Sample records for water development part

  1. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development.

    PubMed

    Nakamura, Hideaki

    2018-05-08

    In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.

  2. 40 CFR Appendix A to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Aquatic Life Criteria and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LAKES SYSTEM Pt. 132, App. A Appendix A to Part 132—Great Lakes Water Quality Initiative Methodologies... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative Methodologies for Development of Aquatic Life Criteria and Values A Appendix A to Part 132 Protection of...

  3. 40 CFR Appendix A to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Aquatic Life Criteria and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LAKES SYSTEM Pt. 132, App. A Appendix A to Part 132—Great Lakes Water Quality Initiative Methodologies... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Great Lakes Water Quality Initiative Methodologies for Development of Aquatic Life Criteria and Values A Appendix A to Part 132 Protection of...

  4. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  5. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LAKES SYSTEM Pt. 132, App. C Appendix C to Part 132—Great Lakes Water Quality Initiative Methodologies...; or consuming fish from the water, and water-related recreation activities using the Methodologies for... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Great Lakes Water Quality Initiative...

  6. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LAKES SYSTEM Pt. 132, App. C Appendix C to Part 132—Great Lakes Water Quality Initiative Methodologies...; or consuming fish from the water, and water-related recreation activities using the Methodologies for... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative...

  7. Geology and ground-water resources of Galveston County, Texas

    USGS Publications Warehouse

    Petitt, Ben McDowell; Winslow, Allen George

    1957-01-01

    Much additional ground water could be obtained from both the "Alta Loma" sand and the upper part of the Beaumont clay, especially in the northern and western parts of the county. Before large developments of supplies are planned, however, these areas should be explored by test drilling. The problems of well spacing and pumping rates should be thoroughly studied in order to determine the maximum development permitted by the ground-water supply. Current observations should be continued with special emphasis on the progress of salt-water encroachment.

  8. The changing pattern of ground-water development on Long Island, New York

    USGS Publications Warehouse

    Heath, Ralph C.; Foxworthy, B.L.; Cohen, Philip M.

    1966-01-01

    Ground-water development on Long Island has followed a pattern that has reflected changing population trends, attendant changes in the use and disposal of water, and the response of the hydrologic system to these changes. The historic pattern of development has ranged from individually owned shallow wells tapping glacial deposits to large-capacity public-supply wells tapping deep artesian aquifers. Sewage disposal has ranged from privately owned cesspools to modern large-capacity sewage-treatment plants discharging more than 70 mgd of water to the sea. At present (1965), different parts of long Island are characterized by different stages of ground-water development. In parts of Suffolk County in eastern long Island, development is similar to the earliest historical stages. Westward toward New York City, ground-water development becomes more intensive and complex, and the attendant problems become more acute. The alleviation of present problems and those that arise in the future will require management decisions based on the soundest possible knowledge of the hydrologic system, including an understanding of the factors involved in the changing pattern of ground-water development on the island.

  9. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    USGS Publications Warehouse

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    Land uses in the urban land use study area affected the concentrations of some water-quality constituents. Concentrations of nitrate and chloride, and frequencies of detection of pesticides and of volatile organic compounds, were greater in water samples from the surficial sand and gravel aquifer underlying the urban land use study area than in water samples from similar aquifers from part of the Upper Mississippi River Basin National Water-Quality Assessment study unit. Land uses within 500-meter radii of each well were quantified by digitizing overlays of aerial photographs that were verified and updated in the field. Concentrations of magnesium and sulfate were greater in ground water beneath areas of denser residential development, which may be a natural artifact of better drainage and a deeper water table in those areas. Frequencies of detection of some pesticides and volatile organic compounds were greater in water from wells with greater proportions of industrial and transportation land uses. Ground water in areas with less dense residential development, mostly the more recently-developed areas, tended to have greater concentrations of agricultural herbicides and some nutrients probably a relict of previous agricultural land use.

  10. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  11. 40 CFR 131.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Clean Water Act. Additional specific procedures for developing, reviewing, revising, and approving water quality standards for Great Lakes States or Great Lakes Tribes (as defined in 40 CFR 132.2) to conform to section 118 of the Clean Water Act and 40 CFR part 132, are provided in 40 CFR part 132. [60 FR...

  12. 40 CFR 131.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Clean Water Act. Additional specific procedures for developing, reviewing, revising, and approving water quality standards for Great Lakes States or Great Lakes Tribes (as defined in 40 CFR 132.2) to conform to section 118 of the Clean Water Act and 40 CFR part 132, are provided in 40 CFR part 132. [60 FR...

  13. 40 CFR 131.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Clean Water Act. Additional specific procedures for developing, reviewing, revising, and approving water quality standards for Great Lakes States or Great Lakes Tribes (as defined in 40 CFR 132.2) to conform to section 118 of the Clean Water Act and 40 CFR part 132, are provided in 40 CFR part 132. [60 FR...

  14. 40 CFR 131.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Clean Water Act. Additional specific procedures for developing, reviewing, revising, and approving water quality standards for Great Lakes States or Great Lakes Tribes (as defined in 40 CFR 132.2) to conform to section 118 of the Clean Water Act and 40 CFR part 132, are provided in 40 CFR part 132. [60 FR...

  15. Water levels prior to January 1, 1954 in observation wells, in Nebraska: part 1. Adams through Howard Counties

    USGS Publications Warehouse

    Keech, C.F.; Case, R.L.

    1954-01-01

    During the fall of 1945, as part of the program for the development of the resources of the Missouri River basin, the United States Geological Survey began a new series of groundwater investigation in Nebraska.  Those studies were coordinated with the already existing program of ground-water studies that was begun in 1930 by the U.S. Geological Survey in cooperation with the Conservation and Survey Division of the University of Nebraska. Most of the water-level measurements in this report were obtained and compiled as part of the Missouri Basin Development Program.

  16. Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Bush, Peter W.; Johnston, Richard H.

    1988-01-01

    A considerable area remains of the Floridan aquifer system where large ground-water supplies may be developed. This area is largely inland from the coasts and characterized by high transmissivity and minimal development prior to the early 1980's. The major constraint on future development probably is degradation of water quality rather than water-quantity limitations.

  17. Interdisciplinary Methods in Water Resources

    ERIC Educational Resources Information Center

    Cosens, Barbara; Fiedler, Fritz; Boll, Jan; Higgins, Lorie; Johnson, Gary; Kennedy, Brian; Strand, Eva; Wilson, Patrick; Laflin, Maureen

    2011-01-01

    In the face of a myriad of complex water resource issues, traditional disciplinary separation is ineffective in developing approaches to promote a sustainable water future. As part of a new graduate program in water resources, faculty at the University of Idaho have developed a course on interdisciplinary methods designed to prepare students for…

  18. Water quality assessment and meta model development in Melen watershed - Turkey.

    PubMed

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Summary of hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    The northern part of the Gulf Coast aquifer system in Texas, which includes the Chicot, Evangeline, and Jasper aquifers, supplies most of the water used for industrial, municipal, agricultural, and commercial purposes for an approximately 25,000- square-mile (mi2) area that includes the Beaumont and Houston metropolitan areas. The area has an abundant amount of potable ground water, but withdrawals of large quantities of ground water have resulted in potentiometric-surface declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence from depressurization and compaction of clay layers interbedded in the aquifer sediments. This fact sheet summarizes a study done in cooperation with the Texas Water Development Board (TWDB) and the Harris-Galveston Coastal Subsidence District (HGCSD) as a part of the TWDB Ground-Water Availability Modeling (or Model) (GAM) program. The study was designed to develop and test a ground-water-flow model of the northern part of the Gulf Coast aquifer system in the GAM area (fig. 1) that waterresource managers can use as a tool to address future groundwater- availability issues.

  20. Summary appraisals of the Nation's ground-water resources; Upper Mississippi region

    USGS Publications Warehouse

    Bloyd, R.M.

    1975-01-01

    Advances in techniques in ground-water hydrology during recent years have provided methods that the hydrologist and planner can use for planning and design of ground-water developments. Therefore, the planner can now resolve some of the development and management questions that historically have bred uncertainty when this part of the water resource was considered for development.

  1. An integrated toolbox for processing and analysis of remote sensing data of inland and coastal waters - atmospheric correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less

  2. Summary appraisals of the Nation's ground-water resources; Ohio region

    USGS Publications Warehouse

    Bloyd, Richard M.

    1974-01-01

    Rapid advance of techniques in ground-water hydrology during recent years has provided methods which the hydrologist can use for evaluating planned ground-water development. Therefore, the manager can resolve the inherent problems that historically have bred caution when this part of our total water resource was considered for development.

  3. 36 CFR 327.0 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... force and effect where applicable to those water resources development projects. [65 FR 6898, Feb. 11... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.0 Applicability. The regulations covered in this part 327 shall be applicable to water resources...

  4. 36 CFR 327.0 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... force and effect where applicable to those water resources development projects. [65 FR 6898, Feb. 11... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.0 Applicability. The regulations covered in this part 327 shall be applicable to water resources...

  5. 36 CFR 327.0 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... force and effect where applicable to those water resources development projects. [65 FR 6898, Feb. 11... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.0 Applicability. The regulations covered in this part 327 shall be applicable to water resources...

  6. 36 CFR 327.0 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... force and effect where applicable to those water resources development projects. [65 FR 6898, Feb. 11... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.0 Applicability. The regulations covered in this part 327 shall be applicable to water resources...

  7. MODELING THE IMPACTS OF LAND USE CHANGE ON HYDROLOGY AND WATER QUALITY OF A PACIFIC NORTHWEST WATERSHED

    EPA Science Inventory

    In many parts of the world, aquatic ecosystems are threatened by hydrological and water quality alterations due to extraction and conversion of natural resources for agriculture, urban development, forestry, mining, transportation, and water resources development. To evaluate the...

  8. 36 CFR § 327.0 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... force and effect where applicable to those water resources development projects. [65 FR 6898, Feb. 11... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.0 Applicability. The regulations covered in this part 327 shall be applicable to water resources...

  9. Development of Pre-Service Science Teachers' Awareness of Sustainable Water Use

    ERIC Educational Resources Information Center

    Cankaya, Cemile; Filik Iscen, Cansu

    2015-01-01

    Water is a vital resource for sustainable development. The aim of this research was to develop and evaluate pre-service science teachers' awareness of sustainable water usage. This research was based on a mixed method. The qualitative part of the research was based on a single group pretest-posttest experimental design, and the qualitative data…

  10. Development of a System to Assess Biofilm Formation in the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin Charles, E.; Summers, Silvia M.; Roman, Monserrate C.

    1998-01-01

    The design requirements for the water treatment systems aboard the International Space Station (ISS) include and require recycling as much water as possible and to treat the water for intentional contamination (hygiene, urine distillate, condensate, etc.) and unintentional contamination in the form of biofilm and microorganisms. As part of an effort to address the latter issue, a biofilm system was developed by Marshall Space Flight Center (MSFC) to simulate the conditions aboard ISS with respect to materials, flow rates, water conditions, water content, and handling. The tubing, connectors, sensors, and fabricated parts included in the system were chosen for specific attributes as applicable to emulate an orbital water treatment system. This paper addresses the design and development process of the system, as well as the configuration, operation, and system procedures for maintenance to assure that the simulation is valid for the representative data as it applies to water degradation and biofilm/microbial growth. Preliminary biofilm/microbial results are also presented.

  11. Ground-water resources of Kleberg County, Texas

    USGS Publications Warehouse

    Livingston, Penn Poore; Bridges, Thomas W.

    1936-01-01

    Water obtained from the fresh-water horizon is comparatively fresh in the western and central parts of the county but contains a somewhat higher proportion of chlorides toward the Gulf. Samples obtained from about 100 wells, located for the most part in the central part of the county, showed a. higher chloride content than is normal for the freshwater beds in the area. These wells are believed in large part to be defective and to be admitting salt water. This was demonstrated and the leaks located in several wells that were tested. No evidence was found of salt-water contamination by percolation through the formations, however. The leaky wells should be repaired, If practicable, or sealed to prevent them from contaminating the fresh-water sand. The chances of leaks developing can be largely eliminated If the wells are properly drilled and provided with casing of good grade, and the casing is adequately seated.

  12. Analog-model studies of ground-water hydrology in the Houston District, Texas

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1974-01-01

    The major water-bearing units in the Houston district are the Chicot and the Evangeline aquifers. The Chicot aquifer overlies the Evangeline aquifer, which is underlain by the Burkeville confining layer. Both aquifers consist of unconsolidated and discontinuous layers of sand and clay that dip toward the Gulf of Mexico. Heavy pumping of fresh water has caused large declines in the altitudes of the potentiometric surfaces in both aquifers and has created large cones of depression around Houston. The declines have caused compaction of clay layers, which has resulted in land surface subsidence and the movement of saline ground water toward the centers of the cones of depression. An electric analog model was used to study the hydrologic system and to simulate the declines in the altitudes of the potentiometric surfaces for several alternative plans of ground-water development. The results indicate that the largest part. of the pumped water comes from storage in the water-table part of the Chicot aquifer. Vertical leakage from the aquifers and water derived from the compaction of clay layers in the aquifers are also large sources of the water being pumped. The response of the system, as observed on the model, indicates that development of additional ground-water supplies from the water-table part of the Chicot aquifer north of Houston would result in a minimum decline of the altitudes of the potentiometric surfaces. Total withdrawals of about 1,000 million gallons (5.8 million cubic meters) per day may be possible without seriously, increasing subsidence or salt-water encroachment. Analyses of the recovery of water levels indicate that both land-surface subsidence and salt-water encroachment could be reduced by artificially recharging the artesian part of the aquifer.

  13. MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER: PART 1. PROTOCOLS

    EPA Science Inventory

    A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...

  14. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.

  15. Potentiometric surfaces of the Arnold Engineering Development Complex Area, Arnold Air Force Base, Tennessee, May and September 2011

    USGS Publications Warehouse

    Haugh, Connor J.; Robinson, John A.

    2016-01-29

    During May 2011, when water levels were near seasonal highs, water-level data were collected from 374 monitoring wells; and during September 2011, when water levels were near seasonal lows, water-level data were collected from 376 monitoring wells. Potentiometric surfaces were mapped by contouring altitudes of water levels measured in wells completed in the shallow aquifer, the upper and lower parts of the Manchester aquifer, and the Fort Payne aquifer. Water levels are generally 2 to 14 feet lower in September compared to May. The potentiometric-surface maps for all aquifers indicate a groundwater depression at the J4 test cell. Similar groundwater depressions in the shallow and upper parts of the Manchester aquifer are within the main testing area at the Arnold Engineering Development Complex at dewatering facilities.

  16. Waiweras Warmwasserreservoir - Welche Aussagekraft haben Modelle?

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Altmannsberger, Charlotte; Hens, Carmen

    2016-06-01

    The warm water geothermal reservoir below the village of Waiwera in New Zealand has been known by the native Maori for centuries. Development by the European immigrants began in 1863. Until the year 1969, the warm water flowing from all drilled wells was artesian. Due to overproduction, water up to 50 °C now needs to be pumped to surface. Further, between 1975 and 1976, all warm water seeps on the beach of Waiwera ran dry. Within the context of sustainable water management, hydrogeological models must be developed as part of a management plan. Approaches of varying complexity have been set-up and applied since the 1980s. However, none of the models directly provide all results required for optimal water management. Answers are given simply to parts of the questions, nonetheless improving resource management of the geothermal reservoir.

  17. 76 FR 6820 - Contract for Hydroelectric Power Development at the C-Drop, a Feature of the Klamath Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Acquisition and Easements, Hydraulics and Hydrology, Water Rights, Project Features and Design, Power... Federal water resource projects, Reclamation will consider proposals for non-Federal development of... part of the Klamath Project, the United States constructed A, B, and C-Canals, which carry water south...

  18. MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER. PART 2. APPENDICES TO PROTOCOLS

    EPA Science Inventory

    A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...

  19. 18 CFR Appendix A to Part 1302 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 1302 Conservation of Power and Water... a cooperative program utilizing test-demonstration farms to test experimental fertilizers developed...

  20. 18 CFR Appendix A to Part 1302 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 1302 Conservation of Power and Water... a cooperative program utilizing test-demonstration farms to test experimental fertilizers developed...

  1. 18 CFR Appendix A to Part 1302 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 1302 Conservation of Power and Water... a cooperative program utilizing test-demonstration farms to test experimental fertilizers developed...

  2. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average consumption of water is 520,000 gallons per day--all supplied by one well. This supply well and a standby well have a production capability of 1.6 million gallons per day--adequate for present needs. Water in the welded-tuff aquifer is of the sodium bicarbonate type. Dissolved-solids content of the water in Jackass Flats is in the general range 230 milligrams per liter in the western part to 890 milligrams per liter in the eastern part.

  3. CEER 2014 Dedicated Session Proposal: Restoring Water Quality along with Restoring the Gulf of Mexico

    EPA Science Inventory

    This session focuses on the importance of restoring water quality as part of the larger Gulf of Mexico restoration efforts. Water quality has been identified as a significant indicator of water body condition, and Gulf waters have been impacted by increased urban development, agr...

  4. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  5. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  6. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  7. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  8. A global water scarcity assessment under Shared Socio-economic Pathways - Part 1: Water use

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; Kanae, S.

    2013-07-01

    A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs), which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment), and the climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socio-economic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 106 and 4.5 × 106 km2, withdrawal-based potential industrial water demand between 246 and 1714 km3 yr-1, and municipal water between 573 and 1280 km3 yr-1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

  9. [The presence of medications in the water cycle].

    PubMed

    van der Hoek, Jan Peter; van Alphen, Jacques; Kaas, Reinoutje; van der Oost, Ron

    2013-01-01

    Medications and radiographic contrast dyes are sometimes detected in surface waters, ground water and drinking water; these have proven detrimental effects on organisms living in such waters The concentration of medications found in drinking water is at least a thousand times below their minimum therapeutic dosages. In humans, the long-term effects of daily exposure to low dosages of medications and 'mixture toxicity' is not known; based on the concentrations and substance toxicity, it is presumed that the risk is nil.. Physicians can play their part in controlling the problem of medications becoming part of the water cycle by taking this into account when prescribing medications. Users can make a difference by handling their medications with care and by returning all unused portions to the pharmacy. The pharmaceutical industry can also do its part by taking degradability, options for removal and the environmental effects of medications into account during their stages of development.

  10. Ground water in the East Shore area, Utah. Part I. Bountiful District, Davis County

    USGS Publications Warehouse

    Thomas, H.E.; Nelson, W.B.

    1948-01-01

    The Bountiful district in Davis County, Utah, less than 10 miles from the heart of Salt Lake City, is rapidly becoming an integral part of the metropolitan area of Salt Lake City. It cannot achieve the development that its location merits unless the present water supplies are increased. The district is a fertile agricultural area favorably situated between the largest cities in the intermountain area and athwart the major routes of transportation and communication, but development of its residential, industrial, and agricultural potentialities will be restricted until existing water resources are supplemented by importation from other drainage basins that now have surplus water supplies. This conclusion is reached in the accompanying report by the Geological Survey, prepared in cooperation with the Utah State Engineer and the Davis County Water Users Association, and based on a 2-year investigation of the existing water supplies

  11. Density Matters: Review of Approaches to Setting Organism-Based Ballast Water Discharge Standards

    EPA Science Inventory

    As part of their effort to develop national ballast water discharge standards under NPDES permitting, the Office of Water requested that WED scientists identify and review existing approaches to generating organism-based discharge standards for ballast water. Six potential appro...

  12. Summary appraisals of the Nation's ground-water resources; Lower Colorado region

    USGS Publications Warehouse

    Davidson, E.S.

    1979-01-01

    The potential for greater development of ground water in the southwestern part of the region is constrained by land subsidence, earth cracks, increasing costs of pumping and transportation, and moderate to poor chemical quality of water. More ground water can be developed in the northeastern part of the region, where the major constraint is pumping cost owing to low to moderate well yields and depth to water. Some benefits can be realized everywhere in the region through changes in current use and greater efficiencies of use. Additional supplies may be made available by capture of natural evapotranspiration. Increasing the efficiency of use is possible hydrologically but, in the near term, is more expensive than increasing groundwater development. Decrease of irrigation, change to water-saving methods of irrigation, use of saline water, decrease of per capita public- supply use, and more reuse of water in almost every type of use could help extend the supply and thereby reduce the current rate of ground-water depletion. Financial problems have not yet caused an overall decrease in pumpage, but, locally, operating costs or partial dewatering of the aquifer has eliminated or decreased withdrawal. Current water laws in all States of the region, except Arizona, control or allocate the use of ground water.

  13. Development of anoxia during the last 90 years in Lake Tiefer See, NE Germany

    NASA Astrophysics Data System (ADS)

    Groß-Schmölders, Miriam; Dräger, Nadine; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    The sediments from the deepest part of the lake basin (62 m) of Lake Tiefer See, an elongated lake formed in a sub-glacial channel during the last glaciation in NE Germany, have been proven to be annually laminated (calcite varves) since AD 1924 (KIENEL ET AL. 2013). Possible explanations for the onset of varve formation are either eutrophication caused by increased nutrient influx through the use of fertilizers in agriculture and/or the modern climatic warming. Since varves can only form under predominantly anoxic conditions it is hypothesized that the development of the anoxic water body in Lake Tiefer See can be reconstructed by determining the onset of varve formation in different parts and at different water depths of the lake basin. Therefore, we investigated: eleven short cores (length from 49 cm (TSK 14 S 2) to 121 cm (TSK 13 QP5)) from a depth of 19, 4 m up to 62 m water depth, mainly along a N-S and a W-E transect. The onset of varve preservation was investigated on all cores by varve counting. Counting and characterization of varves has been obtained by micro-facies analyses of large-scale thin sections μXRF-element scanning. In result we found a good correlation between the onset of varve formation/preservation and water depth. Whereas varves at the deepest point of Lake Tiefer See are developed since 1924 the onset of varve formation began successively later at more shallow water depths. The latest development of varves since 1981 occurs in the northern part of the basin at a water depth of 30 meters and in the East in a depth of 19 meters. In addition to the onset of varve formation, further differences between deep and shallow water cores have been observed. (1) The number of sub-layers per year: two or three layers in the shallow areas in the east, up to seven layers in the deeper part. (2) Better preservation of varves in the northern than in the eastern part of the basin. (3) Different diatom assemblages related to the water depth: Stephanodiscus medius in all water depths detectable; Asterionella, Fragilaria, Navicula, Stephanodiscus parvus, Synedra, Tabellaria in larger abundances only in the deeper parts; Aulacoseira mainly in the shallow areas. (4) Missing single varves have been only traced in the eastern part of the basin. Possible reasons for the observed differences including wind and wave activity near the shore-line and in shallow water, water circulation and lake bathymetry are discussed in this paper. The varves of Lake Tiefer See are part of an integrated multi-proxy study including high-resolution sediment analyses and monitoring of modern deposition processes within the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association, grant number VH-VI-415. Reference KIENEL, U.; DULSKI, P.; OTT, F.; LORENZ, S.; BRAUER, A. (2013): Recently induced anoxia leading to the preservation of seasonal laminae in two NE-Germany lakes. Journal of Paleolimnology 50:535 - 544

  14. Techniques for water demand analysis and forecasting: Puerto Rico, a case study

    USGS Publications Warehouse

    Attanasi, E.D.; Close, E.R.; Lopez, M.A.

    1975-01-01

    The rapid economic growth of the Commonwealth-of Puerto Rico since 1947 has brought public pressure on Government agencies for rapid development of public water supply and waste treatment facilities. Since 1945 the Puerto Rico Aqueduct and Sewer Authority has had the responsibility for planning, developing and operating water supply and waste treatment facilities on a municipal basis. The purpose of this study was to develop operational techniques whereby a planning agency, such as the Puerto Rico Aqueduct and Sewer Authority, could project the temporal and spatial distribution of .future water demands. This report is part of a 2-year cooperative study between the U.S. Geological Survey and the Environmental Quality Board of the Commonwealth of Puerto Rico, for the development of systems analysis techniques for use in water resources planning. While the Commonwealth was assisted in the development of techniques to facilitate ongoing planning, the U.S. Geological Survey attempted to gain insights in order to better interface its data collection efforts with the planning process. The report reviews the institutional structure associated with water resources planning for the Commonwealth. A brief description of alternative water demand forecasting procedures is presented and specific techniques and analyses of Puerto Rico demand data are discussed. Water demand models for a specific area of Puerto Rico are then developed. These models provide a framework for making several sets of water demand forecasts based on alternative economic and demographic assumptions. In the second part of this report, the historical impact of water resources investment on regional economic development is analyzed and related to water demand .forecasting. Conclusions and future data needs are in the last section.

  15. 43 CFR 414.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Purposes and Definitions § 414.1 Purpose. (a) What this part does. This... Colorado River water offstream; (2) Permit State-authorized entities to develop intentionally created...

  16. 43 CFR 414.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Purposes and Definitions § 414.1 Purpose. (a) What this part does. This... Colorado River water offstream; (2) Permit State-authorized entities to develop intentionally created...

  17. Research on water management system based on Android

    NASA Astrophysics Data System (ADS)

    Li, Dongjiang; Hu, Songlin

    2018-04-01

    With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.

  18. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  19. Relationship between a solar drying model of red pepper and the kinetics of pure water evaporation (2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passamai, V.; Saravia, L.

    1997-05-01

    In part one, a simple drying model of red pepper related to water evaporation was developed. In this second part the drying model is applied by means of related experiments. Both laboratory and open air drying experiments were carried out to validate the model and simulation results are presented.

  20. Save Our Water Resources.

    ERIC Educational Resources Information Center

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  1. Small Drinking Water Systems Communication and Outreach ...

    EPA Pesticide Factsheets

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  2. On-line application of near-infrared spectroscopy for monitoring water levels in parts per million in a manufacturing-scale distillation process.

    PubMed

    Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark

    2014-01-01

    An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.

  3. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.

  4. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, MaryLynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  5. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond Valley, flow is from valley margins toward the irrigated area. In northern Diamond Valley, flow appears to remain generally northward to the large discharge area. Subsurface flow through mountain ranges has been identified from Garden Valley (outside the study area) through the Sulphur Springs Range to Diamond Valley and from southeastern Antelope Valley through the Fish Creek Range to Little Smoky Valley (outside the study area). In both cases, the flow is probably through carbonate rocks. Ground-water levels in the Diamond Valley flow system have changed during the past 40 years. These changes are the result of pumpage for irrigation, municipal, domestic, and mining uses, mostly in southern Diamond Valley, and annual and longer-term variations in precipitation in undeveloped parts of the study area. A large area of ground-water decline that underlies an area about 10 miles wide and 20 miles long has developed in the basin-fill aquifer of southern Diamond Valley. Water levels beneath the main part of the irrigated area have declined as much as 90 feet. In undeveloped parts of the study area, annual water-level fluctuations generally have been no more than a few feet.

  6. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  7. Development of ground-water resources in Orange County, Texas, and adjacent areas in Texas and Louisiana, 1971-80

    USGS Publications Warehouse

    Bonnet, C.W.; Gabrysch, R.K.

    1982-01-01

    Although saltwater encroachment is evident in parts of southern Orange County, the encroachment is not expected to be detrimental if the ground-water pumping remains stable and the projected increase in demands for water is met with surface-water supplies.

  8. 43 CFR 414.2 - Definitions of terms used in this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... storage in a surface reservoir off of the mainstream or in a ground water aquifer. Offstream storage includes indirect recharge when Colorado River water is exchanged for ground water that otherwise would..., DEPARTMENT OF THE INTERIOR OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF...

  9. 43 CFR 414.2 - Definitions of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... storage in a surface reservoir off of the mainstream or in a ground water aquifer. Offstream storage includes indirect recharge when Colorado River water is exchanged for ground water that otherwise would..., DEPARTMENT OF THE INTERIOR OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF...

  10. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    USGS Publications Warehouse

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  11. Hydrology of the Coastal Lowlands aquifer system in parts of Alabama, Florida, Louisiana, and Mississippi

    USGS Publications Warehouse

    Martin, Angel; Whiteman, C.D.

    1999-01-01

    Existing data on water levels, water use, water quality, and aquifer properties were used to construct a multilayer digital model to simulate flow in the aquifer system. The report describes the geohydrologic framework of the aquifer system, and the development, calibration, and sensitivity analysis of the ground-water-flow model, but it is primarily focused on the results of the simulations that show the natural flow of ground water throughout the regional aquifer system and the changes from the natural flow caused by development of ground-water supplies.

  12. What's Wrong with Bribery? An Example Utilizing Access to Safe Drinking Water

    ERIC Educational Resources Information Center

    Dhooge, Lucien J.

    2013-01-01

    This case study examines the role of bribery in the global marketplace through an example involving access to safe drinking water in the developing world. Parts II and III set out the objectives and methods of classroom delivery for the case study. Part IV is the background reading relating to bribery with particular emphasis on the Foreign…

  13. Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM

    NASA Astrophysics Data System (ADS)

    gülbaz, sezar; melek kazezyılmaz-alhan, cevza

    2016-04-01

    Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage and bioretention modeling. Calibration of hydrologic model is made using part of the measured data in RWB System for drainage area and for each bioretention column separately. Finally, performance of the model is evaluated by comparing the model results with the experimental data collected in RWB system.

  14. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  15. 40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquatic life criteria or values may be developed when: i. The local water quality characteristics such as... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Great Lakes Water Quality Initiative... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to...

  16. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires little or no treatment for most uses. The water is a soft, sodium bicarbonate type and therefore has a low to moderate dissolved-solids content. Mineral content increases generally downdip in an aquifer. Excessive iron, common in shallow aquifers, is objectionable for some water uses. Water from the streams, except in salty tidal reaches, is less mineralized than ground water; in 10 sites the median dissolved-solids content in streamflow was 50 milligrams per liter or less. Moderately intensive ground-water development has been made in the Bogalusa area, Louisiana; at the Mississippi Test Facility, Hancock County, Miss. ; and in the Jackson area, Mississippi. Wells with pumping rates of 500 to 1,000 gallons per minute each are common throughout the Pearl River basin, and some deep wells flow more than 3,000 gallons per minute in the coastal lowland areas. Probably 20 million gallons per day of artesian water flows uncontrolled from wells in the southern part of the basin. Ground-water levels, except in the higher altitudes, are within 60 feet of the surface, and flowing wells are common in the valleys and in the coastal Pine Meadows. Decline of water level is a problem in only a few small areas. Saline water as a resource is available for development from aquifers and streams near the coast and from aquifers at considerable depth in most of the Pearl River basin. Pollution is a problem in oil fields and in reaches of some streams below sewage and other waste-disposal points. The basin estuary contains water of variable quality but has potential for certain water-use developments that will require special planning and management.

  17. U.S. Geological Survey water resources activities in Florida, 1985-86

    USGS Publications Warehouse

    Glenn, M. E.

    1986-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1985-86. These activities are part of the Federal program of appraising the Nation 's water resources. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water resource investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be based. (Lantz-PTT)

  18. Dynamic-Type Ice Thermal Storage Systems

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi

    This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

  19. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  20. Small Drinking Water Systems Communication and Outreach Highlights

    EPA Science Inventory

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  1. BATHING BEACH MONITORING PROTOCOLS/COMMUNICATING SWIMMING ACTIVITY RISK TO THE PUBLIC

    EPA Science Inventory

    Current Environmental Protection Agency (EPA) recommended monitoring practices for bathing beach water quality were suggested in 1968, as a part of the fecal coliform guideline developed by the Federal Water Pollution Control Administration. The guideline stated that five water ...

  2. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifersmore » underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.« less

  3. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.

    2008-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

  4. Water Development, Allocation, and Institutions: A Role for Integrated Tools

    NASA Astrophysics Data System (ADS)

    Ward, F. A.

    2008-12-01

    Many parts of the world suffer from inadequate water infrastructure, inefficient water allocation, and weak water institutions. Each of these three challenges compounds the burdens imposed by inadequacies associated with the other two. Weak water infrastructure makes it hard to allocate water efficiently and undermines tracking of water rights and use, which blocks effective functioning of water institutions. Inefficient water allocation makes it harder to secure resources to develop new water infrastructure. Poorly developed water institutions undermine the security of water rights, which damages incentives to develop water infrastructure or use water efficiently. This paper reports on the development of a prototype basin scale economic optimization, in which existing water supplies are allocated more efficiently in the short run to provide resources for more efficient long-run water infrastructure development. Preliminary results provide the basis for designing water administrative proposals, building effective water infrastructure, increasing farm income, and meeting transboundary delivery commitments. The application is to the Kabul River Basin in Afghanistan, where food security has been compromised by a history of drought, war, damaged irrigation infrastructure, lack of reservoir storage, inefficient water allocation, and weak water institutions. Results illustrate increases in economic efficiency achievable when development programs simultaneously address interdependencies in water allocation, development, and institutions.

  5. Coastal ground water at risk - Saltwater contamination at Brunswick, Georgia and Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Krause, Richard E.; Clarke, John S.

    2001-01-01

    IntroductionSaltwater contamination is restricting the development of ground-water supply in coastal Georgia and adjacent parts of South Carolina and Florida. The principal source of water in the coastal area is the Upper Floridan aquifer—an extremely permeable and high-yielding aquifer—which was first developed in the late 1800s. Pumping from the aquifer has resulted in substantial ground-water-level decline and subsequent saltwater intrusion of the aquifer from underlying strata containing highly saline water at Brunswick, Georgia, and with encroachment of sea-water into the aquifer at the northern end of Hilton Head Island, South Carolina. The saltwater contamination at these locations has constrained further development of the Upper Floridan aquifer in the coastal area and has created competing demands for the limited supply of freshwater. The Georgia Department of Natural Resources, Georgia Environmental Protection Division (GaEPD) has restricted permitted withdrawal of water from the Upper Floridan aquifer in parts of the coastal area (including the Savannah and Brunswick areas) to 1997 rates, and also has restricted additional permitted pumpage in all 24 coastal area counties to 36 million gallons per day above 1997 rates. These actions have prompted interest in alternative management of the aquifer and in the development of supplemental sources of water supply including those from the shallower surficial and upper and lower Brunswick aquifers and from the deeper Lower Floridan aquifer.

  6. Watershed Management Optimization Support Tool: An approach for incorporating LID into integrated water management plans

    EPA Science Inventory

    To assist communities in the evaluation of green infrastructure, low impact development, and land conservation practices as part of an Integrated Water Resources Management (IWRM) approach, the U.S. Environmental Protection Agency (US EPA) has supported the development of the Wat...

  7. Development and Evaluation of EPA Method 1615 for Detection of Enterovirus and Norovirus in Water

    EPA Science Inventory

    The U.S. EPA developed a sample concentration and preparation assay in conjunction with the Total Culturable Virus Assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule promulgated in 1996. In an effort...

  8. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  9. WATER: Water Activities Teaching Environmental Responsibility: Teacher Resource, Environmental Science.

    ERIC Educational Resources Information Center

    Kramer, Ed, Ed.; And Others

    This activity book was developed as part of an effort to protect water quality of the Stillwater River, Ohio, through a Watershed Protection Project. It is designed to raise teachers' and students' awareness and trigger a sense of stewardship towards the preservation of water resources. The activities are generally appropriate for elementary age…

  10. ENVIRONMENTAL MONITORING FOR PUBLIC ACCESS AND COMMUNITY TRACKING (EMPACT) PROGRAM MICROBIOLOGICAL MONITORING OF RECREATIONAL WATER

    EPA Science Inventory

    Current Environmental Protection Agency (EPA) recommended microbiological monitoring practices for bathing beach water quality were suggested in 1968, as a part of the fecal coliform guideline developed by the Federal Water Pollution Control Administration. The guideline stated ...

  11. Water-resources activities in Florida, 1988-89

    USGS Publications Warehouse

    Glenn, Mildred E.

