Sample records for water development division

  1. Annual Report, Reservoir Control Center, Southwestern Division (1989)

    DTIC Science & Technology

    1990-01-01

    Division in the water quality field . This provides for water quality objectives being included as an effective part of our total water management...WES) selected Canyon Lake as a research field site for developing techniques to evaluate the impacts associated with installation of hydropower at Corps...term continuous goals of this Division, and consequently the Water Management Branch, in the water quality field . (1) To obtain sufficient water

  2. GWERD Overview: U.S. EPA's Ground Water and Ecosystems Restoration Division

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  3. Ground-water conditions in Utah, spring of 2007

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  4. Ground-water conditions in Utah, spring of 2008

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  5. Ground-water conditions in Utah, spring of 2009

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  6. Ground-water conditions in Utah, spring of 2006

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2006-01-01

    This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.

  7. Groundwater conditions in Utah, spring of 2010

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah maximum contaminant levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary drinking-water standards can be accessed online at http://www.rules.utah.gov/publicat/code/r309/r309-200. htm#T5. The U.S. Environmental Protection Agency (EPA) drinking-water standards can be accessed at http://www.epa. gov/safewater/mcl.html#mcls. Maximum contaminant levels and secondary drinking-water standards were developed for public water systems and do not apply to the majority of wells sampled during this study.Every 5 years, this report series includes maps depicting comparisons of 30-year changes in water levels for each of the major areas of groundwater development. The water-level change maps in this report show the difference between water levels measured in 1980 and in 2010. Water-level rises or declines occurring on shorter time scales are shown in plots of annual water-level measurements for several wells in each of the major areas of groundwater development.

  8. Ground-water conditions in Utah, spring of 2002

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  9. Ground-water conditions in Utah, spring of 2001

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2001-01-01

    This is the thirty-eighth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2000. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  10. Ground-water conditions in Utah, spring of 2003

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  11. Ground-water conditions in Utah, spring of 2004

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2004-01-01

    This is the forty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2003. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  12. Plan for the design, development, and implementation, and operation of the National Water Information System

    USGS Publications Warehouse

    Edwards, M.D.

    1987-01-01

    The Water Resources Division of the U.S. Geological Survey is developing a National Water Information System (NWIS) that will integrate and replace its existing water data and information systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information, and Water Resources Scientific Information Center programs. It will be a distributed data system operated as part of the Division 's Distributed Information System, which is a network of computers linked together through a national telecommunication network known as GEONET. The NWIS is being developed as a series of prototypes that will be integrated as they are completed to allow the development and implementation of the system in a phased manner. It also is being developed in a distributed manner using personnel who work under the coordination of a central NWIS Project Office. Work on the development of the NWIS began in 1983 and it is scheduled for completion in 1990. This document presents an overall plan for the design, development, implementation, and operation of the system. Detailed discussions are presented on each of these phases of the NWIS life cycle. The planning, quality assurance, and configuration management phases of the life cycle also are discussed. The plan is intended to be a working document for use by NWIS management and participants in its design and development and to assist offices of the Division in planning and preparing for installation and operation of the system. (Author 's abstract)

  13. Ground-water conditions in Utah, spring of 2005

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2005-01-01

    This is the forty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2004. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources. This report is available online at http://www.waterrights.utah.gov/techinfo/ wwwpub/gw2005.pdf and http://ut.water.usgs.gov/publications/GW2005.pdf.

  14. EPA EMERGENCY PLANNING TOOLBOX

    EPA Science Inventory

    EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...

  15. Functional requirements of computer systems for the U.S. Geological Survey, Water Resources Division, 1988-97

    USGS Publications Warehouse

    Hathaway, R.M.; McNellis, J.M.

    1989-01-01

    Investigating the occurrence, quantity, quality, distribution, and movement of the Nation 's water resources is the principal mission of the U.S. Geological Survey 's Water Resources Division. Reports of these investigations are published and available to the public. To accomplish this mission, the Division requires substantial computer technology to process, store, and analyze data from more than 57,000 hydrologic sites. The Division 's computer resources are organized through the Distributed Information System Program Office that manages the nationwide network of computers. The contract that provides the major computer components for the Water Resources Division 's Distributed information System expires in 1991. Five work groups were organized to collect the information needed to procure a new generation of computer systems for the U. S. Geological Survey, Water Resources Division. Each group was assigned a major Division activity and asked to describe its functional requirements of computer systems for the next decade. The work groups and major activities are: (1) hydrologic information; (2) hydrologic applications; (3) geographic information systems; (4) reports and electronic publishing; and (5) administrative. The work groups identified 42 functions and described their functional requirements for 1988, 1992, and 1997. A few new functions such as Decision Support Systems and Executive Information Systems, were identified, but most are the same as performed today. Although the number of functions will remain about the same, steady growth in the size, complexity, and frequency of many functions is predicted for the next decade. No compensating increase in the Division 's staff is anticipated during this period. To handle the increased workload and perform these functions, new approaches will be developed that use advanced computer technology. The advanced technology is required in a unified, tightly coupled system that will support all functions simultaneously. The new approaches and expanded use of computers will require substantial increases in the quantity and sophistication of the Division 's computer resources. The requirements presented in this report will be used to develop technical specifications that describe the computer resources needed during the 1990's. (USGS)

  16. Water for the Nation: An overview of the USGS Water Resources Division

    USGS Publications Warehouse

    ,

    1998-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey (USGS) provides reliable, impartial, timely information needed to understand the Nation's water resources. WRD actively promotes the use of this information by decisionmakers to: * Minimize the loss of life and property as a result of water-related hazards such as floods, droughts, and land movement. * Effectively manage ground-water and surface-water resources for domestic, agricultural, commercial, industrial, recreational, and ecological uses. * Protect and enhance water resources for human health, aquatic health, and environmental quality. * Contribute to wise physical and economic development of the Nation's resources for the benefit of present and future generations.

  17. RESPONSE PROTOCOL TOOLBOX: PLANNING FOR AND RESPONDING TO CONTAMINATION THREATS TO DRINKING WATER SYSTEMS

    EPA Science Inventory

    EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...

  18. Ground-water conditions in Utah, spring of 1999

    USGS Publications Warehouse

    Burden, Carole B.; Spangler, L.E.; Sory, J.D.; Eacret, Robert J.; Kenney, T.A.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    1999-01-01

    This is the thirty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1998. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  19. Ground-water conditions in Utah, spring of 2000

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Johnson, K.K.; Kenny, T.A.; Brockner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2000-01-01

    This is the thirty-seventh in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1999. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  20. Regression models of monthly water-level change in and near the Closed Basin Division of the San Luis Valley, south-central Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.

    1995-01-01

    The Bureau of Reclamation is developing a water-resource project, the Closed Basin Division, in the San Luis Valley of south-central Colorado that is designed to salvage unconfined ground water that currently is discharged as evapotranspiration. The water table in and near the 130,000-acre Closed Basin Division area will be lowered by an annual withdrawal of as much as 100,000 acre-feet of ground water from the unconfined aquifer. The legislation authorizing the project limits resulting drawdown of the water table in preexisting irrigation and domestic wells outside the Closed Basin Division to a maximum of 2 feet. Water levels in the closed basin in the northern part of the San Luis Valley historically have fluctuated more than 2 feet in response to water-use practices and variation of climatically controlled recharge and discharge. Declines of water levels in nearby wells that are caused by withdrawals in the Closed Basin Division can be quantified if water-level fluctuations that result from other water-use practices and climatic variations can be estimated. This study was done to evaluate water-level change at selected observation wells in and near the Closed Basin Division. Regression models of monthly water-level change were developed to predict monthly water-level change in 46 selected observation wells. Predictions of monthly water-level change are based on one or more of the following: elapsed time, cosine and sine functions with an annual period, streamflow depletion of the Rio Grande, electrical use for agricultural purposes, runoff into the closed basin, precipitation, and mean air temperature. Regression models for five of the wells include only an intercept term and either an elapsed-time term or terms determined by the cosine and sine functions. Regression models for the other 41 wells include 1 to 4 of the 5 other variables, which can vary from month to month and from year to year. Serial correlation of the residuals was detected in 24 of the regression models. These models also include an autoregressive term to account for serial correlation in the residuals. The adjusted coefficient of determination (Ra2) for the 46 regression models range from 0.08 to 0.89, and the standard errors of estimate range from 0.034 to 2.483 feet. The regression models of monthly water- level change can be used to evaluate whether post-1985 monthly water-level change values at the selected observation wells are within the 95-percent confidence limits of predicted monthly water-level change.

  1. LAB ANALYSIS OF EMERGENCY WATER SAMPLES CONTAINING UNKNOWN CONTAMINANTS: CONSIDERATIONS FROM THE USEPA RESPONSE PROTOCOL TOOLBOX

    EPA Science Inventory

    EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...

  2. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  3. Alaska Department of Natural Resources

    Science.gov Websites

    and Commissions Board of Agriculture Board of Forestry Community Forest Council Forest Stewardship Development Advisory Board Media Releases Public Notices Divisions/Offices Divisions Agriculture Forestry Programs and Services Agriculture Forestry Geological & Geophysical Surveys Mining, Land & Water

  4. Alaska Department of Natural Resources

    Science.gov Websites

    Commissions Board of Agriculture Board of Forestry Community Forest Council Forest Stewardship Coordinating Development Advisory Board Media Releases Public Notices Divisions/Offices Divisions Agriculture Forestry major programs: Agriculture, Forestry, Geological & Geophysical Surveys, Mining, Land & Water

  5. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  6. Robert S. Kerr Environmental Research Center

    EPA Science Inventory

    The Kerr Center, situated on 16 acres three miles south of Ada, Oklahoma, houses the Ground Water and Ecosystems Restoration Division (GWERD) of the National Risk Management Research Laboratory (NRMRL). The division develops strategies and technologies to protect and restore grou...

  7. About the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory

    EPA Pesticide Factsheets

    The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.

  8. EPA RESPONSE PROTOCOL TOOLBOX TO HELP EVALUATION OF CONTAMINATION THREATS & RESPONDING TO THREATS: MODULE 1-WATER UTILITY PLANNING GUIDE

    EPA Science Inventory

    EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...

  9. Groundwater conditions in Utah, spring of 2011

    USGS Publications Warehouse

    Burden, Carole B.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah Maximum Contaminant Levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary drinking-water standards can be accessed online at http://www.rules.utah.gov/publicat/code/r309/r309-200. htm#T5. The U.S. Environmental Protection Agency (EPA) drinking-water standards can be accessed at http://www.epa. gov/safewater/mcl.html#mcls. Maximum Contaminant Levels and secondary drinking-water standards were developed for public water systems and do not apply to the majority of wells sampled during this study.

  10. Ecosystem Restoration Research at GWERD

    EPA Science Inventory

    Ground Water and Ecosystems Restoration Division, Ada, OK Mission: Conduct research and technical assistance to provide the scientific basis to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted b...

  11. EARLY CRANIOFACIAL DEVELOPMENT: LIFE AMONG THE SIGNALS

    EPA Science Inventory

    Early Craniofacial Development: Life Among the Signals. Sid Hunter and Keith Ward. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC, 27711

    Haloacetic acids (HAA) are chemicals formed during drinking water disinfection and present in finished tap water. Exposure o...

  12. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  13. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  14. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  15. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  16. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  17. 43 CFR 414.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Purposes and Definitions § 414.1 Purpose. (a) What this part does. This... Colorado River water offstream; (2) Permit State-authorized entities to develop intentionally created...

  18. 43 CFR 414.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Purposes and Definitions § 414.1 Purpose. (a) What this part does. This... Colorado River water offstream; (2) Permit State-authorized entities to develop intentionally created...

  19. 43 CFR 414.6 - Environmental compliance and funding of Federal costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RECLAMATION, DEPARTMENT OF THE INTERIOR OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and...

  20. 43 CFR 414.6 - Environmental compliance and funding of Federal costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RECLAMATION, DEPARTMENT OF THE INTERIOR OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and...

  1. Obtaining maps and data from the U.S. Geological Survey*

    USGS Publications Warehouse

    Hallam, C.A.

    1982-01-01

    The U.S. Geological Survey produces a variety of resource information for the United States. This includes many data bases of particular interest to planners such as land use and terrain information prepared by the National Mapping Division, water quantity and quality data collected by Water Resources Division, and coal resource information gathered by the Geologic Division. These data are stored in various forms, and information on their availability can be obtained from appropriate offices in the U.S. Geological Survey as well as from USGS Circular 777. These data have been used for the management, development, and monitoring of our Nation's resources by Federal, State, and local agencies. ?? 1982.

  2. Groundwater conditions in Utah, spring of 2014

    USGS Publications Warehouse

    Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  3. Groundwater conditions in Utah, Spring of 2017

    USGS Publications Warehouse

    Burden, Carole B.

    2017-01-01

    This is the fifty-fourth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2016. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2017.pdf. Groundwater conditions in Utah for calendar year 2015 are reported in Burden and others (2016) and are available online at http://ut.water.usgs.gov/publications/GW2016.pdf.

  4. Groundwater conditions in Utah, spring of 2014

    USGS Publications Warehouse

    Burden, Carole B.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  5. Groundwater conditions in Utah, spring of 2013

    USGS Publications Warehouse

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  6. Groundwater conditions in Utah, spring of 2012

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2012-01-01

    This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.

  7. Groundwater conditions in Utah, spring of 2016

    USGS Publications Warehouse

    Burden, Carole B.

    2016-01-01

    This is the fifty-third in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2015. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2016.pdf. Groundwater conditions in Utah for calendar year 2014 are reported in Burden and others (2015) and are available online at http://ut.water.usgs.gov/publications/GW2015.pdf

  8. 78 FR 22540 - Notice of Public Meeting/Webinar: EPA Method Development Update on Drinking Water Testing Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ...: EPA Method Development Update on Drinking Water Testing Methods for Contaminant Candidate List... Division will describe methods currently in development for many CCL contaminants, with an expectation that several of these methods will support future cycles of the Unregulated Contaminant Monitoring Rule (UCMR...

  9. Ground-water data collected in the Missouri River Basin units in Kansas during 1954

    USGS Publications Warehouse

    Mason, B.J.; Loye, Linda

    1955-01-01

    Ground water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of  Reclamation and other federal agencies. The studies of ground-water resources in the part of Kansas that lies within the Missouri River basin have been coordinated with the cooperative program of ground-water studies which were already being made in Kansas by the U.S Geological Survey, the Kansas State Geological Survey, the Division of Sanitation of the Kansas Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture.  

  10. Ground-water data collected in the Missouri River basin units in Kansas during 1950

    USGS Publications Warehouse

    Berry, Delmar W.

    1951-01-01

    Ground-water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the United States Geological Survey, the State Geological Survey of Kansas,the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.

  11. Long-term, high-resolution confocal time lapse imaging of Arabidopsis cotyledon epidermis during germination.

    PubMed

    Peterson, Kylee M; Torii, Keiko U

    2012-12-31

    Imaging in vivo dynamics of cellular behavior throughout a developmental sequence can be a powerful technique for understanding the mechanics of tissue patterning. During animal development, key cell proliferation and patterning events occur very quickly. For instance, in Caenorhabditis elegans all cell divisions required for the larval body plan are completed within six hours after fertilization, with seven mitotic cycles(1); the sixteen or more mitoses of Drosophila embryogenesis occur in less than 24 hr(2). In contrast, cell divisions during plant development are slow, typically on the order of a day (3,4,5) . This imposes a unique challenge and a need for long-term live imaging for documenting dynamic behaviors of cell division and differentiation events during plant organogenesis. Arabidopsis epidermis is an excellent model system for investigating signaling, cell fate, and development in plants. In the cotyledon, this tissue consists of air- and water-resistant pavement cells interspersed with evenly distributed stomata, valves that open and close to control gas exchange and water loss. Proper spacing of these stomata is critical to their function, and their development follows a sequence of asymmetric division and cell differentiation steps to produce the organized epidermis (Fig. 1). This protocol allows observation of cells and proteins in the epidermis over several days of development. This time frame enables precise documentation of stem-cell divisions and differentiation of epidermal cells, including stomata and epidermal pavement cells. Fluorescent proteins can be fused to proteins of interest to assess their dynamics during cell division and differentiation processes. This technique allows us to understand the localization of a novel protein, POLAR(6), during the proliferation stage of stomatal-lineage cells in the Arabidopsis cotyledon epidermis, where it is expressed in cells preceding asymmetric division events and moves to a characteristic area of the cell cortex shortly before division occurs. Images can be registered and streamlined video easily produced using public domain software to visualize dynamic protein localization and cell types as they change over time.

  12. Negotiation Support Systems for Facilitating International Water Conflicts

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Madani, K.; Rouhani, O. M.

    2011-12-01

    Two decades after the collapse of the Soviet Union, Caspian Sea -the largest inland body of water on earth- continues to be the subject of one of the world's most insurmountable disputes, involving Iran, Russia, and the new sovereign states of Azerbaijan, Kazakhstan, and Turkmenistan. The conflict is over the legal status of this multinational water body, which supplies almost all of the world's black caviar, and holds about 10% and 4% of the world's oil and gas reserves, respectively. Typically, proposed division methods for sharing the Caspian Sea and its valuable resources focus either on the areal shares or on the oil and gas shares of the parties. As such, total gains of littoral states under different division methods have remained unclear. In this study, we have developed the Caspian Sea Negotiation Support System (NSS) to delineate optimal boundaries for sharing the sea. The Caspian Sea NSS facilitates simultaneous consideration of the countries' areal and resource shares from the sea under different sharing methods. The developed model is run under different division scenarios to provide insights into the sensitivity of the countries' gains and locations of nautical boundaries to the proposed division rules and the economic values of the Caspian Sea resources. The results are highly sensitive to the proposed division rules, and there is an indirect relationship between the allocated area and resource shares. The main policy implication of the study is that explicit quantification of the countries' resource and areal gains under any suggested legal regime for governing the Caspian Sea is a precursor the success of the negotiations.

  13. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  14. DEC- Water

    Science.gov Websites

    State Employees [Department of Environmental Conservation / Division of Water / A-Z Quick Links] Search : http://dec.alaska.gov/water.aspx Department of Environmental Conservation Division of Water 410

  15. Ground-water conditions in Utah, spring of 1995

    USGS Publications Warehouse

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  16. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  17. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  18. National Research Program of the Water Resources Division, U.S. Geological Survey, fiscal year 1987

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1988-01-01

    The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems, but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.

  19. National Research Program of the Water Resources Division, U. S. Geological Survey, Fiscal Year 1989

    USGS Publications Warehouse

    Eggers, JoAnn; Friedman, Linda C.

    1989-01-01

    The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.

  20. - Oklahoma Water Resources Center

    Science.gov Websites

    INTERDISCIPLINARY PROGRAMS Environmental Sciences Master of International Agriculture Degree Program OSU Home Professional Development Training (Baton Rouge, LA; 8/5-10) Global Water Security for Agriculture and Natural Oklahoma City Center for Health Sciences Division of Agriculture Institute of Technology Veterinary

  1. Groundwater conditions in Utah, spring of 2015

    USGS Publications Warehouse

    Burden, Carole B.

    2015-01-01

    This is the fifty-second in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2014. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2015.pdf. Groundwater conditions in Utah for calendar year 2013 are reported in Burden and others (2014) and are available online at http://ut.water.usgs.gov/publications/GW2014.pdf.The water-level change maps in this report show the difference between water levels measured in the same well at two distinct times: in the spring of 1985 and the spring of 2015. Throughout the state, many groundwater levels were near their peak in or around 1985 following a multiple-year period of above average precipitation in the early 1980s. Conversely, consecutive years of significant drought have contributed to low groundwater levels in 2015. For these reasons, the difference between 1985 and 2015 groundwater levels may not accurately portray long-term changes in an aquifer. An evaluation of water-level trends should also include consideration of the annual water-level measurement plots provided for each of the major areas of groundwater development in this report.

  2. Ground-water conditions in Utah, spring of 1997

    USGS Publications Warehouse

    Gerner, S.J.; Steiger, J.I.; Sory, J.D.; Burden, Carole B.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1997-01-01

    This is the thirty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep aware of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1996. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  3. Ground-water conditions in Utah, spring of 1998

    USGS Publications Warehouse

    Susong, David D.; Burden, Carole B.; Sory, J.D.; Eacret, Robert J.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1998-01-01

    This is the thirty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1997. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  4. Evaluating the Economic and Social Benefits of Nutrient Reductions in Coastal New England Waters

    EPA Science Inventory

    New England’s coastal social-ecological systems are subject to chronic environmental problems, including water quality degradation. Researchers at EPA’s Office of Research and Development (ORD) Atlantic Ecology Division (AED) are piloting an effort to further understand how reduc...

  5. Conceptual design for the National Water Information System

    USGS Publications Warehouse

    Edwards, Melvin D.; Putnam, Arthur L.; Hutchison, Norman E.

    1986-01-01

    The Water Resources Division of the U.S. Geological Survey began the design and development of a National Water Information System (NWIS) in 1983. The NWIS will replace and integrate the existing data systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information Program, and Water Resources Scientific Information Center. The NWIS has been designed as an interactive, distributed data system. The software system has been designed in a modular manner which integrates existing software functions and allows multiple use of software modules. The data base has been designed as a relational data model that allows integrated storage of the existing water data, water-use data, and water-data indexing information by using a common relational data base management system. The NWIS will be operated on microcomputers located in each of the Water Resources Division's District offices and many of its State, subdistrict, and field offices. The microcomputers will be linked together through a national telecommunication network maintained by the U. S. Geological Survey. The NWIS is scheduled to be placed in operation in 1990.

  6. Water Resources Division Training Bulletin, July 1973 Through June 1974.

    ERIC Educational Resources Information Center

    Abrams, R. O.; Brown, D. W.

    This bulletin provides information about available training as well as information to assist supervisors and training officers in developing a coordinated, efficient training program in hydrology and other subjects related to water-resources investigations. Most of the training is presented at the Center at Lakewood, Colorado. Information is given…

  7. Research at the U.S. EPA’s Ground Water and Ecosystems Protection Division

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development (ORD) conducts leading-edge research and fosters the sound use of science and technology to fulfill the Agency's mission to protect human health and safeguard the natural environment. The mission of the Ground Water and Ecosystem...

  8. Water resources in the area of Snyderville Basin and Park City in Summit County, Utah

    USGS Publications Warehouse

    Susong, David D.; Brooks, Lynette E.; Mason, James L.

    1998-01-01

    Ground water is the primary source of water for residents living in the area of Synderville Basin and Park City in Summit County, Utah. Rapid residential and commercial development are placing increased demands on the ground-water resources in the area and increased ground-water withdrawals could affect appropriated surface-water resources. The quantity and quality of water in the area were assessed during 1993-97 in a study done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights; Park City; Summit County; and the Weber Basin Water Conservancy District. This fact sheet presents a synopsis of the eports prepared for that study. Data collected during the 1994 and 1995 water years are presented in Downhour and Brooks (1996). A water year extends from October through September rather than January through December of a calendar year. Streamflow and surface-water quality; ground- water recharge, movement, discharge, and quality; water budgets; and snowmelt simulations are described in Brooks, Mason, and Susong (1998). The purpose of the study was to provide the Utah Division of Water Rights with data to assist them in- making water management decisions.

  9. National Water Model: Providing the Nation with Actionable Water Intelligence

    NASA Astrophysics Data System (ADS)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  10. Developing a state water plan: Ground-water conditions in Utah, spring of 1978

    USGS Publications Warehouse

    Gates, Joseph S.; Jibson, W.N.; Herbert, L.R.; Mower, R.W.; Razem, A.C.; Cordova, R.M.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; DeGrand, M.J.; Sandberg, G.W.

    1978-01-01

    This report is the fifteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others (see References, p. 13), contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1977. Water-level fluctuations, however, are described for the period spring 1977 to spring 1978. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  11. Developing a state water plan: Ground-water conditions in Utah, spring of 1979

    USGS Publications Warehouse

    Price, Don; Jibson, W.N.; Contratto, P. Kay; Mower, R.W.; Steiger, Judy I.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; Neff, L.J.; Sandberg, G.W.; Herbert, L.R.

    1979-01-01

    This report is the sixteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1978. Water-level fluctuations, however, are described for the period spring 1978 to spring 1979. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  12. Ground-water conditions in Utah, spring of 1994

    USGS Publications Warehouse

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  13. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho

    USGS Publications Warehouse

    Waddell, K.M.; Price, Don

    1972-01-01

    The United States Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Water Rights, began a reconnaissance in 1967 to obtain essential water-quality information for the Bear River basin. The reconnaissance was directed toward defining the chemical quality of the basin’s surface waters, including suitability for specific uses, geology, and general basin hydrology. Emphasis was given to those areas where water-development projects are proposed or being considered.

  14. Ground water supplies of the Camden area, New Jersey

    USGS Publications Warehouse

    Thompson, David G.

    1932-01-01

    The observations on which the report is based were made in the period from July 1, 1923, to the date of writing the report, in the early part of 1928.1 The continuing observations have been confined essentially to the well fields of the Camden Water Department. Certain data in regard to other well fields within a radius of 10 miles of Camden, collected by F. Clark Rule under the direction of the writer in the summer of 1923, and other data obtained from the files of the Department of Conservation and Development are also included in so far as they bear on the problems under consideration. The City of Camden has cooperated heartily through C. P. Sherwood, formerly director of the Department of Streets and Public Improvements, his successor, W. D. Sayrs, Jr., James H. Long, maintenance engineer of the Water Department, and David B. Owen, chief engineer of the Morris pumping station. Much valuable information has been furnished by the Layne-New York Co., which, during the period of the investigation, replaced nearly all the old-type wells of the Camden system with those of the most modern type. The investigation was under the immediate supervision of H. T. Critchlow, then chief of the Division of Waters of the Department of Conservation and Development, and O.E. Meinzer, geologist in charge of the Division of Ground Water of the United States Geological Survey. The late Dr. M. W. Twitchell, assistant State geologist, was consulted on phases relating to the stratigraphy. A number of analyses of water have been made by C. S. Howard, of the United States Geological Survey, and advice in regard to problems arising from the mineral character of the water has been given by W. D. Collins, chemist in charge of the Division of Quality of Water of the same organization. Thanks are also due to those of the other water departments and private well owners in the area who have furnished information.

  15. Commercial Maritime Industry: Updated Information on Federal Assessments. Testimony

    DOT National Transportation Integrated Search

    1999-11-03

    This is the Statement of John H. Anderson, Jr., Director, Transportation Issues, Resources, Community, and Economic Development Division, Before the Subcommittee on Water Resources and Environment, Committee on Transportation and Infrastructure, Hous...

  16. NUTRIENT AND HABITAT INDICATORS FOR CRITERIA DEVELOPMENT IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    EPA's Mid-Continent Ecology Division is testing indicators and establishing stressor - response relationships to support development of nutrient and habitat criteria for Great Lakes coastal wetlands. Our focus is on water quality changes, food web shifts, and vegetation loss as ...

  17. FACILITATING PUBLIC ACCESS TO GOVERNMENT ENVIRONMENTAL MONITORING DATA: THE LIVING EVERGLADES WEB SITE

    EPA Science Inventory

    The Technology Transfer and Support Division of the USEPA, Office of Research and Development's (ORD) National Risk Management Research Laboratory has developed this handbook, in conjunction with the South Florida Water Management District (SFWMD), to document The Living Everglad...

  18. U.S. Geological Survey water resources activities in Florida, 1985-86

    USGS Publications Warehouse

    Glenn, M. E.

    1986-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1985-86. These activities are part of the Federal program of appraising the Nation 's water resources. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water resource investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be based. (Lantz-PTT)

  19. National Interest Shown in Watershed Mapping Tool

    EPA Pesticide Factsheets

    The State of Maryland is able to identify prime locations for watershed restoration and preservation using an interactive mapping tool developed by a partnership of agencies led by EPA’s Mid-Atlantic Water Protection Division.

