectively). Transepidermal water loss was significantly higher in papulopustular rosacea patients than that of acne vulgaris patients and healthy subjects ( P <0.001); transepidermal water loss was lower in skin of acne vulgaris patients than that of healthy subjects ( P <0.001). Erythema, burning, dryness and itching are the characteristics of papulopustular rosacea, which makes it different from acne vulgaris. The epidermal barrier function was damaged in papulopustular rosacea patients while not impaired in that of acne vulgaris patients.

  1. Analysis of Xylem Sap from Functional (Nonembolized) and Nonfunctional (Embolized) Vessels of Populus nigra: Chemistry of Refilling1[C][W][OA

    PubMed Central

    Secchi, Francesca; Zwieniecki, Maciej A.

    2012-01-01

    It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process. PMID:22837359

  2. A new DFT functional based on spin-states and SN2 barriers

    NASA Astrophysics Data System (ADS)

    Swart, M.; Solà, M.; Bickelhaupt, F. M.

    2012-12-01

    We recently reported a study into what causes the dramatic differences between OPBE and PBE for reaction barriers, spin-state energies, hydrogen-bonding and π-π stacking energies.1 It was achieved by smoothly switching from OPBE to PBE at a predefined point P of the reduced density gradient s. By letting the point P run as function of the reduced density gradient s, with values from s=0.1 to s=10, we could determine which part of the exchange functional determines its behavior for the different interactions. Based on the thus obtained results, we created a new exchange functional that showed the good results of OPBE for reaction barriers and spin-state energies, and combined it with the good (H-bonds) and reasonable (π-stacking) results of PBE for weak interactions. In other words, it combined the best of OPBE with the best of PBE. Encouraged by these good results, we have further improved the new exchange functional and fine-tuned its parameters.2 Similar to the switched functional from ref. 1, our new SSB functional2 works well for SN2 barriers (see e.g. ref. 3), spin states and H-bonding interactions. Moreover, by including Grimme's dispersion corrections4,5 (to give our final SSB-D functional) it also works well for π-π stacking interactions.2 In summary, we have constructed a new GGA exchange functional that when combined with the sPBE correlation functional6 gives the correct spin ground-state of iron complexes, and small deviations for SN2 barriers (2.7 kcalṡmol-1), geometries (0.005 Å), Hbond distances (0.012 Å), weak interactions (S22 set, 0.5 kcalṡmol-1), and transition-metal ligand distances (0.008 Å).

  3. Influence of Repeated Senna Laxative Use on Skin Barrier Function in Mice.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Yamate, Yurika; Ooi, Kazuya

    2017-08-01

    Senna, one of the major stimulant laxatives, is widely used for treating constipation. Chronic senna use has been reported to be associated with colonic disorders such as melanosis coli and/or epithelial hyperplasia. However, there is no obvious information on the influence of chronic senna use on organs except for the intestine. To clarify the influence of senna laxative use on skin barrier function by repeated senna administration. Eight-week-old male hairless mice received senna (10 mg/kg/day) for 21 days. After administration, we evaluated transepidermal water loss (TEWL), and investigated the biomarkers in plasma and skin using protein analysis methods. Fecal water content on day seven was significantly increased; however, on day 21, it was significantly decreased after repeated senna administration. In the senna-administered group, TEWL was significantly higher compared to the control on days seven and 21. Plasma acetylcholine concentration and NO 2 - /NO 3 - were increased on days seven and 21, respectively. In skin, tryptase-positive mast cells and inducible nitric oxide synthase (iNOS)-positive cells were increased on days seven and 21, respectively. The increase of TEWL on days seven and 21 was suppressed by the administration of atropine and N(G)-nitro-L-arginine methyl ester, respectively. It was suggested that diarrhea or constipation induced by repeated senna administration caused the impairment of skin barrier function. There is a possibility that this impaired skin barrier function occurred due to degranulation of mast cells via cholinergic signals or oxidative stress derived from iNOS.

  4. The barrier to ice nucleation in monatomic water

    NASA Astrophysics Data System (ADS)

    Prestipino, Santi

    2018-03-01

    Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.

  5. High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.

    PubMed

    Varanasi, Srinivasa Rao; Subramanian, Yashonath; Bhatia, Suresh K

    2018-06-26

    Water displays anomalous fast diffusion in narrow carbon nanotubes (CNTs), a behavior that has been reproduced in both experimental and simulation studies. However, little is reported on the effect of bulk water-CNT interfaces, which is critical to exploiting the fast transport of water across narrow carbon nanotubes in actual applications. Using molecular dynamics simulations, we investigate here the effect of such interfaces on the transport of water across arm-chair CNTs of different diameters. Our results demonstrate that diffusion of water is significantly retarded in narrow CNTs due to bulk regions near the pore entrance. The slowdown of dynamics can be attributed to the presence of large energy barriers at bulk water-CNT interfaces. The presence of such intense barriers at the bulk-CNT interface arises due to the entropy contrast between the bulk and confined regions, with water molecules undergoing high translational and rotational entropy gain on entering from the bulk to the CNT interior. The intensity of such energy barriers decreases with increase in CNT diameter. These results are very important for emerging technological applications of CNTs and other nanoscale materials, such as in nanofluidics, water purification, nanofiltration, and desalination, as well as for biological transport processes.

  6. Effect of soaps and detergents on epidermal barrier function.

    PubMed

    Wolf, Ronni; Parish, Lawrence Charles

    2012-01-01

    The past decade has witnessed an explosion of new impartial information about the complex interaction of the skin with topically applied substances, including soaps and detergents. Despite of all these new data, our knowledge on the exact pathomechanism and molecular events leading to detergent-induced barrier dysfunction remains incomplete and the answers continue to elude us. The longtime prevailing opinion which contends that the damaging effect of soaps and detergents is related to their property to extract and remove useful intercellular lipids has mostly been abandoned. Although this effect might be involved in the damaging effect, it is definitely not the sole mechanism, nor, indeed, is it even the main one. Skin proteins damage, the interaction with keratins and their denaturation, swelling of cell membranes and collagen fibers, cytotoxicity expressed with cellular lysis are other important mechanisms. One proposed mechanism is that an initial stratum corneum hyper-hydration results from a continuous disruption of the secondary and tertiary structures of keratin protein by surfactants, exposing new water-binding sites, thereby increasing the hydration of the membrane. Following evaporation of excess water, the denatured keratin possesses a decreased water-binding capacity and decreased ability to function as a barrier. Recent studies have also emphasized the effects of detergents on lipid synthesis, on lipid-metabolizing enzymes and on keratinocyte differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Homoclinic orbits and critical points of barrier functions

    NASA Astrophysics Data System (ADS)

    Cannarsa, Piermarco; Cheng, Wei

    2015-06-01

    We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on {{T}}n . We also prove a critical point theorem for barrier functions and the existence of such homoclinic orbits on {{T}}2 as an application.

  8. A Qualitative Study of Barriers to Accessing Water, Sanitation and Hygiene for Disabled People in Malawi.

    PubMed

    White, Sian; Kuper, Hannah; Itimu-Phiri, Ambumulire; Holm, Rochelle; Biran, Adam

    2016-01-01

    Globally, millions of people lack access to improved water, sanitation and hygiene (WASH). Disabled people, disadvantaged both physically and socially, are likely to be among those facing the greatest inequities in WASH access. This study explores the WASH priorities of disabled people and uses the social model of disability and the World Health Organization's International Classification of Functioning, Disability and Health (ICF) framework to look at the relationships between impairments, contextual factors and barriers to WASH access. 36 disabled people and 15 carers from urban and rural Malawi were purposively selected through key informants. The study employed a range of qualitative methods including interviews, emotion mapping, free-listing of priorities, ranking, photo voice, observation and WASH demonstrations. A thematic analysis was conducted using nVivo 10. WASH access affected all participants and comprised almost a third of the challenges of daily living identified by disabled people. Participants reported 50 barriers which related to water and sanitation access, personal and hand hygiene, social attitudes and participation in WASH programs. No two individuals reported facing the same set of barriers. This study found that being female, being from an urban area and having limited wealth and education were likely to increase the number and intensity of the barriers faced by an individual. The social model proved useful for classifying the majority of barriers. However, this model was weaker when applied to individuals who were more seriously disabled by their body function. This study found that body function limitations such as incontinence, pain and an inability to communicate WASH needs are in and of themselves significant barriers to adequate WASH access. Understanding these access barriers is important for the WASH sector at a time when there is a global push for equitable access.

  9. A Qualitative Study of Barriers to Accessing Water, Sanitation and Hygiene for Disabled People in Malawi

    PubMed Central

    Kuper, Hannah; Itimu-Phiri, Ambumulire; Holm, Rochelle; Biran, Adam

    2016-01-01

    Globally, millions of people lack access to improved water, sanitation and hygiene (WASH). Disabled people, disadvantaged both physically and socially, are likely to be among those facing the greatest inequities in WASH access. This study explores the WASH priorities of disabled people and uses the social model of disability and the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) framework to look at the relationships between impairments, contextual factors and barriers to WASH access. 36 disabled people and 15 carers from urban and rural Malawi were purposively selected through key informants. The study employed a range of qualitative methods including interviews, emotion mapping, free-listing of priorities, ranking, photo voice, observation and WASH demonstrations. A thematic analysis was conducted using nVivo 10. WASH access affected all participants and comprised almost a third of the challenges of daily living identified by disabled people. Participants reported 50 barriers which related to water and sanitation access, personal and hand hygiene, social attitudes and participation in WASH programs. No two individuals reported facing the same set of barriers. This study found that being female, being from an urban area and having limited wealth and education were likely to increase the number and intensity of the barriers faced by an individual. The social model proved useful for classifying the majority of barriers. However, this model was weaker when applied to individuals who were more seriously disabled by their body function. This study found that body function limitations such as incontinence, pain and an inability to communicate WASH needs are in and of themselves significant barriers to adequate WASH access. Understanding these access barriers is important for the WASH sector at a time when there is a global push for equitable access. PMID:27171520

  10. Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene.

    PubMed

    Cho, Jaehyun; Jeon, Ikseong; Kim, Seong Yun; Lim, Soonho; Jho, Jae Young

    2017-08-23

    A series of polyketone (PK) nanocomposite films with varying content of noncovalently functionalized graphene nanoplatelet with 1-aminopyrene (GNP/APy) is prepared by solution blending with a solvent of hexafluoro-2-propanol. GNP/APy, prepared by a facile method, can effectively induce specific interaction such as hydrogen bonding between the amine functional group of GNP/APy and the carbonyl functional group of the PK matrix. With comparison of GNP and GNP/Py as reference materials, intensive investigation on filler-matrix interaction is achieved. In addition, the dispersion state of the functionalized GNP (f-GNPs; GNP/Py and GNP/APy) in the PK matrix is analyzed by three-dimensional nondestructive X-ray microcomputed tomography, and the increased dispersion state of those fillers results in significant improvement in the water vapor transmission rate (WVTR). The enhancement in WVTR of the PK/GNP/APy nanocomposite film at 1 wt % loading of filler leads to a barrier performance approximately 2 times larger compared to that of PK/GNP nanocomposite film and an approximately 92% reduction in WVTR compared to the case of pristine PK film. We expect that this facile method of graphene functionalization to enhance graphene dispersibility as well as interfacial interaction with the polymer matrix will be widely utilized to expand the potential of graphene materials to barrier film applications.

  11. Oral intake of beet extract provides protection against skin barrier impairment in hairless mice.

    PubMed

    Kawano, Ken-Ichi; Umemura, Kazuo

    2013-05-01

    The epidermis acts as a functional barrier against the external environment. Disturbances in the function of this barrier cause water loss and increase the chances of penetration by various irritable stimuli, leading to skin diseases such as dry skin, atopic dermatitis, and psoriasis. Ceramides are a critical natural element of the protective epidermal barrier. The aim of this study was to evaluate whether the oral intake of beet (Beta vulgaris) extract, a natural product rich in glucosylceramide (GlcCer), may prevent disturbance in skin barrier function. When HR-1 hairless mice were fed a special diet (HR-AD), transepidermal water loss (TEWL) from the dorsal skin increased, with a compensatory increase in water intake after 5 weeks. Mice fed with HR-AD had dry skin with erythema and showed increased scratching behaviour. Histological examinations revealed a remarkable increase in the thickness of the skin at 8 weeks. Supplemental addition of beet extract, which contained GlcCer at a final concentration of 0.1%, significantly prevented an increase TEWL, water intake, cumulative scratching time, and epidermal thickness at 8 weeks. These results indicate that oral intake of beet extract shows potential for preventing skin diseases associated with impaired skin barrier function. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring

    NASA Astrophysics Data System (ADS)

    Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub

    2017-06-01

    A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.

  13. Fluoride Supplementation Adherence and Barriers in a Community Without Water Fluoridation.

    PubMed

    Flood, Shannon; Asplund, Karin; Hoffman, Benjamin; Nye, Allison; Zuckerman, Katharine E

    2017-04-01

    To prevent early childhood caries, the American Dental Association recommends oral fluoride supplementation for children in communities lacking water fluoridation who are at high caries risk. However, patient adherence to oral fluoride supplementation has not been studied in this population. This study assessed adherence to oral fluoride and barriers to adherence in a community lacking water fluoridation. A self-administered survey was completed in a systematic sample of 209 parents of children aged 6 months to 4 years, during a primary care visit in an urban academic medical center. Participants reported frequency of administering oral fluoride to their children, as well as agreement or disagreement with proposed barriers to supplementation. Bivariate and multivariate analyses were used to assess adherence with oral supplementation and the association of barriers to supplementation and child receipt of fluoride on the day before. More than half of parents either had not or did not know if their child had received fluoride on the day before. Approximately 1 in 4 of parents had given fluoride in 0 of the previous 7 days. Difficulty remembering to give fluoride and agreeing that the child does not need extra fluoride were associated with not receiving fluoride on the day before. Adherence to oral fluoride supplementation in the primary care setting is low. Difficulty remembering to give fluoride daily is the greatest barrier to adherence. Further research on interventions to reduce common barriers is needed to increase fluoride administration and reduce early childhood caries in communities lacking water fluoridation. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  14. Corneal epithelial barrier function after oxybuprocaine provocation in diabetics.

    PubMed

    Stolwijk, T R; van Best, J A; Boor, J P; Lemkes, H H; Oosterhuis, J A

    1990-03-01

    Corneal epithelial permeability for fluorescein was determined after provocation by a local anesthetic in 18 non-insulin-dependent diabetes mellitus (NIDDM) patients, 23 insulin-dependent diabetes mellitus (IDDM) patients, and 22 healthy controls to evaluate the corneal epithelial barrier function in diabetes. All volunteers had Oxybuprocaine instilled into one eye and saline into the other eye. The epithelial permeability values were determined by fluorophotometry, and the ratio between both eyes was calculated for each individual. The mean permeability values of the saline-instilled eyes in the diabetic patients did not differ significantly from those in the healthy controls (P greater than 0.2). The individual ratios between Oxybuprocaine- and saline-instilled eyes in the NIDDM and IDDM patients differed significantly from those in the healthy controls (mean ratios: 2.6, 1.9, and 1.0, respectively; P less than 0.002). The permeability ratios and the percentage glycosylated hemoglobin (HbAlc) were linearly correlated in the NIDDM patients but not in the IDDM patients (r = 0.73, P less than 0.001, and r = 0.09, P greater than 0.68, respectively). The results showed that the corneal epithelial barrier function in the diabetic patients was not impaired compared with that in the healthy controls. After provocation by a local anesthetic, the barrier function was impaired in the diabetic patients only.

  15. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  16. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  17. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  18. 200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.

    2011-09-30

    Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance formore » the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.« less

  19. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Linville, Jenifer K.; Keller, Jason M.

    2005-01-03

    In FY 2004, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance. Monitored water-balance components included precipitation, runoff, storage, drainage, and deep percolation. Precipitation in FY 2004 was 26 percent less than in FY 2003 but was still higher than normal. The seasonal distribution in precipitation was also different from the previous year with a 43 percent reduction in spring precipitation and a 46 percent increase in summer precipitation. The cumulative amount of water received from October 1994, through September 2004, was 2,559.58more » mm on the northern half of the barrier, which is the formerly irrigated treatment, and 1,886.71 mm on the southern non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of about 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. Total drainage from the soil-covered plots range from 2.9E-4 mm to 0.22 mm or 0.003 6 0.004 percent of precipitation. Side-slope drainage was much higher at 20.9 6 2.3 percent of precipitation from the gravel and 18.6 6 5.1 percent from the riprap. There was no runoff from the barrier, but runoff from the BY tank farm following a thunderstorm in May eroded a 45-inch-deep channel into the structural fill at the toe of the riprap slope. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys were conducted on the barrier surface, including the two settlement gauges and 12 creep gauges on the riprap slope using aerial photogrammetry (AP) and a global positioning system (GPS). Comparing the aerial photogrammetry (AP) and global positioning system (GPS) surveys with the traditional survey shows the barrier and side slopes to be stable. Both AP and GPS show potential

  20. A functional cutin matrix is required for plant protection against water loss

    PubMed Central

    Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-01-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution. PMID:22019635

  1. A functional cutin matrix is required for plant protection against water loss.

    PubMed

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-09-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.

  2. Functional Analysis of SPINDLY in Gibberellin Signaling in Arabidopsis1[C][W][OA

    PubMed Central

    Silverstone, Aron L.; Tseng, Tong-Seung; Swain, Stephen M.; Dill, Alyssa; Jeong, Sun Yong; Olszewski, Neil E.; Sun, Tai-ping

    2007-01-01

    The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the molecular defects in 14 new spy alleles reveals that these mutations cluster in three TPRs and the C-terminal catalytic region. Phenotypic characterization of 12 spy alleles indicates that TPRs 6, 8, and 9 and the catalytic domain are crucial for GA-regulated stem elongation, floral induction, and fertility. TPRs 8 and 9 and the catalytic region are also important for modulating trichome morphology and inflorescence phyllotaxy. Consistent with a role for SPY in embryo development, several alleles affect seedling cotyledon number. These results suggest that three of the TPRs and the OGT activity in SPY are required for its function in GA signal transduction. We also examined the effect of spy mutations on another negative regulator of GA signaling, REPRESSOR OF ga1-3 (RGA). The DELLA motif in RGA is essential for GA-induced proteolysis of RGA, and deletion of this motif (as in rga-Δ17) causes a GA-insensitive dwarf phenotype. Here, we demonstrate that spy partially suppresses the rga-Δ17 phenotype but does not reduce rga-Δ17 or RGA protein levels or alter RGA nuclear localization. We propose that SPY may function as a negative regulator of GA response by increasing the activity of RGA, and presumably other DELLA proteins, by GlcNAc modification. PMID:17142481

  3. Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers.

    PubMed

    Bae, Youn Jue; Cho, Eun Seon; Qiu, Fen; Sun, Daniel T; Williams, Teresa E; Urban, Jeffrey J; Queen, Wendy L

    2016-04-27

    Preventing the permeation of reactive molecules into electronic devices or photovoltaic modules is of great importance to ensure their life span and reliability. This work is focused on the formation of highly functioning barrier films based on nanocrystals (NCs) of a water-scavenging metal-organic framework (MOF) and a hydrophobic cyclic olefin copolymer (COC) to overcome the current limitations. Water vapor transmission rates (WVTR) of the films reveal a 10-fold enhancement in the WVTR compared to the substrate while maintaining outstanding transparency over most of the visible and solar spectrum, a necessary condition for integration with optoelectronic devices.

  4. Transparent and robust siloxane-based hybrid lamella film as a water vapor barrier coating.

    PubMed

    Tokudome, Yasuaki; Hara, Takaaki; Abe, Risa; Takahashi, Masahide

    2014-11-12

    Water vapor barriers are important in various application fields, such as food packaging and sealants in electronic devices. Polymer/clay composites are well-studied water vapor barrier materials, but their transparency and mechanical strength degrade with increasing clay loading. Herein, we demonstrate films with good water vapor barrier properties, high transparency, and mechanical/thermal stability. Water vapor barrier films were prepared by the solution crystallization of siloxane hybrid lamellae. The films consist of highly crystallized organic/inorganic hybrid lamellae, which provide high transparency, hardness, and thermal stability and inhibit the permeation of water vapor. The water permeability of a 6 μm thick hybrid film is comparable to that of a 200 μm thick silicon rubber film.

  5. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    PubMed Central

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  6. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma.

    PubMed

    Looi, K; Buckley, A G; Rigby, P J; Garratt, L W; Iosifidis, T; Zosky, G R; Larcombe, A N; Lannigan, F J; Ling, K-M; Martinovich, K M; Kicic-Starcevich, E; Shaw, N C; Sutanto, E N; Knight, D A; Kicic, A; Stick, S M

    2018-05-01

    Bronchial epithelial tight junctions (TJ) have been extensively assessed in healthy airway epithelium. However, no studies have yet assessed the effect of human rhinovirus (HRV) infection on the expression and resultant barrier function in epithelial tight junctions (TJ) in childhood asthma. To investigate the impact of HRV infection on airway epithelial TJ expression and barrier function in airway epithelial cells (AECs) of children with and without asthma. Furthermore, to test the hypothesis that barrier integrity and function is compromised to a greater extent by HRV in AECs from asthmatic children. Primary AECs were obtained from children with and without asthma, differentiated into air-liquid interface (ALI) cultures and infected with rhinovirus. Expression of claudin-1, occludin and zonula occluden-1 (ZO-1) was assessed via qPCR, immunocytochemistry (ICC), in-cell western (ICW) and confocal microscopy. Barrier function was assessed by transepithelial electrical resistance (TER; R T ) and permeability to fluorescent dextran. Basal TJ gene expression of claudin-1 and occludin was significantly upregulated in asthmatic children compared to non-asthmatics; however, no difference was seen with ZO-1. Interestingly, claudin-1, occludin and ZO-1 protein expression was significantly reduced in AEC of asthmatic children compared to non-asthmatic controls suggesting possible post-transcriptional inherent differences. HRV infection resulted in a transient dissociation of TJ and airway barrier integrity in non-asthmatic children. Although similar dissociation of TJ was observed in asthmatic children, a significant and sustained reduction in TJ expression concurrent with both a significant decrease in TER and an increase in permeability in asthmatic children was observed. This study demonstrates novel intrinsic differences in TJ gene and protein expression between AEC of children with and without asthma. Furthermore, it correlates directly the relationship between HRV

  7. Effect of topically applied dexpanthenol on epidermal barrier function and stratum corneum hydration. Results of a human in vivo study.

    PubMed

    Gehring, W; Gloor, M

    2000-07-01

    In a randomized, double-blind, placebo-controlled study the effect of topical dexpanthenol (CAS 81-13-0) formulated in two different lipophilic vehicles on epidermal barrier function in vivo was carried out. Seven days' treatment with dexpanthenol improved stratum corneum hydration and reduced transepidermal water loss. Active treatment was statistically different from the vehicle control on both measures. Our results suggest that topical dexpanthenol formulated in either lipophilic vehicle stabilizes the skin barrier function.

  8. Functional Implication of β-Carotene Hydroxylases in Soybean Nodulation1[C][W][OA

    PubMed Central

    Kim, Yun-Kyoung; Kim, Sunghan; Um, Ji-Hyun; Kim, Kyunga; Choi, Sun-Kang; Um, Byung-Hun; Kang, Suk-Woo; Kim, Jee-Woong; Takaichi, Shinichi; Song, Seok-Bo; Lee, Choon-Hwan; Kim, Ho-Seung; Kim, Ki Woo; Nam, Kyoung Hee; Lee, Suk-Ha; Kim, Yul-Ho; Park, Hyang-Mi; Ha, Sun-Hwa; Verma, Desh Pal S.; Cheon, Choong-Ill

    2013-01-01

    Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative β-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum. In this work, we extended our study to three GmBCHs to examine their possible role(s) in nodule development, as they were additionally identified as nodule specific, along with the completion of the soybean genome. In situ hybridization revealed the expression of three GmBCHs (GmBCH1, GmBCH2, and GmBCH3) in the infected cells of root nodules, and their enzymatic activities were confirmed by functional assays in Escherichia coli. Localization of GmBCHs by transfecting Arabidopsis (Arabidopsis thaliana) protoplasts with green fluorescent protein fusions and by electron microscopic immunogold detection in soybean nodules indicated that GmBCH2 and GmBCH3 were present in plastids, while GmBCH1 appeared to be cytosolic. RNA interference of the GmBCHs severely impaired nitrogen fixation as well as nodule development. Surprisingly, we failed to detect zeaxanthin, a product of GmBCH, or any other carotenoids in nodules. Therefore, we examined the possibility that most of the carotenoids in nodules are converted or cleaved to other compounds. We detected the expression of some carotenoid cleavage dioxygenases (GmCCDs) in wild-type nodules and also a reduced amount of zeaxanthin in GmCCD8-expressing E. coli, suggesting cleavage of the carotenoid. In view of these findings, we propose that carotenoids such as zeaxanthin synthesized in root nodules are cleaved by GmCCDs, and we discuss the possible roles of the carotenoid cleavage products in nodulation. PMID:23700351

  9. Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.

    PubMed

    Jin, Mingliang; Zhu, Yimin; Shao, Dongyan; Zhao, Ke; Xu, Chunlan; Li, Qi; Yang, Hui; Huang, Qingsheng; Shi, Junling

    2017-01-01

    The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. New Water Vapor Barrier Film Based on Lamellar Aliphatic-Monoamine-Bridged Polysilsesquioxane.

    PubMed

    Zhang, Cong; Zhang, Ce; Ding, Ruimin; Cui, Xinmin; Wang, Jing; Zhang, Qinghua; Xu, Yao

    2016-06-15

    Siloxane-based hybrid lamellar materials with ordered nanostructure units paralleling to the substrate have been widely used for water vapor barrier. However, it is very difficult to control the orientation of the lamellar units at molecular level. In this Research Article, a new lamellar bridged polysilsesquioxane (BPSQ) film, whose voids between lamellae were filled by pendant alkyl chains in the organic bridge, was prepared via the stoichiometric reaction between 3-glycidoxypropyltrimethoxysilane and aliphatic monoamine at 60 °C without catalyst. Experimental evidence obtained from FT-IR, MS, NMR, and GIXRD techniques suggested that the as-prepared BPSQ films were constructed by lamellar units with disordered orientation. Nonetheless, they possessed satisfactory water vapor barrier performance for potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP) optical crystals, and the water vapor transmission rate through BPSQ film with thickness of 25 μm was as low as 20.3 g·m(-2)·d(-1). Those results proved that filling the voids between molecular lamellae with alkyl chains greatly weakened the effect of lamellar unit orientation on the vapor barrier property of BPSQ film.

  11. UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khoirunnisa, Assifa Rahma; Joni, I. Made; Panatarani, Camellia; Rochima, Emma; Praseptiangga, Danar

    2018-02-01

    This study aims to develop film for food packaging application with high UV-screening, transparency and water barrier properties. Semi refined iota carrageenan (SRiC) nanocomposite films prepared by addition of zinc oxide (ZnO) nanoparticles as nanofiller using solution casting method. The effect of nanofiller with different concentration (0%, 0.5%, 1.0%, 1.5% w/w carrageenan) on UV-screening, transparency and water barrier properties of films were tested. The water barrier properties of the films were studied by measuring water vapor permeability (WVP) and the optical properties of the films were studied by using UV-Vis spectrophotometer at 280 nm for UV-screening test and at 660 nm for transparency test. WVP value of carrageenan films with addition of ZnO is low compared to a control carrageenan film and the lowest WVP value was found for the film with addition of 1.5% of ZnO. These result indicate that the addition of ZnO had a positive effect on the water barrier properties of the carrageenan matrix. Increase in the concentration of nanofiller leads to an increase in the UV-screening properties. Among all the films, carrageenan film with 1.5% ZnO has the highest UV-screening. The result showed that adding 0.5% and 1.0% of ZnO was insignificantly affect transparency of the films, however the transparency decreased sligthly when 1.5% ZnO was added. In conclusion, incorporating no more than 1.0% of ZnO to the films can obtain films with high UV-screening, transparency and water barrier properties and suitable for food packaging application.

  12. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    PubMed

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  13. Adapting to climate change by water management organisations: Enablers and barriers

    NASA Astrophysics Data System (ADS)

    Azhoni, Adani; Jude, Simon; Holman, Ian

    2018-04-01

    Climate change will be particularly experienced though the medium of water. Water organisations, that are managing societal and ecological needs for water, are therefore likely to experience the impact the most. This study reviews the current literature regarding adaptation to climate change by water management organisations and associated barriers. Literature on adaptive capacity is growing and a general consensus is emerging on the determinants of adaptive capacity, although variations exist regarding how it is to be evaluated, enhanced and applied to policy making due to its dynamic, contextual and latent nature. Since adaptive capacity is hard to measure and successful adaptation difficult to define, some studies focus on the existence of adaptation attributes of organisations. Studies reporting successful adaptation are minimal and barriers of adaptation are being discovered as adaptation research transitions into implementation. But the root causes of these barriers are often overlooked and the interconnectedness of the barriers is poorly addressed. Increasingly, combining top-down and bottom-up approaches to adaptation is being recommended due to the limitations of each. However, knowledge regarding how organisations operating at different scales can enhance adaptive capacity of other organisations operating at another scale is lacking due to the few studies of inter-organisational networks across scales. Social networks among actors are recognised as a key factor to enable adaptation. However, network studies generally focus on individual actors and rarely between public agencies/organisations. Moreover, the current literature is inadequate to understand the relationship between adaptation enabling characteristics, barriers and adaptation manifestation. The review demonstrates that research on understanding the emergence and sustenance of barriers is urgently required. Addressing these knowledge gaps will help to improve the design of adaptation strategies

  14. Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function

    PubMed Central

    Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.

    2010-01-01

    Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316

  15. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption.

    PubMed

    Döge, Nadine; Avetisyan, Araks; Hadam, Sabrina; Pfannes, Eva Katharina Barbosa; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika

    2017-07-01

    Topical dermatotherapy is intended to be used on diseased skin. Novel drug delivery systems even address differences between intact and diseased skin underlining the need for pre-clinical assessment of different states of barrier disruption. Herein, we studied how short-term incubation in culture media compared to incubation in humidified chambers affects human skin barrier function and viability. On both models we assessed different types and intensities of physical and chemical barrier disruption methods with regard to structural integrity, biophysical parameters and cytokine levels. Tissue degeneration and proliferative activity limited the use of tissue cultures to 48h. Viability is better preserved in cultured tissue. Tape-stripping (50×TS) and 4h sodium lauryl sulfate (SLS) pre-treatment were identified as highly reproducible and effective procedures for barrier disruption. Transepidermal water loss (TEWL) values reproducibly increased with the intensity of disruption while sebum content and skin surface pH were of limited value. Interleukin (IL)-6/8 and various chemokines and proteases were increased in tape-stripped skin which was more pronounced in SLS-treated skin tissue extracts. Thus, albeit limited to 48h, cultured full-thickness skin maintained several barrier characteristics and responded to different intensities of barrier disruption. Potentially, these models can be used to assess pre-clinically the efficacy and penetration of anti-inflammatory compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life: HYDROLOGY OF A 1000 YEAR ETC BARRIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. Fred

    A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In thismore » design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.« less

  17. Transplantation of in vitro cultured endothelial progenitor cells repairs the blood-brain barrier and improves cognitive function of APP/PS1 transgenic AD mice.

    PubMed

    Zhang, Shishuang; Zhi, Yongle; Li, Fei; Huang, Shan; Gao, Huabin; Han, Zhaoli; Ge, Xintong; Li, Dai; Chen, Fanglian; Kong, Xiaodong; Lei, Ping

    2018-04-15

    To date, the pathogenesis of Alzheimer's disease (AD) remains unclear. It is well-known that excessive deposition of Aβ in the brain is a crucial part of the pathogenesis of AD. In recent years, the AD neurovascular unit hypothesis has attracted much attention. Impairment of the blood-brain barrier (BBB) leads to abnormal amyloid-β (Aβ) transport, and chronic cerebral hypoperfusion causes Aβ deposition throughout the onset and progression of AD. Endothelial progenitor cells (EPCs) are the universal cells for repairing blood vessels. Our previous studies have shown that a reduced number of EPCs in the peripheral blood results in cerebral vascular repair disorder, cerebral hypoperfusion and neurodegeneration, which might be related to the cognitive dysfunction of AD patients. This study was designed to confirm whether EPCs transplantation could repair the blood-brain barrier, stimulate angiogenesis and reduce Aβ deposition in AD. The expression of ZO-1, Occludin and Claudin-5 was up-regulated in APP/PS1 transgenic mice after hippocampal transplantation of EPCs. Consistent with previous studies, EPC transplants also increased the microvessel density. We observed that Aβ senile plaque deposition was decreased and hippocampal cell apoptosis was reduced after EPCs transplantation. The Morris water maze test showed that spatial learning and memory functions were significantly improved in mice transplanted with EPCs. Consequently, EPCs could up-regulate the expression of tight junction proteins, repair BBB tight junction function, stimulate angiogenesis, promote Aβ clearance, and decrease neuronal loss, ultimately improve cognitive function. Taken together, these data demonstrate EPCs may play an important role in the therapeutic implications for vascular dysfunction in AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  19. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less

  20. Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF

    NASA Astrophysics Data System (ADS)

    de Groot, Bert L.; Grubmüller, Helmut

    2001-12-01

    ``Real time'' molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a selectivity-determining region; a second (aromatic/arginine) region is proposed to function as a proton filter. Hydrophobic regions near the NPA motifs are rate-limiting water barriers. In AQP1, a fine-tuned water dipole rotation during passage is essential for water selectivity. In GlpF, a glycerol-mediated ``induced fit'' gating motion is proposed to generate selectivity for glycerol over water.

  1. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    PubMed

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  2. Barrier-protective function of intestinal epithelial Toll-like receptor 2.

    PubMed

    Cario, E

    2008-11-01

    The intestinal epithelial cell (IEC) barrier plays an important role in maintaining mucosal immune homeostasis. Dysregulated IEC barrier function appears to trigger and perpetuate inflammation in inflammatory bowel diseases (IBD). Novel risk variants in the Toll-like receptor 2 (TLR2) gene have previously been associated with a more severe disease phenotype in a subgroup of IBD patients. Recent studies have provided important insights of the commensal and host defense mechanisms to maintain functional barrier integrity of the intestinal epithelium through TLR2. Deficient TLR2 signaling may imbalance commensal-dependent intestinal epithelial barrier defense, facilitating mucosal injury and leading to increased susceptibility of colitis. Treatment with a synthetic TLR2 ligand significantly suppresses mucosal inflammation by efficiently protecting tight junction-associated integrity of the intestinal epithelium in vivo. These beneficial effects may be supplemented by TLR2-induced anti-inflammatory immune responses (such as interleukin-10 production) in lamina propria mononuclear cells. Thus, cell-specific TLR2 targeting may offer a novel therapeutic approach to human IBD therapy by protecting IEC barrier function.

  3. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.

    2010-01-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint andmore » serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of

  4. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator

    PubMed Central

    2010-01-01

    Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly

  5. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator.

    PubMed

    Sundh, Henrik; Kvamme, Bjørn Olav; Fridell, Frode; Olsen, Rolf Erik; Ellis, Tim; Taranger, Geir Lasse; Sundell, Kristina

    2010-11-09

    Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress

  6. Water level response in back-barrier bays unchanged following Hurricane Sandy

    USGS Publications Warehouse

    Aretxabaleta, Alfredo L.; Butman, Bradford; Ganju, Neil K.

    2014-01-01

    On 28–30 October 2012, Hurricane Sandy caused severe flooding along portions of the northeast coast of the United States and cut new inlets across barrier islands in New Jersey and New York. About 30% of the 20 highest daily maximum water levels observed between 2007 and 2013 in Barnegat and Great South Bay occurred in 5 months following Hurricane Sandy. Hurricane Sandy provided a rare opportunity to determine whether extreme events alter systems protected by barrier islands, leaving the mainland more vulnerable to flooding. Comparisons between water levels before and after Hurricane Sandy at bay stations and an offshore station show no significant differences in the transfer of sea level fluctuations from offshore to either bay following Sandy. The post-Hurricane Sandy bay high water levels reflected offshore sea levels caused by winter storms, not by barrier island breaching or geomorphic changes within the bays.

  7. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice

    PubMed Central

    Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun

    2016-01-01

    Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes

  8. Water-retaining barrier and method of construction

    DOEpatents

    Adams, M.R.; Field, J.G.

    1996-02-20

    An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.

  9. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, J.C.

    1996-08-27

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.

  10. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, John C.

    1996-01-01

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.

  11. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  12. Altered Expression of ZO-1 and ZO-2 in Sertoli Cells and Loss of Blood-Testis Barrier Integrity in Testicular Carcinoma In Situ1

    PubMed Central

    Fink, Cornelia; Weigel, Roswitha; Hembes, Tanja; Lauke-Wettwer, Heidrun; Kliesch, Sabine; Bergmann, Martin; Brehm, Ralph H

    2006-01-01

    Abstract Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function. PMID:17217619

  13. Removal of bacteria, protozoa and viruses through a multiple-barrier household water disinfection system.

    PubMed

    Espinosa-García, A C; Díaz-Ávalos, C; Solano-Ortiz, R; Tapia-Palacios, M A; Vázquez-Salvador, N; Espinosa-García, S; Sarmiento-Silva, R E; Mazari-Hiriart, M

    2014-03-01

    Municipal water disinfection systems in some areas are not always able to meet water consumer needs, such as ensuring distributed water quality, because household water management can be a contributing factor in water re-contamination. This fact is related to the storage options that are common in places where water is scarce or is distributed over limited time periods. The aim of this study is to assess the removal capacity of a multiple-barrier water disinfection device for protozoa, bacteria, and viruses. Water samples were taken from households in Mexico City and spiked with a known amount of protozoa (Giardia cyst, Cryptosporidium oocyst), bacteria (Escherichia coli), and viruses (rotavirus, adenovirus, F-specific ribonucleic acid (FRNA) coliphage). Each inoculated sample was processed through a multiple-barrier device. The efficiency of the multiple-barrier device to remove E. coli was close to 100%, and more than 87% of Cryptosporidium oocysts and more than 98% of Giardia cysts were removed. Close to 100% of coliphages were removed, 99.6% of the adenovirus was removed, and the rotavirus was almost totally removed. An effect of site by zone was detected; this observation is important because the water characteristics could indicate the efficiency of the multiple-barrier disinfection device.

  14. Improvement of hydration and epidermal barrier function in human skin by a novel compound isosorbide dicaprylate.

    PubMed

    Chaudhuri, R K; Bojanowski, K

    2017-10-01

    The study involved the synthesis of a novel derivative of caprylic acid - isosorbide dicaprylate (IDC) - and the evaluation of its potential in improving water homoeostasis and epidermal barrier function in human skin. The effect of IDC on gene expression was assayed in skin organotypic cultures by DNA microarrays. The results were then confirmed for a few key genes by quantitative PCR, immuno- and cytochemistry. Final validation of skin hydration properties was obtained by four separate clinical studies. Level of hydration was measured by corneometer either by using 2% IDC lotion alone vs placebo or in combination with 2% glycerol lotion vs 2% glycerol only. A direct comparison in skin hydration between 2% IDC and 2% glycerol lotions was also carried out. The epidermal barrier function improvement was assessed by determining changes in transepidermal water loss (TEWL) on the arms before and after treatment with 2% IDC lotion versus placebo. IDC was found to upregulate the expression of AQP3, CD44 and proteins involved in keratinocyte differentiation as well as the formation and function of stratum corneum. A direct comparison between 2% IDC versus 2% glycerol lotions revealed a three-fold advantage of IDC in providing skin hydration. Severely dry skin treated with 2% IDC in combination with 2% glycerol showed 133% improvement, whereas 35% improvement was observed with moderately dry human skin. Topical isosorbide dicaprylate favourably modulates genes involved in the maintenance of skin structure and function, resulting in superior clinical outcomes. By improving skin hydration and epidermal permeability barrier, it offers therapeutic applications in skin ageing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Stratum corneum drying drives vertical compression and lipid organization and improves barrier function in vitro.

    PubMed

    Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro

    2013-03-27

    The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.

  16. A novel, topical, nonsteroidal, TRPV1 antagonist, PAC-14028 cream improves skin barrier function and exerts anti-inflammatory action through modulating epidermal differentiation markers and suppressing Th2 cytokines in atopic dermatitis.