    1989-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1988. These activities are part of the Federal program of appraising the Nation 's water resources. Included are brief descriptions of the nature and scope of all active studies, summaries of significant results for 1988 and anticipated accomplishments during 1989. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water-resources investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be used. Water data and information required to implement sound water-management programs in highly urbanized areas relate to the quantity and quality of storm runoff, sources of aquifer contamination, injection of wastes into deep strata, underground storage of freshwater, artificial recharge of aquifers, environmental effects of reuse of water, and effects of land development on changes in ground-and surface-water quality. In some parts of the State broad areas are largely rural. Future growth is anticipated in many of these. This report is intended to inform those agencies vitally interested in the water resources of Florida as to the current status and objectives of the U.S. Geological Survey cooperative program. The mission of this program is to collect, interpret, and publish information on water resources. Almost all of this work is done in cooperation with other public agencies. (USGS)

  12. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    USGS Publications Warehouse

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  13. Ground-water resources of Sheridan County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Cummings, T. Ray

    1966-01-01

    Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for stock or domestic use can be developed throughout much of the report area from the Fort Union and Wasatch Formations of Tertiary age; larger supplies might be obtained from the coarse-grained sandstone facies of the Wasatch Formation near Moncreiffe Ridge. Four aquifer tests were made at wells tapping formations of Tertiary age, and the coefficients of permeability determined ranged from 2.5 to 7.9 gallons per day per square foot. The depths to which wells must be drilled to penetrate an aquifer differ within relatively short distances because of the lenticularity of the aquifers. Water in aquifers of Tertiary age may occur under water-table, artesian, or a combination of artesian and gas-lift conditions. Water from the Fort Union is usable for domestic purposes, but the iron and dissolved-solids content impair the quality at some localities. Water from the Fort Union Formation is not recommended for irrigation because of sodium and bicarbonate content. The water is regarded as good to fair for stock use. Water from the Wasatch Formation generally contains dissolved solids in excess of the suggested domestic standards, but this water is usable in the absence of other supplies. The development of irrigation supplies from the Wasatch Formation may be possible in some areas, but the water quality should be carefully checked. Water of good to very poor quality for stock supplies is obtained, depending upon the location. Hydrogen sulfide, commonly present in water of the Fort Union and Wasatch Formations, becomes an objectionable characteristic when the water is used for human consumption. Deposits of Quaternary age generally yield small to moderate supplies of water to wells. Two pumping tests were conducted, and the coefficients of permeability of the aquifers tested were 380 and 1,100 gallons per day per square foot. Usable supplies of ground water can be developed from the deposits of Quaternary age, principally along the valleys of perennial strea

  14. Effects of lowering interior canal stages on salt-water intrusion into the shallow aquifer in Southeast Palm Beach County, Florida

    USGS Publications Warehouse

    Land, Larry F.

    1975-01-01

    Land in southeast Palm Beach County is undergoing a large-scale change in use, from agricultural to residential. To accommodate residential use, a proposal has been made by developers to the Board of the Lake Worth Drainage District to lower the canal stages in the interior part of the area undergoing change. This report documents one of the possible effects of such lowering. Of particular interest to the Board was whether the lower canal stages would cause an increase in salt-water intrusion into the shallow aquifer along the coast. The two main tools used in the investigation were a digital model for aquifer evaluation and an analytical technique for predicting the movement of the salt-water front in response to a change of ground-water flow into the ocean. The method of investigation consisted of developing a digital ground-water flow model for three east-west test strips. They pass through the northern half of municipal well fields in Lake Worth, Delray Beach, and Boca Raton. The strips were first modeled with no change in interior canal stages. Then they were modeled with a change in canal stages of 2 to 4 feet (0.6 to 1.6 metres). Also, two land development schemes were tested. One was for a continuation of the present level of land development, simulated by continuing the present pumpage rates. The second scheme was for land development to continue until the maximum allowable densities were reached, simulated by increasing the pumping rates. The results of the test runs for an east-west strip through Lake Worth show that lowering part of the interior canal water levels 3 feet (1.0 metre), as done in 1961, does not affect the aquifer head or salt-water intrusion along the coastal area of Lake Worth. As a result, no effect in the coastal area would be expected as a result of canal stage lowering in other, interior parts of the study area. Results from the other test runs show that lowering interior canal water levels by as much as 4 feet (1.2 metres) would result in some salt-water intrusion for either land development scheme. Salt-water intrusion is dependent on the location, and amount of water withdrawn, from well fields.

  15. Relationship between a solar drying model of red pepper and the kinetics of pure water evaporation (1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passamai, V.; Saravia, L.

    1997-05-01

    Drying of red pepper under solar radiation was investigated, and a simple model related to water evaporation was developed. Drying experiments at constant laboratory conditions were undertaken where solar radiation was simulated by a 1,000 W lamp. In this first part of the work, water evaporation under radiation is studied and laboratory experiments are presented with two objectives: to verify Penman`s model of evaporation under radiation, and to validate the laboratory experiments. Modifying Penman`s model of evaporation by introducing two drying conductances as a function of water content, allows the development of a drying model under solar radiation. In themore » second part of this paper, the model is validated by applying it to red pepper open air solar drying experiments.« less

  16. 18 CFR 5.19 - Tendering notice and schedule.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... interstate resource agencies, state water quality and coastal zone management plan consistency certification... license developed pursuant to this part, the Commission will issue public notice of the tendering for... Endangered Species Act and water quality certification under section 401 of the Clean Water Act. (c) Method...

  17. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  18. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride concentration in water from the water table aquifer ranged from 200 to 590 mg/L as a result of intrusion. In areas adjacent to tidal-water bodies, the water table aquifer contains water that is very saline, Where the wells in such areas have been constructed with metal casings, the metal corrodes when exposed to the saline water, and many ultimately develop holes. This permits saline water to leak into the well where the water level in the well is lower than the water table. The intrusion of saline water from the water-table aquifer into the upper part of the Hawthorn Formation is a major problem in parts of Cape Coral. Withdrawal of water from the upper part of the Hawthorn Formation has caused water levels to decline below the lowest annual position of the water table, so that downward leakage is perennial. In some coastal areas, wells that tap the upper part of the Hawthorn Formation contain water whose chloride concentration is as much as 9,500 mg/L. Upward leakage of saline water from the deep artesian aquifers and downward leakage of saline water from the water-table aquifer can be prevented by proper well construction.

  19. 33 CFR Schedule I to Subpart A of... - Vessels Transiting U.S. Waters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Vessels Transiting U.S. Waters I Schedule I to Subpart A of Part 401 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT... scale and sufficient detail to enable safe navigation. These may be published by a foreign government if...

  20. Seven Faculties in Search of a Mission: A Proposed Interdisciplinary Course on Water Literacy

    ERIC Educational Resources Information Center

    Sherchan, Samendra; Pasha, Fayzul; Weinman, Beth; Nelson, Fred L.; Sharma, Florence C.; Therkelsen, Jes; Drexler, David

    2016-01-01

    In this article we will describe the development of an interdisciplinary general education course focusing on water. As part of a faculty cohort charged with teaching and studying this topic, we considered a number of projects, including community outreach, teacher professional development, and collaborative research. We decided on an…

  1. Annual Report, Reservoir Control Center, Southwestern Division (1989)

    DTIC Science & Technology

    1990-01-01

    Division in the water quality field . This provides for water quality objectives being included as an effective part of our total water management...WES) selected Canyon Lake as a research field site for developing techniques to evaluate the impacts associated with installation of hydropower at Corps...term continuous goals of this Division, and consequently the Water Management Branch, in the water quality field . (1) To obtain sufficient water

  2. Water resources of Manatee County, Florida. Water-resources investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.P.

    1983-03-01

    Rapid development of Manatee County in southwest Florida is creating water-resource problems. The report presents an evaluation of the water resources and potential effects of water-resource developments. Most streams in the county have small drainage basins and low yields. The principal aquifers are the surficial, minor artesian, and the Floridan. The Floridan aquifer is the major source of irrigation water in the county. The minor artesian aquifer is a highly developed source of water for small rural supplies. Withdrawals of 20 to 50 million gallons per day from the Floridan aquifer since the 1950's have caused declines in the potentiometricmore » surface of about 20 to 50 feet. The quality of ground water is good except in the coastal and southern parts of the county.« less

  3. Ground-water resources of southern New Castle County, Delaware

    USGS Publications Warehouse

    Rima, Donald Robert; Coskery, O.J.; Anderson, P.W.

    1964-01-01

    Southern New Castle County has a land area of 190 square miles in northcentral Delaware. It is predominantly a rural area with a population of about 9,500 people who are engaged chiefly in agriculture. By and large, the residents are dependent upon ground water as a source of potable water. This investigation was made to provide knowledge of the availability and quality of .the ground-water supply to aid future development. The climate, surface features, and geology of the area are favorable for the occurrence of ground water. Temperatures are generally mild and precipitation is normally abundant and fairly evenly distributed throughout the year. The topography of the area is relatively fiat and, hence, the streams have low gradients. The surface is underlain to a considerable depth by highly permeable unconsolidated sediments that range in age from Early Cretaceous to Recent. Nearly all the subsurface stratigraphic units yield some water to wells, but only four parts or combinations of these units are sufficiently permeable, to yield large supplies. These are, from oldest to youngest, the nonmarine Cretaceous sediments and the Magothy Formation, the Monmouth Group, the Rancocas Formation, and .the surficial terrace and valley-fill deposits. In the northern part of the area the nonmarine Cretaceous sediments and the Magothy Formation can be reached economically by wells. Yields in excess of 300 gpm (gallons per minute) have been obtained from wells screened in this aquifer, but the maximum productivity of the aquifer has not been .tested. The Monmouth Group is used as a source of water in the central part of the area, where some wells yield as much as 125 gpm. The Rancocas Formation is the principal aquifer in the southern part of the area. Yields of 200-400 gpm can be expected from this aquifer, owing to its uniformly coarse texture, particularly in the upper part of the formation. The terrace deposits compose the shallow watertable aquifer throughout the area. In places the water-table aquifer is connected hydraulically to each of .the other three aquifers. The yields of wells tapping this aquifer are generally small, because the saturated thickness of the aquifer is small. The aquifer does provide a convenient and economical source of water for domestic supplies, .and the quality o# the available water supply is generally satisfactory for most purposes. The use of water in the area was estimated to be about 1.77 million gallons per day in 1959. Rural uses amounted to about 75 percent of the total, and municipal and industrial uses accounted for .the remainder. Water for irrigation of crops constituted about half of the water pumped for rural use. The total use of ground water in the area is a mere fraction of the supply available. Each of the four major aquifers is capable of vastly increased production. Future development, however, will be .limited by the changes in the quality of the water resulting from the future pumping regime-and the expanded pattern of development. Salt-water encroachment will become a problem in the eastern part of the area if steps are not taken to avoid it.

  4. Paradigm Shift in Transboundary Water Management Policy: Linking Water Environment Energy and Food (weef) to Catchment Hydropolitics - Needs, Scope and Benefits

    NASA Astrophysics Data System (ADS)

    RAI, S.; Wolf, A.; Sharma, N.; Tiwari, H.

    2015-12-01

    The incessant use of water due to rapid growth of population, enhanced agricultural and industrial activities, degraded environment and ecology will in the coming decades constrain the socioeconomic development of humans. To add on to the precarious situation, political boundaries rarely embrace hydrological boundaries of lakes, rivers, aquifers etc. Hydropolitics relate to the ability of geopolitical institutions to manage shared water resources in a politically sustainable manner, i.e., without tensions or conflict between political entities. Riparian hydropolitics caters to differing objectives, needs and requirements of states making it difficult to administer the catchment. The diverse riparian objectives can be merged to form a holistic catchment objective of sustainable water resources development and management. It can be proposed to make a paradigm shift in the present-day transboundary water policy from riparian hydropolitics (in which the focal point of water resources use is hinged on state's need) to catchment hydropolitics (in which the interest of the basin inhabitants are accorded primacy holistically over state interests) and specifically wherein the water, environment, energy and food (WEEF) demands of the catchment are a priority and not of the states in particular. The demands of the basin pertaining to water, food and energy have to be fulfilled, keeping the environment and ecology healthy in a cooperative political framework; the need for which is overwhelming. In the present scenario, the policy for water resources development of a basin is segmented into independent uncoordinated parts controlled by various riparians; whereas in catchment hydropolitics the whole basin should be considered as a unit. The riparians should compromise a part of national interest and work in collaboration on a joint objective which works on the principle of the whole as against the part. Catchment hydropolitics may find greater interest in the more than 250 international transboundary river basins. The technical and financial capabilities of the states can be utilized for the socio-economic development as well as ecological conservation of the catchment. This proposed approach has the potential to help in generating cooperation along as well as beyond water, thereby promote benefit sharing by all.

  5. Conflict of spatial development and water supply under climate change in case of water dependent ecosystem of Ljubljana Moor

    NASA Astrophysics Data System (ADS)

    Bračič Železnik, Branka; Souvent, Petra; Čenčur Curk, Barbara

    2013-04-01

    Water resources are vulnerable to climate change and to many other socio-economic drivers of change. A key aspect of vulnerability is that it is spatially variable, reflecting variations of physical and socio-economic conditions. Given the real representation of vulnerability and a set of climate change adaptation options there is need to develop a common transnational strategy for vulnerability reduction. The latter is the goal of SEE CC-WARE project. Among others, ecosystem services, land use change, improving water use efficiency and economic incentives for water management have large potentials to decrease water resources vulnerability. Especially, forests, wetlands and grasslands are important ecosystems, which together with their management emerged as an important means for a sustainable future drinking water supply. The Ljubljana Moor is one of the biggest and most important complexes of wet meadows in Slovenia, which have, due to land use high biodiversity. The Ljubljana Moor extends from the southern part of Ljubljana, the capital of Slovenia, where in the last two centuries extensive irrigation and river regulation projects were implemented to develop agricultural land. Biodiversity of the area is high due to large zones of wet meadows, some flood forest patches, bog areas, and open water courses habitats. The Ljubljana Moor is therefore protected as Natura 2000 site. The Ljubljana Moor is changing very fast and impacts are especially intense in the present years, mostly due to spreading of urbanization and monocultures. In this area the water well field Brest has been designed as important future drinking water source for Ljubljana, pumping mainly water from confined aquifer. The pressure from urbanisation and agriculture and high subsidence that are noticed in the central and eastern part of the aquifer, those two phenomena pose high risk to stable drinking water supply and wetland habitats that are protected as NATURA 2000. Water protection areas with limitation of land use were delineated for protection of drinking water from Brest pumping station. A part of Ljubljana Moor area is also protected as Landscape Park. These legal acts are in conflict with existing agricultural practices, spatial development plans and further urbanisation processes (including new and larger roads, flood areas disconnections and destruction). No attention has been given yet to integrated water management and there is no consideration of long term hydrological and hydrogeological processes.

  6. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  7. Mid-Frequency Environmental and Acoustic Studies from SW06, and Applications to Asian Littoral Waters

    DTIC Science & Technology

    2009-09-30

    Development (ADD), Hanyang University ( HYU ), to undertake collaborative research programs in shallow water acoustics in Asian littoral waters...coast of Korea with the U.S. NRL, ADD and HYU that occurred in August 2008, as part of the Transverse Acoustic Variability Experiment (TAVEX

  8. DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL

    USDA-ARS?s Scientific Manuscript database

    On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...

  9. Three-dimensional numerical modeling of water quality and sediment-associated processes in natural lakes

    USDA-ARS?s Scientific Manuscript database

    This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...

  10. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavymore » metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.« less

  11. An index-based robust decision making framework for watershed management in a changing climate.

    PubMed

    Kim, Yeonjoo; Chung, Eun-Sung

    2014-03-01

    This study developed an index-based robust decision making framework for watershed management dealing with water quantity and quality issues in a changing climate. It consists of two parts of management alternative development and analysis. The first part for alternative development consists of six steps: 1) to understand the watershed components and process using HSPF model, 2) to identify the spatial vulnerability ranking using two indices: potential streamflow depletion (PSD) and potential water quality deterioration (PWQD), 3) to quantify the residents' preferences on water management demands and calculate the watershed evaluation index which is the weighted combinations of PSD and PWQD, 4) to set the quantitative targets for water quantity and quality, 5) to develop a list of feasible alternatives and 6) to eliminate the unacceptable alternatives. The second part for alternative analysis has three steps: 7) to analyze all selected alternatives with a hydrologic simulation model considering various climate change scenarios, 8) to quantify the alternative evaluation index including social and hydrologic criteria with utilizing multi-criteria decision analysis methods and 9) to prioritize all options based on a minimax regret strategy for robust decision. This framework considers the uncertainty inherent in climate models and climate change scenarios with utilizing the minimax regret strategy, a decision making strategy under deep uncertainty and thus this procedure derives the robust prioritization based on the multiple utilities of alternatives from various scenarios. In this study, the proposed procedure was applied to the Korean urban watershed, which has suffered from streamflow depletion and water quality deterioration. Our application shows that the framework provides a useful watershed management tool for incorporating quantitative and qualitative information into the evaluation of various policies with regard to water resource planning and management. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Capacity building in water demand management as a key component for attaining millennium development goals

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Forster, Laura; Arntzen, Jaap

    Successful water demand management (WDM) implementation as a component of integrated water resource management (IWRM) can play a significant role in the alleviation of poverty through more efficient use of available water resources. The urban population in Southern African cities is characterised by so-called ‘water poor’ communities who typically expend a high percentage of their household income on poor quality water. Usually they have no access to an affordable alternative source. Although WDM as a component of IWRM is not a panacea for poverty, it can help alleviate poverty by facilitating water services management by municipal water supply agencies (MWSAs) in the region. WDM is a key strategy for achieving the millennium development goals (MDGs) and, as such, should be given due attention in the preparation of national IWRM and water efficiency plans. Various studies in the Southern African region have indicated that capacity building is necessary for nations to develop IWRM and water-use efficiency plans to meet the targets set out in the MDGs. WDM education and training of water professionals and end-users is particularly important in developing countries, which are resource and information-access poor. In response to these findings, The World Conservation Union (IUCN) and its consulting partners, the Training and Instructional Design Academy of South Africa (TIDASA), and Centre for Applied Research (CAR) designed, developed and presented a pilot WDM Guideline Training Module for MWSAs as part of Phase II of IUCN’s Southern Africa regional WDM project. Pilot training was conducted in July 2004 in Lusaka, Zambia for a group of 36 participants involved in municipal water supply from nine Southern African countries. This paper looks at the links between building the capacity of professionals, operational staff and other role-players in the municipal water supply chain to implement WDM as part of broader IWRM strategies, and the subsequent potential for poverty relief resulting from more effective, efficient and equitable use and allocation of municipal water supplies.

  13. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  14. Water resources of Duval County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1994-01-01

    The report describes the hydrology and water resources of Duval County, the development of its water supplies, and water use within the county. Also included are descriptions of various natural features of the county (such as topography and geology), an explanation of the hydrologic cycle, and an interpretation of the relationship between them. Ground-water and surface-water resources and principal water-quality features within the county are also discussed. The report is intended to provide the general public with an overview of the water resources Of Duval County, and to increase public awareness of water issues. Information is presented in nontechnical language to enable the general reader to understand facts about water as a part of nature, and the problems associated with its development and use.

  15. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges

    PubMed Central

    Schilling, Mauro; Luber, Sandra

    2018-01-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions. PMID:29721491

  16. Methods for collecting benthic invertebrate samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic invertebrate communities are evaluated as part of the ecological survey component of the U.S. Geological Survey's National Water-Quality Assessment Program. These biological data are collected along with physical and chemical data to assess water-quality conditions and to develop an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. The objectives of benthic invertebrate community characterizations are to (1) develop for each site a list of tax a within the associated stream reach and (2) determine the structure of benthic invertebrate communities within selected habitats of that reach. A nationally consistent approach is used to achieve these objectives. This approach provides guidance on site, reach, and habitat selection and methods and equipment for qualitative multihabitat sampling and semi-quantitative single habitat sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data within and among study units.

  17. Computational Modeling of Cobalt-based Water Oxidation: Current Status and Future Challenges

    NASA Astrophysics Data System (ADS)

    Schilling, Mauro; Luber, Sandra

    2018-04-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysis. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability towards real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  18. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  19. Water Flow in the High Plains Aquifer in Northwestern Oklahoma

    USGS Publications Warehouse

    Luckey, Richard R.; Osborn, Noel I.; Becker, Mark F.; Andrews, William J.

    2000-01-01

    The High Plains is a major agricultural area, supported primarily by water from the High Plains aquifer, which is used to irrigate wheat and corn and to raise cattle and swine. The U.S. Geological Survey (USGS) and the Oklahoma Water Resources Board (OWRB) began a study of the High Plains aquifer in 1996. One purpose of the study was to develop a ground-water flow model that the OWRB could use to allocate the amount of water withdrawn from the a aquifer. The study area in Oklahoma covers all or parts of Beaver, Cimarron, Dewey, Ellis, Harper, Texas, and Woodward Counties. To provide appropriate hydrologic boundaries for the ground-water flow model, the study area was expanded to include parts of Colorado, Kansas, New Mexico, and Texas.

  20. Realizing Conflict, Negotiation, and Cooperation Concepts in the Context of International Water Courses

    ERIC Educational Resources Information Center

    Dinar, Ariel; McKinney, Daene

    2010-01-01

    In this paper we offer a negotiation and cooperative game theory application to international water in the classroom. A simulation game was developed for the Aral Sea water dispute as part of a textbook prepared for teaching a diverse group of students a graduate-level International Water course. A condensed version of the Aral Sea Basin water…

  1. Summary appraisals of the Nation's ground-water resources; Mid-Atlantic region

    USGS Publications Warehouse

    Sinnott, Allen; Cushing, Elliot Morse

    1978-01-01

    About 949 billion gallons of fresh ground water was withdrawn in 1970. This quantity represents about 9 percent of the total freshwater use of 10,220 billion gallons. Available ground-water reserves indicate that a considerable part of the additional supplies needed for the anticipated increase in economic activity in the region could be developed from ground water.

  2. Deficiencies in drinking water distribution systems in developing countries.

    PubMed

    Lee, Ellen J; Schwab, Kellogg J

    2005-06-01

    Rapidly growing populations and migration to urban areas in developing countries has resulted in a vital need for the establishment of centralized water systems to disseminate potable water to residents. Protected source water and modern, well-maintained drinking water treatment plants can provide water adequate for human consumption. However, ageing, stressed or poorly maintained distribution systems can cause the quality of piped drinking water to deteriorate below acceptable levels and pose serious health risks. This review will outline distribution system deficiencies in developing countries caused by: the failure to disinfect water or maintain a proper disinfection residual; low pipeline water pressure; intermittent service; excessive network leakages; corrosion of parts; inadequate sewage disposal; and inequitable pricing and usage of water. Through improved research, monitoring and surveillance, increased understanding of distribution system deficiencies may focus limited resources on key areas in an effort to improve public health and decrease global disease burden.

  3. Ground-water data collected in the Missouri River Basin units in Kansas during 1954

    USGS Publications Warehouse

    Mason, B.J.; Loye, Linda

    1955-01-01

    Ground water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of  Reclamation and other federal agencies. The studies of ground-water resources in the part of Kansas that lies within the Missouri River basin have been coordinated with the cooperative program of ground-water studies which were already being made in Kansas by the U.S Geological Survey, the Kansas State Geological Survey, the Division of Sanitation of the Kansas Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture.  

  4. Ground-water data collected in the Missouri River basin units in Kansas during 1950

    USGS Publications Warehouse

    Berry, Delmar W.

    1951-01-01

    Ground-water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the United States Geological Survey, the State Geological Survey of Kansas,the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.

  5. Development of an Interactive Computer-Based Learning Strategy to Assist in Teaching Water Quality Modelling

    ERIC Educational Resources Information Center

    Zigic, Sasha; Lemckert, Charles J.

    2007-01-01

    The following paper presents a computer-based learning strategy to assist in introducing and teaching water quality modelling to undergraduate civil engineering students. As part of the learning strategy, an interactive computer-based instructional (CBI) aid was specifically developed to assist students to set up, run and analyse the output from a…

  6. Identification and Development of Competency-Based Curriculum for Water and Wastewater Program.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    A project was undertaken at Kirkwood Community College to develop a full-time and part-time competency based program to educate water and wastewater treatment plant operators. First, a survey was conducted to identify the job tasks performed by the operators, their frequency, importance, and necessity. A questionnaire listing 651 tasks divided…

  7. Study on movable fluid of low permeability reservoir with NMR technology

    NASA Astrophysics Data System (ADS)

    Wang, Hongqian; Li, Yajun; Gong, Houjian; Dong, Mingzhe

    2018-03-01

    Fluid mobility is an important factor affecting the development of low permeability reservoirs. The fluid mobility of 4 core samples obtained from the Shahejie group of Dongying Sag(China) is conducted using the nuclear magnetic resonance analysis technique. The main part of NMR T2 spectrum usually has two form: unimodal and bimodal. When the main part of T2 spectrum is bimodal, water in large pores flows out firstly, while water in small pores can't flow until the centrifugal force is large enough. When the main part of T2 spectrum is unimodal, the water in small pores is easier to flow out. The movable fluid percentage is mainly affected by the pore distribution, permeability and porosity.

  8. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for the 2007 Edition of The State of the Nation's Ecosystems Report with Comparisons to the 2002 Edition

    USGS Publications Warehouse

    Wilson, John T.; Baker, Nancy T.; Moran, Michael J.; Crawford, Charles G.; Nowell, Lisa H.; Toccalino, Patricia L.; Wilber, William G.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental, private, and academic entities that provided input to the report The State of the Nation?s Ecosystems published periodically by the Heinz Center. This report describes the sources of data and methods used by the USGS to develop selected water?quality indicators for the 2007 edition of the Heinz Center report and documents modifications in the data sources and interpretations between the 2002 and 2007 editions of the Heinz Center report. Stream and ground?water quality data collected nationally as part of the USGS National Water-Quality Assessment Program were used to develop the ecosystem indicators for the Heinz Center report, including Core National indicators for the Movement of Nitrogen and Chemical Contamination and for selected ecosystems classified as Farmlands, Forest, Grasslands and Shrublands, Freshwater, and Urban and Suburban. In addition, the USGS provided water?quality and streamflow data collected as part of the National Stream Water Quality Accounting Network and the Federal?State Cooperative Program. The documentation provided herein serves not only as a reference for current and future editions of The State of the Nation?s Ecosystems but also provides critical information for future assessments of changes in contaminant occurrence in streams and ground water of the United States.

  9. Automated water analyser computer supported system (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking.

    PubMed

    Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter

    2005-02-15

    A novel analytical system AWACSS (automated water analyser computer-supported system) based on immunochemical technology has been developed that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration nor pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) (98/83/EC, 1998) and Water Framework Directive WFD (2000/60/EC, 2000), drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The instrument was equipped with remote control and surveillance facilities. The system's software allows for the internet-based networking between the measurement and control stations, global management, trend analysis, and early-warning applications. The experience of water laboratories has been utilised at the design of the instrument's hardware and software in order to make the system rugged and user-friendly. Several market surveys were conducted during the project to assess the applicability of the final system. A web-based AWACSS database was created for automated evaluation and storage of the obtained data in a format compatible with major databases of environmental organic pollutants in Europe. This first part article gives the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part article reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods.

  10. Management of groundwater supply and water quality in the Los Angeles Basin, California

    USGS Publications Warehouse

    Reichard, E.G.; Crawford, S.M.; Land, M.T.; Paybins, K.S.

    1999-01-01

    Water use and water needs in the coastal Los Angeles Basin in California have been very closely tied to the development of the region during the last 150 years. The first water wells were drilled in the mid-1800s. Currently about 40% of the water supply (9.4 m3 s-1) in the region is provided by groundwater. Other sources of water supply include reclaimed water and surface water imported from Owens Valley, the Colorado River, and northern California. Increasing groundwater use in the basin led to over-abstraction and seawater instrusion. Because of this, an important component of water management in the area has been the artificial recharge of local, imported, and reclaimed water which is spread in ponds and injected in wells to recharge the aquifer system and control seawater intrusion. The US Geological Survey (USGS) is working co-operatively with the Water Replenishment District of Southern California to evaluate the hydraulic and water-quality effects of these recharge operations and to assess the potential impacts of alternative water-management strategies, including changes in pumping and increases in the use of reclaimed water. As part of this work, the USGS has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. Chemical and isotopic data were used to identify the age and source of recharge to groundwater throughout the study area. This information is key to understanding the fate of artificially recharged water and helps define the three-dimensional groundwater flow system. The geohydrological data, especially the geophysical and geological data collected from 11 newly installed multi-completion monitoring wells, were used to redefine the regional hydrostratigraphy. The groundwater flow model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water-management strategies.As part of the work aimed at evaluating the hydraulic and water-quality effects of recharge operations and to assess the potential impacts of alternative water-management strategies, the US Geological Survey (USGS), has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. At present, the developed model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water-management strategies.

  11. 40 CFR 132.4 - State adoption and application of methodologies, policies and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (2) The chronic water quality criteria and values for the protection of aquatic life, or site... AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.4 State...) The Methodologies for Development of Aquatic Life Criteria and Values in appendix A of this part; (3...

  12. 40 CFR 132.4 - State adoption and application of methodologies, policies and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (2) The chronic water quality criteria and values for the protection of aquatic life, or site... AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.4 State...) The Methodologies for Development of Aquatic Life Criteria and Values in appendix A of this part; (3...

  13. 40 CFR 132.4 - State adoption and application of methodologies, policies and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) The chronic water quality criteria and values for the protection of aquatic life, or site... AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.4 State...) The Methodologies for Development of Aquatic Life Criteria and Values in appendix A of this part; (3...

  14. 40 CFR 132.4 - State adoption and application of methodologies, policies and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) The chronic water quality criteria and values for the protection of aquatic life, or site... AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.4 State...) The Methodologies for Development of Aquatic Life Criteria and Values in appendix A of this part; (3...

  15. 40 CFR 132.4 - State adoption and application of methodologies, policies and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) The chronic water quality criteria and values for the protection of aquatic life, or site... AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.4 State...) The Methodologies for Development of Aquatic Life Criteria and Values in appendix A of this part; (3...

  16. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  17. Ground Water at Grant Village Site, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Gordon, Ellis D.; McCullough, Richard A.; Weeks, Edwin P.

    1961-01-01

    On behalf of the National Park Service, the U.S. Geological Survey during the summer of 1959 made a study of ground-water conditions in the area of the Grant Village site, along the shore of the West Thumb of Yellowstone Lake, 1 to 2 miles south of the present facilities at West Thumb. The water supply for the present development at West Thumb is obtained from Duck Lake, but the quantity of water available from this source probably will be inadequate for the planned development at Grant Village. During the investigation, 11 auger holes were bored and 6 test wells were drilled. Aquifer tests by pumping and bailing methods were made at two of the test wells. All material penetrated in the auger holes and test wells is of Quaternary age except the welded tuff of possible Pliocene age that was penetrated in the lower part of test well 4. Small to moderate quantities of water were obtained from the test wells in the area. Test well 2 yielded 35 gpm (gallons per minute) at a temperature of nearly 100 deg F. Test well 6 yielded about 15 gpm at a temperature of 48 deg F. The yield of this well might be increased by perforation of additional sections of casing, followed by further development of the well. Water from the other four test wells was of inadequate quantity, too highly mineralized, or too warm to be effectively utilized. Most of the ground water sampled had high concentrations of silica and iron, and part of the water was excessively high in fluoride content. Otherwise, the ground water was of generally suitable quality for most uses. The most favorable area for obtaining water supplies from wells is near the lakeshore, where a large part of the water pumped would be ground-water flow diverted from its normal discharge into the lake. Moderate quantities of relatively cool water of fairly good quality may be available near the lakeshore between test wells 5 and 6 and immediately east of test well 6.

  18. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  19. Water Use by Urban Landscapes in Semi-Arid Environments

    NASA Astrophysics Data System (ADS)

    Litvak, E.; Pataki, D. E.

    2017-12-01

    Water use by urban trees and lawns constitutes a significant yet uncertain portion of urban water budgets. Reducing this uncertainty is essential for developing effective water conservation strategies that are critically needed in dry regions. Landscape water use is particularly difficult to estimate in semi-arid cities with diverse plant compositions and large proportions of non-native species sustained by irrigation. We developed an empirical model of urban evapotranspiration based on in situ measurements of 11 lawns and 108 trees that we previously collected in the greater Los Angeles area. The model in its current state considers urban landscapes as two-component systems comprised of lawns and trees, which have contrasting patterns of water use. Turfgrass lawns consume large amounts of irrigation water (up to 10 mm/d) that may be effectively reduced by the shade from trees. Trees consume much smaller amounts of water at common urban planting densities (0.1-2.6 mm/d), and provide shade over lawns. We estimated water use by irrigated landscapes in Los Angeles by combining this model with remotely sensed estimates of vegetation cover and ground-based vegetation surveys and weather data. According to our estimates, water use by Los Angeles landscapes was close to potential evapotranspiration ( 1,100 mm/yr), with turfgrass responsible for 64-84% of total water use. Landscape water use linearly increased with median household income across Los Angeles, where wealthier parts of the city were consistently more vegetated than less affluent parts. Our results indicate extremely high water use by urban landscapes in semi-arid environments, largely owing to high spatial coverage of excessively irrigated lawns. These results have important implications for constraining municipal water budgets and developing water-saving landscaping practices.

  20. Ideas towards sustainable water security

    NASA Astrophysics Data System (ADS)

    Dalin, Carole

    2016-04-01

    With growing global demands and a changing climate, ensuring water security - the access to sufficient, quality water resources for health and livelihoods and an acceptable level of water related risk - is increasingly challenging. While a billion people still lack access to water, over-exploitation of this resource increases in many developed and developing parts of the world. While some solutions to water stress have been known for a long time, financial, cultural and political barriers often prevent their implementations. This talk will highlight three crucial areas that need to be addressed to progress towards sustainable water security. The first point is on scale, the second on the agricultural sector and irrigation, and the third on food trade and policy.

  1. Water supply development and tariffs in Tanzania: From free water policy towards cost recovery

    NASA Astrophysics Data System (ADS)

    Mashauri, Damas A.; Katko, Tapio S.

    1993-01-01

    The article describes the historical development of water tariff policy in Tanzania from the colonial times to present. After gaining independence, the country introduced “free” water policy in its rural areas. Criticism against this policy was expressed already in the 1970s, but it was not until the late 1980s that change became unavoidable. All the while urban water tariffs continued to decline in real terms. In rural and periurban areas of Tanzania consumers often have to pay substantial amounts of money for water to resellers and vendors since the public utilities are unable to provide operative service. Besides, only a part of the water bills are actually collected. Now that the free water supply policy has been officially abandoned, the development of water tariffs and the institutions in general are a great challenge for the country.

  2. Preliminary map of the conterminous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million dissolved solids

    USGS Publications Warehouse

    Feth, John Henry Frederick

    1965-01-01

    This atlas was prepared to meet needs for information on the distribution and availability of mineralized water as expressed by Government agencies, private industries, and consultants. The maps are one step in providing an inventory of mineralized water of the Nation and will serve as a planning guide for further investigations and for development. They are necessarily generalized in many places owing to the complexity of the occurrence of the mineralized water, lack of detailed information for parts of the nation, and the difficulties inherent in attempts to put three-dimensional information on maps.

  3. How Do You Get Your Water? Structural Violence Pedagogy and Women's Access to Water

    ERIC Educational Resources Information Center

    Keefer, Natalie; Bousalis, Rina

    2015-01-01

    In many parts of the less developed world it is women and girls who are expected to provide water for their family. Frequently, young girls are unable to complete school or get jobs because water scarcity means they are forced to walk miles daily to obtain this most basic need. Since the creation of the United Nations Millennium Goals, progress…

  4. ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING

    EPA Science Inventory

    Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...

  5. Impact of Hot Spring Resort Development on the Groundwater Discharge in the Southeast Part of Laguna De Bay, Luzon, Philippines

    NASA Astrophysics Data System (ADS)

    Siringan, F. P.; Lloren, R. B.; Mancenido, D. L. O.; Jago-on, K. A. B.; Pena, M. A. Z.; Balangue-Tarriela, M. I. R.; Taniguchi, M.

    2014-12-01

    Direct groundwater seepage in a lake (DGSL) can be a major component to its water and nutrient budget. Groundwater extraction around a lake may affect the DGSL, thus it can be expected that it would also impact the lake. In the Philippines, Laguna de Bay which is the second largest freshwater lake in South-east Asia and used primarily for fisheries, is under significant water development pressure. Along the southern coast of the lake, in the Calamba-Los Banos area, rapid urbanization and development of the water resort industry, including hot spring spas, are expected to have led to a rapid increase in groundwater extraction. This study aims to establish the effect of this development to the DGSL in this part of the lake. As a first step, we utilized towed electrical resistivity (ER) profiling to identify and map the potential and type of groundwater seepage off the southern coast of the lake. SRTM digital elevation models and synthetic aperture radar images were used to delineate lineaments which are potential fractures that cut across the study area. ER profiles indicate widespread occurrence of GDL across the shallower parts of the lake. In the more offshore, deeper parts of the lake, DGSL appears to be more limited possibly due to more muddy sediments there. However, in this area, narrow, vertical high resistivity columns cut through the lake floor suggesting more discrete GDLs possibly controlled by faults.

  6. Geology and ground water resources of Montgomery County, Alabama

    USGS Publications Warehouse

    Knowles, Doyle Blewer; Reade, H.L.; Scott, J.C.