  20. DEVELOPMENT OF NITROGEN LOADING - RESPONSE RELATIONSHIPS FOR ESTUARINE WATERS USING AN EMPIRICAL COMPARATIVE SYSTEMS APPROACH

    EPA Science Inventory

    The U.S. EPA Atlantic Ecology Division (AED) has initiated a multi-year research program to develop empirical nitrogen load-response models for embayments in southern New England. This is part of a multi-regional effort to develop nutrient load-response models for the Gulf of Mex...

  1. RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

  2. Water immersion facility general description, spacecraft design division, crew station branch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Water Immersion Facility provides an accurate, safe, neutral buoyancy simulation of zero gravity conditions for development of equipment and procedures, and the training of crews. A detailed description is given of some of the following systems: (1) water tank and support equipment; (2) communications systems; (3) environmental control and liquid cooled garment system (EcS/LCG); (4) closed circuit television system; and (5) medical support system.

  3. REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE

    EPA Science Inventory

    REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE.
    JC Rockett, JC Luft, JB Garges and DJ Dix. Reproductive Toxicology Division, USEPA, RTP, NC, USA.
    Sponsor: G Klinefelter
    The development of wate...

  4. Hydrologic reconnaissance of the southern Uinta basin, Utah and Colorado

    USGS Publications Warehouse

    Price, Don; Miller, Louise L.

    1975-01-01

    This report summarizes the findings of an investigation of the water resources of the southern Uinta Basin conducted by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. The purpose of the investigation was to evaluate the water resources of the southern Uinta Basin on a reconnaissance level and to provide information to assist in future planning and development of the water and related land resources.

  5. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Price, Don; Waddell, K.M.

    1969-01-01

    This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  6. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  7. Activities of the Water Resources Division, California District, in the 1987 fiscal year

    USGS Publications Warehouse

    Griner, C.A.; Anttila, P.W.

    1988-01-01

    The mission of the Water Resources Division is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation 's water resources for the overall benefit of the people of the United States. Several of the most relevant and visible studies being conducted by the California District deal with selenium toxicity in the western San Joaquin Valley; groundwater export from the Owens Valley, coupled with vegetation survivability studies; hydrodynamics variability in San Francisco Bay; reclaimed water use; seawater intrusion in the Santa Barbara area; and involvement in the water-quality standard/water-rights hearing for the San Francisco Bay/Delta. Thirty-nine project summaries are provided. Water Resources Division basic mission and program, California District organization and funding, and 1987 water conditions are also summarized. (Lantz-PTT)

  8. PHOTOCOPY OF DRAWING NO. F860, DIVISION AVENUE STATION, EAST ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF DRAWING NO. F-860, DIVISION AVENUE STATION, EAST ELEVATION AND DETAILS, DRAWN BY W.H.C., MAR. 22, 1915. COURTESY OF THE DEPARTMENT OF PUBLIC UTILITIES, DIVISION OF WATER, CITY OF CLEVELAND. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  9. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  10. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2015

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management ...

  11. FILTERED WATER RESERVOIR, LOOKING NORTHWEST. A CORNER OF THE NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FILTERED WATER RESERVOIR, LOOKING NORTHWEST. A CORNER OF THE NEW PUMPING STATION IS VISIBLE AT RIGHT. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  12. Fluoride concentration in drinking water samples in Fiji.

    PubMed

    Prasad, Neha; Pushpaangaeli, Bernadette; Ram, Anumala; Maimanuku, Leenu

    2018-04-26

    The main aim of this study was to determine the content of fluoride in drinking water from sources within the sampling areas for the National Oral Health Survey (NOHS) 2011 from the Central, Northern, Western and Eastern Divisions in the Fiji Islands. Drinking water samples were collected from taps, a waterfall, wells, creeks, streams, springs, rivers, boreholes and rain water tanks in a diverse range of rural and urban areas across the Fiji Islands. A total of 223 areas were sampled between December 2014 and June 2015. Samples were analysed for fluoride using a colorimetric assay with the Zirconyl-SPADNS Reagent. The samples were pre-treated with sodium arsenite solution prior to analysis to eliminate interference from chlorine. Measured fluoride concentrations ranged from 0.01 to 0.35 ppm, with a mean concentration across all samples of 0.03 + 0.04 ppm. No samples achieved the optimal level for caries prevention (0.7 ppm). The Western Division had the highest fluoride levels compared to the other Divisions. The highest single fluoride concentration was found in Valase. The drinking water for this rural area located in the Western Division is from a borehole. The lowest concentrations of fluoride were in reticulated water samples from rural areas in the Central Division, which were consistently less than those recorded in the Northern, Eastern and Western Divisions. All samples had fluoride concentrations below the optimum level required to prevent dental caries. Implications for public health: This research forms part of the objectives of the 2011 National Oral Health Survey in Fiji. At present, Fiji lacks water fluoridation and therefore a baseline of the fluoride content in drinking water supplies is essential before water fluoridation is implemented. The results from this study would be beneficial in designing caries-preventive strategies through water fluoridation and for comparing those strategies with caries prevalence overtime. © 2018 The Authors.

  13. Summary of technical testimony in the Colorado Water Division 1 Trial

    Treesearch

    Nancy (Tech. Coord.) Gordon

    1995-01-01

    The Colorado Water Division 1 Water Rights Trial was one of the most significant federal reserved instream flow water rights cases to occur since the Supreme Court of the United States ruled in the case of United States v. New Mexico in 1978. This document summarize the large amount of technical data and information pertaining to the disciplines of geomorphology,...

  14. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah

    USGS Publications Warehouse

    Hood, J.W.; Price, Don

    1970-01-01

    This report is the seventh in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Grouse Creek valley, to provide an evaluation of the potential water-resource development of the valley, and to identify studies that would help provide a better understanding of the valley's water supply

  15. Ground Water Technical Support Center (GWTSC) Annual Report FY 2012: October 2011 – September 2012

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  16. Surface-water quality-assurance plan for the Wisconsin district of the U. S. Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Garn, H.S.

    2002-01-01

    This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin District of the U.S. Geological Survey, Water Resources Division, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of District personnel in following these policies and procedures including those related to safety and training are presented.

  17. Hydrologic and climatologic data, 1968, Salt Lake County, Utah

    USGS Publications Warehouse

    1969-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological SurveyThe investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 and 15 contain data collected through 1967. This release contains climatologic and surface-water data for the 1968 water year (October 1967 to September 1968) and ground-water data collected during the 1968 calendar year. This is the final annual release of basic data for this investigation. Interpretive reports summarizing the results are in preparation. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  18. Hydrologic and climatologic data, 1967, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1968-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological Survey.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 contain data collected through 1966. This release contains climatologic and surfacewater data for the 1967 water year (October 1966 to September 1967) and ground-water data collected during the 1967 calendar year. A similar annual release will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  19. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  20. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah

    USGS Publications Warehouse

    Bolke, E.L.; Price, Don

    1972-01-01

    This report is the tenth in a series of reports prepared by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, that describe the water resources of selected areas in northwestern Utah. The purpose of this report is to present available hydrologic data for the Blue Creek Valley area and to provide a quantitative evaluation of the potential water-resources development of the area.

  1. Ground-water reconnaissance in the Kittery-Eliot-South Berwick area, Maine, and the Dover-Rollinsford-Somersworth area, New Hampshire

    USGS Publications Warehouse

    Roberts, Claude M.

    1945-01-01

    Through Commander K. M. Clark of the Navy Department, Bureau of Yards and Docks, Office of the Superintending Civil Engineer, Area 1, Boston Massachusetts, the Ground Water Division of the U.S. Geological Survey was requested to make a brief reconnaissance in the vicinity of Portsmouth, New Hampshire, to determine the possibilities of developing a ground-water supply for utilization at the Portsmouth Navy Yard.

  2. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  3. 33 CFR 211.7 - Rights which may be granted by Division and District Engineers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Division and District Engineers. 211.7 Section 211.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION... be granted by Division and District Engineers. (a) Authority of Division and District Engineers...

  4. Autonomous model protocell division driven by molecular replication.

    PubMed

    Taylor, J W; Eghtesadi, S A; Points, L J; Liu, T; Cronin, L

    2017-08-10

    The coupling of compartmentalisation with molecular replication is thought to be crucial for the emergence of the first evolvable chemical systems. Minimal artificial replicators have been designed based on molecular recognition, inspired by the template copying of DNA, but none yet have been coupled to compartmentalisation. Here, we present an oil-in-water droplet system comprising an amphiphilic imine dissolved in chloroform that catalyses its own formation by bringing together a hydrophilic and a hydrophobic precursor, which leads to repeated droplet division. We demonstrate that the presence of the amphiphilic replicator, by lowering the interfacial tension between droplets of the reaction mixture and the aqueous phase, causes them to divide. Periodic sampling by a droplet-robot demonstrates that the extent of fission is increased as the reaction progresses, producing more compartments with increased self-replication. This bridges a divide, showing how replication at the molecular level can be used to drive macroscale droplet fission.Coupling compartmentalisation and molecular replication is essential for the development of evolving chemical systems. Here the authors show an oil-in-water droplet containing a self-replicating amphiphilic imine that can undergo repeated droplet division.

  5. Water footprint assessment of oil palm in Malaysia: A preliminary study

    NASA Astrophysics Data System (ADS)

    Muhammad-Muaz, A.; Marlia, M. H.

    2014-09-01

    This study evaluates the water footprint of growing oil palm in Malaysia based on the water footprint method. The crop water use was determined using the CROPWAT 8.0 model developed by the Land and Water Development Division of FAO. The total water footprint for growing oil palm is 243 m3/ton. The result of this study showed that the green water footprint is 1.5 orders of magnitude larger compared to the blue water footprint. Besides providing updated status of total water used from the oil palm plantation, our result also shows that this baseline information helps in identifying which areas need to be conserved and what type of recommendation that should be drawn. As the results of the water footprint can differ between locations, the inclusion of local water stress index should be considered in the calculation of water footprint.

  6. Hydropower and Environmental Resource Assessment (HERA): a computational tool for the assessment of the hydropower potential of watersheds considering engineering and socio-environmental aspects.

    NASA Astrophysics Data System (ADS)

    Martins, T. M.; Kelman, R.; Metello, M.; Ciarlini, A.; Granville, A. C.; Hespanhol, P.; Castro, T. L.; Gottin, V. M.; Pereira, M. V. F.

    2015-12-01

    The hydroelectric potential of a river is proportional to its head and water flows. Selecting the best development alternative for Greenfield projects watersheds is a difficult task, since it must balance demands for infrastructure, especially in the developing world where a large potential remains unexplored, with environmental conservation. Discussions usually diverge into antagonistic views, as in recent projects in the Amazon forest, for example. This motivates the construction of a computational tool that will support a more qualified debate regarding development/conservation options. HERA provides the optimal head division partition of a river considering technical, economic and environmental aspects. HERA has three main components: (i) pre-processing GIS of topographic and hydrologic data; (ii) automatic engineering and equipment design and budget estimation for candidate projects; (iii) translation of division-partition problem into a mathematical programming model. By integrating an automatic calculation with geoprocessing tools, cloud computation and optimization techniques, HERA makes it possible countless head partition division alternatives to be intrinsically compared - a great advantage with respect to traditional field surveys followed by engineering design methods. Based on optimization techniques, HERA determines which hydro plants should be built, including location, design, technical data (e.g. water head, reservoir area and volume, engineering design (dam, spillways, etc.) and costs). The results can be visualized in the HERA interface, exported to GIS software, Google Earth or CAD systems. HERA has a global scope of application since the main input data area a Digital Terrain Model and water inflows at gauging stations. The objective is to contribute to an increased rationality of decisions by presenting to the stakeholders a clear and quantitative view of the alternatives, their opportunities and threats.

  7. A socio-hydrological comparative assessment explaining regional variances in suicide rate amongst farmers in Maharashtra, India

    NASA Astrophysics Data System (ADS)

    den Besten, Nadja I.; Pande, Saket; Savenije, Hubert H. G.

    2016-05-01

    Maharashtra is one of the states in India that has witnessed one of the highest rates of farmer suicides as proportion of total number of suicides. Most of the farmer suicides in Maharashtra are from semi-arid divisions such as Marathwada where cotton has been historically grown. Other dominant crops produced include cereals, pulses, oilseeds and sugarcane. Cotton (fibers), oilseeds and sugarcane providing highest value addition per unit cultivated area and cereals and pulses the least. Hence it is not surprising that smallholders take risks growing high value crops without "visualising" the risks it entails such as those corresponding to price and weather shocks.We deploy recently developed smallholder socio-hydrology modelling framework to understand the underlying dynamics of the crisis. It couples the dynamics of six main variables that are most relevant at the scale of a smallholder: water storage capacity (root zone storage and other ways of water storage), capital, livestock, soil fertility and fodder biomass. The hydroclimatic variability is accounted for at sub-annual scale and influences the socio-hydrology at annual scale. The model incorporates rule-based adaptation mechanisms (e.g., adjusting expenditures on food and fertilizers, selling livestocks) of smallholders when they face adverse conditions, such as high variability in rainfall or in agricultural prices. The model is applied to two adjoining divisions of Maharashtra: Marathwada and Desh. The former is the division with relatively higher farmer suicide rates than the latter. Diverse spatial data sets of precipitation, potential evaporation, soil, agricultural census based farm inputs, cropping pattern and prices are used to understand the dynamics of small farmers in these divisions, and to attribute farmer distress rates to soil types, hydroclimatic variability and crops grown.Comparative socio-hydrologic assessment across the two regions confirms existing narratives: low (soil) water storage capacities, no irrigation and poor access to alternative sources of incomes are to blame for the crisis, suggesting that smart indigenous solutions such as rain-water harvesting and better integration of smallholder systems to efficient agricultural supply chains are needed to tackle this development challenge.

  8. INHIBITION OF NEURAL CREST CELL MIGRATION BY THE WATER DISINFECTION BYPRODUCTS DICHLORO-, DIBROMO-, AND BROMOCHLORO-ACETIC ACID.

    EPA Science Inventory

    INHIBITION OF NEURAL CREST CELL MIGRATION BY THE WATER DISINFECTION BYPRODUCTS DICHLORO-, DIBROMO- AND BROMOCHLORO-ACETIC ACID. JE Andrews, H Nichols, J Schmid 1, and ES Hunter. Reproductive Toxicology Division, 1Research Support Division, NHEERL, USEPA, RTP, NC, USA.

    ...

  9. Water levels prior to January 1, 1954 in observation wells, in Nebraska: part 1. Adams through Howard Counties

    USGS Publications Warehouse

    Keech, C.F.; Case, R.L.

    1954-01-01

    During the fall of 1945, as part of the program for the development of the resources of the Missouri River basin, the United States Geological Survey began a new series of groundwater investigation in Nebraska.  Those studies were coordinated with the already existing program of ground-water studies that was begun in 1930 by the U.S. Geological Survey in cooperation with the Conservation and Survey Division of the University of Nebraska. Most of the water-level measurements in this report were obtained and compiled as part of the Missouri Basin Development Program.

  10. National Program for Inspection of Non-Federal Dams. Knox Mill Dam (ME 00276), Megunticook River Basin, Camden, Maine. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    been furnished the owner, Camden Water & Power Co., 33 Mechanic Street, ..... a ine 0,-43. Co-ies of this report will be made available to the public...gn Branch Engineering Division SAUL CO ER, Member Chief, Water Control Branch Engineering Division APPROVAL RECOMMENDED: JOE B. FRYAR Chief...Camden Water & Power Co. 33 Mechanic Street Camden, Maine 04843 Tne Camden Water and Power Company is an affiliate of Knox Woolen Mills Company. f

  11. 78 FR 52168 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ...); and Sections 504 and 505 of the Energy and Water Development Appropriations Act, 2012 (Division B of.... Title, Associated Form and OMB Number: Representations to Implement Appropriation Act Provisions on... three Fiscal Year (FY) 2012 appropriations acts that make funds available to DoD Components for...

  12. 78 FR 25704 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ...); and Sections 504 and 505 of the Energy and Water Development Appropriations Act, 2012 (Division B of..., Associated Form, and OMB Number: Representations to Implement Appropriation Act Provisions on Felony... provisions of three Fiscal Year (FY) 2012 appropriations acts that make funds available to DoD Components for...

  13. DEVELOPING TOOLS TO ASSESS THE ECOLOGICAL CONDITION OF THE NATION'S AQUATIC SYSTEMS

    EPA Science Inventory

    The Aquatic Monitoring and Bioassement Branch (AMBB) at the Environmental Protection Agency's Western Ecology Division leads ORD's research on monitoring freshwater aquatic systems. This work is in response to the Clean Water Act (CWA, Section 305b) that requires EPA to report bi...

  14. Differences in cytokinin control on cellular dynamics of zucchini cotyledons cultivated in two experimental systems.

    PubMed

    Stoynova-Bakalova, E; Petrov, P; Gigova, L; Ivanova, N

    2011-01-01

    The effect of endogenous cytokinins on the pattern of palisade cell division post-germination does not depend on the conditions of cotyledon development -in planta (attached to seedlings) or in vitro (isolated from dry zucchini seeds and cultured on water). In cotyledons originating from 4-day-old seedlings (experimental system 1), exogenous cytokinin temporarily (in the first 2 day of cultivation) enhanced post-mitotic cell enlargement of palisade cells, mainly due to enhanced water uptake and use of cell storage compounds, all of which lead to cotyledon senescence. Cytokinin is not able to resume the completed palisade cell division on day 5. As a result, the number of cells and the final areas of treated and control cotyledons are quite similar. By contrast, the effects of cytokinin on cotyledons isolated from dry seeds (experimental system 2) are better expressed, promoting an increase in number of palisade cells accompanied by additional cotyledon area enlargement. However, the prolonged post-mitotic cell expansion in control cotyledons compensates for the reduced speed of cell growth and division activity and decreases differences in final cotyledon area between treatments. The results define cell division as the primary target of cytokinin stimulation in cotyledon tissues competent for division, and determine the temporal patterns of palisade cell cycling related to cotyledon age. This knowledge permits a better choice of experimental system to study effects on cell proliferation and cell growth, as well as cell enlargement and senescence-related events using physiologically homogeneous material. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  16. U.S. Army Corps of Engineers Recreation Study. A Plan Prepared for the Assistant Secretary of the Army (Civil Works). Volume 2. Appendices

    DTIC Science & Technology

    1990-09-01

    TELEPHONE (Include Area Code) 22c OFFICE SYMBOL WILLIAM J. HANSEN (703) 355-3089 CEWRC-IWR-R DD FORM 1473, 84 MAR 83 APR edition may be used until... William J. Hansen of the Institute for Water Resources was the Technical Study Manager. Mr. L. Leigh Skaggs of the Institute for Water Resources...Mr. William Thornton, Missouri River Division, Mr. Bruce Hardie, Southwestern Division and Mr. Allen Summers, North Pacific Division. U.S. ARMY

  17. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  18. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  19. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  20. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  1. USE OF DRILLING FLUIDS IN MONITORING WELL NETWORK INSTALLATION: LANL AND OPEN DISCUSSION

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to provide a technical analysis of the impacts of well drilling practices implemented at the Los Alamos National Laboratory (LANL) as part of the development of their grou...

  2. Geography. Senior Division.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    An integrated secondary curriculum is outlined in this particular guide for Canadian schools. The grade 11 World Geography course is intended to help students place geographic concepts developed in the first ten years of school into a systematic framework. Here conservation of all resources is an important topic: water resources and pollution,…

  3. Arizona watershed framework in the Verde River watershed

    Treesearch

    Ren Northrup

    2000-01-01

    The Arizona Department of Environmental Quality, Water Quality Division drafted a six-step approach to guide its staff and local participants in developing and implementing watershed management plans. From January 1999 through June 2000, the draft Arizona Statewide Watershed Framework will be tested in Arizona's Verde River watershed. This concept proofing...

  4. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  5. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  6. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  7. 33 CFR 211.17 - Authority of Division Engineers, Corps of Engineers to settle claims.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Authority of Division Engineers, Corps of Engineers to settle claims. 211.17 Section 211.17 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN...

  8. Water-Based Coating Simplifies Circuit Board Manufacturing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.

  9. Ground water in Tooele Valley, Utah

    USGS Publications Warehouse

    Gates, J.S.; Keller, O.A.

    1970-01-01

    This short report was written by condensing parts of a technical report on the ground water in Tooele Valley, which was prepared as part of a cooperative program between the Utah Department of Natural Resources, Division of Water Rights, and the U. S. Geological Survey to study water in Utah. If you would like to read the more detailed technical report, write for a copy of the Utah State Engineer Technical Publication 12, “Reevaluation of the ground-water resources of Tooele Valley, Utah” by J. S. Gates. Copies can be obtained free of charge from the Division of Water Rights, State Capitol, Salt Lake City, Utah 84114.

  10. OFC: People, and a drum of know-how. [Oil Field Chemicals division of Exxon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    The Oil Field Chemicals (OFC) division of Exxon Chemical USA story is one more of people than products, more one of selling through experience than selling through persuasion. OFC sales representatives direct teams dedicated to solving problems in the oil field, pipelines, refineries, and petrochemical plants. The major enemy in oil production is water. When a reservoir is first produced the oil is fairly dry. In time, water comes and with it a host of problems: stable emulsions, corrosion that eats at pipes and equipment, scaling, and bacterial growth. This brings into play the know-how of OFC people and theirmore » ability to diagnose the problem and make the right recommendation. If their field evaluations are inconclusive they will call for help from technical specialists in the Chemical Specialties Technology division for specific situations. These specialists travel to the site, run tests, then quickly develop alternatives. Depending on the solution, the Houston Chemical Plant may be called on to manufacture blends in commercial quantities in a remarkably short period of time. How some of these field problems were solved are described.« less

  11. Index to limnological data for southcentral Alaska Lakes

    USGS Publications Warehouse

    Maurer, M.A.; Woods, P.F.

    1987-01-01

    South-central Alaska lakes are a valuable natural resource and provide a variety of recreational opportunities to the public. Lakeside development has increased significantly in the past 10 years and several south-central Alaskan lakes have documented pollution problems. Cultural eutrophication, the process by which man-induced nutrient loading to a lake results in large increases in biological productivity, can also produce noxious algae blooms, dissolved oxygen depletion at depth, reduced water transparency, and fish kills. The potential for cultural eutrophication of south-central Alaska lakes prompted the U.S. Geological Survey (USGS) Water Resources Division and the Alaska Department of Natural Resources-Division of Geological and Geophysical Surveys (ADGGS) to provide lake researchers, managers, and the public with this index of published historical and current limnological references. The purpose of the index is to provide reference to the data which can be used to identify and monitor cultural eutrophication of south-central Alaska lakes. (Lantz-PTT)

  12. 16. Photocopy of drawing # F1103 in files of Utilities ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of drawing # F-1103 in files of Utilities Engineering Department in Cleveland showing water flow diagram in the Division Avenue Plant. Drawing dated March 11, 1921. Flow is still in existence. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  13. Water Resources Division training catalog

    USGS Publications Warehouse

    Hotchkiss, W.R.; Foxhoven, L.A.

    1984-01-01

    The National Training Center provides technical and management sessions nesessary for the conductance of the U.S. Geological Survey 's training programs. This catalog describes the facilities and staff at the Lakewood Training Center and describes Water Resources Division training courses available through the center. In addition, the catalog describes the procedures for gaining admission, formulas for calculating fees, and discussion of course evaluations. (USGS)

  14. Publications of the U.S. Geological Survey, Water Resources Division, for Puerto Rico and the U.S. Virgin Islands, 1899-1992

    USGS Publications Warehouse

    Guzman-Otero, Ruth I.

    1994-01-01

    A list of publications of the water-resources investigations conducted by the U.S. Geological Survey, Water Resources Division, for Puerto Rico and the U.S. Virgin Islands was compiled. The report includes publications regarding water-resources information in Puerto Rico and the U.S. Virgin Islands released from 1899 to 1992. The publications are grouped into four categories: by author(s), by specific locations in Puerto Rico and the U.S. Virgin Islands, by discipline of interest (ground water. surface water, water quality, floods and climate, geology, ground-water modeling, water-level contour maps, sediment, and water use), and by series or type of publication. Also a list of approved reports pending publication is included.

  15. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.

  16. Hydrology and physiography of the Salton Sea, California

    USGS Publications Warehouse

    Littlefield, W.M.

    1966-01-01

    The increased utilization of the Salton Sea and its shore for recreation, the development of residential complexes on its shore, and the encroachment of the sea into these developments have emphasized the need for a concise summary of hydrologic and physiographic information concerning the area. This report attempts to fill that need.The report was authorized by a cooperative agreement between the U.S. Geological Survey and the California Department of Water Resources. It was prepared under the general direction of Walter Hofmann, district chief of the Water Resources Division of the Geological Survey, at Menlo Park. 

  17. Evaluation of Wetland Hydrology in Formerly Irrigated Areas

    DTIC Science & Technology

    2017-07-01

    Laboratory 1987). The USACE requires defensible documentation identifying the presence or absence of wetland conditions when agricultural lands...irrigated agricultural areas (USACE 2008). In 2012, the USACE South Pacific Division (SPD) developed guidelines encouraging landowners to...geographic range; regulatory status; creation in agricultural landscapes; wildlife habitat; threatened and endangered species; water quality; hydrology

  18. 78 FR 71639 - Final Environmental Impact Statement for the Soboba Band of Luiseno Indians' Proposed 534-Acre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Action also includes the development of a 300-room hotel, casino, restaurants, retail establishments, a... addressed within the FEIS included land resources, water resources, air quality, biological resources..., Chief of the Division of Environmental, Cultural Resources Management and Safety, at the address listed...

  19. 76 FR 38122 - Intent To Prepare a Draft Environmental Impact Statement for the Currituck Sound Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... to develop and evaluate alternatives to restore and enhance ecosystem resources in a holistic... Management Act and the Endangered Species Act; and with the North Carolina State Historic Preservation Office... Section 401 of the Clean Water Act, and with the North Carolina Division of Coastal Management to...

  20. Readying Community Water Fluoridation Advocates through Training, Surveillance, and Empowerment.

    PubMed

    Veschusio, C; Jones, M K; Mercer, J; Martin, A B

    2018-05-30

    This paper describes the Community Water Fluoridation Advocacy Training Project that was designed to develop networks of community water fluoridation advocates in rural communities. The South Carolina (SC) Department of Health and Environmental Control Division of Oral Health staff and the SC Dental Association were responsible for developing and facilitating the training sessions for key policy influencers, which included medical and dental providers, early childhood educators, and water system operators and managers. Findings from the post-training survey indicate that participants increased their knowledge and skills to discuss the impact of water fluoridation on the dental health of community residents. Participants identified a need for online access to water fluoridation education and advocacy materials. Dental public health competencies illustrated: communication and collaboration with groups and individuals, and advocate, implement and evaluate public health policy, legislation and regulations. Copyright© 2018 Dennis Barber Ltd.

  1. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  2. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho

    USGS Publications Warehouse

    Bolke, E.L.; Price, Don

    1969-01-01

    This report is the fifth in a series of reports prepared by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, that describe the water resources of selected basins in western Utah. Previously published reports in this series are listed on page 35 and the areas covered by them are shown in figure 1. The purpose of this report is to present available hydrologic data on the Utah part of Curlew Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  3. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes.

    PubMed

    Zhou, Dongjie; Shen, Xinghui; Gu, Yanli; Zhang, Na; Li, Tong; Wu, Xi; Lei, Lei

    2014-06-21

    Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell-like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each "blastomere" of the 2-cell-like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each "blastomere" and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI.