    PubMed

    Lee, Ji-Hae; Choi, Chang Soon; Bae, Il-Hong; Choi, Jin Kyu; Park, Young-Ho; Park, Miyoung

    2018-04-30

    Although it is established that epidermal barrier disturbance and immune dysfunction resulting in IgE sensitization are critical factors in the development of cutaneous inflammation, the pathogenesis and targeted therapy of atopic dermatitis (AD)-specific pathways have still been unknown. Taking into account the fact that Th2 cytokines in AD have both unique and overlapping functions including increased epidermal thickening, inflammation, and decreased expressing of the barrier proteins keratinocyte differentiation, we sought to clarify our hypothesis that TRPV1 antagonist plays a critical role in skin barrier function and can be a therapeutic target for AD. AD-like dermatitis was induced in hairless mice by repeated oxazolone (Ox) challenges to hairless mice. The functional studies concerning skin barrier function, anti-inflammatory action, and molecular mechanism by TRPV1 antagonism were conducted by histopathological assays, ELISA, qPCR, western blotting, and skin blood flow measurement. Topically administered TRPV1 antagonist, PAC-14028 (Asivatrep: C 21 H 22 F 5 N 3 O 3 S), improved AD-like dermatitis and skin barrier functions, and restored the expression of epidermal differentiation markers. In addition, the PAC-14028 cream significantly inhibited cutaneous inflammation by decreasing the expression of serum IgE, and the epidermal expression of IL-4, and IL-13 in Ox-AD mice. These results may provide a novel insight into the molecular mechanism of PAC-14028 cream involved in anti-inflammatory effects and skin barrier functions by suppressing the multiple signaling pathways including IL-4/-13-mediated activation of JAK/STAT, TRPV1, and neuropeptides. PAC-14028 cream can be a potential therapeutic tool for the treatment of chronic inflammation and disrupted barrier function in patients with AD. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  17. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus

    PubMed Central

    Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.

    2012-01-01

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172

  18. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus.

    PubMed

    Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S

    2012-12-13

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  20. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  1. Surfactants have multi-fold effects on skin barrier function.

    PubMed

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  2. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions.

    PubMed

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

  3. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function.

    PubMed

    Benfeldt, E; Serup, J

    1999-09-01

    The penetration of topically applied drugs is altered in diseased or barrier-damaged skin. We used microdialysis in the dermis to measure salicylic acid (SA) penetration in hairless rats following application to normal (unmodified) skin (n = 11) or skin with perturbed barrier function from (1) tape-stripping (n = 5), (2) sodium lauryl sulphate (SLS) 2% for 24 h (n = 3) or (3) delipidization by acetone (n = 4). Prior to the experiment, transepidermal water loss (TEWL) and erythema were measured. Two microdialysis probes were inserted into the dermis on the side of the trunk and 5% SA in ethanol was applied in a chamber overlying the probes. Microdialysis sampling was continued for 4 h, followed by measurements of probe depth by ultrasound scanning. SA was detectable in all samples and rapidly increasing up to 130 min. Microdialysates collected between 80 and 200 min showed mean SA concentrations of 3 microg/ml in unmodified and acetone-treated skin, whereas mean SA concentrations were 280 microg/ml in SLS-pretreated skin and 530 microg/ml in tape-stripped skin (P < 0.001). The penetration of SA correlated with barrier perturbation measured by TEWL (P < 0.001) and erythema (P < 0.001). A correlation between dermal probe depth and SA concentration was found in unmodified skin (P = 0.04). Microdialysis sampling in anatomical regions remote from the dosed site excluded the possibility that SA levels measured were due to systemic absorption. Microdialysis sampling of cutaneous penetration was highly reproducible. Impaired barrier function, caused by irritant dermatitis or tape stripping, resulted in an 80- to 170-fold increase in the drug level in the dermis. This dramatic increase in drug penetration could be relevant to humans, in particular to topical treatment of skin diseases and to occupational toxicology.

  4. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    PubMed

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  5. Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5.

    PubMed

    Tfayli, Ali; Jamal, Dima; Vyumvuhore, Raoul; Manfait, Michel; Baillet-Guffroy, Arlette

    2013-11-07

    The stratum corneum is the outermost layer of the skin; its barrier function is highly dependent on the composition and the structure as well as the organization of lipids in its extracellular matrix. Ceramides, free fatty acids and cholesterol represent the major lipid classes present in this matrix. They play an important role in maintaining the normal hydration levels required for the normal physiological function. Despite the advancement in the understanding of the structure, composition and the function of the stratum corneum (SC), the concern of "dry skin" remains important in dermatology and care research. Most studies focus on the quantification of water in the skin using different techniques including Raman spectroscopy, while the studies that investigate the effect of hydration on the quality of the barrier function of the skin are limited. Raman spectroscopy provides structural, conformational and organizational information that could help elucidate the effect of hydration on the barrier function of the skin. In order to assess the effect of relative humidity on the lipid barrier function; we used Raman spectroscopy to follow-up the evolution of the conformation and the organization of three synthetic ceramides (CER) differing from each other by the nature of their polar heads (sphingosine, phytosphingosine and α hydroxyl sphingosine), CER 2, III and 5 respectively. CER III and 5 showed a more compact and ordered organization with stronger polar interactions at intermediate relative humidity values, while CER 2 showed opposite tendencies to those observed with CER III and 5.

  6. Water-retaining barrier and method of construction

    DOEpatents

    Adams, Melvin R.; Field, Jim G.

    1996-01-01

    An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.

  7. Evaluation of skin surface hydration state and barrier function of stratum corneum of dorsa of hands and heels treated with PROTECT X2 skin protective cream.

    PubMed

    Kubota, Takahiro

    2012-06-01

    Skin roughness is a term commonly used in Japan to describe a poor skin condition related to a rough and dry skin surface that develops as a result of various damaging effects from the environment or skin inflammation. Recovery from skin roughness requires skin care for a long period, thus it is important to prevent development of such skin changes. PROTECT X2 contains agents used for a protective covering of the skin from frequent hand washing or use of alcohol-based disinfectants. These unique components are also thought to be effective to treat skin roughness of the dorsa of the hands and heels. In the present study, we evaluated the effectiveness of PROTECT X2 to increase skin surface hydration state, as well as enhance the barrier function of the stratum corneum of the dorsa of the hands and heels in elderly individuals. A total of 8 elderly subjects and their caretakers without any skin diseases participated in the study. They applied PROTECT X2 by themselves to the dorsum area of 1 hand and heel 3 to 5 times daily for 1 month, while the opposite sides were left untreated. We measured stratum corneum (SC) hydration and transepidermal water loss (TEWL) before beginning treatment, then 1 week and 1 month after the start of treatment to compare between the treated and untreated skin. SC hydration state after applications of PROTECT X2 was 1.5- to 3.0-fold higher than that of the untreated skin in the dorsa of both hands and heels, indicating that the moisturizing ingredients accompanied by water were replenished in those areas where the cream was applied. Also, TEWL in the dorsum of the hands was 17.0-27.9% lower on the treated side, indicating improvement in SC barrier function. On the basis of these findings, we concluded that PROTECT X2 enhances water-holding in the SC and aids the barrier function of the skin in the dorsum of the hands. In addition, we consider that this formulation is useful for not only protecting the hands from the effects of such agents

  8. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The blood-cerebrospinal fluid barrier: structure and functional significance.

    PubMed

    Johanson, Conrad E; Stopa, Edward G; McMillan, Paul N

    2011-01-01

    The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF

  10. Hydrologic behavior of two engineered barriers following extreme wetting.

    PubMed

    Porro, I

    2001-01-01

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage-evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary-biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared with pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared with thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  11. FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1.

    PubMed

    Wu, Gaohui; Yang, Liteng; Xu, Yi; Jiang, Xiaohong; Jiang, Xiaomin; Huang, Lisha; Mao, Ling; Cai, Shaoxi

    2018-01-01

    Functional abnormal airway epithelial cells, along with activated inflammatory cells, resulting in chronic airway inflammation, are considered as the characteristic of asthma. Fatty Acid Binding Protein 4 (FABP4) takes part in glucose and lipid homeostasis, and also have an important role in allergic airway inflammation. However, whether FABP4 influence barrier function of airway epithelial cells is unknown. In vivo, a HDM-induced murine model of asthma was obtained to assessed airway inflammation and protein expression of E-cadherin and Forkhead Box M1 (FoxM1). In vitro, 16-HBE was cultured and was treated with hrFABP4, siFABP4, FABPF4 inhibitor BMS, or FoxM1 inhibitor RCM-1. IL-4, IL-5, and IL-13 level was determined by ELISA. Transepithelial electrical resistance (TER), paracellular permeability and E-cadherin-special immunofluorescence were measured to value airway epithelial barrier function. Intracellular ROS production was determined by DCF-DA fluorescence. FABP4 inhibitor BMS alleviate airway inflammation and destruction of E-cad in allergic mouse. Treatment with HDM or hrFABP4 aggravated inflammatory response, damaged airway epithelial barrier, which could be inhibited by siFABP4 and BMS. Treatment with HDM or hrFABP4 also enhanced levels of FoxM1, and Inhibited FoxM1 suppressed HDM- and hrFABP4-induced inflammation and airway epithelial barrier dysfunction. In addition, H 2 O 2 promoted FoxM1 expression, HDM and hrFABP4 induced-FoxM1 could be inhibited by NAC, leading to decreased inflammation and improved airway epithelial barrier. Upregulated ROS induced by FABP4 was of significance in activating FoxM1 leading to airway inflammation and epithelial barrier dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc

  13. Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Van Bui, Pho; Toh, Daisetsu; Isohashi, Ai; Matsuyama, Satoshi; Inagaki, Kouji; Sano, Yasuhisa; Yamauchi, Kazuto; Morikawa, Yoshitada

    2018-05-01

    A comprehensive study of the physicochemical interactions and the reaction mechanism of SiC etching with water by Pt catalysts can reveal key details about the surface treatment and catalytic phenomena at interfaces. Therefore, density functional theory simulations were performed to study the kinetics of Pt-assisted water dissociation and breaking of a Si–C bond compared to the HF-assisted mechanism. These calculations carefully considered the elastic and chemical interaction energies at the Pt–SiC interface, activation barriers of Si–C bond dissociation, and the catalytic role of Pt. It was found that the Pt-catalyzed etching of SiC in water is initiated via hydrolysis reactions that break the topmost Si–C bonds. The activation barrier strongly depends on the elastic and chemical interactions. However, chemical interactions are a dominant factor and mainly contribute to the lowering of the activation barrier, resulting in an increased rate of reaction.

  14. The Halo mass function from Excursion Set Theory. II. The Diffusing Barrier

    NASA Astrophysics Data System (ADS)

    Maggiore, Michele; Riotto, Antonio

    2010-07-01

    In excursion set theory, the computation of the halo mass function is mapped into a first-passage time process in the presence of a barrier, which in the spherical collapse model is a constant and in the ellipsoidal collapse model is a fixed function of the variance of the smoothed density field. However, N-body simulations show that dark matter halos grow through a mixture of smooth accretion, violent encounters, and fragmentations, and modeling halo collapse as spherical, or even as ellipsoidal, is a significant oversimplification. In addition, the very definition of what is a dark matter halo, both in N-body simulations and observationally, is a difficult problem. We propose that some of the physical complications inherent to a realistic description of halo formation can be included in the excursion set theory framework, at least at an effective level, by taking into account that the critical value for collapse is not a fixed constant δ c , as in the spherical collapse model, nor a fixed function of the variance σ of the smoothed density field, as in the ellipsoidal collapse model, but rather is itself a stochastic variable, whose scatter reflects a number of complicated aspects of the underlying dynamics. Solving the first-passage time problem in the presence of a diffusing barrier we find that the exponential factor in the Press-Schechter mass function changes from exp{-δ2 c /2σ2} to exp{-aδ2 c /2σ2}, where a = 1/(1 + DB ) and DB is the diffusion coefficient of the barrier. The numerical value of DB , and therefore the corresponding value of a, depends among other things on the algorithm used for identifying halos. We discuss the physical origin of the stochasticity of the barrier and, from recent N-body simulations that studied the properties of the collapse barrier, we deduce a value DB ~= 0.25. Our model then predicts a ~= 0.80, in excellent agreement with the exponential fall off of the mass function found in N-body simulations, for the same halo

  15. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    PubMed Central

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  16. [Blood-nerve barrier: structure and function].

    PubMed

    Kanda, Takashi

    2011-06-01

    The blood-nerve barrier (BNB) is a dynamic interface between the endoneurial microenvironment and surrounding extracellular space or blood contents, and is localized the innermost layer of multilayered ensheathing perineurium and endoneurial microvessels. Since the BNB is a key structure controlling the internal milieu of the peripheral nerve parenchyma, adequate understanding of the BNB is crucial for developing treatment strategies for human peripheral nervous system disorders, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and diabetic and various metabolic/toxic neuropathies. However, fewer studies have been conducted on the BNB, if we compare against the number of studies on the blood-brain barrier. This is because of the lack of adequate human cell lines originating from the BNB. In our laboratory, human immortal cell lines from the BNB, namely, the endothelial cell line and pericyte cell line, have recently been established and vigorous investigations of their biological and physiological properties are now underway. Pericytes constituting the BNB were found to possess robust ability of controlling BNB integrity via secretion of various cytokines and growth factors including bFGF, VEGF, GDNF, BDNF, and angiopoietin-1. Unknown soluble factors secreted by pericytes also contribute to the upregulation of claudin-5 in endothelial cells in the BNB and thus, strengthen the barrier function of the BNB. In diabetic neuropathy, pericytes were shown to regulate the vascular basement membrane, while AGEs were shown to induce basement membrane hypertrophy and disrupt the BNB by increasing the autocrine secretion of VEGF and TGF-beta from pericytes. In this review article, we discuss the macroscopic and microscopic anatomy of the human BNB as well as the molecular mechanisms of mononuclear cell infiltration across the BNB.

  17. Roles of ZO-1 and ZO-2 in establishment of the belt-like adherens and tight junctions with paracellular permselective barrier function.

    PubMed

    Tsukita, Sachiko; Katsuno, Tatsuya; Yamazaki, Yuji; Umeda, Kazuaki; Tamura, Atsushi; Tsukita, Shoichiro

    2009-05-01

    Tight junctions (TJs) create the primary permselective barrier to diffusion of solutes and ions through the paracellular pathway. The molecular architecture of TJs has gradually been unraveled in recent years, providing the basis for "barriology" (defined by Shoichiro Tsukita as the science of the barrier in multicellular organisms). Claudins are now considered to be the essential basic components of TJ strands, with which other integral membrane proteins, such as occludin, tricellulin, JAMs, and CAR, are associated. Peripherally associated scaffolding proteins are required for the organization of the integral membrane proteins. Among these, ZO-1, -2, and -3 have attracted a great deal of attention as TJ organizers, since ZO-1 (and in some cases, also ZO-2/3) was reported to be directly associated with claudins, occludin, and JAMs, as well as with AF-6/afadin and alpha-catenin. Here we summarize recent studies on ZO-1/2/3-deficiency in mice and cells, which have provided clear and important information regarding the functions of ZO-1/2/3 in vivo. In addition to the respective suppression of ZO-1/2/3 expression, simultaneous suppression of all three proteins has revealed the essential and nonessential in vivo roles of ZO-1/2 and ZO-3, respectively. ZO-3 shows an epithelial-specific TJ localization in a ZO-1/2-dependent fashion. ZO-1 and ZO-2 play pivotal roles in the final establishment of the belt-like adherens junctions (zonula adherens), followed by the formation of the belt-like TJs (zonula occludens) with paracellular barrier function, thereby providing the general basis for selective paracellular permeability in epithelial and endothelial cells.

  18. Using FLIM in the study of permeability barrier function of aged and young skin

    NASA Astrophysics Data System (ADS)

    Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.

    2006-02-01

    Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.

  19. Crossing safety barriers: influence of children's morphological and functional variables.

    PubMed

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Engineering and Development Support of General Decon Technology for the U.S. Army’s Installation Restoration Program. Task 1. Literature Review on Ground Water Containment and Diversion Barriers.

    DTIC Science & Technology

    1982-04-01

    number) This report presents a review and evaluation of the available information on the use of physical and hydrological barriers for containment or...UNCLASSIFIED 1 $SCCuRITY CLASSIFICATION OF T.qiS *&GE When Daa Entered SUMMARY The available literature on methods for containment or diversion of ground...II. Preliminary Considerations for Installation of a Ground Water Containment or Diversion Barrier .. ... ....... ...... 13 III. Slurry-Trench Cutoff

  1. The barrier function of organotypic non-melanoma skin cancer models.

    PubMed

    Zoschke, Christian; Ulrich, Martina; Sochorová, Michaela; Wolff, Christopher; Vávrová, Kateřina; Ma, Nan; Ulrich, Claas; Brandner, Johanna M; Schäfer-Korting, Monika

    2016-07-10

    Non-melanoma skin cancer (NMSC) is the most frequent human cancer with continuously rising incidences worldwide. Herein, we investigated the molecular basis for the impaired skin barrier function of organotypic NMSC models. We unraveled disturbed epidermal differentiation by reflectance confocal microscopy and histopathological evaluation. While the presence of claudin-4 and occludin were distinctly reduced, zonula occludens protein-1 was more wide-spread, and claudin-1 was heterogeneously distributed within the NMSC models compared with normal reconstructed human skin. Moreover, the cancer altered stratum corneum lipid packing and profile with decreased cholesterol content, increased phospholipid amount, and altered ceramide subclasses. These alterations contributed to increased surface pH and to 1.5 to 2.6-fold enhanced caffeine permeability of the NMSC models. Three topical applications of ingenol mebutate gel (0.015%) caused abundant epidermal cell necrosis, decreased Ki-67 indices, and increased lactate dehydrogenase activity. Taken together, our study provides new biological insights into the microenvironment of organotypic NMSC models, improves the understanding of the disease model by revealing causes for impaired skin barrier function in NMSC models at the molecular level, and fosters human cell-based approaches in preclinical drug evaluation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    PubMed

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  3. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    PubMed

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border

    PubMed Central

    Marcos-Ramiro, Beatriz; García-Weber, Diego; Barroso, Susana; Feito, Jorge; Ortega, María C.; Cernuda-Morollón, Eva; Reglero-Real, Natalia; Fernández-Martín, Laura; Durán, Maria C.; Alonso, Miguel A.; Correas, Isabel; Cox, Susan; Ridley, Anne J.

    2016-01-01

    Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation. PMID:27138256

  5. Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function.

    PubMed

    Tessema, Efrem N; Gebre-Mariam, Tsige; Neubert, Reinhard H H; Wohlrab, Johannes

    2017-01-01

    The outer most layer of the skin, the stratum corneum, consists of corneocytes which are coated by a cornified envelope and embedded in a lipid matrix of ordered lamellar structure. It is responsible for the skin barrier function. Ceramides (CERs) are the backbone of the intercellular lipid membranes. Skin diseases such as atopic dermatitis and psoriasis and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Previously, the effectiveness of supplementation of synthetic and animal-based CERs in replenishing the depleted natural skin CERs and restoring the skin barrier function have been investigated. Recently, however, the barrier function improving effect of plant-derived CERs has attracted much attention. Phyto-derived CERs (phytoCERs) are preferable due to their assumed higher safety as they are mostly isolated from dietary sources. The beneficial effects of phytoCER-based oral dietary supplements for skin hydration and skin barrier reinforcement have been indicated in several studies involving animal models as well as human subjects. Ingestible dietary supplements containing phytoCERs are also widely available on the market. Nonetheless, little effort has been made to investigate the potential cosmetic applications of topically administered phytoCERs. Therefore, summarizing the foregoing investigations and identifying the gap in the scientific data on plant-derived CERs intended for skin-health benefits are of paramount importance. In this review, an attempt is made to synthesize the information available in the literature regarding the effects of phytoCER-based oral dietary supplements on skin hydration and barrier function with the underlying mechanisms. © 2017 S. Karger AG, Basel.

  6. Pivotal role of water in terminating enzymatic function: a density functional theory study of the mechanism-based inactivation of cytochromes P450.

    PubMed

    Hirao, Hajime; Cheong, Zhi Hao; Wang, Xiaoqing

    2012-07-12

    The importance of the mechanism-based inactivation (MBI) of enzymes, which has a variety of physiological effects and therapeutic implications, has been garnering appreciation. Density functional theory calculations were undertaken to gain a clear understanding of the MBI of a cytochrome P450 enzyme (CYP2B4) by tert-butylphenylacetylene (tBPA). The results of calculations suggest that, in accordance with previous proposals, the reaction proceeds via a ketene-type metabolic intermediate. Once an oxoiron(IV) porphyryn π-cation radical intermediate (compound I) of P450 is generated at the heme reaction site, ketene formation is facile, as the terminal acetylene of tBPA can form a C-O bond with the oxo unit of compound I with a relatively low reaction barrier (14.1 kcal/mol). Unexpectedly, it was found that the ketene-type intermediate was not very reactive. Its reaction with the hydroxyl group of a threonine (Thr302) to form an ester bond required a substantial barrier (38.2 kcal/mol). The high barrier disfavored the mechanism by which these species react directly. However, the introduction of a water molecule in the reaction center led to its active participation in the reaction. The water was capable of donating its proton to the tBPA molecule, while accepting the proton of threonine. This water-mediated mechanism lowered the reaction barrier for the formation of an ester bond by about 20 kcal/mol. Therefore, our study suggests that a water molecule, which can easily gain access to the threonine residue through the proton-relay channel, plays a critical role in enhancing the covalent modification of threonine by terminal acetylene compounds. Another type of MBI by acetylenes, N-alkylation of the heme prosthetic group, was less favorable than the threonine modification pathway.

  7. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  8. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    PubMed

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.

  9. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function

    PubMed Central

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651

  10. Optimizing Barrier Removal to Restore Connectivity in Utah's Weber Basin

    NASA Astrophysics Data System (ADS)

    Kraft, M.; Null, S. E.

    2016-12-01

    Instream barriers, such as dams, culverts and diversions are economically important for water supply, but negatively affect river ecosystems and disrupt hydrologic processes. Removal of uneconomical and aging in-stream barriers to improve habitat connectivity is increasingly used to restore river connectivity. Most past barrier removal projects focused on individual barriers using a score-and-rank technique, ignoring cumulative change from multiple, spatially-connected barrier removals. Similarly, most water supply models optimize either human water use or aquatic connectivity, failing to holistically represent human and environmental benefits. In this study, a dual objective optimization model identified in-stream barriers that impede aquatic habitat connectivity for trout, using streamflow, temperature, and channel gradient as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions to incorporate water supply benefits and a budget monetizes costs of removing small barriers like culverts and road crossings. The optimization model developed is applied to a case study in Utah's Weber basin to prioritize removal of the most environmentally harmful barriers, while maintaining human water uses. The dual objective solution basis was developed to quantify and graphically visualize tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Modeled results include a spectrum of barrier removal alternatives based on budget and quality-weighted reconnected habitat that can be communicated with local stakeholders. This research will help prioritize barrier removals and future restoration decisions. The modeling approach expands current barrier removal optimization methods by explicitly including economic and environmental water uses.

  11. Cytokine Signaling Modulates Blood-Brain Barrier Function

    PubMed Central

    Pan, Weihong; Stone, Kirsten P.; Hsuchou, Hung; Manda, Vamshi K.; Zhang, Yan; Kastin, Abba J.

    2014-01-01

    The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease. PMID:21834767

  12. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.

    PubMed

    Dang, Chuangyin; Xu, Lei

    2002-02-01

    A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.

  13. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.

    PubMed

    Dang, C; Xu, L

    2001-03-01

    In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.

  14. Intestinal barrier integrity and function in infants with cholestasis.

    PubMed

    Abu Faddan, Nagla H; Sherif, Tahra M K; Mohammed, Omnia A; Nasif, Khalid A; El Gezawy, Ebtesam M

    2017-01-01

    The safety of the human body is maintained by effective monitoring of the mucosal surface integrity and protection against potentially harmful compounds. This function of the gut called intestinal barrier function can be affected by cholestasis and the absence of bile in the intestinal lumen. We aimed to determine whether the gut barrier integrity is impaired in infants with cholestasis by evaluation of the intestinal fatty acid binding proteins (I-FABP) and ileal bile acid binding protein (I-BABP) as markers of intestinal epithelial cell damage and plasma D-lactate level as a marker of gut wall permeability. This case-control study included 53 infants with cholestasis and 29 controls. Serum levels of I-FABP, I-BABP, and D-lactate were measured in all subjects. Both groups of patients with neonatal hepatitis and biliary atresia showed significantly higher levels of I-FABP and I-BABP than the controls. There were no differences in the serum D-lactate level between the cases and controls. There was no difference between the two groups of patients (I and II) regarding any of the parameters studied. No significant correlations between serum levels of I-FABP, I-BABP, or D-lactate and total or direct bilirubin levels were found in the cholestatic infants. The intestinal epithelial barrier integrity is breached nearly in all parts of the intestine in infants with cholestasis. Further research is recommended to determine the impact of this finding on the management of these infants. The relationship between physical intestinal barrier damage and its functional failure remains subject for further research.

  15. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings.

    PubMed

    Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C

    2016-06-01

    Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Purdue Ionomics Information Management System. An Integrated Functional Genomics Platform1[C][W][OA

    PubMed Central

    Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S.; Salt, David E.

    2007-01-01

    The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics. PMID:17189337

  17. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area

    PubMed Central

    Rawluk, Ashley A.; Crow, Gary; Legesse, Getahun; Veira, Douglas M.; Bullock, Paul R.; González, Luciano A.; Dubois, Melanie; Ominski, Kim H.

    2014-01-01

    Simple Summary The implementation of off-stream waterers (OSW) may reduce the amount of time cattle spend in riparian areas, thus minimizing impacts such as removal of vegetation, soil compaction, and deterioration in water quality. Furthermore, when used with natural barriers as a partial exclusion method, these management strategies may offer a cost-effective alternative to completely excluding cattle via streambank fencing. This study was conducted to determine the impact of OSW and barriers on animal performance and watering behavior. The presence of OSW had no significant effect on cow and calf weights averaged over the grazing season. Although the results were not consistent over the periods and locations, the data provided some indication of the efficacy of the natural barriers on deterring cattle from the riparian area. Cattle watered at the OSW when available, but they did not use the OSW exclusively. The observed inconsistency may, in part, be attributed to the environmental conditions present during this field trial. Abstract A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris), Canada to determine the impact of off-stream waterers (OSW) with or without natural barriers on (i) amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP), (ii) watering location (OSW or stream), and (iii) animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture—which ranged from 21.0 ha to 39.2 ha in size—was divided into three treatments: no OSW nor barriers (1CONT), OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR), and OSW without barriers (3NOBARR). Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002), 2 (p = 0.1116), and 3 (p < 0.0001) at the Killarney site compared to cattle in 3NOBARR at the same site. Cattle in 2BARR at the

  18. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients.

    PubMed

    van Smeden, Jeroen; Bouwstra, Joke A

    2016-01-01

    Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to

  19. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films.

    PubMed

    Liu, Hongyu; Liu, Cuiyun; Peng, Shuge; Pan, Bingli; Lu, Chang

    2018-02-15

    A series of novel methyl cellulose (MC) composite films were prepared using polyethyleneimine reduced graphene oxide (PEI-RGO) as an effective filler for water vapor barrier application. The as-prepared PEI-RGO/MC composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, tensile test and scanning electron microscopy. The experimental and theoretical results exhibited that PEI-RGO was uniformly dispersed in the MC matrix without aggregation and formed an aligned dispersion. The addition of PEI-RGO resulted in an enhanced surface hydrophobicity and a tortuous diffusion pathway for water molecules. Water vapor permeability of PEI-RGO/MC with loading of 3.0% of surface modified graphene was as low as 5.98×10 -11 gmm -2 s -1 Pa -1 . The synergistic effects of enhanced surface hydrophobicity and tortuous diffusion pathway were accounted for the improved water vapor barrier performance of the PEI-RGO/MC composite films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier

    NASA Astrophysics Data System (ADS)

    Borden, Robert C.

    2007-10-01

    A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS®) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 μg/L to below detection (< 4 μg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 μg/L in every downgradient well compared to an average upgradient concentration of 13,100 μg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 μM to 0.2-4 μM during passage through the bio-barrier. However, 1-9 μM 1,1-dichloroethane (DCA) and 8-14 μM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2- cis-dichloroethene ( cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is

  1. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.

    PubMed

    Borden, Robert C

    2007-10-30

    A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 microg/L to below detection (<4 microg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 microg/L in every downgradient well compared to an average upgradient concentration of 13,100 microg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 microM to 0.2-4 microM during passage through the bio-barrier. However, 1-9 microM 1,1-dichloroethane (DCA) and 8-14 microM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2-cis-dichloroethene (cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of

  2. Structural and functional maturation of rat gastrointestinal barrier with thyroxine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, E.J.; Pang, K.Y.; Harmatz, P.R.

    It has been noted that the closure of the intestinal barrier to immunoglobulins is a normal maturational process in the rat. It has also been noted that the microvillus membrane (MVM) of newborn animals differs from adult MVM. The purpose of this study is to document whether thyroid hormone can induce closure in vivo in the rat and to relate this effect of thyroxine to the structural and functional maturation of the intestinal MVM. To assess closure, 2-wk-old rats were fed in rat immunoglobulin G (IgG), and serum antibody binding activity was measured 4 h later. The antibody binding activitymore » of treated animals (T) was 1.5-2 times less than that of controls (C), indicating that thyroxine stimulates closure. The MVM similarly showed signs of maturation. Structural maturation was demonstrated by the lower fluidity of the thyroid-treated animals' membranes. Under the influence of thyroxine, the number of receptors on the MVM for IgG had decreased, while the K/sub a/ remained the same, demonstrating the functional maturation of the MVM. In conclusion, thryoid hormone can induce both structural and functional maturation of the intestinal MVM and can enhance the intestinal mucosal barrier by decreasing the penetration of antibodies.« less

  3. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    PubMed

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  4. Near Two-Decade Instrument Performance for Hydrological Monitoring at the Prototype Hanford Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Clayton, R. E.

    2012-12-01

    Surface barriers have been proposed for use at the Department of Energy's Hanford Site as a means to isolate certain radioactive waste sites that, for reasons of cost or worker safety, may not be exhumed. The Hanford Prototype Barrier was constructed in 1994 using mostly natural materials to demonstrate its long-term performance. The barrier is expected to perform for at least 1000 years by limiting water, plant, animal, and human intrusion and minimizing erosion. Extensive instrumentation is used to monitor the hydrological regime above, within, below, and around the barrier. Specifically, natural precipitation and irrigation are measured with rain gauges, runoff water with a runoff flume, soil water content within the barrier at 12 stations with a neutron probe, a capacitance probe, and time-domain-reflectometry probes, and soil water pressure with gypsum blocks and heat-dissipation-units. Drainage through the barrier and the side slopes is measured with 12 water collection vaults, respectively, for 12 zones. Each drainage vault is equipped with a dosing siphon, a dose counter, a pressure transducer to measure the water level, and a tipping bucket to measure the inflow. During the near two-decade monitoring period, some of the instruments stopped functioning, while others still function normally till present. This presentation will summarize the performance of these instruments. Recommendations for future barrier monitoring will be given.

  5. Fatty acids are required for epidermal permeability barrier function.

    PubMed

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  6. Fatty acids are required for epidermal permeability barrier function.

    PubMed Central

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-01-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis. Images PMID:8102380

  7. The blood-brain barrier of the chick glycogen body (corpus gelatinosum) and its functional implications.

    PubMed

    Möller, Wilhelm; Kummer, Wolfgang

    2003-07-01

    Among recent vertebrates only birds possess a glycogen body (corpus gelatinosum), located in the rhomboidal sinus of the lumbosacral region of the spinal cord and separated from the neural tissue proper. Because of the specific topographical situation of this circumventricular organ, the structure of its vascular system is of special interest with respect to the still unsolved functional problems. The existence of a blood-brain barrier is demonstrated by the exclusion of intravascularly injected tracer (horseradish peroxidase), and immunocytochemical demonstration of glucose transporter-1 as a functional marker and of neurothelin, occludin and ZO-1 as structural markers. Alkaline phosphatase and gamma-glutamyltransferase activities, two enzyme reactions frequently used for demonstration of an established blood-brain barrier in vitro, were localized histochemically on the plasmalemma of glycogen body cells and were absent from the endothelium. In addition, local enlargements of the intercellular space were observed by transmission and scanning electron microscopy. In accordance with the concept of a third circulation the cerebrospinal fluid may be the vehicle for distributing substances originating in the glycogen body to the CNS, while the vascular endothelium maintains the internal milieu by virtue of its dynamic barrier functions.

  8. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within thismore » layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.« less

  9. Performance of Density Functional Theory Procedures for the Calculation of Proton-Exchange Barriers: Unusual Behavior of M06-Type Functionals.

    PubMed

    Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo

    2014-09-09

    We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.

  10. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    PubMed Central

    Yang, Siming; Gu, Changping; Mandeville, Emiri T.; Dong, Yuanlin; Esposito, Elga; Zhang, Yiying; Yang, Guang; Shen, Yuan; Fu, Xiaobing; Lo, Eng H.; Xie, Zhongcong

    2017-01-01

    Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium. PMID:28848542

  11. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    PubMed

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  12. 200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Link, Steven O.; Draper, Kathryn E.

    2009-09-01

    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. Themore » total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of

  13. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.

    2008-09-29

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondarymore » objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected

  14. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells.

    PubMed

    Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa

    2006-07-01

    Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.

  15. Postnatal ecdysis establishes the permeability barrier in snake skin: new insights into barrier lipid structures.

    PubMed

    Tu, M C; Lillywhite, H B; Menon, J G; Menon, G K

    2002-10-01

    A competent barrier to transepidermal water loss (TEWL) is essential for terrestrial life. In various vertebrates, epidermal water barriers composed of lipids prevent excessive TEWL, which varies inversely with habitat aridity. Little is known, however, about the mechanisms and regulation of permeability relative to natal transition from the 'aqueous' environments of gestation to the 'aerial' environments of terrestrial neonates. We investigated newly hatched California king snakes Lampropeltis getula to test the hypothesis that the first ecdysis is important for establishing the barrier to TEWL. We found that skin resistance to TEWL increases twofold following the first postnatal ecdysis, corresponding with a roughly twofold increase in thickness and deposition of lamellar lipids in the mesos layer, the site of the skin permeability barrier in snakes. In addition, novel observations on lipid inclusions within the alpha layer of epidermis suggest that this layer has functional similarities with avian epidermis. It appears that emergence of the integument from embryonic fluids, and its subsequent pan-body replacement following contact with air, are essential for completion of barrier competence in the newborn. These conditions provide a potentially useful model for investigations on the mechanism of barrier formation. We also found that hatchling snakes are transiently endothermic, with skin temperatures elevated by approximately 0.6 degrees C above ambient air temperature during the period of barrier formation. Behaviourally, hatchlings showed a higher tendency to seek humid microenvironments before the first ecdysis than after. The degree of water movement across the integument might explain the switch from reclusive to dispersive behaviours associated with postnatal ecdysis in snakes.

  16. Results of a monitoring program of continuous water levels and physical water properties at the Operable Unit 1 area of the Savage Municipal Well Superfund site, Milford, New Hampshire, water years 2000-03

    USGS Publications Warehouse

    Harte, Philip T.

    2005-01-01

    The Milford-Souhegan glacial-drift (MSGD) aquifer, in south-central New Hampshire, is an important source of industrial, commercial, and domestic water. The MSGD aquifer was also an important source of drinking water for the town of Milford until it was found to contain high concentrations of volatile organic compounds (VOCs) in the Savage and Keyes municipal-supply wells in the early 1980s. A VOC plume was found to cover part of the southwestern half of the MSGD aquifer. In September 1984, the site was designated a Superfund site, called the Savage Municipal Well Superfund site. The primary source area of contaminants was a former tool manufacturing facility (called the OK Tool facility, and now called the Operable Unit 1 (OU1) area) that disposed of solvents at the surface and in the subsurface. The facility was closed in 1987 and removed in 1998. A low-permeability containment barrier wall was constructed and installed in the overburden (MSGD aquifer) in 1998 to encapsulate the highest concentrations of VOCs, and a pump-and-treat remediation facility was also added. Remedial operations of extraction and injection wells started in May 1999. A network of water-level monitoring sites was implemented in water year 2000 (October 1, 1999, through September 30, 2000) in the OU1 area to help assess the effectiveness of remedial operations to mitigate the VOC plume, and to evaluate the effect of the barrier wall and remedial operations on the hydraulic connections across the barrier and between the overburden and underlying bedrock. Remedial extraction and injections wells inside and outside the barrier help isolate ground-water flow inside the barrier and the further spreading of VOCs. This report summarizes both continuous and selected periodic manual measurements of water level and physical water properties (specific conductance and water temperature) for 10 monitoring locations during water years 2000-03. Additional periodic manual measurements of water levels were

  17. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Years 2005 Through 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Link, Steven O.; Strickland, Christopher E.

    2008-02-01

    A prototype Hanford barrier was deployed over the 216-B-57 Crib at the Hanford Site in 1994 to prevent percolation through the underlying waste and to minimize spreading of buried contaminants. This barrier is being monitored to evaluate physical and hydrologic performance at the field scale. This report summarizes data collected during the period FY 2005 through FY 2007. In FY 2007, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance, including precipitation, runoff, storage, drainage, and deep percolation. Owing to a hiatus inmore » funding in FY 2005 through 2006, data collected were limited to automated measurements of the water-balance components. For the reporting period (October 2004 through September 2007) precipitation amount and distribution were close to normal. The cumulative amount of water received from October 1994 through September 2007 was 3043.45 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 2370.58 mm on the southern, non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of around 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. For the reporting period, the total drainage from the soil-covered plots ranged from near zero amounts under the soil-covered plots to almost 20 mm under the side slopes. Over the 13-yr monitoring period, side slope drainage accounted for about 20 percent of total precipitation while the soil-covered plots account for only 0.12 mm total. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys show the barrier and protective side slopes to be stable. Plant surveys show a relatively high coverage of native plants still persists after the initial

  18. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function.

    PubMed

    Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K

    1997-10-01

    Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.

  19. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function.

    PubMed

    Yue, Yuan; Wu, Shuangchan; Li, Zhike; Li, Jian; Li, Xiaofei; Xiang, Jin; Ding, Hong

    2015-08-01

    Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.

  20. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.

    PubMed Central

    Mato, M; Ookawara, S; Sakamoto, A; Aikawa, E; Ogawa, T; Mitsuhashi, U; Masuzawa, T; Suzuki, H; Honda, M; Yazaki, Y; Watanabe, E; Luoma, J; Yla-Herttuala, S; Fraser, I; Gordon, S; Kodama, T

    1996-01-01

    The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8622926

  1. Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions

    USDA-ARS?s Scientific Manuscript database

    Edible films may be used in food packaging, for which they must deliver good barrier and mechanical properties. Films based on proteins have good gas barrier and mechanical properties, but poor water barrier properties. Films made from lipids have good water barrier properties, but poor mechanical p...

  2. Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice

    PubMed Central

    Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2012-01-01

    Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471

  3. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis.

    PubMed

    Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro

    2017-01-01

    Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function

  4. Penetration Barrier of Water through Graphynes' Pores: First-Principles Predictions and Force Field Optimization.

    PubMed

    Bartolomei, Massimiliano; Carmona-Novillo, Estela; Hernández, Marta I; Campos-Martínez, José; Pirani, Fernando; Giorgi, Giacomo; Yamashita, Koichi

    2014-02-20

    Graphynes are novel two-dimensional carbon-based materials that have been proposed as molecular filters, especially for water purification technologies. We carry out first-principles electronic structure calculations at the MP2C level of theory to assess the interaction between water and graphyne, graphdiyne, and graphtriyne pores. The computed penetration barriers suggest that water transport is unfeasible through graphyne while being unimpeded for graphtriyne. For graphdiyne, with a pore size almost matching that of water, a low barrier is found that in turn disappears if an active hydrogen bond with an additional water molecule on the opposite side of the opening is considered. Thus, in contrast with previous determinations, our results do not exclude graphdiyne as a promising membrane for water filtration. In fact, present calculations lead to water permeation probabilities that are 2 orders of magnitude larger than estimations based on common force fields. A new pair potential for the water-carbon noncovalent component of the interaction is proposed for molecular dynamics simulations involving graphdiyne and water.