    1963-01-01

    Montgomery County includes an area of 790 square miles in east-central Alabama. The economy of Montgomery County is related primarily to the growing and processing of agricultural products. The county is in the northern part of the Coastal Plain. It consists of parts of four divisions of the Coastal Plain: the terraces, the Black Prairie, the Chunnennuggee Hills, and the flood plains. The county drains north and northwest into the Alabama and Tallapoosa Rivers, except for a small area in the southern part of the county that is drained by tributaries of the Conecuh River. Sedimentary rocks of Late Cretaceous age underlie Montgomery County. They are divided, in ascending order, into the following: Coker and Gordo formations of the Tuscaloosa group; Eutaw formation; and Mooreville and Demopolis chalks, Ripley formation, Prairie Bluff chalk, and Providence sand of the Selma group. The Clayton formation of Tertiary age crops out in a small area in the southern part of the county. Pleistocene terrace deposits of the ancestral Alabama River overlie the older rocks in the northern part of the county. Recent alluvium underlies the flood plains of the larger streams. The Cretaceous and younger rocks consist chiefly of clay, chalk, sandstone, sand, and gravel, and a few thin beds of limestone. These deposits are underlain by a basement complex of pre-Cretaceous crystalline rocks. Large-scale withdrawals of water began in the Montgomery area about 1885. Pumpage by the city of Montgomery in 1958 averaged about 15 million gallons per day. It is estimated that an additional 10 to 15 million gallons per day was pumped in the county for industrial, irrigation, domestic, and stock use. The principal aquifer in the country is,the Eutaw formation. It supplies water to the city of Montgomery municipal wells, to industrial wells in the Montgomery area, and to most domestic and stock wells in the northern two-thirds of the county. Irrigation wells also tap the Eutaw. Yields from wells range from 350 to 600 gallons per minute. The Gordo formation, the upper part of the Coker formation, and the Pleistocene terrace deposits in the Montgomery area also yield moderate to large quantities of water to municipal and industrial wells. The lower part of the Coker formation is not developed as a source of water supply, but information obtained during the investigation rthat led to this report indicates that it may be a potential source of water to wells of large capacity. Sand beds in the Ripley formation, Providence sand, and Recent alluvium in -the southern part of the county yield adequate amounts of water to domestic and stock wells.Most of the ground water used in Montgomery County occurs under artesian conditions, although water-table conditions occur in the Pleistocene terrace deposits and Recent alluvium, and in the outcrop areas of the Eutaw and Eipley formations and the Providence sand. Most of the water recharging the Ooker, Gordo, and Eutaw formations in their areas of outcrop also is discharged in these areas; only a small quantity of water moves downdip beneath the overlying chalk beds. The natural discharge, and hence the natural recharge, is estimated to be 0.2 to 0.3 million gallons per day per square mile of outcrop. All ground water in the county is of chemical quality that is satisfactory for most uses, although locally it is high in iron or chloride content and is hard. Water from the Eutaw formation a few miles southwest of Montgomery's West well field is very high in chloride content. This water moves toward the cone of depression in the piezometric surface produced by pumping in the West well field. Much additional ground water could be pumped from the Eutaw formation, especially south of Montgomery's West well field. Additional water also is available from the upper part of the Coker formation. Before large groundwater developments are planned, however, the problems of well spacing and pumping rates should be studied in order to determine the maximum development permitted by the supply. Observation wells should be installed in the Eutaw formation southwest of Montgomery's West well field to detect encroachment of water of high chloride content from adjacent Lowndes County.

  7. Plan of study of the hydrology of the Madison Limestone and associated rocks in Montana, Nebraska, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    ,

    1975-01-01

    A major part of the United States ' coal reserves is in the Fort Union coal region of the Northern Great Plains. Large-scale development of these reserves would place a heavy demand on the area 's limited water resources. Surface water is poorly distributed in time and space. Its use for coal development in parts of the area would require storage reservoirs and distribution systems, whereas in the rest of the area surface water is fully appropriated and its use would deprive present users of their supply. Preliminary studies by the U.S. Geological Survey and State agencies in Wyoming, Montana, and South Dakota indicate that the Madison Limestone and associated rocks might provide a significant percentage of the total water requirements for coal development. This report briefly summarized the present knowledge of the geohydrology of the Madison and associated rocks, identifies the need for additional data, and outlines a 5-year plan for a comprehensive study of the hydrology of these rocks. (Woodard-USGS)

  8. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  9. Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

    1980-06-01

    From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

  10. Conceptualization and analysis of ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina

    USGS Publications Warehouse

    Harsh, John F.; Laczniak, Randell J.

    1990-01-01

    The ground-water flow system in the Coastal Plain of Virginia and adjacent parts of Maryland and North Carolina consists of a water table aquifer and an underlying sequence of confined aquifers and intervening confining units composed of unconsolidated sand and clay. A digital flow model was developed to enhance knowledge of the behavior of the ground-water flow system in response to its development. Ten pumping periods covering 90 yr of withdrawal simulated the history of ground-water development. Simulated potentiometric-surface maps for 1980 show lowered water levels and the development of coalescing cones of depression around the cities of Franklin, Suffolk, and Williamsburg and the town of West Point, all in Virginia. The largest simulated decline in water level, about 210 ft was near Franklin. Water budgets indicate that over the period of simulation (1891-1980): (1) pumpage from the model area increased by about 105 Mgal/d; (2) lateral boundary outflow increased by about 5 Mgal/d; (3) ground-water flow to streams and coastal water decreased by about 107.5 Mgal/d; (4) lateral boundary inflow increased by about 0.7 Mgal/d, and (5) water released from aquifer storage increased by about 1.6 Mgal/d. Simulated rates of recharge into the confined aquifer system at the end of the final pumping period (1980) varied up to 3.8 in/yr. and simulated rates of discharge out of the confined system varied up to 2.2 in/yr. Results of simulations show an increase of about 110 Mgal/d into the confined system from the unconfined system over the period of simulation. This increase in flow into the confined system affected local discharge of ground water to streams and regional discharge to coastal water. Lowering the storage coefficient of the aquifer had a minimal effect simulated water levels, whereas increasing the storage coefficient had a much more significant effect.

  11. 76 FR 13088 - Seaway Regulations and Rules: Periodic Update, Various Categories

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... 33 CFR Part 401 Hazardous materials transportation, Navigation (water), Penalties, Radio, Reporting... DEPARTMENT OF TRANSPORTATION Saint Lawrence Seaway Development Corporation 33 CFR Part 401 [Docket... Department of Transportation's Regulatory Policies and Procedures is not required. Regulatory Flexibility Act...

  12. Scenario workshops: A useful method for participatory water resources planning?

    NASA Astrophysics Data System (ADS)

    Hatzilacou, Dionyssia; Kallis, Giorgos; Mexa, Alexandra; Coccosis, Harris; Svoronou, Eleni

    2007-06-01

    This article reports on a scenario workshop (SW) for water resources management at the island of Naxos, Greece. The workshop was part of a European research project studying the advantages and limitations of different participatory methods in the context of the Water Framework Directive. It involved policy makers, scientists, business representatives, and citizens from different parts of the island. On the first day, participants worked to envision a sustainable development future for the island and its water resources. Discussion was inspired by four alternative water development scenarios prepared by the organizers. Participants' vision statements emphasized a diversified development path and balanced water solutions. On the second day, participants worked to plan the actions needed to realize their common vision. The SW turned out to be a good method to initiate a multipartner dialogue, to include new stakeholders in the water policy debate, and to a certain extent, to promote learning between participants. On the other hand, it did not appear well suited to resolve conflicts and aid decisions in the face of scientific complexity and uncertainty. SW seems to be a good method for the "upstream," preparatory, capacity-building tasks of a planning process but not for the production of substantive decision outputs such as consensual agreements or action plans. The Naxos experiment also raised the centrality of framing, participant selection, and facilitation in participatory processes.

  13. Effects of Holding Time, Storage, and the Preservation of ...

    EPA Pesticide Factsheets

    The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters that were used to collect fecal indicators could be stored frozen and analyzed at a later date and the second part was to determine if refrigerated water samples could be held for 24 to 48 hours prior to analysis by qPCR. Both of these studies answer questions that were important in the analysis of fresh and marine surface water samples for beach monitoring purposes. 1) Develop and evaluate qPCR assays and test methods for the detection and quantification of genetic markers from indicator bacteria that are associated with human fecal waste and from two new groups of general fecal indicator bacteria (E. coli and Clostridia) that historically have been widely used or are favored in specific regions 2) Determine the occurrence and densities of genetic markers detected by new qPCR assays developed under objective 1 and compare with occurrence and densities of genetic markers detected by previously developed qPCR assays for enterococci and total Bacterioidalesin waste waters and fecal material from different animal sources. 3) Determine stability of fecal indicator bacteria target DNA sequences in freezer archived filter retentates of ambient surface water samples 4) Determine the densitie

  14. COMPARISON OF MENTEROCOCCUS AGAR AND THE U.S. ENVIRONMENTAL PROTECTION AGENCY-RECOMENDED ENTEROCOCCI METHODS, ME AND MEI AGAR

    EPA Science Inventory

    To maintain waters that are "fishable and swimmable", mandated by the Clean Water Act, the U.S. Environmental Protection Agency (EPA) is developing a list of approved methods for use in enumerating enterococci and E. coli in ambient waters. As part of this effort, we compared mEn...

  15. Environmental Support Specialist, Blocks III & IV, 17-5. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text contains the second section of a four-part course to train environmental support specialists. Covered in the individual course blocks are operative principles of water treatment plants (principles of water treatment plants, the clarification process, water systems filters, chemical disinfection, taste and odor control,…

  16. EVALUATION OF HYBRID POPLAR TREE TOLERANCE TO IRRIGATION WITH HIGH SALINITY AND BORON WATERS UNDER MICRO-PLOT CONDITIONS

    USDA-ARS?s Scientific Manuscript database

    The concept of reusing salt-laden drainage water in agricultural systems was developed as part of the integrated on-farm drainage management system. The successful adoption of a practical water reuse strategy in Central California requires the selection of salt and boron tolerant crops for use with ...

  17. 77 FR 53231 - Final Environmental Impact Statement for the Odessa Subarea Special Study-Columbia Basin Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... scope of the action alternative which include acreage, water supply, and general site locations would... authorized boundary with a surface water supply as part of continued phased development of the CBP. The... alternative impacts considered in the Draft EIS. Two water supply options are being considered that would use...

  18. Water resources and related geology of Dera Ismail Khan district, West Pakistan, with reference to the availability of ground water for development

    USGS Publications Warehouse

    Hood, J.W.; Khan, Lutfe Ali; Jawaid, Khalid

    1970-01-01

    Dera Ismail (D.I.) Khan District contains an area of 3,450 square miles between the right bank of the Indus River and the Sulaiman Range in westcentral West Pakistan. Agriculture is the principal source of income in the District, but only a small part of the arable land is fully utilized. The region is semiarid and has an average annual rainfall of about 9 inches and a potential evapotranspirational rate of eight to nine times the annual rainfall. Thus, rainfall alone is not adequate for high-intensity cropping. Irrigation is practiced near the Indus River; the Paharpur Canal is used, as well as the traditional inundation method. Elsewhere in the District, adequate water is supplied to local areas by karezes, perennial streams from the mountains, and some recently installed tubewells (see 'Glossary'). Further development of ground-water supplies would permit a more effective utilization of most of the presently tilled land and would allow additional land to be farmed. D.I. Khan District is primarily an alluvial plain that slopes from the mountain ranges in the northern and western parts of the District toward the Indus River. Rocks in the bordering mountains are of Paleozoic to early or middle Pleistocene age. The unconsolidated rocks of the plain, of middle (?) Pleistocene to Holocene (Recent) age, consist of piedmont deposits derived from the hills to the north and west and of alluvium laid down by the Indus River. These deposits interfinger in a transitional zone about 8 to 12 miles west of the river. Lithologic and structural features indicate that the unconsolidated rocks possibly may be divided into broad units. The investigations in D.I. Khan District have revealed two main areas of potential ground-water development based on considerations of both permeability and chemical quality of the ground water: 1. A belt about 10 miles wide parallels the Indus River from the Khisor Range southward to the area immediately south of D.I. Khan town. In this belt, the material penetrated by test holes and tubewells consists predominantly of sand, which in tubewells can yield from 2 to 3 cfs (cubic feet per second) of water with only moderate drawdown. Also in this belt, ground water of good chemical quality extends to depths of 1,000 feet or more. 2. The area from the mouth of the Gumal River gorge to the vicinity of Kot Azam contains sand and gravel strata that may yield from 1 to 3 cfs of water, which contains 500 to 1,500 ppm (parts per million) of total dissolved solids. Other marginal parts of the District also contain water of good chemical quality, but developmental prospects are somewhat poorer because of greater depths to water, lower permeabilities, or greater depths to aquifers, all of which would require greater costs in the tubewell installations. The stratification or zoning of water of different chemical qualities to some extent governs the local availability of useful water. Generally, the ground water of poorest quality is found in the shallow zone, and quality improves with depth. The central part of the District, in a belt reaching from the vicinity of Tank southward to the Indus River near Dera Ghfizi Khan District, contains highly mineralized water and few aquifers. The mineralization of water in this belt is due primarily to large concentrations of sodium and sulfate and thus differs from the main part of the Punjab region where highly mineralized waters are generally chloride waters. Radical changes in water quality, both horizontally and vertically, are common in the District. Changes in chemical quality of water from large-capacity wells near areas of highly mineralized water are taking place, and further changes may be expected as withdrawals continue and increase in magnitude. Under present conditions, surface-water supplies are fully utilized, and ground water is the largest supply available for development-other than that from the Indus River.

  19. The Development of Methodologies and Solvent Systems to Replace CFC-113 in the Validation of Large-Scale Spacecraft Hardware

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A., III

    1996-01-01

    Liquid oxygen is used as the oxidizer for the liquid fueled main engines during the launch of the space shuttle. Any hardware that comes into contact with pure oxygen either during servicing of the shuttle or in the operation of the shuttle must be validated as being free of nonvolatile residue (NVR). This is a safety requirement to prevent spontaneous combustion of carbonaceous NVR if it was to come into contact with pure oxygen. Previous NVR validation testing of space hardware used Freon (CFC-113) as the test solvent. Because CFC-113 no longer can be used, a program was conducted to develop a NVR test procedure that uses a safe environmentally friendly solvent. The solvent that has been used in the new NVR test procedure is water. Work that has been conducted over the past three years has served to demonstrate that when small parts are subjected to ultrasound in a water bath and NVR is present a sufficient quantity is dispersed into the water to analyze for its concentration by the TOC method. The work that is described in this report extends the water wash NVR validation test to large-scale parts; that is, parts too large to be subjected to ultrasound. The method consists of concentrating the NVR in the water wash onto a bed of silica gel. The total adsorbent bed is then analyzed for TOC content by using a solid sample probe. Work that has been completed thus far has demonstrated that hydrocarbon based NVR's can be detected at levels of less than 0.1 mg per square foot of part's surface area by using a simple water wash.

  20. Groundwater modeling in integrated water resources management--visions for 2020.

    PubMed

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  1. Integration of DNA barcoding approaches into aquatic bioassessments

    EPA Science Inventory

    The Clean Water Act directs states to protect water resources by developing criteria based in part on biological assessments of natural aquatic ecosystems. Current protocols can be limited by the availability of taxonomic expertise and concerns about precision and accuracy in mor...

  2. Hydrogeology and potential for ground-water development, carbonate-rock aquifers in southern Nevada and southeastern California

    USGS Publications Warehouse

    Burbey, T.J.

    1997-01-01

    Seventeen hydrographic areas in southern Nevada were assessed for the ground-water development potential of the underlying carbonate-rock aquifers on the basis of geologic and hydrologic information developed as part of the Nevada Carbonate Aquifers Study and information compiled from previous investigations. All selected areas lie within a miogeoclinal belt where thick accumulations of carbonate rock followed by major episodes of compression and extension have greatly modified the region. Most of the selected hydrographic areas lie within the less extended terranes; however, several areas, or parts of areas, lie within severely extended terranes where carbonate rocks have been greatly thinned, or where deformed blocks of carbonate rock are discontinuous and isolated from surrounding carbonate rock aquifers. Three principal criteria were used to assess the development potential of each selected hydrographic area. These quantitative criteria are: (1) depth to water, (2) depth to and thickness of carbonate rocks, and (3) water quality. Other site-specific factors, such as accessibility and potential effects of ground-water development, are also discussed. Results suggest that sites with high potential for development may be scarce in southern Nevada. Many areas described as favorable on the basis of the three quantitative criteria were deemed unfavorable on the basis of possible short- and long-term effects associated with development and on the amount of available data used to make the assessment. The most favorable sites may be in more severely extended terranes, where development of isolated blocks (of carbonate-rock aquifer material) would be less likely to affect neighboring areas.

  3. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    NASA Astrophysics Data System (ADS)

    van der Zaag, Pieter; Juizo, Dinis; Vilanculos, Agostinho; Bolding, Alex; Uiterweer, Nynke Post

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use irrigation (4000 ha). This development includes the expansion of sugar cane production for the production of ethanol as a biofuel. Total additional water requirements may amount to 1.3 × 10 9 m 3/a or more. A simple river basin simulation model was constructed in order to assess different irrigation development scenarios, and at two storage capacities of the existing Massingir dam. Many uncertainties surround current and future water availability in the Lower Limpopo River Basin. Discharge measurements are incomplete and sometimes inconsistent, while upstream developments during the last 25 years have been dramatic and future trends are unknown. In Mozambique it is not precisely known how much water is currently consumed, especially by the many small-scale users of surface and shallow alluvial groundwater. Future impacts of climate change increase existing uncertainties. Model simulations indicate that the Limpopo River does not carry sufficient water for all planned irrigation. A maximum of approx. 58,000 ha of irrigated agriculture can be sustained in the Mozambican part of the basin. This figure assumes that Massingir will be operated at increased reservoir capacity, and implies that only about 44,000 ha of new irrigation can be developed, which is 60% of the envisaged developments. Any additional water use would certainly impact downstream users and thus create tensions. Some time will elapse before 44,000 ha of new irrigated land will have been developed. This time could be used to improve monitoring networks to decrease current uncertainties. Meanwhile the four riparian Limpopo States are preparing a joint river basin study. In this study a methodology could be developed to estimate and safeguard water availability for those users who under the law do not need registration - but who do need water.

  4. A comparison of analog and digital modeling techniques for simulating three-dimensional ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    1980-01-01

    A three-dimensional electric-analog model of the Long Island, NY , groundwater system constructed by the U.S. Geological Survey in the early 1970 's was used as the basis for developing a digital, three-dimensional finite-difference model. The digital model was needed to provide faster modifications and more rapid solutions to water-management questions. Results generated by the two models are depicted as potentiometric-surface maps of the upper glacial and Magothy aquifers. Results compare favorably for all parts of Long Island except the northwestern part, where hydrologic discontinuities are most prevalent and which the two models represent somewhat differently. The mathematical and hydrologic principles used in development of ground-water models, and the procedures for calibration and acceptance, are presented in nontechnical terms. (USGS)

  5. Indian Ocean Surface Circulations and Their Connection to Indian Ocean Dipole, Identified From Ocean Surface Currents Analysis Real Time (OSCAR) Data

    DTIC Science & Technology

    2008-06-01

    31 1. Seasonal Development .......................................................................32 2. Winter Monsoon...summary of the monsoon system in the Indian Ocean. The top part indicates the wind cycle; the lower part shows the major currents that develop in...energy interests in the Indian Ocean’s waters. The rapid economic progress in developing nations, such as India and South Africa, also adds up their

  6. Hydrologic effects of ground- and surface-water withdrawals in the Milford area, Elkhart and Kosciusko counties, Indiana

    USGS Publications Warehouse

    Lindgren, H.A.; Peters, J.G.; Cohen, D.A.; Crompton, E.J.

    1985-01-01

    Results of plans 1, 2, 3, and 4 indicate that the outwash system provides adequate water for current (1982) needs and substantial growth for irrigation. However, maximum irrigational development might cause temporary, local competition for water in several parts of the area. Plan 5 indicates .that water use could increase substantially before effects of pumping would prevail year-round.

  7. Water resources planning in a strategic context: Linking the water sector to the national economy

    NASA Astrophysics Data System (ADS)

    Rogers, Peter; Hurst, Christopher; Harshadeep, Nagaraja

    1993-07-01

    In many parts of the developing world investment in water resources takes a large proportion of the available public investment funds. As the conflicts for funds between the water and other sectors become more severe, the traditional ways of analyzing and planning water investments has to move away from project-by-project (or even a river basin-by-river basin) approaches to include the relationships of water investments to other sectors and to overall national development policies. Current approaches to water resources investments are too narrow. There is a need for ways to expand the strategic thinking of water sector managers. This paper develops a water resources planning methodology with the primary objective of giving insights into the linking of water sector investments and macroeconomic policies. The model optimizes the present value of investments for water resources development, while embedding a macroeconomic model into the framework to allow for an examination of the interactions between water investments, the growth in the agricultural sector, and the performance of the overall economy. A case study of Bangladesh is presented which shows how strategic thinking could lead to widely differing implications for water investments than would conventional water resources systems planning models.

  8. Hydrogeology of the Coconino Plateau and adjacent areas, Coconino and Yavapai Counties, Arizona

    USGS Publications Warehouse

    Bills, Donald J.; Flynn, Marilyn E.; Monroe, Stephen A.

    2007-01-01

    Two large, regional ground-water flow systems occur in the Coconino Plateau and adjacent areas: the C aquifer and the Redwall-Muav aquifer. The C aquifer occurs mainly in the eastern and southern parts of the 10,300-square-mile Coconino Plateau study area, and the Redwall-Muav aquifer underlies the entire study area. The C aquifer is a water-table aquifer for most of its occurrence with depths to water that range from a few hundred feet to more than 1,500 feet. In the western part of the Coconino Plateau study area, the C aquifer is dry except for small localized perched water-bearing zones decoupled from the C aquifer to the east. The Redwall-Muav aquifer underlies the C aquifer and ranges from at least 3,000 feet below land surface in the western part of the Coconino Plateau study area to more than 3,200 feet below land surface in the eastern part of the study area. The Redwall-Muav aquifer is a confined aquifer for most of its occurrence with hydraulic heads of several hundred to more than 500 feet above the top of the aquifer in the western part of the study area and more than 2,000 feet above the top of the aquifer in the eastern part of the study area near Flagstaff. In the eastern and northeast parts of the area, the C aquifer and the Redwall-Muav aquifer are in partial hydraulic connection through faults and other fractures. The water discharging from the two aquifers on the Coconino Plateau study area is generally of good quality for most intended uses. Water from sites in the lower Little Colorado River Canyon had high concentrations of most trace elements relative to other springs, rivers, and streams in the study area. Concentrations of barium, arsenic, uranium, and lead, and gross alpha radioactivity were greater than U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water at some sites. Ground water discharging to most springs, streams, and wells on the Coconino Plateau and in adjacent areas is a calcium magnesium bicarbonate type and has low concentrations of the major dissolved constituents. Ground water discharging from the Redwall-Muav aquifer to springs in the lower Little Colorado River Canyon is a mixture of water from the C aquifer and the Redwall-Muav aquifer and is a sodium chloride type with high concentrations of most major dissolved constituents. Concentrations of sulfate and chloride in ground water discharging from the Redwall-Muav aquifer at springs near the south rim of Grand Canyon increase toward the west. Water samples from the Verde River above Mormon Pocket had higher concentrations of most dissolved constituents than samples from springs that discharge from the Redwall-Muav aquifer at Mormon Pocket and in Sycamore Canyon. Water-chemistry data from C aquifer wells and springs in the Flagstaff area indicate that ground-water ages in the aquifer range from 7,000 years to modern and that samples were a mix of younger and older waters. Ground-water ages for the Redwall-Muav aquifer are estimated to range from 22,600 to 7,500 years, and low tritium values indicate that this water is older than water discharging from the C aquifer. Tritium and carbon-14 results indicate that ground water discharging at most springs and streams is a mixture of young and old ground waters, likely resulting from multiple flow paths and multiple recharge areas. Ground-water withdrawals in the study area increased from about 4,000 acre-feet per year prior to 1975, to about 20,000 acre-feet per year in 2003. About two-thirds of the water withdrawn is from the C aquifer and about one-third is from the Redwall-Muav aquifer. In the study area, most development of the C aquifer has occurred near Flagstaff. Development of the Redwall-Muav aquifer is more extensive in Verde Valley where water-bearing zones of the aquifer are closer to land surface. In recent years, however, development of the Redwall-Muav aquifer in the study area has increased in response to population growth and the atten

  9. An overview of reclaimed water reuse in China.

    PubMed

    Yi, Lili; Jiao, Wentao; Chen, Xiaoning; Chen, Weiping

    2011-01-01

    China is facing severe water problems including scarcity and pollution which are now becoming key factors restricting developments. Creating an alternative water resource and reducing effluent discharges, water reuse has been recognized as an integral part of water and wastewater management scheme in China. The government has launched nationwide efforts to optimize the benefits of utilizing reclaimed water. This article reviewed the water reuse activities in China, including: (1) application history and current status; (2) potentials of reclaimed water reuse; (3) laws, policies and regulations governing reclaimed water reuse; (4) risks associated with reclaimed water reuse; (5) issues in reclaimed water reuse. Reclaimed water in Beijing and Tianjin were given as examples. Suggestions for improving the efficiencies of reusing urban wastewater were advanced. Being the largest user of reclaimed wastewater in the world, China's experience can benefit the development of water reuse in other regions.

  10. U.S. Geological Survey ground-water studies in Utah

    USGS Publications Warehouse

    Gates, Joseph S.

    1988-01-01

    Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.

  11. Results of Microbiologic Investigations of Water-Development Works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durcheva, V. N., E-mail: durchevavn@vniig.ru; Izmailova, R. A., E-mail: izmailovara@vniig.ru; Legina, E. E., E-mail: leginaee@vniig.ru

    2015-03-15

    Results are presented for multiyear field investigations of the effect of microbe colonies on components of water-development works. Concrete, metal, and geologic rocks were studied as component parts of the bed of concrete dams functioning in various climatic zones. The participation of lithotrophic bacteria in processes involving corrosion failure of the metal, concrete, and rock beds of dams is established, and causes of intensification of microbe activity are exposed. The need for monitoring the composition and number of microorganisms-biodestructors is substantiated in the water of a reservoir and observation wells, as well as on the surfaces of structural components ofmore » water-development works for monitoring of the safety of the concrete dams.« less

  12. Geochemistry of ground water in alluvial basins of Arizona and adjacent parts of Nevada, New Mexico, and California

    USGS Publications Warehouse

    Robertson, Frederick N.

    1991-01-01

    Chemical and isotope analyses of ground water from 28 basins in the Basin and Range physiographic province of Arizona and parts of adjacent States were used to evaluate ground-water quality, determine processes that control ground-water chemistry, provide independent insight into the hydrologic flow system, and develop information transfer. The area is characterized by north- to northwest-trending mountains separated by alluvial basins that form a regional topography of alternating mountains and valleys. On the basis of ground-water divides or zones of minimal basin interconnection, the area was divided into 72 basins, each representing an individual aquifer system. These systems are joined in a dendritic pattern and collectively constitute the major water resource in the region. Geochemical models were developed to identify reactions and mass transfer responsible for the chemical evolution of the ground water. On the basis of mineralogy and chemistry of the two major rock associations of the area, a felsic model and a mafic model were developed to illustrate geologic, climatic, and physiographic effects on ground-water chemistry. Two distinct hydrochemical processes were identified: (1) reactions of meteoric water with minerals and gases in recharge areas and (2) reactions of ground water as it moves down the hydraulic gradient. Reactions occurring in recharge and downgradient areas can be described by a 13-component system. Major reactions are the dissolution and precipitation of calcite and dolomite, the weathering of feldspars and ferromagnesian minerals, the formation of montmorillonite, iron oxyhydroxides, and probably silica, and, in some basins, ion exchange. The geochemical modeling demonstrated that relatively few phases are required to derive the ground-water chemistry; 14 phases-12 mineral and 2 gas-consistently account for the chemical evolution in each basin. The final phases were selected through analysis of X-ray diffraction and fluorescence data, aqueous speciation and saturation data, and mass-balance and isotopic constraints and through chemical models developed from mineral combinations among the 27 phases that were considered realistic in these geologically and mineralogically complex basins. X-ray diffraction of basin-fill sediments confirm the presence of the postulated minerals and their weathering sequences. High partial pressures of soil CO2 and large concentrations of dissolved CO2 in recharge areas, and the rapid depletion of CO2 downgradient, accompanied by high weathering rates of the silicates which also decrease downgradient, indicate that carbonic acid is the impetus in the weathering process. Reactions in the soil zone and the unsaturated zone are influential and, in some instances, are as important as the mineralogy of the source rock in determining ground-water compositions. The basins can be divided geochemically into two general categories-closed systems, which evolve under closed hydrologic conditions, and open systems, which are open to CO2 and other constituents along the flow path. The ground-water chemistry of the unconfined aquifers in the eastern part of the study area and of the aquifers underlying the flood plain along the Colorado River generally evolves under open conditions. The ground-water chemistry of most basins in the central and western parts and of the confined aquifers in the eastern part evolves under closed conditions. The factors that determine whether a basin is an open or closed system are the amount of and the spatial and seasonal distribution of annual precipitation and the presence or absence of fine-grained confining units. The basins along the Colorado River are unique among basins in the region. Virtually all ground water underlying the flood plain originated as seepage or overbank flow from the Colorado River. Initial deuterium content of about -120 per mil is indicative of precipitation from the central part of Colorado. Using chemical m

  13. IN-STREAM CONTINUOUS SOURCE WATER QUALITY MONITORING SYSTEM

    EPA Science Inventory

    Abstract:

    The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) provided the Ohio River Valley Water Sanitation Commission (ORSANCO) with a grant as part of the Advanced Measurement Initiative (AMI). The objective of AMI is to provide an ...

  14. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows.

    PubMed

    Dong, Huijuan; Geng, Yong; Fujita, Tsuyoshi; Fujii, Minoru; Hao, Dong; Yu, Xiaoman

    2014-12-01

    With rapid economic development in China, water crisis is becoming serious and may impede future sustainable development. The uneven distribution of water resources further aggravates such a problem. Under such a circumstance, the concepts of water footprint and virtual water have been proposed in order to respond water scarcity problems. This paper focuses on studying provincial disparity of China's water footprints and inter-provincial virtual water trade flows by adopting inter-regional input-output (IRIO) method. The results show that fast developing areas with larger economic scales such as Guangdong, Jiangsu, Shandong, Zhejiang, Shanghai and Xinjiang had the largest water footprints. The most developed and water scarce areas such as Shanghai, Beijing, Tianjin and Shandong intended to import virtual water, a rational choice for mitigating their water crisis. Xinjiang, Jiangsu, Heilongjiang, Inner Mongolia, Guangxi and Hunan, had the largest per GDP water intensities and were the main water import regions. Another key finding is that agriculture water footprint was the main part in water footprint composition and water export trade. On the basis of these findings, policy implications on agriculture geographical dispersion, consumption behavior changes, trade structure adjustment and water use efficiency improvement are further discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The politics of underdevelopment: metered to death-how a water experiment caused riots and a cholera epidemic.

    PubMed

    Pauw, Jacques

    2003-01-01

    Water privatization programs in South Africa, part of a government policy aimed at making people pay for the full cost of running water ("total cost recovery"), was developed by private water companies and the World Bank to finance improved water supplies and build the country's economy. Instead the programs are causing more misery than development. Millions of poor people have had their water supply cut off because of inability to pay, forcing them to get their water from polluted rivers and lakes and leading to South Africa's worst cholera outbreak--which the government paid millions of dollars to control. Residents in some townships are rebelling, and many of the private multinational water companies are reassessing their involvement in South Africa.

  16. Hydrogeologic framework of LaSalle County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Bailey, Clinton R.

    2016-10-28

    Water-supply needs in LaSalle County in northern Illinois are met by surface water and groundwater. Water-supply needs are expected to increase to serve future residential and mining uses. Available information on water use, geology, surface-water and groundwater hydrology, and water quality provides a hydrogeologic framework for LaSalle County that can be used to help plan the future use of the water resources.The Illinois, Fox, and Vermilion Rivers are the primary surface-water bodies in LaSalle County. These and other surface-water bodies are used for wastewater disposal in the county. The Vermilion River is used as a drinking-water supply in the southern part of the county. Water from the Illinois and Fox Rivers also is used for the generation of electric power.Glacial drift aquifers capable of yielding sufficient water for public supply are expected to be present in the Illinois River Valley in the western part of the county, the Troy Bedrock Valley in the northwestern part of the county, and in the Ticona Bedrock Valley in the south-central part of the county. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, although well yield often needs to be improved by using large-diameter wells. Arsenic concentrations above health-based standards have been detected in some wells in this aquifer. These aquifers are a viable source for additional water supply in some areas, but would require further characterization prior to full development.Shallow bedrock deposits comprising the sandstone units of the Ancell Group, the Prairie du Chien Group, dolomite of the Galena and Platteville Groups, and Silurian-aged dolomite are utilized for water supply where these units are at or near the bedrock surface or where overlain by Pennsylvanian-aged deposits. The availability of water from the shallow bedrock deposits depends primarily on the geologic unit analyzed. All these deposits can yield sufficient water for residential supply in at least some parts of the county, and sandstone deposits in the Ancell and Prairie du Chien Groups can yield sufficient water for residential or public supply in much of the county.The Cambrian-Ordovician aquifer system comprises the most widespread, productive aquifers in northern Illinois and is used for water supply by a number of municipalities in the county. Water levels in the aquifer system have declined by as much as 300 feet in parts of LaSalle County. The aquifer contains naturally occurring concentrations of radium that are higher than established health guidelines in much of the county.

  17. An integrated approach to improving rural livelihoods: examples from India and Bangladesh

    NASA Astrophysics Data System (ADS)

    Croke, Barry; Merritt, Wendy; Cornish, Peter; Syme, Geoffrey J.; Roth, Christian H.

    2018-02-01

    This paper presents an overview of work in West Bengal, Andhra Pradesh and SW Bangladesh through a series of projects from 2005 to the present, considering the impact of farming systems, water shed development and/or agricultural intensification on livelihoods in selected rural areas of India and Bangladesh. The projects spanned a range of scales spanning from the village scale (˜ 1 km2) to the meso-scale (˜ 100 km2), and considered social as well as biophysical aspects. They focused mainly on the food and water part of the food-water-energy nexus. These projects were in collaboration with a range of organisations in India and Bangladesh, including NGOs, universities, and government research organisations and departments. The projects were part funded by the Australian Centre for International Agricultural Research, and built on other projects that have been undertaken within the region. An element of each of these projects was to understand how the hydrological cycle could be managed sustainably to improve agricultural systems and livelihoods of marginal groups. As such, they evaluated appropriate technology that is generally not dependent on high-energy inputs (mechanisation). This includes assessing the availability of water, and identifying potential water resources that have not been developed; understanding current agricultural systems and investigating ways of improving water use efficiency; and understanding social dynamics of the affected communities including the potential opportunities and negative impacts of watershed development and agricultural development.

  18. Summary of hydrologic data for the East Everglades, Dade County, Florida

    USGS Publications Warehouse

    Schneider, James J.; Waller, Bradley G.

    1980-01-01

    The East Everglades area in south-central Dade County, Fla., occupies approximately 240 square miles. The area is flat and low lying with elevations ranging from sea level in the southeast part to 10 feet at Chekika Hammock with an average elevation of about 6 feet. Rainfall in the area averages 57.9 inches a year with about 80% of the total falling during the May to October wet season. There is some residential development and farming in the east-central part of the area where land elevations are slightly higher. Pressure by agricultural, commerical, and housing interests to develop the area is increasing. Historically, most of the area was flooded for extended periods of time. The construction of canals, levees, and controls has lowered the average water levels of the area. This has reduced the extent and decreased the time of flooding. Long-term hydrographs show graphically the effects that the water control works have had on the hydrologic system. The change in discharge into the north end of the East Everglades through the Tamiami Canal outlets, Levees 30 to 67A, due to construction is very pronounced. Maps showing the altitude of the water table for wet and dry periods indicate that Levee 67 Extended Canal greatly influences the water levels and shape of the water-table contours in the northwestern part of the East Everglades. (USGS)

  19. Water resources of part of Canyonlands National Park, southeastern Utah

    USGS Publications Warehouse

    Sumsion, C.T.; Bloke, E.L.