  4. River Ice Data Instrumentation

    DTIC Science & Technology

    1997-06-01

    transmission and storage of data. Fi- nally, recommendations are made for further work in the field of ice data collection. North Atlantic \\N...Missouri River Division (MRD) Kansas City Omaha MRK MRO 7 32 20 11 North Atlantic Division (NAD) Baltimore New York Norfolk Philadelphia... Western 1 r~ T T Ice Thickness U Water Temperature < > Air Temperature i ► Discharge < | Water Stage < [ Ice Areal Coverage a Ice

  5. The ecohealth assessment and ecological restoration division of urban water system in Beijing

    USGS Publications Warehouse

    Liu, J.; Ma, M.; Zhang, F.; Yang, Z.; Domagalski, Joseph L.

    2009-01-01

    Evaluating six main rivers and six lakes in Beihuan water system (BWS) and diagnosing the limiting factors of eco-health were conducted for the ecohealth assessment and ecological restoration division of urban water system (UWS) for Beijing. The results indicated that Jingmi River and Nanchang River were in a healthy state, the degree of membership to unhealthy were 0.358, 0.392, respectively; while Yongding River, Beihucheng River, Liangma River, Tongzi River and six lakes were in an unhealthy state, their degree of membership to unhealthy were between 0.459 and 0.927. The order of that was Liangma > Beihucheng > Tongzi > Yongding > six lakes > Jingmi > Nanchang, in which Liangma Rivers of that was over 0.8. The problems of Rivers and lakes in BWS are different. Jingmi River and Nanchang River were ecotype limiting; Yongding River, Tongzi River and six lakes were water quality and ecotype limiting. Beihucheng River and Liangma River were water quantity, water quality and ecotype limiting. BWS could be divided into 3 restoration divisions, pollution control division including Yongding River, Tongzi River and six lakes; Jingmi River and Nanchang River were ecological restoration zone, while Beihucheng River and Liangma River were in comprehensive improvement zone. Restoration potentiality of Jingmi River and Nanchang River were higher, and Liangma River was hardest to restore. The results suggest a new idea to evaluate the impact of human and environmental factors on UWS. ?? Springer Science+Business Media, LLC 2009.

  6. Mercury Project

    NASA Image and Video Library

    1958-06-24

    Testing of Mercury Capsule Shape A by the Hydrodynamics Division of Langley. Joseph Shortal wrote (vol. 3, p. 19): The Hydrodynamics Division provided assistance in determining landing loads. In this connection, after PARD engineers had unofficially approached that division to make some water impact tests with the boilerplate capsule, J.B. Parkinson, Hydrodynamics Chief visited Shortal to find out if the request had his support. Finding out that it did, Parkinson said, Its your capsule. If you want us to drop it in the water, we will do it. From Shortal (Vol. 3, p. 16): The basic design of the capsule was made by M.A. Faget and his coworkers at PARD during the winter of 1957-1958. It was natural, then, that extensive use was made of the facilities at Wallops during the development of the spacecraft. The tests at Wallops consisted of 26 full-size capsules, either launched from the ground by rocket power or dropped from airplanes at high altitude and 28 scaled models, either rocket boosted or released from balloons. Emphasis in the Wallops program was on dynamic stability and aerodynamic heating of the capsule, and effectiveness of the pilot-escape and parachute-recovery systems. The biggest part of the Wallops program was the series of full-size capsules, rocket launched with the Little Joe booster, developed especially for Mercury. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  7. U.S. Geological Survey National Computer Technology Meeting; Program and abstracts, May 7-11, 1990

    USGS Publications Warehouse

    Balthrop, B. H.; Baker, E.G.

    1990-01-01

    Computer-related information from all Divisions of the U.S. Geological Survey are discussed in this compilation of abstracts. Some of the topics addressed are system administration; distributed information systems and data bases, both current (1990) and proposed; hydrologic applications; national water information systems; geographic information systems applications and techniques. The report contains some of the abstracts that were presented at the National Computer Technology Meeting that was held in May 1990. The meeting was sponsored by the Water Resources Division and was attended by more than 200 technical and managerial personnel representing all the Divisions of the U.S. Geological Survey. (USGS)

  8. Ground-water data collected in the Missouri River Basin units in Kansas during 1953

    USGS Publications Warehouse

    Mason, B.J.

    1954-01-01

    Ground-water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the Missouri River basin have been coordinated with the cooperative program of ground water studies which were already being made in Kansas by the U. S. Geological Survey, the State Geological Survey of Kansas, the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.Areas in which ground-water data have been and are being collected are the following: Almena unit in Norton and Phillips Counties; Bostwick unit in Jewell, Republic, and Cloud Counties; Cedar Bluff unit in Ellis, Rush, and Trego Counties; Glen Elder unit in Mitchell County; Kanopolis unit in Ellsworth, McPherson, and Saline Counties; Kirwin unit in Phillips, Smiths and Osborne Counties; St. Francis unit in Cheyenne County; Webster unit in Osborne County; and Wilson unit in Lincoln County. (See fig. 1.) Data relating to the Ladder Creek project in Greeley, Gove, Lane, Logan, Scott, Wallace, and Wichita Counties will be published later in a separate report.

  9. World of Fresh Water: A Resource for Studying Issues of Freshwater Research.

    ERIC Educational Resources Information Center

    Clement, Janet; Sigford, Ann; Drummond, Robert; Novy, Nancy

    Activities in this packet were developed in reference to research conducted at the U.S. Environmental Protection Agency's Mid-Continent Ecology Division in Duluth, Minnesota (MED-D). The research helps us better understand the effects of pollutants on freshwater systems such as lakes, rivers, and streams and determines how we can best keep these…

  10. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  11. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  12. A topographic feature taxonomy for a U.S. national topographic mapping ontology

    USGS Publications Warehouse

    Varanka, Dalia E.

    2013-01-01

    Using legacy feature lists from the U.S. National Topographic Mapping Program of the twentieth century, a taxonomy of features is presented for purposes of developing a national topographic feature ontology for geographic mapping and analysis. After reviewing published taxonomic classifications, six basic classes are suggested; terrain, surface water, ecological regimes, built-up areas, divisions, and events. Aspects of ontology development are suggested as the taxonomy is described.

  13. Financing Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities

    EPA Pesticide Factsheets

    Free webinar series on Financing for Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities, hosted by EPA's Water Infrastructure and Resiliency Finance Center and Water Security Division.

  14. U.S. Geological Survey national computer technology meeting; program and abstracts, New Orleans, Louisiana, April 10-15, 1994

    USGS Publications Warehouse

    Balthrop, B. H.; Baker, E.G.

    1994-01-01

    This report contains some of the abstracts of papers that were presented at the National Computer Technology Meeting that was held in April 1994. This meeting was sponsored by the Water Resources Division of the U.S. Geological Survey, and was attended by more than 200 technical and managerial personnel representing all the Divisions of the U.S. Geological Survey. Computer-related information from all Divisions of the U.S. Geological Survey are discussed in this compilation of abstracts. Some of the topics addressed are data transfer, data-base management, hydrologic applications, national water information systems, and geographic information systems applications and techniques.

  15. Selected hydrologic data, San Pitch River drainage basin, Utah

    USGS Publications Warehouse

    Robinson, G.B. Jr.

    1968-01-01

    The u.s. Geological Survey investigated the ground-water resources of the San Pitch River drainage basin during the period 1964- 67. The investigation was a cooperative project, financed equally by the Utah Department of Natural Resources, Division of Water Rights, and the Federal Government, and was a part of an investigation of the groundwater resources of the entire Sevier River drainage system.This report is intended to serve two purposes: (1) To make available to the public basic water-resources data useful in planning and studying development of water resources and (2) to supplement an interpretive report that will be published later. Included in the release are data collected by the Geological Survey since 1930.

  16. Reference manual for data base on Nevada water-rights permits

    USGS Publications Warehouse

    Cartier, K.D.; Bauer, E.M.; Farnham, J.L.

    1995-01-01

    The U.S. Geological Survey and Nevada Division of Water Resources have cooperatively developed and implemented a data-base system for managing water-rights permit information for the State of Nevada. The Water-Rights Permit data base is part of an integrated system of computer data bases using the Ingres Relational Data-Base Manage-ment System, which allows efficient storage and access to water information from the State Engineer's office. The data base contains a main table, three ancillary tables, and five lookup tables, as well as a menu-driven system for entering, updating, and reporting on the data. This reference guide outlines the general functions of the system and provides a brief description of data tables and data-entry screens.

  17. Kentucky Public Water-Supply Withdrawals During 1995, 2000, and 2005

    USGS Publications Warehouse

    Downs, Aimee C.; Caldwell, William E.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Division of Water, has compiled the reported permitted public water-supply-withdrawal data for Kentucky for 2005. Water-withdrawal data for 1995 and 2000 were previously published in Solley and others (1998) and Hutson and others (2004), respectively. This report is a graphical representation of permitted withdrawals for 1995, 2000, and 2005. Public suppliers that are regulated through the Kentucky Division of Water, Water-Withdrawal Permitting Program, withdrew a total of 496, 525, and 558 million gallons per day (Mgal/d) in 1995, 2000, and 2005, respectively. In 2005, 489 Mgal/d (88 percent) came from surface-water sources, and 69 Mgal/d (12 percent) came from ground-water sources. Small increases and decreases in permitted public water-supply withdrawals can be attributed to population changes. Large increases and decreases can be attributed to merging of supply systems, change(s) in source, or purchases from other counties.

  18. Hydrologic Drought of Water Year 2006 Compared with Four Major Drought Periods of the 20th Century in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    Water Year 2006 (October 1, 2005, to September 30, 2006) was a year of extreme hydrologic drought and the driest year in the recent 2002-2006 drought in Oklahoma. The severity of this recent drought can be evaluated by comparing it with four previous major hydrologic droughts, water years 1929-41, 1952-56, 1961-72, and 1976-81. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, completed an investigation to summarize the Water Year 2006 hydrologic drought and compare it to the four previous major hydrologic droughts in the 20th century. The period of water years 1925-2006 was selected as the period of record because before 1925 few continuous record streamflow-gaging sites existed and gaps existed where no streamflow-gaging sites were operated. Statewide annual precipitation in Water Year 2006 was second driest and statewide annual runoff in Water Year 2006 was sixth driest in the 82 years of record. Annual area-averaged precipitation totals by the nine National Weather Service Climate Divisions from Water Year 2006 are compared to those during four previous major hydrologic droughts to show how rainfall deficits in Oklahoma varied by region. Only two of the nine climate divisions, Climate Division 1 Panhandle and Climate Division 4 West Central, had minor rainfall deficits, while the rest of the climate divisions had severe rainfall deficits in Water Year 2006 ranging from only 65 to 73 percent of normal annual precipitation. Regional streamflow patterns for Water Year 2006 indicate that Oklahoma was part of the regionwide below-normal streamflow conditions for Arkansas-White-Red River Basin, the sixth driest since 1930. The percentage of long-term stations in Oklahoma (with at least 30 years of record) having below-normal streamflow reached 80 to 85 percent for some days in August and November 2006. Twelve long-term streamflow-gaging sites with periods of record ranging from 62 to 78 years were selected to show how streamflow deficits varied by region. The hydrologic drought worsened going from north to south in Oklahoma, ranging from 45 percent in the north, to just 14 percent in east-central Oklahoma, and 20 percent of normal annual streamflow in the southwest. The low streamflows resulted in only 86.3 percent of the statewide conservation storage available at the end of the water year in major reservoirs, and 7 to 47 percent of hydroelectric power generation at sites in Oklahoma in Calendar Year 2005.

  19. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes

    PubMed Central

    2014-01-01

    Background Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. Results In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell–like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each “blastomere” of the 2-cell–like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each “blastomere” and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Conclusion Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI. PMID:24953160

  20. Activities of the Water Resources Division, California District, in the 1986 fiscal year

    USGS Publications Warehouse

    Griner, C. A.; Anttila, P.W.

    1987-01-01

    This report summarizes the progress of water resources studies in California by the U.S. Geological Survey during the fiscal yr 1986. Much of the work was done in cooperation with State and local agencies. Additional supporting funds were transferred from other Federal agencies or appropriated directly to the Geological Survey. The water resources program in California consisted of 42 projects. Each project is briefly described. Brief descriptions are given of the origin of the U.S. Geological Survey and the Water Resources Division 's basic mission. An abbreviated organizational structure of the California District, sources of funding, a summary of water conditions, and a listing of reports published during fiscal year 1986 are also included. (USGS)

  1. Activities of the Water Resources Division, California District, fiscal year 1993

    USGS Publications Warehouse

    DeBortoli, M. L.

    1994-01-01

    This report summarizes the progress of water- resources studies in California by the U.S. Geological Survey during fiscal year 1993. Much of the work was done in cooperation with State and local agencies. Additional supporting funds were transferred from other Federal agencies or appropriated directly to the U.S. Geological Survey. The water-resources program in California consisted of 41 projects. This report includes a brief discussion of each project and also contains a brief description of the origin of the U.S. Geological Survey, the Water Resources Division's basic mission, an abbreviated organizational structure of the California District, sources of funding, and a summary of water condition. Also included is a listing of reports published during fiscal year 1993.

  2. Activities of the Water Resources Division, California District, fiscal year 1992

    USGS Publications Warehouse

    DeBortoli, M. L.

    1993-01-01

    This report summarizes the progress of water- resources studies in California by the U.S. Geological Survey during fiscal year 1992. Much of the work was done in cooperation with State and local agencies. Additional supporting funds were transferred from other Federal agencies or appropriated directly to the Geological Survey. The water-resources program in California consisted of 41 projects. This report includes a brief discussion of each project and also contains a brief description of the origin of the U.S. Geological Survey, the Water Resources Division's basic mission, an abbreviated organizational structure of the California District, sources of funding, and a summary of water conditions. Also included is a listing of reports published during fiscal year 1992.

  3. Selected hydrologic data for Cedar Valley, Iron County, southwestern Utah, 1930-2001

    USGS Publications Warehouse

    Howells, James H.; Mason, James L.; Slaugh, Bradley A.

    2001-01-01

    This report presents hydrologic data collected by the U. S. Geological Survey from 1930 to 2001 with emphasis on data collected from 1997 to 2001 as part of a study of ground-water resources in Cedar Valley, Iron County, southwestern Utah (fig. 1). Data collected prior to this study are also presented to show long-term trends. Data were collected during this study in cooperation with the Central Iron County Water Conservancy District; Utah Department of Natural Resources, Division of Water Resources; Utah Department of Environmental Quality, Division of Water Quality; Cedar City; and Enoch City; as part of a study to better understand the ground-water resources of Cedar Valley and to assess possible effects of increased ground-water withdrawal on water quality. Quality of ground water in Cedar Valley is variable and water suppliers need to know if additional water resources can be developed without drawing water of lower quality into public-supply wells.Cedar Valley is in central Iron County at the transitional boundary between the Basin and Range and Colorado Plateau physiographic provinces described by Hunt (1974) and covers about 570 mi2. Additional data from wells west of Cedar Valley and to the south in the vicinity of Kanarraville in the Virgin River drainage (Colorado River Basin) adjacent to the study area are included. Cedar Valley is bounded on the east by the Markagunt Plateau and Red Hills, on the southwest by the Harmony Mountains, on the west by a complex of low hills, and on the north by the Black Mountains. Altitudes in the study area range from about 5,300 ft in Mud Spring Canyon to about 10,400 ft at Blowhard Mountain to the east.

  4. Engineering and Design: Reservoir Water Quality Analysis

    DTIC Science & Technology

    1987-06-30

    Production of Phytoplankton and Decomposition Organic Matter in the Kuybyshen Reservoir,” Hydrobiological Journal, VOI 10, pp 49-52. of Johnson, M. C...developed. Much of the material in this manual is a product of this program and of field experience from Corps district and division offices. FOR THE...Relationships. . . . . . . . . . . . . . . . . . . . . 2-3 Nutrient Demand:Supply Ratios During Nonproductive and Productive Seasons

  5. Hydrology reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah

    USGS Publications Warehouse

    Price, Don; Bolke, E.L.

    1970-01-01

    This is the sixth in a series of reports by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describe the water resources of selected basins in western Utah. Areas covered by previously published reports in this series are shown in figure 1 and are listed on page 29. The purpose of this report is to present available hydrologic data on the Sink Valley (Puddle Valley) area, to provide an evaluation of the potential for water-resource development in the area, and to serve as a basis for planning possible later detailed investigations.

  6. National Dam Safety Program. Foxs Lake Dam (NJ00342), Passaic River Basin, Foxs Brook, Morris County, New Jersey. Phase 1 Inspection Report.

    DTIC Science & Technology

    1980-01-01

    c.6E RECEIVED :r. Robert L. Hardman , Chieff Fureau of Water Control N. J Dept. of Conservation & Economic Development Division of Water Policy...Supply Trenton, N. J. 08625 Dear mr. Hardman : re: Rockaway Park Lake Dam Application No. 93 With regard to your communications of April 26th and July 3rd...1968, please be advised that the Borough of Rockaway acquired Rockaway Park Lakes, the subject dam and surrounding shore area by Tax Foreclosure on

  7. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  8. National Dam Safety Program. Clove Lake Dam (NJ 00259) Delaware River Basin, Shimers Brook, Sussex County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    1 AU9r, 1,981 Division of Water Resources ~ .N~EtO P.O. Box CN029 I.NME Trenton, NJ 08625 50 R.MONITORING AGENCY NAME 0 ADORESS(ll dilloai how Cmnt...trespassing on the slopes of the dam. j. Provide a drain or other means for removing water collecting in the low-level outlet chamber. k. Reestablish and...Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental IProtection P.O. Box CN029 Trenton

  9. 1993 Fiscal Year Water Resources Division Information Guide

    USGS Publications Warehouse

    ,

    1992-01-01

    This Guide briefly describes the Water Resources Division's mission, program, and organizational structure, and where and how to obtain specific types of hydrologic information. The Guide also contains a listing of addresses, telephone numbers, and office hours for Headquarters, Regional, District, and State offices. For some offices, two addresses are given: the mailing address of the office to which correspondence should be sent and the street address of the office. The map shows the location of the offices.

  10. A CLIMATOLOGY OF WATER BUDGET VARIABLE FOR THE NORTHEASTERN UNITED STATES

    EPA Science Inventory

    A Climatology of Water Budget Variables for the Northeast United States (Leathers and Robinson 1995). Climatic division precipitation and temperature data are used to calculate water budget variables based on the Thornthwaite/Mather climatic water budget methodology. Two water b...

  11. Environmental Toxicology and Chemistry at EPA's Western Ecology Division

    EPA Science Inventory

    The facility for the US Environmental Protection Agency’s Western Ecology Division (WED) has been involved in environmental toxicology and chemistry research since its inception in 1961 when it was the Pacific Northwest Water Laboratory. Currently, WED is one of four ecolog...

  12. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    USGS Publications Warehouse

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  13. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    USGS Publications Warehouse

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  14. VIIRS validation and algorithm development efforts in coastal and inland Waters

    NASA Astrophysics Data System (ADS)

    Stengel, E.; Ondrusek, M.

    2016-02-01

    Accurate satellite ocean color measurements in coastal and inland waters are more challenging than open-ocean measurements. Complex water and atmospheric conditions can limit the utilization of remote sensing data in coastal waters where it is most needed. The Coastal Optical Characterization Experiment (COCE) is an ongoing project at NOAA/NESDIS/STAR Satellite Oceanography and Climatology Division. The primary goals of COCE are satellite ocean color validation and application development. Currently, this effort concentrates on the initialization and validation of the Joint Polar Satellite System (JPSS) VIIRS sensor using a Satlantic HyperPro II radiometer as a validation tool. A report on VIIRS performance in coastal waters will be given by presenting comparisons between in situ ground truth measurements and VIIRS retrievals made in the Chesapeake Bay, and inland waters of the Gulf of Mexico and Puerto Rico. The COCE application development effort focuses on developing new ocean color satellite remote sensing tools for monitoring relevant coastal ocean parameters. A new VIIRS total suspended matter algorithm will be presented for the Chesapeake Bay. These activities improve the utility of ocean color satellite data in monitoring and analyzing coastal and oceanic processes. Progress on these activities will be reported.

  15. OVERVIEW: CCL PATHOGENS RESEARCH AT NRMRL

    EPA Science Inventory


    The Microbial Contaminants Control Branch (MCCB), Water Supply and Water Resources Division, National Risk Management Research Laboratory, conducts research on microbiological problems associated with source water quality, treatment processes, distribution and storage of drin...

  16. Activities of the Water Resources Division, California District, in the 1985 fiscal year

    USGS Publications Warehouse

    Anttila, P. W.

    1986-01-01

    This report summarizes the progress of water-resources studies in California by the U.S. Geological Survey during the fiscal year 1985. Much of the work was done in cooperation with the State and local agencies. Additional supporting funds were transferred from other Federal agencies or appropriated directly to the Geological Survey. The water-resources program in California consisted of 55 projects. This report includes a brief discussion of each project and also contains a brief description of the origin of the U.S. Geological Survey, the Water Resources Division 's basic mission, and abbreviated organizational structure of the California District, sources of funding, and a summary of water conditions. Reports issued by the Geological Survey on studies completed fiscal years 1984 and 1985 also are listed. (USGS)

  17. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  18. Water Treatment Systems Make a Big Splash

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.

  19. Water quality: a factor in Arkansas River development

    USGS Publications Warehouse

    Dover, T.B.

    1957-01-01

    One of the first requisites for intelligent planning of the utilization and control of water and for the administration of laws relating to its use, is data on the quantity, quality, and mode of occurence of water supplies. The collections, evaluation, interpretation, and publication of such data constitute the primary function of the Water Resources Division of the United States Geological Survey. Since 1895 the Congress has made appropriations to this agency for investigations of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with State and local governmental agencies for water-resources investigations. The Geological Survey's Federal-State cooperative program of quality-of-water investigations in Oklahoma was started in 1944 in cooperation with the Oklahoma Planning and Resources Board. Since July of this year the program has been carried on cooperatively with the newly created Oklahoma Water Resources Board.

  20. 78 FR 21969 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation... Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O. Box 25007, Denver... for the delivery of project water for authorized uses in newspapers of general circulation in the...

  1. Agrarian crisis in India: Smallholder Socio-hydrology explains small-scale farmers' suicides

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Savenije, Hubert

    2016-04-01

    Maharashtra is one of the states in India that has witnessed one of the highest rates of farmer suicides as proportion of total number of suicides. Most of the farmer suicides in Maharashtra are from semi-arid divisions such as Marathwada where cotton has been historically grown. Other dominant crops produced include cereals, pulses, oilseeds and sugarcane. Cotton (fibers), oilseeds and sugarcane providing highest value addition per unit cultivated area and cereals and pulses the least. Hence it is not surprising that smallholders take risks growing high value crops without 'visualising' the risks it entails such as those corresponding to price and weather shocks. We deploy recently developed smallholder socio-hydrology modelling framework to understand the underlying dynamics of the crisis. It couples the dynamics of 6 main variables that are most relevant at the scale of a smallholder: water storage capacity (root zone storage and other ways of water storage), capital, livestock, soil fertility and fodder biomass. The hydroclimatic variability is accounted for at sub-annual scale and influences the socio-hydrology at annual scale. The model is applied to Marathwada division of Maharashtra to understand the dynamics of its cotton growing marginal farmers, using diverse data sets of precipitation, potential evaporation, agricultural census based farm inputs and prices. Results confirm existing narratives: low water storage capacities, no irrigation and poor access to alternative sources of incomes are to blame for the crisis. It suggests that smart indigenous solutions such as rain water harvesting and better integration of smallholder systems to efficient agricultural supply chains are needed to tackle this development challenge.

  2. STORM WATER MANAGEMENT MODEL (SWMM) MODERNIZATION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Water Supply and Water Resources Division in partnership with the consulting firm of CDM to redevelop and modernize the Storm Water Management Model (SWMM). In the initial phase of this project EPA rewrote SWMM's computational engine usi...

  3. Exploring the Components of the Palmer Drought Indices Using the Apalachicola-Chattahoochee-Flint (ACF) River Basin as a Case Study

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Duncan, L. L.; Jacobi, J. H.; Hornberger, G.

    2012-12-01

    Water resources are vital to sustaining ecosystem services, energy and food supplies, and industrial processes. Competition for water resources is likely to intensify as the population increases, economy grows, and land develops. Drought events intensify water scarcity, and recent events in many countries, including the United States (US), Great Britain, and Sri Lanka, highlight how important it is to provide meaningful context to water planners and managers. Palmer's drought indices - Z Index, Palmer Drought Severity Index (PDSI), and Palmer Hydrological Drought Index (PHDI) - are widely used and accepted by scientists and policy makers in the US to understand drought and manage water resources. Drought index values at the climate division scale are available, but a transparent calculation tool at multiple spatial and temporal scales is not readily available. Moreover, a close look at the development of the indices reveals a number of subjective calculation methods and regionally biased factors. For researchers studying areas with overlapping climate divisions, performing international research, or working with limited, site-specific data, the ability to control and modify calculations is desired. This research presents a transparent tool for calculating Palmer's drought indices. We use the Apalachicola-Chattahoochee-Flint (ACF) River Basin, located in the southeastern US, as our case study to explore and evaluate the sensitivity of Palmer's indices to temperature and precipitation anomalies, calibration periods, and other index components. The ACF has suffered two major droughts (2007 and 2012) in the past five years and supports multiple demand-side sectors - agriculture in Georgia, public and recreational supply for the Atlanta metropolitan area, hydroelectric power in Alabama, tri-state navigation, and ecosystem services. We show how the PDSI varies in response to changes in precipitation, calibration period, and a number of other variables. The aim of the work is to make this easily used tool available to help professionals who work toward facilitating water management and reducing water conflicts in the future.

  4. STORM WATER MANAGEMENT MODEL QUALITY ASSURANCE REPORT: DYNAMIC WAVE FLOW ROUTING

    EPA Science Inventory

    The Storm Water Management Model (SWMM) is a computer-based tool for simulating storm water runoff quantity and quality from primarily urban areas. In 2002 the U.S. Environmental Protection Agency’s Water Supply and Water Resources Division partnered with the consulting firm CDM ...

  5. Bibliography of selected water-resources publications on Nevada by the U.S. Geological Survey, 1885 through 1995

    USGS Publications Warehouse

    Bunch, R.L.

    1996-01-01

    References to 898 water-resources publications are listed alphabetically by senior author and indexed by hydrographic-area name or other geographic features. Most of the publications were written between 1960 and 1995 by U.S. Geological Survey scientists and engineers of the Water Resources Division, Nevada District. Also included are references to publications by other Water Resources Division authors that deal with Nevada hydrology. References to publications written before 1960 are included to provide a historical perspective. The references include several types of Geological Survey book and map publications, as well as State-series reports, journal articles, conference and symposium papers, abstracts, and graduate- degree theses. Information on publication availability is provided also.

  6. 76 FR 39092 - Agency Information Collection Activities; Proposed Collection; Comment Request; Disinfectants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...; Disinfectants/Disinfection Byproducts, Chemical and Radionuclides; Microbial; and Public Water System...://www.epa.gov/epahome/dockets.htm . FOR FURTHER INFORMATION CONTACT: Matthew Reed, Drinking Water Protection Division, Office of Ground Water and Drinking Water, (4606M), Environmental Protection Agency...

  7. NHEERL RESEARCH ON CARCINOGENIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Water research in the Environmental Carcinogenesis Division focuses on improved understanding of the mechanisms of mutagenesis and carcinogenesis of water contaminants for incorporation into human cancer risk assessment models. The program uses cellular , animal, and computer mo...

  8. 76 FR 73674 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... INFORMATION CONTACT: Michelle Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O...

  9. 76 FR 60527 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... CONTACT: Michelle Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O. Box 25007...