  5. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    PubMed

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Great Barrier Reef, Queensland, Australia

    NASA Image and Video Library

    1991-09-18

    STS048-151-250 (12-18 Sept. 1991) --- The Great Barrier Reef extends for roughly 2,000 kilometers along the northeast coast of Australia. The great Barrier Reef is made up of thousands of individual reefs which define the edge of the continental shelf. The southern part of the feature, called Swain Reef, is seen here. Water depths around the reefs are quite shallow (less than 1 meter to about 36 meters in depth), but only a few kilometers offshore, water depths are roughly 1,000 meters.

  7. Cell Wall-Degrading Enzymes Enlarge the Pore Size of Intervessel Pit Membranes in Healthy and Xylella fastidiosa-Infected Grapevines1[C][W][OA

    PubMed Central

    Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.

    2010-01-01

    The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028

  8. Financial burdens and barriers to care among nonelderly adults: The role of functional limitations and chronic conditions.

    PubMed

    Bernard, Didem; Selden, Thomas; Yeh, Susan

    2016-04-01

    People with functional limitations and chronic conditions account for the greatest resource use within the health care system. To examine financial burdens and barriers to care among nonelderly adults, focusing on the role of functional limitations and chronic conditions. High financial burden is defined as medical spending exceeding 20 percent of family income. Financial barriers are defined as delaying care/being unable to get care for financial reasons, and reporting that delaying care/going without was a big problem. Data are from the Medical Expenditure Panel Survey (2008-2012). Functional limitations are associated with increased prevalence of financial burdens. Among single adults, the frequency of high burdens is 20.3% for those with functional limitations, versus 7.8% for those without. Among those with functional limitations, those with 3 or more chronic conditions are twice as likely to have high burdens compared to those without chronic conditions (22.2% versus 11.1%, respectively). Similar patterns occur among persons in multi-person families whose members have functional limitations and chronic conditions. Having functional limitations and chronic conditions is also strongly associated with financial barriers to care: 40.2% among the uninsured, 21.9% among those with public coverage, and 13.6% among those with private group insurance were unable to get care. Functional limitations and chronic conditions are associated with increased prevalence of burdens and financial barriers in all insurance categories, with the exception that an association between functional limitations and the prevalence of burdens was not observed for public coverage. Published by Elsevier Inc.

  9. Use of vegetable oil in a pilot-scale denitrifying barrier

    NASA Astrophysics Data System (ADS)

    Hunter, William J.

    2001-12-01

    Nitrate in drinking water is a hazard to both humans and animals. Contaminated water can cause methemoglobinemia and may pose a cancer risk. Permeable barriers containing innocuous oils, which stimulate denitrification, can remove nitrate from flowing groundwater. For this study, a sand tank (1.1×2.0×0.085 m in size) containing sand was used as a one-dimensional open-top scale model of an aquifer. A meter-long area near the center of the tank contained sand coated with soybean oil. This region served as a permeable denitrifying barrier. Water containing 20 mg l -1 nitrate-N was pumped through the barrier at a high flow rate, 1112 l week -1, for 30 weeks. During the 30-week study, the barrier removed 39% of the total nitrate-N present in the water. The barrier was most efficient during the first 10 weeks of the study when almost all of the nitrate and nitrogen was removed. Efficiency declined with time so that by week 30 almost no nitrate was removed by the system. Nitrite levels in the effluent water remained low throughout the study. Barriers could be used to protect groundwater from nitrate contamination or for the in situ treatment of contaminated water. At the low flow rates that exist in most aquifers, such barriers should be effective at removing nitrate from groundwater for a much longer period of time.

  10. COST ANALYSIS OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF GROUND WATER

    EPA Science Inventory

    The U. S. Environmental Protection Agency's Office of Research and Development and its contractor have evaluated cost data from 22 sites where permeable reactive barriers (PRBs) have been utilized to remediate contaminated ground water resources. Most of the sites evaluated wer...

  11. EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.

    PubMed

    Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei

    2015-10-01

    Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results

  12. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  13. Tests of potential functional barriers for laminated multilayer food packages. Part I: Low molecular weight permeants.

    PubMed

    Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R

    2000-08-01

    The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.

  14. Effects of moisturizing skincare on skin barrier function and the prevention of skin problems in 3-month-old infants: A randomized controlled trial.

    PubMed

    Yonezawa, Kaori; Haruna, Megumi; Matsuzaki, Masayo; Shiraishi, Mie; Kojima, Reiji

    2018-01-01

    An effective newborn skincare protocol has not been established. We aimed to evaluate the effects of moisturizing skincare, including using lotion and reducing routine bathing. Our hypothesis was that moisturizing skincare would improve skin barrier function. This randomized controlled trial included 227 healthy Asian newborns between 1 week and 3 months old. We compared moisturizing skincare (bathing every 2 days and using lotion daily; intervention, n = 113) to daily bathing without lotion (control, n = 114). We assessed the skin barrier function (transepidermal water loss [TEWL], stratum corneum hydration [SCH], skin pH and sebum secretion) as a primary outcome at 3 months old. We also assessed the incidence of skin problems according to parents' diary reports. Compared with the control, the intervention group had a lower face TEWL (mean ± standard deviation, 14.69 ± 7.38 vs 17.08 ± 8.26 g/m 2 per h, P = 0.033), higher face SCH (60.38 ± 13.66 vs 53.52 ± 14.55, P = 0.001) and higher body SCH (58.89 ± 12.96 vs 53.02 ± 10.08, P < 0.001). Compared with the control, newborns in the intervention group had significantly lower rates of diaper dermatitis between birth and 1 month old (6.3% vs 15.9%, P = 0.022), and tended to have lower rates of body skin problems between 1 and 3 months (42.1% vs 55.2%, P = 0.064). Moisturizing skincare was effective for improving skin barrier function and preventing newborns' diaper dermatitis. The results of our study may help parents make informed decisions about newborn skincare. © 2017 Japanese Dermatological Association.

  15. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  16. Embryonic blood-cerebrospinal fluid barrier formation and function

    PubMed Central

    Bueno, David; Parvas, Maryam; Hermelo, Ismaïl; Garcia-Fernàndez, Jordi

    2014-01-01

    During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF. PMID:25389383

  17. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Blood-brain barrier and its function during inflammation and autoimmunity.

    PubMed

    Sonar, Sandip Ashok; Lal, Girdhari

    2018-05-01

    The blood-brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function. ©2018 Society for Leukocyte Biology.

  19. Low molecular weight components of pollen alter bronchial epithelial barrier functions.

    PubMed

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated.

  20. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  1. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.

    PubMed

    Raju, Muralikrishna; Govindaraju, Pavan B; van Duin, Adri C T; Ihme, Matthias

    2018-02-22

    Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous single-layer graphene. However, creating and controlling the size and distribution of nanometer-scale pores pose significant challenges to application of these membranes for water desalination. Graphyne and hydrogenated graphyne have tremendous potential as ultra-permeable membranes for desalination and wastewater reclamation due to their uniform pore-distribution, atomic thickness and mechano-chemical stability. Using molecular dynamics (MD) simulations and upscale continuum analysis, the desalination performance of bare and hydrogenated α-graphyne and γ-{2,3,4}-graphyne membranes is evaluated as a function of pore size, pore geometry, chemical functionalization and applied pressure. MD simulations show that pores ranging from 20 to 50 Å 2 reject in excess of 90% of the ions for pressures up to 1 GPa. Water permeability is found to range up to 85 L cm -2 day -1 MPa -1 , which is up to three orders of magnitude larger than commercial seawater reverse osmosis (RO) membranes and up to ten times that of nanoporous graphene. Pore chemistry, functionalization and geometry are shown to play a critical role in modulating the water flux, and these observations are explained by water velocity, density, and energy barriers in the pores. The atomistic scale investigations are complemented by upscale continuum analysis to examine the performance of these membranes in application to cross-flow RO systems. This upscale analysis, however, shows that the significant increase in permeability, observed from MD simulations, does not fully translate to current RO systems due to transport limitations. Nevertheless, upscale calculations predict that the higher permeability of graphyne membranes would allow up to six times higher permeate recovery or up to 6% less energy consumption as compared to thin-film composite membranes at currently accessible operating conditions

  2. Steeplechase barriers affect women less than men.

    PubMed

    Hunter, Iain; Bushnell, Tyler D

    2006-01-01

    Women began contesting the 3000 m steeplechase during the 1990's using barriers of different dimensions than men. Whenever a new event is introduced for women, consideration should be taken as to whether different technique or training methods should be utilized. This study investigated three aspects of hurdling technique: 1) Differences in the ratio of the landing step to the penultimate step between men and women around each non-water jump steeplechase barrier, 2) differences in step lengths between the four non-water jump barriers, and 3) changes in the step lengths around the barrier throughout the race. The step lengths around the 28 non-water jump barriers of the top seven men and women at the 2003 USA Track and Field Championships were measured using a two-dimensional analysis. A t-test determined any differences between men and women for the ratio of the landing to penultimate steps. A 2x4 repeated measures ANOVA tested for differences between the four non-water jump barriers. Linear regression tested for changes in step lengths throughout the race. Men exhibited a smaller ratio between the lengths of the landing to penultimate steps than women (0.73 ± 0.09 and 0.77 ± 0.10 for men and women respectively, p = 0.002). No step length differences were observed between the four barriers in the step lengths around each barrier (p = 0.192 and p = 0.105 for men and women respectively). Athletes gradually increased the total length of all steps around the barriers throughout the race (R(2) = 0.021, p = 0.048 and R(2) = 0.137, p < 0.001 for men and women respectively). The smaller ratio between landing to penultimate steps shows that the barriers affect women less than men. There may be a need to train men and women differently for the non-water jump barriers in the steeplechase or slightly alter racing strategy. Key PointsNon-water jump barriers disrupt the stride of men more than women.There is no difference between any of the four non-water jump barriers in the

  3. Sleep Restriction Impairs Blood–Brain Barrier Function

    PubMed Central

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  4. Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier.

    PubMed

    Arana, Maite R; Tocchetti, Guillermo N; Rigalli, Juan P; Mottino, Aldo D; Villanueva, Silvina S M

    2016-07-01

    The gastrointestinal epithelium functions as a selective barrier to absorb nutrients, electrolytes and water, but at the same time restricts the passage into the systemic circulation of intraluminal potentially toxic compounds. This epithelium maintains its selective barrier function through the presence of very selective and complex intercellular junctions and the ability of the absorptive cells to reject those compounds. Accordingly, the enterocytes metabolize orally incorporated xenobiotics and secrete the hydrophilic metabolites back into the intestinal lumen through specific transporters localized apically. In the recent decades, there has been increasing recognition of the existence of the intestinal cellular barrier. In the present review we focus on the role of the multidrug resistance-associated protein 2 (MRP2, ABCC2) in the apical membrane of the enterocytes, as an important component of this intestinal barrier, as well as on its regulation. We provide a detailed compilation of significant contributions demonstrating that MRP2 expression and function vary under relevant physiological and pathophysiological conditions. Because MRP2 activity modulates the availability and pharmacokinetics of many therapeutic drugs administered orally, their therapeutic efficacy and safety may vary as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Executive Functioning, Barriers to Adherence, and Nonadherence in Adolescent and Young Adult Transplant Recipients.

    PubMed

    Gutiérrez-Colina, Ana M; Eaton, Cyd K; Lee, Jennifer L; Reed-Knight, Bonney; Loiselle, Kristin; Mee, Laura L; LaMotte, Julia; Liverman, Rochelle; Blount, Ronald L

    2016-08-01

    OBJECTIVE : To evaluate levels of executive functioning in a sample of adolescent and young adult (AYA) transplant recipients, and to examine executive functioning in association with barriers to adherence and medication nonadherence.  METHOD : In all, 41 caregivers and 39 AYAs were administered self- and proxy-report measures.  RESULTS : AYA transplant recipients have significant impairments in executive functioning abilities. Greater dysfunction in specific domains of executive functioning was significantly associated with more barriers to adherence and greater medication nonadherence.  CONCLUSION : AYA transplant recipients are at increased risk for executive dysfunction. The assessment of executive functioning abilities may guide intervention efforts designed to decrease barriers to adherence and promote developmentally appropriate levels of treatment responsibility. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  7. Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters.

    PubMed

    Messer, Lauren F; Brown, Mark V; Furnas, Miles J; Carney, Richard L; McKinnon, A D; Seymour, Justin R

    2017-01-01

    Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N 2 ) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N 2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N 2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L -1 d -1 . Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum , γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N 2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N 2 fixing assemblages as a potentially significant source of dissolved N within the water column.

  8. Trimolecular reactions of uranium hexafluoride with water.

    PubMed

    Lind, Maria C; Garrison, Stephen L; Becnel, James M

    2010-04-08

    The hydrolysis reaction of uranium hexafluoride (UF(6)) is a key step in the synthesis of uranium dioxide (UO(2)) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF(6) molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizable barrier of 78.2 kJ x mol(-1), indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO(2) product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF(6) molecules and one water molecule, and (2) the reaction of two water molecules with a single UF(6) molecule. The predicted reaction of two UF(6) molecules with one water molecule displays an interesting "fluorine-shuttle" mechanism, a significant energy barrier of 69.0 kJ x mol(-1) to the formation of UF(5)OH, and an enthalpy of reaction (DeltaH(298)) of +17.9 kJ x mol(-1). The reaction of a single UF(6) molecule with two water molecules displays a "proton-shuttle" mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ x mol(-1) and an exothermic enthalpy of reaction (DeltaH(298)) of -13.9 kJ x mol(-1). The exothermic nature of the overall UF(6) + 2H(2)O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging.

  9. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function.

    PubMed

    Lee, J Scott; Wang, Ruth X; Alexeev, Erica E; Lanis, Jordi M; Battista, Kayla D; Glover, Louise E; Colgan, Sean P

    2018-04-20

    Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  11. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin.

    PubMed

    Korponyai, Csilla; Szél, Edit; Behány, Zoltán; Varga, Erika; Mohos, Gábor; Dura, Ágnes; Dikstein, Shabtay; Kemény, Lajos; Erős, Gábor

    2017-02-08

    Glycerol and xylitol hydrate the skin and improve its barrier function over a short period. We studied the effects of glycerol and xylitol on the physiological properties and morphology of the skin after longer-term application. Twelve volunteers with dry skin were examined. Three areas on the arms were determined. Area 1 served as untreated control. The vehicle was applied to area 2, while area 3 was treated twice daily with a formulation containing glycerol (5%) and xylitol (5%) for 14 days. Transepidermal water loss (TEWL), hydration and biomechanical properties of the skin were monitored. Biopsies were taken for routine histology and immunohistochemistry for filaggrin and matrix metalloproteinase-1 (MMP-1). The polyols increased the skin hydration and protein quantity of filaggrin, elevated the interdigitation index, decreased the TEWL and improved the biomechanical properties of the skin, but did not change the protein expression of MMP-1. A combination of glycerol and xylitol can be useful additional therapy for dry skin.

  12. Water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Smajgl, A.; Larson, S.; Hug, B.; De Freitas, D. M.

    2010-12-01

    SummaryThis paper presents a tool for documenting and monitoring water use benefits in the Great Barrier Reef catchments that allows temporal and spatial comparison along the region. Water, water use benefits and water allocations are currently receiving much attention from Australian policy makers and conservation practitioners. Because of the inherent complexity and variability in water quality, it is essential that scientific information is presented in a meaningful way to policy makers, managers and ultimately, to the general public who have to live with the consequences of the decisions. We developed an inexpensively populated and easily understandable water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region. The index is developed based on a comparative list of selected water-related indices integrating attributes across physico-chemical, economic, social, and ecological domains currently used in the assessment of water quality, water quantity and water use benefits in Australia. Our findings indicate that the proposed index allows the identification of water performance indicators by temporal and spatial comparisons. Benefits for decision makers and conservation practitioners include a flexible way of prioritization towards the domain with highest concern. The broader community benefits from a comprehensive and user-friendly tool, communicating changes in water quality trends more effectively.

  13. Topical Apigenin Improves Epidermal Permeability Barrier Homeostasis in Normal Murine Skin by Divergent Mechanisms

    PubMed Central

    Hou, Maihua; Sun, Richard; Hupe, Melanie; Kim, Peggy L.; Park, Kyungho; Crumrine, Debra; Lin, Tzu-kai; Santiago, Juan Luis; Mauro, Theodora M.; Elias, Peter M.; Man, Mao-Qiang

    2013-01-01

    The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, Chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In the present study, we first determined whether topical apigenin positively influences permeability barrier homeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice-daily for 9 days. At the end of treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homeostasis after tape stripping, though basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were up-regulated by apigenin. Finally, both CAMP and mBD3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels, and impaired antimicrobial defenses, such as atopic dermatitis. PMID:23489424

  14. Long-Term Drainage from the Riprap Side Slope of a Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang

    Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Sitemore » in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.« less

  15. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier.

    PubMed

    McGuire, Paul G; Rangasamy, Sampathkumar; Maestas, Joann; Das, Arup

    2011-12-01

    The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.

  16. Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection.

    PubMed

    Ewaschuk, Julia B; Murdoch, Gordon K; Johnson, Ian R; Madsen, Karen L; Field, Catherine J

    2011-09-01

    The weaning period is associated with an increased prevalence of gastrointestinal infection in many species. Glutamine (Gln) has been shown to improve intestinal barrier function and immune function in both in vivo and in vitro models. The objective of the present study was to determine the effect of dietary Gln supplementation on intestinal barrier function and intestinal cytokines in a model of Escherichia coli infection. We randomised 21-d-old piglets (n 20) to nutritionally complete isonitrogenous diets with or without Gln (4·4 %, w/w) for 2 weeks. Intestinal loops were isolated from anaesthetised pigs and inoculated with either saline or one of the two E. coli (K88AC or K88 wild-type)-containing solutions. Intestinal tissue was studied for permeability, cytokine expression, fluid secretion and tight-junction protein expression. Animals receiving Gln supplementation had decreased potential difference (PD) and short-circuit current (I(sc)) in E. coli-inoculated intestinal loops (PD 0·628 (SEM 0·151) mV; I(sc) 13·0 (SEM 3·07) μA/cm(2)) compared with control-fed animals (PD 1·36 (SEM 0·227) mV; I(sc) 22·4 (SEM 2·24) μA/cm(2)). Intestinal tissue from control, but not from Gln-supplemented, animals responded to E. coli with a significant increase in mucosal cytokine mRNA (IL-1β, IL-6, transforming growth factor-β and IL-10). Tight-junction protein expression (claudin-1 and occludin) was reduced with exposure to E. coli in control-fed animals and was not influenced in Gln-supplemented piglets. Gln supplementation may be useful in reducing the severity of weaning-related gastrointestinal infections, by reducing the mucosal cytokine response and altering intestinal barrier function.

  17. PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism1[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; De Simone, Silvia N.; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J.

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light. PMID:18024556

  18. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.

    PubMed

    Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2017-04-01

    Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.

  19. A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films

    NASA Astrophysics Data System (ADS)

    Kiese, Sandra; Kücükpinar, Esra; Reinelt, Matthias; Miesbauer, Oliver; Ewender, Johann; Langowski, Horst-Christian

    2017-02-01

    Flexible organic electronic devices are often protected from degradation by encapsulation in multilayered films with very high barrier properties against moisture and oxygen. However, metrology must be improved to detect such low quantities of permeants. We therefore developed a modified ultra-low permeation measurement device based on a constant-flow carrier-gas system to measure both the transient and stationary water vapor permeation through high-performance barrier films. The accumulation of permeated water vapor before its transport to the detector allows the measurement of very low water vapor transmission rates (WVTRs) down to 2 × 10-5 g m-2 d-1. The measurement cells are stored in a temperature-controlled chamber, allowing WVTR measurements within the temperature range 23-80 °C. Differences in relative humidity can be controlled within the range 15%-90%. The WVTR values determined using the novel measurement device agree with those measured using a commercially available carrier-gas device from MOCON®. Depending on the structure and quality of the barrier film, it may take a long time for the WVTR to reach a steady-state value. However, by using a combination of the time-dependent measurement and the finite element method, we were able to estimate the steady-state WVTR accurately with significantly shorter measurement times.

  20. Preparation and Characterization of Composites Based on Polylactic Acid and Beeswax with Improved Water Vapor Barrier Properties.

    PubMed

    Lim, Jung Hoon; Kim, Jeong Ae; Ko, Jung A; Park, Hyun Jin

    2015-11-01

    Beeswax and a plasticizer (ATBC) were added to polylactic acid (PLA) films in order to enhance the water vapor barrier properties of the films. Beeswax improved the barrier properties; the water vapor permeability in the composite containing 1% beeswax was 58% lower than that of the neat PLA. Fourier transform infrared spectroscopy and X-ray diffraction analysis revealed that the incorporation of beeswax and ATBC had so little effect on the PLA structure. In addition, the structure of PLA did not vary substantially with the additions. The surfaces of the composites were examined by using field emission scanning electron microscopy. Differential scanning calorimetry results showed that the degree of crystallinity of the PLA films increased with the addition of beeswax and ATBC. However, the tensile strength and elongation at break of the composites containing beeswax were up to approximately 50% lower than those of the neat PLA. Although further study is needed to improve the mechanical properties, the aforementioned results showed that the PLA barrier properties can be improved by the incorporation of a small amount of beeswax and ATBC. The results of this study can be applied for the preparation of PLA composite films with improved barrier properties. Such biodegradable films are extremely useful for applications in the food packaging industry. © 2015 Institute of Food Technologists®

  1. Pericyte Derived Sphinogosine 1-Phosphate Induces the Expression of Adhesion Proteins and Modulates the Retinal Endothelial Cell Barrier

    PubMed Central

    McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.

    2011-01-01

    Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944

  2. Rap1 and Rap2 Antagonistically Control Endothelial Barrier Resistance

    PubMed Central

    Pannekoek, Willem-Jan; Linnemann, Jelena R.; Brouwer, Patricia M.; Bos, Johannes L.; Rehmann, Holger

    2013-01-01

    Rap1 and Rap2 are closely related proteins of the Ras family of small G-proteins. Rap1 is well known to regulate cell-cell adhesion. Here, we have analysed the effect of Rap-mediated signalling on endothelial permeability using electrical impedance measurements of HUVEC monolayers and subsequent determination of the barrier resistance, which is a measure for the ease with which ions can pass cell junctions. In line with its well-established effect on cell-cell junctions, depletion of Rap1 decreases, whereas activation of Rap1 increases barrier resistance. Despite its high sequence homology with Rap1, depletion of Rap2 has an opposite, enhancing, effect on barrier resistance. This effect can be mimicked by depletion of the Rap2 specific activator RasGEF1C and the Rap2 effector MAP4K4, establishing Rap2 signalling as an independent pathway controlling barrier resistance. As simultaneous depletion or activation of both Rap1 and Rap2 results in a barrier resistance comparable to control cells, Rap1 and Rap2 control barrier resistance in a reciprocal manner. This Rap1-antagonizing effect of Rap2 is established independent of junctional actin formation. These data establish that endothelial barrier resistance is determined by the combined antagonistic actions of Rap1 and Rap2. PMID:23469100

  3. Sleep restriction impairs blood-brain barrier function.

    PubMed

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.

  4. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    PubMed Central

    Zuhl, Micah N.; Moseley, Pope L.

    2015-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485

  5. Pilot Study to Evaluate the Effect of Topical Dimethicone on Clinical Signs and Skin Barrier Function in Dogs with Naturally Occurring Atopic Dermatitis

    PubMed Central

    Pellicoro, C.; Marsella, R.; Ahrens, K.

    2013-01-01

    This study investigated the effects of a skin protectant solution (dimethicone 2%) on clinical signs and skin barrier function in canine atopic dermatitis (AD). Eighteen dogs with AD were randomly divided into two groups, one received dimethicone and the other received the vehicle (cyclomethicone) on selected areas (pinnae, groin, and axillae) daily for 4 weeks. Owners and investigators were blinded regarding group allocation. Clinical efficacy was evaluated using a scoring system and skin barrier by measuring the transepidermal water loss. Twelve dogs completed the study (50% drop rate in the vehicle and 20% in the dimethicone). For clinical signs, analysis of variance showed an effect of time (P < 0.005; day 0 > day 28) and region (axillae < groin < pinnae) but no effect of group or group × time interaction. For transepidermal water loss, analysis of variance showed only a main effect of region (axillae > pinnae > groin). Pearson found no correlation between transepidermal water loss and clinical scores. In this pilot study dimethicone had no significant effect on clinical signs and transepidermal water loss in canine atopic dermatitis. PMID:23710417

  6. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  7. Interferon-λ: immune functions at barrier surfaces and beyond

    PubMed Central

    Lazear, Helen M.; Nice, Timothy J.; Diamond, Michael S.

    2015-01-01

    SUMMARY When type III interferon (IFN-λ; also known as interleukin-28 (IL-28) and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to the type I IFNs (IFN-α and IFN-β), via the induction of IFN-stimulated genes (ISGs). While IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Models of viral infection using mice lacking IFN-λ signaling and single nucleotide polymorphism (SNP) associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into the functions of IFN-λ, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease. PMID:26200010

  8. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 1 PERFORMANCE EVALUATIONS AT TWO SITES

    EPA Science Inventory

    The purpose of this document is to provide detailed performance monitoring data on full-scale Permeable Reactive Barriers (PRBs) installed to treat contaminated ground water at two different sites. This report will fill a need for a readily available source of information for si...

  9. Bile duct epithelial tight junctions and barrier function

    PubMed Central

    Rao, R.K.; Samak, G.

    2013-01-01

    Bile ducts play a crucial role in the formation and secretion of bile as well as excretion of circulating xenobiotic substances. In addition to its secretory and excretory functions, bile duct epithelium plays an important role in the formation of a barrier to the diffusion of toxic substances from bile into the hepatic interstitial tissue. Disruption of barrier function and toxic injury to liver cells appear to be involved in the pathogenesis of a variety of liver diseases such as primary sclerosing cholangitis, primary biliary cirrhosis and cholangiocarcinoma. Although the investigations into understanding the structure and regulation of tight junctions in gut, renal and endothelial tissues have expanded rapidly, very little is known about the structure and regulation of tight junctions in the bile duct epithelium. In this article we summarize the current understanding of physiology and pathophysiology of bile duct epithelium, the structure and regulation of tight junctions in canaliculi and bile duct epithelia and different mechanisms involved in the regulation of disruption and protection of bile duct epithelial tight junctions. This article will make a case for the need of future investigations toward our understanding of molecular organization and regulation of canalicular and bile duct epithelial tight junctions. PMID:24665411

  10. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  11. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice

    PubMed Central

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-01-01

    AIM: To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. METHODS: Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. RESULTS: L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P < 0.05; BDL + IBD vs BDL + IBD + L. plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P < 0.05), and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L. plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P < 0.05). The protective effect of L. plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P < 0.05). CONCLUSION: L. plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway. PMID:22912548

  12. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice.

    PubMed

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-08-14

    To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P < 0.05; BDL + IBD vs BDL + IBD + L. plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P < 0.05), and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L. plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P < 0.05). The protective effect of L. plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P < 0.05). L. plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway.

  13. Inundation of a barrier island (Chandeleur Islands, Louisiana, USA) during a hurricane: Observed water-level gradients and modeled seaward sand transport

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Long, Joseph W.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Thompson, David M.; Plant, Nathaniel G.

    2014-07-01

    Large geomorphic changes to barrier islands may occur during inundation, when storm surge exceeds island elevation. Inundation occurs episodically and under energetic conditions that make quantitative observations difficult. We measured water levels on both sides of a barrier island in the northern Chandeleur Islands during inundation by Hurricane Isaac. Wind patterns caused the water levels to slope from the bay side to the ocean side for much of the storm. Modeled geomorphic changes during the storm were very sensitive to the cross-island slopes imposed by water-level boundary conditions. Simulations with equal or landward sloping water levels produced the characteristic barrier island storm response of overwash deposits or displaced berms with smoother final topography. Simulations using the observed seaward sloping water levels produced cross-barrier channels and deposits of sand on the ocean side, consistent with poststorm observations. This sensitivity indicates that accurate water-level boundary conditions must be applied on both sides of a barrier to correctly represent the geomorphic response to inundation events. More broadly, the consequence of seaward transport is that it alters the relationship between storm intensity and volume of landward transport. Sand transported to the ocean side may move downdrift, or aid poststorm recovery by moving onto the beach face or closing recent breaches, but it does not contribute to island transgression or appear as an overwash deposit in the back-barrier stratigraphic record. The high vulnerability of the Chandeleur Islands allowed us to observe processes that are infrequent but may be important at other barrier islands.

  14. Phototropins Function in High-Intensity Blue Light-Induced Hypocotyl Phototropism in Arabidopsis by Altering Cytosolic Calcium1[C][W][OA

    PubMed Central

    Zhao, Xiang; Wang, Yan-Liang; Qiao, Xin-Rong; Wang, Jin; Wang, Lin-Dan; Xu, Chang-Shui; Zhang, Xiao

    2013-01-01

    Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca2+]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca2+ increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca2+]cyt mainly by an inner store-dependent Ca2+-release pathway, not by activating plasma membrane Ca2+ channels. Further analysis showed that the increase in [Ca2+]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca2+]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca2+ signaling-related HBL modulates hypocotyl phototropic responses. PMID:23674105

  15. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

    PubMed

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-03-15

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. Copyright © 2016 the American Physiological Society.

  16. Fibroblast Growth Factor-Peptide Improves Barrier Function and Proliferation in Human Keratinocytes After Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Kunzhong; Tian Yeping; Yin Liangjie

    2011-09-01

    Purpose: Epidermal keratinocytes, which can be severely damaged after ionizing radiation (IR), are rapid turnover cells that function as a barrier, protecting the host from pathogenic invasion and fluid loss. We tested fibroblast growth factor-peptide (FGF-P), a small peptide derived from the receptor-binding domain of FGF-2, as a potential mitigator of radiation effects via proliferation and the barrier function of keratinocytes. Methods and Materials: Keratinocytes isolated from neonatal foreskin were grown on transwells. After being exposed to 0, 5, or 10 Gy IR, the cells were treated with a vehicle or FGF-P. The permeability of IR cells was assessed bymore » using transepithelial electrical resistance (TEER) and a paracellular tracer flux of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) with Ussing chambers. The cell proliferation was measured with yellow tetrazolium salt (MTT) and tritiated thymidine ([{sup 3}H]-TdR) assays. The phosphorylation of extracellular signal-regulated kinases (ERK) was measured in an enzyme-linked immunosorbent (ELISA)-like assay, and the proteins related to tight junctions (TJ) and adherens junctions (AJ) were examined with Western blotting. We used a mouse model to assess the ability of FGF-P to promote the healing of skin {beta} burns created with a strontium applicator. Results: We found (1) FGF-P reduced the permeability of irradiated keratinocytes, as evidenced by increased TEER and decreased diffusion of FITC-BSA, both associated with the regulation of different proteins and levels of TJ and AJ; and (2) FGF-P enhanced the proliferation of irradiated keratinocytes, as evidenced by increased MTT activity and [{sup 3}H]-TdR incorporation, which was associated with activation of the ERK pathway; and (3) FGF-P promoted the healing of skin {beta} burns. Conclusions: FGF-P enhances the barrier function, including up-regulation of TJ proteins, increases proliferation of human keratinocytes, and accelerates

  17. Helminthic therapy: improving mucosal barrier function

    PubMed Central

    Wolff, Martin J.; Broadhurst, Mara J.

    2014-01-01

    The epidemiology of autoimmune diseases and helminth infections led to suggestions that helminths could improve inflammatory conditions, which was then tested using animal models. This has translated to clinical investigations aimed at the safe and controlled reintroduction of helminthic exposure to patients suffering from autoimmune diseases (so-called “helminthic therapy”) in an effort to mitigate the inflammatory response. In this review, we will summarize the results of recent clinical trials of helminthic therapy, with particular attention to mechanisms of action. Whereas previous reviews have emphasized immune regulatory mechanisms activated by helminths, we propose that enhancement of mucosal barrier function may have an equally important role in improving conditions of inflammatory bowel diseases. PMID:22464690

  18. Resistin-like molecule β regulates innate colonic function: Barrier integrity and inflammation susceptibility

    PubMed Central

    Hogan, Simon P.; Seidu, Luqman; Blanchard, Carine; Groschwitz, Katherine; Mishra, Anil; Karow, Margaret L.; Ahrens, Richard; Artis, David; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Rothenberg, Marc E.

    2007-01-01

    Background: Resistin-like molecule (RELM) β is a cysteine-rich cytokine expressed in the gastrointestinal tract and implicated in insulin resistance and gastrointestinal nematode immunity; however, its function primarily remains an enigma. Objective: We sought to elucidate the function of RELM-β in the gastrointestinal tract. Methods: We generated RELM-β gene-targeted mice and examined colonic epithelial barrier function, gene expression profiles, and susceptibility to acute colonic inflammation. Results: We show that RELM-β is constitutively expressed in the colon by goblet cells and enterocytes and has a role in homeostasis, as assessed by alterations in colon mRNA transcripts and epithelial barrier function in the absence of RELM-β. Using acute colonic inflammatory models, we demonstrate that RELM-β has a central role in the regulation of susceptibility to colonic inflammation. Mechanistic studies identify that RELM-β regulates expression of type III regenerating gene (REG) (REG3β and γ), molecules known to influence nuclear factor κB signaling. Conclusions: These data define a critical role for RELM-β in the maintenance of colonic barrier function and gastrointestinal innate immunity. Clinical implications: These findings identify RELM-β as an important molecule in homeostatic gastrointestinal function and colonic inflammation, and as such, these results have implications for a variety of human inflammatory gastrointestinal conditions, including allergic gastroenteropathies. PMID:16815164

  19. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions.

    PubMed

    Spindler, Volker; Waschke, Jens

    2011-02-01

    cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions. © 2011 John Wiley & Sons Ltd.

  20. Accelerated barrier recovery and enhancement of the barrier integrity and properties by topical application of a pH 4 compared to a pH 5.8 w/o emulsion in aged skin.

    PubMed

    Angelova-Fischer, I; Fischer, T W; Abels, C; Zillikens, D

    2018-03-25

    Increased skin surface pH is an important host-related factor for deteriorated barrier function in the aged. We investigated whether restoration of the skin pH through topical application of a water-in-oil (w/o) emulsion with pH 4 improved the barrier homeostasis in aged skin and compared the effects to an identical galenic formulation with pH 5.8. The effects of the test formulations on the barrier recovery were investigated by repeated measurements of transepidermal water loss (TEWL) and skin pH 3 h, 6 h and 24 h after acetone-induced impairment of the barrier function in aged skin. The long-term effects of the pH 4 and pH 5.8 emulsions were analyzed by investigation of the barrier integrity/cohesion, the skin surface pH and the skin roughness and scaliness before and after a 4-week, controlled application of the formulations. The application of the pH 4 emulsion accelerated the barrier recovery in aged skin: 3 h and 6 h after acetone-induced barrier disruption the differences in the TEWL recovery between the pH4-treated and acetone control field were significant. Furthermore, the long-term application of the pH 4 formulation resulted in significantly decreased skin pH, enhanced barrier integrity and reduced skin surface roughness and scaliness. At the same time points, the pH 5.8 formulation exerted only minor effects on the barrier function parameters. Exogenous acidification through topical application of a w/o emulsion with pH 4 leads to improvement of the barrier function and maintenance of the barrier homeostasis in aged skin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Starting a new conversation: Engaging Veterans with spinal cord injury in discussions of what function means to them, the barriers/facilitators they encounter, and the adaptations they use to optimize function.

    PubMed

    Hill, Jennifer N; Balbale, Salva; Lones, Keshonna; LaVela, Sherri L

    2017-01-01

    Assessments of function in persons with spinal cord injury (SCI) often utilize pre-defined constructs and measures without consideration of patient context, including how patients define function and what matters to them. We utilized photovoice to understand how individuals define function, facilitators and barriers to function, and adaptations to support functioning. Veterans with SCI were provided with cameras and guidelines to take photographs of things that: (1) help with functioning, (2) are barriers to function, and (3) represent adaptations used to support functioning. Interviews to discuss photographs followed and were audio-recorded, transcribed, and analyzed using grounded-thematic coding. Nvivo 8 was used to store and organize data. Participants (n = 9) were male (89%), Caucasian (67%), had paraplegia (75%), averaged 64 years of age, and were injured, on average, for 22 years. Function was described in several ways: the concept of 'normalcy,' aspects of daily living, and ability to be independent. Facilitators included: helpful tools, physical therapy/therapists, transportation, and caregivers. Barriers included: wheelchair-related issues and interior/exterior barriers both in the community and in the hospital. Examples of adaptations included: traditional examples like ramps, and also creative examples like the use of rubber bands on a can to help with grip. Patient-perspectives elicited in-depth information that expanded the common definition of function by highlighting the concept of "normality," facilitators and barriers to function, and adaptations to optimize function. These insights emphasize function within a patient-context, emphasizing a holistic definition of function that can be used to develop personalized, patient-driven care plans. Published by Elsevier Inc.

  2. The Functional Network of the Arabidopsis Plastoglobule Proteome Based on Quantitative Proteomics and Genome-Wide Coexpression Analysis1[C][W][OA

    PubMed Central

    Lundquist, Peter K.; Poliakov, Anton; Bhuiyan, Nazmul H.; Zybailov, Boris; Sun, Qi; van Wijk, Klaas J.

    2012-01-01

    Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions. PMID:22274653

  3. Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties.

    PubMed

    Ho, Thao T T; Zimmermann, Tanja; Ohr, Steffen; Caseri, Walter R

    2012-09-26

    Composites of trimethylammonium-modified nanofibrillated cellulose and layered silicates (TMA-NFC/LS) were prepared by high-shear homogenization followed by pressure filtration and vacuum hot-pressing, which gave rise to particularly homogeneous dispersion of the silicate particles. Thirteen different clays and micas were employed. Water vapor barrier and mechanical properties (tensile strength, E-modulus, strain at break) of the composite films were investigated, considering the effects of layered silicate types and their concentration (in the range of 0 to 85 wt %). Good interactions between TMA-NFC and LS were obtained due to electrostatic attraction between cationic fibrils and anionic silicate layers, and even favored by high-shear homogenization process. Furthermore, oriented TMA-NFC/LS composite structure was achieved. Layered silicates exerted a pronounced influence on the water vapor barrier and mechanical properties; however, there was no common trend reflecting their types. The transport of water molecules through TMA-NFC/LS composites was studied considering both diffusion and adsorption mechanisms. As a result, diffusion pathways were proposed based on two new and one well-known models: the "native network", "covered fiber composite", and "fiber-brick composite" models. Importantly, it was found that the insertion of layered silicate particles did not improve automatically the barrier properties as indicated by the commonly used "fiber-brick composite" model. Mica R120 at a 50 wt % loading in composites with TMA-NFC matrix showed 30-fold improved water vapor permeability and 5-fold higher E-modulus compared to commercially used base paper.

  4. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function after Hemorrhagic Shock

    PubMed Central

    Huby, Maria P.; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A.; Doursout, Marie-Francoise; Holcomb, John B.; Wade, Charles E.; Ko, Tien C.

    2015-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared to normal individuals, plasma adiponectin levels decreased to 49% in HS patients prior to resuscitation (p<0.05) and increased to 64% post resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared to baseline (p<0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS. PMID:26263440

  5. Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.

    PubMed

    Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong

    2018-01-23

    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.