    1972-01-01

    Canyonlands National Park is in about the center of the Canyon Lands section of the Colorado Plateaus physiographic province in southeastern Utah. The part of the park discussed embraces an area of about 400 square miles comprising isolated mesas, precipitous canyons, and dissected broad benches near the confluence of the Green and Colorado Rivers, the only perennial streams in the area. The climate is arid to semiarid; normal annual precipitation ranges from less than 8 to about 10 inches. Potential evapotranspiration is about 41 inches annually.Geology of the park is characterized by nearly horizontal strata that dip gently northward. Exposed rock formations and deposits range in age from Middle Pennsylvanian to Holocene. Owing to the elevated and deeply dissected topography, only parts of the Cedar Mesa and White Rim Sandstone Members of the Cutler Formation of Permian age have potential for development of wells. Strata above and below them support only small springs, are dry, or contain brine.In the northwest part of the park, the Green River at Taylor Canyon is a potential source of surface water for public supplies for the Island In The Sky area and a small part of the northwest White Rim area. It will require filtration and treatment before use. In the same area, two unused wells in Taylor Canyon will supply enough water for present requirements from the White Rim Sandstone Member of the Cutler Formation, about 140 gallons per minute combined, but yield mineralized water that will require treatment before use. Springs yielding good water at the Island In The Sky and White Rim are mostly intermittent and too small for public-water supply. Most of the White Rim area is dry, having no usable ground water. In The Needles area, wells provide water of good quality from the Cedar Mesa Sandstone Member of the Cutler Formation. Springs yielding good water in the same area are available for supplementary supplies. West of The Needles, The Grabens area is without springs or potential aquifers bearing usable water.During 1970 about 510,000 gallons of water was used in Canyonlands National Park. Of this amount, 110,000 gallons was supplied to Island In The Sky by tank truck from a source outside the park, and about 400,000 gallons was withdrawn from the well in use at The Needles. Estimated total annual requirements in 10 years (1980) may be as much as 6 million gallons. Sources of water supplies within the park now in use and potential sources of surface water or ground water outlined by this investigation will meet the estimated requirements. Development of rainfall-collection and cistern-storage systems could furnish small emergency sources of water for waterless areas on the White Rim and in The Grabens.

  20. Development of an iodine generator for reclaimed water purification in manned spacecraft applications

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H.

    1973-01-01

    A successful 30-day test is described of a prototype Iodine Generating and Dispensing System (IGDS). The IGDS was sized to iodinate the drinking water nominally consumed by six men, 4.5 to 13.6 kg (10 to 30 lb) water per man-day with a + or - 10 to 20% variation with iodine (I2) levels of 0.5 to 20 parts per million (ppm). The I2 treats reclaimed water to prevent or eliminate microorganism contamination. Treatment is maintained with a residual of I2 within the manned spacecraft water supply. A simplified version of the chlorogen water disinfection concept, developed by life systems for on-site generation of chlorine (Cl2), was used as a basis for IGDS development. Potable water contaminated with abundant E. Coliform Group organisms was treated by electrolytically generated I2 at levels of 5 to 10 ppm. In all instances, the E. coli were eliminated.

  1. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, K.R.; Shelton, James L.; Dubrovsky, N.M.

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. Vulnerability assessment of water resources - Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer

    NASA Astrophysics Data System (ADS)

    Anandhi, Aavudai; Kannan, Narayanan

    2018-02-01

    Water is an essential natural resource. Among many stressors, altered climate is exerting pressure on water resource systems, increasing its demand and creating a need for vulnerability assessments. The overall objective of this study was to develop a novel tool that can translate a theoretical concept (vulnerability of water resources (VWR)) to an operational framework mainly under altered temperature and precipitation, as well as for population change (smaller extent). The developed tool had three stages and utilized a novel systems thinking approach. Stage-1: Translating theoretical concept to characteristics identified from studies; Stage-2: Operationalizing characteristics to methodology in VWR; Stage-3: Utilizing the methodology for development of a conceptual modeling tool for VWR: WR-VISTA (Water Resource Vulnerability assessment conceptual model using Indicators selected by System's Thinking Approach). The specific novelties were: 1) The important characteristics in VWR were identified in Stage-1 (target system, system components, scale, level of detail, data source, frameworks, and indicator); 2) WR-VISTA combined two vulnerability assessments frameworks: the European's Driver-Pressure-State-Impact-Response framework (DPSIR) and the Intergovernmental Panel on Climate Change's framework (IPCC's); and 3) used systems thinking approaches in VWR for indicator selection. The developed application was demonstrated in Kansas (overlying the High Plains region/Ogallala Aquifer, considered the "breadbasket of the world"), using 26 indicators with intermediate level of detail. Our results indicate that the western part of the state is vulnerable from agricultural water use and the eastern part from urban water use. The developed tool can be easily replicated to other regions within and outside the US.

  3. Water Supply. Fire Service Certification Series. Unit FSCS-FF-9-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on water supply is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4-hour unit is to assist the firefighter in the proper use of water supplies and the understanding of the…

  4. Making markets work for clean water.

    PubMed

    Carpenter, G

    2003-01-01

    Part of the solution to close the gap to meet the UN Millennium safe water goal lies in the domestic consumer marketplace. Multinational corporations must design products for low income consumers to deliver clean water at a household level. The future of business is linked to improving the lives of developing country consumers and to the improved economic status of those consumers.

  5. Urbanization eases water crisis in China

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang; Ji, Chen

    2012-01-01

    Socioeconomic development in China has resulted in rapid urbanization, which includes a large amount of people making the transition from rural areas to cities. Many have speculated that this mass migration may have worsened the water crisis in many parts of the country. However, this study shows that the water crisis would be more severe if the rural-to-urban migration did not occur.

  6. Pre- and postfire distribution of soil water repellency in a steep chaparral watershed

    Treesearch

    K. R. Hubbert; P. M. Wohlgemuth; H. K. Preisler

    2008-01-01

    The development and nature of water repellent soils and their spatial distribution on the landscape are not well understood relative to evaluating hillslope response to fire. Soil water repellency is particularly common in chaparral communities, due in part to the coarse-textured soils, and the high resin content of the organic litter. Objectives of this study were 1)...

  7. Hot and cold water as a supercritical solvent

    NASA Astrophysics Data System (ADS)

    Fuentevilla, Daphne Anne

    This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.

  8. Hydrology of the dunes area north of Coos Bay, Oregon

    USGS Publications Warehouse

    Robison, J.H.

    1973-01-01

    Hydrology of a 20-square-mile area of dunes along the central Oregon coast was studied. The area is underlain by 80 to 150 feet of Quaternary dune and marine sand which overlies Tertiary marine clay and shale. Ground water for industrial and municipal use is being withdrawn at a rate of 4 million gallons per day. Original plans to withdraw as much as 30 million gallons per day are evidently limited by the prospect of excessive lowering of levels in shallow lakes near the wells, and possibly sea-water intrusion, if water-level gradients are reversed. At the present stage of development there are 18 production wells, each capable of producing 200-300 gallons per minute from the lower part of the sand deposits. Except for thin layers of silt, clay, and organic matter, the deposits of sand are clean and uniform; horizontal permeability is two orders of magnitude times the vertical permeability. Because of the low vertical permeability, drawdown cones are not evident in the upper part of the aquifer adjacent to the wells. However, present pumping lowers general water levels in the lakes and the shallow ground-water zone as much as several feet. A two-layer electric analog model was built to analyze effects of present and projected development as well as any alternate plans. Model results were used to develop curves for short-term prediction of water levels.

  9. Manatee County government's commitment to Florida's water resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsicker, C.

    1998-07-01

    With ever increasing development demands in coastal areas and subsequent declines in natural resources, especially water, coastal communities must identify creative options for sustaining remaining water resources and an accepted standard of living. The Manatee County agricultural reuse project, using reclaimed wastewater is part of a water resource program, is designed to meet these challenges. The reuse system works in concert with consumer conservation practices and efficiency of use measures which are being implemented by all public and private sector water users in this southwest Florida community.

  10. Simulation of the ground-water flow system and proposed withdrawals in the northern part of Vekol Valley, Arizona

    USGS Publications Warehouse

    Hollett, K.J.; Marie, J.R.

    1987-01-01

    Pursuant to the Ak-Chin Indian Community Water Rights Settlement Act (Public Law 95-328-enacted on July 28, 1978) a study was undertaken to assess the effect of proposed groundwater withdrawal from Federal lands near the reservation. The first area to be evaluated was the northern part of the Vekol Valley. The evaluation was made using a numerical model based on detailed geohydrologic concepts developed during the study. The numerical model, which was calibrated to steady-state and transient groundwater conditions in the northern part of Vekol Valley, adequately duplicated the conceptual model and was used to estimate the effect of withdrawing approximately 174,000 acre-ft from the system during a 25-yr period. At the end of the 25-yr period, the water level was drawn down an average of about 95 ft, and about 150,5000 acre-ft of water was removed from storage. The 150,500 acre-ft of water represents 43% of the estimated recoverable groundwater in storage. (Author 's abstract)

  11. Optimization of the central automatic control of a small Dutch sewer system

    NASA Astrophysics Data System (ADS)

    Kolechkina, A. G.; Hoes, O. A. C.

    2012-04-01

    A sewer control system was developed in the context of a subsidized project aiming at improvement of surface water quality by control of sewer systems and surface water systems. The project was coordinated by the local water board, "Waterschap Hollandse Delta". Other participants were Delft University of Technology, Deltares and the municipalities Strijen, Cromstrijen, Westmaas, Oud Beijerland and Piershil. As part of the project there were two pilot implementations where a central automatic controller was coupled to the existing SCADA system. For these two pilots the system is now operational. A Dutch urban area in the western part of the Netherlands is usually part of a polder, which is effectively an artificially drained catchment. The urban area itself is split into small subcatchments that manage runoff in different ways. In all cases a large fraction goes into the natural hydrological cycle, but, depending on the design of the local sewer system, a larger or smaller part finds its way into the sewer system. Proper control of this flow is necessary to control surface water quality and to avoid health risks from flow from the sewer into the streets. At each time step the controller switches pumps to distribute the remaining water in the system at the end of the time step over the different subcatchments. The distribution is created based on expert judgment of the relative vulnerability and subcatchment sewer system water quality. It is implemented in terms curves of total system stored volume versus subcatchment stored volume. We describe the process of the adaptation of a controller to two different sewer systems and the understanding of the artificial part of the catchment we gained during this process. In the process of adaptation the type of sewer system (combined foul water and storm water transport or separate foul water and storm water transport) played a major role.

  12. Maps showing ground-water conditions in the southern part of the Black Mesa area, Navajo, Apache, and Coconino Counties, Arizona, 1976

    USGS Publications Warehouse

    Levings, Gary W.; Farrar, C.D.

    1977-01-01

    The southern part of the Black Mesa area includes about 2,500 mi2 in northeastern Arizona and is entirely in the Navajo and Hopi Indian Reservations. The main source of water is the ground water in the several aquifers that are made up of one or more formations. The aquifers are stacked one on the other and generally are not hydraulically connected; the composite stratigraphic column indicates the relative position of the formations. The main waterbearing units are the N and D aquifers, the Toreva and Wepo Formations, and the alluvium. The geologic structure and topographic relief preclude a uniform depth to water in the area; therefore, recommended drilling depths should be determined on an individual site basis. Ground-water development has been mainly for public, domestic, and livestock supplies, In 1975 about 500 acre-ft of ground water was withdrawn from the aquifers in the southern part of the black Mesa area; mo st of the water was from the N aquifer. In 1951-76-the period for which data were used to compile these maps-withdrawals from the N aquifer resulted in water-level declines in parts of the area . Measurable changes in water levels have not occurred in the other aquifers in the 25-year period.The hydrologic data on which these maps are based are available, for the most part, in computer-printout form for consultation at the Arizona Water Commission, 222 North Central Avenue, Suite 800, Phoenix, and at U.S. Geological Survey offices in: Federal Building, 301 West Congress Street, Tucson; Valley Center, Suite 1880, Phoenix; and 2255 North Gemini Drive, Building 3, Flagstaff. Material from which copies can be made at private expense is available at the Tucson, Phoenix, and Flagstaff offices of the U.S. Geological Survey.

  13. Evaluating the Economic and Social Benefits of Nutrient ...

    EPA Pesticide Factsheets

    New England’s coastal social-ecological systems are subject to chronic environmental problems, including water quality degradation. Researchers at EPA’s Office of Research and Development (ORD) Atlantic Ecology Division (AED) are piloting an effort to further understand how reduced water quality due to nutrient enrichment is affecting and may affect the economic prosperity, social capacity, and ecological integrity of coastal New England communities. This research is part of task 4.61 of ORD’s Sustainable and Healthy Communities Research Program (Integrated Solutions for Sustainable Communities: Social-Ecological Systems for Resilience and Adaptive Management in Communities - A Cape Cod Case Study). Concurrent with this effort, AED researchers are participating in EPA’s three-office effort (Office of Research and Development, Office of Policy, and Office of Water) to quantify and monetize the benefits of water quality improvements across the Nation. AED’s effort is a case study of changes in recreation demand and values due to changes in nutrients in Northeastern estuaries and freshwater ponds. This work is part of task 3.04A of the Safe and Sustainable Waters Research Program (National Water Quality Benefits: Economic Case Studies of Water Quality Benefits). Because of the complementarity between the two projects, this Supporting Statement describes and requests hours for focus groups and interviews for both of these research efforts. Our initial

  14. Ground-water provinces of southern Rhodesia

    USGS Publications Warehouse

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  15. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    USGS Publications Warehouse

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  16. Are we running out of water?

    USGS Publications Warehouse

    Nace, Raymond L.

    1967-01-01

    Water supplies are not running out, but time is getting short to stem waste of water and destructive exploitation of the environment before harm is done that may be irreparable. Most of the world's water is oceanic brine. Of the waters on the land, most is frozen in Antarctica and Greenland. Only a small part of continental water is available for use and management. The discharge of rivers to the sea is a close measure of the availability of liquid water, but ground-water reservoirs have important functions as inexpensive equalizers of water supply. Soil moisture is a major factor in the water economy, and its function usually is overlooked in assessments of water use and future water demand. Despite outcries of water shortage, the principal use of water in advanced countries is as a medium for waste disposal. In reality, despite regional maldistribution of water, United States supplies are adequate, given rational management. Also, contrary to common belief, water pollution is primarily a problem of economics, not of health. A paramount problem in most parts of the world is the shortage of water development and management facilities, not a shortage of water. The International Hydrological Decade is a program to awaken people everywhere to the crucial importance of water in man's future and to promote rational approach to water problems.

  17. Method for excluding salt and other soluble materials from produced water

    DOEpatents

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  18. A Tour of Mudflat Town.

    ERIC Educational Resources Information Center

    Scarff, Judith M.

    This publication is designed for use as part of a curriculum series developed by the Regional Marine Science Project. It serves as a second grade supplementary reading text about the marine environment. Reading material characterizes the ocean, fresh water and salt water, and the seashore. An ecological approach to nature is emphasized, by…

  19. Effect of moisture and aging on asphalt pavement life : part 1 - effect of moisture.

    DOT National Transportation Integrated Search

    1996-01-01

    Considerable research has been carried out on the effect of water on asphalt mixtures, and test methods to investigate the effect of water have been developed. However, most of this work has been related to stripping and the effect of additives, wher...

  20. Water Play

    ERIC Educational Resources Information Center

    Cline, Jane E.; Smith, Brandy A.

    2016-01-01

    The inclusion of activities to develop sensory awareness, spatial thinking, and physical dexterity, operationalized through hands-on science lessons such as water play, have long been part of early childhood education. This practical article addresses Next Generation Science Standards K-2 ETS1-3 and K-2 ETS1-2 by having four-year-old…

  1. Detecting deleterious fine particles in concrete aggregates and defining their impact : research brief.

    DOT National Transportation Integrated Search

    2011-02-01

    As concrete hardens, it develops mechanical properties such as strength and stiffness that depend in part on the ratios of the water, cement paste and aggregate gravel that compose it. While enough water must be added to concrete so it can be mixed, ...

  2. 40 CFR 123.63 - Criteria for withdrawal of State programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... programs. 123.63 Section 123.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... requirements of this part, including: (i) Failure to exercise control over activities required to be regulated... regulatory program for developing water quality-based effluent limits in NPDES permits. (6) Where a Great...

  3. 40 CFR 123.63 - Criteria for withdrawal of State programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... programs. 123.63 Section 123.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... requirements of this part, including: (i) Failure to exercise control over activities required to be regulated... regulatory program for developing water quality-based effluent limits in NPDES permits. (6) Where a Great...

  4. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  5. Development of a universal water signature for the LANDSAT-3 Multispectral Scanner, part 1

    NASA Technical Reports Server (NTRS)

    Schlosser, E. H.

    1980-01-01

    A generalized four channel hyperplane to discriminate water from nonwater was developed using LANDSAT-3 multispectral scaner (MSS) scenes and matching same/next day color infrared aerial photography. The MSS scenes varied in sun elevation angle from 40 to 58 deg. The 28 matching air photo frames contained over 1400 water bodies larger than one surface acre. A preliminary water discriminant, was used to screen the data and eliminate from further consideration all pixels distant from water in MSS spectral space. A linear discriminant was iteratively fitted to the labelled pixels. This discriminant correctly classified 98.7% of the water pixels and 98.6% of the nonwater pixels. The discriminant detected 91.3% of the 414 water bodies over 10 acres in surface area, and misclassified as water 36 groups of contiguous nonwater pixels.

  6. Portable field kit for determining uranium in water

    USGS Publications Warehouse

    McHugh, John B.

    1979-01-01

    The pressing need for on-site field analyses of the uranium content of surface and ground waters has promoted the development of a simple, light-weight, relatively cheap, portable kit to make such determinations in the field. Forty to sixty water samples per day can be analyzed for uranium to less than 0.2 parts per billion. The kit was tested in the field with excellent results.

  7. Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model

    Treesearch

    Shanlei Sun; Ge Sun; Peter Caldwell; Steven G. McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang

    2015-01-01

    Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and...

  8. Salt-water encroachment, geology, and ground-water resources of Savannah area, Georgia and South Carolina

    USGS Publications Warehouse

    Counts, H.B.; Donsky, Ellis

    1964-01-01

    The Savannah area consists of about 2,300 square miles of the Coastal Plain along the coast of eastern Georgia and southeastern South Carolina. Savannah is near the center of the area. Most of the large ground-water developments are in or near Savannah. About 98 percent of the approximately 60 mgd of ground water used is pumped from the principal artesian aquifer, which is composed of about 600 feet of limestone of middle Eocene, Oligocene, and early Miocene ages. Industrial and other wells of large diameter yield as much as 4,200 gpm from the principal artesian aquifer. Pumping tests and flow-net analyses show that the coefficient of transmissibility averages about 200,000 gpd per ft in the immediate Savannah area. The specific capacity of wells in the principal artesian aquifer generally is about 50 gpm per ft of drawdown. The coefficient of storage of the principal artesian aquifer is about 0.0003 in the Savannah area. Underlying the Savannah area are a series of unconsolidated and semiconsolidated sediments ranging in age from Late Cretaceous to Recent. The Upper Cretaceous, Paleocene, and lower Eocene sediments supply readily available and usable water in other parts of the Coastal Plain, but although the character and physical properties of these formations are similar in the Savannah area to the same properties in other areas, the hydraulic and structural conditions appear to be different. Deep test wells are needed to evaluate the ground-water potential of these rocks. The lower part of the sediments of middle Eocene age acts as a confining layer to the vertical movement of water into or out of the principal artesian aquifer. Depending on the location and depth, the principal artesian aquifer consists of from one to five geologic units. The lower boundary of the aquifer is determined by a reduction in permeability and an increase in salt-water content. Although the entire limestone section is considered water bearing, most of the ground water used in the area comes from the upper part of the Ocala limestone of late Eocene age and the limestones of Oligocene age. The greatest volume of water comes from the upper part of the Ocala limestone, but the greatest number of wells are supplied from the rocks of Oligocene age. The Tampa limestone and Hawthorn formation of early Miocene age are generally water bearing; the amount and quality of the water depends on the location. The water from some wells in the Tampa and most of the water from the Hawthorn is high in hydrogen sulfide. In the northeastern part of the area the principal artesian aquifer is close to the land surface. Here the confining layer is thin and in some of the estauaries it may be completely cut through by the scouring action of the streams during tidal fluctuations. In this part of the area artesian groundwater at one time discharged from the aquifer as submarine springs. Now a reverse effect may be occurring; ocean and river water may be entering the aquifer. The silts, clays, and very fine sands of the upper Miocene and Pliocene ( ?) series generally have low permeabilities and form the upper confining layer for the principal artesian aquifer. Although all the sediments overlying the principal artesian aquifer are considered to be part of the confining layer, locally some of the upper units are water bearing. The uppermost geologic units in the Savannah area are sediments of Pliocene ( ?) to Recent age and consist of sands, silts, and clays with shell and gravel beds which are a source of water for shallow wells. The first large ground-water supply from the principal artesian aquifer was developed in 1886 by the city of Savannah. Additional municipal and industrial supplies have been developed since that time. Pumpage progressively increased to a peak of 62 mgd in 1957. Outside of the city and industrial area the 1957 pumpage was about 9 mgd. In 1958 the total pumpage in the Savannah area was about 68 mgd or about 3 mgd less th

  9. High Efficiency Water Heating Technology Development Final Report, Part II: CO 2 and Absorption-Based Residential Heat Pump Water Heater Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  10. The journey from safe yield to sustainability.

    PubMed

    Alley, William M; Leake, Stanley A

    2004-01-01

    Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.

  11. The Journey from Safe Yield to Sustainability

    USGS Publications Warehouse

    Alley, W.M.; Leake, S.A.

    2004-01-01

    Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.

  12. Water reform in Sub-Saharan Africa: what is the difference?

    NASA Astrophysics Data System (ADS)

    Van Koppen, Barbara

    Since the early 1990s African governments took an active part in the global movement of water reform towards Integrated Water Resources Management (IWRM). The first step consisted primarily of assimilating the generic principles of IWRM. At this generic level, water reform in Sub-Saharan Africa seems quite similar to water reform elsewhere in the developed and developing world. However, in taking the second step of operationalizing generic principles into concrete actions on the ground, at least three salient differences between Sub-Saharan Africa and elsewhere emerged: (a) Africa’s relative abundance of water resources but its scarcity of economic means to harness available water resources; (b) the importance of agriculture and agricultural water development for economic growth and poverty eradication; and (c) the need for systems of water rights and financial resource mobilization that are separated and suit the African reality in which large water users are relatively few, while the bulk of water users are scattered smallholders. This paper discusses the early operationalization with regard to these three unique features and identifies lessons learnt.

  13. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  14. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination. Pumpage effects on ground-water levels and related saltwater contamination at Brunswick and Hilton Head Island generally diminish with increased distance from these areas. Additional development of the Upper Floridan aquifer may be possible in parts of the coastal area without affecting saltwater contamination at Brunswick or Hilton Head Island, due to the presence of two hydrologic boundaries--the Gulf Trough, separating the northern and central subareas; and the hypothesized Satilla Line, separating the central and southern subareas. These boundaries diminish pumpage effects across them; and may enable greater ground-water withdrawal in areas north of the Gulf Trough and south of the Satilla Line without producing appreciable drawdown at Brunswick or Hilton Head Island.

  15. A ground-water reconnaissance of the Republic of Ghana, with a description of geohydrologic provinces

    USGS Publications Warehouse

    Gill, H.E.

    1969-01-01

    This report gives a general summary of the availability and use of ground water and describes the occurrence of ground water in five major geohydrologic provinces lying in the eight administrative regions of Ghana. The identification and delineation of the geohydrologic provinces are based on their distinctive characteristics with respect to the occurrence and availability of ground water. The Precambrian province occupies the southern, western, and northern parts of Ghana and is underlain largely by intrusive crystalline and metasedimentary rocks. The Voltaian province includes that part of the Voltaian sedimentary basin in central Ghana and is underlain chiefly by consolidated sandstone, mudstone, and shale. Narrow discontinuous bands of consolidated Devonian and Jurassic sedimentary rocks near the coast constitute the Coastal Block Fault province. The Coastal Plain province includes semiconsolidated to unconsolidated sediments of Cretaceous to Holocene age that underlie coastal plain areas in southwestern and southeastern Ghana. The Alluvial province includes the Quaternary alluvial deposits in the principal river valleys and on the delta of the Volta River. Because of the widespread distribution of crystalline and consolidated sedimentary rocks of low permeability in the Precambrian, Voltaian, and Coastal Block Fault provinces, it is difficult to develop large or event adequate groundwater supplies in much of Ghana. On the other hand, small (1 to 50 gallons per minute) supplies of water of usable quality are available from carefully sited boreholes in most parts of the country. Also, moderate (50 to 200 gpm) supplies of water are currently (1964) obtained from small-diameter screened boreholes tapping sand and limestone aquifers in the Coastal Plain province in southwestern and southeastern Ghana, but larger supplies could be obtained through properly constructed boreholes. In the Alluvial province, unconsolidated deposits in the larger stream valleys that are now largely undeveloped offer desirable locations for shallow vertical or horizontal wells, which can induce infiltration from streams and yield moderate to large water supplies. The principal factors that limit development of ground-water supplies in Ghana are (1) prevailing low permeability and water-yielding potential of the crystalline and consolidated sedimentary rocks that underlie most of the country, (2) highly mineralized ground water which appears to be widely distributed in the northern part of the Voltaian province, and (3) potential problems of salt-water encroachment in the Coastal Plain province in the Western Region and in the Keta area. On the other hand, weathering has increased porosity and has thus substantially increased the water-yielding potential of the crystalline and consolidated sedimentary rocks in much of central and northern Ghana. Also, with proper construction and development, much larger yields than those now (1964) prevalent could be obtained from boreholes tapping sand and limestone aquifers in the Coastal Plain province.

  16. All Things Being Equal

    ERIC Educational Resources Information Center

    Putti, Alice

    2012-01-01

    This guided inquiry activity was developed to help students "view" an equilibrium system from the particulate level and make connections to their macroscopic observations. Part I helps students observe a physical equilibrium system in which water is transferred between two larger containers. In Part II, students examine what happens to a chemical…

  17. Washing Off Polyurethane Foam Insulation

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Fogel, Irving

    1990-01-01

    Jet of hot water removes material quickly and safely. Simple, environmentally sound technique found to remove polyurethane foam insulation from metal parts. Developed for (but not limited to) use during rebuilding of fuel system of Space Shuttle main engine, during which insulation must be removed for penetrant inspection of metal parts.

  18. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  19. SPE (tm) water electrolyzers in support of mission from planet Earth

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. F.

    1991-01-01

    During the 1970's, the Solid Polymer Electrolyte (SPE) water electrolyzer, which uses ion exchange membranes as its sole electrolyte, was developed for nuclear submarine metabolic oxygen production. SPE water electrolyzer developments included operation at up to 3,000 psia and at current densities in excess of 1,000 amps per square foot. The SPE water electrolyzer system has accumulated tens of thousands of system hours with the Navies of both the United States and the United Kingdom. During the 1980's, the basic SPE water electrolyzer cell structure developed for the Navies was incorporated into several demonstrators for NASA's Space Station Program. Among these were: (1) the SPE regenerative fuel cell for electrical energy storage; (2) the SPE water electrolyzer for metabolic oxygen production; and (3) the high pressure SPE water electrolyzer for reboost propellant production. In the 1990's, emphasis will be the development of SPE water electrolyzers for Mission from Planet Earth. Currently defined potential applications for the SPE water electrolyzer include: (1) SPE water electrolyzers operating at high pressure as part of a regenerative fuel cell extraterrestrial surface energy storage system; (2) SPE water electrolyzers for propellant production from extraterrestrial indigenous materials; and (3) SPE water electrolyzers for metabolic oxygen and potable water production from reclaimed water.

  20. Regional scale groundwater resource assessment in the Australian outback - Geophysics is the only way.

    NASA Astrophysics Data System (ADS)

    Munday, T. J.; Davis, A. C.; Gilfedder, M.; Annetts, D.

    2015-12-01

    Resource development, whether in agriculture, mining and/or energy, is set to have significant consequences for the groundwater resources of Australia in the short to medium term. These industry sectors are of significant economic value to the country and consequently their support remains a priority for State and Federal Governments alike. The scale of potential developments facilitated in large part by the Government Programs, like the West Australian (WA) Government's "Water for Food" program, and the South Australian's Government's PACE program, will result in an increase in infrastructure requirements, including access to water resources and Aboriginal lands to support these developments. However, the increased demand for water, particularly groundwater, is likely to be compromised by the limited information we have about these resources. This is particularly so for remote parts of the country which are targeted as primary development areas. There is a recognised need to expand this knowledge so that water availability is not a limiting factor to development. Governments of all persuasions have therefore adopted geophysical technologies, particularly airborne electromagnetics (AEM), as a basis for extending the hydrogeological knowledge of data poor areas. In WA, the State Government has employed regional-scale AEM surveys as a basis for defining groundwater resources to support mining, regional agricultural developments whilst aiming to safeguard regional population centres, and environmental assets. A similar approach is being employed in South Australia. These surveys are being used to underpin conceptual hydrogeological frameworks, define basin-scale hydrogeological models, delimit the extent of saltwater intrusion in coastal areas, and to determine the groundwater resource potential of remote alluvial systems aimed at supporting new, irrigation-based, agricultural developments in arid parts of the Australian outback. In the absence of conventional hydrogeological information, geophysical methods are demonstrably a cost and time effective approach to upscaling local hydrogeological information, thereby fast tracking groundwater resource assessments that would otherwise take decades to complete.

  1. Effects of saline-wastewater injection on water quality in the Altamont-Bluebell oil and gas field, Duchesne County, Utah, 1990-2005

    USGS Publications Warehouse

    Steiger, Judy I.

    2007-01-01

    The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.

  2. A novel water quality data analysis framework based on time-series data mining.

    PubMed

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of innovative computer software to facilitate the setup and computation of water quality index.

    PubMed

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-04-26

    Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases.

  4. Water-level changes in the High Plains aquifer; predevelopment to 1991

    USGS Publications Warehouse

    McGrath, T.J.; Dugan, J.T.

    1993-01-01

    Regional variability in water-level change in the High Plains aquifer underlying parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming results from large regional differences in climate, soils, land use, and ground-water withdrawals for irrigation. From the beginning of significant development of the High Plains aquifer for irrigation to 1980, substantial water-level declines have occurred in several areas. The estimated average area-weighted water-level decline from predevelopment to 1980 for the High Plains was 9.9 feet, an average annual decline of about 0.25 foot. These declines exceeded 100 feet in some parts of the Central and Southern High Plains. Declines were much smaller and less extensive in the Northern High Plains as a result of later irrigation development. Since 1980, water levels in those areas of large declines in the Central and Southern High Plains have continued to decline, but at a much slower annual rate. The estimated average area-weighted water-level decline from 1980 to 1991 for the entire High Plains was 1.41 feet, an average annual decline of about 0.13 foot. The relatively small decline since 1980, in relation to the declines prior to 1980, is associated with a decrease in ground-water application for irrigated agriculture and greater than normal precipitation. Water-conserving practices and technology, in addition to reductions in irrigated acreages, contributed to the decrease in ground-water withdrawals for irrigation.

  5. Inventory of interbasin transfers of water in the western conterminous United States

    USGS Publications Warehouse

    Petsch, H.E.

    1989-01-01

    Information is presented on the quantity of water transferred from one river basin to another in the western conterminous United States. The information is needed by water system managers and planners to develop water budgets for major river basins, to examine the relative extent of existing interbasin transfers, and to define the importance of transferring water to meet regional water demands. All or parts of 11 major water resources regions and 111 complete subregions comprise the study area; water is exported from 39 of these subregions. The average quantity of water exported annually during 1973-82 was about 12 million acre-feet. (USGS)

  6. Development of communication networks and water quality early warning detection systems at drinking water utilities in the Ohio River Valley Basin.

    PubMed

    Schulte, J G; Vicory, A H

    2005-01-01

    Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.

  7. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  8. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  9. Geospatial data to support analysis of water-quality conditions in basin-fill aquifers in the southwestern United States

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2009-01-01

    The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.

  10. Density matters: Review of approaches to setting organism-based ballast water discharge standards

    USGS Publications Warehouse

    Lee II,; Frazier,; Ruiz,

    2010-01-01

    As part of their effort to develop national ballast water discharge standards under NPDES permitting, the Office of Water requested that WED scientists identify and review existing approaches to generating organism-based discharge standards for ballast water. Six potential approaches were identified and the utility and uncertainties of each approach was evaluated. During the process of reviewing the existing approaches, the WED scientists, in conjunction with scientists at the USGS and Smithsonian Institution, developed a new approach (per capita invasion probability or "PCIP") that addresses many of the limitations of the previous methodologies. THE PCIP approach allows risk managers to generate quantitative discharge standards using historical invasion rates, ballast water discharge volumes, and ballast water organism concentrations. The statistical power of sampling ballast water for both the validation of ballast water treatment systems and ship-board compliance monitoring with the existing methods, though it should be possible to obtain sufficient samples during treatment validation. The report will go to a National Academy of Sciences expert panel that will use it in their evaluation of approaches to developing ballast water discharge standards for the Office of Water.

  11. Watershed Management Optimization Support Tool (WMOST) Workshop

    EPA Science Inventory

    To assist communities in the evaluation of green infrastructure, low impact development, and land conservation practices as part of an Integrated Water Resources Management (IWRM) approach, the U.S. Environmental Protection Agency (US EPA) supported the development of the Watersh...

  12. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  13. Lake Erie Water Level Study. Appendix G. Recreational Beaches and Boating.

    DTIC Science & Technology

    1981-07-01

    economic impact analysis). G-44 I There are two separate phases associated with the development of bene- fits generated at the various water levels in...moorings. The growth factors for the small boat harbor formula (MRI Technical Report No. 5, Economic Impacts of Lake Level Regulation) were developed by...Lakes-St. Lawrence River system. This evaluation was limited to Lakes Erie and Ontario and part of the St. Lawrence River where the

  14. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor quality contaminates the fresh-water aquifers. Detailed hydrologic and geologic conditions are presented in 5 tables, 7 pictures, and 17 graphic figures and plates.

  15. Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.

    USGS Publications Warehouse

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1991-01-01

    The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.

  16. DEVELOPING AND IMPLEMENTING AN ESTUARINE WATER QUALITY MONITORING, ASSESSMENT AND OUTREACH PROGRAM/THE MYSOUND PROJECT

    EPA Science Inventory

    EPA has developed a technology transfer handbook for the EMPACT MYSound Project. The handbook highlights information and monitoring technologies developed from the EMPACT Long Island Sound Marine Monitoring (MYSound) Project. As part of the MYSound effort, telemetering data-buoys...

  17. Hydrology of stock-water development on the public domain of western Utah

    USGS Publications Warehouse

    Snyder, Charles T.

    1963-01-01

    A geologic and hydrologic reconnaissance was made on the public domain of western Utah to appraise the water resources of the area and to provide a basis for locating and developing sources of stock water. The study area includes the Bonneville, Pahvant, and Virgin Grazing Districts, in parts of Tooele, Utah, Juab, Millard, Beaver, Iron, and Washington Counties, Utah.Western Utah is in the Great Basin section of the Basin and Range physiographic province and is typified by northward-trending parallel mountain ranges, and basins of interior drainage. Precipitation ranges from 5 to 9 inches annually in most of the valleys but in some places it is as much as 15 or 16 inches and probably is considerably greater in the mountains.The valleys of western Utah have been classified in the report according to their hydrologic and topographic characteristics. The Great Salt Lake valley and the Sevier Lake valley are closed or terminal valleys having no outlet for the discharge of water except by evaporation. Such valleys are topographically closed and hydrologically undrained. Valleys tributary to these terminal valleys are topographically open valleys from which water is discharged by gravity flow to the terminal valley. Quality of ground water in the valleys of western Utah depends upon the valley type and place where the water is sampled with respect to the body of ground water in the valley fill. Quality of the water in the drained parts of the valleys is usually good whereas water in the undrained parts of the valleys may be heavily charged with dissolved mineral contaminants. Limits of tolerance for use of salt-contaminated water are cited.The adequacy of distribution of water supplies in western Utah was determined by application of the service area concept to the existing supplies. Stock-water supplies are obtained from wells, springs, and reservoirs. Most of the wells are in the valleys where water is obtained from valley fill; the depth to water ranges from a few tens of feet to several hundred feet. Ground water generally cannot be obtained in the mountains because the rocks either lack permeability or are drained.Data collected in 13 valleys, each valley forming a ground-water unit, are listed in the tables and are used to evaluate the prospects for obtaining additional water supplies.

  18. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lower water quality is necessary to accommodate important economic or social development in the area in... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate...

  19. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lower water quality is necessary to accommodate important economic or social development in the area in... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate...

  20. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lower water quality is necessary to accommodate important economic or social development in the area in... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate...

  1. Controlling Nonpoint-Source Water Pollution: A Citizen's Handbook.

    ERIC Educational Resources Information Center

    Hansen, Nancy Richardson; And Others

    Citizens can play an important role in helping their states develop pollution control programs and spurring effective efforts to deal with nonpoint-source pollution. This guide takes the reader step-by-step through the process that states must follow to comply with water quality legislation relevant to nonpoint-source pollution. Part I provides…

  2. 75 FR 16066 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ..., electric, and water and waste facilities in rural areas with a loan portfolio that totals nearly $42.... Rural Utilities Service Title: 7 CFR Part 1778, Emergency and Imminent Community Water Assistance Grants... under Section 306A of the Consolidated Farm and rural Development Act, (7 U.S.C. 1926(a) to provide...