  10. 75 FR 82066 - Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Status Report of Water Service, Repayment, and Other Water- Related Contract Actions AGENCY: Bureau of Reclamation, Interior. ACTION: Notice. SUMMARY... CONTACT: Michelle Kelly, Water and Environmental Services Division, Bureau of Reclamation, P.O. Box 25007...

  11. AN OVERVIEW OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S DRINKING WATER TREATMENT AND DISTRIBUTION SYSTEM RESEARCH PROGRAM

    EPA Science Inventory

    This presentation will provide an overview of drinking water research being conducted by the National Risk Management Research Laboratory (NRMRL) of the U.S. EPA. The Water Supply and Water Resources Division (WSWRD) is an internationally known water research organization establi...

  12. 76 FR 33756 - Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Primacy Application for National Primary Drinking Water Regulations for the State of Missouri AGENCY... Department of Natural Resources, Public Drinking Water Branch, 1101 Riverside Drive, Jefferson City, MO 65101. (2) Environmental Protection Agency-Region 7, Water Wetlands and Pesticides Division, Drinking Water...

  13. 78 FR 72109 - Quarterly Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Status Report of Water Service, Repayment, and Other Water-Related Contract Actions AGENCY: Bureau of... Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O. Box 25007, Denver... contract for the delivery of project water for authorized uses in newspapers of general circulation in the...

  14. 78 FR 72111 - Quarterly Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Status Report of Water Service, Repayment, and Other Water-Related Contract Actions AGENCY: Bureau of... Kelly, Water and Environmental Resources Division, Bureau of Reclamation, P.O. Box 25007, [[Page 72112... actions for any contract for the delivery of project water for authorized uses in newspapers of general...

  15. NOAA's National Water Model - Integration of National Water Model with Geospatial Data creating Water Intelligence

    NASA Astrophysics Data System (ADS)

    Clark, E. P.; Cosgrove, B.; Salas, F.

    2016-12-01

    As a significant step forward to transform NOAA's water prediction services, NOAA plans to implement a new National Water Model (NWM) Version 1.0 in August 2016. A continental scale water resources model, the NWM is an evolution of the WRF-Hydro architecture developed by the National Center for Atmospheric Research (NCAR). The NWM will provide analyses and forecasts of flow for the 2.7 million stream reaches nationwide in the National Hydrography Dataset Plus v2 (NHDPlusV2) jointly developed by the USGS and EPA. The NWM also produces high-resolution water budget variables of snow, soil moisture, and evapotranspiration on a 1-km grid. NOAA's stakeholders require additional decision support application to be built on these data. The Geo-intelligence division of the Office of Water Prediction is building new products and services that integrate output from the NWM with geospatial datasets such as infrastructure and demographics to better estimate the impacts dynamic water resource states on community resiliency. This presentation will detail the methods and underlying information to produce prototypes water resources intelligence that is timely, actionable and credible. Moreover, it will to explore the NWM capability to support sector-specific decision support services.

  16. Operational Art and the Sustainment Warfighting Function

    DTIC Science & Technology

    2011-12-01

    Infantry Division (ID) a continuous sustainment line of operation. The leap- frogging of Forward Logisitics Bases provided 3rd Infantry Division (ID...victims. A C-17 Globemaster III departed North Carolina and delivered 14,000 Meals Ready-to- Eat , or MREs, and 14,000 quarts of water in a 7-hour round

  17. Recreational Water Illness (RWI) - Infectious Disease Epidemiology Program

    Science.gov Websites

    & Prevention A Division of the Maine Department of Health and Human Services Contact EPI | News | Online services | Publications | Subject index Search EPI Search Maine CDC Home Health Topics A-Z Data /Reports For Health Care Providers For Businesses For Homeowners/Renters Divisions/Programs + A | - A

  18. 33 CFR 211.24 - Disposition of claims.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 211.24 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real... damages not exceeding $1,000 may be settled by the Division Engineer. If the Division Engineer allows the...

  19. 29. Photocopy of drawing L1314 showing detail of columns for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of drawing L-1314 showing detail of columns for filtered water reservoir at the Baldwin Filtration Plant. Drawing in Utilities Engineering Department, Cleveland and is dated 1924. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  20. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  1. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  2. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  3. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  4. Ecotoxicology in the 21st century - AOPs, HTT and other acronyms

    EPA Science Inventory

    Product Description:The Duluth Water Quality Lab, which is now the US EPA Mid-Continent Ecology Division, commenced operation in 1967. This presentation is one in a series that focuses on the national and international impacts of this division and its research over its 50-year hi...

  5. Phytoplankton division rates in light-limited environments: two adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, R.B.; Voytek, M.A.; Seliger, H.H.

    1982-02-26

    Red tide-forming dinoflagellates maximize cell numbers during periods of low light intensities in two ways. For short-term exposures to suboptimal light intensities such as might occur during recirculation in frontal convergences, cell division rates can be maintained at the expense of stored carbon for up to two generation times. During longer periods, corresponding to subsurface transport below a pycnocline, cell division rates eventually decrease as a portion of the fixed carbon is diverted to replenishing stored carbon. As a result, maximum rates of cell division can be resumed rapidly upon advection into surface waters where light intensities are optimal formore » growth.« less

  6. 75 FR 5146 - Hewlett Packard Company Business Critical Systems, Mission Critical Business Software Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Packard Company Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating... Software Division, OpenVMS Operating System Development Group, Including an Employee Operating Out of the..., Mission Critical Business Software Division, OpenVMS Operating System Development Group, including...

  7. History of the Army Ground Forces. Study Number 15. The Desert Training Center and C-AMA, (California - Arizona Area)

    DTIC Science & Technology

    1946-01-01

    armored division* and one motorized division. General McNair spoke of armored and motorized units, but did not specify how many units or how long a...anything. They had to learn how to fight. He told officials of the Water Distgict that they would be given a week’s notice before water would be needed.. On...cover of darkness; desert navigation for all personnel; laying and removal of mine fields by all units; maintenance and evacuation of motor vehicles

  8. National Program for Inspection of Non-Federal Dams. Williams Pond Dam (CT 00551), Thames River Basin, Lebanon, Connecticut. Phase I Inspection Program.

    DTIC Science & Technology

    1978-10-01

    GRA&I UnTucea B WILLIAMS POND DAM ~~1Z~ CT 00551 _ Distribution/ Availabilit Y Codes Avail and/or Dis~tj pecialS RIVER BASIN ~lIILEBANON, COXNNECTICUT...Inspection Report. Alternatives to these recommendations r 1 would include reducing the Williams Pond water levels during expected periods of intense storm...Materials Branch Engi’neering Division FRED J. VNS. Jr., Member Chief, De ’ggn Branch Engineering Division SAUL COOPER, -r Chief, Water Control Branch

  9. Review of water demand and water utilization studies for the Provo River drainage basin, and review of a study of the effects of the proposed Jordanelle Reservoir on seepage to underground mines, Bonneville unit of the central Utah project

    USGS Publications Warehouse

    Waddell, K.M.; Freethey, G.W.; Susong, D.D.; Pyper, G.E.

    1991-01-01

    Problem: Questions have been raised concerning the adequacy of available water to fulfill the needs of storage, exchanges, diversions, and instream flows, pursuant to existing water rights in the Provo River drainage basin part of the Bonneville Unit. Also, concern has been expressed about the potential for seepage of water from Jordanelle Reservoir to underground mines. The Utah Congressional Delegation requested that the U.S. Geological Survey (USGS) review the results of analyses performed by and for the USBR.Purpose and Scope: The purpose of this report is to present the results of the USGS review of (1) the hydrologic data, techniques, and model used by the USBR in their hydrologic analyses of the Provo River drainage basin and (2) the results of a study of the potential for seepage from the Jordanelle Reservoir to nearby underground mines.The USGS reviewed USBR-supplied water demands, water utilization studies, and models of seepage from Jordanelle Reservoir. The USBR estimated that about 90 percent of the water supply for Jordanelle Reservoir will be water from Strawberry Reservoir exchanged for water from the Provo River stored in Utah Lake. If the Utah State Engineer allows the USBR to claim an estimated 19,700 acre-feet of return flows from the CUP, only about 77 percent of the supply would be derived from exchange of existing water rights in Utah Lake. The USGS assumed that planned importations of water from the Uinta Basin will be available and deliverable to fulfill the proposed exchanges.Water rights and demands are important for determining water availability. The USGS did not conduct an independent review of water rights and demands. The USSR and Utah Division of Water Rights use different methods in some areas for determining stress on the system based on past records. The USSR used "historical observed diversions" and the Utah Division of Water Rights use "diversion entitlements", which may not be equal to the historical diversions. The USGS based its review upon water demands used by the USSR. The Utah Division of Water Rights has responsibility for granting and enforcing water rights, and the final decisions on how the rights will be adjudicated lies with the Utah Division of Water Rights and with the courts. The USGS review did not consider the draft water distribution plan for the Utah Lake drainage basin proposed by the Utah State Engineer (written commun., October 15,1991). This plan, when finalized, may have an effect on water availability to the CUP.

  10. OPERATION OF WATER DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. In order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wat...

  11. OPERATION OF WATER QUALITY DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. n order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wate...

  12. Water-resources activities in Utah by the U.S. Geological Survey, October 1, 1989, to September 30, 1990

    USGS Publications Warehouse

    Gates, Joseph S.; Dragos, Stefanie L.

    1991-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from October 1, 1989, to September 30, 1990. The program in Utah during this period consisted of 25 projects; a discussion of each project is given in the body of the report.The following sections outline the basic mission and program of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1989 to September 1990.

  13. Water-resources activities in Utah by the U.S. Geological Survey, October 1, 1988, to September 30, 1989

    USGS Publications Warehouse

    Gates, Joseph S.; Dragos, Stefanie L.

    1990-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from October 1, 1988, to September 30, 1989. The program in Utah during this period consisted of 21 projects; a discussion of each project is given in the main body of the report. The following sections outline the basic mission and program of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1988 to September 1989.

  14. DIVISION OF ISOTOPES DEVELOPMENT RESEARCH AND DEVELOPMENT PROJECTS: 1968. Progress Reports on Sponsored Work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1969-01-01

    This is the second edition of the Division of Isotopes Development project summaries. It presents a short summary of objectives, results, and future plans for each research or development project sponsored by the Division within each of eight program areas.

  15. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... authority. The draft guidance includes EPA's interpretation of the Safe Drinking Water Act (SDWA) and...., Washington, DC 20460. Hand Delivery: Office of Water (OW) Docket, EPA/DC, EPA West, Room 3334, 1301... Injection Control Program, Drinking Water Protection Division, Office of Ground Water and Drinking Water (MC...

  16. 77 FR 40354 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... INFORMATION CONTACT: Sherri Comerford, Underground Injection Control (UIC) Program, Drinking Water Protection Division, Office of Ground Water and Drinking Water (MC-4606M), Environmental Protection Agency, 1200... Fracturing and the Safe Drinking Water Act Web site, http://water.epa.gov/type/groundwater/uic/class2...

  17. 76 FR 71560 - Notice of a Public Meeting on Long Term 2 Enhanced Surface Water Treatment Rule: Initiate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Management Division, Office of Ground Water and Drinking Water (MC 4607M), Environmental Protection Agency... drinking water. The 1996 Amendments to the Safe Drinking Water Act (SDWA) require EPA to review its existing drinking water regulations every six years. SDWA specifies that any revision to a national primary...

  18. Home Advantage in Men's and Women's Spanish First and Second Division Water Polo Leagues.

    PubMed

    Prieto, Jaime; Gómez, Miguel-Ángel; Pollard, Richard

    2013-01-01

    The purpose of this study was to quantify the home advantage in both men's and women's First and Second Division water polo leagues, to compare the results obtained according to sex of participants and the level of competition, and to test for possible differences in home advantage when considering the interaction between these two factors. The sample comprised four seasons from 2007-2008 to 2010-2011 for a total of 1942 games analyzed. The results showed the existence of home advantage in both men's and women's First and Second Divisions. After controlling for the competitive balance of each league in each season, there was a significant difference between men's and women's leagues, with higher home advantage for men's leagues (58.60% compared with 53.70% for women's leagues). There was also a significant difference between the levels of competition, with greater home advantage for the Second Division (57.95% compared with 54.35% for First Division). No significant differences in home advantage were found when considering the interaction between sex of participants and the level of competition. The results in relation to sex of participants and the level of competition are consistent with previous studies in other sports such as football or handball.

  19. Home Advantage in Men’s and Women’s Spanish First and Second Division Water Polo Leagues

    PubMed Central

    Prieto, Jaime; Gómez, Miguel-Ángel; Pollard, Richard

    The purpose of this study was to quantify the home advantage in both men’s and women’s First and Second Division water polo leagues, to compare the results obtained according to sex of participants and the level of competition, and to test for possible differences in home advantage when considering the interaction between these two factors. The sample comprised four seasons from 2007–2008 to 2010–2011 for a total of 1942 games analyzed. The results showed the existence of home advantage in both men’s and women’s First and Second Divisions. After controlling for the competitive balance of each league in each season, there was a significant difference between men’s and women’s leagues, with higher home advantage for men’s leagues (58.60% compared with 53.70% for women’s leagues). There was also a significant difference between the levels of competition, with greater home advantage for the Second Division (57.95% compared with 54.35% for First Division). No significant differences in home advantage were found when considering the interaction between sex of participants and the level of competition. The results in relation to sex of participants and the level of competition are consistent with previous studies in other sports such as football or handball. PMID:24146714

  20. Coastal ground water at risk - Saltwater contamination at Brunswick, Georgia and Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Krause, Richard E.; Clarke, John S.

    2001-01-01

    IntroductionSaltwater contamination is restricting the development of ground-water supply in coastal Georgia and adjacent parts of South Carolina and Florida. The principal source of water in the coastal area is the Upper Floridan aquifer—an extremely permeable and high-yielding aquifer—which was first developed in the late 1800s. Pumping from the aquifer has resulted in substantial ground-water-level decline and subsequent saltwater intrusion of the aquifer from underlying strata containing highly saline water at Brunswick, Georgia, and with encroachment of sea-water into the aquifer at the northern end of Hilton Head Island, South Carolina. The saltwater contamination at these locations has constrained further development of the Upper Floridan aquifer in the coastal area and has created competing demands for the limited supply of freshwater. The Georgia Department of Natural Resources, Georgia Environmental Protection Division (GaEPD) has restricted permitted withdrawal of water from the Upper Floridan aquifer in parts of the coastal area (including the Savannah and Brunswick areas) to 1997 rates, and also has restricted additional permitted pumpage in all 24 coastal area counties to 36 million gallons per day above 1997 rates. These actions have prompted interest in alternative management of the aquifer and in the development of supplemental sources of water supply including those from the shallower surficial and upper and lower Brunswick aquifers and from the deeper Lower Floridan aquifer.

  1. Monochloramine Cometabolism by Ammonia-Oxidizing Bacteria. Report #4341

    EPA Science Inventory

    Chloramine use is widespread in United States (US) drinking water distribution systems as a secondary disinfectant. In a recent survey of water utilities, 30% of the respondents used chloramines to maintain distribution system residual (AWWA Water Quality and Technology Division...

  2. EXPERT SYSTEMS SHOW PROMISE FOR CUSTOMER INQUIRIES

    EPA Science Inventory

    This article describes results of an agreement between the North Penn Water Authority in Lansdale, Pa., and the US Environmental Protection Agency, Drinking Water Research Division, Cincinnati, Ohio, to study use of expert systems technology in a water utility. The threeyear stud...

  3. RECENT PUBLICATIONS - ISOTOPE HYDROLOGY LABORATORY (WATER QUALITY MANAGEMENT BRANCH, WSWRD, NRMRL)

    EPA Science Inventory

    NRMRL's Water Supply and Water Resouces Division's Isotope Hydrology Laboratory (IHL) produces and publishes highly specialized technical and scientific documents relating to IHL's research. The mission of IHL is to resolve environmental hydrology problems through research and ap...

  4. EPA Distribution System (DS) Research as It Relates to the TCRDS and the DS Research Partnership ..and more

    EPA Science Inventory

    An overview of Water Supply and Water Research Division (WSWRD) distribution system water quality research was provided. Specifically, the research topics of corrosion, nitrification, biofilms and contaminant accumulation were discussed.

  5. Multiple-division of self-propelled oil droplets through acetal formation.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Miura, Shingo; Toyota, Taro

    2015-02-28

    We demonstrate a novel system that exhibits both self-propelled motion and division of micrometer-sized oil droplets induced by chemical conversion of the system components. Such unique dynamics were observed in an oil-in-water emulsion of a benzaldehyde derivative, an alkanol and a cationic surfactant at a low pH.

  6. 75 FR 16363 - Beverages: Bottled Water; Reopening of the Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... submissions): Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm... ``Search'' box and follow the prompts and/or go to the Division of Dockets Management, Food and Drug... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 165 [Docket No...

  7. Mineral Property Management - Division of Mining, Land, and Water

    Science.gov Websites

    Mineral Property Management This section in the division maintains the records for mineral property rights established under state laws and regulations. The timely maintenance of property right records is fundamental to the mineral industry operating. Property right records must be current and up-to-date for title

  8. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Twomore » major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.« less

  9. 75 FR 52325 - Agency Information Collection Activities; Proposed Collection; Comment Request: Title IV of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... the Public Health Security and Bioterrorism Preparedness and Response Act of 2002: Drinking Water... submitting comments. E-mail: [email protected] . Mail: EPA Water Docket, Environmental Protection Agency... . FOR FURTHER INFORMATION CONTACT: Karen Edwards, Water Security Division, Office of Ground Water and...

  10. 76 FR 76404 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...: Matthew Reed, Drinking Water Protection Division, Office of Ground Water and Drinking Water, (4606M... reporting requirements in support of the chemical drinking water regulations. These recordkeeping and... Activities; Submission to OMB for Review and Approval; Comment Request; Disinfectants/Disinfection Byproducts...

  11. Publications related to the National Water Data Exchange (NAWDEX); 1971-81

    USGS Publications Warehouse

    Myers, B. M.

    1982-01-01

    The National Water Data Exchange (NAWDEX), formally established in January 1976, is a national confederation of water-oriented organizations working together to improve access to water data. Its primary objective is to assist users of water data in the identification, location, and acquisition of needed water data or water-related data. NAWDEX is coordinated by a central Program Office, located within the Water Resources Division of the U.S. Geological Survey, which provides data-exchange policy and guidelines to all participants in the program. In addition to the Program Office, there is a network of Assistance Centers located in 45 States and Puerto Rico which provides direct access to NAWDEX. Membership in NAWDEX is voluntary and open to any water-oriented organization that wishes to participate. This publication contains an alphabetical listing, by author, of the reports that have been produced by the NAWDEX Program Office since 1975, as well as reports from other sources that relate to the development of the NAWDEX program.

  12. Water-resources activities of the U.S. Geological Survey in Utah, October 1, 1993, to September 30, 1994

    USGS Publications Warehouse

    Hardy, Ellen E.; Dragos, Stefanie L.

    1996-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from October 1, 1993, to September 30, 1994. The water-resources program in Utah during this period consisted of 21 projects; a discussion of each project is presented in the main body of this report.The following sections outline the origin of the U.S. Geological Survey, the basic mission of the Water Resources Division, the organizational structure of the Utah District, office addresses of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1993 to September 1994.

  13. Home - Division of Mining, Land, and Water

    Science.gov Websites

    (Public Land Title) Surveys, Easements and Plats Water Aquatic Farming Dam Safety Navigability Shore Farming Contract Administration Dam Safety Land Sales Land Use Planning Mining Municipal Entitlements

  14. 77 FR 68125 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ..., development and evaluation; and (16) provides health physics expertise for all division public health..., development and evaluation; and (16) provides health physics expertise for all division public health..., development and evaluation; and (16) provides health physics expertise for all division public health...

  15. CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-03-01

    Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)

  16. 77 FR 12082 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ..., Including Leased Workers: Keystone Staffing, Aerotek Staffing. 81,296 Pentair Water Filtration Monticello, IN February 3, 2011. Indiana, LLC, Water Purification Division, Manpower. The following...

  17. NATIONAL WATER INFORMATION SYSTEM OF THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Edwards, Melvin D.

    1985-01-01

    National Water Information System (NWIS) has been designed as an interactive, distributed data system. It will integrate the existing, diverse data-processing systems into a common system. It will also provide easier, more flexible use as well as more convenient access and expanded computing, dissemination, and data-analysis capabilities. The NWIS is being implemented as part of a Distributed Information System (DIS) being developed by the Survey's Water Resources Division. The NWIS will be implemented on each node of the distributed network for the local processing, storage, and dissemination of hydrologic data collected within the node's area of responsibility. The processor at each node will also be used to perform hydrologic modeling, statistical data analysis, text editing, and some administrative work.

  18. Atomic Energy Division plant capacity manual Savannah River Plant and Dana Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-05-01

    This report is a summary of plant service capacities at the Savannah River Plant and the Dana Plant. The report is divided into different areas of the plants, and includes information on services such as process steam, clarified water, deionized water, electric distribution systems, electric generating capacity, filtered water, process water, river water, well water, etc.

  19. 76 FR 3157 - Joint Operations Center Relocation Project, Sacramento County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Water Resources (DWR), the lead State agency, will prepare a joint EIS/EIR for the proposed Joint... following departments: DWR's Division of Operations and Maintenance, Operations Control Office, State Water...

  20. Water-resources activities in Utah by the U.S. Geological Survey, October 1, 1990, to September 30, 1991

    USGS Publications Warehouse

    Gates, Joseph S.; Hardy, Ellen E.

    1992-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from October 1, 1990, to September 30, 1991. The program in Utah during this period consisted of 23 projects; a discussion of each project is given in the main body of this report.The following sections outline the origin of the U.S. Geological Survey, the basic mission of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1990 to September 1991.

  1. Water-resources activities in Utah by the U.S. Geological Survey, October 1, 1991, to September 30, 1992

    USGS Publications Warehouse

    Hardy, Ellen E.; Gates, Joseph S.

    1993-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from October 1, 1991, to September 30, 1992. The program in Utah during this period consisted of 20 projects; a discussion of each project is presented in the main body of this report.The following sections outline the origin of the U.S. Geological Survey, the basic mission of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1991 to September 1992.

  2. A tentative discussion on the monitoring of water resources in China

    NASA Astrophysics Data System (ADS)

    Yang, Jianqing; Dai, Ning; Wu, Mengying; Wang, Guangsheng

    2016-10-01

    With the rapid economy development and social civilization progress, the Chinese Government also is improving ecological environmental conditions. More efforts have been made to solve water problems through the implementation of stringent water resources management, as a key government policy on water. Thus, monitoring of water resources has been strengthened, being a main component of the hydrological work in recent years. Compared with routine hydrological monitoring, water resources monitoring pays more attention to the quantity and quality variations of regional waters, to reflect the status of water in river basins and administrative regions. In this paper, the overall layout of the hydrometric network in China is presented, monitoring efforts of the natural water cycle and water consumptions are analyzed, methodologies of water resources monitoring, which are commonly applied in the country, are summed up. Taking the hydrometric network planning on interprovincial boundary waterbodies as example, a summary of the planning at interprovincial boundary river sections is presented. The planning can meet the need of water resources management of administrative divisions. It can also improve the overall water resources monitoring for the country.

  3. A CLIMATOLOGY OF WATER BUDGET VARIABLES FOR THE NORTHEAST UNITED STATES

    EPA Science Inventory

    This dataset provided only by the Northeast Regional Climatic Center is the basis for A Climatology of Water Budget Variables for the Northeast United States (Leathers and Robinson 1995). Climatic division precipitation and temperature data are used to calculate water budget vari...

  4. WATER SUPPLY AND WATER RESOURCES DIVISION'S RESPONSE TO WATERBORNE DISEASE OUTBREAKS

    EPA Science Inventory

    The WSWRD in NRMRL/ORD has had a successful collaborative relationship with the Cetners for Disease Control & Prevention (CDCP) for over twenty years. When invited, EPA has supplied technical assistance and advice on traking causative events, evaluation of drinking water problems...

  5. 76 FR 19124 - United States Section, Notice of Availability of a Draft Supplemental Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO United States Section... States Section, International Boundary and Water Commission, United States and Mexico (USIBWC). ACTION..., Environmental Management Division, United States Section, International Boundary and Water Commission; 4171 N...

  6. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  7. 76 FR 50726 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA Strategic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Activities; Proposed Collection; Comment Request; EPA Strategic Plan Information on Source Water Protection... submitting comments. E-mail: [email protected] . Mail: Water Docket, Environmental Protection Agency, EPA.../epahome/dockets.htm . FOR FURTHER INFORMATION CONTACT: Beth Hall, Drinking Water Protection Division...

  8. Comparative Evaluation of Alternative Disinfectants for Drinking Water and Wastewater Treatment

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) of the U.S. Environmental Protection Agency’s (EPA) National Risk Management Research Laboratory (NRMRL) initiated a research program to evaluate the performance of various disinfectants that could potentially be used in drink...

  9. 76 FR 2683 - Notice of a Project Waiver of Section 1605: (Buy American Requirement) of the American Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Water State Revolving Fund (CWSRF)/ARRA loan recipient, for the purchase of Air Release Vacuum (ARV... CONTACT: Abimbola Odusoga, Environmental Engineer, Water Division, Infrastructure Office (WTR-4), (415... provides drinking water and waste water treatment services to municipalities in the Chino Basin. The Church...

  10. 75 FR 76979 - Agency Information Collection Activities: Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... persons and from American Indian and Alaskan Native Village community water systems and not-for-profit non... Activities: Submission to OMB for Review and Approval; Comment Request; 2011 Drinking Water Infrastructure...: Robert Barles, Drinking Water Protection Division (Mail Code 4606M), Office of Ground Water and Drinking...

  11. 75 FR 6023 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... Support of EPA's Third Six-Year Review of National Primary Drinking Water Regulations (Renewal); EPA ICR..., Office of Ground Water and Drinking Water, Standards and Risk Management Division (MC 4607M...: Contaminant Occurrence Data in Support of EPA's Third Six- Year Review of National Primary Drinking Water...

  12. Hydraulic Study of the Water Supply to the City of Seville through Its Aqueduct between the 17th and 19th Centuries

    NASA Astrophysics Data System (ADS)

    Bandrés, Candela; Robador, María Dolores; Albardonedo, Antonio

    2017-10-01

    The aqueduct of the Caños de Carmona was in operation from 1172 until its demolition in 1912.Its infrastructure was an essential resource to supply water to the city of Seville. This study attempts to analyse the supply and distribution system used in the city in the Modern Age. The research is focused mainly on obtaining water from the Santa Lucia spring to 19 km in Alcala de Guadaira, its route through the aqueduct, the division for the distribution between different users in the general partition ark and its subsequent distribution to the final destinations. This study aims to develop a hypothesis about the principles of water distribution through the city and to estimate the percentage of water going to each client based on the theoretical concession that should reach each home.

  13. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    USGS Publications Warehouse

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. This dataset also contains hydrologic information used to estimate transmissivity from specific capacity at selected well locations. Data were compiled from published reports, consultant reports, and from well-test records on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources.

  14. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  15. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  16. EJ SMALL GRANT: SAFE DRINKING WATER FOR LOW INCOME COMMUNITIES

    EPA Science Inventory

    Legal Aid Services of Oregon (LASO) has determined that both EPA Region 10 and the Oregon Health Division have identified regulatory defects in the Safe Drinking Water Act with respect to migrant farmworker drinking water sources. Lack of mandatory testing, lack of enforcement a...

  17. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends in 20 Piedmont streams in the Chattahoochee and Etowah river basins. We found trends through time at mos...

  18. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends at 45 sites in 10 Piedmont streams in the Chattahoochee and Etowah river basins. The strongest overall tre...