  6. Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties1[W

    PubMed Central

    Vishwanath, Sollapura J.; Kosma, Dylan K.; Pulsifer, Ian P.; Scandola, Sabine; Pascal, Stéphanie; Joubès, Jérôme; Dittrich-Domergue, Franziska; Lessire, René; Rowland, Owen; Domergue, Frédéric

    2013-01-01

    Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier. PMID:24019425

  7. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane

    NASA Astrophysics Data System (ADS)

    Hosseini, Mostafa; Azamat, Jafar; Erfan-Niya, Hamid

    2018-01-01

    Molecular dynamics simulations were performed to investigate the water desalination performance of nanoporous graphene oxide (NPGO) membranes. The simulated systems consist of a NPGO as a membrane with a functionalized pore in its center immersed in an aqueous ionic solution and a graphene sheet as a barrier. The considered NPGO membranes are involved four types of pore with different size and chemistry. The results indicated that the NPGO membrane has effective efficiency in salt rejection as well as high performance in water flux. For all types of pore with the radius size of 2.9-4.5 Å, the NPGO shows salt rejection of >89%. Functional groups on the surface and edge of pores have a great effect on water flux. To precisely understand the effect of functional groups on the surface of nanostructured membranes, nanoporous graphene was simulated under the same condition for comparison. Hydrophilic groups on the surface make the NPGO as an ultra-permeable membrane. As a result, the obtained water flux for NPGO was about 77% greater than graphene. Also, it was found that the water flux of NPGO is 2-5 orders of magnitude greater than other existing reverse osmosis membranes. Therefore, the investigated systems can be recommended as a model for the water desalination.

  8. Ceramide 1 and ceramide 3 act synergistically on skin hydration and the transepidermal water loss of sodium lauryl sulfate-irritated skin.

    PubMed

    Huang, Huey-Chun; Chang, Tsong-Min

    2008-08-01

    Stratum corneum intercellular lipids, such as ceramides, play an important role in the regulation of skin water barrier homeostasis and water-holding capacity. Aim To evaluate the potential water retention capacity of control emulsion and three oil-in-water (o/w) emulsions containing ceramide 1, ceramide 3, or both. Fifteen healthy Asian women (age, 20-30 years) with healthy skin, pretreated with sodium lauryl sulfate (SLS), applied the tested emulsions twice daily over a period of 28 days. Skin hydration and transepidermal water loss (TEWL) values were measured on the indicated days with a Corneometer(R)825 and a TEWAMETER TM210, respectively. The maximum increase in skin humidity was reached after 4 weeks, with values of 21.9 +/- 1.8% and 8.9 +/- 0.9% for emulsion C and control emulsion, respectively. The maximum decrease in TEWL was also reached after 4 weeks, with values of 36.7 +/- 4.7% and 5.1 +/- 0.8% for the same emulsions. It can be concluded that all the tested ceramide-containing emulsions improved skin barrier function when compared with untreated skin. There was some indication that ceramides 1 and 3 contained in emulsion C might exert a beneficial synergistic effect on skin biochemical properties, such as skin hydration and TEWL, and play a key role in the protection mechanism against SLS irritation.

  9. The blood-brain barrier: an engineering perspective

    PubMed Central

    Wong, Andrew D.; Ye, Mao; Levy, Amanda F.; Rothstein, Jeffrey D.; Bergles, Dwight E.; Searson, Peter C.

    2013-01-01

    It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich's first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases. PMID:24009582

  10. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

    PubMed

    Edogawa, Shoko; Peters, Stephanie A; Jenkins, Gregory D; Gurunathan, Sakteesh V; Sundt, Wendy J; Johnson, Stephen; Lennon, Ryan J; Dyer, Roy B; Camilleri, Michael; Kashyap, Purna C; Farrugia, Gianrico; Chen, Jun; Singh, Ravinder J; Grover, Madhusudan

    2018-06-13

    Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

  11. War experiences, general functioning and barriers to care among former child soldiers in Northern Uganda: the WAYS study.

    PubMed

    Amone-P'Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio

    2014-12-01

    Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Measurement of transepidermal water loss (TEWL) in cats with experimental skin barrier dysfunction using a closed chamber system.

    PubMed

    Momota, Yutaka; Shimada, Kenichiro; Gin, Azusa; Matsubara, Takako; Azakami, Daigo; Ishioka, Katsumi; Nakamura, Yuka; Sako, Toshinori

    2016-10-01

    A closed chamber evaporimeter is suitable for measuring transepidermal water loss (TEWL) in cats because of the compact device size, tolerance to sudden movement and short measuring time. TEWL is a representative parameter for skin barrier dysfunction, which is one of the clinical signs of atopic dermatitis in humans and dogs. Measurement of feline TEWL has been reported, but applicability of this parameter has not been validated. The aims of this study were to determine if tape stripping is a valid experimental model in cats for studying TEWL and to determine if a closed chambered system is a suitable measurement tool for cats. Ten clinically normal cats. In order to evaluate variation of the measured values, TEWL was measured at the right and left side of the three clipped regions (axillae, lateral thigh and groin). Subsequently, TEWL was measured using sequential tape stripping of the stratum corneum as a model of acute barrier disruption. The variations between both sides of the three regions showed no significant difference. Sequential tape stripping was associated with increasing values for TEWL. Feline TEWL was shown to reflect changes in the skin barrier in an experimental model using a closed chamber system and has the potential for evaluating skin barrier function in cats with skin diseases. © 2016 ESVD and ACVD.

  13. Problems with provision: barriers to drinking water quality and public health in rural Tasmania, Australia.

    PubMed

    Whelan, Jessica J; Willis, Karen

    2007-01-01

    Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.

  14. Antibacterial [2-(Methacryloyloxy) ethyl] Trimethylammonium Chloride Functionalized Reduced Graphene Oxide/Poly(ethylene-co-vinyl alcohol) Multilayer Barrier Film for Food Packaging.

    PubMed

    Wang, Hualin; Chen, Minmin; Jin, Chongyang; Niu, Baicheng; Jiang, Suwei; Li, Xingjiang; Jiang, Shaotong

    2018-01-24

    The objective of present work was to construct antibacterial [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized reduced graphene oxide/poly(ethylene-co-vinyl alcohol) (MTAC-rGO/EVOH) multilayer barrier films by using layer-by-layer assembly under a parallel electric field. Besides barrier and mechanical properties, the antibacterial activities of the film and cytotoxicity of MTAC-rGO nanosheets were extensively investigated. The functionalization of rGO was achieved by grafting MTAC onto a graphene framework through C (sp 3 )-C bonds. The assembly of MTAC-rGO on the EVOH matrix not only significantly improved film mechanical strength, but also endowed the targeting film with outstanding moisture barrier even under a relative humidity of 99% (e.g., 0.019 g m -2 s -1 atm -1 for (MTAC-rGO/EVOH) 20 ) besides good oxygen barrier (e.g., 0.07 cm 3 m -2 d -1 atm -1 for (MTAC-rGO/EVOH) 20 ). Among the testing films, MTAC-rGO/EVOH film had the best antibacterial activity, and the activity against S. aureus was better than E. coli. Meanwhile, the cytotoxicity of MTAC-rGO nanosheets was very low. Results suggest that MTAC-rGO/EVOH film may have great potential in food active packaging.

  15. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  16. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.

    PubMed

    Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B

    2017-11-01

    Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models ( Villin-CreER T2 ;Klf5 fl/fl designated as Klf5 ΔIND and Villin-Cre;Klf5 fl/fl as Klf5 ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND ). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2 , which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2 , a gene encoding a major component of desmosome structures. NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function

  17. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier.

    PubMed

    Crawford, Melissa; Dagnino, Lina

    2017-10-02

    The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.

  18. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    PubMed

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  20. Probabilistic migration modelling focused on functional barrier efficiency and low migration concepts in support of risk assessment.

    PubMed

    Brandsch, Rainer

    2017-10-01

    Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.

  1. Chronic social stress in pigs impairs intestinal barrier and nutrient transporter function, and alters neuro-immune mediator and receptor expression

    PubMed Central

    Li, Yihang; Song, Zehe; Kerr, Katelyn A.; Moeser, Adam J.

    2017-01-01

    Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and nutrient transport function, corticotropin releasing factor (CRF) signaling and immunological responses. Results from this study showed that CSS resulted in a significant impairment of ileal and colonic barrier function indicated by reduced transepithelial electrical resistance (TER) in the ileum and increased FD4 flux in the ileum (by 0.8 fold) and colon (by 0.7 fold). Ileal sodium glucose linked transporter 1 (SGLT-1) function, measured as glucose-induced changes in short-circuit current (Isc), was diminished (by 52%) in CSS pigs, associated with reduced body weight gain and feed efficiency. Although reductions in SGLT-1 function were observed in CSS pigs, mRNA expression for SGLT-1, villus heights were increased in CSS pigs. Corticotropin releasing factor (CRF) mRNA was upregulated (by 0.9 fold) in the ileum of CSS pigs but not in the colon. Urocortin 2 (Ucn2) mRNA was upregulated (by 1.5 fold) in the colon of CSS pigs, but not in the ileum. In CSS pigs, a downregulation of pro-inflammatory cytokines mRNA (IL1B, TNFA, IL8, and IL6) was observed in both ileum and colon, compared with controls. In contrast CSS induced a marked upregulation of mRNA for IL10 and mast cell chymase gene (CMA1) in the ileum and colon. Together, these data demonstrate that chronic stress in pigs results in significant alterations in intestinal barrier and nutrient transport function and neuro-immune mediator and receptor expression. PMID:28170426

  2. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water

    NASA Astrophysics Data System (ADS)

    Zelong, ZHANG; Jie, SHEN; Cheng, CHENG; Zimu, XU; Weidong, XIA

    2018-04-01

    Atmospheric pressure helium/water dielectric barrier discharge (DBD) plasma is used to investigate the generation of reactive species in a gas-liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy (OES) with different discharge powers at the gas-liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary long-lived reactive species such as H2O2, {{{{NO}}}3}- and O3 are measured based on plasma treatment time. After 5 min of discharge treatment, the concentration of H2O2, {{{{NO}}}3}-, and O3 increased from 0 mg · L-1 to 96 mg · L-1, 19.5 mg · L-1, and 3.5 mg · L-1, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.

  3. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells.

    PubMed

    Gardner, T W; Lieth, E; Khin, S A; Barber, A J; Bonsall, D J; Lesher, T; Rice, K; Brennan, W A

    1997-10-01

    Diabetic retinopathy and other diseases associated with retinal edema are characterized by increased microvascular leakage. Astrocytes have been proposed to maintain endothelial function in the brain, suggesting that glial impairment may underlie the development of retinal edema. The purpose of this study was to test the effects of astrocytes on barrier properties in retinal microvascular endothelial cells. Bovine retinal microvascular endothelial cells were exposed to conditioned media from rat brain astrocytes. Transendothelial electrical resistance (TER) was determined on 24-mm Transwell (Cambridge, MA) polycarbonate filters with the End-Ohm device (World Precision Instruments, Sarasota, FL). ZO-1 protein content was quantified by microtiter enzyme-linked immunosorbent assay. Astrocyte-conditioned medium (ACM) significantly increased TER (P < 0.0001) and ZO-1 content (P < 0.01). Both serum-containing and serum-free N1B defined ACM increased ZO-1 expression, but heating abolished the effect. Serum-free ACM decreased cell proliferation by 16%. Astrocytes release soluble, heat-labile factors that increase barrier properties and tight junction protein content. These results suggest that astrocytes enhance blood-retinal barrier properties, at least in part by increasing tight junction protein expression. Our findings suggest that glial malfunction plays an important role in the pathogenesis of vasogenic retinal edema.

  4. Transport methods for probing the barrier domain of lipid bilayer membranes.

    PubMed Central

    Xiang, T X; Chen, X; Anderson, B D

    1992-01-01

    Two experimental techniques have been utilized to explore the barrier properties of lecithin/decane bilayer membranes with the aim of determining the contributions of various domains within the bilayer to the overall barrier. The thickness of lecithin/decane bilayers was systematically varied by modulating the chemical potential of decane in the annulus surrounding the bilayer using different mole fractions of squalene in decane. The dependence of permeability of a model permeant (acetamide) on the thickness of the solvent-filled region of the bilayer was assessed in these bilayers to determine the contribution of this region to the overall barrier. The flux of acetamide was found to vary linearly with bilayer area with Pm = (2.9 +/- 0.3) x 10(-4) cm s-1, after correcting for diffusion through unstirred water layers. The ratio between the overall membrane permeability coefficient and that calculated for diffusion through the hydrocarbon core in membranes having maximum thickness was 0.24, suggesting that the solvent domain contributes only slightly to the overall barrier properties. Consistent with these results, the permeability of acetamide was found to be independent of bilayer thickness. The relative contributions of the bilayer interface and ordered hydrocarbon regions to the transport barrier may be evaluated qualitatively by exploring the effective chemical nature of the barrier microenvironment. This may be probed by comparing functional group contributions to transport with those obtained for partitioning between water and various model bulk solvents ranging in polarity or hydrogen-bonding potential. A novel approach is described for obtaining group contributions to transport using ionizable permeants and pH adjustment. Using this approach, bilayer permeability coefficients of p-toluic acid and p-hydroxymethyl benzoic acid were determined to be 1.1 +/- 0.2 cm s-1 and (1.6 +/- 0.4) x 10(-3) cm s-1, respectively. From these values, the -OH group contribution

  5. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    PubMed

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  6. Schistosoma japonicum ova maintains epithelial barrier function during experimental colitis.

    PubMed

    Xia, Chen-Mei; Zhao, Yuan; Jiang, Li; Jiang, Jie; Zhang, Shun-Cai

    2011-11-21

    To evaluate the impacts of Schistosoma japonicum (S. japonicum) ova on the tight junction barriers in a trinitrobenzenesulfonic acid (TNBS)-induced colitis model. Balb/c mice were randomly divided into three groups: control group; TNBS(+)ova(-) group and TNBS(+)ova(+) group. TNBS was used intracolonic to induce colitis and mice of the TNBS(+)ova(+) group were pre-exposed to S. japonicum ova as a prophylactic intervention. Colon inflammation was quantified using following variables: mouse mortality, weight loss, colon extent and microscopic inflammation score. Serum expression of tumor necrosis factor-α and interferon-γ were assessed to evaluate the systemic inflammatory response. NOD2 and its mRNA were also tested. Bacterial translocations were tested by culturing blood and several tissues. ZO-1 and occludin were chosen as the representations of tight junction proteins. Both the proteins and mRNA were assessed. Ova pre-treatment contributed to the relief of colitis and decreased the mortality of the models. NOD2 expression was significantly downregulated when pretreated with the ova. The TNBS injection caused a significant downregulation of ZO-1 and occludin mRNA together with their proteins in the colon; ova pre-exposure reversed these alterations. Treatment with S. japonicum ova in the colitis model caused lower intestinal bacterial translocation frequency. S. japonicum ova can maintain epithelial barrier function through increasing tight junction proteins, thus causing less exposure of NOD2 to the luminal antigens which may activate a series of inflammatory factors and induce colitis.

  7. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    PubMed Central

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  8. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats.

    PubMed

    He, Hui-Juan; Wang, Yi; Le, Yuan; Duan, Kai-Ming; Yan, Xue-Bin; Liao, Qin; Liao, Yan; Tong, Jian-Bin; Terrando, Niccolò; Ouyang, Wen

    2012-12-01

    Postoperative cognitive dysfunction (POCD) is a growing and largely underestimated problem without defined etiology. Herein, we sought to determine the relationship between cognitive decline, blood-brain barrier (BBB) permeability, and inflammation, namely high mobility group box-1 (HMGB1), after surgery in aged rats. Aged rats were randomly assigned as surgery group (n = 45, splenectomy under general anesthesia), anesthesia (n = 45, 2% isoflurane for 2 h), and naïve control (n = 15). Markers of inflammation were measured in plasma and brain. Blood-brain barrier ultrastructure and permeability were measured by transmission electron microscope (TEM) and IgG immunohistochemistry. Cognitive function was assessed in a reversal learning version of the Morris water maze (MWM). Surgical trauma under general anesthesia caused distinct changes in systemic and central proinflammatory cytokines. Levels of HMGB1 and the receptor for advanced glycation end products (RAGE) were significantly upregulated in the hippocampus of operated animals. Immunohistochemistry and TEM showed BBB disruption induced by surgery and anesthesia. These molecular changes were associated with cognitive impairment in latency with the MWM up to postoperative day 3. HMGB1 and RAGE signaling appear pivotal mediators of surgery-induced cognitive decline and may contribute to the changes in BBB permeability after peripheral surgical trauma. © 2012 Blackwell Publishing Ltd.

  9. Iodine and selenium in natural water, their fixation on geochemical barriers in soils and rocks and explanation of I and Se behavior in water-solid phase system using thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Ryzhenko, Boris; Cherkasova, Elena; Sedykh, Ivelina; Korsakova, Nadezhda; Berezkin, Victor; Kolmykova, Lyudmila; Danilova, Valentina; Khushvakhtova, Sabzbakhor

    2014-05-01

    Iodine and selenium are essential for normal functioning of thyroid gland. Their natural deficiency in areas subjected to radioiodine contamination during nuclear tests and accidents may increase the risk of thyroid cancer among the most sensitive groups of population. Deficiency is caused by both the low abundance of microelements in the environmental components of the local food chain and their fixation on geochemical barriers due to such processes as chemical transformation, sorption, chemisorption, complexing. The studies of iodine and selenium distribution in soils, herbs and drinking water in rural settlements of the Bryansk oblast' confirmed low level of iodine and selenium content in local soils, plants and water and revealed different character of their distribution in soils and waters formed in geochemically different conditions of water migration in areas of fluvioglacial, moraine and loess-like soil forming rocks (the polesje, moraine and opolje landscapes correspondingly). Iodine content in top horizons of the soils developed on loess-like sediments and rich in organic matter was considerably higher as compared to those formed on sandy moraine or fluvioglacial sediments. For selenium the difference was not pronounced. Iodine was noted for positive correlation with Corg and fixation in the soil profile on carbonate barrier. A negative correlation was found between selenium content in grasses and in topsoil of subordinated elementary landscapes characterized by waterlogged and reduction conditions in soils. Thermodynamic modeling performed for 47 water samples on the basis of their chemical composition helped to explain the established patterns of iodine and selenium behavior in soil-water system. It demonstrated the possibility of existence of CaI+ and MgI+ complexes in water and sedimentation of FeSe(cr) in presence of a considerable amount of Fe2+. Iodine complexation with Ca and Mg ions may explain its further fixation on carbonate barrier in soils

  10. The effect of adhesive dressing edges on cutaneous irritancy and skin barrier function.

    PubMed

    Dykes, P J

    2007-03-01

    To assess the effect of repeated application and removal of adhesive edges from wound-care products on cutaneous irritancy and barrier function in normal volunteer subjects. This was a study using a 'repeat-insult patch test'. Adhesive edges from six commonly used wound-care products were applied continuously to the same site (six applications over a 14-day period) in 30 normal volunteer subjects. The test sites were assessed clinically before product reapplication using established ranking scales for cutaneous erythema. The cumulative irritancy score (CIS) for each test site was determined by adding the erythema scores at days 3, 5, 8, 10, 12 and 15. At the study end the barrier function of each test site was assessed by measuring transepidermal water loss (TEWL). The CIS showed that the products fall into two distinct groups, with Mepilex, Tielle and Allevyn giving low scores and Biatain, Comfeel and DuoDERM higher scores. Statistical analysis indicated significant differences (p < 0.05) between Mepilex and Biatain, Mepilex and Comfeel, Mepilex and DuoDERM, Tielle and Biatain, Allevyn and Biatain. The mean TEWL values also indicated that the products fall into two distinct groups: Mepilex, Tielle and Allevyn with low mean values close to that of normal adjacent back skin and Biatain, Comfeel and DuoDERM with much higher mean values. Statistical analysis indicated that Mepilex, Tielle and Allevyn were not significantly different from normal skin (p < 0.05), whereas Biatain, Comfeel and DuoDERM were significantly higher than normal skin and the other products tested. The results show clear differences between products; the clinical scores and TEWL measurements indicate that the products fall into two distinct groups. This novel approach seems able to discriminate between adhesive borders and may be useful during product development and in selecting products for clinical trials.

  11. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  12. Fission barriers from multidimensionally-constrained covariant density functional theories

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2017-11-01

    In recent years, we have developed the multidimensionally-constrained covariant density functional theories (MDC-CDFTs) in which both axial and spatial reflection symmetries are broken and all shape degrees of freedom described by βλμ with even μ, such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-CDFTs have been applied to the investigation of potential energy surfaces and fission barriers of actinide nuclei, third minima in potential energy surfaces of light actinides, shapes and potential energy surfaces of superheavy nuclei, octupole correlations between multiple chiral doublet bands in 78Br, octupole correlations in Ba isotopes, the Y32 correlations in N = 150 isotones and Zr isotopes, the spontaneous fission of Fm isotopes, and shapes of hypernuclei. In this contribution we present the formalism of MDC-CDFTs and the application of these theories to the study of fission barriers and potential energy surfaces of actinide nuclei.

  13. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability.

    PubMed

    Sauer, Reine-Solange; Krug, Susanne M; Hackel, Dagmar; Staat, Christian; Konasin, Natalia; Yang, Shaobing; Niedermirtl, Benedikt; Bosten, Judith; Günther, Ramona; Dabrowski, Sebastian; Doppler, Kathrin; Sommer, Claudia; Blasig, Ingolf E; Brack, Alexander; Rittner, Heike L

    2014-07-10

    The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using μ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus

    PubMed Central

    Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.

    2015-01-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424

  15. Alteration of intestinal barrier function during activity-based anorexia in mice.

    PubMed

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p < 0.001) and weight loss was more pronounced in ABA and PF compared to LFA mice (23.6 ± 1.6% and 24.7 ± 0.7% vs. 16.5 ± 1.2%; p < 0.05). Colonic histology showed decreased thickness of the muscularis layer in ABA compared to LFA mice (p < 0.05). Colonic permeability was increased in both ABA and PF compared to LFA mice (p < 0.05) but jejunal paracellular permeability was not affected. Expression of claudin-1 in the colon was lower in the ABA than the LFA group (p < 0.05), whereas occludin expression remained unaffected. Increased colonic permeability and histological alterations found in ABA mice suggest that intestinal barrier dysfunction may also occur in anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang Fred; Strickland, Christopher E.; Link, Steven O.

    Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. The Prototype Hanford Barrier (PHB) was designed as a 1000-year barrier with pre-determined design and performance objectives and demonstrated in field from 1994 to present. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barriermore » satisfied nearly all key objectives. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford’s semiarid climate, limited drainage to well below the 0.5 mm yr-1 performance criterion, limited runoff, and minimized erosion. Given the two-decade record of successful performance and consideration of all the processes and mechanisms that could degrade the stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the base for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste.« less

  17. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions.

    PubMed

    Narvekar, Mayuri; Xue, Hui Yi; Eoh, June Young; Wong, Ho Lun

    2014-08-01

    Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.

  18. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis.

    PubMed

    Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y

    2010-01-01

    Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.

  19. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    PubMed

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  20. Rotational barriers. 1. 1,2-dihaloethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiberg, K.B.; Murcko, M.A.

    1987-06-18

    The rotational barrier about the C-C bond of 1,2-dichloroethane has been calculated by using several basis sets (4-31G, 6-31G*, 6-31+G*, and 6-31++G**) and including electron correlation. Corrections for zero-point energy differences, and the differences in enthalpy change from 0 to 298 K, were made by using the calculated geometries and vibrational frequencies. The trans/gauche energy difference was found to be 1.39 kcal/mol as compared to the observed value, 1.1 +/- 0.1 kcal/mol. The intramolecular interactions in the several rotamers are discussed. The trans/gauche energy difference for 1,2-difluoroethane also was calculated (MP3/6-311++G**) and was found to be 0.76 kcal/mol favoring themore » gauche conformer, again in good agreement with the experimental value of 0.57 +/- 0.09 kcal/mol. The trend in trans/gauche energy differences in the series n-butane, 1,2-dichloroethane, 1,2-difluoroethane is noted.« less

  1. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.

    PubMed

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2016-01-14

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.

  2. Assessing the Role of Dune Topography on a Fresh Water Lens of a Siliciclastic Barrier Along the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Anderson, C. P.; Carter, G. A.; Mooneyhan, D.

    2013-12-01

    Carlton P. Anderson, Gregory Carter, and David Mooneyhan University of Southern Mississippi Gulf Coast Geospatial Center Department of Geography and Geology Carlton.p.anderson@eagles.usm.edu The Mississippi-Alabama (MS-AL) barrier island chain consist of dynamic depositional landforms that constantly undergo changes in their evolutionary processes through changes in sea level, sediment supply, and weather events. These complex landscapes of the Northern Gulf of Mexico (NGOM) provide a chance to study their geomorphological progressions, which have been produced by sea level rise and fluvial processes throughout the Holocene. Studies on the freshwater lens of barriers have mainly concentrated on carbonate island settings with minimal focus to barriers with siliciclastic geology. The purpose of this study is to examine the relationship beach dune topography plays in the development and sustainability of the fresh water lens of Cat Island, Mississippi. Cat Island offers the opportunity to research a siliciclastic barrier along the NGOM where minimal anthropogenic activities have taken place. To determine the effect dune topography has on the fresh water lens, a transect of permanent water wells were used in conjunction with test wells at different sites throughout the north spit of the island, to establish the water table height above the ellipsoid (WGS 84), with vertical accuracies of 2 cm. Cross-sectional profiles of the dunes were also performed utilizing purposeful transects that intersected fresh water ponds in the dune-swale systems. These ponds provide water table elevations at the surface which were interpolated across the dunes for areas that lacked permanent well sites. To obtain survey-grade accuracies, a Trimble TSC3 receiver coupled with a R8 antennae RTK system were used. Salinity measurements were taken at test sites to determine the salt-to-freshwater interface. Results provide insights into how dune topography influences the fresh water lens of a

  3. Beyond the Barrier: Communication in the Root through the Endodermis1

    PubMed Central

    Robbins, Neil E.; Trontin, Charlotte; Duan, Lina; Dinneny, José R.

    2014-01-01

    The root endodermis is characterized by the Casparian strip and by the suberin lamellae, two hydrophobic barriers that restrict the free diffusion of molecules between the inner cell layers of the root and the outer environment. The presence of these barriers and the position of the endodermis between the inner and outer parts of the root require that communication between these two domains acts through the endodermis. Recent work on hormone signaling, propagation of calcium waves, and plant-fungal symbiosis has provided evidence in support of the hypothesis that the endodermis acts as a signaling center. The endodermis is also a unique mechanical barrier to organogenesis, which must be overcome through chemical and mechanical cross talk between cell layers to allow for development of new lateral organs while maintaining its barrier functions. In this review, we discuss recent findings regarding these two important aspects of the endodermis. PMID:25125504

  4. Barriers to activity and participation for stroke survivors in rural China.

    PubMed

    Zhang, Lifang; Yan, Tiebin; You, Liming; Li, Kun

    2015-07-01

    To investigate environmental barriers reported by stroke survivors in the rural areas of China and to determine the impact of environmental barriers on activity and participation relative to demographic characteristics and body functioning. Cross-sectional survey. Structured interviews in the participants' homes. Community-dwelling stroke survivors in the rural areas of China (N=639). Not applicable. Activity and participation (Chinese version of the World Health Organization Disability Assessment Schedule 2.0), environmental barriers (Craig Hospital Inventory of Environmental Factors), neurological function (Canadian Neurological Scale), cognitive function (Abbreviated Mental Test), and depression (6-item Hamilton Rating Scale for Depression). Physical/structural barriers are the major impediment to activity and participation for these participants (odds ratio, 1.86 and 1.99 for activity and participation, respectively; P<.01). Services/assistance barriers primarily impede participation rather than activity (odds ratio, 1.58 in participation; P<.05). Physical/structural and services/assistance barriers were considered the dominant barriers to activity and participation for stroke survivors in the rural areas of China. Attitudinal/support and policy barriers did not emerge as serious concerns. To generate an enabling environment, physical/structural and services/assistance barriers are the environmental barriers to be decreased and eliminated first. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    PubMed

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  6. [Barriers and challenges of the functional healthcare risk management units in hospitals of Madrid health service].

    PubMed

    Pardo-Hernández, A; Navarro-Royo, C; Arguedas-Sanz, R; Albeniz-Lizarraga, C; Morón-Merchante, J

    2014-01-01

    To identify the barriers and challenges for the effective development of risk management units in hospitals of the Madrid Health Service. Descriptive cross-sectional study aimed at the management teams and members of the functional units of 31 hospitals in the Madrid Health Service. A self-administered questionnaire requesting answers in free text was used, identifying up to five barriers and challenges, and their prioritization by awarding from 1-5 points according to their importance. A discourse analysis was then conducted, grouping common themes and sorting them according to their score. The overall response rate was 94%. The most frequently identified barriers were lack of time (21%), inadequate safety culture (13%), lack of publication of their activities (10%), and lack of training (10%). The most important challenge was developing the training (18%), followed by improving the culture (17%), communication of safety activities (11%), and achieve leadership from the managers of the services (11%). According to the study conditions, the main identified barrier identified was the lack of available time, and the principal challenge found was promoting a proactive learning culture. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  7. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Great Barrier Reef of Queensland, Australia extends for roughly 2,000 km along the northeast coast of Australia and is made up of thousands of individual reefs which define the edge of the Continental shelf. Swan Reef, the southern part of the reef system, is seen in this view. Water depths around the reefs are quite shallow (less than 1 to 36 meters) but only a few kilometers offshore, water depths can reach 1,000 meters.

  8. Effect of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Skin Hydration and Barrier Function in Human Epidermal Keratinocytes.

    PubMed

    Woo, Seon Wook; Rhim, Dong-Bin; Kim, Changhee; Hwang, Jae-Kwan

    2015-03-01

    The skin plays a key role in protecting the body from the environment and from water loss. Cornified envelope (CE) and natural moisturizing factor (NMF) are considered as the primary regulators of skin hydration and barrier function. The CE prevents loss of water from the body and is formed by cross-linking of several proteins. Among these proteins, filaggrin is an important protein because NMF is produced by the degradation of filaggrin. Proteases, including matriptase and prostasin, stimulate the generation of filaggrin from profilaggrin and caspase-14 plays a role in the degradation of filaggrin. This study elucidated the effects of an ethanol extract of Boesenbergia pandurata (Roxb.) Schltr., known as fingerroot, and its active compound panduratin A on CE formation and filaggrin processing in HaCaT, human epidermal keratinocytes. B. pandurata extract (BPE) and panduratin A significantly stimulated not only CE formation but also the expression of CE proteins, such as loricrin, involucrin, and transglutaminase, which were associated with PPARα expression. The mRNA and protein levels of filaggrin and filaggrin-related enzymes, such as matriptase, prostasin, and caspase-14 were also up-regulated by BPE and panduratin A treatment. These results suggest that BPE and panduratin A are potential nutraceuticals which can enhance skin hydration and barrier function based on their CE formation and filaggrin processing.

  9. Contextual and interdependent causes of climate change adaptation barriers: Insights from water management institutions in Himachal Pradesh, India.

    PubMed

    Azhoni, Adani; Holman, Ian; Jude, Simon

    2017-01-15

    Research on adaptation barriers is increasing as the need for climate change adaptation becomes evident. However, empirical studies regarding the emergence, causes and sustenance of adaptation barriers remain limited. This research identifies key contextual causes of adaptation barriers in water institutions in the mountainous Himalayan state of Himachal Pradesh in northern India. Semi-structured interviews were carried out with representatives from twenty-six key governmental, non-governmental, academic and research institutions in the State with responsibilities spanning domestic water supply, irrigation and hydropower generation, environmental monitoring and research. It identified low knowledge capacity and resources, policy implementation gaps, normative attitudes, and unavailability and inaccessibility of data and information compounded with weak interinstitutional networks as key adaptation barriers. Although these barriers are similar to those reported elsewhere, they have important locally-contextual root causes. For instance, inadequate resources result from fragmented resources allocation due to competing developmental priorities and the desire of the political leadership to please diverse electors, rather than climate scepticism. The identified individual barriers are found to be highly inter-dependent and closely intertwined which enables the identification of leverage points for interventions to maximise barrier removal. For instance, breaking down key barriers hindering accessibility to data and information, which are shaped by systemic bureaucracies and cultural attitudes, will involve attitudinal change through sensitisation to the importance of accurate and accessible data and information and the building trust between different actors, in addition to institutional structural changes through legislation and inter-institutional agreements. Approaching barriers as a system of contextually interconnected cultural, systemic, geographical and political

  10. An oncological view on the blood-testis barrier.

    PubMed

    Bart, Joost; Groen, Harry J M; van der Graaf, Winette T A; Hollema, Harry; Hendrikse, N Harry; Vaalburg, Willem; Sleijfer, Dirk T; de Vries, Elisabeth G E

    2002-06-01

    The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular wall, connected together with narrow tight junctions, and a myoid-cell layer around the seminiferous tubule. Second, an efflux-pump barrier that contains P-glycoprotein in the luminal capillary endothelium and on the myoid-cell layer; and multidrug-resistance associated protein 1 located basolaterally on Sertoli cells. Third, an immunological barrier, consisting of Fas ligand on Sertoli cells. Inhibition of P-glycoprotein function offers the opportunity to increase the delivery of cytotoxic drugs to the testis. In the future, visualisation of function in the blood-testis barrier may also be helpful to identify groups of patients in whom testis conservation is safe or to select drugs that are less harmful to fertility.

  11. [Role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia].

    PubMed

    Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua

    2013-05-01

    To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.

  12. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model.

    PubMed

    Chen, Tingting; Kim, Choon Young; Kaur, Amandeep; Lamothe, Lisa; Shaikh, Maliha; Keshavarzian, Ali; Hamaker, Bruce R

    2017-03-22

    Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.

  13. Acute treatment with kerosene damages the dermal barrier and alters the distribution of topically applied benzo(a)pyrene in mice.

    PubMed

    LaDow, Kathy; Schumann, Brenda L; Luse, Nicole; Warshawsky, Dave; Pickens, William L; Hoath, Steven B; Talaska, Glenn

    2011-12-01

    The dermal route is important in many occupational exposures. Some materials may reduce the barrier function of the skin to enhance absorption and effect on internal organs. We have reported previously that kerosene cleaning following treatment with used engine oil increased DNA adduct levels in the lungs of mice compared with animals treated with used oil alone. To investigate what other physiological parameters might be affected by kerosene, we conducted in vitro and in vivo measurements of skin barrier function. We also topically applied (3)H-BAP(100 nM in 25 μL acetone) and washed half the mice with 25 μL kerosene 1 hr after carcinogen application. Groups of four mice were euthanized from 1 to 72 hr after treatment. Skin, lungs, and livers were harvested from each animal and stored separately. Kerosene application reduced the barrier function of the skin in vitro beyond the effect of the acetone vehicle and the vehicle plus BAP. In vivo studies indicated that kerosene treatment reduced the barrier function at 4 and 8 hr post application and that the barrier function recovered at 24 hr after a single treatment. The fraction of the radiolabel remaining in the skin of animals treated with (3)H-BAP and washed with kerosene was significantly less than those not washed, beginning at 24 hr (p< 0.05). Fractional distribution to the lungs and livers of these animals became significantly elevated at this time. Kerosene treatment compromises dermal barrier function and the ability of the skin to retain water, enhances carcinogen absorption, and alters organ distribution. This appears to contribute to the increase in BAP DNA adducts we reported earlier.

  14. Effects of in Utero Exposure of C57BL/6J Mice to 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Epidermal Permeability Barrier Development and Function

    PubMed Central

    Muenyi, Clarisse S.; Carrion, Sandra Leon; Jones, Lynn A.; Kennedy, Lawrence H.; Slominski, Andrzej T.

    2014-01-01

    Background: Development of the epidermal permeability barrier (EPB) is essential for neonatal life. Defects in this barrier are found in many skin diseases such as atopic dermatitis. Objective: We investigated the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development and function of the EPB. Methods: Timed-pregnant C57BL/6J mice were gavaged with corn oil or TCDD (10 μg/kg body weight) on gestation day 12. Embryos were harvested on embryonic day (E) 15, E16, E17, and postnatal day (PND) 1. Results: A skin permeability assay showed that TCDD accelerated the development of the EPB, beginning at E15. This was accompanied by a significant decrease in transepidermal water loss (TEWL), enhanced stratification, and formation of the stratum corneum (SC). The levels of several ceramides were significantly increased at E15 and E16. PND1 histology revealed TCDD-induced acanthosis and epidermal hyperkeratosis. This was accompanied by disrupted epidermal tight junction (TJ) function, with increased dye leakage at the terminal claudin-1–staining TJs of the stratum granulosum. Because the animals did not have enhanced rates of TEWL, a commonly observed phenotype in animals with TJ defects, we performed tape-stripping. Removal of most of the SC resulted in a significant increase in TEWL in TCDD-exposed PND1 pups compared with their control group. Conclusions: These findings demonstrate that in utero exposure to TCDD accelerates the formation of an abnormal EPB with leaky TJs, warranting further study of environmental exposures, epithelial TJ integrity, and atopic disease. Citation: Muenyi CS, Leon Carrion S, Jones LA, Kennedy LH, Slominski AT, Sutter CH, Sutter TR. 2014. Effects of in utero exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin on epidermal permeability barrier development and function. Environ Health Perspect 122:1052–1058; http://dx.doi.org/10.1289/ehp.1308045 PMID:24904982

  15. Dynamic Monitoring of Blood-Brain Barrier Integrity using Water Exchange Index (WEI) During Mannitol and CO2 Challenges in Mouse Brain

    PubMed Central

    Huang, Shuning; Farrar, Christian T.; Dai, Guangping; Kwon, Seon Joo; Bogdanov, Alexei A.; Rosen, Bruce R.; Kim, Young R.

    2012-01-01

    The integrity of the blood-brain barrier (BBB) is critical to normal brain function. Traditional techniques for assessing BBB disruption rely heavily on the spatiotemporal analysis of extravasating contrast agents. But such methods based on the leakage of relatively large molecules are not suitable to detect subtle BBB impairment or to perform repeated measurements in a short time frame. Quantification of the water exchange rate constant (WER) across the BBB using strictly intravascular contrast agents could provide a much more sensitive method for quantifying the BBB integrity. For estimating the WER, we have recently devised a powerful new method using a water exchange index (WEI) biomarker and demonstrated BBB disruption in an acute stroke model. Here we confirm that the WEI is sensitive to even very subtle changes in the integrity of the BBB caused by (1) systemic hypercapnia and (2) low doses of a hyperosmolar solution. In addition, we have examined the sensitivity and accuracy of the WEI as a biomarker of the WER using computer simulation. In particular, the dependence of the WEI-WER relation on changes in vascular blood volume, T1 relaxation of cellular magnetization, and transcytolemmal water exchange was explored. The simulated WEI was found to vary linearly with the WER for typically encountered exchange rate constants (1–4 Hz) regardless of the blood volume. However, for very high WER (>5 Hz) the WEI became progressively more insensitive to increasing WER. The incorporation of transcytolemmal water exchange, using a three-compartment tissue model, helped to extend the linear WEI regime to slightly higher WER, but had no significant effect for most physiologically important water exchange rate constants (WER<4 Hz). Variation in the cellular T1 had no effect on the WEI. Using both theoretical and experimental approaches, our study validates the utility of the WEI biomarker for monitoring BBB integrity. PMID:23055278

  16. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    PubMed

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  17. Water vapor barrier and sorption properties of edible films from pullulan and rice wax.

    USDA-ARS?s Scientific Manuscript database

    Edible films were prepared by using various ratios of pullulan and rice wax. Freestanding composite films were obtained with up to 46.4% rice wax. Water vapor barrier properties of the film were improved with increased addition of rice wax. Moisture sorption isotherms were also studied to examine...

  18. Multivariate analysis of water quality and environmental variables in the Great Barrier Reef catchments

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Liu, S.; Western, A. W.; Webb, J. A.; Lintern, A.; Leahy, P.; Wilson, P.; Watson, M.; Waters, D.; Bende-Michl, U.

    2016-12-01

    The Great Barrier Reef (GBR) lagoon has been experiencing significant water quality deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The degradation of water quality in rivers is caused by land-derived pollutants (i.e. sediment, nutrient and pesticide). A better understanding of dynamics of water quality is essential for land management to improve the GBR ecosystem. However, water quality is also greatly influenced by natural hydrological processes. To assess influencing factors and predict the water quality accurately, selection of the most important predictors of water quality is necessary. In this work, multivariate statistical techniques - cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) - are used to reduce the complexity derived from the multidimensional water quality monitoring data. Seventeen stations are selected across the GBR catchments, and the event-based measurements of 12 variables monitored during 9 years (2006 - 2014) were analysed by means of CA and PCA/FA. The key findings are: (1) 17 stations can be grouped into two clusters according to the hierarchical CA, and the spatial dissimilarity between these sites is characterised by the different climatic and land use in the GBR catchments. (2) PCA results indicate that the first 3 PCs explain 85% of the total variance, and FA on the entire data set shows that the varifactor (VF) loadings can be used to interpret the sources of spatial variation in water quality on the GBR catchments level. The impact of soil erosion and non-point source of pollutants from agriculture contribution to VF1 and the variability in hydrological conditions and biogeochemical processes can explain the loadings in VF2. (3) FA is also performed on two groups of sites identified in CA individually, to evaluate the underlying sources that are responsible for spatial variability in water quality in the two groups. For the Cluster 1 sites

  19. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila.