  3. 78 FR 68812 - Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ...) 720-7853. Title: 7 CFR part 1777, Section 306C Water and Waste Disposal (WWD) Loans and Grants. OMB.... Abstract: Section 306C of the Consolidated Farm and Rural Development Act (7 U.S.C. 926c) authorizes the... water supply systems or waste disposal facilities. The loans and grants will be available to provide...

  4. Water resources of Fort Huachuca Military Reservation, southeastern Arizona

    USGS Publications Warehouse

    Brown, S.G.; Davidson, E.S.; Kister, L.R.; Thomsen, B.W.

    1966-01-01

    Spring flow, if used to supplement the ground-water supply, will decrease the draft on the ground-water reservoir in the two basin-fill units; or it could be used for artificial recharge to these aquifers. A second well field, if developed in the North Gate-Libby Field area, would partly accomplish the same result by decreasing the heavily concentrated draft on the ground-water reservoir of the Fort Huachuca well field, and by utilizing ground water that now moves unused northeastward to the San Pedro River.

  5. BOILING WATER REACTOR TECHNOLOGY STATUS OF THE ART REPORT. VOLUME II. WATER CHEMISTRY AND CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breden, C.R.

    1963-02-01

    Information concerning the corrosive effects of water in power reactor moderator-coolant systems is presented. The information is based on investigations reported in the unclassified literature believed to be fairly complete to 1959, but less complete since then. The material is presented in sections on water decomposition, water chemistry, materials corrosion, corrosion product deposits, and radioactivity. It is noted that the report is presented as a part of a continuing program in development of less expensive materials for use in reactors. (J.R.D.)

  6. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according to the thickness of saturated material. Development of ground water for irrigation has been generally restricted to the South Platte, Arikaree, and Beaver valleys. There were 134 irrigation wells, 3 industrial wells, and 10 municipal wells in the county in 1959. The annual ground-water pumpage from Washington County is estimated to be 18,000 acre-ft; about 10,000 acre-ft is from the High Plains ground-water province. Although some ground water enters the county as underflow, most of the recharge to ground-water reservoirs is from precipitation on the land surface. Recharge to the Ogallala Formation in the county is assumed to be approximately equal to the natural discharge from the county by underflow because ground-water withdrawals are from storage, and no other significant amount of natural discharge is apparent. Undertow in the Ogallala was calculated to be 83,000 acre-ft per year and the rate of recharge from precipitation to be about 0.95 inch per year. Neither recharge nor discharge was calculated for that part of the county in the South Platte River basin. All ground water in Washington County has a high proportion of carbonate and is classed as hard to very hard. The sodium-adsorption-ratio for all samples analyzed was below the limit recommended for irrigation water. All the water from the Ogallala Formation and most of the water from the Chadron Formation is suitable for domestic use. Some water from the alluvial deposits overlying the Pierre Shale was exceptionally high in calcium, magnesium, and sodium sulfates. Ground water has been heavily developed for irrigation in the South Platte valley and in some parts of the Beaver and Arikaree valleys. Some additional areas, however, could be developed in the latter two valleys. Large quantities of ground water in the Ogallala Formation are available for future development. The quantity of water in storage in the High Plains ground-water province in Washington County is about 6.5 million acre-f

  7. Selected hydrologic data for the upper Rio Hondo basin, Lincoln County, New Mexico, 1945-2003

    USGS Publications Warehouse

    Donohoe, Lisa C.

    2004-01-01

    Demands for ground and surface water have increased in the upper Rio Hondo Basin due to increases in development and population. Local governments are responsible for land-use and development decisions and, therefore, the governments need information about water resources in their areas. Hydrologic data were compiled for the upper Rio Hondo Basin and water-level data were collected during two synoptic measurements in March and July 2003. Water-level data from March 2003 were contoured and compared with contours constructed in 1963. The 5,600-, 5,700-, and 5,800-foot March 2003 contours indicate that water levels rose. The 5,500-foot contour for March 2003 indicates a decline in water level. The 5,400-foot contour of March 2003 and the 1963 contour mostly coincide, indicating a static water level. The 5,300- and 5,200-foot contours for March 2003 cross the 1963 contours, indicating a decline in water levels near the Rio Ruidoso but a rise in water levels near the Rio Bonito. In eight hydrographs, 2003 water levels are shown to be higher than water levels from the mid- to late 1950's in five of the eight wells. For the same period of record, water levels in the three remaining wells were lower. Rising and declining water levels were highest in the northern part of the study area; the median rise was 4.01 feet and the median decline was 3.51 feet. In the southern part of the study area, the median water-level rise was 2.21 feet and the median decline was 1.56 feet.

  8. Protecting water quality in the watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C.R.; Johnson, K.E.; Stewart, E.H.

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships tomore » each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.« less

  9. UNESCO's HOPE Initiative—Providing Free and Open-Source Hydrologic Software for Effective and Sustainable Management of Africa's Water Resources Temporary Title

    NASA Astrophysics Data System (ADS)

    Barlow, P. M.; Filali-Meknassi, Y.; Sanford, W. E.; Winston, R. B.; Kuniansky, E.; Dawson, C.

    2015-12-01

    UNESCO's HOPE Initiative—the Hydro Free and (or) Open-source Platform of Experts—was launched in June 2013 as part of UNESCO's International Hydrological Programme. The Initiative arose in response to a recognized need to make free and (or) open-source water-resources software more widely accessible to Africa's water sector. A kit of software is being developed to provide African water authorities, teachers, university lecturers, and researchers with a set of programs that can be enhanced and (or) applied to the development of efficient and sustainable management strategies for Africa's water resources. The Initiative brings together experts from the many fields of water resources to identify software that might be included in the kit, to oversee an objective process for selecting software for the kit, and to engage in training and other modes of capacity building to enhance dissemination of the software. To date, teams of experts from the fields of wastewater treatment, groundwater hydrology, surface-water hydrology, and data management have been formed to identify relevant software from their respective fields. An initial version of the HOPE Software Kit was released in late August 2014 and consists of the STOAT model for wastewater treatment developed by the Water Research Center (United Kingdom) and the MODFLOW-2005 model for groundwater-flow simulation developed by the U.S. Geological Survey. The Kit is available on the UNESCO HOPE website (http://www.hope-initiative.net/).Training in the theory and use of MODFLOW-2005 is planned in southern Africa in conjunction with UNESCO's study of the Kalahari-Karoo/Stampriet Transboundary Aquifer, which extends over an area that includes parts of Botswana, Namibia, and South Africa, and in support of the European Commission's Horizon 2020 FREEWAT project (FREE and open source software tools for WATer resource management; see the UNESCO HOPE website).

  10. Part 2: Conserving and Planting Trees at Development Sites

    Treesearch

    Karen Cappiella; Tom Schueler; Tiffany Wright

    2006-01-01

    This manual presents specific ways to enable developers, engineers or landscape architects to incorporate more trees into a development site. The proposed approach focuses on protecting existing trees, planting trees in storm water treatment practices, and planting trees in other open spaces at the development site. This manual introduces conceptual designs for storm...

  11. WATER INFORMATION AVAILABLE FROM THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Showen, Charles R.

    1985-01-01

    As a part of the Geological Survey's program of releasing water data to the public, two large-scale computerized systems are maintained. The National Water Data Storage and Retrieval System was developed to provide more effective and efficient management of data-releasing activities and provides for the processing, storage, and retrieval of surface-water, ground-water and water-quality data. Another service available is providing assistance to users of water data to identify, locate, and acquire needed data. This service is provided by the National Water Data Exchange, which has the mission to identify sources of water data and to provide the connection between those who acquire and those who use water data.

  12. Technical note: Efficient online source identification algorithm for integration within a contamination event management system

    NASA Astrophysics Data System (ADS)

    Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai

    2017-07-01

    Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.

  13. SMALL CRAFT OPERATION AND NAVIGATION.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    THIS REFERENCE TEXTBOOK WAS PREPARED FOR USE IN THE FIRST PART OF A TWO-PART COURSE IN MARINE NAVIGATION AND SMALL CRAFT OPERATION ON INLAND AND INTERNATIONAL WATERS. THE MATERIAL WAS DEVELOPED BY AN INDIVIDUAL AUTHOR FOR USE IN TRADE SCHOOL PREPARATORY AND EXTENSION CLASSES FOR MALE ADULTS WHO PLAN TO OPERATE BOATS. IT IS MAINLY CONCERNED WITH…

  14. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  15. Peer Review for EPA’s Biologically Based Dose-Response (BBDR) Model for Perchlorate

    EPA Science Inventory

    EPA is developing a regulation for perchlorate in drinking water. As part the regulatory process EPA must develop a Maximum Contaminant Level Goal (MCLG). FDA and EPA scientists developed a biologically based dose-response (BBDR) model to assist in deriving the MCLG. This mode...

  16. Development of indirect potable reuse in impacted areas of the United States.

    PubMed

    Jansen, H P; Stenstrom, M K; de Koning, J

    2007-01-01

    This paper demonstrates the development of indirect potable reuse (IPR) in the United States. A legislative review and a survey of plants show that IPR is becoming an integral part of water reclamation. Public resistance is the limiting factor to its development while technology is not.

  17. Development of a universal water signature for the LANDSAT-3 Multispectral Scanner, part 2 of 2

    NASA Technical Reports Server (NTRS)

    Schlosser, E. H.

    1980-01-01

    A generalized four-channel hyperplane to discriminate water from non-water was developed using LANDSAT-3 multispectral scanner (MSS) scences and matching same/next-day color infrared aerial photography. The MSS scenes over upstate New York, eastern Washington, Montana and Louisiana taken between May and October 1978 varied in Sun elevation angle from 40 to 58 degrees. The 28 matching air photo frames selected for analysis contained over 1400 water bodies larger than one surface acre. A preliminary water discriminant was used to screen the data and eliminate from further consideration all pixels distant from water in MSS spectral space. Approximately 1300 pixels, half of them non-edge water pixels and half non-water pixels spectrally close to water, were labelled. A linear discriminant was iteratively fitted to the labelled pixels, giving more weight to those pixels that were difficult to discriminate. This discriminant correctly classified 98.7 percent of the water pixels and 98.6 percent of the non-water pixels.

  18. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  19. Pakistan and Water: New Pressures on Global Security and Human Health

    PubMed Central

    2011-01-01

    The Indus River is the major source of water for the more than 180 million people of Pakistan. A rapidly increasing population over the past 60 years has created new pressures on water that was once a plentiful resource for the health and development of the country. Rising tensions between India and Pakistan, which share the Indus flow, may lead to violent confrontation in an already volatile part of the globe. The recent flooding, which affected more than 20 million people, drew attention to poor management of the rivers of Pakistan. Public health has the scientific knowledge and professional capacity to help develop water management practices that could improve population health in Pakistan. PMID:21421956

  20. Evaluating options for balancing the water-electricity nexus in California: part 1--securing water availability.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    The technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions were compared. Part 1 of the study focused on determining the scale of the options required to secure water availability and compared the effectiveness of different options. A spatially and temporally resolved model of California's major surface reservoirs was developed, and its sensitivity to urban water conservation, desalination, and water reuse was examined. Potential capacities of the different options were determined. Under historical (baseline) hydrology conditions, many individual options were found to be capable of securing water availability alone. Under climate change augment conditions, a portfolio approach was necessary. The water savings from many individual options other than desalination were insufficient in the latter, however, relying on seawater desalination alone requires extreme capacity installations which have energy, brine disposal, management, and cost implications. The importance of identifying and utilizing points of leverage in the system for choosing where to deploy different options is also demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    USGS Publications Warehouse

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.

  2. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  3. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  4. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    NASA Astrophysics Data System (ADS)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  5. Hubbell Metropolitan Development Fund I, LLC - Clean Water Act Public Notice

    EPA Pesticide Factsheets

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Hubbell Metropolitan Development Fund I, LLC, for alleged violations at the SE Westown Parkway realignment, near the intersection of R22, and undertaken as part of the Glyn

  6. Water Resources Development in Minnesota 1991

    DTIC Science & Technology

    1991-01-01

    the primary elements of the Pick-Sloan Program. These six have total storage capacity of 75-m illion acre -feet, more than three times the average...almost 121 million acres . Water is an element indispensable to life. Not only does it It includes that part of the United States that is drained by...oilpollutionandsedimentproblemsallimpact million acres of the area is covered by freshwater lakes and on water quality. About two-thirds of the people in

  7. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria

    NASA Astrophysics Data System (ADS)

    van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M.

    2008-04-01

    Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.

  8. Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement

    NASA Astrophysics Data System (ADS)

    Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.

    2018-01-01

    Researchers have paid attention to nanofluid applications, since nanofluids have revealed their potentials as working fluids in many thermal systems. Numerical studies of convective heat transfer in nanofluids can be based on considering them as single- and two-phase fluids. This work is focused on improving the single-phase nanofluid model performance, since the employment of this model requires less calculation time and it is less complicated due to utilizing the mixing thermal conductivity model, which combines static and dynamic parts used in the simulation domain alternately. The in-house numerical program has been developed to analyze the effects of the grid nodes, effective viscosity model, boundary-layer thickness, and of the mixing thermal conductivity model on the nanofluid heat transfer enhancement. CuO-water, Al2O3-water, and Cu-water nanofluids are chosen, and their laminar fully developed flows through a rectangular channel are considered. The influence of the effective viscosity model on the nanofluid heat transfer enhancement is estimated through the average differences between the numerical and experimental results for the nanofluids mentioned. The nanofluid heat transfer enhancement results show that the mixing thermal conductivity model consisting of the Maxwell model as the static part and the Yu and Choi model as the dynamic part, being applied to all three nanofluids, brings the numerical results closer to the experimental ones. The average differences between those results for CuO-water, Al2O3-water, and CuO-water nanofluid flows are 3.25, 2.74, and 3.02%, respectively. The mixing thermal conductivity model has been proved to increase the accuracy of the single-phase nanofluid simulation and to reveal its potentials in the single-phase nanofluid numerical studies.

  9. Bottled water, spas, and early years of water chemistry

    USGS Publications Warehouse

    Back, William; Landa, Edward R.; Meeks, Lisa

    1995-01-01

    Although hot springs have been used and enjoyed for thousands of years, it was not until the late 1700s that they changed the course of world civilization by being the motivation for development of the science of chemistry. The pioneers of chemistry such as Priestley, Cavendish, Lavoisier, and Henry were working to identify and generate gases, in part, to determine their role in carbonated beverages. In the 18th century, spas in America were developed to follow the traditional activities of popular European spas. However, they were to become a dominant political and economic force in American history on three major points: (1) By far the most important was to provide a place for the leaders of individual colonies to meet and discuss the need for separation from England and the necessity for the Revolutionary War; (2) the westward expansion of the United States was facilitated by the presence of hot springs in many locations that provided the economic justification for railroads and settlement; and (3) the desire for the preservation of hot springs led to the establishment of the National Park Service. Although mineral springs have maintained their therapeutic credibility in many parts of the world, they have not done so in the United States. We suggest that the American decline was prompted by: (1) the establishment of The Johns Hopkins School of Medicine in 1893; (2) enactment of the Pure Food and Drug Act of 1907; and (3) the remarkable achievement of providing safe water supplies for American cities by the end of the 1920s. The current expanding market for bottled water is based in part on bottled water being an alternative beverage Ito alcohol and sweetened drinks and the inconsistent palatability and perceived health hazards of some tap waters.

  10. Modelling the urban water cycle as an integrated part of the city: a review.

    PubMed

    Urich, Christian; Rauch, Wolfgang

    2014-01-01

    In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.

  11. U.S. Geological Survey second national symposium on Water quality; abstracts of the technical sessions, Orlando, Florida, November 12-17, 1989

    USGS Publications Warehouse

    Pederson, G. L.; Smith, M.M.

    1989-01-01

    The U.S Geological Survey (USGS) compiled and analyzed existing hydrologic and water-quality data from over 200 stream and estuary stations of the Abemarle-Pamlico estuarine system (A/P) to identify long-term temporal and spatial trends. The dataset included seven stations of the USGS National Stream Quality Accounting Network, two stations of the National Atmospheric Precipitation Deposition monitoring network, stations of the N.C. Department of Natural Resources and Community Development, and stations from 25 reports by individual investigators. Regression-residuals analysis, the seasonal Kendall's Tau test for trends, and graphical analysis using annual box plots were employed to determine trends. Profound change has occurred in the water quality of the A/P area over the last 30 years. Analysis of water-quality data upstream from the estuaries indicates increases of discharge-adjusted values of specific conductance, alkalinity, phosphorous, hardness, chloride, and dissolved solids. In the estuaries, pH is increasing except in the Pamlico River, where it is decreasing. There is a generalized decrease in suspended inorganic material in the system. Salinities are decreasing for sections of the Pamlico River, and increasing for parts of Albemarle Sound. Nitrogen concentrations are decreasing except in the Pamlico River, where they are increasing. Phosphorus concentrations are increasing in the Pamlico River and decreasing elsewhere. Annual average data show that nitrogen is the limiting nutrient in the Neuse and Pamlico Rivers. Phosphorus is limiting in the rest of the area. Chlorophyll-a levels are increasing in parts of the Neuse and Pamlico Rivers and decreasing in parts of the Chowan River. To evaluate the effect of basin characteristics on water quality, linear correlation was used. Agricultural crop variables produced the most correlations with water-quality data. Fertilizer usage had little detectable relation to water quality in the study area. In the section of the Pamlico River near Aurora, relations between employment, road mileages, and water quality indicated effects of development in the area.

  12. Wetlands systems in southern Thailand: The essential resources for sustainable regional development

    Treesearch

    Rotchanatch Darnsawasdi; Prassert Chitpong

    2000-01-01

    Parts of Southern Thailand are inundated by water for months annually resulting in various wetlands including, among others, Tapi River Basin, Pak Panang River Basin, Songkhla Lake Basin, Pangnga Bay, Pattani River Basin, and Narathiwas Peat Swamp. Most wetlands perform functions such as flood retention, water filtration, bird and wildlife habitat,and tree growth....

  13. Effects of sanitary sewers on ground-water levels and streams in Nassau and Suffolk Counties, New York; Part 3, development and application of southern Nassau County model

    USGS Publications Warehouse

    Reilly, T.E.; Buxton, H.T.

    1985-01-01

    By 1990, sanitary sewers in Nassau County Sewage Disposal Districts 2 and 3 and Suffolk County Southwest Sewer District will discharge to the ocean 140 cu ft of water per second that would otherwise be returned to the groundwater system through septic tanks and similar systems. To evaluate the effects of this loss on groundwater levels and streamflow, the U.S. Geological Survey developed a groundwater flow model that couples a fine-scale subregional model to a regional model of a larger scale. The regional model generates flux boundary conditions for the subregional model, and the subregional model provides detail in the area of concern. Results indicate that the water table will decline by as much as 90% from conditions in the early 1970's. This report is one of a three-part series describing the predicted hydrologic effects of sewers in southern Nassau and southwestern Suffolk Counties. (USGS)

  14. Development of innovative computer software to facilitate the setup and computation of water quality index

    PubMed Central

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. Conclusion A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases. PMID:24499556

  15. Sudden Failure of Swimming in Cold Water

    PubMed Central

    Keatinge, W. R.; Prys-Roberts, C.; Cooper, K. E.; Honour, A. J.; Haight, J.

    1969-01-01

    To investigate the effect of cold water on swimming four men who declared themselves good swimmers were immersed fully clothed on separate days in water at 23·7° and 4·7° C. The time that they were able to swim in the cold water was much shorter than in the warm. The two shortest swims ended after 1·5 and 7·6 minutes, before rectal temperature fell, when the men suddenly floundered after developing respiratory distress with breathing rates of 56–60/min. The other cold swims, by the two fattest men, ended less abruptly with signs of general and peripheral hypothermia. It is concluded that swimming in cold water was stopped partly by respiratory reflexes in the thin men and hypothermia in the fat, and partly by the cold water's high viscosity. The longer swimming times of the fat men are attributed largely to their greater buoyancy enabling them to keep their heads above water during the early hyperventilation. The findings explain some reports of sudden death in cold water. It is clearly highly dangerous to attempt to swim short distances to shore without a life-jacket in water near 0° C. PMID:5764250

  16. Basic elements of ground-water hydrology with reference to North Carolina

    USGS Publications Warehouse

    Heath, Ralph Carr

    1980-01-01

    This report was prepared as an aid to developing a better understanding of the groundwater resources of North Carolina. It consists of 46 essays grouped into five parts. The topics covered by these essays range from the most basic aspects of ground-water hydrology to the identification and correction of problems that affect the operation of supply wells. The essays were designed both for self study and for use in workshops on ground-water hydrology and the development and operation of ground-water supplies. From the standpoint of self study, it is assumed that the reader does not have any prior knowledge of geology or ground-water hydrology. Those readers with such knowledge can simply skip those topics with which they are already familar. (USGS)

  17. Hydrogeology and hydrogeologic terranes of the Blue Ridge and Piedmont Physiographic Provinces in the eastern United States

    USGS Publications Warehouse

    Mesko, Thomas O.; Swain, Lindsay A.; Hollyday, E.F.

    2000-01-01

    Severe and prolonged droughts between 1961 and 1988, combined with increased demands for freshwater supplies in the United States, have resulted in a critical need to assess the potential for development of ground- and surface-water supplies. Rapid industrial growth and urban expansion have caused existing freshwater supplies to be used at or near maximum capacity. Begun in 1978, the Regional Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey (USGS) is a systematic effort to study a number of the Nation's most important aquifer systems, which, in aggregate, underlie much of the country and represent an important component of the Nation's total water supply. The broad objective for each of the 28 studies in the program is to assemble geologic, hydrologic, and geochemical information, to analyze and develop an understanding of the system, and to develop predictive capabilities that will contribute to the effective management of the system.In 1988, as part of the RASA Program, the USGS began a 6-year study of the ground-water resources of parts of 11 States in the Eastern United States (Swain and others, 1991). The study was designated the Appalachian Valley and Piedmont Regional Aquifer-System Analysis (APRASA). The APRASA team investigated ground-water resources primarily in the unglaciated part of the Valley and Ridge, the Blue Ridge, the New England, and the Piedmont Physiographic Provinces (fig. 1). For the purposes of this report, the small area in the New England Physiographic Province that is within the study area in New Jersey and Pennsylvania was considered part of the Piedmont Physiographic Province. The results of the APRASA are contained in about 50 reports and abstracts, including reports on simulation of ground-water flow in three type areas, this atlas, and chapters in Professional Paper 1422. These chapters include the summary (Chapter A), descriptions of recharge rates and surface- and ground-water relations (Chapter B), hydrogeologic terranes in the Valley and Ridge Physiographic Province (Chapter C), and ground-water geochemistry (Chapter D).The purposes of this atlas are to summarize the hydrogeology, to describe an analysis of maps and well records, and to present a classification and map of the hydrogeologic terranes of the Blue Ridge and Piedmont Physiographic Provinces within the APRASA study area. Hydrogeologic terranes are defined for this atlas as regionally mappable areas characterized by similar water-yielding properties of a grouping of selected rock types. The hydrogeologic terranes represent areas of distinct hydrologic character. The terranes are intended to help water users locate and develop adequate water supplies and to help hydrologists interpret the regional hydrogeology.Previous investigations provide maps and descriptions of the geologic units, describe the local quantity and quality of ground water within these units, and establish the statistical methods for comparing the water-yielding properties of these units. State geologic maps show the distribution of geologic units at a scale of 1:500,000 for Alabama (Osborne and others, 1989), Georgia (Lawton and others, 1976), North Carolina (Brown and Parker, 1985), and Virginia (Calver and Hobbs, 1963). State maps show geologic units at a scale of 1:250,000 for Maryland (Cleaves and others, 1968), New Jersey (Lewis and Kummel, 1912), Pennsylvania (Berg and others, 1980), South Carolina (Overstreet and Bell, 1965), Tennessee (Hardeman, 1966), and West Virginia (Cardwell and others, 1968). Quadrangle geologic maps show geologic units at a scale of 1:24,000 for parts of Delaware within the APRASA area (Woodruff and Thompson, 1972, 1975). Many reports have been published describing the groundwater resources of a county, parts of a county, multi-county areas, or river basins.The statistical methods used in this atlas are based largely on those used by Helsel and Hirsch (1992) and by Knopman (1990, p. 7-9). In her analysis of well records in the USGS Ground-Water Site Inventory (GWSI) data base, Knopman (1990) ranked factors that must be taken into account when assessing the water-yielding potential of the rocks in the Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces in Pennsylvania. Readers are referred to Helsel and Hirsch (1992) and Knopman (1990) for details regarding statistical methods.

  18. Structure, outcrop, and subcrop of the bedrock aquifers along the western margin of the Denver Basin, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.; Van Slyke, George D.; Graham, Glenn

    1998-01-01

    Severe and prolonged droughts between 1961 and 1988, combined with increased demands for freshwater supplies in the United States, have resulted in a critical need to assess the potential for development of ground- and surface-water supplies. Rapid industrial growth and urban expansion have caused existing freshwater supplies to be used at or near maximum capacity. Begun in 1978, the Regional Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey (USGS) is a systematic effort to study a number of the Nation's most important aquifer systems, which, in aggregate, underlie much of the country and represent an important component of the Nation's total water supply. The broad objective for each of the 28 studies in the program is to assemble geologic, hydrologic, and geochemical information, to analyze and develop an understanding of the system, and to develop predictive capabilities that will contribute to the effective management of the system.In 1988, as part of the RASA Program, the USGS began a 6-year study of the ground-water resources of parts of 11 States in the Eastern United States (Swain and others, 1991). The study was designated the Appalachian Valley and Piedmont Regional Aquifer-System Analysis (APRASA). The APRASA team investigated ground-water resources primarily in the unglaciated part of the Valley and Ridge, the Blue Ridge, the New England, and the Piedmont Physiographic Provinces (fig. 1). For the purposes of this report, the small area in the New England Physiographic Province that is within the study area in New Jersey and Pennsylvania was considered part of the Piedmont Physiographic Province. The results of the APRASA are contained in about 50 reports and abstracts, including reports on simulation of ground-water flow in three type areas, this atlas, and chapters in Professional Paper 1422. These chapters include the summary (Chapter A), descriptions of recharge rates and surface- and ground-water relations (Chapter B), hydrogeologic terranes in the Valley and Ridge Physiographic Province (Chapter C), and ground-water geochemistry (Chapter D).The purposes of this atlas are to summarize the hydrogeology, to describe an analysis of maps and well records, and to present a classification and map of the hydrogeologic terranes of the Blue Ridge and Piedmont Physiographic Provinces within the APRASA study area. Hydrogeologic terranes are defined for this atlas as regionally mappable areas characterized by similar water-yielding properties of a grouping of selected rock types. The hydrogeologic terranes represent areas of distinct hydrologic character. The terranes are intended to help water users locate and develop adequate water supplies and to help hydrologists interpret the regional hydrogeology.Previous investigations provide maps and descriptions of the geologic units, describe the local quantity and quality of ground water within these units, and establish the statistical methods for comparing the water-yielding propertics of these units. State geologic maps show the distribution of geologic units at a scale of 1:500,000 for Alabama (Osborne and others, 1989), Georgia (Lawton and others, 1976), North Carolina (Brown and Parker, 1985), and Virginia (Calver and Hobbs, 1963). State maps show geologic units at a scale of 1:250,000 for Maryland (Cleaves and others, 1968), New Jersey (Lewis and Kummel, 1912), Pennsylvania (Berg and others, 1980), South Carolina (Overstreet and Bell, 1965), Tennessee (Hardeman, 1966), and West Virginia (Cardwell and others, 1968). Quadrangle geologic maps show geologic units at a scale of 1:24,000 for parts of Delaware within the APRASA area (Woodruff and Thompson, 1972, 1975). Many reports have been published describing the groundwater resources of a county, parts of a county, multi-county areas, or river basins.The statistical methods used in this atlas are based largely on those used by Helsel and Hirsch (1992) and by Knopman (1990, p. 7-9). In her analysis of well records in the USGS Ground-Water Site Inventory (GWSI) data base, Knopman (1990) ranked factors that must be taken into account when assessing the water-yielding potential of the rocks in the Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces in Pennsylvania. Readers are referred to Helsel and Hirsch (1992) and Knopman (1990) for details regarding statistical methods.

  19. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper Floridan aquifer, the major processes controlling the concentrations of major dissolved species included dissolution of calcite and dolomite, and degradation of organic matter under oxic conditions. The Upper Floridan aquifer is highly susceptible to contamination from activities at the land surface in the Tallahassee area. The presence of post-1950s concentrations of 3H in ground water from depths greater than 100 m below land surface indicates that water throughout much of the Upper Floridan aquifer has been recharged during the last 40 years. Even though mixing is likely between ground water and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, which due to dilution effects shows little if any impact from trace elements or nutrients that are present in surface waters.The water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface water. Chemical and isotopic analyses, tritium, and strontium-87/strontium-86 along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of groundwater. Differences in the composition of water isotopes in rainfall, groundwater and surface water were used to develop mixing models of surface water and groundwater. Even though mixing is likely between groundwater and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, showing little impact from trace elements present in surface waters.

  20. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  1. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    USGS Publications Warehouse

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is based were undertaken in cooperation with the U.S. Bureau of Reclamation, Region I, at the request of the Planning Division, Central Snake River District. The report was complied in the first instance for the use of the Bureau of Reclamation but is now released to the public. The observation-well program in the area has been maintained in cooperation with the Idaho State Department of Reclamation as part of the regular cooperative program of the Geological Survey.

  2. Identifying wells downstream from Laguna Dam that yield water that will be replaced by water from the Colorado River, Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    2000-01-01

    This report summarizes a comprehensive study and development of the method documented in Owen-Joyce and others (2000). That report and one for the area upstream from Laguna Dam (Wilson and Owen-Joyce, 1994) document the accounting-surface method to identify wells that yield water that will be replaced by water from the Colorado River. Downstream from Laguna Dam, the Colorado River is the source for nearly all recharge to the river aquifer. The complex surface-water and ground-water system that exists in the area is, in part, the result of more than 100 years of water-resources development. Agriculture is the principal economy and is possible only with irrigation. The construction and operation of canals provides the means to divert and distribute Colorado River water to irrigate agricultural lands on the flood plains and mesas along the Colorado and Gila Rivers, in Imperial and Coachella Valleys, and in the area upstream from Dome along the Gila River. Water is withdrawn from wells for irrigation, dewatering, and domestic use. The area downstream from Laguna Dam borders additional areas of agricultural development in Mexico where Colorado River water also is diverted for irrigation.

  3. Environmental & Water Quality Operational Studies: Improvement of Hydropower Release Dissolved Oxygen with Turbine Venting.

    DTIC Science & Technology

    1987-03-01

    VENTED HYDROTURBINE .. 38 Model Development .......................................... 38 Model Application...mouth intake (Figures B26-B27). 37 A F -W V .0P V *W V *. V. VW . i. ~ ~ -% PART V: MODELING OF REAERATION THROUGH A VENTED HYDROTURBINE 75. Development

  4. ELECTROCHEMICAL TREATMENT AND RECYCLING OF SPENT PERCHLORATE-CONTAMINATED ION-EXCHANGE REGENERATION BRINE - PHASE I

    EPA Science Inventory

    Eltron Research & Development, Inc. (Eltron) proposes to develop an ion-selective, polymer membrane electrode capable of detecting perchlorate in water at low parts per billion (ppb) concentrations. With the discovery of perchlorate contamination in an increasing number of...

  5. DEVELOPMENT OF NITROGEN LOADING - RESPONSE RELATIONSHIPS FOR ESTUARINE WATERS USING AN EMPIRICAL COMPARATIVE SYSTEMS APPROACH

    EPA Science Inventory

    The U.S. EPA Atlantic Ecology Division (AED) has initiated a multi-year research program to develop empirical nitrogen load-response models for embayments in southern New England. This is part of a multi-regional effort to develop nutrient load-response models for the Gulf of Mex...

  6. Revised shallow and deep water-level and storage-volume changes in the Equus Beds Aquifer near Wichita, Kansas, predevelopment to 1993

    USGS Publications Warehouse

    Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2013-01-01

    Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about 6 percent (-202,000 acre-feet) of the overall storage volume within the newly defined study area.

  7. Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources.

    PubMed

    Davies, John-Mark; Mazumder, Asit

    2003-07-01

    Sustaining clean and safe drinking water sources is increasingly becoming a priority because of global pollution. The means of attaining and maintaining clean drinking water sources requires effective policies that identify, document, and reduce watershed risks. These risks are defined by their potential impact to human health. Health and risk are, therefore, indelibly linked because they are in part defined by each other. Understanding pathogen ecology and identifying watershed sources remains a priority because of the associated acute risks. Surface water quality changes resulting from inputs of human waste, nutrients and chemicals are associated with higher drinking water risks. Nutrient input can increase primary production and the resulting increase of organic matter results in greater disinfection by-product formation or requires greater treatment intensity. Many drinking water disease outbreaks have resulted from breaches in treatment facilities, therefore, even with greater treatment intensity poor source water quality intrinsically has greater associated health risks. Government and international agencies play a critical role in developing policy. The goal of maintaining water supplies whose availability is maximized and risks are minimized (i.e. sustainable) should be a vital part of such policy. Health risks are discussed in the context of a multi-barrier perspective and it is concluded that both passive (protection) and active (prescriptive management) management is necessary for sustainability. Canadian aboriginal water systems, British Columbian water policy and US EPA policies are given as examples. The basis for developing effective policies includes a strong reliance on sound science and effective instrumentation with careful consideration of stakeholders' interests. Only with such directed policies can the future availability of clean drinking water sources be ensured.

  8. Ground water for irrigation in the Snake River Basin in Idaho

    USGS Publications Warehouse

    Mundorff, Maurice John; Crosthwaite, E.G.; Kilburn, Chabot

    1964-01-01

    The Snake River basin, in southern Idaho, upstream from the mouth of the Powder River in Oregon, includes more than 50 percent of the land area and 65 percent of the total population of the State. More than 2.5 million acres of land is irrigated ; irrigation agriculture and industry allied with agriculture are the basis of the economy of the basin. Most of the easily developed sources of surface water are fully utilized, and few storage sites remain where water could be made available to irrigate lands under present economic conditions. Because surface-water supplies have be come more difficult to obtain, use of ground water has increased greatly. At the present time (1959), about 600,000 acres of land is irrigated with ground water. Ground-water development has been concentrated in areas where large amounts of water are available beneath or adjacent to tracts of arable land and where the depth to water is not excessive under the current economy. Under these criteria, many of the most favorable areas already have been developed; however, tremendous volumes of water are still available for development. In some places, water occurs at depths considered near or beyond the limit for economic recovery, whereas in some other places, water is reasonably close to the surface but no arable land is available in the vicinity. In other parts of the basin large tracts of arable land are without available water supply. Thus the chief tasks in development of the ground-water resources include not only locating and evaluating ground-water supplies but also the planning necessary to bring the water to the land. Irrigation began in the 1860's ; at the present time more than 10 million acre feet of surface water, some of which is recirculated water, is diverted annually for irrigation of more than 2.5 million acres. Diversion of this large quantity of water has had a marked effect on the ground-water regimen. In some areas, the water table has risen more than 100 feet and the discharge of some springs has more than doubled. Large-scale development of ground water began after World War II, and it is estimated that in 1959 about 1,500,000 acre-feet of ground water was pumped for irrigation of the 600,000 acres irrigated wholly with ground water in addition to a substantial amount of ground water pumped to supplement surface-water supplies. Ground water is also the principal source of supply for municipal, industrial, and domestic use. The water regimen in the Snake River basin is greatly influenced by the geology. The rocks forming the mountains are largely consolidated rocks of low permeability; however, a fairly deep and porous subsoil has formed on them by decay and disintegration of the parent rock. Broad intermontane valleys and basins are partly filled with alluvial sand and gravel. The subsoil and alluvial materials are utilized very little as a source of water supply but are important as seasonal ground-water reservoirs because they store water during periods of high rainfall and snowmelt. Discharge from these reservoirs maintains stream flow during periods of surface runoff. Because these aquifers are fairly thin, they drain rapidly and are considerably depleted at the end of each dry cycle. The plain and plateau areas and tributary valleys, on the other hand, are underlain chiefly by rocks of high permeability and porosity. These rocks, mostly basaltic lava flows and alluvial materials, constitute a reservoir which fluctuates only slightly from season to season. Large amounts' of water are withdrawn from them for irrigation and other uses, and discharge from the Snake Plain aquifer is an important part of the total flow of the Snake River downstream from Hagerman Valley. The ultimate source of ground water in the basin is precipitation on the basin. In the mountainous areas, aquifers mostly are recharged directly by precipitation. On the other hand, in the plains, lowlands, and valleys which contain the principal aquifers

  9. Plan for the design, development, and implementation, and operation of the National Water Information System

    USGS Publications Warehouse

    Edwards, M.D.