  19. GWERD CAFO Research Program – CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  20. 76 FR 51970 - Agency Information Collection Activities; Proposed Collection; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... recordkeeping burden for this collection of information is estimated to average 2.32 hours per response. Burden... . FOR FURTHER INFORMATION CONTACT: Robert E. Smith, Office of Ground Water and Drinking Water/Drinking Water Protection Division/Underground Injection Control Program, Mailcode: 4606M, Environmental...

  1. Publications related to the National Water Data Exchange (NAWDEX), 1971-79

    USGS Publications Warehouse

    Beverly M. Myers, (compiler)

    1979-01-01

    The National Water Data Exchange (NAWDEX), formally established in January 1976, is a national confederation of water-oriented organizations working to improve access to water data. Its primary objective is to assist users of water data in the identification, location, and acquistion of useful data. NAWDEX is coordinated by a central Program Office, located within the Water Resources Division of the U.S. Geological Survey, which provides data-exchange policy and guidelines to all participants in the program. In addition to the Program Office, there is a network of Assistance Centers located in 45 States and Puerto Rico which provides direct access to NAWDEX. Membership in NAWDEX is voluntary and open to any water-oriented organization that wishes to participate. This publication contains an alphabetical listing, by author, of the reports that have been produced by the NAWDEX Program Office since 1975, as well as reports from other sources that relate to the development of the NAWDEX program. (Woodard-USGS)

  2. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  3. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  4. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  5. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 1999

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1999.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 25 streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 107 observation wells.

  6. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.

  7. Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.

  8. Utah water use data: Public water supplies, 1960-1978

    USGS Publications Warehouse

    Mills, David; Jibson, Ronald; Riley, James; Hooper, David; Schwarting, Richard

    1980-01-01

    This report was prepared as a part of the Statewide cooperative water-resources investigation program administered jointly by the Utah Department of Natural Resources, Division of Water Rights and the United States Geological Survey.  The program is conducted to meet the water administration and water-resources data needs of the State, as well as the water information needs of many units of government and the general public.

  9. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    USGS Publications Warehouse

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.

  10. 76 FR 26721 - Re-Issuance of a General Permit to the National Science Foundation for the Ocean Disposal of Man...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Scientist, Marine Pollution Control Branch, Oceans and Coastal Protection Division (4504T), U.S... requires the NSF to report by June 30 of every year to the Director of the Oceans and Coastal Protection... the Director of the Oceans and Coastal Protection Division, in the Office of Water, at EPA...

  11. National Program for Inspection of Non-Federal Dams. Millen Lake Dam (NH 00236), NHWRB Number 245.04, Connecticut River Basin, Washington, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    Engineering Branch Engineering Division CARNEY M. TERZIAN, KENBER Design Branch Engineering Division RICHARD DIBKO CHIRA Water Control Branch...State of New Hampshire. Authorization and notice to proceed were issued to S E A Consultants Inc. under a letter of November 5, 1979 from William

  12. Acute Oral Toxicity of 3-Chloro-4,4-dimethyl-2-oxazolidinone (Compound 1) in ICR Mice

    DTIC Science & Technology

    1990-10-01

    number) FIELD GROUP SUB-GROUP Acute Oral Toxicity, N- Chloramine , Mouse, Mammalian Toxicology, Water Disinfectant , 3-Chloro-4, 4 -dimethyl-2...Amer Ind Hyg Assoc Q 1943; 10:93-96. 7. Mora EC, Kohl HH, Wheatley WB, et al. Properties or a new chloramine disinfectant and detoxicant. Poultry Sci...ORGANIZATION Mammalian Toxicology (If applicable) US Army Biomedical Research Division of Toxicology SGRD-ULE- T and Development Laboratory 6c. ADDRESS

  13. Divisions of general practice in Australia: how do they measure up in the international context?

    PubMed Central

    Smith, Judith; Sibthorpe, Beverly

    2007-01-01

    Background Since the late 1980s, there has been evidence of an international trend towards more organised primary care. This has taken a number of forms including the emergence of primary care organisations. Underpinning such developments is an inherent belief in evidence that suggests that well-developed primary care is associated with improved health outcomes and greater cost-effectiveness within health systems. In Australia, primary care organisations have emerged as divisions of general practice. These are professionally-led, regionally-based, and largely government-funded voluntary associations of general practitioners that seek to co-ordinate local primary care services, and improve the quality of care and health outcomes for local communities. Discussion In this paper, we examine and debate the development of divisions in the international context, using six roles of primary care organisations outlined in published research. The six roles that are used as the basis for the critique are the ability of primary care organisations to: improve health outcomes; manage demand and control costs; engage primary care physicians; enable greater integration of health services; develop more accessible services in community and primary care settings; and enable greater scrutiny and assurance of quality of primary care services. Summary We conclude that there has been an evolutionary approach to divisions' development and they now appear embedded as geographically-based planning and development organisations within the Australian primary health care system. The Australian Government has to date been cautious in its approach to intervention in divisions' direction and performance. However, options for the next phase include: making greater use of contracts between government and divisions; introducing and extending proposed national quality targets for divisions, linked with financial or other incentives for performance; government sub-contracting with state-based organisations to act as purchasers of care; pursuing a fund-holding approach within divisions; and developing divisions as a form of health maintenance organisation. The challenge for the Australian Government, should it wish to see divisions' role expand, is to find mechanisms to enable this without compromising the relatively strong GP engagement that increasingly distinguishes divisions of general practice within the international experience of primary care organisations. PMID:17626642

  14. 76 FR 22724 - Draft Program Environmental Impact Statement/Environmental Impact Report (PEIS/R) and Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... (Restoration Goal); and (2) to reduce or avoid adverse water supply impacts to all of the Friant Division long... populations of salmon and other fish. Water Management Goal--To reduce or avoid adverse water supply impacts... Bureau of Reclamation and the California Department of Water Resources (DWR) have prepared a joint Draft...

  15. 75 FR 8698 - Clean Water Act Section 303(d): Availability of Ten Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9118-5] Clean Water Act Section 303(d): Availability of Ten...: Notice of availability. SUMMARY: This notice announces the availability for comment on the administrative... Smith, Environmental Protection Specialist, Water Quality Protection Division, U.S. Environmental...

  16. 76 FR 53123 - Agency Information Collection Activities; Proposed Collection; Comment Request on Two Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... at least 25 percent (measured on an average monthly basis) of the water withdrawn for cooling... subject line) Mail: Water Docket, Environmental Protection Agency, Mailcode: 4101T, 1200 Pennsylvania Ave... . FOR FURTHER INFORMATION CONTACT: Amelia Letnes, State and Regional Branch, Water Permits Division, OWM...

  17. BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development

    PubMed Central

    Hunt, Lee

    2010-01-01

    The initiation of stomatal development in the developing Arabidopsis epidermis is characterized by an asymmetric ‘entry’ division in which a small cell, known as a meristemoid, and a larger daughter cell is formed. The meristemoid may undergo further asymmetric divisions, regenerating a meristemoid each time, before differentiating into a guard mother cell which divides symmetrically to form a pair of guard cells surrounding a stomatal pore. Recently EPF2 and BASL have emerged as regulators of these asymmetric divisions and here we present results indicating that these two factors operate independently to control stomatal development PMID:20220310

  18. Water-resources activities in Utah by the U.S. Geological Survey, July 1, 1987 to September 30, 1988

    USGS Publications Warehouse

    Dragos, Stefanie L.; Gates, Joseph S.

    1989-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from July 1, 1987, to September 30, 1988. The program in Utah during this period consisted of 29 projects; a discussion of each project is given in the main body of the report. Short descriptions are given at the end of the report for three projects proposed to be started on or after October 1, 1988. The following sections outline the basic mission and program of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from July 1987 to September 1988.

  19. Water-resources activities in Utah by the U.S. Geological Survey: July 1, 1986, to June 30, 1987

    USGS Publications Warehouse

    Dragos, Stefanie L.

    1988-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from July 1, 1986 to June 30, 1987. The program in Utah during this period consisted of 24 projects; a discussion of each project is given in the main body of the report. Short descriptions are given at the end of the report for six projects proposed to be started on or after July 1987. The following sections outline the basic mission and program of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from July 1986 to June 1987.

  20. Water-resources activities in Utah by the U.S. Geological Survey, July 1, 1985, to June 30, 1986

    USGS Publications Warehouse

    Gates, Joseph S.; Dragos, Stefanie L.

    1987-01-01

    This report contains summaries of the progress of water-resources studies in Utah by the U.S. Geological Survey, Water Resources Division, Utah District, from July 1, 1985 to June 30, 1986. The program in Utah during this period consisted of 22 projects, and a discussion of each project is given in the main body of the report. Short descriptions are given at the end of the report for six proposed projects to be started on or after July 1986. The following sections outline the basic mission and program of the Water Resources Division, the organizational structure of the Utah District, the distribution of District funding in terms of source of funds and type of activity funded, and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from July 1985 to June 1986.

  1. Digital data base of lakes on the North Slope, Alaska

    USGS Publications Warehouse

    Walker, Kim-Marie; York, James; Murphy, Dennis; Sloan, C.E.

    1986-01-01

    The National Mapping Division and Water Resources Division of the U.S. Geological Survey have produced a digital data base of approximately 23,330 lakes on the North Slope of Alaska. The inventoried region consists of the area north of the 69th parallel and is composed of sixteen 1° x 3° quadrangles. The data base includes (1) locations of lake centers in latitude and longitude, (2) a unique number for each lake within a quadrangle, and (3) acreage for water classes (deep, shallow or turbid, and ice) within each lake and lake total. The digital data base is an easily accessible storage and retrieval system that will allow for rapid identification of a particular lake or region of lakes and its characteristics. The data base is designed to accommodate field study data such as lake depth, water quality, volume of water, ice thickness, and other pertinent information.

  2. Water-resources activities of the U.S. Geological Survey in Utah, October 1, 1994, to September 30, 1995

    USGS Publications Warehouse

    Hardy, Ellen E.; Dragos, Stefanie L.

    1996-01-01

    This report contains summaries of the progress of water-resources studies in Utah done by the U.S. Geological Survey, Water Resources Division, Utah District, from October 1,1994, to September 30, 1995. The waterresources program in Utah during this period consisted of 23 projects; a discussion of each project is presented in the main body of this report.The following sections outline the origin of the U.S. Geological Survey, the basic mission of the Water Resources Division, the organizational structure of the Utah District, office addresses of the Utah District, the distribution of program funding as source of funds and type of activity funded in Federal Fiscal Year (FY) 1995 (October 1, 1994, to September 30,1995), and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1994 to September 1995.

  3. Water-resources activities of the U.S. Geological Survey in Utah, October 1, 1996, to September 30, 1997

    USGS Publications Warehouse

    Hardy, Ellen E.; Dragos, Stefanie L.

    1998-01-01

    This report contains summaries of the progress of water-resources activities of the U.S. Geological Survey (USGS), Water Resources Division, Utah District, from October 1, 1996, to September 30,1997. The waterresources program in Utah during this period consisted of 25 projects, and a discussion of each project is presented.The following sections outline the origin of the USGS, the mission of the Water Resources Division, the organizational structure of the Utah District, office addresses of the Utah District, the distribution of program funding as source of funds and type of activity funded in Federal Fiscal Year 1997 (FY97) (October 1,1996, to September 30, 1997), and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1996 to September 1997.

  4. Water-resources activities of the U.S. Geological Survey in Utah, October 1, 1995, to September 30, 1996

    USGS Publications Warehouse

    Hardy, Ellen E.; Dragos, Stefanie L.

    1997-01-01

    This report contains summaries of the progress of water-resources activities of the U.S. Geological Survey (USGS), Water Resources Division, Utah District, from October 1, 1995, to September 30, 1996. The waterresources program in Utah during this period consisted of 22 projects; a discussion of each project is presented in the main body of this report.The following sections outline the origin of the USGS, the mission of the Water Resources Division, the organizational structure of the Utah District, office addresses of the Utah District, the distribution of program funding as source of funds and type of activity funded in Federal Fiscal Year 1996 (FY96) (October 1, 1995, to September 30, 1996), and the agencies with which the District cooperates. The last part of the introduction is a list of reports produced by the District from October 1995 to September 1996.

  5. Surface water records of Texas, 1964

    USGS Publications Warehouse

    ,

    1965-01-01

    The surface-water records for the 1964 water year for gaging stations, partial-record stations, miscellaneous sites, and base-flow studies within the State of Texas are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of Trigg Twichell, district chief, Water Resources Division. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water supply papers, entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Texas were contained in Parts 7 and 8 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs. Records will be published in Geological Survey water-supply papers at 5-year intervals.

  6. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    PubMed Central

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  7. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    USGS Publications Warehouse

    Crosthwaite, E. G.

    1976-01-01

    meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

  8. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  9. Acid rain and its effects on streamwater quality on Catoctin Mountain, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, O.P.

    1992-01-01

    The U.S. Geological Survey (USGS) is the Nation's largest water-science and water-information agency. The mission of the Water Resources Division of the USGS is to provide the hydrologic information and understanding needed for the best management of the Nation's water resources. To fulfill this mission, the USGS conducts water-quality and other types of investigations of the Nation's surface- and ground-water resources.

  10. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Justine P.

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has majormore » ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.« less

  11. 15 years in promoting the use of isotopic and nuclear technique for combating land degradation and soil erosion: the contribution of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Toloza, Arsenio; Heng, Lee

    2017-04-01

    The world population will exceed 9 billion by the year 2050 and food production will need to be approximately doubled to meet this crucial demand. Most of this increase will occur in developing countries, where the majority of the population depends on agriculture and their land for their livelihoods. Reports from the Intergovernmental Panel on Climate Change (IPCC) predicted negative impact of climate change, threatening global food security. In addition, the intensification of agricultural activities has increased pressure on land and water resources, resulting in different forms of soil degradation, of which soil erosion and associated sedimentation are worsening. Worldwide economic costs of agricultural soil loss and associated sedimentation downstream have been estimated at US 400 billion per year. As a result of climate change, world average soil erosion is expected to further increase significantly. Adapting to climate change requires agricultural soil and water management practices that make agricultural production systems resilient to drought, floods and land degradation, to enhance the conservation of the natural resource base for sustainable upland farming. These current concerns with ensuring sustainable use and management of agroecosystems create an urgent need for reliable quantitative data on the extent and magnitude of soil resource degradation over several spatial and time scales to formulate sound policies and management measures. Integrated isotopic approaches can help in targeting adapted and effective soil-water conservation measures to control soil degradation and therefore contribute to positive feedback mechanisms to mitigate climate change impact on soil and water resources. Set up 60 years ago as the world's centre for cooperation in the nuclear field, the International Atomic Energy Agency (IAEA) promotes the safe, secure and peaceful use of nuclear technologies. Since the end of the 1990s, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has developed research and development activities and capacity building to combat soil degradation (especially soil erosion) and to foster climate smart agriculture. More than 70 FAO/IAEA Member States have benefitted from the technical support and guidance in using fallout radionuclides (FRNs) and Compound-Specific Stable Isotope (CSSI) techniques to trace soil movement and assess soil erosion at different spatial and temporal scales, and to evaluate the effectiveness of soil conservation strategies to ensure sustainable land management. This contribution summarizes the historical background and the latest innovative activities conducted by the Joint FAO/IAEA Division, as well as the main advantages and complementarity of stable and radioisotopic tracers to conventional techniques when investigating land degradation. As examples of the significant role played by the Joint FAO/IAEA Division, two major outcomes achieved in Africa (i.e. Madagascar and Morocco) through the use of isotopic and nuclear techniques will be elaborated. The authors will also report on a new 5-year Co-ordinated Research Project (CRP) funded by the IAEA on "Nuclear Techniques for a Better Understanding of the Impact of Climate Change on Soil Erosion in Upland Agro-ecosystems" which involves key research institutions from 12 participating countries.

  12. Carbon Nanotube Membranes for Water Purification

    NASA Astrophysics Data System (ADS)

    Bakajin, Olgica

    2009-03-01

    Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.

  13. 24 CFR 4.36 - Action by the Ethics Law Division.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Action by the Ethics Law Division... the Ethics Law Division. (a) After review of the Inspector General's report, the Ethics Law Division... that a violation of Section 103 or this subpart B has occurred. (b) If the Ethics Law Division...

  14. 24 CFR 4.36 - Action by the Ethics Law Division.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Action by the Ethics Law Division... the Ethics Law Division. (a) After review of the Inspector General's report, the Ethics Law Division... that a violation of Section 103 or this subpart B has occurred. (b) If the Ethics Law Division...

  15. 24 CFR 4.36 - Action by the Ethics Law Division.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Action by the Ethics Law Division... the Ethics Law Division. (a) After review of the Inspector General's report, the Ethics Law Division... that a violation of Section 103 or this subpart B has occurred. (b) If the Ethics Law Division...

  16. 24 CFR 4.36 - Action by the Ethics Law Division.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Action by the Ethics Law Division... the Ethics Law Division. (a) After review of the Inspector General's report, the Ethics Law Division... that a violation of Section 103 or this subpart B has occurred. (b) If the Ethics Law Division...

  17. 24 CFR 4.36 - Action by the Ethics Law Division.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Action by the Ethics Law Division... the Ethics Law Division. (a) After review of the Inspector General's report, the Ethics Law Division... that a violation of Section 103 or this subpart B has occurred. (b) If the Ethics Law Division...

  18. Surface Water Records of Colorado

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1962-01-01

    The surface-water records for the 1962 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of J. W. Odell, district engineer, Surface Water Branch.

  19. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  20. A case study in pollution prevention at the Northrop Grumman B-2 division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haltmeyer, T.

    1995-12-31

    In 1990, Northrop Grumman Corporation outlined a pollution prevention program to be jointly chartered by all operating elements. This concept was expanded by the B-2 Division, to become a comprehensive industrial multimedia program known as Zero 2000. The Zero 2000 program mandates the elimination of releases of hazardous materials to air, land and water by 2000. Northrop Grumman B-2 Division has effectively identified and defined environmental needs associated with the operations and is meeting or exceeding pollution prevention goals to affect measurable improvements to the quality of air, land and water. Through the Zero 2000 program, they have achieved amore » reduction of over 85% in hazardous waste generated and a reduction of ozone-depleting chemical emissions by 90%. In addition, they have reduced mobile air pollution by approximately 280 tons per year; reduced water usage by an average of 34%; and, have reduced solid waste disposal by 55%. Their environmental needs were defined through a grass roots assessment by environmental staff members and other professionals. This evaluation emerged from a basic Northrop Grumman philosophy to find innovative solutions to technological problems.« less

  1. Irrigation water use for the Fort Lyon Canal, southeastern Colorado, 1989-90

    USGS Publications Warehouse

    Dash, R.G.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Bent County Board of County Commissioners, began a study to evaluate irrigation water use quanti- tatively for about 91,630 acres of farmland irrigated from the 103.7-mile-long Fort Lyon Main Canal in the Arkansas River Valley of southeastern Colorado. This report provides information from 1980 and 1990 for four hydrologic components of irrigation water use: Surface-water withdrawals, conveyance losses, ground-water withdrawals, and estimates of threretical crop consumptive use. Surface-water withdrawals for the Fort Lyon Canal were 211,150 acre-feet (about 2.3 acre-feet per acre) during 1989 and 202,000 acre-feet (about 2.2 acre-feet per acre) during 1990. Conveyance losses occurred during the transport of water in the unlined Fort Lyon Canal. Conveyance losses were as much as 72 (acre-feet per day) per mile in the first division of the canal and generally decreased in the downstream canal divisions. Ground-water withdrawals for the Fort Lyon Canal were estimated to be 38,890 acre-feet (about 0.8 acre-foot per acre irrigated ground water) during 1989 and 33,970 acre-feet (about 0.7 acre-foot per acre irrigated by ground water) during 1990. Theoretical crop consumptive use was estimated to be 227,530 acre-feet (about 2.7 acre-feet per acre of cropland) during 1989 and 251, 130 acre-feet (about 2.9 acre-feet per acre of cropland) during 1990. The total crop irrigation requirement needed from irrigation withdrawals was 172,100 acre-feet (about 2.0 acre-feet per acre of cropland) during ` 1989 and 190,050 acre-feet (about 2.2 acre-feet per acre of cropland) during 1990. Crops cultivted in the five divisions of the canal were alfalfa, sorghum, corn, wheat, pasture, and spring grains.

  2. Ground-water data collected in the Missouri River Basin units in Kansas during 1949

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the United States Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the Basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the State Geological Survey of Kansas with the cooperation of the Division of Sanitation of the Kansas State Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture. Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis, Rush, and Trego Counties; the Glen Elder Unit in Mitchell County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County. Most of the ground-water data presented in this report were collected during 1949. Most of the data collected in these areas prior to the end of 1947 were presented in a report that was mimeographed in September 1948 and most of the data collected during 1948 were presented in a report that was mimeographed in November 1949. This report is the third of a series of annual reports on ground-water data collected in the Missouri Basin units in Kansas. These annual reports are a means of more promptly releasing for administrative use the data collected each year. Data that are included in the annual reports for a given area will be assembled later in a report on the geology and hydrology of that area. An index of the data collected and presented in the 1947, 1948, and 1949 reports is given in table 1.

  3. Ground-water data collected in the Missouri River Basin units in Kansas during 1948

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the U.S. Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the Kansas State Geological Survey with the cooperation of the Division of Sanitation of the Kansas State Board of health and the Division of Water Resources of the Kansas State Board of Agriculture.Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis and Trego Counties; the Glen Elder Unit in Mitchell County; the Kanopolis Unit in McPherson and Saline Counties; the Kirwin Unit in Phillips, Smith, and Osborne Counties; the St. Francis Unit in Cheyenne County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County.Most of the ground-water data presented in this report were collected during 1948. Most of the data collected in these areas prior to the end of 1947 were presented in a report mimeographed in September 1948. This report and the previous report are the first two of a series of annual reports on ground-water studies in the Missouri Basin units in Kansas. These reports are a means of more promptly releasing for administrative use the data collected each year. Data for a given area that are included in the annual reports will be assembled later in a report on the geology and hydrology of that area.

  4. OXIDANT/DISINFECTANT CHEMISTRY AND IMPACTS ON LEAD CORROSION

    EPA Science Inventory

    In response to continued elevated lead levels throughout the District of Columbia's distribution system, a collaboration was begun with the District of Columbia's Water & Sewer Authority (WASA) and Water Resources Division of U. S. Environmental Protection Agency's (USEPA) Office...

  5. ARSENIC SEPARATION FROM WATER USING ZEOLITES: SYMPOSIUM

    EPA Science Inventory

    NRMRL-ADA-01134 Shevade, S, Ford*, R., and Puls*, R.W. "Arsenic Separation from Water Using Zeolites." In: 222nd ACS National Meeting, ACS Environmental Chemistry Division Symposia, Chicago, IL, 08/26-30/2001. 2001. 04/23/2001 This...

  6. 75 FR 34173 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Division, Fort Smith, AR: January 6, 2009 TA-W-73,427: Haldex Hydraulics Corporation, Statesville Location... America, Inc., Cinnaminson, NJ: March 1, 2009 TA-W-73,726: Pentair Water, Water Pump Manufacturing Plant...

  7. Water resources activities in Kentucky, 1986

    USGS Publications Warehouse

    Faust, R. J.

    1986-01-01

    The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)

  8. Polarized Light Microscopy in Reproductive and Developmental Biology

    PubMed Central

    KOIKE-TANI, MAKI; TANI, TOMOMI; MEHTA, SHALIN B.; VERMA, AMITABH; OLDENBOURG, RUDOLF

    2016-01-01

    SUMMARY The polarized light microscope reveals orientational order in native molecular structures inside living cells, tissues, and whole organisms. It is a powerful tool used to monitor and analyze the early developmental stages of organisms that lend themselves to microscopic observations. In this article, we briefly discuss the components specific to a traditional polarizing microscope and some historically important observations on: chromosome packing in the sperm head, the first zygote division of the sea urchin, and differentiation initiated by the first asymmetric cell division in the sand dollar. We then introduce the LC-PolScope and describe its use for measuring birefringence and polarized fluorescence in living cells and tissues. Applications range from the enucleation of mouse oocytes to analyzing the polarized fluorescence of the water strider acrosome. We end with new results on the birefringence of the developing chick brain, which we analyzed between developmental stages of days 12–20. PMID:23901032

  9. Water-resources activities in Florida, 1988-89

    USGS Publications Warehouse

    Glenn, Mildred E.

    1989-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1988. These activities are part of the Federal program of appraising the Nation 's water resources. Included are brief descriptions of the nature and scope of all active studies, summaries of significant results for 1988 and anticipated accomplishments during 1989. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water-resources investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be used. Water data and information required to implement sound water-management programs in highly urbanized areas relate to the quantity and quality of storm runoff, sources of aquifer contamination, injection of wastes into deep strata, underground storage of freshwater, artificial recharge of aquifers, environmental effects of reuse of water, and effects of land development on changes in ground-and surface-water quality. In some parts of the State broad areas are largely rural. Future growth is anticipated in many of these. This report is intended to inform those agencies vitally interested in the water resources of Florida as to the current status and objectives of the U.S. Geological Survey cooperative program. The mission of this program is to collect, interpret, and publish information on water resources. Almost all of this work is done in cooperation with other public agencies. (USGS)

  10. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ..., Comparative Medicine Department, Including On-Site Leased From Charles River Laboratories and Execupharm, Inc... & Development Division, Comparative Medicine Department, including on-site leased workers from Charles River... Division, formerly known as Warner Lambert Company, Comparative Medicine Department. The Department has...

  11. National Program for Inspection of Non-Federal Dams. Highland Lakes-Lower Lake Dam (MA 00598), Connecticut River Basin, Goshen, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    approval. CARNEY M. TERZLAN, KDIBER Design Branch Engineering Division Water\\ontrol Brancr%.J Engineering Division ARAiQAST MANTESI, CHIRA Geotechnical...issued to Hayden, Harding & Buchanan, Inc. on 26 June 1981 by William E. Hodgson Jr., Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0006 has been

  12. National Program for Inspection of Non-Federal Dams. Scovill Reservoir Dam (CT 00431), Lower Connecticut River Basin, Haddam, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1980-01-01

    Engineering Branch Engineering Division CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division S, RICHARD DIE O CHIRA Water Control Branch...Associates, P.C. under a letter of 19 October 1979 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0001 has been assigned

  13. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  14. 40 CFR 147.2250 - State-administered program-Class I, III, IV, and V wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the Federal Register on June 25, 1984. (1) Utah Water Pollution Control Act, Utah Code Annotated... Executive Secretary of Utah Water Pollution Control Committee on August 16, 1990). (b) Other laws. The... Department of Health, Division of Environmental Health, Bureau of Water Pollution Control, to EPA Region VIII...

  15. 40 CFR 147.2250 - State-administered program-Class I, III, IV, and V wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the Federal Register on June 25, 1984. (1) Utah Water Pollution Control Act, Utah Code Annotated... Executive Secretary of Utah Water Pollution Control Committee on August 16, 1990). (b) Other laws. The... Department of Health, Division of Environmental Health, Bureau of Water Pollution Control, to EPA Region VIII...

  16. 76 FR 80366 - Clean Water Act Section 303(d): Availability of One Total Maximum Daily Load (TMDL) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9610-6] Clean Water Act Section 303(d): Availability of One...: Notice of availability. SUMMARY: This notice announces the availability for comment on the administrative..., Environmental Protection Specialist, Water Quality Protection Division, U.S. Environmental Protection Agency...

  17. Mitigation in riparian areas: Questions, concerns and recommendations

    Treesearch

    Tony Barron

    1996-01-01

    The management of seven thousand acres in the Rio Grande Valley State Park presents a unique management challenge and opportunity. The Open Space Division defines a riparian area as "any area of land influenced directly by permanent water". The influence of permanent water or water flows produces visible vegetation and visible vegetative characteristics on...