    PubMed

    Chen, Kang; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2018-03-01

    In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet. Copyright © 2017. Published by Elsevier Ltd.

  20. Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier.

    PubMed

    Zhang, Zhuanfang Fred; Strickland, Christopher E; Link, Steven O

    2017-02-01

    Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. After establishing a set of design and performance objectives, a package of design solutions was developed for 1000-year surface barriers over nuclear waste sites. The Prototype Hanford Barrier (PHB) was then constructed in 1994 in the field over an existing waste site as a demonstration. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barrier satisfied nearly all objectives in the past two decades. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford's semiarid climate, limited drainage to well below the 0.5 mm yr -1 performance criterion, limited runoff, and minimized erosion and bio-intrusion. Given the two-decade record of successful performance and consideration of the processes and mechanisms that could affect barrier stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the basis for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Correlation between nicotine dependence and barriers to cessation between exclusive cigarette smokers and dual (water pipe) smokers among Arab Americans

    PubMed Central

    El-Shahawy, Omar; Haddad, Linda

    2015-01-01

    Background Evidence suggests that dual cigarette and water pipe use is growing among minority groups, particularly among Arab Americans. Differences in nicotine dependence and barriers to smoking cessation among such dual smokers have not been previously examined in this population. We examined potential differences that might exist between exclusive cigarette smokers and dual smokers (cigarette and water pipe) pertaining to nicotine dependence and barriers to cessation among Arab Americans. Methods We conducted a cross-sectional study using a convenience sample of self-identified Arab immigrant smokers (n=131) living in the Richmond, VA metropolitan area. Data were collected using four questionnaires: Demographic and Cultural Information questionnaire, Tobacco Use questionnaire, Fagerström Test for Nicotine Dependence (FTND) questionnaire, and Barriers to Cessation questionnaire. We examined differences in nicotine dependence and barriers to cessation between exclusive cigarette smokers and dual smokers of cigarettes and water pipe. Furthermore, we explored the correlations of these measures with select variables. Results There was a significant difference in the FTND scores between the exclusive cigarette smokers (mean M=2.55, standard deviation [SD] =2.10) and dual smokers (M=3.71, SD =2.42); t(129) = (2.51), P=0.0066. There was also a significant difference in the Barriers to Cessation scores between exclusive cigarette smokers (M=38.47, SD =13.07) and dual smokers (M=45.21, SD =9.27); t(129) = (2.56), P=0.0058. Furthermore, there was a highly significant correlation among FTND scores, Barriers to Cessation scores, and past quit attempts among dual smokers. Conclusion Water pipe tobacco smoking seems to be both adding to the dependence potential of cigarette smoking and enhancing barriers to cessation in our study sample. However, the high correlation between quit attempts, FTND, and barriers to cessation needs further investigation to ascertain the possible

  2. Microbicidal and cytotoxic effects of functional water in vitro.

    PubMed

    Gomi, Kazuhiro; Makino, Tomohiko; Suzuki, Shinichi; Hasegawa, Masako; Maeda, Nobuko; Arai, Takashi

    2010-10-01

    Several kinds of functional water are used in the fields of food hygiene and medicine. The purpose of this study was to evaluate both the disinfection and cytotoxic effects of functional water in comparison with commonly used root canal irrigants such as sodium hypochlorite solution and hydrogen peroxide solution. Three kinds of functional water were examined: alkaline electrolysis water (AEW), strong acid electrolyzed water (SAEW), and hypochlorous acid water (HAW). The disinfection effect was studied using Enterococcus faecalis and Candida albicans with or without organic substance. Each kind of functional water was applied to samples, and the colony formation was evaluated. The cytotoxic effect was evaluated by mitogenic assay (MTT) and alkaline phosphatase (ALPase) activity in pulp cells. SAEW and HAW showed microbicidal effects in the presence of organic substance, with an effect almost similar to sodium hypochlorite solution. AEW did not show any microbicidal effect. SAEW, AEW, and HAW at 10- and 1,000-times dilution did not inhibit the MTT assay and ALPase activity. The cytotoxicity of SAEW and HAW against pulp cells was mild compared to that of sodium hypochlorite solution. Functional water like SAEW and HAW have a good microbicidal effect under existing organic substance and are also mild to pulp cells.

  3. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.

    PubMed

    Scheurer, Marco; Storck, Florian R; Brauch, Heinz-J; Lange, Frank T

    2010-06-01

    Due to incomplete removal of artificial sweeteners in wastewater treatment plants some of these compounds end up in receiving surface waters, which are used for drinking water production. The sum of removal efficiency of single treatment steps in multi-barrier treatment systems affects the concentrations of these compounds in the provided drinking water. This is the first systematic study revealing the effectiveness of single treatment steps in laboratory experiments and in waterworks. Six full-scale waterworks using surface water influenced raw water were sampled up to ten times to study the fate of acesulfame, saccharin, cyclamate and sucralose. For the most important treatment technologies the results were confirmed by laboratory batch experiments. Saccharin and cyclamate proved to play a minor role for drinking water treatment plants as they were eliminated by nearly 100% in all waterworks with biologically active treatment units like river bank filtration (RBF) or artificial groundwater recharge. Acesulfame and sucralose were not biodegraded during RBF and their suitability as wastewater tracers under aerobic conditions was confirmed. Sucralose proved to be persistent against ozone and its transformation was < 20% in lab and field investigations. Remaining traces were completely removed by subsequent granular activated carbon (GAC) filters. Acesulfame readily reacts with ozone (pseudo first-order rate constant k = 1.3 x 10(-3) s(-1) at 1 mg L(-1) ozone concentration). However, the applied ozone concentrations and contact times under typical waterworks conditions only led to an incomplete removal (18-60%) in the ozonation step. Acesulfame was efficiently removed by subsequent GAC filters with a low throughput of less than 30 m(3) kg(-1), but removal strongly depended on the GAC preload. Thus, acesulfame was detected up to 0.76 microg L(-1) in finished water. 2010 Elsevier Ltd. All rights reserved.

  4. A Numerical Comparison of Barrier and Modified Barrier Methods for Large-Scale Bound-Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Nash, Stephen G.; Polyak, R.; Sofer, Ariela

    1994-01-01

    When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.

  5. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas-water interface

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.

  6. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa

    PubMed Central

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm

    2017-01-01

    model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor. PMID:28878080

  7. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    PubMed

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor. Copyright © 2017 American Society for Microbiology.

  8. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    PubMed

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. Published by Oxford University Press on behalf of the

  9. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures

    PubMed Central

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10−5 m s−1 at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15–50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm−2) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. PMID:27154622

  10. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  11. Reevaluation of the non-lesional dry skin in atopic dermatitis by acute barrier disruption: an abnormal permeability barrier homeostasis with defective processing to generate ceramide.

    PubMed

    Sugiura, Ayumi; Nomura, Tsuyoshi; Mizuno, Atsuko; Imokawa, Genji

    2014-07-01

    Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis.

  12. Valuing the subsurface pathogen treatment barrier in water recycling via aquifers for drinking supplies.

    PubMed

    Page, Declan; Dillon, Peter; Toze, Simon; Bixio, Davide; Genthe, Bettina; Jiménez Cisneros, Blanca Elena; Wintgens, Thomas

    2010-03-01

    A quantitative microbial risk assessment (QMRA) was performed at four managed aquifer recharge (MAR) sites (Australia, South Africa, Belgium, Mexico) where reclaimed wastewater and stormwater is recycled via aquifers for drinking water supplies, using the same risk-based approach that is used for public water supplies. For each of the sites, the aquifer treatment barrier was assessed for its log(10) removal capacity much like for other water treatment technologies. This information was then integrated into a broader risk assessment to determine the human health burden from the four MAR sites. For the Australian and South African cases, managing the aquifer treatment barrier was found to be critical for the schemes to have low risk. For the Belgian case study, the large treatment trains both in terms of pre- and post-aquifer recharge ensures that the risk is always low. In the Mexico case study, the risk was high due to the lack of pre-treatment and the low residence times of the recharge water in the aquifer. A further sensitivity analysis demonstrated that human health risk can be managed if aquifers are integrated into a treatment train to attenuate pathogens. However, reduction in human health disease burden (as measured in disability adjusted life years, DALYs) varied depending upon the number of pathogens in the recharge source water. The beta-Poisson dose response curve used for translating rotavirus and Cryptosporidium numbers into DALYs coupled with their slow environmental decay rates means poor quality injectant leads to aquifers having reduced value to reduce DALYs. For these systems, like the Mexican case study, longer residence times are required to meet their DALYs guideline for drinking water. Nevertheless the results showed that the risks from pathogens can still be reduced and recharging via an aquifer is safer than discharging directly into surface water bodies. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Barriers to HIV Medication Adherence as a Function of Regimen Simplification.

    PubMed

    Chen, Yiyun; Chen, Kun; Kalichman, Seth C

    2017-02-01

    Barriers to HIV medication adherence may differ by levels of dosing schedules. The current study examined adherence barriers associated with medication regimen complexity and simplification. A total of 755 people living with HIV currently taking anti-retroviral therapy were recruited from community services in Atlanta, Georgia. Participants completed audio-computer-assisted self-interviews that assessed demographic and behavioral characteristics, provided their HIV viral load obtained from their health care provider, and completed unannounced phone-based pill counts to monitor medication adherence over 1 month. Participants taking a single-tablet regimen (STR) were more likely to be adherent than those taking multi-tablets in a single-dose regimen (single-dose MTR) and those taking multi-tablets in a multi-dose regimen (multi-dose MTR), with no difference between the latter two. Regarding barriers to adherence, individuals taking STR were least likely to report scheduling issues and confusion as reasons for missing doses, but they were equally likely to report multiple lifestyle and logistical barriers to adherence. Adherence interventions may need tailoring to address barriers that are specific to dosing regimens.

  14. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amountmore » of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.« less

  15. Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality During Polymicrobial Sepsis 1

    PubMed Central

    Fredenburgh, Laura E.; Velandia, Margarita M. Suarez; Ma, Jun; Olszak, Torsten; Cernadas, Manuela; Englert, Joshua A.; Chung, Su Wol; Liu, Xiaoli; Begay, Cynthia; Padera, Robert F.; Blumberg, Richard S.; Walsh, Stephen R.; Baron, Rebecca M.; Perrella, Mark A.

    2011-01-01

    Sepsis remains the leading cause of death in critically ill patients despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase-2 (COX-2) is highly upregulated in the intestine during sepsis and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2−/− and COX-2+/+ BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD2, or vehicle and stimulated with cytokines. COX-2−/− mice developed exaggerated bacteremia and increased mortality compared with COX-2+/+ mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD2 attenuated cytokine-induced hyperpermeability and ZO-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis. PMID:21967897

  16. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    PubMed

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  17. A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response

    PubMed Central

    Foster, Kylie J.; Miklavcic, Stanley J.

    2017-01-01

    In this paper, we present a detailed and comprehensive mathematical model of active and passive ion and water transport in plant roots. Two key features are the explicit consideration of the separate, but interconnected, apoplastic, and symplastic transport pathways for ions and water, and the inclusion of both active and passive ion transport mechanisms. The model is used to investigate the respective roles of the endodermal Casparian strip and suberin lamellae in the salt stress response of plant roots. While it is thought that these barriers influence different transport pathways, it has proven difficult to distinguish their separate functions experimentally. In particular, the specific role of the suberin lamellae has been unclear. A key finding based on our simulations was that the Casparian strip is essential in preventing excessive uptake of Na+ into the plant via apoplastic bypass, with a barrier efficiency that is reflected by a sharp gradient in the steady-state radial distribution of apoplastic Na+ across the barrier. Even more significantly, this function cannot be replaced by the action of membrane transporters. The simulations also demonstrated that the positive effect of the Casparian strip of controlling Na+ uptake, was somewhat offset by its contribution to the osmotic stress component: a more effective barrier increased the detrimental osmotic stress effect. In contrast, the suberin lamellae were found to play a relatively minor, even non-essential, role in the overall response to salt stress, with the presence of the suberin lamellae resulting in only a slight reduction in Na+ uptake. However, perhaps more significantly, the simulations identified a possible role of suberin lamellae in reducing plant energy requirements by acting as a physical barrier to preventing the passive leakage of Na+ into endodermal cells. The model results suggest that more and particular experimental attention should be paid to the properties of the Casparian strip when

  18. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study.

    PubMed

    Milani, Massimo; Sparavigna, Adele

    2017-01-01

    Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA) and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE) could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid). To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL) in healthy subjects in comparison with the control site. Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left), randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity) using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Skin hydration after 24 hours was significantly higher ( P =0.001; Mann-Whitney U test) in the JCS-treated area in comparison with the control site. JCS induced a significant ( P =0.0001) increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours) in comparison with both baseline ( P =0.0001) and non-treated control site ( P =0.001). TEWL after 24 hours was significantly lower ( P =0.049; Mann-Whitney U test) in the JCS-treated area in comparison with the control site (13±4 arbitrary units [AU] vs 16±6 AU). JCS fluid

  19. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  20. The Generation of Barriers to Melt Ascent in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe W.; Montési, Laurent G. J.

    2018-01-01

    Planetary mantles can be regarded as an aggregate of two phases: a solid, porous matrix and a liquid melt. Melt travels rapidly upward through the matrix due to its buoyancy. When this melt enters the colder lithosphere, it begins to crystallize. If crystallization happens at a high rate, the newly formed crystals can clog the pore space, reducing its permeability to essentially zero. This zone of zero permeability is the permeability barrier. We use the MELTS family of thermodynamic calculators to determine melt compositions and the crystallization sequence of ascending melt throughout Martian history and simulate the formation of permeability barriers. At lower strain rates (10-17-10-15 s-1) permeability barriers form deep in the lithosphere, possibly contributing to the formation of localized volcanic edifices on the Martian surface once fracturing or thermal erosion enables melt to traverse the lithosphere. Higher strain rates (10-13 s-1) yield shallower permeability barriers, perhaps producing extensive lava flows. Permeability barrier formation is investigated using an anhydrous mantle source or mantle sources that include up to 1,000 ppm H2O. Introducing even small amounts of water (25 ppm H2O) reduces mantle viscosity in a manner similar to increasing the strain rate and results in a shallower barrier than in the anhydrous case. Large amounts of water (1,000 ppm H2O) yield very shallow weak barriers or no barriers at all. The depth of the permeability barrier has evolved through time, likely resulting in a progression in the style of surface volcanism from widespread flows to massive, singular volcanoes.

  1. Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier

    PubMed Central

    Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.

    2016-01-01

    Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403

  2. Efficacy of IPL device combined with intralesional corticosteroid injection for the treatment of keloids and hypertrophic scars with regards to the recovery of skin barrier function: A pilot study.

    PubMed

    Kim, Dong Young; Park, Hyun Sun; Yoon, Hyun-Sun; Cho, Soyun

    2015-10-01

    Keloids and hypertrophic scars are prevalent and psychologically distressful dermatologic conditions. Various treatment modalities have been tried but without complete success by any one method. We evaluated the efficacy of a combination of intense pulsed light (IPL) device and intralesional corticosteroid injection for the treatment of keloids and hypertrophic scars with respect to the recovery of skin barrier function. Totally 52 Korean patients were treated by the combined treatment at 4-8-week intervals. Using digital photographs, changes in scar appearance were assessed with modified Vancouver Scar Scale (MVSS), physicians' global assessment (PGA) and patient's satisfaction score. In 12 patients, the stratum corneum (SC) barrier function was assessed by measuring transepidermal water loss (TEWL) and SC capacitance. Most scars demonstrated significant clinical improvement in MVSS, PGA and patient's satisfaction score after the combined therapy. A significant decrease of TEWL and elevation of SC capacitance were also documented after the treatment. The combination therapy (IPL + corticosteroid injection) not only improves the appearance of keloids and hypertrophic scars but also increases the recovery level of skin hydration status in terms of the skin barrier function.

  3. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse.

    PubMed

    Slavutsky, Aníbal M; Bertuzzi, María A

    2014-09-22

    Water transport in edible films based on hydrophilic materials such as starch, is a complex phenomenon due to the strong interaction of sorbed water molecules with the polymeric structure. Cellulose nanocrystals (CNC) were obtained from sugarcane bagasse. Starch and starch/CNC films were formulated and their water barrier properties were studied. The measured film solubility, contact angle, and water sorption isotherm indicated that reinforced starch/CNC films have a lower affinity to water molecules than starch films. The effects that the driving force and the water activity (aw) values at each side of the film have on permeability were analyzed. Permeability, diffusivity, and solubility coefficients indicated that the permeation process depends mostly on the tortuous pathway formed by the incorporation of CNC and therefore were mainly controlled by water diffusion. The interaction between CNC and starch chain is favoured by the chemical similarities of both molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview, and fundamental considerations for stable and reproducible measurements

    PubMed Central

    Stolwijk, Judith A.; Matrougui, Khalid; Renken, Christian W.; Trebak, Mohamed

    2014-01-01

    The past 20 years have seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists, pharmacological and toxicological compounds. Most studies on barrier function use G protein coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance based techniques such as Electric Cell-Substrate Impedance Sensing (ECIS) reside in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine and Sphingosine-1-Phosphate. PMID:25537398

  5. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements.

    PubMed

    Stolwijk, Judith A; Matrougui, Khalid; Renken, Christian W; Trebak, Mohamed

    2015-10-01

    The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.

  6. P-glycoprotein regulates blood–testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK)

    PubMed Central

    Su, Linlin; Mruk, Dolores D.; Lui, Wing-Yee; Lee, Will M.; Cheng, C. Yan

    2011-01-01

    The blood–testis barrier (BTB), one of the tightest blood–tissue barriers in the mammalian body, creates an immune-privileged site for postmeiotic spermatid development to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. However, the BTB undergoes extensive restructuring at stage VIII of the epithelial cycle to facilitate the transit of preleptotene spermatocytes and to prepare for meiosis. This action thus prompted us to investigate whether this stage can be a physiological window for the delivery of therapeutic and/or contraceptive drugs across the BTB to exert their effects at the immune-privileged site. Herein, we report findings that P-glycoprotein, an ATP-dependent efflux drug transporter and an integrated component of the occludin/zonula occludens 1 (ZO-1) adhesion complex at the BTB, structurally interacted with focal adhesion kinase (FAK), creating the occludin/ZO-1/FAK/P-glycoprotein regulatory complex. Interestingly, a knockdown of P-glycoprotein by RNAi was found to impede Sertoli cell BTB function, making the tight junction (TJ) barrier “leaky.” This effect was mediated by changes in the protein phosphorylation status of occludin via the action of FAK, thereby affecting the endocytic vesicle-mediated protein trafficking events that destabilized the TJ barrier. However, the silencing of P-glycoprotein, although capable of impeding drug transport across the BTB and TJ permeability barrier function, was not able to induce the BTB to be “freely” permeable to adjudin. These findings indicate that P-glycoprotein is involved in BTB restructuring during spermatogenesis but that P-glycoprotein–mediated restructuring does not “open up” the BTB to make it freely permeable to drugs. PMID:22106313

  7. Recreational water quality response to a filtering barrier at a Great Lakes beach

    USGS Publications Warehouse

    Przybyla-Kelly, Kasia; Nevers, Meredith; Breitenbach, Cathy; Whitman, Richard L.

    2013-01-01

    Recent research has sought to determine the off- or onshore origin of fecal indicator bacteria (FIB) in order to improve local recreational water quality. In an effort to reduce offshore contamination, a filtering barrier (FB) was installed at Calumet Beach, Lake Michigan, Chicago, IL. A horseshoe-shaped curtain (146 m long, 0.18 mm apparent opening size, 1.5–1.6 m deepest point) was designed to exclude FIB containing or promoting debris and thus reduce the number of swimming advisories during the examination period of July through September 2012. Mean water Escherichia coli concentrations were significantly lower at southern transects (S; outside FB) than at transects within the FB (WN) and at northern transects (N; outside FB) (1.45 log (MPN)/100 ml vs. 1.74 and 1.72, respectively, p < 0.05, n = 234). Turbidity was significantly higher at the WN transects (p < 0.001, n = 233), but it tended to increase throughout the sampling season within and outside the FB. E. coli in adjacent foreshore sand was significantly lower at the WN transects. A combination of factors might explain higher E. coli and turbidity within the FB including increased sediment resuspension, trapped algae, shallowing within the FB, and large lake hydrodynamic processes. This remediation approach may find better use in a different hydrodynamic setting, but the results of this experiment provide insight on sources of contamination and nearshore dynamics that may direct future beach management strategies.

  8. The Staphylococcus aureus Alpha-Toxin Perturbs the Barrier Function in Caco-2 Epithelial Cell Monolayers by Altering Junctional Integrity

    PubMed Central

    Vikström, Elena; Magnusson, Karl-Eric; Vécsey-Semjén, Beatrix; Colque-Navarro, Patricia; Möllby, Roland

    2012-01-01

    Increased microvascular permeability is a hallmark of sepsis and septic shock. Intestinal mucosal dysfunction may allow translocation of bacteria and their products, thereby promoting sepsis and inflammation. Although Staphylococcus aureus alpha-toxin significantly contributes to sepsis and perturbs the endothelial barrier function, little is known about possible effects of S. aureus alpha-toxin on human epithelial barrier functions. We hypothesize that S. aureus alpha-toxin in the blood can impair the intestinal epithelial barrier and thereby facilitate the translocation of luminal bacteria into the blood, which may in turn aggravate a septic condition. Here, we showed that staphylococcal alpha-toxin disrupts the barrier integrity of human intestinal epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER) and reduced cellular levels of junctional proteins, such as ZO-1, ZO-3, and E-cadherin. The Caco-2 cells also responded to alpha-toxin with an elevated cytosolic calcium ion concentration ([Ca2+]i), elicited primarily by calcium influx from the extracellular environment, as well as with a significant reduction in TER, which was modulated by intracellular calcium chelation. Moreover, a significantly larger reduction in TER and amounts of the junctional proteins, viz., ZO-3 and occludin, was achieved by basolateral than by apical application of the alpha-toxin. These experimental findings thus support the hypothesis that free staphylococcal alpha-toxin in the bloodstream may cause intestinal epithelial barrier dysfunction and further aggravate the septic condition by promoting the release of intestinal bacteria into the underlying tissues and the blood. PMID:22354024

  9. Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction

    PubMed Central

    Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.

    2017-01-01

    Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896

  10. Fingolimod promotes blood-nerve barrier properties in vitro.

    PubMed

    Nishihara, Hideaki; Maeda, Toshihiko; Sano, Yasuteru; Ueno, Maho; Okamoto, Nana; Takeshita, Yukio; Shimizu, Fumitaka; Koga, Michiaki; Kanda, Takashi

    2018-04-01

    The main effect of fingolimod is thought to be functional antagonism of lymphocytic S1P1 receptors and the prevention of lymphocyte egress from lymphoid tissues, thereby reducing lymphocyte infiltration into the nervous system. However, a growing number of reports suggest that fingolimod also has a direct effect on several cell types in the nervous system. Although we previously reported that fingolimod enhances blood-brain barrier (BBB) functions, there have been no investigations regarding the blood-nerve barrier (BNB). In this study, we examine how fingolimod affects the BNB. An immortalized human peripheral nerve microvascular endothelial cell line (HPnMEC) was used to evaluate BNB barrier properties. We examined tight junction proteins and barrier functions of HPnMECs in conditioned medium with or without fingolimod-phosphate and blood sera from patients with typical chronic inflammatory demyelinating polyneuropathy (CIDP). Incubation with fingolimod-phosphate increased levels of claudin-5 mRNA and protein as well as TEER values in HPnMECs. Conversely, typical CIDP sera decreased claudin-5 mRNA/protein levels and TEER values in HPnMECs; however, pretreatment with fingolimod-phosphate inhibited the effects of the typical CIDP sera. Fingolimod-phosphate directly modifies the BNB and enhances barrier properties. This mechanism may be a viable therapeutic target for CIDP, and fingolimod may be useful in patients with typical CIDP who have severe barrier disruption.

  11. GLUT-1 GLUCOSE TRANSPORTERS IN THE BLOOD-BRAIN BARRIER: DIFFERENTIAL PHOSPHORYLATION

    PubMed Central

    Devraj, Kavi; Klinger, Marianne E.; Myers, Roland L.; Mokashi, Ashwini; Hawkins, Richard A.; Simpson, Ian A.

    2013-01-01

    Glucose is the primary metabolic fuel for the mammalian brain and a continuous supply is required to maintain normal CNS function. The transport of glucose across the blood-brain barrier (BBB) into the brain is mediated by the facilitative glucose transporter GLUT-1. Prior studies (Simpson et al. 2001) had revealed that the conformations of the GLUT-1 transporter were different in luminal (blood facing) and abluminal (brain facing) membranes of bovine cerebral endothelial cells, based on differential antibody recognition. In this study we have extended these observations and using a combination of 2D-PAGE/Western blotting and immunogold electron microscopy we determined that these different conformations are exhibited in vivo and arise from differential phosphorylation of GLUT-1 and not from alternative splicing or altered O- or N-linked glycosylation. PMID:21910135

  12. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular

  13. Effect of Topical Iloprost and Nitroglycerin on Gastric Microcirculation and Barrier Function during Hemorrhagic Shock in Dogs.

    PubMed

    Truse, Richard; Hinterberg, Jonas; Schulz, Jan; Herminghaus, Anna; Weber, Andreas; Mettler-Altmann, Tabea; Bauer, Inge; Picker, Olaf; Vollmer, Christian

    2017-01-01

    Topical drug application is used to avoid systemic side effects. The aim of this study was to analyze whether locally applied iloprost or nitroglycerin influence gastric mucosal perfusion, oxygenation, and barrier function during physiological and hemorrhagic conditions. In repeated experiments, 5 anesthetized dogs received iloprost, nitroglycerin, or normal saline during physiological and hemorrhagic (-20% blood volume) conditions. Macro- and microcirculatory variables were recorded continuously. Gastric barrier function was assessed via translocation of sucrose into the blood. During hemorrhage, gastric mucosal oxygenation decreased from 77 ± 4 to 37 ± 7%. This effect was attenuated by nitroglycerin (78 ± 6 to 47 ± 13%) and iloprost (82 ± 4 to 54 ± 9%). Sucrose plasma levels increased during hemorrhage from 7 ± 4 to 55 ± 15 relative amounts. This was alleviated by nitroglycerin (5 ± 8 to 29 ± 38 relative amounts). These effects were independent of systemic hemodynamic variables. During hemorrhage, topical nitroglycerin and iloprost improve regional gastric oxygenation without affecting perfusion. Nitroglycerin attenuated the shock-induced impairment of the mucosal barrier integrity. Thus, local drug application improves gastric microcirculation without compromising systemic hemodynamic variables, and it may also protect mucosal barrier function. © 2017 S. Karger AG, Basel.

  14. 26 CFR 1.190-1 - Expenditures to remove architectural and transportation barriers to the handicapped and elderly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Expenditures to remove architectural and transportation barriers to the handicapped and elderly. 1.190-1 Section 1.190-1 Internal Revenue INTERNAL REVENUE... transportation barriers to the handicapped and elderly. (a) In general. Under section 190 of the Internal Revenue...

  15. 26 CFR 1.190-1 - Expenditures to remove architectural and transportation barriers to the handicapped and elderly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Expenditures to remove architectural and transportation barriers to the handicapped and elderly. 1.190-1 Section 1.190-1 Internal Revenue INTERNAL REVENUE... transportation barriers to the handicapped and elderly. (a) In general. Under section 190 of the Internal Revenue...

  16. 26 CFR 1.190-1 - Expenditures to remove architectural and transportation barriers to the handicapped and elderly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Expenditures to remove architectural and transportation barriers to the handicapped and elderly. 1.190-1 Section 1.190-1 Internal Revenue INTERNAL REVENUE... transportation barriers to the handicapped and elderly. (a) In general. Under section 190 of the Internal Revenue...

  17. Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4

    PubMed Central

    Venkatesh, Madhukumar; Mukherjee, Subhajit; Wang, Hongwei; Li, Hao; Sun, Katherine; Benechet, Alaxandre P.; Qiu, Zhijuan; Maher, Leigh; Redinbo, Matthew R.; Phillips, Robert S.; Fleet, James C.; Kortagere, Sandhya; Mukherjee, Paromita; Fasano, Alessio; Le Ven, Jessica; Nicholson, Jeremy K.; Dumas, Marc E.; Khanna, Kamal M.; Mani, Sridhar

    2014-01-01

    SUMMARY Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is as a ligand for PXR in vivo, and IPA down-regulated enterocyte TNF–α while up-regulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2−/−) mice showed a distinctly “leaky” gut physiology coupled with up-regulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2−/−Tlr4−/− mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway which involves luminal sensing and signaling by TLR4. PMID:25065623

  18. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    PubMed

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  19. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  1. Tranexamic Acid Attenuates The Loss of Lung Barrier Function in a Rat Model of Polytrauma And Hemorrhage With Resuscitation.

    PubMed

    Wu, Xiaowu; Dubick, Michael A; Schwacha, Martin G; Cap, Andrew P; Darlington, Daniel N

    2017-04-01

    Severe trauma, hemorrhage, and resuscitation can lead to a trauma-related acute lung injury that involves rapid infiltration of immune cells and platelets. This infiltration involves exymatic degradation of matrix proteins, including plasmin, and causes loss of barrier function. Since tranexamic acid (TXA) inhibits plasminogen/ plasmin binding to target substrates, it may attenuate loss of barrier function after severe trauma, hemorrhage, and resuscitation. Sprague-Dawley rats were subjected to polytrauma (laparotomy, and trauma to intestines, liver, right leg skeletal muscle, and right femur fracture), then bled 40% of their blood volume. One hour after completion of polytrauma and hemorrhage, resuscitation was begun with fresh whole blood (FWB) or FWB with prior bolus administration of TXA (10 mg/kg in 0.2 mL). Polytrauma, hemorrhage, and resuscitation with FWB led to an elevation in lung water content that was significantly reduced with TXA administration. Polytrauma and hemorrhage led to rise in the number of neutrophils/monocytes and platelets in the lungs, and a rise in myeloperoxidase (MPO), neutrophil elastase and complement C5a content. While resuscitation with FWB significantly reduced the cellular infiltrate and MPO, FWB/TXA further reduced the levels of neutrophil/monocytes, neutrophil elastase, and complement C5a. Polytrauma and hemorrhage led to rise in lung plasmin activity that was significantly reduced with either FWB or FWB/TXA resuscitation. Severe trauma and hemorrhage leads to increases in lung water content, and immune cell, platelets, MPO, elastase, and C5a content in lung tissue, all markers of inflammation and acute lung injury. The addition of TXA to FWB resuscitation markedly attenuated the rise in these parameters suggesting its utility in treating acute lung injury.

  2. Evaluation of Schottky barrier height on 4H-SiC m-face \\{ 1\\bar{1}00\\} for Schottky barrier diode wall integrated trench MOSFET

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yusuke; Ishimori, Hiroshi; Kinoshita, Akimasa; Kojima, Takahito; Takei, Manabu; Kimura, Hiroshi; Harada, Shinsuke

    2017-04-01

    We proposed an Schottky barrier diode wall integrated trench MOSFET (SWITCH-MOS) for the purposes of shrinking the cell pitch and suppressing the forward degradation of the body diode. A trench Schottky barrier diode (SBD) was integrated into a trench gate MOSFET with a wide shielding p+ region that protected the trench bottoms of both the SBD and the MOS gate from high electrical fields in the off state. The SBD was placed on the trench sidewall of the \\{ 1\\bar{1}00\\} plane (m-face). Static and transient simulations revealed that SWITCH-MOS sufficiently suppressed the bipolar current that induced forward degradation, and we determined that the optimum Schottky barrier height (SBH) was from 0.8 to 2.0 eV. The SBH depends on the crystal planes in 4H-SiC, but the SBH of the m-face was unclear. We fabricated a planar m-face SBD for the first time, and we obtained SBHs from 1.4 to 1.8 eV experimentally with titanium or nickel as a Schottky metal.

  3. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  4. The Tritiated Water Skin Barrier Integrity Test: Considerations for Acceptance Criteria with and Without 14C-Octanol.

    PubMed

    Lehman, Paul A; Beatch, Kacie; Raney, Sam G; Franz, Thomas J

    2017-01-01

    A study was designed to assess barrier integrity simultaneously using separate compounds (probes) for polar and non-polar pathways through the skin, 3 H 2 O and 14 C-octanol, respectively; and to determine whether the two probe approach could better define barrier integrity. A 5-min dose of water containing 3 H 2 O and 14 C -octanol was applied to ex vivo human skin mounted in Franz diffusion cells. The receptor solution was sampled at 30 min, analyzed for 3 H and 14 C content, and the correlation between water and octanol absorption was determined by statistical tests suitable for non-normally distributed data. This study was conducted on skin from 37 donors with from 3 to 30 replicate skin sections per donor (a total of 426 sections). The correlation between 3 H 2 O and 14 C-octanol absorption was low (Pearson correlation coefficient = 0.3485). The 3 H 2 O absorption cutoff used in this study to select for a normal skin barrier rejected some sections in which 14 C-octanol absorption was within normal limits and accepted others in which 14 C-octanol absorption was abnormally high. The converse was true for 3 H 2 O absorption when the 14 C-octanol-based cutoff was used. The results of the 3 H 2 O test or of similar tests that primarily assess the permeability of polar pathways through the skin may not necessarily provide information relevant to the absorption of highly lipophilic compounds. Octanol, or another molecule that more closely matches the physicochemical attributes of the test compound, may characterize properties of the skin barrier that are more relevant to compounds of low water solubility.

  5. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.

    PubMed

    Li, Baohai; Kamiya, Takehiro; Kalmbach, Lothar; Yamagami, Mutsumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Sawa, Shinichiro; Danku, John M C; Salt, David E; Geldner, Niko; Fujiwara, Toru

    2017-03-06

    The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1-3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cell walls between endodermal cells and fill the gap between them [4-6]. Suberin lamellae are glycerolipid polymers covering the endodermal cells and likely function as a barrier to limit transmembrane movement of apoplastic solutes into the endodermal cells [7, 8]. However, the current knowledge on the formation of these two distinct endodermal barriers and their regulatory role in nutrient transport is still limited. Here, we identify an uncharacterized gene, LOTR1, essential for Casparian strip formation in Arabidopsis thaliana. The lotr1 mutants display altered localization of CASP1, an essential protein for Casparian strip formation [9], disrupted Casparian strips, ectopic suberization of endodermal cells, and low accumulation of shoot calcium (Ca). Degradation by expression of a suberin-degrading enzyme in the mutants revealed that the ectopic suberization at the endodermal cells limits Ca transport through the transmembrane pathway, thereby causing reduced Ca delivery to the shoot. Moreover, analysis of the mutants showed that suberin lamellae function as an apoplastic diffusion barrier to the stele at sites of lateral root emergence where Casparian strips are disrupted. Our findings suggest that the transmembrane pathway through unsuberized endodermal cells, rather than the sites of lateral root emergence, mediates the transport of apoplastic substances such as Ca into the xylem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    PubMed

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways). © The

  7. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers

    PubMed Central

    Ranathunge, Kosala; Kim, Yangmin X.; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria

    2017-01-01

    Abstract Background and Aims Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Methods Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography–mass spectometry (GC-MS). The hydraulic conductivity of roots (Lpr) and of cortical cells (Lpc) was measured using root and cell pressure probes. Key Results When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as ‘dots’ as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lpr. Comparison of Lpr and Lpc suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lpr from Lpc showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities (Psr) and reflection coefficients (σsr) for the solutes used. The σsr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Conclusions Suberized endodermis significantly reduces Lpr of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in

  8. Dynamic monitoring of blood-brain barrier integrity using water exchange index (WEI) during mannitol and CO2 challenges in mouse brain.

    PubMed

    Huang, Shuning; Farrar, Christian T; Dai, Guangping; Kwon, Seon Joo; Bogdanov, Alexei A; Rosen, Bruce R; Kim, Young R

    2013-04-01

    The integrity of the blood-brain barrier (BBB) is critical to normal brain function. Traditional techniques for the assessment of BBB disruption rely heavily on the spatiotemporal analysis of extravasating contrast agents. However, such methods based on the leakage of relatively large molecules are not suitable for the detection of subtle BBB impairment or for the performance of repeated measurements in a short time frame. Quantification of the water exchange rate constant (WER) across the BBB using strictly intravascular contrast agents could provide a much more sensitive method for the quantification of the BBB integrity. To estimate WER, we have recently devised a powerful new method using a water exchange index (WEI) biomarker and demonstrated BBB disruption in an acute stroke model. Here, we confirm that WEI is sensitive to even very subtle changes in the integrity of the BBB caused by: (i) systemic hypercapnia and (ii) low doses of a hyperosmolar solution. In addition, we have examined the sensitivity and accuracy of WEI as a biomarker of WER using computer simulation. In particular, the dependence of the WEI-WER relation on changes in vascular blood volume, T1 relaxation of cellular magnetization and transcytolemmal water exchange was explored. Simulated WEI was found to vary linearly with WER for typically encountered exchange rate constants (1-4 Hz), regardless of the blood volume. However, for very high WER (>5 Hz), WEI became progressively more insensitive to increasing WER. The incorporation of transcytolemmal water exchange, using a three-compartment tissue model, helped to extend the linear WEI regime to slightly higher WER, but had no significant effect for most physiologically important WERs (WER < 4 Hz). Variation in cellular T1 had no effect on WEI. Using both theoretical and experimental approaches, our study validates the utility of the WEI biomarker for the monitoring of BBB integrity. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected

    PubMed Central

    Donnelly, Ryan F.; Mooney, Karen; McCrudden, Maelíosa T.C.; Vicente-Pérez, Eva M.; Belaid, Luc; González-Vázquez, Patricia; McElnay, James C.; Woolfson, A. David

    2014-01-01

    We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle arrays (MN) and skin barrier recovery in human volunteers. Such MN, prepared from aqueous blends of hydrolysed poly(methylvinylether/maleicanhydride) (15% w/w) and the crosslinker poly(ethyleneglycol) 10,000 daltons (7.5% w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 hours in skin. Importantly, however, skin barrier function recovered within 24 hours post microneedle removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required, since transepidermal water loss measurements suggested micropore closure, while optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 hours after MN had been removed. There were no complaints of skin reactions, adverse events or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 hours and no adverse events were present on follow-up. PMID:24633895

  10. Helping Homeless Families Overcome Barriers to Successful Functioning

    ERIC Educational Resources Information Center

    Swick, Kevin J.

    2005-01-01

    The author articulates key stressors in the lives of families who are homeless. These stresses often combine with barriers such as lack of job opportunities and/or insensitive professionals. Strategies for helping homeless families overcome these barriers and related issues are presented.

  11. Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems.