    1987-01-01

    The Water Resources Division of the U.S. Geological Survey is developing a National Water Information System (NWIS) that will integrate and replace its existing water data and information systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information, and Water Resources Scientific Information Center programs. It will be a distributed data system operated as part of the Division 's Distributed Information System, which is a network of computers linked together through a national telecommunication network known as GEONET. The NWIS is being developed as a series of prototypes that will be integrated as they are completed to allow the development and implementation of the system in a phased manner. It also is being developed in a distributed manner using personnel who work under the coordination of a central NWIS Project Office. Work on the development of the NWIS began in 1983 and it is scheduled for completion in 1990. This document presents an overall plan for the design, development, implementation, and operation of the system. Detailed discussions are presented on each of these phases of the NWIS life cycle. The planning, quality assurance, and configuration management phases of the life cycle also are discussed. The plan is intended to be a working document for use by NWIS management and participants in its design and development and to assist offices of the Division in planning and preparing for installation and operation of the system. (Author 's abstract)

  10. Nanofiber Filters Eliminate Contaminants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  11. Genetic and management approaches to boost UK wheat yields by ameliorating water deficits.

    PubMed

    Dodd, Ian C; Whalley, W R; Ober, Eric S; Parry, M A J

    2011-11-01

    Faced with the challenge of increasing global food production, there is the need to exploit all approaches to increasing crop yields. A major obstacle to boosting yields of wheat (an important staple in many parts of the world) is the availability and efficient use of water, since there is increasing stress on water resources used for agriculture globally, and also in parts of the UK. Improved soil and crop management and the development of new genotypes may increase wheat yields when water is limiting. Technical and scientific issues concerning management options such as irrigation and the use of growth-promoting rhizobacteria are explored, since these may allow the more efficient use of irrigation. Fundamental understanding of how crops sense and respond to multiple abiotic stresses can help improve the effective use of irrigation water. Experiments are needed to test the hypothesis that modifying wheat root system architecture (by increasing root proliferation deep in the soil profile) will allow greater soil water extraction thereby benefiting productivity and yield stability. Furthermore, better knowledge of plant and soil interactions and how below-ground and above-ground processes communicate within the plant can help identify traits and ultimately genes (or alleles) that will define genotypes that yield better under dry conditions. Developing new genotypes will take time and, therefore, these challenges need to be addressed now.

  12. Sustainable management of harbours : a numerical approach for the assessment of waters quality

    NASA Astrophysics Data System (ADS)

    Bonamano, Simone; Madonia, Alice; Piazzolla, Daniele; Paladini de Mendoza, Francesco; Piermattei, Viviana; Scanu, Sergio; Melchiorri, Cristiano; Marcelli, Marco

    2017-04-01

    Within the Water Framework Directive (WFD), harbours must reach or maintain the good ecological potential, being classified as heavily modified water bodies. To fulfill this task and to comply the Marine Spatial Planning (MSP) principles, port managers have to monitor the water quality that can be compromised by the numerous activities including the realization of new infrastructures. The port of Civitavecchia, located on the central west coast of Italy, is undergoing to major structural changes to become one of the first ports of the Mediterranean in terms of passenger traffic and goods, thus requiring the development of management tools for the predictive assessment of harbour water quality. This study focused on the evaluation of water degradation within Civitavecchia port trough the calculation of Flushing time (FT) and the development of the new Flushing Efficiency Index (FEI). FT was calculated through the use of a numerical model under different scenarios selected combining different weather conditions with the new port configurations. FT values was then used to estimate the FEI for the evaluation of the improvement (positive values) or the deterioration (negative values) of water quality in the different zones of the port. The increase in the harbour basin size due to the embankment extension results in high values of FT, particularly in the inner part of the port, in accordance with the highest values of the Enrichment Factor (EF) of the trace metals found in the sediment. The correlation between FT and EF confirms that renewal time can be used as a proxy to evaluate the water quality conditions in the harbour basin, as also stated by the WFD guidelines. Also the results of FEI calculation indicate the potential occurrence of water degradation due to the embankment extension. Otherwise, the realization of a second entrance in the southern part of Civitavecchia port produces FEI positive values, highlighting a drastic improvement in harbour water renewal. Consistent with Blue Growth and Bluemed initiatives, the new tools developed in this study support the sustainable management of port activities, thereby also contributing to the development of new "blue jobs."

  13. Machine-readable files developed for the High Plains Regional Aquifer-System analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Ferrigno, C.F.

    1986-01-01

    Machine-readable files were developed for the High Plains Regional Aquifer-System Analysis project are stored on two magnetic tapes available from the U.S. Geological Survey. The first tape contains computer programs that were used to prepare, store, retrieve, organize, and preserve the areal interpretive data collected by the project staff. The second tape contains 134 data files that can be divided into five general classes: (1) Aquifer geometry data, (2) aquifer and water characteristics , (3) water levels, (4) climatological data, and (5) land use and water use data. (Author 's abstract)

  14. Hydrogeology of parts of the Central Platte and Lower Loup Natural Resources Districts, Nebraska

    USGS Publications Warehouse

    Peckenpaugh, J.M.; Dugan, J.T.

    1983-01-01

    Water-level declines of at least 15 feet have occurred in this heavily irrigated area of central Nebraska since the 1930's, and potential for additonal declines is high. To test the effects of additional irrigation development on water levels and streamflow , computer programs were developed that represent the surface-water system, soil zone, and saturated zone. A two-dimensional, finite-difference ground-water flow model of the 3,374 square-mile study area was developed and calibrated using steady-state and transient conditions. Three management alternatives were examined. First, 125,000 acre-feet of water would be diverted annually from the Platte River. During a water year in which flows are similar to those in 1957, months of zero streamflow at Grand Island increased from the historical 2, to 7. After 5 years of such low flows, in 36 nodes (997.4 acres per node) water levels declined more than 5 feet, with a maximum decline of 10.7 feet. A second alternative would allow no new ground-water development after 1980. The third alternative would allow irrigable but unirrigated land to be developed at an annual rate of 2, 5, and 8 percent and to apply irrigation water at 80, 100, and 120 percent of consumptive irrigation requirements. The maximum projected declines by 2020 are 119 and 139 feet, respectively, for the second and third alternatives. (USGS)

  15. Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina M.; Moore, Sarah E.; Mirchandani, Sera

    Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdevelopedmore » infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.« less

  16. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  17. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.

    PubMed

    Saha, Dipankar; Dhar, Y R; Vittala, S S

    2010-06-01

    A part of the Gangetic Alluvial Plain covering 2,228 km(2), in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km(2), affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of-(1) cumulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.

  18. Potentiometric Surface of the Ozark Aquifer in Northern Arkansas, 2007

    USGS Publications Warehouse

    Pugh, Aaron L.

    2008-01-01

    The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 58 well and 5 spring water-level measurements collected in 2007 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,169 feet in Carroll County and a minimum water-level altitude measurement of 118 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Comparing the 2007 potentiometric-surface map with a predevelopment potentiometric-surface map indicates general agreement between the two surfaces except in the northwestern part of the study area. Potentiometric-surface differences can be attributed to withdrawals related to increasing population, changes in public-supply sources, processes or water withdrawals outside the study area, or differences in data-collection or map-construction methods. The rapidly increasing population within the study area appears to have some effect on ground-water levels. Although, the effect appears to have been minimized by the development and use of surface-water distribution infrastructure, suggesting most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from ground water to surface water may be allowing water levels in wells to recover (rise) or decline at a slower rate, such as in Benton, Carroll, and Washington Counties.

  19. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less

  20. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  1. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  2. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  3. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  4. Water resources of the Truk Islands

    USGS Publications Warehouse

    Van der Brug, Otto

    1983-01-01

    The Truk Islands, part of the Caroline Islands in the western Pacific, consist of 19 volcanic islands and about 65 coral islets. The volcanic islands and some of the coral islets are scattered in an 820-square-mile lagoon enclosed by a 125-mile long barrier reef. Moen, although not the largest, is by far the most developed island and is the adminstrative, commercial, educational, and transporation center of the islands. Monthly rainfall records for most years are available since 1903. Rainfall-runoff comparisons show that about half the annual rainfall runs off as surface water into Truk Lagoon. Flow characteristics of the major streams, based on more than 11 years of record, are provided and the application of data for possible use in the design of reservoirs and rain catchments is included. Historical and present development of all water sources is given. The chemical analyses of surface and ground water on Moen, with the exception of water from well 9, show the good quality of the water sources. This report summarizes all hydrologic data collected and provides interpretations that can be used for development and management of the water resources. (USGS)

  5. Ground-water resources of the Alma area, Michigan

    USGS Publications Warehouse

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial supplies. The declines are not excessive, and during the late 1950's water levels in parts of Alma have risen slightly, because of dispersion of the pumping stations.The ground water in the Alma area generally is very hard and high in iron. Locally, the buried outwash that underlies the city of Alma is contaminated by phenolic substances. This limits the amount of ground water available for municipal supply within the city, although reclamation of the contaminated part of the aquifer is considered feasible.

  6. Connecting Projects to Complete the In Situ Resource Utilization Paradigm

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.

    2017-01-01

    Terrain Identify specifics such as slope, rockiness, traction parameters Identify what part of ISRU needs each Physical Geotechnical Hardness, density, cohesion, etc. Identify what part of ISRU needs each (e.g., excavation needs to know hardness, density; soil processing needs to know density, cohesion; etc.)Mineral Identify specifics Identify what part of ISRU needs each Volatile Identify specifics Identify what part of ISRU needs each Atmosphere Identify specifics Identify what part of ISRU needs each Environment Identify specifics Identify what part of ISRU needs each Resource Characterization What: Develop an instrument suite to locate and evaluate the physical, mineral, and volatile resources at the lunar poles Neutron Spectrometer Near Infrared (IR) to locate subsurface hydrogen surface water Near IR for mineral identification Auger drill for sample removal down to 1 m Oven with Gas Chromatograph Mass Spectrometer to quantify volatiles present ISRU relevance: Water volatile resource characterization and subsurface material access removal Site Evaluation Resource Mapping What: Develop and utilize new data products and tools for evaluating potential exploration sites for selection and overlay mission data to map terrain, environment, and resource information e.g., New techniques applied to generate Digital Elevation Map (DEMs) at native scale of images (1mpxl)ISRU relevance: Resource mapping and estimation with terrain and environment information is needed for extraction planning Mission Planning and Operations What: Develop and utilize tools and procedures for planning mission operations and real time changes Planning tools include detailed engineering models (e.g., power and data) of surface segment systems allows evaluation of designs ISRU relevance: Allows for iterative engineering as a function of environment and hardware performance.

  7. Implementation of diverse tree hydraulics in a land surface model

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Shevliakova, E.; Malyshev, S.; Weng, E.; Pacala, S. W.

    2013-12-01

    Increasing attention has been devoted to the occurence of drought kill in forests worldwide. These mortality events are significant disruptions to the terrestrial carbon cycle, but the mechanisms required to represent drought kill are not represented in terrestrial carbon cycle models. In part, this is due to the challenge of representing the diversity of hydraulic strategies, which include stomatal sensitivity to water deficit and woody tissue vulnerability to cavitation at low water potential. In part, this is due to the challenge of representing this boundary value problem numerically, because the hydraulic components determine water potential at the leaf, but the stomatal conductance on the leaf also determines the hydraulic gradients within the plant. This poster will describe the development of a land surface model parameterization of diverse tree hydraulic strategies.

  8. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., welfare, safety and property, and to sustain economic development. (c) To foster sound flood plain controls, as an essential part of water resources management, the Commission shall: (1) Encourage and...

  9. Ground-water resources of Benson and Pierce Counties, north-central North Dakota

    USGS Publications Warehouse

    Randich, P.G.

    1972-01-01

    The purpose of this investigation is to provide information about the ground-water resources in Benson and Pierce Counties that is sufficient for planning the safe and intelligent development of water supplies for irrigation, domestic, stock, industrial, and municipal purposes.  The investigation is part of a statewide program to determine the location and extent of ground-water aquifers; to evaluate the occurrence and movement of ground water within the aquifers, including sources of recharge and discharge; to determine potential yields to wells developed in the aquifers; and to determine the chemical quality of ground water.Benson and Pierce Counties cover an area of 2,512 square miles in north-central North Dakota.  This study, which began in July 1967 and was completed in June 1971, was made cooperatively by the U.S. Geological Survey, the North Dakota State Water Commission, the North Dakota Geological Survey, and the Benson and Pierce Counties Water Management Districts.  This interim report presents only the major conclusions of the study.

  10. Ground-water hydrology and glacial geology of the Kalamazoo area, Michigan

    USGS Publications Warehouse

    Deutsch, Morris; Vanlier, K.E.; Giroux, P.R.

    1960-01-01

    The Kalamazoo report area includes about 150 square miles of Kalamazoo County, Mich. The area is principally one of industry and commerce, although agriculture also is of considerable importance. It has a moderate and humid climate and lies within the Lake Michigan “snow belt”. Precipitation averages about 35 inches per year. Snowfall averages about 55 inches. The surface features of the area were formed during and since the glacial epoch and are classified as outwash plain, morainal highlands, and glaciated channels or drainageways. The area is formed largely on the remnants of an extensive outwash plain, which is breached by the Kalamazoo River in the northeastern part and is dissected elsewhere by several small tributaries to the river. Most of the land drained by these tributaries lies within the report area. A small portion of the southern part drains to the St. Joseph River. The Coldwater shale, which underlies the glacial deposits throughout the area, and the deeper bedrock formations are not tapped for water by wells and they have little or no potential for future development. Deposits of glacial drift, which are the source of water to all the wells in the area, have considerable potential for future development. These deposits range in thickness from about 40 feet along the Kalamazoo River to 350 feet where valleys were eroded in the bedrock surface. Permeable outwash and channel deposits are the sources of water for wells of large capacity. The moraines are formed dominantly by till of lower permeability which generally yields small supplies of water, but included sand and gravel beds of higher permeability yield larger supplies locally. The aquifers of the Kalamazoo area are recharged by infiltration of rainfall and snowmelt and by infiltration of surface waters induced by pumping of wells near the surface sources. Water pumped from most of the municipal well fields is replenished in part by such induced infiltration. Many of the industrial wells along the Kalamazoo River and Portage Creek are recharged in part from these streams. Locally, however, recharge from the streams is impeded, as their bottoms have become partly sealed by silt and solid waste matter. Water levels fluctuate with seasonal and annual changes in precipitation and in response to pumping. Pumpage by the city of Kalamazoo increased from about 300 million gallons in 1880 to 4.6 billion gallons in 1957. Despite the fact that billions of gallons are pumped annually from well fields in the Axtell Creek area, water levels in this vicinity have declined only a few feet, as the discharge from the fields is approximately compensated by recharge from precipitation and surface water. Pumpage of ground water by industry in 1948 was estimated at about 14 billion gallons, but the use of ground water for industrial purposes has since declined. Aquifer tests indicate that the coefficient of transmissibility of aquifers in the area ranges from as little as 18,000 to as high as 300,000 gpd (gallons per day) per foot, and that ground water occurs under watertable and artesian conditions. The ground water is of the calcium magnesium bicarbonate type. It is generally hard to very hard and commonly contains objectionable amounts of iron. Locally, the water contains appreciable amounts of sulfate. Study of the chemical analyses of waters from the area show that all of the tributaries to the Kalamazoo River are fed primarily by ground-water discharge.

  11. Potentiometric surface of the Upper Floridan aquifer in the Ichetucknee springshed and vicinity, northern Florida, September 2003

    USGS Publications Warehouse

    Sepulveda, A. Alejandro; Katz, Brian G.; Mahon, Gary L.

    2006-01-01

    The Upper Floridan aquifer is a highly permeable unit of carbonate rock extending beneath most of Florida and parts of southern Alabama, Georgia, and South Carolina. The high permeability is due in a large part to the widening of fractures that developed over time and the formation of conduits within the aquifer through dissolution of the limestone. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes in northern Florida. These dissolution features, whether expressed at the surface or not, greatly influence the direction of ground-water flow in the Ichetucknee springshed adjacent to the Ichetucknee River. Ground water generally flows southwestward in the springshed and discharges to the Ichetucknee or Santa Fe Rivers, or to the springs along those rivers. This map depicts the September 9-10, 2003, potentiometric surface of the Upper Floridan aquifer based on 94 water-level measurements made by the Suwannee River Water Management District. Ground-water levels in this watershed fluctuate in response to precipitation and due to the high degree of interconnection between the surface-water system and the aquifer.

  12. Estimation of water quality parameters of inland and coastal waters with the use of a toolkit for processing of remote sensing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less

  13. Hydrogeologic factors that affect the flowpath of water in selected zones of the Edwards Aquifer, San Antonio region, Texas

    USGS Publications Warehouse

    Groschen, G.E.

    1996-01-01

    The Edwards aquifer in the San Antonio region supplies drinking water for more than 1 million people. Proper development and protection of the aquifer is a high priority for local and State authorities. To better understand the flow of water in two major flowpaths in the Edwards aquifer, stratigraphic, structural, hydrologic, and geochemical data were analyzed. The western Medina flowpath is in parts of Uvalde, Medina, and Bexar Counties, and the eastern flowpath is in northern Bexar and central Comal Counties. A major hydrogeologic factor that affects the pattern of flow in the Edwards aquifer is the spatial and temporal distribution of recharge. Other hydrogeologic factors that affect flowpaths include internal boundaries and the location and rate of spring discharge. The relative displacement of faults and the high permeability layers have substantial control on the discharge at springs and on the flowpaths in the Edwards aquifer. Analysis of the estimated recharge to the Edwards aquifer during 1982 89 indicated that during years of substantial precipitation, a large part of the net recharge probably is diffuse infiltration of precipitation over large parts of the recharge area. During years with below-normal precipitation, most recharge is leakage from rivers and streams that drain the catchment subbasins. In the western Medina flowpath, concentrations of major ions indicate saturation of calcite and undersaturation of dolomite the two minerals that constitute most of the Edwards aquifer matrix. Concentrations of dissolved calcium, alkalinity, and dissolved chloride in the eastern flowpath are greater than those in the western Medina flowpath. These upward trends in concentrations might result in part from: (1) increased development in the recharge area, (2) mineralized effluent from developed areas, or (3) increased dissolution of aquifer material. Tritium data from wells sampled in and near the western Medina flowpath indicate no vertical stratification of flow. Tritium concentrations in the recharge area of the western Medina flowpath are smaller than would be expected from previous studies and for the amount of recharge the area presumably received since 1952. Stable-isotopic data indicate that the water in the Edwards aquifer is meteoric and, except in one known area, has not been subjected to substantial evaporation or other isotope-fractionating processes. Evaporation of water from Medina Lake results in a heavier stable-isotopic ratio in lake water, which subsequently recharges the Edwards aquifer. The stable-isotopic data indicate that lake water does not enter either of the two flowpaths.

  14. Water and sediment dynamics in the context of climate change and variability (Cañete river, Peru).

    NASA Astrophysics Data System (ADS)

    Rosas, Miluska; Vanacker, Veerle; Huggel, Christian; Gutierrez, Ronald R.

    2017-04-01

    Water erosion is one of the main environmental problems in Peru. The elevated rates of soil erosion are related to the rough topography of the Andes, shallow soils, highly erosive climate and the inappropriate land use management. Agricultural activities are directly affected by the elevated soil erosion rates, either through reduced crop production and/or damage to irrigation infrastructure. Similarly, the development of water infrastructure and hydropower facilities can be negatively affected by high sedimentation rates. However, critical information about sediment production, transport and deposition is still mostly lacking. This paper focuses on sediment dynamics in the context of land use and climate change in the Peruvian Andes. Within the Peruvian Coastal Range, the catchment of the Cañete River is studied as it plays an important role in the social and economic development of the region, and due to its provision of water and energy to rural and urban areas. The lower part of the basin is an arid desert, the middle sub-humid part sustains subsistence agriculture, and the upper part of the basin is a treeless high-elevation puna landscape. Snow cover and glaciers are present at its headwaters located above 5000 m asl. The retreat of glaciers due to climate change is expected to have an impact on water availability, and the production and mobilization of sediment within the river channels. Likewise, climate variability and land cover changes might trigger an important increase of erosion and sediment transport rates. The methodology applied to face this issue is principally based on the analysis of sediment samples recollected in the basin in the period 1998 to 2001, and the application of a water and sediment routing model. The paper presents new data on the sensitivity of water infrastructure and hydropower facilities to climate-induced changes in sediment mobilization.

  15. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting

    PubMed Central

    Pérez-Pérez, J. G.; Dodd, I. C.

    2015-01-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. PMID:25740924

  16. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    PubMed

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Estimates of future water demand for selected water-service areas in the Upper Duck River basin, central Tennessee; with a section on Methodology used to develop population forecasts for Bedford, Marshall, and Maury counties, Tennessee, from 1993 through 2050

    USGS Publications Warehouse

    Hutson, S.S.; Schwarz, G.E.

    1996-01-01

    Estimates of future water demand were determined for selected water-service areas in the upper Duck River basin in central Tennessee through the year 2050. The Duck River is the principal source of publicly-supplied water in the study area providing a total of 15.6 million gallons per day (Mgal/d) in 1993 to the cities of Columbia, Lewisburg, Shelbyville, part of southern Williamson County, and several smaller communities. Municipal water use increased 19 percent from 1980 to 1993 (from 14.5 to 17.2 Mgal/d). Based on certain assumptions about socioeconomic conditions and future development in the basin, water demand should continue to increase through 2050. Projections of municipal water demand for the study area from 1993 to 2015 were made using econometric and single- coefficient (unit-use) requirement models of the per capita type. The models are part of the Institute for Water Resources-Municipal and Industrial Needs System, IWR-MAIN. Socioeconomic data for 1993 were utilized to calibrate the models. Projections of water demand in the study area from 2015 to 2050 were made using a single- coefficient requirement model. A gross per capita use value (unit-requirement) was estimated for each water-service area based on the results generated by IWR-MAIN for year 2015. The gross per capita estimate for 2015 was applied to population projections for year 2050 to calculate water demand. Population was projected using the log-linear form of the Box-Cox regression model. Water demand was simulated for two scenarios. The scenarios were suggested by various planning agencies associated with the study area. The first scenario reflects a steady growth pattern based on present demographic and socioeconomic conditions in the Bedford, Marshall, and Maury/southern Williamson water-service areas. The second scenario considers steady growth in the Bedford and Marshall water-service areas and additional industrial and residential development in the Maury/southern Williamson water-service area beginning in 2000. For the study area, water demand for scenario one shows an increase of 121 percent (from 17.2 to 38 Mgal/d) from 1993 to 2050. In scenario two, simulated water demand increases 150 percent (17.2 to 43 Mgal/d) from 1993 to 2050.

  18. Water-Resource Trends and Comparisons Between Partial-Development and October 2006 Hydrologic Conditions, Wood River Valley, South-Central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.

    2007-01-01

    This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly discharge for July through February and April from 1975 to 2005. Comparisons of partial-development (ground-water conditions from 1952 to 1986) and 2006 ground-water resources in the Wood River Valley using a geographic information system indicate that most ground-water levels for the unconfined aquifer in the study area are either stable or declining. Declines are predominant in the southern part of the study area south of Hailey, and some areas exceed what is expected of natural fluctuations in ground-water levels. Some ground-water levels rose in the northern part of the study area; however, these increases are approximated due to a lack of water-level data in the area. Ground-water level declines in the confined aquifer exceed the range of expected natural fluctuations in large areas of the confined aquifer in the southern part of the study area in the Bellevue fan. However, the results in this area are approximated due to limited available water-level data.

  19. Ground-water recharge to and storage in the regolith-fractured crystalline rock aquifer system, Guilford County, North Carolina

    USGS Publications Warehouse

    Daniel, C. C.; Harned, D.A.

    1998-01-01

    Quantitative information concerning recharge rates to aquifers and ground water in storage is needed to manage the development of ground- water resources. The amount of ground water available from the regolith-fractured crystalline rock aquifer system in Guilford County, North Carolina, is largely unknown. If historical patterns seen throughout the Piedmont continue into the future, the number of ground- water users in the county can be expected to increase. In order to determine the maximum population that can be supplied by ground water, planners and managers of suburban development must know the amount of ground water that can be withdrawn without exceeding recharge and(or) overdrafting water in long-term storage. Results of the study described in this report help provide this information. Estimates of seasonal and long-term recharge rates were estimated for 15 selected drainage basins and subbasins using streamflow data and an anlytical technique known as hydrograph separation. Methods for determining the quantity of ground water in storage also are described. Guilford County covers approximately 658 square miles in the central part of the Piedmont Province. The population of the county in 1990 was about 347,420; approximately 21 percent of the population depends on ground water as a source of potable supplies. Ground water is obtained from wells tapping the regolith-fractured crystalline rock aquifer system that underlies all of the county. Under natural conditions, recharge to the ground-water system in the county is derived from infiltration of precipitation. Ground-water recharge from precipitation cannot be measured directly; however, an estimate of the amount of precipitation that infiltrates into the ground and ultimately reaches the streams of the region can be determined by the technique of hydrograph separation. Data from 19 gaging stations that measure streamflow within or from Guilford County were analyzed to produce daily estimates of ground-water recharge in 15 drainage basins and subbasins in the county. The recharge estimates were further analyzed to determine seasonal and long-term recharge rates, as well as recharge duration statistics. Mean annual recharge in the 15 basins and subbasins ranges from 4.03 to 9.69 inches per year, with a mean value of 6.28 inches per year for all basins. In general, recharge rates are highest for basins in the northern and northwestern parts of the county and lowest in the southern and southeastern parts of the county. Median recharge rates in the 15 basins range from 2.47 inches per year (184 gallons per day per acre) to 9.15 inches per year (681 gallons per day per acre), with a median value of 4.65 inches per year (346 gallons per day per acre) for all basins. The distribution of recharge rates in the county suggests a correlation between recharge rates and hydrogeologic units (and derived regolith). The highest recharge estimates occur in the northwestern part of Guilford County in basins unlain by felsic igneous intrusive rocks and lesser areas of metasedimentary rocks. Recharge estimates in this area range from 6.37 to 9.33 inches per year. Basins in the southwestern, central, and northeastern parts of the county are underlain primarily by metaigneous rocks of felsic and intermediate compositions, and recharge estimates range from 5.32 to 5.51 inches per year. In the extreme southern and southeastern parts of the county, the lower Deep River subbasin and the lower Haw River subbasins have the lowest estimated recharges at 4.15 and 4.03 inches per year, respectively. Although the areas of these subbasins that lie within Guilford County are underlain primarily by metaigneous rocks of felsic and intermediate compositions, the larger part of these subbasins lies south and southeast of Guilford County in areas underlain by hydrogeologic units of metavolcanic origin. The distribution of recharge rates in the study area is almost the reverse of the distributio

  20. Vulnerability of Water Resources under Climate and Land Use Change: Evaluation of Present and Future Threats for Austria

    NASA Astrophysics Data System (ADS)

    Nachtnebel, Hans-Peter; Wesemann, Johannes; Herrnegger, Mathew; Senoner, Tobias; Schulz, Karsten

    2015-04-01

    Climate and Land Use Change can have severe impacts on natural water resources needed for domestic, agricultural and industrial water use. In order to develop adaptation strategies, it is necessary to assess the present and future vulnerability of the water resources on the basis of water quantity, water quality and adaptive capacity indicators. Therefore a methodological framework was developed within the CC-Ware project and a detailed assessment was performed for Austria. The Water Exploitation Index (WEI) is introduced as a quantitative indicator. It is defined as the ratio between the water demand and the water availability. Water availability is assessed by a high resolution grid-based water balance model, utilizing the meteorological information from bias corrected regional climate models. The demand term can be divided into domestic, agricultural and industrial water demand and is assessed on the water supply association level. The Integrated Groundwater Pollution Load Index (GWPLI) represents an indicator for areas at risk regarding water quality, considering agricultural loads (nitrate pollution loads), potential erosion and potential risks from landfills. Except for the landfills, the information for the current situation is based on the CORINE Landcover data. Future changes were predicted utilizing the PRELUDE land use scenarios. Since vulnerability is also dependent on the adaptive capacity of a system, the Adaptive Capacity Index is introduced. The Adaptive Capacity Index thereby combines the Ecosystem Service Index (ESSI), which represents three water related ecosystem services (Water Provision, Water Quantity Regulation and Water Quality Regulation) and the regional economic capacity expressed by the gross value added. On the basis of these indices, the Overall Vulnerability of the water resources can be determined for the present and the future. For Austria the different indices were elaborated. Maps indicating areas of different levels of vulnerability were developed. A comparison with existing data (River Basin Management Plan and Groundwater Chemistry Regulation) shows a good agreement between the elaborated maps and observations for the present state. The Overall Vulnerability is very low and low for most parts of Austria, especially in the forested alpine region. Bigger cities like Vienna, Graz and Linz show medium vulnerabilities, due to the high water demand and low ecosystem services. Only in the north-eastern and south-eastern part of the country some water supply associations with high and very high overall vulnerability exist. Groundwater recharge is quite small in these regions and the water quality is limited due to intense agriculture and possible threats through landfills. The developed framework allows an evaluation of water quantity and quality vulnerabilities for large scales for the present and the future. Including ecosystem services and gross value added an overall vulnerability can be determined.

  1. Availability of ground water in the Blackstone River area Rhode Island and Massachusetts

    USGS Publications Warehouse

    Johnston, Herbert E.; Dickerman, David C.

    1974-01-01

    The Blackstone River study area covers 83 square miles of northern Rhode Island and 5 square miles of adjacent Massachusetts (fig. 1). It includes parts of the Blackstone, Moshassuck, and Tenmile River basins, and a coastal area that drains to the brackish Seekonk and Providence Rivers. In Rhode Island, all or parts of the suburban towns of Cumberland, Lincoln, North Smithfield, and Smithfield and all or parts of the cities of Central Falls, East Povidence, Pawtucket, Providence, and Woonsocket are within the study area. Also included are parts of the towns Attleboro and North Attleborough in Massachusetts. In 1970, total population was about 240,000, which was equivalent to about one-fourth of the total population of Rhode Island. Fresh water usage in 1970 by public-supply systems and self-supplied industry was about 33 mgd (million gallons per day), which was equal to 22 percent of total fresh water use in Rhode Island for all purposes except generation of electric power (fig. 2). Anticipated increases in population and per capita water requirements are likely to cause the demand for water to more than double within the next 50 years. A significant part of this demand can be met from wells that tap the principal streams. This aquifer yielded an average of 10 mgd in 1970 and is capable of sustaining a much higher yield. The primary objectives of the study were to determine and map the saturated thickness and transmissivity of the stratified-drift aquifer and to assess the potential sustained yield of those parts of the aquifer favorable for large-scale development of water. A secondary objective was to describe ground-water quality and to evaluate the impact of induced infiltration of polluted stream water on the quality of native ground water. This report is based on analysis of drillers' records of more than 700 wells and borings which include 462 lithologic logs; 35 specific-capacity determinations; 12 aquifer tests, including detailed tests at two sites to determine streambed infiltration rates; chemical analyses of 92 ground-water and 15 stream-water samples; and geologic mapping. Selected base data are published in a separate (Johnston and Dickerman, in press). The authors are indebted to well drillers, especially American Drilling and Boring Company, R.E. Chapman Company, and Layne New England Company, for making their records available; to the water departments of the towns of Cumberland and Lincoln, for allowing aquifer tests of their well fields; to the Rhode Island Department of Health, for providing data on water quality and use; and to many other federal, state, and municipal agencies, companies, and individuals who supplied information. Their contributions are gratefully acknowledged.

  2. Sustainability of integrated land and water resources management in the face of climate and land use changes

    NASA Astrophysics Data System (ADS)

    Setegn, Shimelis

    2017-04-01

    Sustainable development integrates economic development, social development, and environmental protection. Land and Water resources are under severe pressure from increasing populations, fast development, deforestation, intensification of agriculture and the degrading environment in many part of the world. The demand for adequate and safe supplies of water is becoming crucial especially in the overpopulated urban centers of the Caribbean islands. Moreover, population growth coupled with environmental degradation and possible adverse impacts of land use and climate change are major factors limiting freshwater resource availability. The main objective of this study is to develop a hydrological model and analyze the spatiotemporal variability of hydrological processes in the Caribbean islands of Puerto Rico and Jamaica. Physically based eco-hydrological model was developed and calibrated in the Rio Grande Manati and Wag water watershed. Spatial distribution of annual hydrological processes, water balance components for wet and dry years, and annual hydrological water balance of the watershed are discussed. The impact of land use and climate change are addressed in the watersheds. Appropriate nature based adaptation strategies were evaluated. The study will present a good understanding of advantages and disadvantages of nature-based solutions for adapting climate change, hydro-meteorological risks and other extreme hydrological events.

  3. Geology and hydrology of the Onondaga aquifer in eastern Erie County, New York; with emphasis on ground-water-level declines since 1982

    USGS Publications Warehouse

    Staubitz, W.W.; Miller, Todd S.

    1987-01-01

    The Onondaga aquifer is a nearly flat-lying, 25- to 110-foot-thick, cherty limestone with moderately developed karst features such as sinkholes, disappearing streams, and solution-widened joints. Most groundwater moves through solution-widened bedding planes, although some moves through vertical joints. The yield of water from 42 wells ranges from 3 to 100 gal/min, averaging 20 gal/min. Groundwater levels in the Onondaga aquifer declined during the fall of 1981 and summer and fall of 1982-85, near a 2.2-mile-long and 800-foot-wide land surface depression in the eastern part of Erie County. More than 60 wells and several wetlands went dry and at least three sinkholes developed. Groundwater levels were measured in 150 wells during a high water level period in April 1984 and a low water period in October 1984. Water levels fluctuated 20 to 50 ft near the depression and near the quarries but fluctuated only 5 to 10 ft elsewhere. The water level decline was caused by the combined effect of groundwater removal by pumpage from a quarry (the water is then discharged to Dorsch Creek) and by the swallets in the 2.2-mile-long depression area, which are recharge points for the aquifer. In 1982, sinkholes formed in a surface depression area in Harris Hill. The enlargement of these sinkholes seems to be unrelated to the water level decline in the eastern part of the county and is probably caused by local drainage alterations. (Author 's abstract)

  4. Thermal behaviour of an urban lake during summer

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans

    2015-04-01

    One of the undesirable effects of urbanisation is higher summer air temperatures in cites compared to rural areas. One of the most important self-cooling mechanism of cities is presence of water. Comparative studies showed that from all urban land-use types open water is the most efficient in reducing the heat in its surrounding. Urban water bodies vary from small ponds to big lakes and rivers, but already the presence of a swimming pool in a garden resulted in lower temperatures in the area. Moving and still water both exhibit slightly different patterns with respect to the environment. While ponds tend to respond more to air temperature changes, faster flowing rivers are expected to have more stable temperature over time. There are two major components of cooling effect of a surface water:(1) through evaporation, and (2) by storing heat and increasing its own temperature. This study shows results from a detailed temperature measurements, using Distributed Temperature Sensing (DTS), in an urban lake in Delft (The Netherlands). A two meter tall construction measuring temperature with 2 mm vertical spatial resolution was placed partly in the water, reaching all the way to the muddy underlayer, and partly in the air. Data from continuous two month measurement campaign show the development of water temperature with respect to solar radiation, air temperature, rain and inflow of rainwater from surrounding streets, etc. Most interesting is the 1-2 cm thick layer of colder air right above the water surface. This layer reaches values lower than both the air and the water, which suggests that certain part of the potential cooling capacity of open water is restricted by a small layer of air just above its surface.

  5. Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public-supply wells to contamination

    USGS Publications Warehouse

    Yager, Richard M.; Heywood, Charles E.

    2014-01-01

    Public-supply wells with long screens in alluvial aquifers can produce waters of differing quality from different depths. Seasonal changes in quality are linked to seasonal changes in pumping rates that influence the distribution of flow into the well screens under pumping conditions and the magnitude and direction of intraborehole flow within the wells under ambient conditions. Groundwater flow and transport simulations with MODFLOW and MT3DMS were developed to quantify the effects of changes in average seasonal pumping rates on intraborehole flow and water quality at two long-screened, public-supply wells, in Albuquerque, New Mexico and Modesto, California, where widespread pumping has altered groundwater flow patterns. Simulation results indicate that both wells produce water requiring additional treatment to maintain potable quality in winter when groundwater withdrawals are reduced because less water is derived from parts of the aquifer that contain water requiring less treatment. Simulation results indicate that the water quality at both wells could be improved by increasing average winter-pumping rates to induce more lateral flow from parts of the aquifer that contain better quality water. Arsenic-bearing water produced by the Albuquerque well could be reduced from 55% to 45% by doubling average winter-pumping rate, while nitrate- and uranium-bearing water produced by the Modesto well could be reduced from 95% to 65% by nearly tripling the average winter-pumping rate. Higher average winter-pumping rates would also reduce the volume of intraborehole flow within both wells and prevent the exchange of poor quality water between shallow and deep parts of both aquifers.