  18. 76 FR 33753 - Modification of the Expiration Date for the National Pollutant Discharge Elimination System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Stormwater and Nonpoint Source Section, Water Protection Division, Environmental Protection Agency, Region 4.../region4/water/permits/stormwater.html . C. How and to whom do I submit comments? You may submit comments... earlier. II. Background of Permit A. Statutory and Regulatory History The Clean Water Act (CWA...

  19. The Benefit-Cost Relationship in Entry Job Training in Water Distribution.

    ERIC Educational Resources Information Center

    Reames, J. P. (Jim)

    The benefit-cost relationship analysis concerns the cost effectiveness of employment and training in the Water Distribution Division of the Dallas Water Utilities Department and deals specifically with 104 entry workers hired to become pipe fitters. Half of the entry workers were enrolled in the Public Service Careers (PSC) training program and…

  20. Investigations and research in Nevada by the Water Resources Division, U.S. Geological Survey, 1982

    USGS Publications Warehouse

    Katzer, Terry; Moosburner, Otto; Nichols, W.D.

    1984-01-01

    The Water Resources Division, U.S. Geological Survey, is charged with (1) maintaining a hydrologic network in Nevada that provides information on the status of the State 's water resources and (2) engaging in technical water-resources investigations that have a high degree of transferability. To meet these broad objectives, 26 projects were active during fiscal year 1982, in cooperation with 36 Federal, State, and local agencies. Total funds were $3,319,455, of which State and local cooperative funding amounted to $741,500 and Federal funding (comprised of Geological Survey Federal and cooperative program plus funds from six other Federal agencies) amounted to $2,577,955 for the fiscal year. Projects other than continuing programs for collection of hydrologic data included the following topics of study: geothermal resources, areal ground-water resources and ground-water modeling, waste disposal , paleohydrology, acid mine drainage, the unsaturated zone, stream and reservoir sedimentation, river-quality modeling, flood hazards, and remote sensing in hydrology. In total, 26 reports and symposium abstracts were published or in press during fiscal year 1982. (USGS)

  1. Environmental study of ERTS-1 imagery: Lake Champlain and Vermont

    NASA Technical Reports Server (NTRS)

    Lind, A. O.; Henson, E. B.; Pelton, J. O.

    1973-01-01

    Environmental concerns of the State of Vermont currently being stressed include water quality in Lake Champlain and a state-wide land use and capability plan. Significant results obtained from ERTS-1 relate directly to the above concerns. Industrial water pollution and turbidity in Lake Champlain have been identified and mapped and the ERTS pollution data will be used in the developing court suit which Vermont has initiated against the polluters. ERTS imagery has also provided a foundation for updating and revising land use inventories. Major classes of land use have been identified and mapped, and substantial progress has been made toward the mapping of such land use divisions as crop and forest type, and wetlands.

  2. 77 FR 35652 - Approval and Promulgation of Implementation Plans and Designations of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency..., Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S... Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental...

  3. Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations

    ERIC Educational Resources Information Center

    Timmerman, Maria A.

    2014-01-01

    If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…

  4. GROUND WATER REMEDIATION RESEARCH: ENHANCED BIOREMEDIATION AND MONITORED NATURAL ATTENUATION

    EPA Science Inventory

    An overview of ground water remediation research conducted at the Subsurface Protection and Remediation Division is provided. The focus of the overview is on Enhanced Bioremediation and Monitored Natural Attenuation research for the remediation of organic and inorganic contamina...

  5. 33 CFR 329.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... all Corps of Engineers districts and divisions having civil works responsibilities. ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Applicability. 329.2 Section 329.2 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE...

  6. 76 FR 18548 - Clean Water Act Section 303(d): Final Agency Action on Three Total Maximum Daily Loads (TMDLs) in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Smith at the address below. Please contact Ms. Smith to schedule an inspection. FOR FURTHER INFORMATION CONTACT: Diane Smith, Environmental Protection Specialist, Water Quality Protection Division, U.S. EPA...

  7. Annual water-resources review, White Sands Missile Range: 1971

    USGS Publications Warehouse

    Cruz, R.R.

    1972-01-01

    This report presents water-resource information that was collected at White Sands Missile Range during 1971 and early 1972 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality, percipitation, and surface-water runoff are summarized in the report. The data were obtained as a result of the continuing water-resources basic-data collection program sponsored by the Facilities Engineering Directorate, White Sands Missile Range.

  8. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was developed by a team of scientists and engineers from NASA s Habitability and Environmental Factors Division in the Space Life Sciences Directorate at Johnson Space Center, the Wyle Integrated Science and Engineering Group in Houston, Texas, the University of Utah, and Iowa State University. The CWQMK was flown and deployed as a Station Development Test Objective (SDTO) experiment on ISS. The goal of the SDTO experiment was to evaluate the acceptability of CSPE technology for routine water quality monitoring on ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on ISS. The results obtained from the SDTO experiment are also reported and discussed in detail.

  9. Comparison of two cell lysis procedures for recovery of microcystins in water samples from silver lake in Dover, Delaware, with microcystin producing cyanobacterial accumulations

    USGS Publications Warehouse

    Loftin, Keith A.; Meyer, Michael T.; Rubio, Fernando; Kamp, Lisa; Humphries, Edythe; Whereat, Ed

    2008-01-01

    A collaboration was developed between Abraxis, LLC, the State of Delaware Department of Natural Resources and Environmental Control Division of Water Resources Environmental Laboratory, the University of Delaware, and the United States Geological Survey to investigate the efficacy of the QuikLyse procedure developed by Abraxis, LLC as an alternative cell-lysis technique suitable for use with an existing liquid chromatography/tandem mass spectrometry research method developed at the United States Geological Survey Organic Geochemistry Research Laboratory to analyze cyanotoxins. A comparison of three sequential freeze/thaw cycles versus QuikLyse, a proprietary chemical lysis procedure was conducted on four water samples collected from Silver Lake in Dover, Delaware. Results from the Abraxis Microcystins-DM enzyme-linked immunosorbent assay and liquid chromatography/tandem mass spectrometry were tabulated as a function of the cell lysis technique. Stastical comparison of percent relative standard deviations showed no significant difference (alpha = 0.05) between both cell-lysis techniques when measured by enzyme-linked immunosorbent assay or liquid chromatography/tandem mass spectrometry for three of the four samples.

  10. 75 FR 11918 - Hewlett Pachard Company, Business Critical Systems, Mission Critical Business Software Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Pachard Company, Business Critical Systems, Mission Critical Business Software Division, Openvms Operating... Business Software Division, Openvms Operating System Development Group, Including an Employee Operating Out... Company, Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating System...

  11. Evaluating the Economic and Social Benefits of Nutrient ...

    EPA Pesticide Factsheets

    New England’s coastal social-ecological systems are subject to chronic environmental problems, including water quality degradation. Researchers at EPA’s Office of Research and Development (ORD) Atlantic Ecology Division (AED) are piloting an effort to further understand how reduced water quality due to nutrient enrichment is affecting and may affect the economic prosperity, social capacity, and ecological integrity of coastal New England communities. This research is part of task 4.61 of ORD’s Sustainable and Healthy Communities Research Program (Integrated Solutions for Sustainable Communities: Social-Ecological Systems for Resilience and Adaptive Management in Communities - A Cape Cod Case Study). Concurrent with this effort, AED researchers are participating in EPA’s three-office effort (Office of Research and Development, Office of Policy, and Office of Water) to quantify and monetize the benefits of water quality improvements across the Nation. AED’s effort is a case study of changes in recreation demand and values due to changes in nutrients in Northeastern estuaries and freshwater ponds. This work is part of task 3.04A of the Safe and Sustainable Waters Research Program (National Water Quality Benefits: Economic Case Studies of Water Quality Benefits). Because of the complementarity between the two projects, this Supporting Statement describes and requests hours for focus groups and interviews for both of these research efforts. Our initial

  12. Water resources scientific information center

    USGS Publications Warehouse

    Cardin, C. William; Campbell, J.T.

    1986-01-01

    The Water Resources Scientific Information Center (WRSIC) acquires, abstracts and indexes the major water resources related literature of the world, and makes information available to the water resources community and the public. A component of the Water Resources Division of the US Geological Survey, the Center maintains a searchable computerized bibliographic data base, and publishers a monthly journal of abstracts. Through its services, the Center is able to provide reliable scientific and technical information about the most recent water resources developments, as well as long-term trends and changes. WRSIC was established in 1966 by the Secretary of the Interior to further the objectives of the Water Resources Research Act of 1964--legislation that encouraged research in water resources and the prevention of needless duplication of research efforts. It was determined the WRSIC should be the national center for information on water resources, covering research reports, scientific journals, and other water resources literature of the world. WRSIC would evaluate all water resources literature, catalog selected articles, and make the information available in publications or by computer access. In this way WRSIC would increase the availability and awareness of water related scientific and technical information. (Lantz-PTT)

  13. Long-range ordered vorticity patterns in living tissue induced by cell division

    NASA Astrophysics Data System (ADS)

    Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.

    2014-12-01

    In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.

  14. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  15. Exploring the Culture of Assessment within a Division of Student Affairs

    ERIC Educational Resources Information Center

    Julian, Nessa Duque

    2013-01-01

    The growing calls for accountability within higher education have mobilized student affairs divisions to develop practices that provide evidence of student learning and development. In order to do this effectively student affairs divisions understand the importance of creating, managing, and sustaining a culture of assessment. The purpose of this…

  16. Oranges, Posters, Ribbons, and Lemonade: Concrete Computational Strategies for Dividing Fractions

    ERIC Educational Resources Information Center

    Kribs-Zaleta, Christopher M.

    2008-01-01

    This article describes how sixth-grade students developed concrete models to solve division of fractions story problems. Students developed separate two-step procedures to solve measurement and partitive problems, drawing on invented procedures for division of whole numbers. Errors also tended to be specific to the type of division problem…

  17. The History and Development of the Alabama Division of the American Rehabilitation Counseling Association

    ERIC Educational Resources Information Center

    Templeton, Mary Anne

    2007-01-01

    The Alabama Division of the American Rehabilitation Association is an organization committed to representing those counselors who work in the field of rehabilitation across the state. The division is focused on offering leadership within the field of rehabilitation counseling, promoting professional development opportunities for counselors, and…

  18. 76 FR 18548 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Lower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Natural Resources (DENR), Division of Water Quality (DWQ), that adequate and reasonably available pumpout... to the Clean Water Act, Section 312(f)(3), Public Law 92-500 as amended by Public Law 95-217 and Public Law 100-4. A NDZ is defined as a body of water in which the discharge of vessel sewage, both...

  19. Ground-water resources of the Middle Loup division of the lower Platte River basin, Nebraska, with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Brown, Delbert Wayne; Rainwater, Frank Hays

    1955-01-01

    The Middle Loup division of the lower Platte River basin is an area of 650 square miles which includes the Middle Loup River valley from the confluence of the Middle and North Loup Rivers in Howard County, Nebr., to the site of the diversion dam that the U. S. Bureau of Reclamation proposes to construct in Blaine County near Milburn, Nebr. It also includes land in Howard and Sherman Counties designated by the Bureau of Reclamation as the Farwell unit. Irrigable land in this division is present on both sides of the Middle Loup River and along its tributaries. Most of the Middle Loup River valley is already irrigated by the Middle Loup Public Power and Irrigation District, which is strictly an irrigation enterprise. The uplands are not irrigated. Loess, dune sand, gravel, silt, and clay of Pleistocene or Recent age are exposed in the report area. These unconsolidated sediments rest on bedrock consisting of alternating layers of shale, mudstone, sandstone, and limestone, which are essentially fiat lying or slightly warped. The Ogallala formation, of Tertiary (Pliocene) age, immediately underlies the Pleistocene sediments and rests on the Pierre shale of Cretaceous age. Belts of alluvium occupy the Middle Loup River valley and the valleys of the principal streams in the area. The soils, dune sand, and terrace deposits are the most recent deposits. The Ogallala formation is water bearing and is the source of supply for some domestic and livestock wells. The saturated part of the sand and gravel formations of Pleistocene age, which yields water freely to wells, is the most important aquifer in the Middle Loup division. The water generally is under water-table conditions. The yields of properly constructed wells range from a few gallons per minute (gpm) to as much as 1,800 gpm. Some wells tap water in both the sand and gravel of Pleistocene age and in the underlying Ogallala formation. No wells are known to penetrate into formations older than the Ogallala. Fluctuations of the water table indicate changes in the amount of ground water stored in the water-bearing formations. The principal factors controlling the rise of the water table are the amount of precipitation within the area, the quantity of water coming into the area as underflow from the west and northwest, seepage from the Middle Loup River at times when the water surface in the river is higher than the adjoining water table, and the infiltration of irrigation water not utilized by vegetation or lost by runoff or evaporation. The principal factors controlling the decline of the water table are the discharge as effluent seepage into the Middle Loup River and its tributaries, the amount of water pumped from wells, evapotranspiration losses, and the amount of water leaving the area as underflow. Periodic water-level measurements were made in a total of 241 observation wells during the period 1948-50. Hydrographs of three observation wells having a longer period of record (1934-50) indicate that the water table rose slightly from 1934 until 1950 and that it remained nearly constant during the 1950 water year. The configuration of the water table in the Middle Loup division shows that, except north and northwest of Sargent, the Middle Loup River is an effluent, or gaining, stream throughout its entire length in this area. Thus any rise or fall in the ground-water level will increase or decrease the discharge of the river. The river recharges the ground- water reservoir only during periods when it is at flood stage. The depth to the water table from the land surface is governed largely by irregularities in topography. The depth to water is less than 10 feet near the river and increases to as much as 60 feet near the valley margins and the bordering intermediate slopes. In the Far- well unit the depth to water is more than 100 feet and in some parts more than 150 feet. Ground water pumped from wells is the source of supply for the principal municipalities in th

  20. 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management

    NASA Astrophysics Data System (ADS)

    Venkataraman, Kartik; Tummuri, Spandana; Medina, Aldo; Perry, Jordan

    2016-03-01

    Management of water resources in Texas (United States) is a challenging endeavor due to rapid population growth in the recent past coupled with significant spatiotemporal variations in climate. While climate conditions impact the availability of water, over-usage and lack of efficient management further complicate the dynamics of supply availability. In this paper, we provide the first look at the impact of climate change projections from an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) on 21st century drought characteristics under three future emission trajectories: Representative Concentration Pathway (RCP) 2.6, RCP 4.5 and RCP 8.5, using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). In addition, we evaluate the performance of the ensemble in simulating historical (1950-1999) observations from multiple climate divisions in Texas. Overall, the ensemble performs better in simulating historical temperature than precipitation. In semi-arid locations such as El Paso and Laredo, decreasing precipitation trends are projected even under the influence of climate policies represented by the RCP 4.5. There is little variability in the SPI across climate divisions and across RCPs. The SPEI, on the other hand, generally shows a decreasing trend toward the latter half of the 21st century, with multi-year droughts becoming the norm under the RCP 8.5, particularly in regions that are already dry, such as El Paso. Less severe droughts are projected for the sub-humid eastern edge of the state. Considering that state water planning agencies are already forecasting increased water shortages over the next 50 years, we recommend proactive approaches to risk management such as adjusting the planning tools for potential recurrence of multi-year droughts in regions that are already water-stressed.

  1. 77 FR 15087 - Intent To Prepare a Draft Environmental Impact Statement (DEIS) for the Installation of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... to Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbor Act, from the Village.../Projects/index.html , under the Village of Bald Head Island Terminal Groin Project. SUPPLEMENTARY... DEIS with the North Carolina Division of Water Quality (NCDWQ) to assess the potential water quality...

  2. 75 FR 8943 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... for a separate waiver based on project specific circumstances. The IEUA's Rancho Cucamonga groundwater... IEUA to comply with water quality permit requirements for recharged water imposed by State regulatory..., Environmental Engineer, Water Division (WTR-4), USEPA Region 9, (415) 972-3437, 75 Hawthorne Street, San...

  3. Water Capture Device Signal Integration Board

    NASA Technical Reports Server (NTRS)

    Chamberlin, Kathryn J.; Hartnett, Andrew J.

    2018-01-01

    I am a junior in electrical engineering at Arizona State University, and this is my second internship at Johnson Space Center. I am an intern in the Command and Data Handling Branch of Avionics Division (EV2), my previous internship was also in EV2. During my previous internship I was assigned to the Water Capture Device payload, where I designed a prototype circuit board for the electronics system of the payload. For this internship, I have come back to the Water Capture Device project to further the work on the electronics design I completed previously. The Water Capture Device is an experimental payload to test the functionality of two different phase separators aboard the International Space Station (ISS). A phase separator sits downstream of a condensing heat exchanger (CHX) and separates the water from the air particles for environmental control on the ISS. With changing CHX technology, new phase separators are required. The goal of the project is to develop a test bed for the two phase separators to determine the best solution.

  4. EPA/OFFICE OF RESEARCH AND DEVELOPMENT'S NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY/WESTERN ECOLOGY DIVISION INTERNET SITE

    EPA Science Inventory

    The Western Ecology Division (WED) is one of four ecological effects divisions of the National Health and Environmental Effects Research Laboratory. The four divisions are distributed bio-geographically. WED's mission is 1) to provide EPA with national scientific leadership for t...

  5. 12 CFR 1777.10 - Developments prompting supervisory response.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... less than the national HPI four quarters previously, or for any Census Division or Divisions in which... more than five percent less than the HPI for that Division or Divisions four quarters previously; (b...-half of its average quarterly net income for any four-quarter period during the prior eight quarters...

  6. Surface water records of Colorado, 1961

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1961-01-01

    The surface-water records for the 1961 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. T. Miller, district engineer, Surface Water Branch, succeeded by J. W. Odell.

  7. Bibliography of U.S. Geological Survey water-resources reports for Utah

    USGS Publications Warehouse

    Hardy, Ellen E.; Dragos, Stefanie L.

    1994-01-01

    This bibliography contains a complete listing of reports prepared by personnel of the U.S. Geological Survey from 1886 through December 31, 1993, that discuss the water resources of Utah. The reports were prepared primarily by personnel of the Water Resources Division, Utah District, in cooperation with State, other Federal, and local agencies. Several reports were prepared as a part of studies directly funded by the U.S. Geological Survey, and several were prepared by contractors for the U.S. Geological Survey.The bibliography is divided into three major parts: (1) publications of the U.S. Geological Survey; (2) publications prepared by the U.S. Geological Survey in cooperation with and published by agencies of the State of Utah; and (3) reports printed in other publications reports prepared by the U.S. Geological Survey but published by other agencies or by professional organizations. Publications of the U.S. Geological Survey still in print may be purchased from the U.S. Geological Survey, Earth Science Information Center, Open-File Reports Section, Box 25286, MS 517, Denver Federal Center, Denver, Colorado 80225. Publications that are out of print at the time of this compilation are marked with an asterisk (*). Except for water-supply papers, most publications that are out of print and unavailable for purchase may be examined at the U.S. Geological Survey Earth Science Information Center, 2222 West 2300 South, 2nd Floor, Salt Lake City, Utah 84119.Reports published by the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources, are available on request from these agencies or from the U.S. Geological Survey, Water Resources Division, Room 1016 Administration Building, 1745 West 1700 South, Salt Lake City, Utah 84104. Water-Resources Bulletins of the Utah Geological Survey may be purchased from that agency at 2363 Foothill Drive, Salt Lake City, Utah 84109-1491.Inquiries as to the availability of reports listed as "reports printed in other publications" must be addressed to the professional organization or agency that published them. Most of these reports are available in larger libraries, such as the library of the University of Utah.Most open-file reports are available for inspection at the U.S. Geological Survey, Water Resources Division, Room 1016 Administration Building, 1745 West 1700 South, Salt Lake City, Utah 84104. A small number of the open-file reports that have been duplicated as Utah basic- (or hydrologic-) data reports are free on request. An index is included in this bibliography for ease of reference. Water-supply papers on the quantity and quality of ground and surface water in Utah that were published in a series are not listed separately in the index but are presented in tables 1 to 4.

  8. Ground water in Pavant Valley

    USGS Publications Warehouse

    Dennis, P. E.; Maxey, G.B.; Thomas, H.E.

    1946-01-01

    The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.

  9. Bibliography of United States Geological Survey reports on the geology and water resources of Texas, 1887-1974

    USGS Publications Warehouse

    Friebele, Charlotte D.

    1975-01-01

    Water-resources investigations in Texas consist of the collection of basic records through the hydrologic-data network, interpretive studies, and research projects. An office was established in Austin, Texas, in 1915 for surface-water studies, for ground-water studies in 1929, and water-quality studies in 1937. Previous investigations of the water resources of Texas were carried out by personnel of the U.S. Geological Survey from the Washington headquarters. The basic-data records and the results of investigations are published by the Geological Survey or by cooperating agencies.Geologic investigations were made by personnel from Washington and Denver as early as 1887. The Geophysics Branch of the Geologic Division maintained an office in Austin from 1954 to 1974. Results of these investigations were published by the Geological Survey.This bibliography lists alphabetically by author all reports prepared as a result of Geological Survey investigations in Texas, many of which were carried out in cooperation with the Texas Water Development Board and its predecessor agencies, river authorities, other State and local agencies, and other Federal agencies.

  10. 78 FR 59345 - Proposed Information Collection Request; Comment Request; Modification of Secondary Treatment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... and Coastal Protection Division, Office of Water, (4504T), Environmental Protection Agency, 1200... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2003-0033; FRL-9901-42-OW] Proposed Information... Marine Waters (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The...

  11. Water Resources Data for California, 1969; Part 2: Water Quality Records

    USGS Publications Warehouse

    1970-01-01

    Water-resources investigations of the U.S. Geological Survey include the collection of water-quality data on the chemical and physical characteristics of surface and ground-water supplies of the Nation. Theses data for the 1969 water year for the quality of surface water in California are presented in this report. Data for a few water-quality stations in bordering States are also included. The data were collected by the Water Resources Division of the Geological Survey under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  12. National Research Program of the Water Resources Division, U.S. Geological Survey: Fiscal Year 1988

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1989-01-01

    The National Research Program (NRP) of the US Geological Survey 's Water Resources Division (WRD) had its beginnings in the late 1950 's when ' core research ' was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation 's water resources. The NRP is located principally in Reston, VA, Denver, CO, and Menlo Park , CA. The NRP is subdivided into six disciplines as follows: (1) Ecology; (2) Geomorphology and Sediment Transport; (3) Groundwater Chemistry; (4) Groundwater Hydrology; (5) Surface Water Chemistry; and (6) Surface Water Hydrology. The report provides current information about the NRP on an annual basis. Organized by the six research disciplines, the volume contains a summary of the problem, objective, approach, and progress for each project that was active during fiscal year 1988.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less

  14. Water transfer projects and the role of fisheries biologists

    USGS Publications Warehouse

    Meador, M.R.

    1996-01-01

    Water transfer projects are commonly considered important mechanisms for meeting increasing water demands. However, the movement of water from one area to another may have broad ecosystem effects, including on fisheries. The Southern Division of the American Fisheries Society held a symposium in 1995 at Virginia Beach, Virginia, to discuss the ecological consequences of water transfer and identify the role of fisheries biologists in such projects. Presenters outlined several case studies, including the California State Water Project, Garrison Diversion Project (North Dakota), Lake Texoma Water Transfer Project (Oklahoma-Texas), Santee-Cooper Diversion and Re-diversion projects (South Carolina), and Tri-State Comprehensive Study (Alabama-Florida-Georgia). Results from these studies suggest that fisheries biologists have provided critical information regarding potential ecological consequences of water transfer. If these professionals continue to be called for information regarding the ecological consequences of water transfer projects, developing a broader understanding of the ecological processes that affect the fish species they manage may be necessary. Although the traditional role of fisheries biologists has focused on the fishing customer base, fisheries management issues are only one component of the broad spectrum of ecosystem issues resulting from water transfer.

  15. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    EPA Pesticide Factsheets

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  16. Development of the Average Likelihood Function for Code Division Multiple Access (CDMA) Using BPSK and QPSK Symbols

    DTIC Science & Technology

    2015-01-01

    This research has the purpose to establish a foundation for new classification and estimation of CDMA signals. Keywords: DS / CDMA signals, BPSK, QPSK...DEVELOPMENT OF THE AVERAGE LIKELIHOOD FUNCTION FOR CODE DIVISION MULTIPLE ACCESS ( CDMA ) USING BPSK AND QPSK SYMBOLS JANUARY 2015...To) OCT 2013 – OCT 2014 4. TITLE AND SUBTITLE DEVELOPMENT OF THE AVERAGE LIKELIHOOD FUNCTION FOR CODE DIVISION MULTIPLE ACCESS ( CDMA ) USING BPSK

  17. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana).

    PubMed

    Jones, A Maxwell P; Chattopadhyay, Abhishek; Shukla, Mukund; Zoń, Jerzy; Saxena, Praveen K

    2012-05-30

    Protoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L.) was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall re-synthesis and cell division. This study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L.) leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 μM), an inhibitor of phenylalanine ammonia lyase (PAL), reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (±3.27) in controls to 65.3% (±4.60). Protoplasts isolated from callus grown in 100 μM AIP developed cell walls by day 2, had a division rate of 28.5% (±3.59) by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose. This study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated protoplasts survived electrofusion and viable heterokaryons were produced. Together, these results provide the first evidence of sustained cell division, callus regeneration, and potential application of somatic cell fusion in American elm, suggesting that this source of protoplasts may be ideal for genetic manipulation of this species. The technological advance made with American elm in this study has potential implications in other woody species for fundamental and applied research which require availability of viable protoplasts.

  18. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana)

    PubMed Central

    2012-01-01

    Background Protoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L.) was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall re-synthesis and cell division. Results This study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L.) leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 μM), an inhibitor of phenylalanine ammonia lyase (PAL), reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (±3.27) in controls to 65.3% (±4.60). Protoplasts isolated from callus grown in 100 μM AIP developed cell walls by day 2, had a division rate of 28.5% (±3.59) by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose. Conclusions This study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated protoplasts survived electrofusion and viable heterokaryons were produced. Together, these results provide the first evidence of sustained cell division, callus regeneration, and potential application of somatic cell fusion in American elm, suggesting that this source of protoplasts may be ideal for genetic manipulation of this species. The technological advance made with American elm in this study has potential implications in other woody species for fundamental and applied research which require availability of viable protoplasts. PMID:22646730

  19. A Balancing Act: Division III Student-Athletes Time Demands and Life Roles

    ERIC Educational Resources Information Center

    Hoover, Daniel R., Jr.

    2012-01-01

    A majority of the research on student-athletes occurs at the Division I level, acid less is known about Division III student-athletes. The scant research addressing the experiences of Division III students-athletes focused on academics, campus involvement, development, and athletic identity (Griffith & Johnson, 2002; Heuser & Gray, 2009;…

  20. Asymmetric cell division of stem cells in the lung and other systems

    PubMed Central

    Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740

  1. Water use in Georgia by county for 2010 and water-use trends, 1985–2010

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2015-12-16

    About 2,225 Mgal/d of water was returned to Georgia streams and lakes in 2010 under the National Pollutant Discharge Elimination System program administered by the Georgia Environmental Protection Division. This amount is about 48 percent of the total water withdrawn from all sources in 2010. Water returns declined 39 percent between 1995 and 2010, mirroring the decline in water withdrawals during that period. In addition, land applications of treated wastewater increased steadily between 1995 and 2010.

  2. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  3. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-products
    Authors & affiliations:
    Narotsky1, M.G. and S. Bielmeier Laffan2.
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  4. 75 FR 18205 - Total Coliform Rule Revisions-Notice of Stakeholder Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Coliform Rule (RTCR) and the Distribution Systems Research and Information Collection Partnership... reviewing the methods approved to analyze drinking water samples to determine the presence of total... ( [email protected] , (202) 564-1781, Standards and Risk Management Division, Office of Ground Water and...