    PubMed

    Thiyahuddin, M I; Thambiratnam, D P; Gu, Y T

    2014-10-01

    Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular "wall" representative of a 30m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier "wall" and the vehicle was obtained and the results show that a rotational stiffness of 3000kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Barrier function and microbiotic dysbiosis in atopic dermatitis

    PubMed Central

    Seite, Sophie; Bieber, Thomas

    2015-01-01

    Atopic dermatitis (AD) or atopic eczema is the common inflammatory skin disorder, the prevalence of which has considerably increased during the last 30 years. It affects 15%–30% of children and 2%–10% of adults. AD characteristically alternates between periods of exacerbation or flares and periods of remission, which may be therapeutically induced or spontaneous. Current knowledge about AD includes abnormalities of the skin barrier (physical and chemical), the immune barrier, and more recently, the microbial barrier or microbiota. There is growing evidence for a tight relationship between them. To obtain satisfactory control of this condition, the clinical strategy to manage AD involves prescribing both anti-inflammatory medications and dermocosmetic products. The role of the physician is therefore to advise the patient with regard to hygiene measures aimed to help to improve these three barriers or to prevent any further deterioration. PMID:26396539

  13. LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis1[C][W][OA

    PubMed Central

    Braud, Christopher; Zheng, Wenguang; Xiao, Wenyan

    2012-01-01

    Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in early embryogenesis, and eventually arrest embryo development. LNO1 is highly expressed in anthers of flower buds, stigma papilla of open flowers, and embryo and endosperm during early embryogenesis, which is correlated with its functions in reproductive development. The homozygous lno1-1 seed is not viable. LNO1, a homolog of the nucleoporin NUP214 in human (Homo sapiens) and Nup159 in yeast (Saccharomyces cerevisiae), encodes a nucleoporin protein containing phenylalanine-glycine repeats in Arabidopsis. We demonstrate that LNO1 can functionally complement the defect in the yeast temperature-sensitive nucleoporin mutant nup159. We show that LNO1 specifically interacts with the Arabidopsis DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay. Furthermore, mutations in AtGLE1, an Arabidopsis homolog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in seed abortion. Our results suggest that LNO1 is a component of the nuclear pore complex required for mature mRNA export from the nucleus to the cytoplasm, which makes LNO1 essential for embryogenesis and seed viability in Arabidopsis. PMID:22898497

  14. Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis1[C][W][OA

    PubMed Central

    Kuhn, Benjamin M.; Geisler, Markus; Bigler, Laurent; Ringli, Christoph

    2011-01-01

    Flavonoids represent a class of secondary metabolites with diverse functions in plants including ultraviolet protection, pathogen defense, and interspecies communication. They are also known as modulators of signaling processes in plant and animal systems and therefore are considered to have beneficial effects as nutraceuticals. The rol1-2 (for repressor of lrx1) mutation of Arabidopsis (Arabidopsis thaliana) induces aberrant accumulation of flavonols and a cell-growth phenotype in the shoot. The hyponastic cotyledons, aberrant shape of pavement cells, and deformed trichomes in rol1-2 mutants are suppressed by blocking flavonoid biosynthesis, suggesting that the altered flavonol accumulation in these plants induces the shoot phenotype. Indeed, the identification of several transparent testa, myb, and fls1 (for flavonol synthase1) alleles in a rol1-2 suppressor screen provides genetic evidence that flavonols interfere with shoot development in rol1-2 seedlings. The increased accumulation of auxin in rol1-2 seedlings appears to be caused by a flavonol-induced modification of auxin transport. Quantification of auxin export from mesophyll protoplasts revealed that naphthalene-1-acetic acid but not indole-3-acetic acid transport is affected by the rol1-2 mutation. Inhibition of flavonol biosynthesis in rol1-2 fls1-3 restores naphthalene-1-acetic acid transport to wild-type levels, indicating a very specific mode of action of flavonols on the auxin transport machinery. PMID:21502189

  15. Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Vretenar, Dario; Zhao, En-Guang; Zhou, Shan-Gui

    2015-01-01

    Background: Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier, the occurrence of a third barrier was predicted by macroscopic-microscopic model calculations in the 1970s, but contradictory results were later reported by a number of studies that used different methods. Purpose: Triple-humped barriers in actinide nuclei are investigated in the framework of covariant density functional theory (CDFT). Methods: Calculations are performed using the multidimensionally constrained relativistic mean field (MDC-RMF) model, with the nonlinear point-coupling functional PC-PK1 and the density-dependent meson exchange functional DD-ME2 in the particle-hole channel. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Results: Two-dimensional PES's of 226,228,230,232Th and 232,235,236,238U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. The functional DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238U . The third minima in 230 ,232Th are very shallow, whereas those in 226 ,228Th and 238U are quite prominent. With the functional PC-PK1 a third barrier is found only in 226 ,228 ,230Th . Single-nucleon levels around the Fermi surface are analyzed in 226Th, and it is found that the formation of the third minimum is mainly due to the Z =90 proton energy gap at β20≈1.5 and β30≈0.7 . Conclusions: The possible occurrence of a third barrier on the PES's of actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases

  16. A cannabinoid receptor 2 agonist reduces blood-brain barrier damage via induction of MKP-1 after intracerebral hemorrhage in rats.

    PubMed

    Li, Lin; Yun, Debo; Zhang, Yuan; Tao, Yihao; Tan, Qiang; Qiao, Fei; Luo, Bo; Liu, Yi; Fan, Runjin; Xian, Jishu; Yu, Anyong

    2018-06-07

    The blood-brain barrier (BBB) disruption and the following development of brain edema, is the most life-threatening secondary injury after intracerebral hemorrhage (ICH). This study is to investigate a potential role and mechanism of JWH133, a selected cannabinoid receptor type2 (CB2R) agonist, on protecting blood-brain barrier integrity after ICH. 192 adult male Sprague-Dawley (SD) rats were randomly divided into Sham; ICH+Vehicle; ICH+JWH 1.0mg/kg, ICH+JWH 1.5mg/kg and ICH+JWH 2.0mg/kg; ICH+SR+JWH respectively. Animals were euthanized at 24 hours following western blots and immunofluorescence staining, we also examined the effect of JWH133 on the brain water contents, neurobehavioral deficits and blood brain barrier (BBB) permeability, meanwhile reassessed the inflammatory cytokines concentrations around the hematoma by enzyme-linked immunosorbent assay (ELISA) in each group. JWH133 (1.5mg/kg) administration ameliorated brain edema, neurological deficits and blood-brain barrier damage, as well as microglia activation. The expression of pro-inflammatory mediators interleukin 1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and matrix metallopeptidase-2/9(MMP2/9) were attenuated, but not monocyte chemoattractant protein-1 (MCP-1). Additionally, decreases in zonula occludens-1 (ZO-1) and claudin-5 expression were partially recovered by JWH133. Furthermore, JWH133 upregulated the expression level of MKP-1, which leads to the inhibition of MAPKs signaling pathway activation, especially for ERK and P38. However, these effects were reversed by pretreatment with a selective CB2R antagonist, SR144528. CB2R agonist alleviated neuroinflammation and protected blood-brain barrier permeability in a rat ICH model. Further molecular mechanisms revealed which is probably mediated by enhancing the expression of MKP-1, then inhibited MAPKs signal transduction. Copyright © 2018. Published by Elsevier B.V.

  17. Lithium in drinking water and thyroid function.

    PubMed

    Broberg, Karin; Concha, Gabriela; Engström, Karin; Lindvall, Magnus; Grandér, Margareta; Vahter, Marie

    2011-06-01

    High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function. We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function. Women (n=202) were recruited in four Andean villages in northern Argentina. Lithium exposure was assessed based on concentrations in spot urine samples, measured by inductively coupled plasma mass spectrometry. Thyroid function was evaluated by plasma free thyroxine (T4) and pituitary gland thyroid-stimulating hormone (TSH), analyzed by routine immunometric methods. The median urinary lithium concentration was 3,910 μg/L (5th, 95th percentiles, 270 μg/L, 10,400 μg/L). Median plasma concentrations (5th, 95th percentiles) of T4 and TSH were 17 pmol/L (13 pmol/L, 21 pmol/L) and 1.9 mIU/L, (0.68 mIU/L, 4.9 mIU/L), respectively. Urine lithium was inversely associated with T4 [β for a 1,000-μg/L increase=-0.19; 95% confidence interval (CI), -0.31 to -0.068; p=0.002] and positively associated with TSH (β=0.096; 95% CI, 0.033 to 0.16; p=0.003). Both associations persisted after adjustment (for T4, β=-0.17; 95% CI, -0.32 to -0.015; p=0.032; for TSH: β=0.089; 95% CI, 0.024 to 0.15; p=0.007). Urine selenium was positively associated with T4 (adjusted T4 for a 1 μg/L increase: β=0.041; 95% CI, 0.012 to 0.071; p=0.006). Exposure to lithium via drinking water and other environmental sources may affect thyroid function, consistent with known side effects of medical treatment with lithium. This stresses the need to screen for lithium in all drinking water sources.

  18. Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus.

    PubMed

    Zhang, Jiyong; Sadowska, Grazyna B; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Banks, William A; Stonestreet, Barbara S

    2015-05-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia. © FASEB.

  19. Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes.

    PubMed

    Hu, Madeleine D; Jia, Luo; Edelblum, Karen L

    2018-03-01

    This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.

  20. Epidermal Permeability Barrier Recovery Is Delayed in Vitiligo-Involved Sites

    PubMed Central

    Liu, J.; Man, W.Y.; Lv, C.Z.; Song, S.P.; Shi, Y.J.; Elias, P.M.; Man, M.Q.

    2010-01-01

    Background/Objectives Prior studies have demonstrated that both the skin surface pH and epidermal permeability barrier function vary with skin pigmentation types. Although melanin deficiency is the main feature of vitiligo, alterations in cutaneous biophysical properties in vitiligo have not yet been well defined. In the present study, stratum corneum (SC) hydration, the skin surface pH and epidermal permeability barrier function in vitiligo were evaluated. Methods A total of 30 volunteers with vitiligo comprising 19 males and 11 females aged 13–51 years (mean age: 27.91 ± 2.06 years) were enrolled in this study. The skin surface pH, SC hydration, melanin/erythema index and transepidermal water loss (TEWL) were measured by respective probes connected to a Courage-Khazaka MPA5. SC integrity was determined by measuring the TEWL following each D-Squame application. The barrier recovery rate was assessed at 5 h following barrier disruption by repeated tape stripping. Results In addition to SC hydration, both melanin and erythema index were significantly lower in vitiligo lesions than in contralateral, nonlesional sites, while no difference in skin surface pH between vitiligo-involved and uninvolved areas was observed. In addition, neither the basal TEWL nor SC integrity in the involved areas differed significantly from that in the uninvolved areas. However, barrier recovery in vitiligo-involved sites was significantly delayed in comparison with uninvolved sites (40.83 ± 5.39% vs. 58.30 ± 4.71%; t = 2.441; p < 0.02). Conclusion Barrier recovery following tape stripping of the SC is delayed in vitiligo. Therefore, improvement in epidermal permeability barrier function may be an important unrecognized factor to be considered in treating patients with vitiligo. PMID:20185976

  1. Wax Layers on Cosmos bipinnatus Petals Contribute Unequally to Total Petal Water Resistance1[OPEN

    PubMed Central

    Buschhaus, Christopher; Hager, Dana; Jetter, Reinhard

    2015-01-01

    Cuticular waxes coat all primary aboveground plant organs as a crucial adaptation to life on land. Accordingly, the properties of waxes have been studied in much detail, albeit with a strong focus on leaf and fruit waxes. Flowers have life histories and functions largely different from those of other organs, and it remains to be seen whether flower waxes have compositions and physiological properties differing from those on other organs. This work provides a detailed characterization of the petal waxes, using Cosmos bipinnatus as a model, and compares them with leaf and stem waxes. The abaxial petal surface is relatively flat, whereas the adaxial side consists of conical epidermis cells, rendering it approximately 3.8 times larger than the projected petal area. The petal wax was found to contain unusually high concentrations of C22 and C24 fatty acids and primary alcohols, much shorter than those in leaf and stem waxes. Detailed analyses revealed distinct differences between waxes on the adaxial and abaxial petal sides and between epicuticular and intracuticular waxes. Transpiration resistances equaled 3 × 104 and 1.5 × 104 s m−1 for the adaxial and abaxial surfaces, respectively. Petal surfaces of C. bipinnatus thus impose relatively weak water transport barriers compared with typical leaf cuticles. Approximately two-thirds of the abaxial surface water barrier was found to reside in the epicuticular wax layer of the petal and only one-third in the intracuticular wax. Altogether, the flower waxes of this species had properties greatly differing from those on vegetative organs. PMID:25413359

  2. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

    PubMed

    Benedicto, Ignacio; Lehmann, Guillermo L; Ginsberg, Michael; Nolan, Daniel J; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M; Prusky, Glen T; Llanos, Pierre; Rabbany, Sina Y; Maminishkis, Arvydas; Miller, Sheldon S; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-05-19

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.

  3. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors

    PubMed Central

    Benedicto, Ignacio; Lehmann, Guillermo L.; Ginsberg, Michael; Nolan, Daniel J.; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M.; Prusky, Glen T.; Llanos, Pierre; Rabbany, Sina Y.; Maminishkis, Arvydas; Miller, Sheldon S.; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-01-01

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease. PMID:28524846

  4. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  5. Effects of single and repeated exposure to biocidal active substances on the barrier function of the skin in vitro.

    PubMed

    Buist, Harrie E; van de Sandt, Johannes J M; van Burgsteden, Johan A; de Heer, Cees

    2005-10-01

    The dermal route of exposure is important in worker exposure to biocidal products. Many biocidal active substances which are used on a daily basis may decrease the barrier function of the skin to a larger extent than current risk assessment practice addresses, due to possible skin effects of repeated exposure. The influence of repeated and single exposure to representative biocidal active substances on the skin barrier was investigated in vitro. The biocidal active substances selected were alkyldimethylbenzylammonium chloride (ADBAC), boric acid, deltamethrin, dimethyldidecylammonium chloride (DDAC), formaldehyde, permethrin, piperonyl butoxide, sodium bromide, and tebuconazole. Of these nine compounds, only the quaternary ammonium chlorides ADBAC and DDAC had a clear and consistent influence on skin permeability of the marker compounds tritiated water and [(14)C]propoxur. For these compounds, repeated exposure increased skin permeability more than single exposure. At high concentrations the difference between single and repeated exposure was quantitatively significant: repeated exposure to 300 mg/L ADBAC increased skin permeability two to threefold in comparison to single exposure. Therefore, single and repeated exposure to specific biocidal products may significantly increase skin permeability, especially when used undiluted.

  6. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by Bilirubin at the Blood-CSF and Blood-Brain Barriers in the Gunn Rat

    PubMed Central

    Gazzin, Silvia; Berengeno, Andrea Lorena; Strazielle, Nathalie; Fazzari, Francesco; Raseni, Alan; Ostrow, J. Donald; Wennberg, Richard; Ghersi-Egea, Jean-François; Tiribelli, Claudio

    2011-01-01

    Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16–27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17–P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60–70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4th ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity. PMID:21297965

  7. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat.

    PubMed

    Gazzin, Silvia; Berengeno, Andrea Lorena; Strazielle, Nathalie; Fazzari, Francesco; Raseni, Alan; Ostrow, J Donald; Wennberg, Richard; Ghersi-Egea, Jean-François; Tiribelli, Claudio

    2011-01-31

    Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16-27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17-P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60-70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4(th) ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity.

  8. Loss of tight junction barrier function and its role in cancer metastasis.

    PubMed

    Martin, Tracey A; Jiang, Wen G

    2009-04-01

    As the most apical structure between epithelial and endothelial cells, tight junctions (TJ) are well known as functioning as a control for the paracellular diffusion of ions and certain molecules. It has however, become increasingly apparent that the TJ has a vital role in maintaining cell to cell integrity and that the loss of cohesion of the structure can lead to invasion and thus metastasis of cancer cells. This article will present data showing how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the successful metastasis of a number of different cancer types.

  9. Delineation of Matriptase Protein Expression by Enzymatic Gene Trapping Suggests Diverging Roles in Barrier Function, Hair Formation, and Squamous Cell Carcinogenesis

    PubMed Central

    List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H.

    2006-01-01

    The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma. PMID:16651618

  10. Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis.

    PubMed

    List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H

    2006-05-01

    The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma.

  11. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  12. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

    PubMed Central

    Kwee, Ingrid L.

    2017-01-01

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467

  13. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    PubMed

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  14. Potential barrier classification by short-time measurement

    NASA Astrophysics Data System (ADS)

    Granot, Er'El; Marchewka, Avi

    2006-03-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.

  15. Evaluation of blood-brain barrier and blood-cerebrospinal fluid barrier permeability of 2-phenoxy-indan-1-one derivatives using in vitro cell models.

    PubMed

    Hu, Hai-Hong; Bian, Yi-Cong; Liu, Yao; Sheng, Rong; Jiang, Hui-Di; Yu, Lu-Shan; Hu, Yong-Zhou; Zeng, Su

    2014-01-02

    2-Phenoxy-indan-1-one derivatives (PIOs) are a series of novel central-acting cholinesterase inhibitors for the treatment of Alzheimer's disease (AD). The adequate distribution of PIOs to the central nervous system (CNS) is essential for its effectiveness. However, articles related with their permeability in terms of CNS penetration across the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) have not been found. This study was undertaken to evaluate the in vitro BBB and BCSFB transport of PIOs using Madin-Darby canine kidney (MDCK), MDCK-MDR1 and Z310 cell line models. As a result, the transepithelial transport of PIOs did not differ between MDCK and MDCK-MDR1, and the result suggested that PIOs were not substrates for P-gp, which means that multidrug resistance (MDR) function would not affect PIOs absorption and brain distribution. High permeability of PIOs in Z310 was found and it suggested that PIOs had high brain uptake potential. The experiment also showed that PIOs had inhibitory effects on the MDR1-mediated transport of Rhodamine123 with an IC50 value of 40-54 μM. And we suggested that 5,6-dimethoxy-1-indanone might be the pharmacophoric moiety of PIOs that interacts with the binding site of P-gp. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Modified Clp Protease Complex in the ClpP3 Null Mutant and Consequences for Chloroplast Development and Function in Arabidopsis1[C][W][OA

    PubMed Central

    Kim, Jitae; Olinares, Paul Dominic; Oh, Soo-hyun; Ghisaura, Stefania; Poliakov, Anton; Ponnala, Lalit; van Wijk, Klaas J.

    2013-01-01

    The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed. PMID:23548781

  17. Barriers to Medical Compassion as a Function of Experience and Specialization: Psychiatry, Pediatrics, Internal Medicine, Surgery, and General Practice.

    PubMed

    Fernando, Antonio T; Consedine, Nathan S

    2017-06-01

    Compassion is an expectation of patients, regulatory bodies, and physicians themselves. Most research has, however, studied compassion fatigue rather than compassion itself and has concentrated on the role of the physician. The Transactional Model of Physician Compassion suggests that physician, patient, external environment, and clinical factors are all relevant. Because these factors vary both across different specialities and among physicians with differing degrees of experience, barriers to compassion are also likely to vary. We describe barriers to physician compassion as a function of specialization (psychiatry, general practice, surgery, internal medicine, and pediatrics) and physician experience. We used a cross-sectional study using demographic data, specialization, practice parameters, and the Barriers to Physician Compassion Questionnaire. Nonrandom convenience sampling was used to recruit 580 doctors, of whom 444 belonged to the targeted speciality groups. The sample was characterized before conducting a factorial Multivariate Analysis of Covariance and further post hoc analyses. A 5 (speciality grouping) × 2 (more vs. less physician experience) Multivariate Analysis of Covariance showed that the barriers varied as a function of both speciality and experience. In general, psychiatrists reported lower barriers, whereas general practitioners and internal medicine specialists generally reported greater barriers. Barriers were generally greater among less experienced doctors. Documenting and investigating barriers to compassion in different speciality groups have the potential to broaden current foci beyond the physician and inform interventions aimed at enhancing medical compassion. In addition, certain aspects of the training or practice of psychiatry that enhance compassion may mitigate barriers to compassion in other specialities. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  18. A Key Claudin Extracellular Loop Domain is Critical for Epithelial Barrier Integrity

    PubMed Central

    Mrsny, Randall J.; Brown, G. Thomas; Gerner-Smidt, Kirsten; Buret, Andre G.; Meddings, Jon B.; Quan, Clifford; Koval, Michael; Nusrat, Asma

    2008-01-01

    Intercellular tight junctions (TJs) regulate epithelial barrier properties. Claudins are major structural constituents of TJs and belong to a large family of tetra-spanning membrane proteins that have two predicted extracellular loops (ELs). Given that claudin-1 is widely expressed in epithelia, we further defined the role of its EL domains in determining TJ function. The effects of several claudin-1 EL mimetic peptides on epithelial barrier structure and function were examined. Incubation of model human intestinal epithelial cells with a 27-amino acid peptide corresponding to a portion of the first EL domain (Cldn-153–80) reversibly interfered with epithelial barrier function by inducing the rearrangement of key TJ proteins: occludin, claudin-1, junctional adhesion molecule-A, and zonula occludens-1. Cldn-153–80 associated with both claudin-1 and occludin, suggesting both the direct interference with the ability of these proteins to assemble into functional TJs and their close interaction under physiological conditions. These effects were specific for Cldn-153–80, because peptides corresponding to other claudin-1 EL domains failed to influence TJ function. Furthermore, the oral administration of Cldn-153–80 to rats increased paracellular gastric permeability. Thus, the identification of a critical claudin-1 EL motif, Cldn-153–80, capable of regulating TJ structure and function, offers a useful adjunct to treatments that require drug delivery across an epithelial barrier. PMID:18349130

  19. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.

    PubMed

    Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi

    2016-01-01

    The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP

  20. Tight junction proteins contribute to barrier properties in human pleura.

    PubMed

    Markov, Alexander G; Voronkova, Maria A; Volgin, George N; Yablonsky, Piotr K; Fromm, Michael; Amasheh, Salah

    2011-03-15

    The permeability of pleural mesothelium helps to control the volume and composition of the liquid lubricating pleural surfaces. Information on pleural barrier function in health and disease, however, is scarce. Tissue specimens of human pleura were mounted in Ussing chambers for measurement of transmesothelial resistance. Expression of tight junction (TJ) proteins was studied by Western blots and immune fluorescence confocal microscopy. Both visceral and parietal pleura showed barrier properties represented by transmesothelial resistance. Occludin, claudin-1, -3, -5, and -7, were detected in visceral pleura. In parietal pleura, the same TJ proteins were detected, except claudin-7. In tissues from patients with pleural inflammation these tightening claudins were decreased and in visceral pleura claudin-2, a paracellular channel former, became apparent. We report that barrier function in human pleura coincides with expression of claudins known to be key determinants of epithelial barrier properties. In inflamed tissue, claudin expression indicates a reduced barrier function. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. End Functionalized Nonionic Water-Dispersible Conjugated Polymers.

    PubMed

    Zhan, Ruoyu; Liu, Bin

    2017-09-01

    2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  3. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    PubMed

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  4. Effects of a Single Water Molecule on the Reaction Barrier of Interstellar CO2 Formation Reaction.

    PubMed

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-08-25

    The mechanism by which CO2 is formed in the interstellar space remains a mystery. The most likely reaction is collision between CO and OH; however, previous theoretical works have shown that the activation barrier for CO2 formation is high enough to prevent the reaction at the low thermal conditions of space (∼10 K). The effects of single water molecule on the reaction barrier of CO2 formation from reaction between CO and OH have been investigated here by means of ab initio calculation. The barrier height along the lowest-energy pathway in the reaction between CO and OH in the absence of the H2O molecule was calculated to be 2.3 kcal/mol when CCSD(T) energy corrections are combined with the MP2 basis set limit. In the case of the hydrated (H2O-CO-OH) system, the inclusion of a single H2O molecule into the system significantly decreased the barrier height to 0.2 kcal/mol. This suggests that CO2 can be formed when CO and OH react in the presence of H2O, even under thermal conditions as low as 10 K.

  5. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model.

    PubMed

    Chen, Hong; Chen, Daiwen; Qin, Wen; Liu, Yuntao; Che, Lianqiang; Huang, Zhiqing; Luo, Yuheng; Zhang, Qing; Lin, Derong; Liu, Yaowen; Han, Guoquan; DeSmet, Stefaan; Michiels, Joris

    2017-02-01

    The objective of this study was to determine the impact of wheat bran and its main polysaccharides on intestinal bacteria and gene expression of intestinal barrier function relevant proteins. Thirty freshly weaned male piglets were assigned randomly to five dietary treatment groups with six piglets per group. Accordingly, five synthetic diets including a basal control diet without fiber components (CON), wheat bran diet (10% wheat bran, WB), arabinoxylan diet (AX), cellulose diet (CEL) and combined diet of arabinoxylan and cellulose (CB) were studied. The piglets were fed ad libitum for 30 d. Lower Escherichia coli (E. coli) populations in WB group and higher probiotic (Lactobacillus and Bifidobacterium) populations in groups fed diets containing arabinoxylan (WB, AX and CB) were observed and compared with CON group. Compared with CON group, the gene expressions of cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channel regulator 1 (CLCA1) and voltage-gated chloride channel 2 (CIC2) were suppressed in the WB group. And wheat bran down-regulated gene expression of pro-inflammation (TNF-α, IL-1β, IL-6) and TLRs/MyD88/NF-κB pathway compared with CON group. In conclusion, wheat bran and its main polysaccharides could change intestinal microflora and down-regulate the gene expression of intestinal barrier function relevant proteins in the distal small intestinal mucosa.

  6. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function

    PubMed Central

    Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M.; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C. Yan; Mayadas, Tanya N.

    2017-01-01

    The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis. PMID:26687990

  7. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis.

    PubMed

    Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-06-07

    Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.

  8. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C.

    PubMed

    Cario, Elke; Gerken, Guido; Podolsky, Daniel K

    2004-07-01

    Protein kinase C (PKC) has been implicated in regulation of intestinal epithelial integrity in response to lumenal bacteria. Intestinal epithelial cells (IECs) constitutively express Toll-like receptor (TLR)2, which contains multiple potential PKC binding sites. The aim of this study was to determine whether TLR2 may activate PKC in response to specific ligands, thus potentially modulating barrier function in IECs. TLR2 agonist (synthetic bacterial lipopeptide Pam(3)CysSK4, peptidoglycan)-induced activation of PKC-related signaling cascades were assessed by immunoprecipitation, Western blotting, immunofluorescence, and kinase assays-combined with functional transfection studies in the human model IEC lines HT-29 and Caco-2. Transepithelial electrical resistance characterized intestinal epithelial barrier function. Stimulation with TLR2 ligands led to activation (phosphorylation, enzymatic activity, translocation) of specific PKC isoforms (PKCalpha and PKCdelta). Phosphorylation of PKC by TLR2 ligands was blocked specifically by transfection with a TLR2 deletion mutant. Ligand-induced activation of TLR2 greatly enhanced transepithelial resistance in IECs, which was prevented by pretreatment with PKC-selective antagonists. This effect correlated with apical tightening and sealing of tight junction (TJ)-associated ZO-1, which was mediated via PKC in response to TLR2 ligands, whereas morphologic changes of occludin, claudin-1, or actin cytoskeleton were not evident. Downstream the endogenous PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS), but not transcriptional factor activator protein-1 (AP-1), was activated significantly on stimulation. The present study provides evidence that PKC is an essential component of the TLR2 signaling pathway with the physiologic consequence of directly enhancing intestinal epithelial integrity through translocation of ZO-1 on activation.

  9. A controlled, three-part trial to investigate the barrier function and skin hydration properties of six skin protectants.

    PubMed

    Hoggarth, Andrew; Waring, Mike; Alexander, James; Greenwood, Amanada; Callaghan, Theresa

    2005-12-01

    In the treatment of incontinence dermatitis, a skin protectant primarily prevents skin breakdown due to moisture and biological irritants in urine and feces. To assess the barrier and skin hydration properties of six currently available skin protectants with different formulations, a controlled, three-phase study was conducted at a research facility in the UK among 18 healthy volunteers. The study addressed each product's efficacy against insult from a known irritant (sodium lauryl sulphate), skin hydration potential, and maintenance of skin barrier and barrier efficacy against maceration. Using white petrolatum (glycerin) as the positive control and untreated sites as the negative control, the results show that each one of the products tested has different performance properties. Products containing petrolatum demonstrated protection against irritants (P = 0.006 at 24 hours) and maceration (P < 0.005) and provided some skin hydration. Products containing dimethicone varied in protection against irritants (P < 0.005, or P > or = 0.806 at 24 hours) and have good skin hydration potential and low barrier efficacy (P > 0.500). Zinc oxide-based products showed protection against irritants (P < 0.005) but poor skin hydration and barrier properties to prevent maceration (P = 0.262). Overall, only the water-in-oil petrolatum- based product performed effectively within all the parameters tested. This study suggests that skin barrier protection involves more than the inclusion of an active barrier ingredient. Further testing and use of barrier products in the clinical setting will provide additional evidence for appropriate product selection.

  10. Building lipid barriers: biosynthesis of cutin and suberin.

    PubMed

    Pollard, Mike; Beisson, Fred; Li, Yonghua; Ohlrogge, John B

    2008-05-01

    Cutin and suberin are the polymer matrices for lipophilic cell wall barriers. These barriers control the fluxes of gases, water and solutes, and also play roles in protecting plants from biotic and abiotic stresses and in controlling plant morphology. Although they are ubiquitous, cutin and suberin are the least understood of the major plant extracellular polymers. The use of forward and reverse genetic approaches in Arabidopsis has led to the identification of oxidoreductase and acyltransferase genes involved in the biosynthesis of these polymers. However, major questions about the underlying polymer structure, biochemistry, and intracellular versus extracellular assembly remain to be resolved. The analysis of plant lines with modified cutins and suberins has begun to reveal the inter-relationships between the composition and function of these polymers.

  11. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Huang, Chi-Ting; Lee, Chiang-Wen; Fang, Jia-You

    2015-04-01

    Ambient particulate matters (PMs) are known as inducers that adversely affect a variety of human organs. In this study, we aimed to evaluate the influence of PMs on the permeation of drugs and sunscreens via the skin. The role of skin-barrier properties such as the stratum corneum (SC) and tight junctions (TJs) during the delivery process was explored. This work was conducted using both in vitro and in vivo experiments in pigs to check the responses of the skin to PMs. PMs primarily containing heavy metals (1648a) and polycyclic aromatic hydrocarbons (PAHs, 1649b) were employed to treat the skin. According to the transepidermal water loss (TEWL), 1649b but not 1648a significantly disrupted the SC integrity by 2-fold compared to the PBS control. The immunohistochemistry (IHC) of cytokeratin, filaggrin, and E-cadherin exhibited that 1649b mildly damaged TJs. The cytotoxicity of keratinocytes and skin fibroblasts caused by 1649b was stronger than that caused by 1648a. The 1649b elicited apoptosis via caspase-3 activation. The proteomic profiles showed that PMs upregulated Annexin A2 by >5-fold, which can be a biomarker of PM-induced barrier disruption. We found that the skin uptake of ascorbic acid, an extremely hydrophilic drug, was increased from 74 to 112 μg/g by 1649b treatment. The extremely lipophilic drug tretinoin also showed a 2.6-fold increase of skin accumulation. Oxybenzone and dextran absorption was not affected by PMs. The in vivo dye distribution visualized by fluorescence microscopy had indicated that 1649b intervention promoted permeant partitioning into SC. Caution should be taken in exposing the skin to airborne dust due to its ability to reduce barrier function and increase the risk of drug overabsorption, although this effect was not very marked. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    EPA Pesticide Factsheets

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  13. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids.

    PubMed

    Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G

    2016-01-15

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf 2 ] (with n = 1-8 and 10) and asymmetric [C n C 1 im][NTf 2 ] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

  14. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time.

    PubMed

    Sellmann, Cathrin; Priebs, Josephine; Landmann, Marianne; Degen, Christian; Engstler, Anna Janina; Jin, Cheng Jun; Gärttner, Stefanie; Spruss, Astrid; Huber, Otmar; Bergheim, Ina

    2015-11-01

    General overnutrition but also a diet rich in certain macronutrients, age, insulin resistance and an impaired intestinal barrier function may be critical factors in the development of nonalcoholic fatty liver disease (NAFLD). Here the effect of chronic intake of diets rich in different macronutrients, i.e. fructose and/or fat on liver status in mice, was studied over time. C57BL/6J mice were fed plain water, 30% fructose solution, a high-fat diet or a combination of both for 8 and 16 weeks. Indices of liver damage, toll-like receptor 4 (TLR-4) signaling cascade, macrophage polarization and insulin resistance in the liver and intestinal barrier function were analyzed. Chronic exposure to a diet rich in fructose and/or fat was associated with the development of hepatic steatosis that progressed with time to steatohepatitis in mice fed a combination of macronutrients. The development of NAFLD was also associated with a marked reduction of the mRNA expression of insulin receptor, whereas hepatic expressions of TLR-4, myeloid differentiation primary response gene 88 and markers of M1 polarization of macrophages were induced in comparison to controls. Bacterial endotoxin levels in portal plasma were found to be increased while levels of the tight junction protein occludin and zonula occludens 1 were found to be significantly lower in the duodenum of all treated groups after 8 and 16 weeks. Our data suggest that chronic intake of fructose and/or fat may lead to the development of NAFLD over time and that this is associated with an increased translocation of bacterial endotoxin. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S.; Delaney, C.; Seymour, D.; Blom, K.; Black, W.

    2013-12-01

    An evaluation is underway at the Goat Rock State Beach, which is located at the mouth of the Russian River near Jenner, CA. The study focuses on quantifying the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the potential major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding or enhancing subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. Results of the assessment will enable the Sonoma County Water Agency to understand how the jetty affects formation of the barrier beach and water surface elevations within the estuary. As one aspect of the evaluation, we are using geophysical methods to monitor seepage through the jetty as well as through the beach berm. We are using multiple surface geophysical methods, including: electrical resistivity, seismic refraction, ground penetrating radar, and electromagnetic methods. In general, seismic data are being used to characterize deeper bedrock controls on beach barrier functioning such as, channeling of estuarine water beneath the barrier beach. Electrical and electromagnetic methods are being used to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure. Time-lapse electrical and electromagnetic data are being used to monitor moisture changes and mixing of saline and fresh water within the beach berm. Ground penetrating radar data are being used to delineate the geometry of the

  16. Numerical simulation of flood barriers

    NASA Astrophysics Data System (ADS)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  17. Determination of the thickness and structure of the skin barrier by in vivo laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Richter, H.; Astner, S.; Patzelt, A.; Knorr, F.; Sterry, W.; Antoniou, Ch

    2008-04-01

    Normal skin barrier function is an essential aspect of skin homeostasis and regeneration. Dynamic inflammatory, proliferative and neoplastic skin processes such as wound healing, psoriasis and contact dermatitis are associated with a significant disruption of the skin barrier. In recent years, there has been increasing interest in evaluating cosmetic and pharmacologic products for their ability to restore these protective properties. The gold standard for characterization of barrier function has been the measurement of the transepidermal water loss, however the disadvantage of this method is its interference with several endogenous and exogenous factors such as hydration, perspiration and topically applied substances. This study was aimed to test the clinical applicability of a fluorescence confocal laser scanning microscope (LSM) for a systematic morphologic analysis of the structure, integrity and thickness of the stratum corneum in 10 otherwise healthy volunteers. The influence of skin treatment with commercial moisturizing cream on skin barrier function was evaluated in serial non-invasive examinations. Our findings showed that in vivo LSM may represent a simple and efficient method for the characterization of skin barrier properties, such as the thickness and hydration of the stratum corneum.

  18. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W., E-mail: ed.castner@rutgers.edu

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyzemore » the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.« less

  19. Exploration of the Esophageal Mucosal Barrier in Non-Erosive Reflux Disease

    PubMed Central

    Rinsma, Nicolaas F.; Farré, Ricard; Troost, Fred J.; Elizalde, Montserrat; Keszthelyi, Daniel; Helyes, Zsuzsanna; Masclee, Ad A.; Conchillo, José M.

    2017-01-01

    In the absence of visible mucosal damage, it is hypothesized that the esophageal mucosal barrier is functionally impaired in patients with non-erosive reflux disease (NERD). The aim of the present study was to perform an exploratory analysis of the mucosal barrier in NERD compared to erosive esophagitis (EE) and controls. A second aim was to explore TRPV1 gene transcription in relation to the mucosal barrier function and heartburn symptoms. In this prospective study, 10 NERD patients, 11 patients with active erosive esophagitis and 10 healthy volunteers were included. Biopsies from non-eroded mucosa were obtained for (1) ex vivo analyses (Ussing chamber) of transepithelial electrical resistance (TEER) and permeability (2) gene transcription of tight-junction proteins and transient receptor potential vanilloid subfamily member 1 (TRPV1). No differences in TEER or permeability were found between NERD and healthy volunteers, whereas TEER was lower in patients with erosive esophagitis. TRPV1 gene transcription was not significantly different between EE, NERD and controls. Conclusions: esophageal mucosal barrier function and TRPV1 transcription is not significantly altered in NERD patients. Future research is needed to explore other potential mechanisms that may account for the high symptom burden in these patients. PMID:28534850

  20. Bilayer Poly(Lactic-co-glycolic acid)/Nano-Hydroxyapatite Membrane with Barrier Function and Osteogenesis Promotion for Guided Bone Regeneration

    PubMed Central

    Fu, Li; Wang, Zhanfeng; Dong, Shujun; Cai, Yan; Ni, Yuxin; Zhang, Tianshou; Wang, Lin; Zhou, Yanmin

    2017-01-01

    Guided bone regeneration (GBR) is one such treatment that reconstructs neo-bone tissue by using a barrier membrane to prevent the invasion of soft tissue and to create a space for guiding new bone growth into the bone defect. Herein, we report a novel functionally graded bilayer membrane (FGBM) for GBR application. To fabricate the novel membrane, the composites of poly(lactic-co-glycolic acid) and nano-hydroxyapatite were prepared by phase inversion for the dense layer and by electrospinning for another porous layer, and their corresponding properties were evaluated including surface morphology, mechanics, degradability, cell barrier function, and in vitro osteogenic bioactivity. The results showed that PLGA with 5% nHA in dense layer could meet the requirement of mechanical strength and have excellent barrier function even on condition of post-degradation. Furthermore, PLGA with 30% nHA in porous layer could achieve the good physical and chemical properties. In addition, 30% nHA incorporation would enhance the in vitro mineralization, and have superior capabilities of cell adhesion, proliferation and differentiation compared to other groups. Therefore, the designed FGBM could potentially serve as a barrier for preferential tissue ingrowth and achieve a desirable therapeutic result for bone tissue regeneration. PMID:28772618

  1. The impact of aging on epithelial barriers.

    PubMed

    Parrish, Alan R

    2017-10-02

    The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.

  2. Inactivation of Escherichia coli in water by pulsed dielectric barrier discharge in coaxial reactor.

    PubMed

    Hernández-Arias, A N; Rodríguez-Méndez, B G; López-Callejas, R; Alcántara-Díaz, D; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Barocio, S R; de la Piedad-Beneitez, A

    2012-09-01

    An experimental study of ATCC (American Type Culture Collection) 8739 Escherichia coli bacteria inactivation in water by means of pulsed dielectric barrier discharge (PDBD) atmospheric pressure plasmas is presented. Plasma is generated by an adjustable power source capable of supplying high voltage 25 kV pulses, ∼30 μs long and at a 500 Hz frequency. The process was conducted in a ∼152 cm(3) cylindrical stainless steel coaxial reactor, endowed with a straight central electrode and a gas inlet. The bacterial concentration in water was varied from 10(3) up to 10(8) E. coli cells per millilitre. The inactivation was achieved without gas flow in the order of 82% at 10(8) colony-forming units per millilitre (CFU mL(-1)) concentrations in 600 s. In addition, oxygen was added to the gas supply in order to increase the ozone content in the process, raising the inactivation percentage to the order of 90% in the same treatment time. In order to reach a higher efficiency however, oxygen injection modulation is applied, leading to inactivation percentages above 99.99%. These results are similarly valid for lower bacterial concentrations.

  3. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome

    PubMed Central

    Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong

    2015-01-01

    Aim: The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. Methods: A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g·kg−1·d−1, ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4+ and CD8+ cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. Results: PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4+/CD8+ cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4+/CD8+ cell ratio and expression of IL-1β and IL-4. Conclusion: Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti

  4. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome.

    PubMed

    Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong

    2015-06-01

    The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g · kg(-1) · d(-1), ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4(+) and CD8(+) cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4(+)/CD8(+) cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4(+)/CD8(+) cell ratio and expression of IL-1β and IL-4. Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti

  5. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  6. Substitution and solvent effects in the chalcones isomerization barrier of flavylium photochromic systems.