  6. 18 CFR 4.33 - Limitations on submitting applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., EXEMPTIONS, AND DETERMINATION OF PROJECT COSTS Application for Preliminary Permit, License or Exemption... preliminary permit for project works that: (1) Would develop, conserve, and utilize, in whole or in part, the same water resources that would be developed, conserved, and utilized by a project for which there is...

  7. 18 CFR 4.33 - Limitations on submitting applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., EXEMPTIONS, AND DETERMINATION OF PROJECT COSTS Application for Preliminary Permit, License or Exemption... preliminary permit for project works that: (1) Would develop, conserve, and utilize, in whole or in part, the same water resources that would be developed, conserved, and utilized by a project for which there is...

  8. 18 CFR 4.33 - Limitations on submitting applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., EXEMPTIONS, AND DETERMINATION OF PROJECT COSTS Application for Preliminary Permit, License or Exemption... preliminary permit for project works that: (1) Would develop, conserve, and utilize, in whole or in part, the same water resources that would be developed, conserved, and utilized by a project for which there is...

  9. 18 CFR 4.33 - Limitations on submitting applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., EXEMPTIONS, AND DETERMINATION OF PROJECT COSTS Application for Preliminary Permit, License or Exemption... preliminary permit for project works that: (1) Would develop, conserve, and utilize, in whole or in part, the same water resources that would be developed, conserved, and utilized by a project for which there is...

  10. 18 CFR 4.33 - Limitations on submitting applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., EXEMPTIONS, AND DETERMINATION OF PROJECT COSTS Application for Preliminary Permit, License or Exemption... preliminary permit for project works that: (1) Would develop, conserve, and utilize, in whole or in part, the same water resources that would be developed, conserved, and utilized by a project for which there is...

  11. Water resources of southeastern Oahu, Hawaii

    USGS Publications Warehouse

    Takasaki, K.J.; Mink, John F.

    1982-01-01

    Southeastern Oahu comprises the eastern end of the Koolau Range and is divided into two roughly equal parts by the crest of the range. The northside of the crest is commonly called the windward side and the southside, the leeward. Precipitous cliffs aproned by a gently sloping landscape are the main topographic features on the windward side. The leeward side is a gentle lava-flow slope incised by steep narrow valleys. The main Koolau fissure zone, including the caldera, lies on the windward side. The leeward side includes minor rift zones that are perpendicular to and intersect the main fissure zone. Dikes in the main fissure zone strike from nearly east-west in the eastern end to about N. 55? W. in the western part. Dikes in the minor rift zones strike from north-south to slightly northeasterly. Water use is about 18 Mgal/d (million gallons per day) of which only 4 Mgal/d is obtained locally from ground-water sources. About a third of the 14 Mgal/d deficit is imported from sources northwest of the study area on the windward side and the remainder from sources in the Honolulu and Pearl Harbor areas on the leeward side. The 4 Mgal/d being developed represents only about 3 percent of the area's rainfall compared to a development-rainfall ratio of 20 percent for the rest of the island. Streams are short and flashy. Perennial streamflow to the sea occurs only in Maunawili Valley and in the Waimanalo area. Mean annual discharge is estimated at 20 Mgal/d in the windward side and at 15 Mgal/d on the leeward side. Low flow, expressed as the flow that is equaled or exceeded 90 percent of the time, is 5 Mgal/d windward of the crest and zero leeward of it. Most fresh ground water occurs in lava flows of the Koolau Volcanics. It is impounded by dikes in the rift zones and floats on saline ground water as lenses outside the rift zones. Small but important bodies of freshwater are perched in volcanic rocks of the Honolulu Group in Maunawili Valley. Fresh ground water occurs in near-shore calcareous sands that overlie a clay horizon in the Waimanalo area. Deeply buried talus and alluvium also carry fresh ground water in the Waimanalo area. Wells tapping saline ground water in fresh lava flows of the Honolulu Group provide water for a sea-life park in the Makapuu area. The same aquifer is tapped by wells for disposal of the saline waste water. The current development scheme in the windward side that utilizes only the free-flow equilibrium discharge of dike-impounded water is inefficient and does not cope with the annual weather cycle. The flow available for development under this scheme is greatest in the rainy winter months when demand is the lowest and least in the summer months when demand is the highest. A more optimal scheme would be to change this natural flow pattern by depleting storage by pumping to increase flow in the high-demand summer months and allowing the depleted storage to recover naturally in the low-demand winter months. Depleting storage would lower water levels which would provide more room for infiltration and provide less opportunity for evapotranspiration. The basal-water reservoir in the leeward side is isolated hydrologically from abutting reservoirs outside the area and can and should be fully exploited. The existing development of the basal-water reservoir is small compared to the natural ground-water flow and that part not being developed is wasting to the sea. Because the area is hydrologically isolated, development will not be detrimental to or reduce the ground-water supply outside the area.

  12. Mode and Intermediate Waters in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  13. STS-47 Payload Specialist Mohri parasails during Homestead AFB water training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Payload Specialist Mamoru Mohri parasails during a special survival training course hosted by Homestead Air Force Base (AFB) in Florida. Mohri simulates a paraglide into water. The exercise was part of an overall course on water survival, attended by the STS-47 prime and alternate (backup) payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  14. Grenade Range Management Using Lime for Dual Role of Metals Immobilization and Explosives Transformation. Field Demonstration at Fort Jackson, SC

    DTIC Science & Technology

    2008-09-01

    Explosives have been detected in HGR soils at levels from the low parts per billion (µg/kg) up to percent levels. RDX has been detected in leachate waters...soil are transport in surface water and subsurface transport in leachate . Simple, innovative, and cost effective technologies are being developed which...range via surface water and leachate . This technology demonstrated that application of lime is a low-cost treatment that can be incorporated into

  15. Understanding the drivers of the future water gap in the Indus-Ganges-Brahmaputra basins

    NASA Astrophysics Data System (ADS)

    Immerzeel, W. W.; Wijngaard, R. R.; Biemans, H.; Lutz, A. F.

    2017-12-01

    The Indus, Ganges, and Brahmaputra (IGB) river systems provide water resources for the agricultural, domestic and industrial sectors sustaining the lives of about 700 million people. The region is globally a hotspot for climate change as the headwaters of these rivers are fed by melt water from snow and glaciers, both strongly influenced by temperature change. In addition, the hydrology in the region is determined by the monsoon and its future dynamics as a results of climate change remains very uncertain. Simultaneously, the population is projected to grow rapidly over the coming decades, which in combination with strong economic developments, will likely result in a rapid increase in water demand. In this study we attempt to quantify the future water gap in the IGB and attribute this water gap to climate change and socio-economic growth. For the upstream mountainous parts of the basins we use the SPHY model, which is calibrated based on historical streamflow and glacier mass balance data and forced by the latest CMIP5 future climate model data for RCP4.5 and 8.5. Output of this model feeds into the downstream LPJmL model, which allows assessment of downstream climate change impacts and projected changes in water demand as a result of socio-economic developments. The LPJmL model is run for different combinations of RCPs and Shared Socio Economic Pathways (SSPs). Our results show that for the IGB as a whole climate change will increase water availability in the coming decades, due to an overall, albeit uncertain, increase in monsoon precipitation in combination with a sustained melt water supply from the upstream parts of the basins. However, irrespective of the SSP and RCP, the water demand as a result of socio-economic growth is expected to increase extremely fast in the near future and this is likely to be the main adaptation challenge for the IGB as far as water shortages are concerned. Our results also show that regional and temporal variation in the water gap is large and that basin specific adaptation measures are required that take into account both socio-economic developments as well as climate change.

  16. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4,212 feet, there was a net movement of about 0.2 billion tons of dissolved salt from the south to the north part and no salt was precipitated in the north part of the lake.

  17. Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities.

    PubMed

    Wang, Tieyu; Zhou, Yunqiao; Bi, Cencen; Lu, Yonglong; He, Guizhen; Giesy, John P

    2017-07-01

    There is a need to formulate water environment standards (WESs) from the current water quality criteria (WQC) in China. To this end, we briefly summarize typical mechanisms applied in several countries with longer histories of developing WESs, and three limitations to formulating WESs in China were identified. After analyzing the feasibility factors including economic development, scientific support capability and environmental policies, we realized that China is still not ready for a complete change from its current nation-wide unified WES system to a local-standard-based system. Thus, we proposed a framework for transformation from WQC to WESs in China. The framework consists of three parts, including responsibilities, processes and policies. The responsibilities include research authorization, development of guidelines, and collection of information, at both national and local levels; the processes include four steps and an impact factor system to establish water quality standards; and the policies include seven specific proposals. Copyright © 2016. Published by Elsevier B.V.

  18. Bibliography of U.S. Geological Survey studies of lakes and reservoirs; the first 100 years

    USGS Publications Warehouse

    Winter, Thomas C.

    1982-01-01

    For more than 100 years, the U.S. Geological Survey has pursued its mission of assessing and mapping the earth resources of the United States, including assessment of the Nation's water resources. Although the Survey has never been a water-management or development agency, it has assisted agencies that are responsible for such developments, and commonly provides data and information for such purposes. Because reservoirs are an intergral part of most water-development projects, the Survey has been involved in reservoir-related studies since the 1880's. The largest and longest involvement has centered on providing information on streamflows and sediment transport related to existing and proposed reservoirs. During the late 1940's, the Survey greatly expanded its activities in evaporation research. More recently, ground water, including bank storage, has gained increased attention. Most of these studies were related primarily to questions of water quantity, and the Survey continues to be involved in studies of physical hydrology. In addition, in response to the increased concern with environmental quality during the past 20 years, the number of Survey studies of the chemical and biological aspects of lakes and reservoirs have increased considerably. Prompted by the recent Centennial (1879-1979) of the U.S. Geological Survey, it is appropriate to assess the Survey's contributions to the hydrology of lakes and reservoirs. Both natural lakes and manmade reservoirs are included in this report. 1 This report includes studies in which lakes or reservoirs are the principal topics. It does not include reports of general water resources of an area in which lakes are discussed as part of that area. This report also does not include data reports in which the data are merely tabulated. The types of reports listed herein include studies of existing or proposed water bodies and associated fluxes of water to and from these water bodies. This report does not include geological or paleobiological studies of ancient lakes. This report does, however, include geological studies of proposed reservoir sites. This bibliography has three parts. The first part is an alphabetical listing that gives complete references to the given reports. Part 2 is a listing by topics, and only the authors, date of publication, and cross-reference to the State are given. Six general categories are considered: Lake hydrology; interaction of lakes and streamflow, including geological studies of reservoir sites; interaction of lakes and atmospheric water; interaction of lakes. and ground water; chemical and biological limnology; and sediment studies. The first four consist of studies of physical characteristics of lakes, and the last two of water-quality characteristics. The category of lake hydrology includes general studies of lakes that are not easily grouped into one of the more specific categories of physical characteristics. For example, it includes water-budget studies where all aspects of hydrology are discussed. It also includes studies of hydrodynamics of lakes as well as studies of lake-level fluctuations. The category of interaction of lakes and streamflow includes preimpoundment studies of streamflow discharge for reservoir design, and studies of the effects of existing reservoirs on streamflow and channel characteristics. Also included in this category are geological studies of river valleys for proposed reservoir sites. The category of interaction of lakes and atmospheric water includes primarily studies of evaporation. The interaction of lakes and ground water includes studies of bank storage. The category of chemical and biological studies was not subdivided into more specific types because of the virtually inseparable relation between chemistry and biology in most studies. This bibliography provided much of the information for two papers that discuss the history of U.S. Geological Survey studies of lakes and reservoirs. (See Winter, 1981b; and Hadley, 1981).

  19. Using Hydrologic Data from Africa in a Senior-Level Course in Groundwater Hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.

    2010-12-01

    Ongoing research efforts in Benin, West Africa, and Uganda, East Africa, have provided substantial data sets involving groundwater quality, applied geophysics, water use, and response of local populations / government agencies to challenges related to water development, protection and management. Ranging from characterization of coastal salt-water encroachment to a major well field to nitrate and microbial contamination of rural water supplies, these data sets were developed by interdisciplinary / international teams that included both undergraduate and graduate students. The present discussion focuses on the integration of the resulting data sets into a senior-level (and lower-level graduate student) course in Groundwater Hydrology. The data sets are employed in multiple ways, including: (i) support of concepts introduced during lectures, (ii) problem sets involving analysis of the data, and (iii) foundation material for open-ended discussions on comparative water resource strategies in developed and developing countries. Most significant in terms of the use of these data sets to advance educational opportunities, the African case studies have been integrated into semester-long projects completed by teams of students as a significant component of their final grade as well as one of their engineering design experiences used to fulfill ABET requirements. During the 2009-2010 academic year, these data sets (as well as published data bases by other agencies) were used by individual groups to design water development strategies for rural villages. During the present semester, two teams of students are pursuing long-term sustainability analyses, the first focused on an aquifer system in northern Indiana (USA) and the second focused on a coastal aquifer system serving Cotonou, Benin. The goal of pursuing these parallel projects is to illustrate to the students the similarities and differences involved in water resource management / protection in different parts of the world (including technical as well as local political and cultural considerations). Advantages derived from using these data sets as part of this design course include: (i) increased interest in the course content, (ii) greater dedication to the course projects, (iii) discussions of development strategies for both developed and developing locations, and (iv) student interest in opportunities to apply their new-found hydrologic skills in both U.S. and international settings.

  20. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system

    USGS Publications Warehouse

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.

    2016-11-23

    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge, losing-stream sections, and groundwater inflows and losses of water to gaining-stream sections, groundwater withdrawals, and surface-water and groundwater outflows to neighboring systems. Groundwater recharge, estimated by a soil-water-balance model, represents about 24 percent, or 11 inches, of 43.9 inches annual precipitation. Recharge is spatially variable, being greater in the northern Springfield Plateau and Salem Plateau than in the southern Springfield Plateau (generally south of the Arkansas border) because of differences in regolith mantle extent and thickness and carbonate lithology and hydraulic properties. Increased precipitation and decreased agricultural land use during the period 1951 through 2011 increased recharge by approximately 5 percent. Although all Ozark streams have losing, neutral, and gaining sections, they are dominantly gaining and are a net sink for groundwater with nearly 90 percent of groundwater recharge returned to springs and streams. Groundwater pumping is a small but important loss of water in the Ozark system hydrologic budget; water-level declines and local cones of depression have been observed around pumping centers and strong concerns exist over potential effects on stream and spring flow.Data indicate that societal needs for freshwater resources in the Ozark Plateaus will continue to increase and will do so in the context of changing climate and hydrology. Groundwater will continue to be an important part of supporting these societal needs and also local ecosystems. The unique character and hydrogeologic variability across the Ozark system will control how the system responds to future stress. Groundwater of the Ozark system in the northern study area is more dynamic, has greater storage and larger flux, and has greater potential for further development than in the part of the study area south of the Arkansas-Missouri border. Further south in Arkansas, a line exists, roughly defined as 5 miles south of the Springfield Plateau-Boston Mountains boundary, beyond which further extensive municipal or commercial development appears unlikely under current economic and resource-need conditions. A small part of the Ozark system groundwater budget is currently drafted for use, leaving an apparently large component available for further development and use—particularly in the northern Springfield Plateau and Salem Plateau; however, the effects of increased pumping on groundwater’s role in maintaining ecosystems and ecosystem services are not quantitatively well understood, and the close relation between groundwater and surface water highlights the importance of further quantitative assessment.

  1. China's water scarcity.

    PubMed

    Jiang, Yong

    2009-08-01

    China has been facing increasingly severe water scarcity, especially in the northern part of the country. China's water scarcity is characterized by insufficient local water resources as well as reduced water quality due to increasing pollution, both of which have caused serious impacts on society and the environment. Three factors contribute to China's water scarcity: uneven spatial distribution of water resources; rapid economic development and urbanization with a large and growing population; and poor water resource management. While it is nearly impossible to adjust the first two factors, improving water resource management represents a cost-effective option that can alleviate China's vulnerability to the issue. Improving water resource management is a long-term task requiring a holistic approach with constant effort. Water right institutions, market-based approaches, and capacity building should be the government's top priority to address the water scarcity issue.

  2. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  3. Ground-water hydrology of the Punjab region of West Pakistan, with emphasis on problems caused by canal irrigation

    USGS Publications Warehouse

    Greenman, D.W.; Swarzenski, W.V.; Bennett, G.D.

    1967-01-01

    Rising water tables and the salinization of land as the result of canal irrigation threaten the agricultural economy of the Punjab. Since 1954 the Water and Soils Investigation Division of the West Pakistan Water and Power Development Authority has inventoried the water and soils resources of the Punjab and investigated the relations between irrigation activities, the natural hydrologic factors, and the incidence of waterlogging and subsurface-drainage problems. This report summarizes the findings of the investigation, which was carried out under a cooperative agreement between the Government of Pakistan and the U.S. Agency for International Development, and its predecessor, the U.S. International Cooperation Administration. Leakage from the canal systems, some of which have been in operation for more than 100 years, is the principal cause of rising water levels and constitutes the major component of ground-water recharge in the Punjab. Geologic studies have shown that virtually the entire Punjab is underlain to depths of 1,000 feet or more by unconsolidated alluvium, which is saturated to within a few feet of land surface. The alluvium varies in texture from medium sand to silty clay, but sandy sediments predominate. Large capacity wells, yielding 4 cfs or more, can be developed almost everywhere. Ground water occurring within a depth of 500 feet below the surface averages less than 1,000 ppm of dissolved solids throughout approximately two-thirds of the Punjab. It is estimated that the volume of usable ground water in storage in this part of the alluvial aquifer is on the order of 2 billion acre-feet. In the other one-third of the Punjab, total dissolved solids range from 1,000 to about 20,000 ppm. In about one-half of this area (one-sixth of the area of the Punjab) some ground water can be utilized by diluting with surface water from canals. The ground-water reservoir underlying the Punjab is an unexploited resource of enormous economic value. It is recognized that the scientific management of this ground-water reservoir is the key to permanent irrigation agriculture in the Punjab. The West Pakistan Water .and Power Development Authority has prepared a long-range program for reclaiming the irrigated lands of the Punjab. The essential feature of this program is a proposed network of tubewells (drilled wells) located with an .average density of about one per square mile. Groundwater withdrawals will serve the dual purpose of helping to supply irrigation requirements and of providing subsurface drainage. Despite the feasibility and inherent advantages of tubewell reclamation methods, it is inevitable that just as the superposition of the canal system on the native environment caused undesirable side effects, large-scale ground-water withdrawals again will disturb the hydrologic regimen. The distribtution of withdrawals and maintenance of a favorable salt balance are two distinct, but related aspects of the ground-water budget that present potential hazards that must be considered in the design and management of the tubewell projects. The availability of ground water for irrigation diminishes from northeast to southwest, or downgradient along the doab (an area lying between two rivers) and is negligible in the centers of the lower parts of the doabs, where the ground water is too highly mineralized for use. Ground-water supplies must be developed in areas where they are available and it might become necessary, under a program of maximum exploitation of ground-water resources, to transfer supplies from outside sources to points of use in the lower parts of the doabs. Several factors inherent in the tubewell system will tend to depreciate the quality of ground water with time. Among these are the addition of salts leached from the soils, increased concentration of salts due .to repeated cycles of recirculation, and the possible lateral and upward encroachment of saline water in response to pumping. It is reasonably ce

  4. [Development and Use of Hidrosig

    NASA Technical Reports Server (NTRS)

    Gupta, Vijay K.; Milne, Bruce T.

    2003-01-01

    The NASA portion of this joint NSF-NASA grant consists of objective 2 and a part of objective 3. A major effort was made on objective 2, and it consisted of developing a numerical GIs environment called Hidrosig. This major research tool is being developed by the University of Colorado for conducting river-network-based scaling analyses of coupled water-energy-landform-vegetation interactions including water and energy balances, and floods and droughts, at multiple space-time scales.Objective 2: To analyze the relevant remotely sensed products from satellites, radars and ground measurements to compute the transported water mass for each complete Strahler stream using an 'assimilated water balance equation' at daily and other appropriate time scales. This objective requires analysis of concurrent data sets for Precipitation (PPT), Evapotranspiration (ET) and stream flows (Q) on river networks. To solve this major problem, our decision was to develop Hidrosig, a new Open-Source GIs software. A research group in Colombia, South America, developed the first version of Hidrosig, and Ricardo Mantilla was part of this effort as an undergraduate student before joining the graduate program at the University of Colorado in 2001. Hydrosig automatically extracts river networks from large DEMs and creates a "link-based" data structure, which is required to conduct a variety of analyses under objective 2. It is programmed in Java, which is a multi-platform programming language freely distributed by SUN under a GPL license. Some existent commercial tools like Arc-Info, RiverTools and others are not suitable for our purpose for two reasons. First, the source code is not available that is needed to build on the network data structure. Second, these tools use different programming languages that are not most versatile for our purposes. For example, RiverTools uses an IDL platform that is not very efficient for organizing diverse data sets on river networks. Hidrosig establishes a clear data organization framework that allows a simultaneous analysis of spatial fields along river network structures involving Horton- Strahler framework. Software tools for network extraction from DEMs and network-based analysis of geomorphologic and topologic variables were developed during the first year and a part of second year.

  5. The status of water and sanitation among Pacific Rim nations.

    PubMed

    Arnold, Robert G; Heyworthz, Jane; Sáez, A Eduardo; Rodriguez, Clemencia; Weinstein, Phil; Ling, Bo; Memon, Saima

    2011-01-01

    Analysis of relationships among national wealth, access to improved water supply and sanitation facilities, and population health indices suggests that the adequacy of water resources at the national level is a poor predictor of economic development--namely, that low water stress is neither necessary nor sufficient for economic development at the present state of water stress among Pacific Rim nations. Although nations differ dramatically in terms of priority provided to improved water and sanitation, there is some level of wealth (per capita GNP) at which all nations promote the development of essential environmental services. Among the Pacific Rim countries for which there are data, no nation with a per capita GNP > US$18,000 per year has failed to provide near universal access to improved water supply and sanitation. Below US$18,000/person-year, however, there are decided differences in the provision of sanitary services (improved water supply and sanitation) among nations with similar economic success. There is a fairly strong relationship between child mortality/life expectancy and access to improved sanitation, as expected from the experiences of developed nations. Here no attempt is made to produce causal relationships among these data. Failure to meet Millennium Development Goals for the extension of improved sanitation is frequently evident in nations with large rural populations. Under those circumstances, capital intensive water and sanitation facilities are infeasible, and process selection for water/wastewater treatment requires an adaptation to local conditions, the use of appropriate materials, etc., constraints that are mostly absent in the developed world. Exceptions to these general ideas exist in water-stressed parts of developed countries, where water supplies are frequently augmented by water harvesting, water reclamation/reuse, and the desalination of brackish water resources. Each of these processes involves public acceptance of water resources that are at least initially of inferior quality. Despite predictions of looming increases in water stress throughout the world, adaptation and resourcefulness generally allow us to meet water demand while pursuing rational economic development, even in the most water-stressed areas of the Pacific Rim.

  6. Grand Forks - East Grand Forks Urban Water Resources Study. East Grand Forks Flood Fight Manual.

    DTIC Science & Technology

    1981-07-01

    wastewater management, and flood control) were identified, and a "plan of study" was developed. The plan of study outlined the general approach t~i -tiTd...three parts. Part 1 contains a general description and narrative on the need of the unit, Part 2 identifies the Unit Chief, Deputies, and Unit members...other units are discussed only in general terms. Future revisions will hopefully result in a happy medium between detailed specifics and generalities

  7. Water and chemical budgets in an urbanized river system under various hydrological conditions

    NASA Astrophysics Data System (ADS)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order to understand hydrological effects on the transport/transfer/retention of water and pollutants in highly human-impacted modified streams. Results from this study were obtained in the framework of the OSIRIS research project (INNOVIRIS Anticipate 2015-2019).

  8. Modelling of underwater light fields in turbid and eutrophic waters: application and validation with experimental data

    NASA Astrophysics Data System (ADS)

    Sundarabalan, B.; Shanmugam, P.

    2014-09-01

    A reliable radiative transfer model is an essential and indispensable tool for understanding of the radiative transfer processes in homogenous and layered waters, analyzing measurements made by radiance sensors and developing remote sensing algorithms to derive meaningful physical quantities and biogeochemical variables in turbid and productive coastal waters. Existing radiative transfer models have been designed to be applicable to either homogenous waters or inhomogeneous waters. To overcome such constraints associated with these models, this study presents a radiative transfer model that treats a homogenous layer as a diffuse part and an inhomogeneous layer as a direct part in the water column and combines these two parts appropriately in order to generate more reliable underwater light field data such as upwelling radiance (Lu), downwelling irradiance (Ed) and upwelling irradiance (Eu). The diffuse model assumes the inherent optical properties (IOPs) to be vertically continuous and the light fields to exponentially decrease with the depth, whereas the direct part considers the water column to be vertically inhomogeneous (layer-by-layer phenomena) with the vertically varying phase function. The surface and bottom boundary conditions, source function due to chlorophyll and solar incident geometry are also included in the present RT model. The performance of this model is assessed in a variety of waters (clear, turbid and eutrophic) using the measured radiometric data. The present model shows an advantage in terms of producing accurate Lu, Ed and Eu profiles (in spatial domain) in different waters determined by both homogenous and inhomogeneous conditions. The feasibility of predicting these underwater light fields based on the remotely estimated IOP data is also examined using the present RT model. For this application, vertical profiles of the water constituents and IOPs are estimated by empirical models based on our in-situ data. The present RT model generates Lu, Ed and Eu spectra closely consistent with the measured data. These results lead to a conclusion that the present RT model is a viable alternative to existing RT models and has an important implication for remote sensing of optically complex waters.

  9. Modelling of underwater light fields in turbid and eutrophic waters: application and validation with experimental data

    NASA Astrophysics Data System (ADS)

    Sundarabalan, B.; Shanmugam, P.

    2015-01-01

    A reliable radiative transfer (RT) model is an essential and indispensable tool for understanding the radiative transfer processes in homogenous and layered waters, analyzing measurements made by radiance sensors and developing remote-sensing algorithms to derive meaningful physical quantities and biogeochemical variables in turbid and productive coastal waters. Existing radiative transfer models have been designed to be applicable to either homogenous waters or inhomogeneous waters. To overcome such constraints associated with these models, this study presents a radiative transfer model that treats a homogenous layer as a diffuse part and an inhomogeneous layer as a direct part in the water column and combines these two parts appropriately in order to generate more reliable underwater light-field data such as upwelling radiance (Lu), downwelling irradiance (Ed) and upwelling irradiance (Eu). The diffuse model assumes the inherent optical properties (IOPs) to be vertically continuous and the light fields to exponentially decrease with depth, whereas the direct part considers the water column to be vertically inhomogeneous (layer-by-layer phenomena) with the vertically varying phase function. The surface and bottom boundary conditions, source function due to chlorophyll and solar incident geometry are also included in the present RT model. The performance of this model is assessed in a variety of waters (clear, turbid and eutrophic) using the measured radiometric data. The present model shows an advantage in terms of producing accurate Lu, Ed and Eu profiles (in spatial domain) in different waters determined by both homogenous and inhomogeneous conditions. The feasibility of predicting these underwater light fields based on the remotely estimated IOP data is also examined using the present RT model. For this application, vertical profiles of the water constituents and IOPs are estimated by empirical models based on our in situ data. The present RT model generates Lu, Ed and Eu spectra closely consistent with the measured data. These results lead to a conclusion that the present RT model is a viable alternative to existing RT models and has an important implication for remote sensing of optically complex waters.

  10. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  11. Demonstration of an advanced solar garden with a water ceiling. Six-month technical progress report, July 1-December 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, R.; Riseng, C.; Thomas, G.

    1980-02-01

    A history of the solar garden with the addition of the transparent water ceiling and a statement of the overall goals of the program are presented. It then details the objectives of the water ceiling grant. The rationale of the transparent water ceiling is developed and its implementation in the solar garden is described. The experimental procedures for evaluating the water ceiling as an integral part of an ongoing garden agricultural experiment are discussed. The results of the first six months of the program and the future activities of the next period are presented.

  12. Water footprint components required to address the water-energy-food nexus, with the recent Urban Water Atlas for Europe as an example

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2017-04-01

    The first part of this presentation analyses which water footprint (WF) components are necessary in WF accounting to provide relevant information to address the Sustainable Development Goals (SDG's) water security (SDG 6), food security (SDG 2) and energy security (SDG 7) in a nexus setting. It is strongly based on the publication Vanham (2016) http://dx.doi.org/10.1016/j.ecoser.2015.08.003. First, the nexus links between (1) the planetary boundary freshwater resources (green and blue water resources) and (2) food, energy and blue water security are discussed. Second, it is shown which water uses are mostly represented in WF accounting. General water management and WF studies only account for the water uses agriculture, industry and domestic water. Important water uses are however mostly not identified as separate entities or even included, i.e. green and blue water resources for aquaculture, wild foods, biofuels, hydroelectric cooling, hydropower, recreation/tourism, forestry (for energy and other biomass uses) and navigation. Third, therefore a list of essential separate components to be included within WF accounting is presented. The latter would be more coherent with the water-food-energy-ecosystem nexus. The second part of the presentation gives a brief overview of the recently published Urban Water Atlas for Europe. It shows for a selected city which WF components are represented and which not. As such, it also identifies research gaps.

  13. Water resources of the Grand Rapids area, Michigan

    USGS Publications Warehouse

    Stramel, G.J.; Wisler, C.O.; Laird, L.B.

    1954-01-01

    The Grand Rapids area, Michigan, has three sources from which to obtain its water supply: Lake Michigan, the Grand River and its tributaries, and ground water. Each of the first two and possibly the third is capable of supplying the entire needs of the area.This area is now obtaining a part of its supply from each of these sources. Of the average use of 50 mgd (million gallons per day) during 1951, Lake Michigan supplied 29 mgd; the Grand River and its tributaries supplied 1 mgd; and ground water supplied 20 mgd.Lake Michigan offers a practically unlimited source of potable water. However, the cost of delivery to the Grand Rapids area presents an economic problem in the further development of this source. Even without storage the Grand River can provide an adequate supply for the city of Grand Rapids. The present average use of the city of Grand Rapids is about 30 mgd and the maximum use is about 60 mgd, while the average flow of the Grand River is 2, 495 mgd or 3, 860 cfs (cubic feet per second) and the minimum daily flow recorded is 246 mgd. The quality and temperature of water in the Grand River is less desirable than Lake Michigan water. However, with proper treatment its chemical quality can be made entirely satisfactory.The city of Grand Rapids is actively engaged in a study that will lead to the expansion of its present water-supply facilities to meet the expected growth in population in Grand Rapids and its environs.Ground-water aquifers in the area are a large potential source of supply. The Grand Rapids area is underlain by glacial material containing a moderately hard to very hard water of varying chemical composition but suitable for most uses. The glacial outwash and lacustrine deposits bordering principal streams afford the greatest potential for the development of large supplies of potable ground water. Below the glacial drift, bedrock formations contain water that is extremely hard and moderately to highly mineralized. Thus the major sources of usable ground water are the glacial drift and some parts of the bedrock. Wherever the bedrock yields large quantities of water, the water is generally of inferior quality. Any development should be preceded by test drilling and careful hydrologic and geologic studies of the area under consideration and chemical analysis of the water found.

  14. Apparent optical properties of the Canadian Beaufort Sea - Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products

    NASA Astrophysics Data System (ADS)

    Hooker, S. B.; Morrow, J. H.; Matsuoka, A.

    2013-07-01

    A next-generation in-water profiler designed to measure the apparent optical properties (AOPs) of seawater was developed and validated across a wide dynamic range of in-water properties. The new free-falling instrument, the Compact-Optical Profiling System (C-OPS), was based on sensors built with a cluster of 19 state-of-the-art microradiometers spanning 320-780 nm and a novel kite-shaped backplane. The new backplane includes tunable ballast, a hydrobaric buoyancy chamber, plus pitch and roll adjustments, to provide unprecedented stability and vertical resolution in near-surface waters. A unique data set was collected as part of the development activity plus the first major field campaign that used the new instrument, the Malina expedition to the Beaufort Sea in the vicinity of the Mackenzie River outflow. The data were of sufficient resolution and quality to show that errors - more correctly, uncertainties - in the execution of data sampling protocols were measurable at the 1% and 1 cm level with C-OPS. A theoretical sensitivity analysis as a function of three water types established by the peak in the remote sensing reflectance spectrum, Rrs(λ), revealed which water types and which parts of the spectrum were the most sensitive to data acquisition uncertainties. Shallow riverine waters were the most sensitive water type, and the ultraviolet and near-infrared spectral end members, which are critical to next-generation satellite missions, were the most sensitive parts of the spectrum. The sensitivity analysis also showed how the use of data products based on band ratios significantly mitigated the influence of data acquisition uncertainties. The unprecedented vertical resolution provided high-quality data products, which supported an alternative classification capability based on the spectral diffuse attenuation coefficient, Kd(λ). The Kd(320) and Kd(780) data showed how complex coastal systems can be distinguished two-dimensionally and how near-ice water masses are different from the neighboring open ocean. Finally, an algorithm for predicting the spectral absorption due to colored dissolved organic matter (CDOM), denoted aCDOM(λ), was developed using the Kd(320) / Kd(780) ratio, which was based on a linear relationship with respect to aCDOM(440). The robustness of the approach was established by expanding the use of the algorithm to include a geographically different coastal environment, the Southern Mid-Atlantic Bight, with no significant change in accuracy (approximately 98% of the variance explained). Alternative spectral end members reminiscent of next-generation (340 and 710 nm) as well as legacy satellite missions (412 and 670 nm) were also used to accurately derive aCDOM(440) from Kd(λ) ratios.

  15. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbonmore » production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.« less

  16. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    USGS Publications Warehouse

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data collected as part of long-term water-level monitoring networks.

  17. Stochastic optimisation of water allocation on a global scale

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Straatsma, Menno; Karssenberg, Derek; Bierkens, Marc F. P.

    2014-05-01

    Climate change, increasing population and further economic developments are expected to increase water scarcity for many regions of the world. Optimal water management strategies are required to minimise the water gap between water supply and domestic, industrial and agricultural water demand. A crucial aspect of water allocation is the spatial scale of optimisation. Blue water supply peaks at the upstream parts of large catchments, whereas demands are often largest at the industrialised downstream parts. Two extremes exist in water allocation: (i) 'First come, first serve,' which allows the upstream water demands to be fulfilled without considerations of downstream demands, and (ii) 'All for one, one for all' that satisfies water allocation over the whole catchment. In practice, water treaties govern intermediate solutions. The objective of this study is to determine the effect of these two end members on water allocation optimisation with respect to water scarcity. We conduct this study on a global scale with the year 2100 as temporal horizon. Water supply is calculated using the hydrological model PCR-GLOBWB, operating at a 5 arcminutes resolution and a daily time step. PCR-GLOBWB is forced with temperature and precipitation fields from the Hadgem2-ES global circulation model that participated in the latest coupled model intercomparison project (CMIP5). Water demands are calculated for representative concentration pathway 6.0 (RCP 6.0) and shared socio-economic pathway scenario 2 (SSP2). To enable the fast computation of the optimisation, we developed a hydrologically correct network of 1800 basin segments with an average size of 100 000 square kilometres. The maximum number of nodes in a network was 140 for the Amazon Basin. Water demands and supplies are aggregated to cubic kilometres per month per segment. A new open source implementation of the water allocation is developed for the stochastic optimisation of the water allocation. We apply a Genetic Algorithm for each segment to estimate the set of parameters that distribute the water supply for each node. We use the Python programming language and a flexible software architecture allowing to straightforwardly 1) exchange the process description for the nodes such that different water allocation schemes can be tested 2) exchange the objective function 3) apply the optimisation either to the whole catchment or to different sub-levels and 4) use multi-core CPUs concurrently and therefore reducing computation time. We demonstrate the application of the scientific workflow to the model outputs of PCR-GLOBWB and present first results on how water scarcity depends on the choice between the two extremes in water allocation.

  18. Development of a prototype experiment for treating CELSS and PCELSS wastes to produce nutrients for plant growth

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Future long term spaceflights require extensive recycling of wastes to minimize the need for resupplying the vessel. The recycling occurs in a fully or partially closed environment life support system (CELSS or PCELSS). The National Aeronautics and Space Administration (NASA) is interested in converting wastewater into potable water or water for hydroponic farming as part of a CELSS. The development of technologies for wastewater treatment that produce a minimum of by-products is essential. One process that achieves good conversion of moderately concentrated organic wastes in water (1 to 20% by weight) completely to carbon dioxide and water is oxidation in supercritical water. Both air (or oxygen) and many organics are completely miscible with supercritical water, so there are no interphase mass transport resistances that limits the overall oxidation reaction. The temperature of supercritical water, which must be above 374 C, is also sufficient to have rapid reaction kinetics for the oxidations.