  5. CHLORINATION BY-PRODUCTS IN DRINKING WATER AND MENSTRUAL CYCLE FUNCTION

    EPA Science Inventory

    Chlorination by-Products in Drinking Water and Menstrual Cycle Function

    Gayle C. Windham1, Kirsten Waller2, Meredith Anderson2, Laura Fenster1, Pauline Mendola3, Shanna Swan4

    1California Department of Health Services, Division of Environmental and Occupational Disea...

  6. A Design Study to Develop Young Children's Understanding of Multiplication and Division

    ERIC Educational Resources Information Center

    Bicknell, Brenda; Young-Loveridge, Jenny; Nguyen, Nhung

    2016-01-01

    This design study investigated the use of multiplication and division problems to help 5-year-old children develop an early understanding of multiplication and division. One teacher and her class of 15 5-year-old children were involved in a collaborative partnership with the researchers. The design study was conducted over two 4-week periods in…

  7. Water Resources Data for California, 1965; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district chief, Menlo Park, Calif.

  8. Unified quantitative characterization of epithelial tissue development

    PubMed Central

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru

    2015-01-01

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285

  9. Biology Division progress report, October 1, 1993--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  10. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea

    PubMed Central

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-01-01

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486

  11. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.

    PubMed

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-03-16

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.

  12. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia

    NASA Astrophysics Data System (ADS)

    Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam

    2018-02-01

    This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient deep-water channel-levee settings.

  13. Streamflow characteristics and trends in New Jersey, water years 1897-2003

    USGS Publications Warehouse

    Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.

    2005-01-01

    Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.

  14. Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej

    2012-01-01

    The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.

  15. Work plan for the Sangamon River basin, Illinois

    USGS Publications Warehouse

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  16. 24 CFR 4.34 - Review of Inspector General's report by the Ethics Law Division.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... report by the Ethics Law Division. 4.34 Section 4.34 Housing and Urban Development Office of the... Funding Decisions § 4.34 Review of Inspector General's report by the Ethics Law Division. After receipt of the Inspector General's report, the Ethics Law Division shall review the facts and circumstances of...

  17. 24 CFR 4.34 - Review of Inspector General's report by the Ethics Law Division.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... report by the Ethics Law Division. 4.34 Section 4.34 Housing and Urban Development Office of the... Funding Decisions § 4.34 Review of Inspector General's report by the Ethics Law Division. After receipt of the Inspector General's report, the Ethics Law Division shall review the facts and circumstances of...

  18. 24 CFR 4.34 - Review of Inspector General's report by the Ethics Law Division.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... report by the Ethics Law Division. 4.34 Section 4.34 Housing and Urban Development Office of the... Funding Decisions § 4.34 Review of Inspector General's report by the Ethics Law Division. After receipt of the Inspector General's report, the Ethics Law Division shall review the facts and circumstances of...

  19. 24 CFR 4.34 - Review of Inspector General's report by the Ethics Law Division.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... report by the Ethics Law Division. 4.34 Section 4.34 Housing and Urban Development Office of the... Funding Decisions § 4.34 Review of Inspector General's report by the Ethics Law Division. After receipt of the Inspector General's report, the Ethics Law Division shall review the facts and circumstances of...

  20. 24 CFR 4.34 - Review of Inspector General's report by the Ethics Law Division.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... report by the Ethics Law Division. 4.34 Section 4.34 Housing and Urban Development Office of the... Funding Decisions § 4.34 Review of Inspector General's report by the Ethics Law Division. After receipt of the Inspector General's report, the Ethics Law Division shall review the facts and circumstances of...

  1. 33 CFR 126.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permit is required under 33 CFR 126.17. (2) Ammonium nitrate products, division 5.1 (oxidizing) materials... piers, wharves, and similar structures to which a vessel may be secured; areas of land, water, or land and water under and in the immediate proximity to these structures; buildings on or contiguous to...

  2. TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethane Levels in Home Tap Water and Semen Quality
    Laura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan5

    1California Department of Health Services, Division of Environm...

  3. 40 CFR Appendix E to Part 122 - Rainfall Zones of the United States

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appendix E to Part 122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Pt. 122, App. E... Protection Agency, Office of Water, Nonpoint Source Division, Washington, DC, 1986. [55 FR 48073, Nov. 16...

  4. 40 CFR Appendix E to Part 122 - Rainfall Zones of the United States

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appendix E to Part 122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Pt. 122, App. E... Protection Agency, Office of Water, Nonpoint Source Division, Washington, DC, 1986. [55 FR 48073, Nov. 16...

  5. Annual water-resources review, White Sands Missile Range, 1976: a basic-data report

    USGS Publications Warehouse

    Cruz, R.R.

    1977-01-01

    Information is presented on the water resources of the White Sands Missile Range, N. Mex., that was collected during the period December 1975 to December 1976 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality and precipitation, and miscellaneous items of interest are summarized. Water-level observations were made in 63 borehole, supply, test, and observation wells on the Range. Water samples were collected and analyzed for chemical quality from 8 test wells. (Woodard-USGS)

  6. The Hydrologic Instrumentation Facility of the U.S. Geological Survey

    USGS Publications Warehouse

    Wagner, C.R.; Jeffers, Sharon

    1984-01-01

    The U.S. Geological Survey Water Resources Division has improved support to the agencies field offices by the consolidation of all instrumentation support services in a single facility. This facility known as the Hydrologic Instrumentation Facility (HIF) is located at the National Space Technology Laboratory, Mississippi, about 50 miles east of New Orleans, Louisiana. The HIF is responsible for design and development, testing, evaluation, procurement, warehousing, distribution and repair of a variety of specialized hydrologic instrumentation. The centralization has resulted in more efficient and effective support of the Survey 's hydrologic programs. (USGS)

  7. Oriented cell division: new roles in guiding skin wound repair and regeneration

    PubMed Central

    Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing

    2015-01-01

    Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. PMID:26582817

  8. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  9. Astronaut John W. Young during water egress training

    NASA Image and Video Library

    1966-06-18

    S66-39691 (18 June 1966) --- Astronaut John W. Young, prime crew command pilot for the Gemini-10 spaceflight, sits in Static Article 5 during water egress training activity onboard the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and astronaut Michael Collins will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division. Photo credit: NASA

  10. European Scientific Notes. Volume 35, Number 3,

    DTIC Science & Technology

    1981-03-31

    the distribution of par- fodder to feed the animals. ticulate matter in Icelandic coastal Because of their country’s small size waters. He is studying...however, has the possibil- of the Condensed Matter Division of the ity of depositing the energy required for European Physical Society (EPS) which... Matter Division of the heat energy is deposited at the front of EPS. the slab; isothermal (t ’, 10 s), in which Of xital concern to those present the

  11. Strategic Defense Initiative Demonstration/Validation Program Environmental Assessment. Battle Management/Command and Control, and Communications (BM/C3),

    DTIC Science & Technology

    1987-08-01

    POR A ENVIOMNE. STRATEGIC DEFENSE INITRIEDNU T IATI V EI 1 0193 O RTEI ONE..()SRTGC DEFENSE INITIATV E S RATION V EO ORORNIZATION WASINZGTON DC...facilities where Demonstration/Validation activities are planned.- e Ten areas of environmental consideration are addressed: (1) air quality; (2) . water...air quality, rater quality, and hazardous vaste (63). 2.2 ELCTRONIC SYSTEMS DIVISION The Electronic Systems Division administrative offices are located

  12. Water-jet dissection for parenchymal division during hepatectomy1

    PubMed Central

    Dixon, Elijah; Sahajpal, Ajay; Cattral, Mark S.; Grant, David R.; Gallinger, Steven; Taylor, Bryce R.; Greig, Paul D.

    2006-01-01

    Background. High-pressure water-jet dissection was originally developed for industry where ultra-precise cutting and engraving were desirable. This technology has been adapted for medical applications with favorable results, but little is understood about its performance in hepatic resections. Blood loss may be limited by the thin laminar liquid-jet effect that provides precise, controllable, tissue-selective dissection with excellent visualization and minimal trauma to surrounding fibrous structures. Patients and methods. The efficacy of the Water-jet system for hepatic parenchymal dissection was examined in a consecutive case series of 101 hepatic resections (including 22 living donor transplantation resections) performed over 11 months. Perioperative outcomes, including blood loss, transfusion requirements, complications, and length of stay (LOS), were assessed. Results. Three-quarters of the cases were major hepatectomies and 22% were cirrhotic. Malignancy was the most common indication (77%). Median operative time was 289 min. Median estimated blood loss (EBL) was 900 ml for all cases, and only 14% of patients had >2000 ml EBL. Furthermore, EBL was 1000 ml for major resections, 775 ml for living donor resections, 600 ml in cirrhotic patients, and 1950 ml for steatotic livers. In all, 14% of patients received heterologous packed red blood cell (PRBC) transfusions for an average of 0.59 units per case. Median LOS was 7 days. EBL, transfusion requirements, and LOS were slightly increased in the major resection cohort. There was one mortality (1%) overall. These results are equivalent to, or better than, those from our contemporary series of resections performed with ultrasonic dissection. Conclusion. Water-jet dissection minimizes large blood volume loss, requirements for transfusion, and complications. This initial experience suggests that this precision tool is safe and effective for hepatic division, and compares favorably to other established methods for hepatic parenchymal transection. PMID:18333091

  13. Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver.

    PubMed

    Cai, Yaomin; Guo, Zhixiong

    2018-04-20

    The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

  14. Growth, yield and plant water relationships in sweet potatoes in response to carbon dioxide enrichment: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants grown in an enriched CO/sub 2/ environment. The main experiment utilized open top chambers to study the effects of CO/sub 2/ and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO/sub 2/ concentrations on growth pattern, relative growth rate, net assimilation rate and biomassmore » increment at different stages of development. The interaction effects of enriched CO/sub 2/ and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. 29 refs., 18 figs., 41 tabs.« less

  15. Status of the DOE /STOR/-sponsored national program on hydrogen production from water via thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Baker, C. E.

    1977-01-01

    A pure thermochemical cycle is a system of linked regenerative chemical reactions which accepts only water and heat and produces hydrogen. Thermochemical cycles are potentially a more efficient and cheaper means of producing hydrogen from water than is the generation of electricity followed by electrolysis. The Energy Storage Systems Division of the Department of Energy is currently funding a national program on thermochemical hydrogen production. The National Aeronautics and Space Administration is responsible for the technical management of this program. The goal is to develop a cycle which can potentially operate with an efficiency greater than 40% using a heat source providing a maximum available temperature of 1150 K. A closed bench-scale demonstration of such a cycle would follow. This cycle would be labeled a 'reference cycle' and would serve as a baseline against which future cycles would be compared.

  16. Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Amitabha; Stoecker, Andrew; Schatten, Heide

    1995-01-01

    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods.

  17. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  18. Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley.

    PubMed

    Knobeloch, Lynda M; Zierold, Kristina M; Anderson, Henry A

    2006-06-01

    During July 2000-January 2002, the Wisconsin Division of Public Health conducted a study in 19 rural townships. A high percentage of private drinking-water wells in these townships contained traces of arsenic. Residents were asked to collect well-water samples and complete a questionnaire regarding residential history, consumption of drinking-water, and family health. In total, 2,233 household wells were tested, and 6,669 residents, aged less than one year to 100 years, provided information on water consumption and health. The well-water arsenic levels ranged from less than 1.0 to 3,100 microg/L. The median arsenic level was 2.0 microg/L. The arsenic levels were below the federal drinking-water standard of 10 microg/L in 80% of the wells, while 11% had an arsenic level of above 20 microg/L. Of residents aged over 35 years, those who had consumed arsenic-contaminated water for at least 10 years were significantly more likely to report a history of skin cancer than others. Tobacco use was also associated with higher rates of skin cancer and appeared to synergize the effect of arsenic on the development of skin cancer.

  19. Divison of Environmental Education and Development Fiscal Year 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    Primary design criterion for this division`s education activities is directly related to meeting the goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, the division`s efforts are directed toward stimulating knowledge and capability to achieve the goals while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This annual report is divided into: overview, workforce development, academic partnerships, scholarships/fellowships, environmental restoration and waste management employment program, community colleges, outreach, evaluation, and principal DOE contacts.

  20. Water Resources Data for California, 1967; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    1968-01-01

    The surface-water records for the 1967 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  1. Water Resources Data for California, 1967; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1968-01-01

    The surface-water records for the 1967 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  2. Water resources data for California, 1968; Part 1: Surface water records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  3. Water Resources Data for California, 1968; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  4. Water Resources Data for California, 1966; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    1967-01-01

    The surface-water records for the 1966 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann and R. Stanley Lord, successive district chiefs, Menlo Park, Calif.

  5. Water Resources Data for California, 1965; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district chief, Menlo Park, Calif.

  6. Surface water records of California, 1964; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1964 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of California are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district engineer, Surface Water Branch.

  7. Quality-assurance plan for water-quality activities in the North Florida Program Office, Florida District

    USGS Publications Warehouse

    Berndt, Marian P.; Katz, Brian G.

    2000-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Division of the U.S. Geological Survey, a quality-assurance plan was created for use by the Florida District's North Florida Program Office in conducting water-quality activities. This plan documents the standards, policies, and procedures used by the North Florida Program Office for activities related to the collection, processing, storage, analysis, and publication of water-quality data.

  8. Water Quality Records in California

    USGS Publications Warehouse

    1964-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the Nation in conjunction with water usage and its availability. The basic records for the 1964 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering States. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  9. Quality of waters in California

    USGS Publications Warehouse

    ,

    1963-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the nation in conjunction with water usage and its availability. The basic records for the 1963 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering states. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  10. Paulette Gray, Ph.D.

    Cancer.gov

    Paulette S. Gray, Ph.D. is the Director for the Division of Extramural Activities (DEA). As the director of the division, she is responsible for the overall scientific, fiscal, and administrative management of the division, including broad strategic planning, development, implementation, and evaluation.

  11. Alaska Department of Natural Resources

    Science.gov Websites

    Commissions Board of Agriculture Board of Forestry Community Forest Council Forest Stewardship Coordinating Development Advisory Board Media Releases Public Notices Divisions/Offices Divisions Agriculture Forestry divisions reflect its major programs: Agriculture, Forestry, Geological & Geophysical Surveys, Mining

  12. 21 CFR 5.1100 - Headquarters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., and Social Sciences. Regulations and Special Government Employees Management Staff. Division of Social... and Management Staff. Good Clinical Practice Staff. Office of Combination Products. Office of Orphan... Branch. Division of Communication Media. Television Design and Development Branch. Division of Freedom of...

  13. 21 CFR 5.1100 - Headquarters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., and Social Sciences. Regulations and Special Government Employees Management Staff. Division of Social... and Management Staff. Good Clinical Practice Staff. Office of Combination Products. Office of Orphan... Branch. Division of Communication Media. Television Design and Development Branch. Division of Freedom of...

  14. 21 CFR 5.1100 - Headquarters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., and Social Sciences. Regulations and Special Government Employees Management Staff. Division of Social... and Management Staff. Good Clinical Practice Staff. Office of Combination Products. Office of Orphan... Branch. Division of Communication Media. Television Design and Development Branch. Division of Freedom of...

  15. Hydrologic Instrumentation Facility of the U.S. Geological Survey, annual report for fiscal year 1993

    USGS Publications Warehouse

    Latkovich, V.J.; Tracey, Debra C.

    1994-01-01

    The Hydrologic lnstrumentation Facility (HIF) of the U.S. Geological Survey (USGS) has nationwide responsibility for all aspects of hydrologic field instrumentation in support of Survey data-collection programs. Each year the HIF publishes a report to inform Water Resources Division (WRD) personnel of progress made by the HIF in fulfilling its mission to improve instrumentation services to the Division. The report for fiscal year 1993 (FY93) describes the activities of the HIF, including major accomplish- ments for the year; personnel actions; active projects (reported by section--Technical Services Section, Administrative Services Section, Field Coordination, Applications and Development Section, Test and Evaluation Section, Field Service and Supply Section); and planned activities for the coming year. Also presented in the appendixes are detailed listings of the memberships of the Instrumentation Committee and the Instrumentation Technical Advisory Subcommittee; district, sub- district, and field office visits by HIF personnel; professional and technical meetings attended by HIF personnel; vendor visits; and reports prepared by HIF personnel.

  16. NASA Satellite Monitoring of Water Clarity in Mobile Bay for Nutrient Criteria Development

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holekamp, Kara; Spiering, Bruce A.

    2009-01-01

    This project has demonstrated feasibility of deriving from MODIS daily measurements time series of water clarity parameters that provide coverage of a specific location or an area of interest for 30-50% of days. Time series derived for estuarine and coastal waters display much higher variability than time series of ecological parameters (such as vegetation indices) derived for land areas. (Temporal filtering often applied in terrestrial studies cannot be used effectively in ocean color processing). IOP-based algorithms for retrieval of diffuse light attenuation coefficient and TSS concentration perform well for the Mobile Bay environment: only a minor adjustment was needed in the TSS algorithm, despite generally recognized dependence of such algorithms on local conditions. The current IOP-based algorithm for retrieval of chlorophyll a concentration has not performed as well: a more reliable algorithm is needed that may be based on IOPs at additional wavelengths or on remote sensing reflectance from multiple spectral bands. CDOM algorithm also needs improvement to provide better separation between effects of gilvin (gelbstoff) and detritus. (Identification or development of such algorithm requires more data from in situ measurements of CDOM concentration in Gulf of Mexico coastal waters (ongoing collaboration with the EPA Gulf Ecology Division))

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, andmore » Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.« less

  18. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  19. Summary of available hydrogeologic data for the northeast portion of the alluvial aquifer at Louisville, Kentucky

    USGS Publications Warehouse

    Unthank, Michael D.; Nelson, Hugh L.

    2006-01-01

    The hydrogeologic characteristics of the unconsolidated glacial outwash sand and gravel deposits that compose the northeast portion of the alluvial aquifer at Louisville, Kentucky, indicate a prolific water-bearing formation with approximately 7 billion gallons of ground-water storage and an estimated sustainable yield of over 280 million gallons per day. This abundance of ground water and the need to properly develop and manage this resource has prompted many past investigations (since 1956), which have produced reports, maps, and data files covering a variety of topics relative to the movement, availability, and use of ground water in this area. These data have been compiled into a single report to assist in future development and use of the ground-water resources. Available ground-water data for the alluvial aquifer at Louisville, Kentucky, from Beargrass Creek to Harrods Creek, were compiled from the U.S. Geological Survey National Water Information System and the Kentucky Groundwater Data Repository. Data contained in these databases include ground-water well-construction details and historical ground-water levels, drillers' logs, and water-quality information. Additional data and information were gathered from project files at the U.S. Geological Survey--Kentucky Water Science Center and files at the Louisville Water Company. Information contained in these files included data from area pumping tests describing aquifer characteristics and ground-water flow. Data describing current conditions of the ground-water system in the northeast portion of the alluvial aquifer also are included. Ground-water levels from a network of observation wells show recent trends in the flow system, and information from the Kentucky Division of Water-Groundwater Branch lists current permitted ground-water withdrawals in the area.

  20. Physics division. Progress report, January 1, 1995--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, M.; Bacon, D.S.; Aine, C.J.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less

  1. Water resources of the Park City area, Utah, with emphasis on ground water

    USGS Publications Warehouse

    Holmes, Walter F.; Thompson, Kendall R.; Enright, Michael

    1986-01-01

    The Park City area is a rapidly growing residential and recreational area about 30 miles east of Sal t Lake City (fig. 1). The area of study is about 140 square miles in which the principle industries are agriculture, skiing, and other recreational activities. The area once was a major lead- and silver-mining district, but no mines were active in 1984. A resumption in mining activity, however, could take place with an increase in the price of metals.The population of the Park City area is expected to increase rapidly in the near future; and the provision of an adequate water supply for the growing population, while avoiding harmful affects of development, is a major concern for local municipalities, developers, and the Utah Division of Water Rights. In addition, agricultural interests in and below the area are concerned about the effects of increased ground-water withdrawals on streamflow, which is fully appropriated by downstream users. The area also contains the proposed site for the Jordanelle dam, a part of the Bonneville unit of the central Utah Project. The damsite is near an historic mining area; and mining companies are concerned that if mining is resumed, the reservoir may create some additional dewatering problems in the mines.

  2. 78 FR 11644 - Notice of a Project Waiver of Section 1605 (Buy American Requirement) of the American Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Region 6, Water Quality Protection Division. The Applicant has provided sufficient documentation to... INFORMATION CONTACT: Nasim Jahan, Buy American Coordinator, (214) 665-7522, SRF & Projects Section, Water... and overcome the high shear stress found in a stream environment. Additional key requirements of the...

  3. Use of Tracer Dye Techniques Is Assessing Ground Water Availabilty and Quality in a Karst Aquifer System (Project Overview)

    EPA Science Inventory

    Problem: The Leetown Science Center and ~ 500 acre research facility operated by the U.S. Geological Survey (USGS) Biological Resources Division (BRD) In West Virginia investigates the health and habitats of aquatic species. Large quantities of good quality cold water are needed ...

  4. Freshwater harmful algal bloom exposure – an emerging health risk for recreational water users

    EPA Science Inventory

    Freshwater harmful algal bloom exposure – an emerging health risk for recreational water users Elizabeth D. Hilborn1, Virginia A. Roberts2, Lorraine C. Backer3, Jonathan S. Yoder2, Timothy J. Wade1, Michele C. Hlavsa2 1Environmental Public Health Division, Office of Researc...

  5. Comparing Chitin And Organic Substrates On The National Tunnel Waters In BlackHawk, Colorado For Manganese Removal - (Presentation)

    EPA Science Inventory

    The National Tunnel is a part of the Central City/Idaho Springs Superfund site. Because passive treatment is an important possibility for removal of contaminants from the water, the USEPA and the Colorado Division of Public Health and Environment (CDPHE) have been sponsoring a ...

  6. Comparing Chitin And Organic Substrates On The National Tunnel Waters In BlackHawk, Colorado For Manganese Removal

    EPA Science Inventory

    The National Tunnel is a part of the Central City/Idaho Springs Superfund site. Because passive treatment is an important possibility for removal of contaminants from the water, the USEPA and the Colorado Division of Public Health and Environment (CDPHE) have been sponsoring a ...

  7. Abandoned Mine Lands Program - Division of Mining, Land, and Water

    Science.gov Websites

    , safety, general welfare and property from extreme danger resulting from the adverse effects of past coal mining practices. 2. Protection of public health, safety and general welfare from adverse effects of past lands and waters and the environment previously degraded by adverse effects of past coal mining

  8. ESTIMATING RESIDENTIAL EXPOSURE TO DRINKING WATER ARSENIC IN INNER MONGOLIA, CHINA FOR EPIDEMIOLOGIC STUDIES

    EPA Science Inventory

    ESTIMATING RESIDENTIAL EXPOSURE TO DRINKING WATER ARSENIC IN INNER MONGOLIA, CHINA FOR EPIDEMIOLOGIC STUDIES

    Richard Kwok1, Pauline Mendola1 Zhixiong Ning2, Zhiyi Liu2 and Judy Mumford1

    1) Epidemiology and Biomarkers Branch, Human Studies Division, NHEERL, US EPA, R...

  9. OVERVIEW OF THE ATLANTIC ECOLOGY DIVISION'S (AED) CONTAMINATED SEDIMENT PROGRAM IN SUPPORT OF EPA'S GOAL 3 (FORMERLY GOAL 5)

    EPA Science Inventory

    EPA's mission is to protect human health and to safeguard the natural environment B air, water, and land B upon which life depends. Sediments are an integral component of aquatic ecosystems providing a habitat for many aquatic organisms. Chemicals released to surface waters fro...

  10. OVERVIEW OF THE ATLANTIC ECOLOGY DIVISION'S CONTAMINATED SEDIMENT PROGRAM IN SUPPORT OF EPA'S GOAL 3 (FORMERLY GOAL 5)

    EPA Science Inventory

    EPA's mission is to protect human health and to safeguard the natural environment B air, water, and land B upon which life depends. Sediments are an integral component of aquatic ecosystems providing a habitat for many aquatic organisms. Chemicals released to surface waters fro...

  11. DEVELOPMENTAL NEUOTOXICITY EVALUATION OF MIXTURES OF MONO- AND DIMETHYL TIN IN DRINKING WATER OF RATS.

    EPA Science Inventory

    Developmental Neurotoxicity Evaluation of Mixtures of Mono- and Dimethyl Tin in Drinking Water of Rats

    V.C. Moser, K.L. McDaniel, P.M. Phillips

    Neurotoxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA

    Organotins, especially monomethyl (MMT) and dimethyl (D...

  12. No-migration variance petition. Appendices C--J: Volume 5, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Volume V contains the appendices for: closure and post-closure plans; RCRA ground water monitoring waver; Waste Isolation Division Quality Program Manual; water quality sampling plan; WIPP Environmental Procedures Manual; sample handling and laboratory procedures; data analysis; and Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant.

  13. DISRUPTION IN RAT ESTROUS CYCLICITY BY THE DRINKING WATER DISINFECTANT BY-PRODUCT DIBROMOACETIC ACID: RELATIONSHIP TO A SUPPRESSION ON ESTRADIOL METABOLISM?

    EPA Science Inventory

    Disruption in Rat Estrous Cyclicity by the Drinking Water Disinfectant By-Product Dibromoacetic Acid: Relationship to A Suppression on Estradiol Metabolism?

    Ashley S. Murr and Jerome M. Goldman, Endocrinology Branch, Reproductive Toxicology Division National Health and En...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Reinhold C.

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutinymore » of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.« less

  15. Military Construction: FY2017 Appropriations

    DTIC Science & Technology

    2016-10-04

    combined the versions of the Transportation, Housing and Urban Development (T-HUD), Military Construction and Veterans Affairs (MILCON/VA), and Zika ...amended bill, and sent it to the House. The House substituted its own amendment in three divisions (Division A: MILCON/VA, Division B: Zika Response...Appropriations, and Division C: Zika Vector Control), removing the T-HUD portion for H.R. 2577, passed the bill, and requested a conference. The

  16. 7 CFR 2003.18 - Functional organization of RHS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Property Management Division, and Single Family Housing Centralized Servicing Center in St. Louis, Mo. (i... credit reports, and, site development. (ii) Multi-Family Housing Portfolio Management Division. Headed by... the management and servicing of the nationwide Multi-Family Housing programs. The Division implements...

  17. The U.S. Geological Survey Federal-State Cooperative Water-Resources Program, fiscal year 1986

    USGS Publications Warehouse

    Gilbert, B.K.; Mann, W.B.

    1987-01-01

    The U.S. Geological Survey 's Federal-State Cooperative Water Resources Program has been in operation for 91 years as of fiscal year (FY) 1986. Hydrologic data collection and interpretive investigations are underway in every State, Puerto Rico, and several territories in cooperation with more than 900 State, regional and local agencies. Federal funds amounted to $49.8 million in this 50-50 matching activity. Total funding was about $106 million, which included $6.9 million furnished by cooperating agencies on an unmatched basis. The Cooperative Program comprised more than 40% of the overall FY 1986 budget of the Survey 's Water Resources Division. The areas of principal emphasis during the year included groundwater contamination, stream quality, water supply and demand, and hydrologic hazards. Information is presented on program priorities and investigations implemented under the merit proposal process. The status of water use information activities, which are being carried out in 48 states and Puerto Rico is reviewed briefly. Standard methods for collecting the data are being developed. Each state has a computerized State Water-Use Data System for storage and retrieval of water-use data for individual users or facilities. (Lantz-PTT)

  18. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris

    PubMed Central

    GRUBER, ANDREAS; STROBL, STEFAN; VEIT, BARBARA; OBERHUBER, WALTER

    2011-01-01

    Summary We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site). In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05). Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature. PMID:20197285

  19. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris.