    PubMed

    Roque, Ana; Lima, João Carlos; Parola, A Jorge; Pina, Fernando

    2007-04-01

    Useful application of photochromic compounds as optical memories implies the existence of a large kinetic barrier between the forms interconverted by light. In the case of flavylium salts, the ground state isomerization barrier between the photoisomerizable chalcone isomers is shown to correlate with the electron donating ability of the substituents, measured by their effects in the (1)H NMR chemical shifts of the aromatic protons. Substitution with electron donating groups in ring A lowers the barrier while substitution at ring B has the opposite effect. However, in water, the observed increase is higher than expected in the case of compound 4',9-dihydroxychalcone when compared with the analogous 4'-dimethylamino-9-hydroxychalcone, containing a better electron donating group in the same position. Our interpretation is that the water network is providing an efficient pathway to form tautomers. In acetonitrile, unlike water, the expected order is indeed observed: E(a)(4',9-dihydroxychalcone) = 60 kJ mol(-1) < E(a) (4'-dimethylamino-9-hydroxychalcone) = 69 kJ mol(-1).

  7. Inhibition of Na+/H+ exchanger 1 by cariporide reduces burn-induced intestinal barrier breakdown.

    PubMed

    Yang, Xuekang; Chen, Ji; Bai, Hua; Tao, Ke; Zhou, Qin; Hou, Hongyi; Hu, Dahai

    2013-12-01

    Severe burns initiate an inflammatory cascade within the gut, which leads to intestinal mucosal injury. Although Na(+)/H(+) exchanger 1 (NHE1) is recognised as a pivotal player in several inflammatory processes, its role in burn-induced intestinal injury is relatively unknown. We hypothesised that NHE1 might be involved in the increased intestinal permeability and barrier breakdown after severe burns. Thus, we here investigate whether the inhibition of NHE1 has a protective effect on burn-induced intestinal injury. Mice were subjected to a 30% total body surface area (TBSA) full-thickness steam burn. Cariporide was used to assess the function of NHE1 in mice with burn-induced intestinal injury by fluorescence spectrophotometry, Western blotting and enzyme linked immunosorbent assay (ELISA). We found that severe burn increased intestinal permeability, associated with the up-regulation of NHE1 and raised inflammatory cytokine levels. Mice treated with the NHE1 inhibitor cariporide had significantly attenuated burn-induced intestinal permeability and a reduced inflammatory response. NHE1 inhibition also reduced nuclear factor-κB (NF-κB) activation and attenuated p38 mitogen-activated protein kinase (MAPK) phosphorylation. Our study suggests that NHE1 plays an important role in burn-induced intestinal permeability through the regulation of the inflammatory response. Inhibition of NHE1 may be adopted as a potential therapeutic strategy for attenuating intestinal barrier breakdown. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  8. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(III)-oxalate complexes.

    PubMed

    Jin, Xiaoyan; Yan, Yu; Shi, Wenjing; Bi, Shuping

    2011-12-01

    The structures and water-exchange reactions of aqueous aluminum-oxalate complexes are investigated using density functional theory. The present work includes (1) The structures of Al(C(2)O(4))(H(2)O)(4)(+) and Al(C(2)O(4))(2)(H(2)O)(2)(-) were optimized at the level of B3LYP/6-311+G(d,p). The geometries obtained suggest that the Al-OH(2) bond lengths trans to C(2)O(4)(2-) ligand in Al(C(2)O(4))(H(2)O)(4)(+) are much longer than the Al-OH(2) bond lengths cis to C(2)O(4)(2-). For Al(C(2)O(4))(2)(H(2)O)(2)(-), the close energies between cis and trans isomers imply the coexistence in aqueous solution. The (27)Al NMR and (13)C NMR chemical shifts computed with the consideration of sufficient solvent effect using HF GIAO method and 6-311+G(d,p) basis set are in agreement with the experimental values available, indicating the appropriateness of the applied models; (2) The water-exchange reactions of Al(III)-oxalate complexes were simulated at the same computational level. The results show that water exchange proceeds via dissociative pathway and the activation energy barriers are sensitive to the solvent effect. The energy barriers obtained indicate that the coordinated H(2)O cis to C(2)O(4)(2-) in Al(C(2)O(4))(H(2)O)(4)(+) is more labile than trans H(2)O. The water-exchange rate constants (k(ex)) of trans- and cis-Al(C(2)O(4))(2)(H(2)O)(2)(-) were estimated by four methods and their respective characteristics were explored; (3) The significance of the study on the aqueous aluminum-oxalate complexes to environmental chemistry is discussed. The influences of ubiquitous organic ligands in environment on aluminum chemistry behavior can be elucidated by extending this study to a series of Al(III)-organic system.

  9. Claudin 5 Expression in Mouse Seminiferous Epithelium Is Dependent upon the Transcription Factor Ets Variant 5 and Contributes to Blood-Testis Barrier Function1

    PubMed Central

    Morrow, Carla M.K.; Tyagi, Gaurav; Simon, Liz; Carnes, Kay; Murphy, Kenneth M.; Cooke, Paul S.; Hofmann, Marie-Claude C.; Hess, Rex A.

    2009-01-01

    The blood-testis barrier (BTB) is formed by tight junctions between Sertoli cells. Results of previous studies suggested that the barrier is deficient in ets variant 5 (ETV5) gene-deleted mice; therefore, microarray data were examined for changes in tight junction-associated genes. The tight junctional protein claudin 5 (CLDN5) was decreased in testes of 8-day-old Etv5−/− pups. The study reported herein examined the expression of CLDN5 in wild-type (WT) and Etv5−/− mice and evaluated its contribution to BTB function. CLDN5 protein expression was evaluated in 8-day-old WT and Etv5−/− and adult WT, Etv5−/−, and W/Wv testes by immunohistochemistry and in 8-day-old WT Sertoli cell-enriched and germ cell-enriched fractions by immunocytochemistry. Cldn5 mRNA expression was evaluated in 0- to 20-day-old and adult WT mice and in 8-day-old and adult Etv5−/− mice via quantitative PCR. Tracer studies were performed in adult WT, Etv5−/−, and W/Wv mice. The results indicate the following: 1) CLDN5 was expressed in Sertoli cells, spermatogonia, and preleptotene spermatocytes. 2) Seminiferous epithelial CLDN5 expression depended upon both the presence of germ cells and ETV5. 3) CLDN5 expression in testicular vascular endothelium and rete testis epithelium was ETV5 independent. 4) Cldn5 mRNA expression increased in the testes of juvenile mice at the time of BTB formation. 5) Testes of Etv5−/− and W/Wv mice, which are both deficient in seminiferous epithelial CLDN5 expression, had biotin tracer leakage from the interstitial space into the seminiferous tubule lumen. In conclusion, CLDN5 is expressed in the seminiferous epithelium, appears to be regulated by multiple influences, and contributes to BTB function. PMID:19571261

  10. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  11. The Rac-specific exchange factors Dock1 and Dock5 are dispensable for the establishment of the glomerular filtration barrier in vivo

    PubMed Central

    Laurin, Mélanie; Dumouchel, Annie; Fukui, Yoshinori; Côté, Jean-François

    2013-01-01

    Podocytes are specialized kidney cells that form the kidney filtration barrier through the connection of their foot processes. Nephrin and Neph family transmembrane molecules at the surface of podocytes interconnect to form a unique type of cell-cell junction, the slit diaphragm, which acts as a molecular sieve. The cytoplasmic tails of Nephrin and Neph mediate cytoskeletal rearrangement that contributes to the maintenance of the filtration barrier. Nephrin and Neph1 orthologs are essential to regulate cell-cell adhesion and Rac-dependent actin rearrangement during Drosophila myoblast fusion. We hypothesized here that molecules regulating myoblast fusion in Drosophila could contribute to signaling downstream of Nephrin and Neph1 in podocytes. We found that Nephrin engagement promoted recruitment of the Rac exchange factor Dock1 to the membrane. Furthermore, Nephrin overexpression led to lamellipodia formation that could be blocked by inhibiting Rac1 activity. We generated in vivo mouse models to investigate whether Dock1 and Dock5 contribute to the formation and maintenance of the kidney filtration barrier. Our results indicate that while Dock1 and Dock5 are expressed in podocytes, their functions are not essential for the development of the glomerular filtration barrier. Furthermore, mice lacking Dock1 were not protected from LPS-induced podocyte effacement. Our data suggest that Dock1 and Dock5 are not the important exchange factors regulating Rac activity during the establishment and maintenance of the glomerular barrier. PMID:24365888

  12. RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)

    EPA Science Inventory

    A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

  13. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    PubMed

    Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias

    2017-01-01

    Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that

  14. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  15. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction

    PubMed Central

    Li, Nan; Cheng, C. Yan

    2016-01-01

    mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier “leaky”; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier “tighter”. These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis. PMID:26957088

  16. Density functional theory studies on the solvent effects in Al(H2O)63+ water-exchange reactions: the number and arrangement of outer-sphere water molecules.

    PubMed

    Liu, Li; Zhang, Jing; Dong, Shaonan; Zhang, Fuping; Wang, Ye; Bi, Shuping

    2018-03-07

    Density functional theory (DFT) calculations combined with cluster models are performed at the B3LYP/6-311+G(d,p) level for investigating the solvent effects in Al(H 2 O) 6 3+ water-exchange reactions. A "One-by-one" method is proposed to obtain the most representative number and arrangement of explicit H 2 Os in the second hydration sphere. First, all the possible ways to locate one explicit H 2 O in second sphere (N m ' = 1) based on the gas phase structure (N m ' = 0) are examined, and the optimal pathway (with the lowest energy barrier) for N m ' = 1 is determined. Next, more explicit H 2 Os are added one by one until the inner-sphere is fully hydrogen bonded. Finally, the optimal pathways with N m ' = 0-7 are obtained. The structural and energetic parameters as well as the lifetimes of the transition states are compared with the results obtained with the "Independent-minimum" method and the "Independent-average" method, and all three methods show that the pathway with N m ' = 6 may be representative. Our results give a new idea for finding the representative pathway for water-exchange reactions in other hydrated metal ion systems.

  17. Mapping, Complementation, and Targets of the Cysteine Protease Actinidin in Kiwifruit1[C][W][OA

    PubMed Central

    Nieuwenhuizen, Niels J.; Maddumage, Ratnasiri; Tsang, Gianna K.; Fraser, Lena G.; Cooney, Janine M.; De Silva, H. Nihal; Green, Sol; Richardson, Kim A.; Atkinson, Ross G.

    2012-01-01

    Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin. PMID:22039217

  18. Oil Slick Around Mississippi Barrier Islands [detail

    NASA Image and Video Library

    2017-12-08

    NASA image acquired June 26, 2010 As of June 27, 2010, the entire gulf-facing beachfront of several barrier islands in eastern Mississippi (offshore of Pascagoula) had received a designation of at least “lightly oiled” by the interagency Shoreline Cleanup Assessment Team that is responding to the disaster in the Gulf of Mexico. A few small stretches of Petit Bois Island had been labeled heavily or moderately oiled. (To view this image without a description go to: This high-resolution image shows Petit Bois Island (top right) and the eastern end of Horn Island (top left) on June 26. In general, oil-covered waters are silvery and cleaner waters are blue-gray. This pattern is especially consistent farther from the islands. The intensely bright patches of water directly offshore of the barrier islands, however, may be from a combination of factors, including sediment and organic material, coastal currents and surf, and oil. The islands provide a sense of scale for the ribbons of oil swirling into the area from the south. Petit Bois Island is about 10 kilometers (6 miles) long. It is one of seven barrier islands that, along with some mainland areas of Mississippi and Florida, make up the Gulf Islands National Seashore. According to the National Park Service Gulf Islands National Seashore Website, all the islands remained open to the public as of June 28, 2010, and clean-up crews were on hand to respond to any oil coming ashore. The large version of this image, which was captured by the Advanced Land Imager on NASA’s Earth Observing-1 (EO-1) satellite, shows a larger area, including the Mississippi Sound and parts of mainland Mississippi. Although oil has been observed in the Sound, it is unlikely that all the bright patches of water in that area are thickly oil-covered. Differences in brightness in coastal area waters may be due to other factors, including freshwater runoff, strong currents, and water depth and clarity. NASA Earth Observatory image created by

  19. Edible moisture barriers: how to assess of their potential and limits in food products shelf-life extension?

    PubMed

    Bourlieu, C; Guillard, V; Vallès-Pamiès, B; Guilbert, S; Gontard, N

    2009-05-01

    Control of moisture transfer inside composite food products or between food and its environment remains today a major challenge in food preservation. A wide rage of film-forming compounds is now available and facilitates tailoring moisture barriers with optimized functional properties. Despite these huge potentials, a realistic assessment of the film or coating efficacy is still critical. Due to nonlinear water sorption isotherms, water-dependent diffusivities, and variations of physical state, modelling transport phenomena through edible barriers is complex. Water vapor permeability can hardly be considered as an inherent property of films and only gives a relative indication of the barrier efficacy. The formal or mechanistic models reported in literature that describe the influence of testing conditions on the barrier properties of edible films are reviewed and discussed. Most of these models have been validated on a narrow range of conditions. Conversely, few original predictive models based on Fick's Second Law have been developed to assess shelf-life extension of food products including barriers. These models, assuming complex and realistic hypothesis, have been validated in various model foods. The development of nondestructive methods of moisture content measurement should speed up model validation and allow a better comprehension of moisture transfer through edible films.

  20. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Kim, Chong-Kook; Shin, Meong Cheol

    2016-03-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies.

  1. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers

    PubMed Central

    Min, Kyoung Ah; Rosania, Gus R.; Kim, Chong-Kook; Shin, Meong Cheol

    2016-01-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641

  2. How hormones influence composition and physiological function of the brain-blood barrier.

    PubMed

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  3. Genetic Resources for Maize Cell Wall Biology1[C][W][OA

    PubMed Central

    Penning, Bryan W.; Hunter, Charles T.; Tayengwa, Reuben; Eveland, Andrea L.; Dugard, Christopher K.; Olek, Anna T.; Vermerris, Wilfred; Koch, Karen E.; McCarty, Donald R.; Davis, Mark F.; Thomas, Steven R.; McCann, Maureen C.; Carpita, Nicholas C.

    2009-01-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802

  4. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  5. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis.

    PubMed

    Pfeiffer, Friederike; Schäfer, Julia; Lyck, Ruth; Makrides, Victoria; Brunner, Sarah; Schaeren-Wiemers, Nicole; Deutsch, Urban; Engelhardt, Britta

    2011-11-01

    In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.

  6. In vivo measurements of skin barrier: comparison of different methods and advantages of laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Patzelt, A.; Sterry, W.; Lademann, J.

    2010-12-01

    A major function of the skin is to provide a protective barrier at the interface between external environment and the organism. For skin barrier measurement, a multiplicity of methods is available. As standard methods, the determination of the transepidermal water loss (TEWL) as well as the measurement of the stratum corneum hydration, are widely accepted, although they offer some obvious disadvantages such as increased interference liability. Recently, new optical and spectroscopic methods have been introduced to investigate skin barrier properties in vivo. Especially, laser scanning microscopy has been shown to represent an excellent tool to study skin barrier integrity in many areas of relevance such as cosmetology, occupation, diseased skin, and wound healing.

  7. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Lance; Beste, Ariana; Chen, Banghao

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra

  8. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE PAGES

    Gill, Lance; Beste, Ariana; Chen, Banghao; ...

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra

  9. Age-dependent changes at the blood-brain barrier. A Comparative structural and functional study in young adult and middle aged rats.

    PubMed

    Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska

    2018-05-01

    Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. SCANNING ELECTRON ANALYSIS OF IRON FILINGS FROM A ZERO-VALENT IRON PERMEABLE BARRIER USED FOR GROUND WATER RESTORATION

    EPA Science Inventory

    Permeable iron reactive barriers have become a popular way to remediate contaminated ground water. Although this technology has been in use for about a decade, there is still little knowledge about long-term performance issues (l). One of the biggest concerns is the corrosion of ...

  11. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication

    PubMed Central

    2008-01-01

    Background Teleost radiation in the oceans required specific physiological adaptations in eggs and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water homeostasis evolved. The marine teleost gilthead sea bream (Sparus aurata) has a mammalian aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in mediating egg hydration. However, teleosts have an additional AQP isoform structurally more similar to AQP1, though its relationship with AQP1o is unclear. Results By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods, have two closely linked AQP1 paralogous genes, termed aqp1a and aqp1b (formerly AQP1o). In marine teleosts that produce hydrated eggs, aqp1b is highly expressed in the ovary, whereas in freshwater species that produce non-hydrated eggs, aqp1b has a completely different expression pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective channels when expressed in Xenopus laevis oocytes. However, expression of chimeric and mutated proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-independent and -dependent mechanisms. Conclusion We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably originated specifically in the teleost lineage by duplication of a common ancestor soon after divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b expression in the plasma

  12. High Throughput Plasma Water Treatment

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  13. Transport barriers made of cutin, suberin and associated waxes.

    PubMed

    Schreiber, Lukas

    2010-10-01

    Cutinized leaf epidermal cells and suberized root cell walls form important lipophilic interfaces between the plant and its environment, significantly contributing to the regulation of water uptake and the transport of solutes in and out of the plant. A wealth of new molecular information on the genes and enzymes contributing to cutin, suberin and wax biosynthesis have become available within the past few years, which is examined in the context of the functional properties of these barriers in terms of transport and permeability. Recent progress made in measuring transport properties of cutinized and suberized barriers in plants is reviewed, and promising approaches obtained with Arabidopsis and potato that might link the molecular information with transport properties are suggested. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Transparent oxygen and water vapor barriers for flexible electronics using semi-crystalline polymer matrix thin films

    NASA Astrophysics Data System (ADS)

    Sehgal, Akhil

    Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases

  15. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    NASA Astrophysics Data System (ADS)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  16. Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Platelet-Derived Growth Factor-BB Autocrine Loop Contributes to Cocaine-Mediated Alveolar Epithelial Barrier Damage

    PubMed Central

    Yang, Lu; Chen, Xufeng; Simet, Samantha M.; Hu, Guoku; Cai, Yu; Niu, Fang; Kook, Yeonhee

    2016-01-01

    Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell–substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2–related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the

  17. Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes.

    PubMed

    Cui, Le; Jia, Yan; Cheng, Zhi-Wei; Gao, Ying; Zhang, Gao-Lei; Li, Jing-Yi; He, Cong-Fen

    2016-12-01

    The human skin barrier has an important role in protection and defense, reflected not only in the ability to resist entry of harmful substances into the human body, but also in the ability to prevent loss of water and nutrients. Once the skin barrier is damaged, the skin may become dry, scaly, and wrinkled, and a series of skin problems may occur. In this article, we review the composition of lipids, such as ceramides, cholesterol, and free fatty acids, in the skin and examine the expression of enzymes related to lipid metabolism, such as kallikreins, elongase of elongation of very long-chain fatty acids, hydrolases, and lipid synthases. Additionally, we discuss the involvement of these proteins in skin barrier function and structure. The information presented in this review is expected to provide a theoretical basis for the development of skin care products facilitating the maintenance and repair of skin barrier function. © 2016 Wiley Periodicals, Inc.

  18. On the persistence of reproductive barriers in Eucalyptus: the bridging of mechanical barriers to zygote formation by F1 hybrids is counteracted by intrinsic post-zygotic incompatibilities.

    PubMed

    Larcombe, Matthew J; Costa E Silva, João; Tilyard, Paul; Gore, Peter; Potts, Brad M

    2016-09-01

    Many previous studies conclude that pre-zygotic barriers such as mechanical isolation account for most reproductive isolation between pairs of taxa. However, the inheritance and persistence of barriers such as these after the first generation of hybridization is rarely quantified, even though it is a vital consideration in understanding gene flow potential. There is an asymmetrical pre-zygotic mechanical barrier to hybridization between Eucalyptus nitens and Eucalyptus globulus, which completely prevents small-flowered E. nitens pollen from mating with large E. globulus flowers, while the reverse cross is possible. We aimed to determine the relative importance of pre- and post-zygotic barriers in preventing gene flow following secondary contact between E. nitens and E. globulus, including the inheritance of barriers in advanced-generation hybrids. Experimental crossing was used to produce outcrossed E. nitens, E. globulus and their F1, F2, BCg and BCn hybrids. The strength and inheritance of a suite of pre- and post-zygotic barriers were assessed, including 20-year survival, growth and reproductive capacity. The mechanical barrier to hybridization was lost or greatly reduced in the F1 hybrid. In contrast, intrinsic post-zygotic barriers were strong and persistent. Line-cross analysis indicated that the outbreeding depression in the hybrids was best explained by epistatic loss. The removal of strong mechanical barriers between E. nitens and E. globulus allows F1 hybrids to act as a bridge for bi-directional gene flow between these species. However, strong and persistent post-zygotic barriers exist, meaning that wherever F1 hybridization does occur, intrinsic post-zygotic barriers will be responsible for most reproductive isolation in this system. This potential transient nature of mechanical barriers to zygote formation due to additive inheritance in hybrids appears under-appreciated, and highlights the often important role that intrinsic post-mating barriers play

  19. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    PubMed

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  1. Acute irritant threshold correlates with barrier function, skin hydration and contact hypersensitivity in atopic dermatitis and rosacea.

    PubMed

    Darlenski, Razvigor; Kazandjieva, Jana; Tsankov, Nikolai; Fluhr, Joachim W

    2013-11-01

    The aim of the study was to disclose interactions between epidermal barrier, skin irritation and sensitization in healthy and diseased skin. Transepidermal water loss (TEWL) and stratum corneum hydration (SCH) were assessed in adult patients with atopic dermatitis (AD), rosacea and healthy controls. A 4-h patch test with seven concentrations of sodium lauryl sulphate was performed to determine the irritant threshold (IT). Contact sensitization pattern was revealed by patch testing with European baseline series. Subjects with a lower IT had higher TEWL values and lower SCH. Subjects with positive allergic reactions had significantly lower IT. In AD, epidermal barrier deterioration was detected on both volar forearm and nasolabial fold, while in rosacea, impeded skin physiology parameters were observed on the facial skin only, suggesting that barrier impediment is restricted to the face in rosacea, in contrast with AD where the abnormal skin physiology is generalized. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Quantitative and Functional Phosphoproteomic Analysis Reveals that Ethylene Regulates Water Transport via the C-Terminal Phosphorylation of Aquaporin PIP2;1 in Arabidopsis.

    PubMed

    Qing, Dongjin; Yang, Zhu; Li, Mingzhe; Wong, Wai Shing; Guo, Guangyu; Liu, Shichang; Guo, Hongwei; Li, Ning

    2016-01-04

    Ethylene participates in the regulation of numerous cellular events and biological processes, including water loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a (15)N stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eil1-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene-regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-0 and ein3eil1 genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up-regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Perceived functioning and disability in adults with myotonic dystrophy type 1: a survey according to the International Classification Of Functioning, Disability and Health.

    PubMed

    Kierkegaard, Marie; Harms-Ringdahl, Karin; Widén Holmqvist, Lotta; Tollbäck, Anna

    2009-06-01

    The purpose of this study was to describe and analyse self-rated perceived functioning, disability and environmental facilitators/barriers with regard to disease severity, using the International Classification of Functioning, Disability and Health (ICF) checklist, in adults with myotonic dystrophy type 1. Cross-sectional design. Forty-one women and 29 men with myotonic dystrophy type 1. A modified ICF checklist was used for self-rating of perceived problems in 29 body-function categories, difficulties in 52 activity and participation categories, and facilitators/barriers in 23 environmental-factor categories according to the verbal anchors of the ICF qualifiers. Disease severity classification was based on the muscular impairment rating scale. Of the persons with myotonic dystrophy type 1, 80% perceived problems of excessive daytime sleepiness, 76% of muscle power, and 66% of energy and drive functions, while over 59% perceived difficulties in physically demanding mobility activities. Disabilities in mobility, self-care and domestic life were more frequently reported by persons with severe disease. Support from the immediate family, medicines and social security services were perceived as facilitators for 50-60% of the participants. Disabilities and important environmental facilitators in adults with myotonic dystrophy type 1 were identified, and this clinically-relevant information can be used for developing health services for people with this condition.

  4. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    PubMed

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy.

    PubMed

    Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana

    2015-07-29

    Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.

  6. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  7. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  8. Drosophila contactin, a homolog of vertebrate contactin, is required for septate junction organization and paracellular barrier function.

    PubMed

    Faivre-Sarrailh, Catherine; Banerjee, Swati; Li, Jingjun; Hortsch, Michael; Laval, Monique; Bhat, Manzoor A

    2004-10-01

    Septate junctions (SJs) in epithelial and neuronal cells play an important role in the formation and maintenance of charge and size selective barriers. They form the basis for the ensheathment of nerve fibers in Drosophila and for the attachment of myelin loops to axonal surface in vertebrates. The cell-adhesion molecules NRX IV/Caspr/Paranodin (NCP1), contactin and Neurofascin-155 (NF-155) are all present at the vertebrate axo-glial SJs. Mutational analyses have shown that vertebrate NCP1 and its Drosophila homolog, Neurexin IV (NRX IV) are required for the formation of SJs. In this study, we report the genetic, molecular and biochemical characterization of the Drosophila homolog of vertebrate contactin, CONT. Ultrastructural and dye-exclusion analyses of Cont mutant embryos show that CONT is required for organization of SJs and paracellular barrier function. We show that CONT, Neuroglian (NRG) (Drosophila homolog of NF-155) and NRX IV are interdependent for their SJ localization and these proteins form a tripartite complex. Hence, our data provide evidence that the organization of SJs is dependent on the interactions between these highly conserved cell-adhesion molecules.

  9. Neurobehavioral function in school-age children exposed to manganese in drinking water.

    PubMed

    Oulhote, Youssef; Mergler, Donna; Barbeau, Benoit; Bellinger, David C; Bouffard, Thérèse; Brodeur, Marie-Ève; Saint-Amour, Dave; Legrand, Melissa; Sauvé, Sébastien; Bouchard, Maryse F

    2014-12-01

    Manganese neurotoxicity is well documented in individuals occupationally exposed to airborne particulates, but few data are available on risks from drinking-water exposure. We examined associations of exposure from concentrations of manganese in water and hair with memory, attention, motor function, and parent- and teacher-reported hyperactive behaviors. We recruited 375 children and measured manganese in home tap water (MnW) and hair (MnH). We estimated manganese intake from water ingestion. Using structural equation modeling, we estimated associations between neurobehavioral functions and MnH, MnW, and manganese intake from water. We evaluated exposure-response relationships using generalized additive models. After adjusting for potential confounders, a 1-SD increase in log10 MnH was associated with a significant difference of -24% (95% CI: -36, -12%) SD in memory and -25% (95% CI: -41, -9%) SD in attention. The relations between log10 MnH and poorer memory and attention were linear. A 1-SD increase in log10 MnW was associated with a significant difference of -14% (95% CI: -24, -4%) SD in memory, and this relation was nonlinear, with a steeper decline in performance at MnW > 100 μg/L. A 1-SD increase in log10 manganese intake from water was associated with a significant difference of -11% (95% CI: -21, -0.4%) SD in motor function. The relation between log10 manganese intake and poorer motor function was linear. There was no significant association between manganese exposure and hyperactivity. Exposure to manganese in water was associated with poorer neurobehavioral performances in children, even at low levels commonly encountered in North America.

  10. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.

    PubMed

    Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas

    2017-02-01

    In this work, we report on aluminum oxide (Al 2 O 3 ) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O 2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al 2 O 3 films show ultralow water vapor transmission rates (WVTR) on the order of 10 -6 gm -2 d -1 . In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.

  11. Neurobehavioral Function in School-Age Children Exposed to Manganese in Drinking Water

    PubMed Central

    Oulhote, Youssef; Mergler, Donna; Barbeau, Benoit; Bellinger, David C.; Bouffard, Thérèse; Brodeur, Marie-Ève; Saint-Amour, Dave; Legrand, Melissa; Sauvé, Sébastien

    2014-01-01

    Background: Manganese neurotoxicity is well documented in individuals occupationally exposed to airborne particulates, but few data are available on risks from drinking-water exposure. Objective: We examined associations of exposure from concentrations of manganese in water and hair with memory, attention, motor function, and parent- and teacher-reported hyperactive behaviors. Methods: We recruited 375 children and measured manganese in home tap water (MnW) and hair (MnH). We estimated manganese intake from water ingestion. Using structural equation modeling, we estimated associations between neurobehavioral functions and MnH, MnW, and manganese intake from water. We evaluated exposure–response relationships using generalized additive models. Results: After adjusting for potential confounders, a 1-SD increase in log10 MnH was associated with a significant difference of –24% (95% CI: –36, –12%) SD in memory and –25% (95% CI: –41, –9%) SD in attention. The relations between log10 MnH and poorer memory and attention were linear. A 1-SD increase in log10 MnW was associated with a significant difference of –14% (95% CI: –24, –4%) SD in memory, and this relation was nonlinear, with a steeper decline in performance at MnW > 100 μg/L. A 1-SD increase in log10 manganese intake from water was associated with a significant difference of –11% (95% CI: –21, –0.4%) SD in motor function. The relation between log10 manganese intake and poorer motor function was linear. There was no significant association between manganese exposure and hyperactivity. Conclusion: Exposure to manganese in water was associated with poorer neurobehavioral performances in children, even at low levels commonly encountered in North America. Citation: Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Sauvé S, Bouchard MF. 2014. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health

  12. Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties.

    PubMed

    Balasubramanian, R; Kim, Sam Soo; Lee, Jaewoong

    2018-06-24

    The aim is to develop novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum (k-C/X/G) hydrogel films with different weight ratio composition and to study the effect of these compositions on the physical properties of the films. The structure and morphological properties of the films were investigated by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). Results for FT-IR, DSC and SEM analysis showed a clear interaction between k-C, X, and G to form a new material. The mechanical, thermal and water barrier properties such as water vapor permeability (WVP), water contact angle (WCA) and moisture content were determined. The temperature at 5% weight loss (T 5% ) are in the range of 64.2-121.9 °C. The WVP exhibits are in the range of 1.8-2.4, contact angle are in the range of 32-65.8° and moisture content 16.5-21.51. The hydrogel film had good tensile strength of 19.1-31.0 MPa and elongation at break of 13-19% and tensile modulus of 1.6-2.4 GPa. The UV results indicate that the films were very transparent. The range of properties of the ternary k-C/X/G hydrogel films suggest that the presence molecular interaction and cross linking within the blends. Copyright © 2018. Published by Elsevier B.V.

  13. Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair.

    PubMed

    Ma, Baojin; Han, Jing; Zhang, Shan; Liu, Feng; Wang, Shicai; Duan, Jiazhi; Sang, Yuanhua; Jiang, Huaidong; Li, Dong; Ge, Shaohua; Yu, Jinghua; Liu, Hong

    2018-04-15

    Controllable osteoinduction maintained in the original defect area is the key to precise bone repair. To meet the requirement of precise bone regeneration, a hydroxyapatite (HAp) nanobelt/polylactic acid (PLA) (HAp/PLA) Janus membrane has been successfully prepared in this study by coating PLA on a paper-like HAp nanobelt film by a casting-pervaporation method. The Janus membrane possesses dual functions: excellent osteoinduction from the hydrophilic HAp nanobelt side and barrier function originating from the hydrophobic PLA film. The cell viability and osteogenic differentiation ability of human adipose-derived stem cells (hADSCs) on the Janus membrane were assessed. The in vitro experimental results prove that the HAp nanobelt side presents high cell viability and efficient osteoinduction without any growth factor and that the PLA side can prohibit cell attachment. The in vivo repair experiments on a rat mandible defect model prove that the PLA side can prevent postoperative adhesion between bone and adjacent soft tissues. Most importantly, the HAp side has a strong ability to promote defect repair and bone regeneration. Therefore, the HAp/PLA Janus membrane will have wide applications as a kind of tissue engineering material in precise bone repair because of its unique dual osteoinduction/barrier functions, biocompatibility, low cost, and its ability to be mass-produced. Precise bone defect repair to keeping tissue integrity and original outline shape is a very important issue for tissue engineering. Here, we have designed and prepared a novel HAp/PLA Janus membrane using a casting-pervaporation method to form a layer of PLA film on paper-like HAp nanobelt film. HAp nanobelt side of the Janus membrane can successfully promote osteogenic differentiation. PLA side of the Janus membrane exhibits good properties as a barrier for preventing the adhesion of cells in vitro. Mandible repair experiments in vivo have shown that the HAp/PLA Janus membrane can promote rat

  14. CHLORINATION BY-PRODUCTS IN DRINKING WATER AND MENSTRUAL CYCLE FUNCTION

    EPA Science Inventory

    Chlorination by-Products in Drinking Water and Menstrual Cycle Function

    Gayle C. Windham1, Kirsten Waller2, Meredith Anderson2, Laura Fenster1, Pauline Mendola3, Shanna Swan4

    1California Department of Health Services, Division of Environmental and Occupational Disea...

  15. Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers.

    PubMed

    Pederzolli, Rae-Leigh A; Van Kessel, Andrew G; Campbell, John; Hendrick, Steve; Wood, Katie M; Penner, Gregory B

    2018-02-15

    The objective of this study was to determine effect of ruminal acidosis (RA) and low feed intake [LFI] on the regional barrier function of the gastrointestinal tract. Twenty-one Holstein steers were fed for ad libitum intake for 5 d (control [CON]), fed at 25% of ad libitum intake for 5 d (LFI), or provided 2 d of ad libitum intake followed by 1-d of feed restriction (25% of ad libitum intake), 1 d where 30% of ad libitum dry matter intake (DMI) was provided as pelleted barley followed by the full allocation (RA) and fed for ad libitum intake the following day. Tissues and digesta from the rumen, omasum, duodenum, jejunum, ileum, cecum, proximal, and distal colon were collected. Permeability was assessed using the mucosal-to-serosal flux of inulin (JMS-inulin) and mannitol (JMS-mannitol). Digesta pH was 0.81, 0.63, and 0.42 pH units less for RA than CON in the rumen, cecum, and proximal colon; while, LFI had pH that was 0.47 and 0.36 pH units greater in the rumen and proximal colon compared to CON. Total ruminal short-chain fatty acid (SCFA) concentration were less for LFI (92 mM; P = 0.010) and RA (87 mM; P = 0.007) than CON (172 mM) steers. In the proximal colon, the proportion of butyrate (P = 0.025 and P = 0.022) and isobutyrate (P = 0.019 and P = 0.019) were greater, and acetate (P = 0.028 and P = 0.028) was less for LFI and RA, respectively, when compared to CON steers. Ruminal papillae length, width, perimeter, and surface area were 1.21 mm, 0.78 mm, 3.84 mm, and 11.15 mm2 less for LFI than CON; while, RA decreased papillae width by 0.52 mm relative to CON. The JMS-mannitol was less for LFI steers than CON in the proximal colon (P = 0.041) and in the distal colon (P = 0.015). Increased gene expression for claudin 1, occludin, tight-cell junction protein 1 and 2, and toll-like receptor 4 were detected for LFI relative to CON in the rumen, jejunum, and proximal colon. For RA steers, expression of toll-like receptor 4 in the rumen, and occludin and tight

  16. Control of barrier island shape by inlet sediment bypassing: East Frisian Islands, West Germany

    USGS Publications Warehouse

    FitzGerald, D.M.; Penland, S.; Nummedal, D.

    1984-01-01

    A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 ?? 103 W m-1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration. It is estimated from morphological evidence that a minimum of 2.7 ?? 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts. ?? 1984.

  17. Gut barrier in health and disease: focus on childhood.

    PubMed

    Viggiano, D; Ianiro, G; Vanella, G; Bibbò, S; Bruno, G; Simeone, G; Mele, G

    2015-01-01

    The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the immune tolerance and the immune response to pathogens. Other mechanisms, such as gastric juice and pancreatic enzymes (which both have antibacterial properties) participate in the luminal integrity of the gut barrier. From the outer layer to the inner layer, the physical barrier is composed of gut microbiota (that competes with pathogens to gain space and energy resources, processes the molecules necessary to mucosal integrity and modulates the immunological activity of deep barrier), mucus (which separates the intraluminal content from more internal layers and contains antimicrobial products and secretory IgA), epithelial cells (which form a physical and immunological barrier) and the innate and adaptive immune cells forming the gut-associated lymphoid tissue (which is responsible for antigen sampling and immune responses). Disruption of the gut barrier has been associated with many gastrointestinal diseases, but also with extra-intestinal pathological condition, such as type 1 diabetes mellitus, allergic diseases or autism spectrum disorders. The maintenance of a healthy intestinal barrier is therefore of paramount importance in children, for both health and economic reasons. Many drugs or compounds used in the treatment of gastrointestinal disorders act through the restoration of a normal intestinal permeability. Several studies have highlighted the role of probiotics in the modulation and reduction of intestinal permeability, considering the strong influence of gut microbiota in the modulation of the function and structure of gut barrier, but also on the immune response of the host. To date, available weapons for the

  18. WATER QUALITY IN SOURCE WATER, TREATMENT, AND DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Most drinking water utilities practice the multiple-barrier concept as the guiding principle for providing safe water. This chapter discusses multiple barriers as they relate to the basic criteria for selecting and protecting source waters, including known and potential sources ...

  19. Effects of enteral immunonutrition on the maintenance of gut barrier function and immune function in pigs with severe acute pancreatitis.

    PubMed

    Zou, Xiao-Ping; Chen, Min; Wei, Wei; Cao, Jun; Chen, Lei; Tian, Mi

    2010-01-01

    This study evaluated the effects of enteral immunonutrition (EIN) supplemented with glutamine, arginine, and probiotics on gut barrier function and immune function in pigs with severe acute pancreatitis (SAP). The model was induced by retrograde injection of 5% sodium taurocholate and trypsin via the pancreatic duct. After induction of SAP, 18 pigs were randomly divided into 3 groups, in which either parenteral nutrition (PN), control enteral nutrition (CEN), or EIN was applied for 8 days. Serum and pancreatic fluid amylase concentration was determined. Intestinal permeability (lactulose to mannitol ratio) was measured by high-performance liquid chromatography, and plasma endotoxin was quantified by the chromogenic limulus amebocyte lysate technique. Samples of venous blood and organs were cultured using standard techniques. Pancreatitis severity and villi of ileum were scored according to histopathologic grading. Plasma T-lymphocyte subsets were measured by flow cytometry, and immunoglobulins (Igs) were determined via enzyme-linked immunosorbent assay. There were no significant differences in serum and pancreatic fluid amylases concentrations or in pancreatitis severity between any 2 of the 3 groups. Compared with PN and CEN, EIN significantly decreased intestinal permeability, plasma endotoxin concentration, and the incidence and magnitudes of bacterial translocation, but increased ileal mucosal thickness, villous height, crypt depth, and percentage of normal intestinal villi. Significant differences were found in CD3+, CD4+ lymphocyte subsets, the ratio of CD4+: CD8+ lymphocyte subsets, and serum IgA and IgG, but not IgM, between any 2 of the 3 groups. EIN maintained gut barrier function and immune function in pigs with SAP.

  20. The Blood–Brain Barrier

    PubMed Central

    Daneman, Richard; Prat, Alexandre

    2015-01-01

    Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood–brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease. PMID:25561720

  1. Rhinovirus disrupts the barrier function of polarized airway epithelial cells.

    PubMed

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C; Hershenson, Marc B

    2008-12-15

    Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.

  2. [PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies 'species barriers'.

    PubMed

    Bateman, David A; Wickner, Reed B

    2012-02-01

    [PSI+] is a prion of Sup35p, an essential translation termination and mRNA turnover factor. The existence of lethal [PSI+] variants, the absence of [PSI+] in wild strains, the mRNA turnover function of the Sup35p prion domain, and the stress reaction to prion infection suggest that [PSI+] is a disease. Nonetheless, others have proposed that [PSI+] and other yeast prions benefit their hosts. We find that wild Saccharomyces cerevisiae strains are polymorphic for the sequence of the prion domain and particularly in the adjacent M domain. Here we establish that these variations within the species produce barriers to prion transmission. The barriers are partially asymmetric in some cases, and evidence for variant specificity in barriers is presented. We propose that, as the PrP 129M/V polymorphism protects people from Creutzfeldt-Jakob disease, the Sup35p polymorphisms were selected to protect yeast cells from prion infection. In one prion incompatibility group, the barrier is due to N109S in the Sup35 prion domain and several changes in the middle (M) domain, with either the single N109S mutation or the group of M changes (without the N109S) producing a barrier. In another, the barrier is due to a large deletion in the repeat domain. All are outside the region previously believed to determine transmission compatibility. [SWI+], a prion of the chromatin remodeling factor Swi1p, was also proposed to benefit its host. We find that none of 70 wild strains carry this prion, suggesting that it is not beneficial.