    PubMed

    Gruber, Andreas; Strobl, Stefan; Veit, Barbara; Oberhuber, Walter

    2010-04-01

    We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during two contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic sites). In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 degrees C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 weeks was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 weeks earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 weeks later at the dry-mesic site. Since in both study years more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 weeks earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05). Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in P. sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.

  20. Potentiometric Surface, Carbonate-Rock Province, Southern Nevada and Southeastern California, 1998-2000

    DTIC Science & Technology

    2001-01-01

    cooperation with the Nevada Division of Water Resources. The water-level contours displayed are similar to and modeled after work by Winograd and Thordarson ...ing degrees (Winograd and Thordarson , 1975, p. 19). Although many hydrogeologic properties (including transmissivity, storativity, hydraulic... Thordarson , 1975; Waddell and others, 1984; Thomas and others, 1986, 1996; Laczniak and others, 1996), and are sup- ported only by current water-level

  1. A Process to Reduce DC Ingot Butt Curl and Swell

    NASA Astrophysics Data System (ADS)

    Yu, Ho

    1980-11-01

    A simple and effective process to reduce DC ingot butt curl and swell has been developed in the Ingot Casting Division of Alcoa Technical Center.1 In the process, carbon dioxide gas is dissolved under high pressure into the ingot cooling water upstream of the mold during the first several inches of the ingot cast. As the cooling water exits from the mold, the dissolved gas evolves as micron-size bubbles, forming a temporary effective insulation layer on the ingot surface. This reduces thermal stress in the ingot butt. An insulation pad covering about 60% of the bottom block is used in conjunction with the carbon dioxide injection when maximum butt swell reduction is desired. The process, implemented in four Alcoa ingot plants, has proven extremely successful.

  2. 75 FR 17303 - Section 108 Community Development Loan Guarantee Program: Participation of States as Borrowers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT 24 CFR Part 570 [Docket No. 5326-F-02] RIN 2506-AC28... Division, Office of Community Planning and Development, Department of Housing and Urban Development, 451... Division, Office of General Counsel, Department of Housing and Urban Development, 451 7th Street, SW., Room...

  3. Mentorship programs for faculty development in academic general pediatric divisions.

    PubMed

    Takagishi, Jennifer; Dabrow, Sharon

    2011-01-01

    Introduction. Mentoring relationships have been shown to support academicians in areas of research, work/life balance, and promotion. Methods. General pediatric division chiefs accessed an electronic survey asking about mentorship relationships, their ability to create a mentorship program, and resources needed. Results. Dyadic mentorship programs were available at 53% of divisions. Peer mentorship programs were available at 27% of divisions. Overall, 84% of chiefs believed that dyadic mentorship would benefit their faculty. 91% of chiefs believed that peer mentorship would benefit their faculty. Chiefs were interested in starting peer (57%) or dyadic (55%) mentorship programs. Few divisions had a peer mentorship program available, whereas 24% already had a dyadic program. 43% of chiefs felt that they had the tools to start a program. Many tools are needed to create a program. Discussion. General pediatric division chiefs acknowledge the benefits of mentoring relationships, and some have programs in place. Many need tools to create them. Pediatric societies could facilitate this critical area of professional development.

  4. A Description and Comparison of the Perceptions of NCAA Division II and Division III College Presidents Regarding the Impacts of Intercollegiate Athletics at Their Institutions

    ERIC Educational Resources Information Center

    Huffman, Aaron C.

    2013-01-01

    The purpose of this study was to describe and compare the perceptions of NCAA Division II and NCAA Division III college and university presidents regarding the impacts of intercollegiate athletics at their institutions. The data were collected with an anonymous online survey instrument developed by the researcher and sent via email using…

  5. On a nonlocal reaction-diffusion-advection system modelling the growth of phytoplankton with cell quota structure

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Mei, Linfeng; Wang, Feng-Bin

    2015-11-01

    Phytoplankton species in a water column compete for mineral nutrients and light, and the existing models usually neglect differences in the nutrient content and the amount of light absorbed of individuals. In this current paper, we examine a size-structured and nonlocal reaction-diffusion-advection system which describes the dynamics of a single phytoplankton species in a water column where the species depends simply on light for its growth. Our model is under the assumption that the amount of light absorbed by individuals is proportional to cell size, which varies for populations that reproduce by simple division into two equally-sized daughters. We first establish the existence of a critical death rate and our analysis indicates that the phytoplankton survives if and only if its death rate is less than the critical death rate. The critical death rate depends on a general reproductive rate, the characteristics of the water column (e.g., turbulent diffusion rate, sinking, depth), cell growth, cell division, and cell size.

  6. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  7. 1986 Division 17 Presidential Address: Crossroads for Counseling Psychology.

    ERIC Educational Resources Information Center

    Gazda, George M.

    1987-01-01

    Addresses the American Psychological Association (APA) reorganization plans developed by the Task Force on the Structure of APA, and their impact on Division 17, the Division of Counseling Psychology. Discusses accreditation, specialization, model guidelines for state licensure and graduate education. Expresses concern regarding the Assemblies'…

  8. Theatre for Development: An Overview.

    ERIC Educational Resources Information Center

    Nogueira, Marcia Pompeo

    2002-01-01

    Discusses the term Theatre for Development (TFD) by addressing the theatre practice developed by a group of women in Mundemba Sub-Division, Cameroon, which was presented in Anne Tanyi-Tang's article "Theatre for Change: An Analysis of Two Performances by Women in Mundemba Sub-Division" in an earlier issue of this journal. Considers…

  9. Irrigation water use in Kansas, 2013

    USGS Publications Warehouse

    Lanning-Rush, Jennifer L.

    2016-03-22

    This report, prepared by the U.S. Geological Survey in cooperation with the Kansas Department of Agriculture, Division of Water Resources, presents derivative statistics of 2013 irrigation water use in Kansas. The published regional and county-level statistics from the previous 4 years (2009–12) are shown with the 2013 statistics and are used to calculate a 5-year average. An overall Kansas average and regional averages also are calculated and presented. Total reported irrigation water use in 2013 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.

  10. Water Resources Data for California, 1966; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Cenral Valley

    USGS Publications Warehouse

    1967-01-01

    The surface-water records for the 1966 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann and R. Stanley Lord, successive district chiefs, Menlo Park, Calif.

  11. Contamination of Lake Wewoka and fresh-water sands by disposal of oil-well brines near Wewoka, Seminole County, Oklahoma

    USGS Publications Warehouse

    Schoff, Stuart L.; Dott, Robert H.; Lalicker, Cecil Gordon

    1941-01-01

    This reports deals with ground-water conditions in an area about 5 miles wide from east to west and 8 miles long from north to south, in Tps. 8 and 9 N., Rs. 7 and 8 E., in Seminole County, Oklahoma, including the town of Wewoka and Lake Wewoka. The possible contamination of the lake waters from oil-well brines disposed through a well 3.75 miles north of the lake, and other effects of brine disposal, are considered. The investigation was made at the request of Frank Raab, member of the Oklahoma Planning and Resources Board, and Don McBride, Chief Engineer of the Division of Water Resources who has the responsibility of preventing contamination of water supplies in Oklahoma. Field work was done July 5 and 6, 1941, by Robert H. Dott, Director of the Oklahoma Geological Survey; C.G. Lalicker, Department of Geology, University of Oklahoma; and S.L. Schoff, Assistant Geologist in the Ground Water Division, Water Resources Branch, of the U.S. Geological Survey. Lalicker spent both days studying the rocks exposed in the vicinity and measuring their thickness. A copy of the composite section measured by him is attached. Dott and Schoff spent one day collecting the well information summarized in Table 1, and one day with Lalicker on the stratigraphy. (available as photostat copy only)

  12. Alaska Department of Natural Resources

    Science.gov Websites

    Agriculture Forestry Geological and Geophysical Surveys Mining, Land and Water Division of Oil and Gas Parks Permitting Boards/Commissions Board of Agriculture Board of Forestry Community Forest Council Forest

  13. The Water Availability Tool for Environmental Resources (WATER): A Water-Budget Modeling Approach for Managing Water-Supply Resources in Kentucky - Phase I: Data Processing, Model Development, and Application to Non-Karst Areas

    USGS Publications Warehouse

    Williamson, Tanja N.; Odom, Kenneth R.; Newson, Jeremy K.; Downs, Aimee C.; Nelson, Hugh L.; Cinotto, Peter J.; Ayers, Mark A.

    2009-01-01

    The Water Availability Tool for Environmental Resources (WATER) was developed in cooperation with the Kentucky Division of Water to provide a consistent and defensible method of estimating streamflow and water availability in ungaged basins. WATER is process oriented; it is based on the TOPMODEL code and incorporates historical water-use data together with physiographic data that quantitatively describe topography and soil-water storage. The result is a user-friendly decision tool that can estimate water availability in non-karst areas of Kentucky without additional data or processing. The model runs on a daily time step, and critical source data include a historical record of daily temperature and precipitation, digital elevation models (DEMs), the Soil Survey Geographic Database (SSURGO), and historical records of water discharges and withdrawals. The model was calibrated and statistically evaluated for 12 basins by comparing the estimated discharge to that observed at U.S. Geological Survey streamflow-gaging stations. When statistically evaluated over a 2,119-day time period, the discharge estimates showed a bias of -0.29 to 0.42, a root mean square error of 1.66 to 5.06, a correlation of 0.54 to 0.85, and a Nash-Sutcliffe Efficiency of 0.26 to 0.72. The parameter and input modifications that most significantly improved the accuracy and precision of streamflow-discharge estimates were the addition of Next Generation radar (NEXRAD) precipitation data, a rooting depth of 30 centimeters, and a TOPMODEL scaling parameter (m) derived directly from SSURGO data that was multiplied by an adjustment factor of 0.10. No site-specific optimization was used.

  14. ALTERATION OF CARDIAC ELECTRICAL ACTIVITY BY WATER-LEACHABLE COMPONENTS OF RESIDUAL OIL FLY ASH (ROFA)

    EPA Science Inventory

    Alteration of cardiac electrical activity by water-leachable components
    of residual oil fly ash (ROFA)

    Desuo Wang, Yuh-Chin T. Huang*, An Xie, Ting Wang

    *Human Studies Division, NHEERL, US EPA
    104 Mason Farm Road, Chapel Hill, NC 27599
    Department of Basic ...

  15. 18 CFR 2.55 - Definition of terms used in section 7(c).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Definition of terms used in section 7(c). 2.55 Section 2.55 Conservation of Power and Water Resources FEDERAL ENERGY... Commission's regulations (18 CFR 1b.21(g)) and the Dispute Resolution Division Helpline number. (2) “Affected...

  16. Southwestern Division 2012 History Report

    DTIC Science & Technology

    2013-05-01

    maintenance to be performed. Examples of additional maintenance included hydraulic piping replacement, motor control center upgrades, miter gates anchorage...in CEBIS. WATER MANAGEMENT PROGRAM 2012 Hydrology , Hydraulics and Water Management Programs 2012: In March 2012, the Corps’ SWD office...hosted the annual “2012 Reservoir Control Center/Hydrology and Hydraulics annual meeting. The meeting was held in Tulsa, Oklahoma at the Tulsa

  17. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    ERIC Educational Resources Information Center

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  18. Acquisition of physical dormancy and ontogeny of the micropyle--water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae).

    PubMed

    Gama-Arachchige, N S; Baskin, J M; Geneve, R L; Baskin, C C

    2011-07-01

    The 'hinged valve gap' has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a 'micropyle--water-gap complex'.

  19. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  20. Wastewater Characterization Survey, Cannon Air Force Base, New Mexico

    DTIC Science & Technology

    1993-05-01

    Consultant, Water Qu 1ity Franch Chief, Bioenironmental Engineering Division Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden...aquatic food chain and/or storage in plant Water Act are followed; sewers. and animal tissues, can be magnified to 10. provides continuing technical train...continuously throughout the year in all food chains, will cause death, disease, be- face or ground water at a frequency and years; its upper surface

  1. DOLWD Division of Employment and Training Services

    Science.gov Websites

    State Employees Division of Employment and Training Services Search Labor & Workforce Development ; Department of Labor & Workforce Development > Employment And Training Services > Home Ed Flanagan , Director Mission Statement Provide labor exchange, employment and training services, and unemployment

  2. 75 FR 70044 - Withdrawal of Regulatory Guide 1.39

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ...: Hector L. Rodriguez-Luccioni, Regulatory Guide Development Branch, Division of Engineering, Office of...-251-7685 or e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The... N. Ridgely, Acting Chief, Regulatory Guide Development Branch, Division of Engineering, Office of...

  3. Prospects of the development of the laser medical machinery for ensuring of progress of medical technologies

    NASA Astrophysics Data System (ADS)

    Litvin, Grigory D.; Vibornov, S. I.; Jakimenko, A. P.

    1990-09-01

    Medicine, arid surry in prticu1r, ha'vE rather visib1e and fixed objects and tasks On the hc1e they incILId diagnosis of thE? patological process, division of the tissues, control of tissue mtabo1ism. Each component of mdica1 practice contains in different aspects these general basic Itments EvEn now Iasr technology gives physicians thee opportunity to gain some benefit, in recognizing and measuring living obJects, modulation of metabol ism coagulation and vapor-ation of tissue water

  4. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  5. StreamStats in Georgia: a water-resources web application

    USGS Publications Warehouse

    Gotvald, Anthony J.; Musser, Jonathan W.

    2015-07-31

    StreamStats is being implemented on a State-by-State basis to allow for customization of the data development and underlying datasets to address their specific needs, issues, and objectives. The USGS, in cooperation with the Georgia Environmental Protection Division and Georgia Department of Transportation, has implemented StreamStats for Georgia. The Georgia StreamStats Web site is available through the national StreamStats Web-page portal at http://streamstats.usgs.gov. Links are provided on this Web page for individual State applications, instructions for using StreamStats, definitions of basin characteristics and streamflow statistics, and other supporting information.

  6. Surface Water Quality-Assurance Plan for the North Florida Program Office of the U.S. Geological Survey

    USGS Publications Warehouse

    Franklin, Marvin A.

    2000-01-01

    The U.S. Geological Survey, Water Resources Division, has a policy that requires each District office to prepare a Surface Water Quality-Assurance Plan. The plan for each District describes the policies and procedures that ensure high quality in the collection, processing, analysis, computer storage, and publication of surface-water data. The North Florida Program Office Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the North Florida Program office for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  7. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics 3. United Nations (UN) (2012), World Water Development Report 4, UNESCO Publishing

  8. Water resources data for New Mexico, water year 1965; Part 1. Surface water records

    USGS Publications Warehouse

    ,

    1966-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also Included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the fifth In a series presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled Surface Water Supply of the United States. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8 and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5~year intervals. These 5-year water-supply papers will show daily discharge and will be compi led On the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  9. Records of wells in sandstone and alluvial aquifers and chemical data for water from selected wells in the Navajo aquifer in the vicinity ofthe Greater Aneth Oil Field, San Juan County, Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    1992-01-01

    This report contains hydrologic data for wells finished in sandstone and alluvial aquifers in southeastern San Juan County, Utah, and chemical data for water from selected wells in the Navajo aquifer. Temperature, specific conductance, pH, and discharge data from 1989-91 for water from selected wells in all aquifers are also presented.Data presented in this report were compiled from previously published reports (Goode, 1958; Sumsion, 1975; Avery, 1986; Kimball, 1987; Howells, 1990); data bases of the U.S. Geological Survey, the Navajo Tribe, the U.S. Bureau of Land Management, the Utah Division of Water Rights, and the Utah Division of Oil, Gas, and Mining; and from information obtained from oil companies in the Greater Aneth Oil Field. Results of investigations by Avery (1986) during 1982-83 indicated that water from many wells in the Navajo aquifer in the vicinity of the Greater Aneth Oil Field was moderately saline and that in some wells, salinity appeared to increase over time. The purpose of this study is to assess the physical extent and concentration of saline water in the Navajo and other aquifers in this area. The purpose of this report is to present available water-quality data for water from wells in the Navajo aquifer and present records for selected wells in the Navajo and other aquifers.

  10. Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿

    PubMed Central

    Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950

  11. Travel/Travelers and Parasitic Diseases

    MedlinePlus

    ... Be Acquired During Travel* From Contaminated Food and Water More Common Giardiasis Cryptosporidiosis Cyclosporiasis Less Common Amebiasis ... Page last updated: April 20, 2018 Content source: Global Health – Division of Parasitic Diseases Email Recommend Tweet ...

  12. [Prokaryote diversity in water environment of land-ocean ecotone of Zhuhai City].

    PubMed

    Huang, Xiao-Lan; Chen, Jian-Yao; Zhou, Shi-Ning; Xie, Li-Chun; Fu, Cong-Sheng

    2010-02-01

    By constructing 16S rDNA clone library with PCR-RFLP, the prokaryote diversity in the seawater and groundwater of land-ocean ecotone of Zhuhai City was investigated, and the similarity and cluster analyses were implemented with the database of the sequences in Genbank. In the seawater, Proteobacteria was dominant, followed by Archaeon, Gemmatimonadetes, Candidate division OP3 and OP8, and Planctomycetes, etc.; while in the groundwater, Archaeon was dominant, followed by Proteobacteria, Sphingobacteria, Candidate division OP3, Actinobacterium, and Pseudomonas. The dominant taxa in the groundwater had high similarity to the unculturable groups of marine microorganisms. Large amount of bacteria capable of degrading organic matter and purifying water body existed in the groundwater, suggesting that after long-term evolution, the land-ocean ecotone of Zhuhai City had the characteristics of both land and ocean.

  13. National Program for Inspection of Non-Federal Dams. Keyser Dam (VT 00097), Connecticut River Basin, Chelsea, Vermont. Phase I Inspection Report.

    DTIC Science & Technology

    1980-04-01

    CARNEY M. TERZIAN, HENBER I Design Branch Engineering Division RICHARD DIB * Water Control Branch Engineering Division [ hPIPWVAL 220ininu: Chief...2 f. Operator 2 I g. Purpose of Dam 2 h. Design and Construction History 2 i. Normal Operational Procedure 2 1.3 Pertinent Data 2 a. Drainage...i. Spillway 5 J. Regulating Outlets 5 [I h] Section Page 2. ENGINEERING DATA 6 2.1 Design Data 6 2.2 Construction Data 6 2.3 Operation Data 6 2.4

  14. Environmental Sciences Division annual progress report for period ending September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and themore » interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.« less

  15. Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells.

    PubMed

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T S; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-08-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.

  16. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    PubMed Central

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  17. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  18. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  19. Announcement of new division: C9 – Biomedical, Health-Beneficial, and Nutritionally Enhanced Plants

    USDA-ARS?s Scientific Manuscript database

    Crop Science, is pleased to announce that manuscript submissions are now being accepted to the journal through the new Provisional Division C09 – Biomedical, Health-Beneficial, and Nutritionally Enhanced Plants. The focus of this Division is on plants as food or feed, and on the development and eva...

  20. Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.

    2017-01-01

    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger ofmore » another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs.« less

  2. The Professional Socialization of Certified Athletic Trainers in the National Collegiate Athletic Association Division I Context

    PubMed Central

    Pitney, William A.; Ilsley, Paul; Rintala, Jan

    2002-01-01

    Objective: To describe the professional socialization process of certified athletic trainers (ATCs) in National Collegiate Athletic Association (NCAA) Division I to guide athletic training education and professional development. Design and Setting: We conducted a qualitative study to explore the experiences related to how participants were socialized into their professional roles in Division I. Subjects: A total of 16 interviews were conducted with 11 male (68.75%) and 5 female (31.25%) participants who were either currently or formerly affiliated with an NCAA Division I athletic program. Data Analysis: The interviews were transcribed, coded, and analyzed inductively using a modified grounded theory approach. Trustworthiness was obtained by peer review, data source triangulation, and member checks. Results: We identified a discernible pattern of socialization experiences and perceptions among the participants. The professional socialization processes of Division I collegiate ATCs is explained as a 5-phase developmental sequence: (1) envisioning the role, (2) formal preparation, (3) organizational entry, (4) role evolution, and (5) gaining stability. Conclusions: Examining the professional socialization process provides insights into the experiences of Division I collegiate ATCs as they prepare for their job responsibilities and develop professionally. Appropriate socialization tactics, such as the use of a structured mentoring experience, formal orientation, and staff development programming, can be implemented to promote effective professional development. Additionally, undergraduate students may be well served if they are educated to better use informal learning situations during their initial socializing events. PMID:12937446

  3. Water resources data for New Mexico, water year 1968; Part 1. Surface water records

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the eighth in a series presenting, annually, basic data on surfacewater records by States. Through September 30, 1960, "the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States.!! Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs. The records will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  4. Triangle area water supply monitoring project, October 1988 through September 2001, North Carolina -- description of the water-quality network, sampling and analysis methods, and quality-assurance practices

    USGS Publications Warehouse

    Oblinger, Carolyn J.

    2004-01-01

    The Triangle Area Water Supply Monitoring Project was initiated in October 1988 to provide long-term water-quality data for six area water-supply reservoirs and their tributaries. In addition, the project provides data that can be used to determine the effectiveness of large-scale changes in water-resource management practices, document differences in water quality among water-supply types (large multiuse reservoir, small reservoir, run-of-river), and tributary-loading and in-lake data for water-quality modeling of Falls and Jordan Lakes. By September 2001, the project had progressed in four phases and included as many as 34 sites (in 1991). Most sites were sampled and analyzed by the U.S. Geological Survey. Some sites were already a part of the North Carolina Division of Water Quality statewide ambient water-quality monitoring network and were sampled by the Division of Water Quality. The network has provided data on streamflow, physical properties, and concentrations of nutrients, major ions, metals, trace elements, chlorophyll, total organic carbon, suspended sediment, and selected synthetic organic compounds. Project quality-assurance activities include written procedures for sample collection, record management and archive, collection of field quality-control samples (blank samples and replicate samples), and monitoring the quality of field supplies. In addition to project quality-assurance activities, the quality of laboratory analyses was assessed through laboratory quality-assurance practices and an independent laboratory quality-control assessment provided by the U.S. Geological Survey Branch of Quality Systems through the Blind Inorganic Sample Project and the Organic Blind Sample Project.

  5. Public water-supply systems and water use in Tennessee, 1988

    USGS Publications Warehouse

    Hutson, Susan S.; Morris, A. Jannine

    1992-01-01

    This report summarizes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), Division of Water Supply in 1988. Data gathered during an inventory by the TDEC were collated to determine water use, supply sources, population served, and design and storage capacities of the systems. The inventory was limited to systems that were active on June 30, 1988. Results of a survey of the systems conducted by the Tennessee Department of Health and Environment during 1988 were a primary source of data for this report. Data from computer and manual files maintained by the Tennessee Department of Health and Environment and the U.S. Geological Survey also were used. The Division of Water Supply, TDEC, surveyed 541 public water-supply systems. These systems served 81 percent of the population of the State, or 3.95 million people. The gross per capita use statewide for public-supplied water was 179 gallons per day. Total water withdrawals for public supply increased about 39 percent from 510 million gallons per day (Mgal/d) in 1980, to 708 Mgalld in 1988. During the same period, the population increased about 7 percent. Surface-water withdrawals accounted for 63 percent (446 Mgal/d) of the total water withdrawn in the State. All of these withdrawals occurred in the Tennessee (56 percent or 249 Mgal/d) and the Ohio (44 percent or 197 Mgalld) hydrologic regions. Ground water supplied 262 Mgal/d or 37 percent of the total water withdrawn by public-supply systems statewide. Of that amount, 79 percent, or 208 Mgalld, was used in western Tennessee.

  6. 76 FR 56766 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ...-10114 (OMB : 0938-0931); Frequency: Reporting--On occasion; Affected Public: Business or other for...: CMS, Office of Strategic Operations and Regulatory Affairs, Division of Regulations Development... Development Group, Division B Office of Strategic Operations and Regulatory Affairs. [FR Doc. 2011-23430 Filed...

  7. 75 FR 37842 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... INFORMATION CONTACT: R. A. Jervey, Regulatory Guide Development Branch, Division of Engineering, Office of...) 251-7404 or e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The U.S. Nuclear..., Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc...

  8. AN OVERVIEW OF PATHOGEN RESEARCH IN THE MICROBIOLOGICAL AND CHEMICAL EXPOSURE ASSESSMENT RESEARCH DIVISION

    EPA Science Inventory

    The Microbiological and Chemical Exposure Assessment Research Division of the EPA Office of Research and Development's National Exposure Research Laboratory has a robust in-house research program aimed at developing better occurrence and exposure methods for waterborne pathogens....

  9. 76 FR 3159 - Notice of Lodging of a Consent Decree Under the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... untreated sewage in such a way as to cause violations of applicable water quality standards for E. coli in... Assistant Attorney General, Environment and Natural Resources Division, and either e-mailed to pubcomment... Library, P.O. Box 7611, U.S. Department of Justice, Washington, DC 20044-7611 or by faxing or e-mailing a...

  10. 29 CFR 783.39 - “Vessel” includes all means of water transportation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false âVesselâ includes all means of water transportation. 783.39 Section 783.39 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS APPLICATION OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES...

  11. 78 FR 42801 - Notice of Lodging of Proposed Consent Decree Under the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Clean Water Act On July 11, 2013, the Department of Justice lodged a proposed Consent Decree with the United States District Court for the Eastern District of North Carolina (Southern Division) in the lawsuit entitled United States v. City of Wilmington, N.C., New...

  12. 78 FR 61867 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act On September 26, 2013, the Department of Justice lodged a proposed Consent Decree with the United States District Court for the District of Montana, Great Falls Division, in the lawsuit entitled United States v. Gros Ventre and Assiniboine Tribes...

  13. 78 FR 65385 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act On Wednesday, October 23, 2013, the Department of Justice lodged a proposed Consent Decree with the United States District Court for the District of Utah (Central Division) in the lawsuit entitled United States v. Newfield Production Company,...

  14. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... immediately pay the FmHA or its successor agency under Public Law 103-354 debt in full; or (2) The urban... agreement between the parties; and (ii) Pay the association annually an amount sufficient to enable it to.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  15. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... immediately pay the FmHA or its successor agency under Public Law 103-354 debt in full; or (2) The urban... agreement between the parties; and (ii) Pay the association annually an amount sufficient to enable it to.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  16. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... immediately pay the FmHA or its successor agency under Public Law 103-354 debt in full; or (2) The urban... agreement between the parties; and (ii) Pay the association annually an amount sufficient to enable it to.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  17. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... immediately pay the FmHA or its successor agency under Public Law 103-354 debt in full; or (2) The urban... agreement between the parties; and (ii) Pay the association annually an amount sufficient to enable it to.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  18. 40 CFR 81.329 - Nevada.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on the State of Nevada Division of Water Resources' map titled Water Resources and Inter-basin Flows...-26E) X Clovers Area (64)(32-39N, 42-46E) X 1 EPA designation replaces State designation. 2 Rest of... Boulder Flat (61) (31-37N, 45-51E): Upper Unit 61 X Lower Unit 61 X Rest of State 1 X 1 Rest of State...

  19. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linkedmore » to a cumulative net ecosystem improvement.« less

  20. The Brown Water Navy in the Mekong Delta: COIN in the Littorals and Inland Waters

    DTIC Science & Technology

    2008-01-01

    MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14...Saigon, by sinking a ship in the channel . Mine Division 112 was assigned to GAME WARDEN to accomplish this mission. They were equipped with Mine...Sweeping Boats, MSBs, to keep the channels 12 I . " ... ,..__• ~__~ ~. ~ .. I I The Brown Water Navy in the Mekong Delta: COIN in the Littorals and Inland

Top