  3. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  4. Mechanisms of the Knoevenagel hetero Diels-Alder sequence in multicomponent reactions to dihydropyrans: experimental and theoretical investigations into the role of water.

    PubMed

    Frapper, Gilles; Bachmann, Christian; Gu, Yanlong; Coval De Sousa, Rodolphe; Jérôme, François

    2011-01-14

    The role of water in a multicomponent domino reaction (MCR) involving styrene, 2,4-pentanedione, and formaldehyde was studied. Whereas anhydrous conditions produced no reaction, the MCR successfully proceeded in the presence of water, affording the targeted dihydropyran derivatives with good yield. The mechanism of this MCR (Knoevenagel hetero Diels-Alder sequence) was studied with and without explicit water molecules using the SMD continuum solvation model in combination with the B3LYP density functional and the 6-311++G** basis set to compute the water and acetone (aprotic organic solvent) solution Gibbs free energies. In the Knoevenagel step, we found that water acted as a proton relay to favor the formation of more flexible six-membered ring transition state structures both in concerted (direct H(2)O elimination) and stepwise (keto-enol tautomerization and dehydration) pathways. The inclusion of a water molecule in our model resulted in a significant decrease (-8.5 kcal mol(-1)ΔG(water)(‡)) of the direct water elimination activation barrier. Owing to the presence of water, all chemical steps involved in the MCR mechanism had activation free energies barriers lower than 39 kcal mol(-1) at 25 °C in aqueous solvent (<21 kcal mol(-1) ZPE corrected electronic energies barriers). Consequently, the MCR proceeded without the assistance of any catalyst.

  5. PERMEABLE REACTIVE BARRIER TECHNOLOGIES FOR CONTAMINANT REMEDIATION

    EPA Science Inventory

    Environmental scientists are generally familiar with the concept of barriers for restricting the movement of contaminant plumes in ground water. Such barriers are typically constructed of highly impermeable emplacements of materials such as grouts, slurries, or sheet pilings to ...

  6. Controlling the hydration of the skin though the application of occluding barrier creams

    PubMed Central

    Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard

    2013-01-01

    The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration. PMID:23269846

  7. Controlling the hydration of the skin though the application of occluding barrier creams.

    PubMed

    Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard

    2013-03-06

    The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration.

  8. The morphologic changes in lamellar bodies and intercorneocyte lipids after tape stripping and occlusion with a water vapor-impermeable membrane.

    PubMed

    Jiang, S; Koo, S W; Lee, S H

    1998-03-01

    It has been reported that artificial restoration of barrier function by a water vapor-impermeable membrane after tape stripping induces barrier abrogation in hairless mice, impeding rather than enhancing barrier recovery. To address this issue, we examined the morphologic changes in the epidermis after tape stripping and occlusion with a water vapor-impermeable membrane in murine skin. Male hairless mice were used for all studies of barrier perturbation and occlusion. Barrier disruption was achieved by repeated application of cellophane tape. Immediately after tape stripping the animals were wrapped in a tightly fitting water vapor-impermeable membrane. Transepidermal water loss (TEWL) was measured 20 min after tape stripping and 14, 24, 36, 48 and 60 h after occlusion. For electron microscopy the samples were treated with osmium tetroxide (OsO4) or ruthenium tetroxide (RuO4). When tape-stripped animals were wrapped in a water vapor-impermeable membrane, thereby preventing water flux, barrier function did not recover normally. These results demonstrate that an artificial block to TEWL with an impermeable membrane did not enhance barrier recovery. By electron microscopy many transitional cells and lacunae of various sizes were seen within the intercellular spaces of the stratum corneum after occlusion following tape stripping. Occlusion also caused alterations in both lipid lamellar membrane structures in the stratum corneum interstices and the lamellar bodies in the cytosol of granulocytes and transitional cells. Secreted lamellar body contents also appeared to be abnormal in the stratum corneum-stratum granulosum junction.

  9. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion.

    PubMed

    Mirjanian, Dina; Dickey, Allison N; Hoh, Jan H; Woolf, Thomas B; Stevens, Mark J

    2010-09-02

    The fusion between two lipid bilayers involves crossing a complicated energy landscape. The limiting barrier in the process appears to be between two closely opposed bilayers and the intermediate state where the outer leaflets are fused. We have performed molecular dynamics simulations to characterize the free energy barrier for the fusion of two liposomes and to examine the molecular details of barrier crossing. To capture the slow dynamics of fusion, a model using coarse-grained representations of lipids was used. The fusion between pairs of liposomes was simulated for four systems: DPPC, DOPC, a 3:1 mixture of DPPC/DPPE, and an asymmetric lipid tail system in which one tail of DPPC was reduced to half the length (ASTail). The weighted histogram method was used to compute the free energy as a function of separation distance. The relative barrier heights for these systems was found to be ASTail > DPPC > DPPC/DPPE > DOPC, in agreement with experimental observations. Further, the free energy curves for all four can be overlaid on a single curve by plotting the free energy versus the surface separation (differing only in the point of fusion). These simulations also confirm that the two main contributions to the free energy barrier are the removal of water between the vesicles and the deformation of the vesicle. The most prominent molecular detail of barrier crossing in all cases examined was the splaying of lipid tails, where initially a single splayed lipid formed a bridge between the two outer leaflets that promotes additional lipid mixing between the vesicles and eventually leads to fusion. The tail splay appears to be closely connected to the energetics of the process. For example, the high barrier for the ASTail is the result of a smaller distance between terminal methyl groups in the splayed molecule. The shortening of this distance requires the liposomes to be closer together, which significantly increases the cost of water removal and bilayer deformation

  10. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient.

    PubMed

    David, Sascha; Thamm, Kristina; Schmidt, Bernhard M W; Falk, Christine S; Kielstein, Jan T

    2017-01-01

    Sepsis and septic shock are major healthcare problems, affecting millions of individuals around the world each year. Pathophysiologically, septic multiple organ dysfunction (MOD) is a life-threatening condition caused by an overwhelming systemic inflammatory response of the host's organism to an infection. We experimentally tested if high circulating cytokine levels might increase vascular permeability-a critical hallmark of the disease-and if this phenomenon can be reversed by therapeutic cytokine removal (CytoSorb®) in an exemplary patient. A 32-year-old Caucasian female presented with septic shock and accompanying acute kidney injury (Sequential Organ Failure Assessment (SOFA) = 18) to our ICU. In spite of a broad anti-infective regimen, adequate fluid resuscitation, and high doses of inotropics and catecholamines, she remained refractory hypotensive. The extraordinary severity of septic shock suggested an immense overwhelming host response assumingly accompanied by a notable cytokine storm such as known from patients with toxic shock syndrome. Thus, a CytoSorb® filter was added to the dialysis circuit to remove excess shock-perpetuating cytokines. To analyze the endothelial phenotype in vitro before and after extracorporeal cytokine removal, we tested the septic shock patient's serum on human umbilical vein endothelial cells (HUVECs). The effect on endothelial integrity was assessed both on the morphological (fluorescent immunocytochemistry for VE-cadherin and F-actin) and functional (transendothelial electrical resistance (TER)) level that was recorded in real time with an "electric cell-substrate impedance sensing" (ECIS) system (ibidi). We found (1) severe alterations of cell-cell contacts and the cytoskeletal architecture and (2) profound functional permeability changes, the putative cellular correlate of the clinical vascular leakage syndrome. However, the endothelial barrier was protected from these profound adverse effects when HUVECs were challenged

  11. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier.

    PubMed

    Xie, Yi; Kim, Kee Jun; Kim, Kwang Sik

    2004-11-01

    The mortality and morbidity associated with neonatal gram-negative meningitis have remained significant despite advances in antimicrobial chemotherapy. Escherichia coli K1 is the most common gram-negative organism causing neonatal meningitis. Our incomplete knowledge of the pathogenesis of this disease is one of the main reasons for this high mortality and morbidity. We have previously established both in vitro and in vivo models of the blood-brain barrier (BBB) using human brain microvascular endothelial cells (HBMEC) and hematogenous meningitis in neonatal rats, respectively. With these in vitro and in vivo models, we have shown that successful crossing of the BBB by circulating E. coli requires a high-degree of bacteremia, E. coli binding to and invasion of HBMEC, and E. coli traversal of the BBB as live bacteria. Our previous studies using TnphoA, signature-tagged mutagenesis and differential fluorescence induction identified several E. coli K1 determinants such as OmpA, Ibe proteins, AslA, TraJ and CNF1 contributing to invasion of HBMEC in vitro and traversal of the blood-brain barrier in vivo. We have shown that some of these determinants interact with specific receptors on HBMEC, suggesting E. coli translocation of the BBB is the result of specific pathogen-host cell interactions. Recent studies using functional genomics techniques have identified additional E. coli K1 factors that contribute to the high degree of bacteremia and HBMEC binding/invasion/transcytosis. In this review, we summarize the current knowledge on the mechanisms underlying the successful E. coli translocation of the BBB.

  12. Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity

    NASA Astrophysics Data System (ADS)

    Kucki, Melanie; Aengenheister, Leonie; Diener, Liliane; Rippl, Alexandra V.; Vranic, Sandra; Newman, Leon; Vazquez, Ester; Kostarelos, Kostas; Wick, Peter; Buerki-Thurnherr, Tina

    2018-07-01

    Graphene oxide (GO) is considered a promising 2D material for biomedical applications. However, the biological health effects of GO are not yet fully understood, in particular for highly sensitive populations such as pregnant women and their unborn children. Especially the potential impact of GO on the human placenta, a transient and multifunctional organ that enables successful pregnancy, has not been investigated yet. Here we performed a mechanistic in vitro study on the placental uptake and biological effects of four non-labelled GO with varying physicochemical properties using the human trophoblast cell line BeWo. No overt cytotoxicity was observed for all GO materials after 48 h of exposure at concentrations up to 40 µg ml‑1. However, exposure to GO materials induced a slight decrease in mitochondrial activity and human choriogonadotropin secretion. In addition, GO induced a transient opening of the trophoblast barrier as evidenced by a temporary increase in the translocation of sodium fluorescein, a marker molecule for passive transport. Evidence for cellular uptake of GO was found by transmission electron microscopy analysis, revealing uptake of even large micro-sized GO by BeWo cells. Although GO did not elicit major acute adverse effects on BeWo trophoblast cells, the pronounced cellular internalization as well as the potential adverse effects on hormone release and barrier integrity warrants further studies on the long-term consequences of GO on placental functionality in order to understand potential embryo-fetotoxic risks.

  13. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes.

    PubMed

    Carter, C J

    2016-10-01

    Even taking problems of diagnosis into account, a five-fold increase in the incidence of autism in recent decades, in the absence of any known changes in the human gene pool suggests a strong environmental influence. Numerous pollutants have been implicated in epidemiological studies, including pesticides, heavy metals, industrial solvents, air pollutants, particulate matter, bisphenol A, phthalates and flame retardants. Many genes have been implicated in autism, some of which are directly related to detoxification processes. Many are also expressed prenatally in the frontal cortex when the effects of such toxins on neurodevelopment are most relevant. To gain access to the foetal brain, toxins must pass placental and blood/brain barriers and access to maternal or children's blood necessitates passage across skin, airway and intestinal barriers. Literature survey of a subset of 206 genes, defined as prime autism susceptibility candidates from an Autworks/Genotator analysis, revealed that most could be related to barrier function at blood/brain, skin, intestinal, placental or other interfaces. These genes were highly enriched in proteome datasets from blood/brain and placental trophoblast barriers and many localised to skin, intestinal, lung, umbilical and placental compartments. Many were also components of the exosomal/transcytosis pathway that is involved in the transfer of compounds across cells themselves, rather than between them. Several are involved in the control of respiratory cilia that sweep mucus and noxious particles from the airways. A key role of autism susceptibility genes may thus relate to their ability to modulate the access of numerous toxins to children, and adults and, during gestation, to the developing foetal brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs.

    PubMed

    Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R

    2016-07-01

    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased

  15. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  16. Contextual and interdependent causes of climate change adaptation barriers for water management: responses from regional and local institutions in Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Azhoni, Adani; Holman, Ian; Jude, Simon

    2016-04-01

    Research on adaptation barriers is gaining increasing prominence as the need for climate change adaptation becomes evident. This research seeks to identify and understand the reasons for key barriers preventing water institutions in the mountainous Himalayan state of Himachal Pradesh in northern India from adapting to climate change. Semi-structured interviews were carried out in January & February 2015 with representatives from twenty-seven key governmental, academic, NGO and commercial institutions in the State, with responsibilities spanning from municipal water supply to irrigation and hydropower generation in addition to environmental conservation. Empirical analysis of the transcripts found that inadequate knowledge capacity, poor implementation of policies, inadequate resources, normative work culture, weak governance, unavailability and inaccessibility of data & information and limited inter-institutional networks are key barriers for adaptation. Although these generic barriers are similar to those reported elsewhere in literature, they are identified as having locally-contextual root causes. For example, the inadequate resources are identified to be occurring as a consequence of the fragmentation of resources allocation among others. This is due to competing developmental priorities and the desire of the political leadership to please the maximum number of electors rather than the more-usual inadequate budgetary allocation and climate scepticism. The identified individual barriers are found to be highly inter-dependent and closely intertwined which enables the identification of leverage points of interventions that can maximise removal of barriers. For example, breaking down key barriers for data and information accessibility will have to involve normative attitudinal change, through sensitisation of the larger picture of the role of accurate and accessible data; changes in working style involving moving from paper-based data management to digital; and

  17. Rotational Spectrum and Internal Rotation Barrier of 1-Chloro-1,1-difluoroethane

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; López, Juan C.; Blanco, Susana; Guarnieri, Antonio

    1997-03-01

    The rotational spectra of 1-chloro-1,1-difluoroethane (HCFC-142b) has been investigated in the frequency region 8-115 GHz with Stark, waveguide Fourier transform (FTMW), and millimeter-wave spectrometers. Assignments in large frequency regions with the corresponding frequency measurements have been made for the ground andv18= 1 (CH3torsion) vibrational states of the35Cl isotopomer and for the ground state of the37Cl species. Accurate rotational, quartic centrifugal distortion, and quadrupole coupling constants have been determined from global fits considering all these states. SmallA-Einternal rotation splittings have been observed for thev18= 1 vibrational state using FTMW spectroscopy. The barrier height for the internal rotation of the methyl group has been determined to be 3751 (4) cal mol-1, in disagreement with the previous microwave value of 4400 (100) cal mol-1reported by G. Graner and C. Thomas [J. Chem. Phys.49,4160-4167 (1968)].

  18. Nutrients affecting gastric barrier.

    PubMed

    Gasbarrini, Antonio; D'Aversa, Francesca; Di Rienzo, Teresa; Franceschi, Francesco

    2014-01-01

    The gastric barrier could be considered an active tissue involved in many synthetic and metabolic functions, as the immunological defense, by activating mucosal immune system. Barrier integrity results from a balance between protective and aggressive endogenous factors and from their interaction with exogenous factors (steroidal or nonsteroidal anti-inflammatory drugs, dietary nitrates, nitrites and/or NaCl, stress, Helicobacter pylori infection, food allergens and contaminants, metals, chemicals, radiation, smoking and alcohol intake). Nutrients represent the most important exogenous factors affecting gastric barrier because of the impact on people's everyday life. We report evidence from the literature about nutrients affecting gastric barrier and we investigate the possible effect that nutrients can play to determining or maintaining a gastric barrier dysfunction. © 2014 S. Karger AG, Basel.

  19. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    PubMed

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  20. The oxygen isotope partition function ratio of water and the structure of liquid water

    USGS Publications Warehouse

    O'Neil, J.R.; Adami, L.H.

    1969-01-01

    By means of the CO2-equilibration technique, the temperature dependence and absolute values of the oxygen isotope partition function ratio of liquid water have been determined, often at 1?? intervals, from -2 to 85??. A linear relationship between In (Q2/Q1) (H2O) and T-1 was obtained that is explicable in terms of the Bigeleisen-Mayer theory of isotopic fractionation. The data are incompatible with conventional, multicomponent mixture models of water because liquid water behaves isotopically as a singly structured homogeneous substance over the entire temperature range studied. A two-species model of water is proposed in which approximately 30% of the hydrogen bonds in ice are broken on melting at 0?? and in which this per cent of monomer changes by only a small amount over the entire liquid range. Because of the high precision and the fundamental property determined, the isotopic fractionation technique is particularly well suited to the detection of thermal anomalies. No anomalies were observed and those previously reported are ascribed to under-estimates of experimental error.

  1. Intracellular ascorbate tightens the endothelial permeability barrier through Epac1 and the tubulin cytoskeleton

    PubMed Central

    Parker, William H.; Rhea, Elizabeth Meredith; Qu, Zhi-Chao; Hecker, Morgan R.

    2016-01-01

    Vitamin C, or ascorbic acid, both tightens the endothelial permeability barrier in basal cells and also prevents barrier leak induced by inflammatory agents. Barrier tightening by ascorbate in basal endothelial cells requires nitric oxide derived from activation of nitric oxide synthase. Although ascorbate did not affect cyclic AMP levels in our previous study, there remains a question of whether it might activate downstream cyclic AMP-dependent pathways. In this work, we found in both primary and immortalized cultured endothelial cells that ascorbate tightened the endothelial permeability barrier by ∼30%. In human umbilical vein endothelial cells, this occurred at what are likely physiologic intracellular ascorbate concentrations. In so doing, ascorbate decreased measures of oxidative stress and also flattened the cells to increase cell-to-cell contact. Inhibition of downstream cyclic AMP-dependent proteins via protein kinase A did not prevent ascorbate from tightening the endothelial permeability barrier, whereas inhibition of Epac1 did block the ascorbate effect. Although Epac1 was required, its mediator Rap1 was not activated. Furthermore, ascorbate acutely stabilized microtubules during depolymerization induced by colchicine and nocodazole. Over several days in culture, ascorbate also increased the amount of stable acetylated α-tubulin. Microtubule stabilization was further suggested by the finding that ascorbate increased the amount of Epac1 bound to α-tubulin. These results suggest that physiologic ascorbate concentrations tighten the endothelial permeability barrier in unstimulated cells by stabilizing microtubules in a manner downstream of cyclic AMP that might be due both to increasing nitric oxide availability and to scavenging of reactive oxygen or nitrogen species. PMID:27605450

  2. Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor–Dependent Mechanism

    PubMed Central

    Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.

    2013-01-01

    Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224

  3. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.

    PubMed

    Portella, Guillem; Pohl, Peter; de Groot, Bert L

    2007-06-01

    We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.

  4. Effects of Hydroxydecine(®) (10-hydroxy-2-decenoic acid) on skin barrier structure and function in vitro and clinical efficacy in the treatment of UV-induced xerosis.

    PubMed

    Duplan, Hélène; Questel, Emmanuel; Hernandez-Pigeon, Hélène; Galliano, Marie Florence; Caruana, Antony; Ceruti, Isabelle; Ambonati, Marco; Mejean, Carine; Damour, Odile; Castex-Rizzi, Nathalie; Bessou-Touya, Sandrine; Schmitt, Anne-Marie

    2011-01-01

    10-Hydroxy-2-decenoic acid, a natural fatty acid only found in royal jelly, may be of value in correcting skin barrier dysfunction. We evaluated the activity of Hydroxydecine(®), its synthetic counterpart, in vitro on the regulation of epidermal differentiation markers, ex vivo on the inflammatory response and restoration of skin barrier function, and in vivo on UV-induced xerosis in healthy human volunteers. In cultured normal human keratinocytes, Hydroxydecine(®) induced involucrin, transglutaminase-1 and filaggrin protein production. In topically Hydroxydecine(®)-treated skin equivalents, immunohistochemical analysis revealed an increase in involucrin, transglutaminase-1 and filaggrin staining. In a model of thymic stromal lymphopoietin (TSLP)-induced inflamed epidermis, a Hydroxydecine(®)-containing emulsion inhibited TSLP release. In a model of inflammation and barrier impairment involving human skin explants maintained alive, Hydroxydecine(®) balm restored stratum corneum cohesion and significantly increased filaggrin expression, as shown by immunohistochemistry. It also decreased pro-inflammatory cytokine secretion (IL-4, IL-5 and IL-13). In healthy volunteers with UV-induced xerosis, the hydration index increased by +28.8% (p<0.01) and +60.4% (p<0.001) after 7 and 21 days of treatment with Hydroxydecine(®) cream, respectively. Hydroxydecine(®) thus proved its efficacy in activating keratinocyte differentiation processes in vitro, restoring skin barrier function and reducing inflammation ex vivo, and hydrating dry skin in vivo.

  5. A (2+1)-dimensional Korteweg-de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid

    2016-05-01

    We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.

  6. Internal Dynamics of Water Attached to a Photoacidic Substrate: High Resolution Electronic Spectroscopy of β-NAPHTHOL-WATER in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Young, Justin W.; Pratt, David W.

    2010-06-01

    An understanding of the structure and internal dynamics of water attached to the photoacid β-naphthol is attainable through rotationally resolved electronic spectroscopy. Here, we present rotational constants for the 1:1 acid-base cluster in both S0 and S1, which provide the location of water within the cluster, as well as the barrier height to internal rotation of water in each electronic state. The barrier height decreases slightly upon excitation, from 206 wn in S0, to 182 wn in S1. There is also little evidence of a large change in water location, orientation, or overall hydrogen bond length upon irradiation with UV light. Thus, a single water molecule has relatively little affect on the substrate photo-acidity measured in the liquid phase.

  7. Celiac Disease: Role of the Epithelial Barrier.

    PubMed

    Schumann, Michael; Siegmund, Britta; Schulzke, Jörg D; Fromm, Michael

    2017-03-01

    In celiac disease (CD) a T-cell-mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed.

  8. Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular-dynamics study

    NASA Technical Reports Server (NTRS)

    Benjamin, Ilan; Pohorille, Andrew

    1993-01-01

    The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.

  9. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats.

    PubMed

    Fang, Shenglin; Zhuo, Zhao; Yu, Xiaonan; Wang, Haichao; Feng, Jie

    2018-05-01

    The aim of this study was to determine the toxicological effects of excess iron in a liquid iron preparation (especially on intestinal barrier function) and the possible etiology of side effects or diseases caused by the excess iron. In study 1, forty male Sprague-Dawley rats (4-5 wk old) were subjected to oral gavage with 1 ml vehicle (0.01 mol/L HCl) or 1 ml liquid iron preparation containing 8 mg, 16 mg or 24 mg of iron for 30 d. Iron status, oxidative stress, histology (H&E staining), ultrastructure (electron microscopy) and apoptosis (TUNEL assay) in the intestines and liver were assessed. The cecal microbiota was evaluated by 16S rRNA sequencing. In study 2, twenty rats with the same profile as above were subjected to oral gavage with 1 ml vehicle or 24 mg Fe for 30 d. The intestinal barrier function was determined by in vivo studies and an Ussing chamber assay; tight junction proteins and serum pro-inflammatory cytokines were observed by enzyme-linked immunosorbent assay. In study 1, the intestinal mucosa and liver showed apparent oxidative stress. In addition, iron concentration-dependent ultrastructural alterations to duodenal enterocytes and hepatocytes and histological damage to the colonic mucosa were detected. Notably, apoptosis was increased in duodenal enterocytes and hepatocytes. Impaired intestinal barrier function and lower expression of intestinal tight junction proteins were observed, and the phenotype was more severe in the colon than in the duodenum. A trend toward higher expression of serum pro-inflammatory cytokines might indicate systemic inflammation. Furthermore, the caecal microbiota showed a significant change, with increased Defluviitaleaceae, Ruminococcaceae, and Coprococcus and reduced Lachnospiraceae and Allobaculum, which could mediate the detrimental effects of excess iron on gut health. We concluded that excessive iron exposure from liquid iron preparation induces oxidative stress and histopathological alterations

  10. Functionalization of carbon nanotubes by water plasma.

    PubMed

    Hussain, S; Amade, R; Jover, E; Bertran, E

    2012-09-28

    Multiwall carbon nanotubes grown by plasma enhanced chemical vapour deposition were functionalized by H(2)O plasma treatment. Through a controlled functionalization process of the carbon nanotubes (CNTs) we were able to modify and tune their chemical reactivity, expanding the range of potential applications in the field of energy and environment. In particular, different oxygen groups were attached to the surfaces of the nanotubes (e.g. carboxyl, hydroxyl and carbonyl), which changed their physicochemical properties. In order to optimize the main operational parameters of the H(2)O plasma treatment, pressure and power, a Box-Wilson experimental design was adopted. Analysis of the morphology, electrochemical properties and functional groups attached to the surfaces of the CNTs allowed us to determine which treatment conditions were suitable for different applications. After water plasma treatment the specific capacitance of the nanotubes increased from 23 up to 68 F g(-1) at a scan rate of 10 mV s(-1).

  11. Optimization of an exchange-correlation density functional for water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800

    2016-06-14

    We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less

  12. The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate

    PubMed Central

    Reinhard, Nathalie R.; Mastop, Marieke; Yin, Taofei; Wu, Yi; Bosma, Esmeralda K.; Gadella, Theodorus W. J.; Goedhart, Joachim; Hordijk, Peter L.

    2017-01-01

    The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein–coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear. To examine these, we used a set of fluorescence resonance energy transfer–based biosensors for different RhoGTPases (Rac1, RhoA/B/C, and Cdc42) as well as for heterotrimeric G-proteins in a series of live-cell imaging experiments in primary human endothelial cells. These experiments were accompanied by biochemical GTPase activity assays and transendothelial resistance measurements. We show that S1P promotes cell spreading and endothelial barrier function through S1PR1-Gαi-Rac1 and S1PR1-Gαi-Cdc42 pathways. In parallel, a S1PR2-Gα12/13-RhoA pathway is activated that can induce cell contraction and loss of barrier function, but only if Gαi-mediated signaling is suppressed. Our results suggest that Gαq activity is not involved in S1P-mediated regulation of barrier integrity. Moreover, we show that early activation of RhoA by S1P inactivates Rac1 but not Cdc42, and vice versa. Together, our data show that the rapid S1P-induced increase in endothelial integrity is mediated by a S1PR1-Gαi-Cdc42 pathway. PMID:28954861

  13. Informing watershed connectivity barrier prioritization decisions: A synthesis

    USGS Publications Warehouse

    McKay, S. K.; Cooper, A. R.; Diebel, M.W.; Elkins, D.; Oldford, G.; Roghair, C.; Wieferich, Daniel J.

    2017-01-01

    Water resources and transportation infrastructure such as dams and culverts provide countless socio-economic benefits; however, this infrastructure can also disconnect the movement of organisms, sediment, and water through river ecosystems. Trade-offs associated with these competing costs and benefits occur globally, with applications in barrier addition (e.g. dam and road construction), reengineering (e.g. culvert repair), and removal (e.g. dam removal and aging infrastructure). Barrier prioritization provides a unique opportunity to: (i) restore and reconnect potentially large habitat patches quickly and effectively and (ii) avoid impacts prior to occurrence in line with the mitigation hierarchy (i.e. avoid then minimize then mitigate). This paper synthesizes 46 watershed-scale barrier planning studies and presents a procedure to guide barrier prioritization associated with connectivity for aquatic organisms. We focus on practical issues informing prioritization studies such as available data sets, methods, techniques, and tools. We conclude with a discussion of emerging trends and issues in barrier prioritization and key opportunities for enhancing the body of knowledge.

  14. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    EPA Science Inventory

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  15. The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier.

    PubMed

    Hirt, B; Penkova, Z H; Eckhard, A; Liu, W; Rask-Andersen, H; Müller, M; Löwenheim, H

    2010-07-28

    Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 2 LONG-TERM MONITORING OF PRBS: SOIL AND GROUND WATER SAMPLING

    EPA Science Inventory

    This report discusses soil and ground-water sampling methods and procedures used to evaluate the long-term performance of permeable reactive barriers (PRBS) at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood, CO. Both PRBs were installed in 1996 and hav...

  17. Function of Serum Complement in Drinking Water Arsenic Toxicity

    PubMed Central

    Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud

    2012-01-01

    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044

  18. Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: Implications for barrier-estuary connectivity

    USGS Publications Warehouse

    Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil K.; Navoy, Anthony S.

    2016-01-01

    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.

  19. Trait Positive Affect Buffers the Effects of Acute Stress on Skin Barrier Recovery

    PubMed Central

    Robles, Theodore F.; Brooks, Kathryn P.; Pressman, Sarah D.

    2010-01-01

    Objective This study examines the role of self-reported trait positive affect (PA) on skin barrier recovery after skin disruption, and whether the role of trait PA in wound healing is consistent with the direct effects model or the stress-buffering model of PA and health. Design Sixty healthy participants (mean age 22.7 ± 3.9 years) completed a self-report measure of trait positive and negative affect, underwent a “tape-stripping” procedure that disrupts normal skin barrier function, and were randomly assigned to a Stress (Trier Social Stress Test) or No Stress (reading task) condition. Main Outcome Measures Skin barrier recovery was assessed by measuring transepidermal water loss up to 2 hr after skin disruption. Results Multilevel modeling indicated that greater trait PA was related to faster skin barrier recovery (p < .05). The effects of PA on skin barrier recovery were independent of levels of trait NA. Conclusion These findings suggest that trait PA may influence skin barrier recovery following a brief stressor. In addition, these results provide additional evidence that trait PA can positively impact objective health outcomes. PMID:19450044

  20. MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function.

    PubMed

    Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro

    2014-08-01

    Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A Novel Approach to Dissect the Abscission Process in Arabidopsis1[C][W][OA

    PubMed Central

    González-Carranza, Zinnia Haydee; Shahid, Ahmad Ali; Zhang, Li; Liu, Yang; Ninsuwan, Unchalee; Roberts, Jeremy Alan

    2012-01-01

    Abscission is the consequence of a specialized layer of cells undergoing a complex series of molecular and biochemical events. Analysis of the specific molecular changes associated with abscission is hampered by contamination from neighboring nonseparating tissues. Moreover, studies of abscission frequently involve the examination of events that take place in isolated segments of tissue exposed to nonphysiological concentrations of ethylene or indole-3-acetic acid for protracted periods (more than 24 h) of time. To resolve these problems, we have adopted the use of a transgenic line of Arabidopsis (Arabidopsis thaliana) where the promoter of an abscission-specific polygalacturonase gene (At2g41850/ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2) has been fused to a green fluorescent protein reporter. RNA was extracted from green fluorescent protein-tagged cells, released from abscising floral organs, and used to generate a complementary DNA library. This library was used to probe a microarray, and a population of abscission-related transcripts was studied in detail. Seven novel abscission-related genes were identified, four of which encode proteins of unknown function. Reverse transcription-polymerase chain reaction analyses and promoter fusions to the β-glucuronidase reporter gene confirmed the expression of these genes in the abscission zone and revealed other places of expression during seedling development. Three of these genes were studied further by crossing reporter lines to the abscission mutants inflorescence deficient in abscission (ida) and blade-on-petiole1 (bop1)/bop2 and an IDA-overexpressing line. Phenotypic analysis of an At3g14380 transfer DNA insertion line indicates that this gene plays a functional role in floral organ shedding. This strategy has enabled us to uncover new genes involved in abscission, and their possible contribution to the process is discussed. PMID:22992509

  2. Dietary glucosylceramide enhances tight junction function in skin epidermis via induction of claudin-1.

    PubMed

    Kawada, Chinatsu; Hasegawa, Tatsuya; Watanabe, Mutsuto; Nomura, Yoshihiro

    2013-01-01

    Dietary glucosylceramide increased the expression of claudin-1 in UVB-irradiated mouse epidermis. Sphingosine and phytosphingosine, metabolites of glucosylceramide, increased trans-epithelial electrical resistance, and phytosphingosine increased claudin-1 mRNA expression in cultured keratinocytes. Our results indicate that the skin barrier improvement induced by dietary glucosylceramide might be due to enhancement of tight junction function, mediated by increased expression of claudin-1 induced by sphingoid metabolites.

  3. Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.

    2012-12-01

    general service function of 2010 has minor increase than 2007, however the general function of two years are in common level; Compare with different region, the upstream, middle stream and downstream indicates "worse", "common" and "good" level respectively. The first three derived functions are leisure, offer products and industrial water use. In the end, this paper investigates the evolution of water ecosystem service function under rising temperatures and elevated CO2 concentration scenarios in Luanhe Basin through eco-hydrological model. The results elaborate that the water ecosystem service functions would decline when temperature rising, and warming to 1.5 degree is the mutation point of sharp drop; Increased CO2 concentration scenario will improve the direct service function in the whole Basin; under the overlying scenario, different region shows different results, the direct service function will increased in upstream and middle stream, direct service function will drop in downstream. A comprehensive analysis indicates that the rising temperature is the major driven of water ecosystem service function in Luanhe Basin.

  4. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  5. Interleukin-1β transfer across the blood-brain barrier in the ovine fetus.

    PubMed

    Sadowska, Grazyna B; Chen, Xiaodi; Zhang, Jiyong; Lim, Yow-Pin; Cummings, Erin E; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Padbury, James F; Banks, William A; Stonestreet, Barbara S

    2015-09-01

    Pro-inflammatory cytokines contribute to hypoxic-ischemic brain injury. Blood-brain barrier (BBB) dysfunction represents an important component of hypoxic-ischemic brain injury in the fetus. Hypoxic-ischemic injury could accentuate systemic cytokine transfer across the fetal BBB. There has been considerable conjecture suggesting that systemic cytokines could cross the BBB during the perinatal period. Nonetheless, evidence to support this contention is sparse. We hypothesized that ischemia-reperfusion increases the transfer of systemic interleukin-1β (IL-1β) across the BBB in the fetus. Ovine fetuses at 127 days of gestation were studied 4 hours after 30 minutes of bilateral carotid artery occlusion and compared with a nonischemic group. Recombinant ovine IL-1β protein was expressed from an IL-1β pGEX-2 T vector in E. coli BL-21 cells and purified. The BBB function was quantified in 12 brain regions using a blood-to-brain transfer constant with intravenous (125)I-radiolabeled IL-1β ((125)I-IL-1β). Interleukin-1β crossed the intact BBB in nonischemic fetuses. Blood-to-brain transport of (125)I-IL-1β was higher (P<0.05) across brain regions in fetuses exposed to ischemia-reperfusion than nonischemic fetuses. We conclude that systemic IL-1β crosses the intact fetal BBB, and that ischemia-reperfusion increases transfer of this cytokine across the fetal BBB. Therefore, altered BBB function after hypoxia-ischemia facilitates entry of systemic cytokines into the brain of the fetus.

  6. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.

    PubMed

    Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee

    2017-08-01

    Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Environmental barriers, person-environment fit and mortality among community-dwelling very old people.

    PubMed

    Rantakokko, Merja; Törmäkangas, Timo; Rantanen, Taina; Haak, Maria; Iwarsson, Susanne

    2013-08-28

    Environmental barriers are associated with disability-related outcomes in older people but little is known of the effect of environmental barriers on mortality. The aim of this study was to examine whether objectively measured barriers in the outdoor, entrance and indoor environments are associated with mortality among community-dwelling 80- to 89-year-old single-living people. This longitudinal study is based on a sample of 397 people who were single-living in ordinary housing in Sweden. Participants were interviewed during 2002-2003, and 393 were followed up for mortality until May 15, 2012.Environmental barriers and functional limitations were assessed with the Housing Enabler instrument, which is intended for objective assessments of Person-Environment (P-E) fit problems in housing and the immediate outdoor environment. Mortality data were gathered from the public national register. Cox regression models were used for the analyses. A total of 264 (67%) participants died during follow-up. Functional limitations increased mortality risk. Among the specific environmental barriers that generate the most P-E fit problems, lack of handrails in stairs at entrances was associated with the highest mortality risk (adjusted RR 1.55, 95% CI 1.14-2.10), whereas the total number of environmental barriers at entrances and outdoors was not associated with mortality. A higher number of environmental barriers indoors showed a slight protective effect against mortality even after adjustment for functional limitations (RR 0.98, 95% CI 0.96-1.00). Specific environmental problems may increase mortality risk among very-old single-living people. However, the association may be confounded by individuals' health status which is difficult to fully control for. Further studies are called for.

  9. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin

    In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less

  10. A classical density-functional theory for describing water interfaces.

    PubMed

    Hughes, Jessica; Krebs, Eric J; Roundy, David

    2013-01-14

    We develop a classical density functional for water which combines the White Bear fundamental-measure theory (FMT) functional for the hard sphere fluid with attractive interactions based on the statistical associating fluid theory variable range (SAFT-VR). This functional reproduces the properties of water at both long and short length scales over a wide range of temperatures and is computationally efficient, comparable to the cost of FMT itself. We demonstrate our functional by applying it to systems composed of two hard rods, four hard rods arranged in a square, and hard spheres in water.

  11. Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice

    PubMed Central

    Fu, Yongjian; Zhang, SongSong; Ding, Hao; Chen, Jin

    2017-01-01

    In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema. PMID:28912935

  12. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  13. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  14. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  15. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  16. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  17. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers.

    PubMed

    Mitragotri, Samir

    2013-01-01

    Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented. Copyright © 2012. Published by Elsevier B.V.

  18. Geochemical barriers for environment protection and recovery of nonferrous metals.

    PubMed

    Chanturiya, Valentine; Masloboev, Vladimir; Makarov, Dmitriy; Nesterov, Dmitriy; Bajurova, Julia; Svetlov, Anton; Men'shikov, Yuriy

    2014-01-01

    A study of natural minerals, ore tailings and their products as materials for artificial geochemical barriers is presented. In particular, it focuses on interaction between calcite and dolomite and sulfate solutions containing nickel, copper and iron under static conditions. Calcite of -0.1 mm fraction has been shown to perform well as a barrier when added to water phases of tailing dumps and natural reservoirs. Experiments under dynamic conditions have revealed a high potential of thermally activated copper-nickel tailings as barriers. After a 500-day precipitating period on a geochemical barrier, the contents of nickel and copper in ore dressing tailings were found to increase 12- and 28-fold, respectively. An effective sorbent of copper, iron and nickel ions is a brucite-based product of hydrochloric acid treatment of vermiculite ore tailings. Its sorption capacity can be essentially increased through thermal activation.

  19. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet

    PubMed Central

    Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.

    2018-01-01

    Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171

  20. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders.

    PubMed

    Fiorentino, Maria; Sapone, Anna; Senger, Stefania; Camhi, Stephanie S; Kadzielski, Sarah M; Buie, Timothy M; Kelly, Deanna L; Cascella, Nicola; Fasano, Alessio

    2016-01-01

    Autism spectrum disorders (ASD) are complex conditions whose pathogenesis may be attributed to gene-environment interactions. There are no definitive mechanisms explaining how environmental triggers can lead to ASD although the involvement of inflammation and immunity has been suggested. Inappropriate antigen trafficking through an impaired intestinal barrier, followed by passage of these antigens or immune-activated complexes through a permissive blood-brain barrier (BBB), can be part of the chain of events leading to these disorders. Our goal was to investigate whether an altered BBB and gut permeability is part of the pathophysiology of ASD. Postmortem cerebral cortex and cerebellum tissues from ASD, schizophrenia (SCZ), and healthy subjects (HC) and duodenal biopsies from ASD and HC were analyzed for gene and protein expression profiles. Tight junctions and other key molecules associated with the neurovascular unit integrity and function and neuroinflammation were investigated. Claudin ( CLDN )-5 and -12 were increased in the ASD cortex and cerebellum. CLDN-3 , tricellulin , and MMP-9 were higher in the ASD cortex. IL-8 , tPA , and IBA-1 were downregulated in SCZ cortex; IL-1b was increased in the SCZ cerebellum. Differences between SCZ and ASD were observed for most of the genes analyzed in both brain areas. CLDN-5 protein was increased in ASD cortex and cerebellum, while CLDN-12 appeared reduced in both ASD and SCZ cortexes. In the intestine, 75% of the ASD samples analyzed had reduced expression of barrier-forming TJ components ( CLDN-1 , OCLN , TRIC ), whereas 66% had increased pore-forming CLDNs ( CLDN-2 , -10 , -15 ) compared to controls. In the ASD brain, there is an altered expression of genes associated with BBB integrity coupled with increased neuroinflammation and possibly impaired gut barrier integrity. While these findings seem to be specific for ASD, the possibility of more distinct SCZ subgroups should be explored with additional studies.