  19. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  20. Water and sanitation service delivery, pricing, and the poor: An empirical estimate of subsidy incidence in Nairobi, Kenya

    NASA Astrophysics Data System (ADS)

    Fuente, David; Gakii Gatua, Josephine; Ikiara, Moses; Kabubo-Mariara, Jane; Mwaura, Mbutu; Whittington, Dale

    2016-06-01

    The increasing block tariff (IBT) is among the most widely used tariffs by water utilities, particularly in developing countries. This is due in part to the perception that the IBT can effectively target subsidies to low-income households. Combining data on households' socioeconomic status and metered water use, this paper examines the distributional incidence of subsidies delivered through the IBT in Nairobi, Kenya. Contrary to conventional wisdom, we find that high-income residential and nonresidential customers receive a disproportionate share of subsidies and that subsidy targeting is poor even among households with a private metered connection. We also find that stated expenditure on water, a commonly used means of estimating water use, is a poor proxy for metered use and that previous studies on subsidy incidence underestimate the magnitude of the subsidy delivered through water tariffs. These findings have implications for both the design and evaluation of water tariffs in developing countries.

  1. Water Use for Unconventional Energy Development: How Much, What Kind, and to What Reaction?

    NASA Astrophysics Data System (ADS)

    Grubert, E.

    2017-12-01

    Water resources—access to water, protection of water, and allocation of water in particular—are a major priority for Americans, but water use for the energy sector has not previously been well characterized. Water use and management associated with unconventional energy development is of special interest, in part because it is often new to the locations and contexts where it occurs. This presentation focuses on three major questions about water use for unconventional energy development, drawing on both engineering and anthropological research. First, using results from a recent study of water use for energy in the entire United States, how much water does the US use for unconventional energy resources, and how does that compare with water use for more mature fuel cycles? Second, based on that same study, what kind of water is used for these unconventional energy resource fuel cycles? Specifically, where does the water come from, and what is its quality? Finally, drawing on recent case studies in the US and elsewhere, what has the reaction been to these water uses, and why does that matter? Case studies focused on oil and natural gas resources illustrate societal reactions to issues of both water management, particularly related to induced seismicity associated with produced water injection, and water allocation, particularly related to hydraulic fracturing. Overall, recent work finds that public concern about water used for unconventional energy resources is often better explained by observed or anticipated local impacts and the uncertainty surrounding these impacts than by specifics about quantities, allocation, and management techniques. This work provides both quantitative and qualitative characterization of water management and allocation for unconventional energy development.

  2. Optimal Dynamics of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  3. Where Does the Water Go? Development of Students' Questions Through the Use of Their Photography of Local Water Catchments

    ERIC Educational Resources Information Center

    Francis, Marj; Paige, Kathryn; Hardy, Graham

    2016-01-01

    An invitation to be part of a small research project with science teacher educators focusing on the Australian Curriculum--Science as a Human Endeavour strand provided an opportunity for professional learning in science for an early career teacher working with Year 1-2 students. This article explores how the use of students' photography of local…

  4. An Educational Resource on Water and Health as a Teaching Aid in French Primary Schools--Part II: Design and Validation

    ERIC Educational Resources Information Center

    Savanovitch, Chantal; Sauvant-Rochat, Marie-Pierre

    2013-01-01

    An educational resource on water and health, using an approach focused on health education and environmental health education, was developed to help teachers in the classroom. The implementation of health education programs in French primary schools is explained. Three specific objectives were identified, targeting 3rd, 4th, and 5th year pupils:…

  5. 24 CFR 92.206 - Eligible project costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... lead-based paint activities, as required by part 35 of this title. (3) For both new construction and... on-site roads and sewer and water lines necessary to the development of the project. The project site...

  6. 24 CFR 92.206 - Eligible project costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... lead-based paint activities, as required by part 35 of this title. (3) For both new construction and... on-site roads and sewer and water lines necessary to the development of the project. The project site...

  7. 24 CFR 92.206 - Eligible project costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... lead-based paint activities, as required by part 35 of this title. (3) For both new construction and... on-site roads and sewer and water lines necessary to the development of the project. The project site...

  8. Sustainable water use and management options in a water-stressed river basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert

    2017-04-01

    Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction

  9. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues.From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions.The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile. Lateral no-flow boundaries were located on the basis of outcrop extent (northwestern), major streams (southwestern, northeastern), and downdip limit of freshwater (southeastern). The MODFLOW general-head boundary package was used to simulate recharge and discharge in the outcrops of the hydrogeologic units. Simulation of land-surface subsidence (actually, compaction of clays) and release of water from storage in the clays of the Chicot and Evangeline aquifers was accomplished using the Interbed-Storage Package designed for use with the MODFLOW model. The model was calibrated by trial-anderror adjustment of selected model input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) reasonably reproduced field measured (or estimated) aquifer responses.Model calibration comprised four elements: The first was qualitative comparison of simulated and measured heads in the aquifers for 1977 and 2000; and quantitative comparison by computation and areal distribution of the root-mean-square error between simulated and measured heads. The second calibration element was comparison of simulated and measured hydrographs from wells in the aquifers in a number of counties throughout the modeled area. The third calibration element was comparison of simulated water-budget componentsprimarily recharge and dischargeto estimates of physically reasonable ranges of actual water-budget components. The fourth calibration element was comparison of simulated land-surface subsidence from predevelopment to 2000 to measured land surface subsidence from 1906 through 1995.

  10. Late developments in the field of heat recovery

    NASA Astrophysics Data System (ADS)

    McFarlan, A. I.

    Developments to reduce the first cost and operating expense of large building air conditioning systems, with emphasis on heat transfer are described. The 3 pipe wide range coils dissipate part of the summer cooling load directly to the outside of the building without passing thru the water chillers. Tank circuits to automatically cycle water thru storage tanks can reduce the refrigeration load about 35% during the peak day period. Means to produce above 48.9 C hot water economically for winter heating and summer dissipation of internal heat are described. A heat balance is maintained automatically to remove only the excess winter heat beyond that which can be usefully recycled or stored.

  11. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  12. Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

    The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

  13. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  14. The fierce ox becomes tame on strange ground

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits

    2015-04-01

    Obviously, the science of change in hydrology and society requires the humanities and social sciences to be an integrated part of the academic project. With the promise that serious study might actually change the hydrological framework, human-environmental interactions need to be studied. An issue is obviously how to ensure that social action by human agents is well represented. In this paper, I propose to rethink human's role within its own environment: people create environments expecting specific results (even though people have their own agendas). The group of 'people' is not a homogenous category. Bruno Latour, the French sociologist and philosopher, argues that human decision making and development of societal institutions is a local activity, constructed within networks of actors. Networks are continuously created and recreated by human actors engaging with other human actors and non-human intermediaries. The resulting networks build links between short and long term human responses - from individuals to societies - in terms of actions, policies, interventions and the like in relation to the - often stochastic - nature of water flows and systems on different scales. Through Actor Network Theory, I suggest new insights from this approach as well as the pitfalls to understand how networks of people and material conditions shape policy development for and management of water resources. I discuss how a focus on the short-term, small-scale interactions among people, their environments and technology in developing water policies and managing water systems can yield insights relevant for those involved in current water policy. How representatives of society itself can be part of this remains an issue. The paper will suggest some ideas from a project setup in the Netherlands, in which researchers, water managers and heritage agencies collaborate.

  15. Consequences of Not Conserving Water

    NASA Astrophysics Data System (ADS)

    Narayanan, M.; Crawford, L.

    2015-12-01

    The problem of fresh water is not only local, but also global. In certain parts of the world, much needed rain is becoming less frequent, possibly due to the effects of global warming. The resources of clean fresh water on earth are very limited and are reducing every year due to pollution like industrial waste, oil spills, untreated sewage, inefficient irrigation systems, waste and leakage, etc. This is destroying the ecosystem of the entire planet. Of course, in some parts of world there is rain almost throughout the year. Regardless, major problems are still prevalent because of a variety of reasons such as drainage, storage, evaporation, cleanliness, etc. It is all too well known that evapotranspiration contributes to a significant water loss from drainage basins. Most of the citizens of this world are still careless about water usage and are unappreciative of the need for water conservation. This is a very unpleasant fact and needs to change. Cost expenditures for the development of infrastructure to supply water to households and industries are becoming prohibitively expensive. Many parts in this world have extremely dry terrain and rainfall is not as frequent as it should be. As a result, the underground water tables are not replenished properly, thereby turning regions to arid land and deserts. Unless effective irrigation methods are used, potential evapotranspiration may be actually greater than precipitation provided by nature. The soil therefore dries out creating an arid landmass. The earth and its inhabitants can sustain only if creative methods of clean water conservation ideas are effectively implemented. (Co-author: Dr. Mysore Narayanan) References: http://www.epa.gov/oaintrnt/water/http://www.usda.gov/wps/portal/usda/usdahome?navid=conservationhttp://www.ecy.wa.gov/programs/wr/ws/wtrcnsv.htmlhttp://www.sandiego.gov/water/conservation/http://www.swcs.org/http://www.awwa.org/resources-tools/water-knowledge/water-conservation.aspxhttp://www.benefits-of-recycling.com/waterconservationmethods/

  16. Aggregation of Minnesota water-use data and transfer of data to the National Water-Use Data System; Procedures and programs

    USGS Publications Warehouse

    Trotta, L.C.

    1988-01-01

    The Minnesota Water-Use Data System stores data on the quantity of withdrawals and discharge in Minnesota. To transfer these data into the U.S. Geological Survey 's National Water-Use Data System properly, certain procedures must be followed. Uniform data categorization and entry allows comparison of water use from State to State. The data in the National Water-Use Data System are aggregated by county and by watershed (hydrologic unit). This report documents the data aggregation and transfer process as developed by the Minnesota Department of Natural Resources, the Minnesota State Planning Agency/Planning Information Center, and the U.S. Geological Survey as part of the National Water-Use Information Program.

  17. Surface-water hydrologic data for the Houston metropolitan area, Texas, water years 1990-95

    USGS Publications Warehouse

    Sneck-Fahrer, Debra A.; Liscum, Fred; East, Jeffery W.

    2003-01-01

    During water years 1990–95, data were collected at 24 U.S. Geological Survey streamflow-gaging stations, 21 rain gages, and 6 water-quality stations in the Houston metropolitan area, Texas. The data were collected as part of the Houston Urban Runoff Program, which began in water year 1964. Annual peaks were defined for the 24 streamflow-gaging stations in the study area. All stations had 10 or more years of record. Precipitation data from the 21 rain gages and discharge or stage data from 23 streamflow-gaging stations are available to develop storm hydrographs. One-hundred thirty-four samples were collected at six water-quality stations. The samples were analyzed for about 80 water-quality properties and constituents.

  18. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.

  19. Hydrogeology of the western part of the Salt River Valley area, Maricopa County, Arizona

    USGS Publications Warehouse

    Brown, James G.; Pool, D.R.

    1989-01-01

    The Salt River Valley is a major population and agricultural center of more than 3,000 mi2 in central Arizona (fig. 1). The western part of the Salt River Valley area (area of this report) covers about 1,500 mi2. The Phoenix metropolitan area with a population of more than 1.6 million in 1985 (Valley National Bank, 1987) is located within the valley. The watersheds of the Salt, Verde, and Agua Fria Rivers provide the valley with a reliable but limited surface-water supply that must be augmented with ground water even in years of plentiful rainfall. Large-scale ground-water withdrawals began in the Salt River Valley in the early part of the 20th century; between 1915 and 1983, the total estimated ground-water pumpage was 81 million acre-ft (U.S. Geological Survey, 1984). Because of the low average annual rainfall and high potential evapotranspiration, the principal sources of ground-water recharge are urban runoff, excess irrigation, canal seepage and surface-water flows during years of higher-than-normal rainfall. Withdrawals greatly exceed recharge and, in some area, ground-water levels have declines as much as 350 ft (Laney and other, 1978; Ross, 1978). In the study area, ground-water declines of more than 300 ft have occurred in Deer Valley and from Luke Air Force Base north to Beardsley. As a result, a large depression of the water table has developed west of Luke Air Force Base (fig. 2). Ground-water use has decreased in recent years because precipitation and surface-water supplies have been greater than normal. Increased precipitation also caused large quantities of runoff to be released into the normally dry Salt and Gila River channels. From February 1978 to June 1980, streamflow losses of at least 90,000 acre-ft occurred between Jointhead Dam near the east boundary of the study area and Gillespie Dam several miles southwest of the west edge of the study area (Mann and Rhone, 1983). Consequently, ground-water declines in a large part of the basin have slowed, and ground-water levels in some sarea have risen significantly. In many areas along the Salt River and northeast of the confluence of the Salt and Agua Fria River, ground-water levels rose more than 25 ft between 1978 and 1984 (Reeter and Remick, 1986).

  20. An assessment of potential hydro-political tensions in transboundary river basins using environmental, political, and economic indicators

    NASA Astrophysics Data System (ADS)

    De Stefano, Lucia; Petersen-Perlman, Jacob; Sproles, Eric; Eynard, James; Wolf, Aaron T.

    2015-04-01

    Globally 286 river basins extend across international borders, covering over 61.9 million km2 of the earth's surface and hosting a total of approximately 2.7 billion people. In these basins, transboundary water resources support an interdependent web of environmental, political, and economic systems that can enhance or destabilize a region. We present an integrated global-scale assessment of transboundary watersheds to identify regions more likely to experience hydro-political tensions over the next decade and beyond based upon environmental, political, and economic indicators. We combine NASA's Gravity Recovery and Climate Experiment (GRACE) measurements of changes in terrestrial water storage with metrics of projected climate change impacts on water variability, the institutional capacity of countries to manage shared water resources, the development of new water infrastructure, per capita gross national income, domestic and international armed conflicts, and recent history of disputes over transboundary waters. The construction of new water-related infrastructure is on-going or planned in many basins worldwide. New water infrastructure is foreseen also in areas where instruments of international cooperation are still absent or limited in scope, e.g. in Southeast Asia, South Asia, Central America, the northern part of the South American continent, and the southern Balkans as well as in different parts of Africa. Moreover, in Central and Eastern Africa, the Middle East, and Central, South and South-East Asia there is a concomitance of several political, environmental and socioeconomic factors that could exacerbate hydropolitical tensions. Our analysis integrates political, economic and environmental metrics and is part of the United Nation's Transboundary Waters Assessment Programme to provide the first global-scale assessment of its type.

  1. Commercial absorption chiller models for evaluation of control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeppel, E.A.; Klein, S.A.; Mitchell, J.W.

    1995-08-01

    A steady-state computer simulation model of a direct fired double-effect water-lithium bromide absorption chiller in the parallel-flow configuration was developed from first principles. Unknown model parameters such as heat transfer coefficients were determined by matching the model`s calculated state points and coefficient of performance (COP) against nominal full-load operating data and COPs obtained from a manufacturer`s catalog. The model compares favorably with the manufacturer`s performance ratings for varying water circuit (chilled and cooling) temperatures at full load conditions and for chiller part-load performance. The model was used (1) to investigate the effect of varying the water circuit flow rates withmore » the chiller load and (2) to optimize chiller part-load performance with respect to the distribution and flow of the weak solution.« less

  2. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    USGS Publications Warehouse

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in response to decreased pumping. Simulated drawdown exceeded 10 ft in the Upper Floridan aquifer across much of the western half of the model area, with drawdown exceeding 20 ft along parts of the western, northern, and southern boundaries where irrigation pumping increased during this period. From predevelopment to 2000 conditions, the simulated water budget showed an increase in inflow from, and decrease in outflow to, the general-head boundaries, and a reversal from net seaward flow to net landward flow across the coastline. Simulated changes in recharge and discharge distribution from predevelopment to 2000 conditions showed an increase in extent and magnitude of net recharge cells in the northern part of the model area, and a decrease in discharge or change to recharge in cells containing major streams and beneath major pumping centers. The model is relatively sensitive to pumping and the controlling head at the fixed-head boundary and less sensitive to the distribution of aquifer properties in general. Model limitations include: (1) its spatial scale and discretization, (2) the extent to which data are available to physically define the flow system, (3) the type of boundary conditions and controlling parameters used, (4) uncertainty in the distribution of pumping, and (5) uncertainty in field-scale hydraulic properties. The model could be improved with more accurate estimates of ground-water pumpage and better characterization of recharge and discharge.

  3. Understanding the dielectric properties of water

    NASA Astrophysics Data System (ADS)

    Elton, Daniel Christopher

    Liquid water is a complex material with many anomalous properties. Three of these anomalies are an abnormally high dielectric constant, an abnormally high boiling point, and a solid phase which is less dense than the liquid phase. Each of these anomalies is known to have been critically important in the development of life on Earth. All of water's special properties can be linked to water's unique ability to form hydrogen bonds. Water's hydrogen bonds form a transient network. Understanding the average structure of this network and how it changes through the phase diagram remains the focus of intense research. In this thesis we focus on understanding dielectric and infrared measurements, which measure the absorption and refraction of electromagnetic waves at different frequencies. Computer simulation is a necessary tool for correctly interpreting these measurements in terms of the microscopic dynamics of molecules. In the first part of this thesis we compare three classes of water molecule model that are used in molecular dynamics simulation--rigid, flexible, and polarizable. We show how the inclusion of polarization is necessary to capture how water's properties change with pressure and temperature. This finding is relevant to biophysical simulation. In the next part, we conduct a detailed study of water's dielectric properties to discover vibrational modes that propagate through the hydrogen bond network. Parts of the absorption spectrum of water are due to electromagnetic waves coupling to these modes. Previously, vibrational motions in water were thought to be confined to small clusters of perhaps five molecules. Our work upends this view by arguing that dynamics occur on the hydrogen bond network, resulting in modes that can propagate surprisingly long distances of up to two nanometers. These modes bear many similarities to optical phonon modes in ice. We show how the LO-TO splitting of these modes provides a new window into the structure of the hydrogen bond network. In the final part of this thesis we turn to the problems one encounters when trying to simulate water from "first principles'', ie. from the laws of quantum mechanics. The primary technique that physicists use to approximate the quantum mechanics of electrons, density functional theory, does not work well for water, and much work is being done to understand how to fix this problem. A usual assumption in first principles simulation is that only electrons need to be treated quantum mechanically. We argue that both electrons and nuclei need to be treated quantum mechanically and we present a new code to do this. The custom code presented in this thesis implements a novel algorithm which greatly speeds up the calculation of nuclear quantum effects with only minor losses in accuracy. We hope that others will start using our technique to advance first principles simulation. Accurate first principles simulation of water is important for understanding and developing solar water splitting catalysts and batteries. First principles simulations are also being increasingly used to understand proteins and drug molecules, and this trend will continue with Moore's law.

  4. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  5. Identified Natural Hazards May Cause Adverse Impact on Sustainability of Desalination Plants in Red Sea

    NASA Astrophysics Data System (ADS)

    Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.

    2011-12-01

    The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater desalination giving priority against their land-based resources. Saudi Arabia is the largest desalinated-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being desalinated about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the desalination plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater desalination may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.

  6. Mobile sailing robot for automatic estimation of fish density and monitoring water quality

    PubMed Central

    2013-01-01

    Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health. PMID:23815984

  7. Mobile sailing robot for automatic estimation of fish density and monitoring water quality.

    PubMed

    Koprowski, Robert; Wróbel, Zygmunt; Kleszcz, Agnieszka; Wilczyński, Sławomir; Woźnica, Andrzej; Łozowski, Bartosz; Pilarczyk, Maciej; Karczewski, Jerzy; Migula, Paweł

    2013-07-01

    The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.

  8. Severe falciparum malaria: A case report

    NASA Astrophysics Data System (ADS)

    Arcelia, F.; Asymida, F.; Lubis, N. F. M.; Pasaribu, A. P.

    2018-03-01

    Plasmodium parasites caused Malaria. Indonesia is one of the countries in Southeast Asia that endemic to malaria. The burden of malaria is more in the eastern part of Indonesia than the Western part as well as the endemicity. Some cases of malaria will develop to severe form. Usually, the manifestation of children and adult are different. We reported a severe case of malaria in a 14-year-old boy who develops several manifestations such as anemia, hypoglycemia, sepsis and black water fever. We successfully treated the patient with Artesunate intravenous and continued with Dihydroartemisinin-piperaquine.

  9. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to those defined in the River Basin Management Plan (RBMP), are thoroughly examined in order to ascertain the river's capability to cover multi water demands and the potential of further infrastructure development. Due to the transboundary nature of the river basin in question, different scenarios quantify the maximum water volumes that could be further exploited in the upper part of the basin in order to avoid adverse consequences to the downstream regional economy, power productivity and environmental flow, and in terms of water governance to satisfy the need to balance water use between socio-economic activities and ecosystems.

  10. A preliminary appraisal of the Garber-Wellington Aquifer, southern Logan and northern Oklahoma counties, Oklahoma

    USGS Publications Warehouse

    Carr, Jerry E.; Marcher, Melvin V.

    1977-01-01

    The Garber-Wellington aquifer, which dips westward at 30 to 40 feet per mile, consists of about 900 feet of interbedded sandstone, shale, and siltstone. Sandstone comprises 35 to 75 percent of the aquifer and averages about 50 percent. Water-table conditions generally exist in the upper 200 feet in the outcrop area of the aquifer; semi-artesian or artesian conditions exist below a depth of 200 feet and beneath rocks of the Hennessey Group (predominantly shale) where the aquifer is fully saturated. Water containing more than 1,000 milligrams per liter dissolved solids occurs at various depths through the area. The altitude of the base of fresh water ranges from 250 feet above sea level in the south-central part of the area to 950 feet in the northwestern part. The thickness of the fresh-water zone ranges from less than 150 feet in the northern part of the area to about 850 feet in the southern part. The total amount of water stored in the fresh-water zone is estimated to be 21 million acre-feet based on specific yield of 0.20. Minimum recharge to the aquifer in 1975 is estimated to be 190 acre-feet per square mile or about 10 percent of the annual precipitation. Total minimum recharge to the aquifer in the study area in 1975 is estimated to be 129,000 acre-feet. Streams in the area are the principal means of ground-water discharge; the amount of discharge is essentially the same as recharge. The amount of groundwater used for municipal and rural water supply in 1975 is estimated to have been 5,000 acre-feet; a similar amount may have been used for industrial purposes. As a result of pumping, the potentiometric surface in 1975 had been lowered about 200 feet in the vicinity of Edmond and about 100 feet in the vicinity of Nichols Hills. Chemical analyses of water from the aquifer indicates that hardness is greater in the upper part of the aquifer than in the lower part, and that sulfate, chloride, and dissolved solids increase with depth. Reported yields of wells more than 250 feet deep range from 70 to 475 gallons per minute and average 240 gallons per minute. Potential well yields range from 225 gallons per minute when the fresh-water zone is 350 feet thick to about 550 gallons per minute where the fresh water zone is 850 feet thick. These estimates of potential yield are based on an available drawdown of half the thickness of the fresh-water zone and a specific capacity of 1.3 gallons per minute per foot. Intrusion of saline water into the fresh-water zone is a potential threat to water quality in the aquifer if the pressure head in the fresh-water zone is reduced sufficiently to allow upconing of saline water. One way to avoid the problem of upconing is by steady pumping at low rates from widely spaced wells; however, information required to determine pumping rates and well spacing is not available. For proper aquifer management the distribution of wells and rates of withdrawals should be designed to capture maximum recharge to the ground-water system. This may be accomplished by developing regional ground-water gradients that are sufficiently large to move water to pumpage centers but not so steep as to cause upconing of saline water or excessive water-level declines.

  11. National Water Infrastructure Adaptation Assessment, Part I: Climate Change Adaptation Readiness Analysis

    EPA Science Inventory

    The report “National Water Infrastructure Adaptation Assessment” is comprised of four parts (Part I to IV), each in an independent volume. The Part I report presented herein describes a preliminary regulatory and technical analysis of water infrastructure and regulations in the ...

  12. A simplified model for equilibrium and transient swelling of thermo-responsive gels.

    PubMed

    Drozdov, A D; deClaville Christiansen, J

    2017-11-01

    A simplified model is developed for the elastic response of thermo-responsive gels subjected to swelling under an arbitrary deformation with finite strains. The constitutive equations involve five adjustable parameters that are determined by fitting observations in equilibrium water uptake tests and T-jump transient tests on thin gel disks. Two scenarios for water release under heating are revealed by means of numerical simulation. When the final temperature in a T-jump test is below the volume-phase transition temperature, deswelling is characterized by smooth distribution of water molecules and small tensile stresses. When the final temperature exceeds the critical temperature, a gel disk is split into three regions (central part with a high concentration of water molecules and two domains near the boundaries with low water content) separated by sharp interfaces, whose propagation is accompanied by development of large (comparable with the elastic modulus) tensile stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An exploration of multilevel modeling for estimating access to drinking-water and sanitation.

    PubMed

    Wolf, Jennyfer; Bonjour, Sophie; Prüss-Ustün, Annette

    2013-03-01

    Monitoring progress towards the targets for access to safe drinking-water and sanitation under the Millennium Development Goals (MDG) requires reliable estimates and indicators. We analyzed trends and reviewed current indicators used for those targets. We developed continuous time series for 1990 to 2015 for access to improved drinking-water sources and improved sanitation facilities by country using multilevel modeling (MLM). We show that MLM is a reliable and transparent tool with many advantages over alternative approaches to estimate access to facilities. Using current indicators, the MDG target for water would be met, but the target for sanitation missed considerably. The number of people without access to such services is still increasing in certain regions. Striking differences persist between urban and rural areas. Consideration of water quality and different classification of shared sanitation facilities would, however, alter estimates considerably. To achieve improved monitoring we propose: (1) considering the use of MLM as an alternative for estimating access to safe drinking-water and sanitation; (2) completing regular assessments of water quality and supporting the development of national regulatory frameworks as part of capacity development; (3) evaluating health impacts of shared sanitation; (4) using a more equitable presentation of countries' performances in providing improved services.

  14. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  15. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, John; Carr, Adrianne E.; Greer, Chris

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  16. Geohydrologic reconnaissance of the upper Potomac River basin

    USGS Publications Warehouse

    Trainer, Frank W.; Watkins, Frank A.

    1975-01-01

    The upper Potomac River basin, in the central Appalachian region in Pennsylvania, Maryland, Virginia, and West Virginia, is a humid temperate region of diverse fractured rocks. Three geohydrologic terranes, which underlie large parts of the basin, are described in terms of their aquifer characteristics and of the magnitude and duration of their base runoff: (1) fractured rock having a thin regolith, (2) fractured rock having a thick regolith, and (3) carbonate rock. Crystalline rock in the mountainous part of the Blue Ridge province and shale with tight sandstone in the folded Appalachians are covered with thin regolith. Water is stored in and moves through fairly unmodified fractures. Average transmissivity (T) is estimated to be 150 feet squared per day, and average storage coefficient (S), 0.005. Base runoff declines rapidly from its high levels during spring and is poorly sustained during the summer season of high evapotranspiration. The rocks in this geohydrologic terrane are the least effective in the basin for the development of water supplies and as a source of dry-weather streamflow. Crystalline and sedimentary rocks in the Piedmont province and in the lowland part of the Blue Ridge province are covered with thick regolith. Water is stored in and moves through both the regolith and the underlying fractured rock. Estimated average values for aquifer characteristics are T, 200 feet squared per day, and S, 0.01. Base runoff is better sustained in this terrane than in the thin-regolith terrane and on the average .is about twice as great. Carbonate rock, in which fractures have been widened selectively by solution, especially near streams, has estimated average aquifer characteristics of T, 500 feet squared per day, and S, 0.03-0.04. This rock is the most effective in the basin in terms of water supply and base runoff. Where its fractures have not been widened by solution, the carbonate rock is a fractured-rock aquifer much like the noncarbonate rock. At low values the frequency of specific capacities of wells is much the same in all rocks in the basin, but high values of specific capacity are as much as 10 times more frequent in carbonate rock than in noncarbonate rock. Nearly all the large springs and high-capacity wells in the basin are in carbonate rock. Base runoff from the carbonate rock is better sustained during dry weather and on the average is about three times as great as base runoff from fractured rock having a thin regolith. The potential role of these water-bearing terranes in water management probably lies in the local development of large water supplies from the carbonate rock and in the possible manipulation of underground storage for such purposes as providing space for artificial recharge of ground water and providing ground water to be used for the augmentation of low streamflow. The chief water-quality problems in the basin--acidic mine-drainage water in the western part of the basin, local highly mineralized ground water, and the high nitrate content of ground water in some of the densely populated parts of the basin--would probably have little adverse affect on the use of ground water for low-flow augmentation.

  17. A Science Plan for a Comprehensive Regional Assessment of the Atlantic Coastal Plain Aquifer System in Maryland

    USGS Publications Warehouse

    Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.

    2007-01-01

    The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of the aquifer system. The work will include updating the hydrogeologic framework, developing a Geographic Information System-based aquifer information system, refinement of water-use information, assessment of existing water-quality data, and development of detailed plans for ground-water-flow and management models. Phase II is an intensive study phase during which a regional ground-water-flow model will be developed and calibrated for the entire region of Maryland in the Atlantic Coastal Plain as well as appropriate areas of Delaware and Virginia. The model will be used to simulate flow and water levels in the aquifer system and to study the water budget of the system. The model analysis will be based on published information but will be supplemented with field investigations of recharge and leakage in the aquifer system. Localized and finely discretized ground-water-flow models that are embedded in the regional model will be developed for selected areas of heavy withdrawals. Other modeling studies will be conducted to better understand flow in the unconfined parts of the aquifer system and to support the recharge studies. Phase II will also include selected water-quality studies and a study to determine how hydrologic and water-quality-monitoring networks need to be enhanced to appropriately assess the sustainability of the Coastal Plain aquifer system. Phase III will be largely devoted to the development and application of a ground-water optimization model. This model will be linked to the ground-water-flow model to create a model package that can be used to test different water-management scenarios. The management criteria that will be used to develop these scenarios will be determined in consultation with a variety of state and local stakeholders and policy makers in Phases I and II of the assessment. The development of the aquifer information system is a key component of the assessment. The system will store all relevant aquifer data

  18. Water Pollution: Part I, Municipal Wastewaters; Part II, Industrial Wastewaters.

    ERIC Educational Resources Information Center

    Fowler, K. E. M.

    This publication is an annotated bibliography of municipal and industrial wastewater literature. This publication consists of two parts plus appendices. Part one is entitled Municipal Wastewaters and includes publications in such areas as health effects of polluted waters, federal policy and legislation, biology and chemistry of polluted water,…

  19. Importance of bottom-up approach in water management - sustainable development of catchment areas in Croatia

    NASA Astrophysics Data System (ADS)

    Pavic, M.; Cosic-Flajsig, G.; Petricec, M.; Blazevic, Z.

    2012-04-01

    Association for preservation of Croatian waters and sea SLAP is a non-governmental organization (NGO) that gathers more than 150 scientist, hydrologist and civil engineers. SLAP has been established in 2006 and since then had organized many conferences and participated in projects dealing with water management. We have started our work developing plans to secure water supply to the 22 (21) villages in the rural parts of Dubrovnik (Pozega) area and trough the years we have accumulated knowledge and experience in dealing with stakeholders in hydrology and water management. Within this paper we will present importance of bottom-up approach to the stakeholders in water management in Croatia on two case studies: (1) Management of River Trebizat catchment area - irrigation of the Imotsko-Bekijsko rural parts; (2) Development of multipurpose water reservoirs at the River Orljava catchment area. Both projects were designed in the mid and late 1980's but due to the war were forgotten and on halt. River Trebizat meanders between Croatia and Bosnia and Herzegovina and acquires joint management by both countries. In 2010 and 2011 SLAP has organized conferences in both countries gathering all the relevant stakeholders from representatives of local and state governments, water management companies and development agencies to the scientist and interested NGO's. The conferences gave firm scientific background of the topic including presentation of all previous studies and measurements as well as model results but presented in manner appropriate to the stakeholders. The main result of the conference was contribution to the development of joint cross-border project sent to the EU Pre-Accession funds in December 2011 with the aim to strengthen capacities of both countries and prepare larger project dealing with management of the whole Trebizat catchment area to EU structural funds once Croatia enters EU in 2013. Similar approach was taken for the Orljava catchment in the northern Croatia. Construction of multipurpose water storage KAMENSKA with capacity of about 45 million cubic meters per year was planned in 1984 but the project was postponed due to the war activities and never realized. None the less, the need for Kamenska is great. Orljava river basin, tributary of river Sava, has great significance for the Posavina area and wider area of Pozega. Improvements in water supply, flood control, irrigation and renewable hydro energy are not possible without new management of river Orljava basin. On round table in Pozega in October 2011 we have managed to gather all the relevant stakeholders including regional governor, directors of Croatian waters (state owned water management company), representatives of ministries and regional development agencies. The result was revitalization of the Kamenska multipurpose water storage project and inclusion in the Croatian waters and regional plans for 2012. Both examples stress the importance of the bottom-up approach to the stakeholders in the water management and give the way how scientific research can be transmitted to the decision making establishment trough organization of public events.

  20. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 3, part 1: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Olsen, C. D.

    1972-01-01

    Planning documentation is presented covering the specific areas of project engineering and development, management, facilities, manufacturing, logistic support maintenance, and test and product assurance.

  1. Bacteriological monitoring and sustainable management of beach water quality in Malaysia: problems and prospects.

    PubMed

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-04-28

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia.

  2. Bacteriological Monitoring and Sustainable Management of Beach Water Quality in Malaysia: Problems and Prospects

    PubMed Central

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-01-01

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia. PMID:22980239

  3. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at themore » end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following equipment: High-velocity single part quenching IQ unit developed and built previously under EMTEC CT-65 project. The unit is equipped with a neutral salt bath furnace and a high-temperature, electric-fired, atmosphere, box furnace. New 1,900 gallon IQ system with a 24'' x 24'' atmosphere pit furnace and a load transfer mechanism. Shaker hearth furnace equipped with an IQ water tank and with a chiller to maintain the required water temperature. Potential Savings for USA Heat Treating Industry IQ Process Benefit/Annual Benefit for USA Heat Treating Industry Full elimination or 30% reduction of the carburization cycle Savings of 1,800 billion Btu of energy Cost reduction by $600,000,000 Reduction of CO2 emissions by 148,000 ton Part weight reduction by 5% Savings in material cost of $70,000,000 Savings of 300 billion Btu of energy« less

  4. Ground Water Atlas of the United States: Segment 7, Idaho, Oregon, Washington

    USGS Publications Warehouse

    Whitehead, R.L.

    1994-01-01

    The States of Idaho, Oregon, and Washington, which total 248,730 square miles, compose Segment 7 of this Atlas. The area is geologically and topographically diverse and contains a wealth of scenic beauty, natural resources, and ground and surface water that generally are suitable for all uses. Most of the area of Segment 7 is drained by the Columbia River, its tributaries, and other streams that discharge to the Pacific Ocean. Exceptions are those streams that flow to closed basins in southeastern Oregon and northern Nevada and to the Great Salt Lake in northern Utah. The Columbia River is one of the largest rivers in the Nation. The downstream reach of the Columbia River forms most of the border between Oregon and Washington. In 1990, Idaho, Oregon, and Washington had populations of 1.0 million, 2.8 million, and 4.9 million, respectively. The more densely populated parts are in lowland areas and stream valleys. Many of the mountains, the deserts, and the upland areas of Idaho, Oregon, and Washington lack major population centers. Large areas of Idaho and Oregon are uninhabited and are mostly public land (fig. 1) where extensive ground-water development is restricted. Surface water is abundant in Idaho, Oregon, and Washington, though not always available when and where needed. In some places, surface water provides much of the water used for public-supply, domestic and commercial, agricultural (primarily irrigation and livestock watering), and industrial purposes. In arid parts of Segment 7, however, surface water has long been fully appropriated, chiefly for irrigation. Ground water is used when and where surface-water supplies are lacking. Ground water is commonly available to shallow wells that are completed in unconsolidated-deposit aquifers that consist primarily of sand and gravel but contain variable quantities of clay and silt. Many large-yield public-supply and irrigation wells and thousands of domestic wells are completed in these types of aquifers, generally in areas of privately owned land (fig. 1). In many places, deeper wells produce water from underlying volcanic rocks, usually basalt. Most irrigation (fig. 2) is on lowlands next to streams and on adjacent terraces. Generally, lowlands within a few miles of a main stream are irrigated with surface water diverted by gravity flow from the main stream or a reservoir and distributed through a system of canals and ditches. In some areas, water is pumped to irrigate lands farther from the stream at a higher altitude. Along the Snake and Columbia Rivers, large pumping systems withdraw billions of gallons of water per day from the rivers to irrigate adjacent uplands that are more than 500 feet higher than the rivers. Elsewhere, irrigation water is obtained from large-capacity wells, where depth to water might exceed 500 feet below land surface. Aquifers in Idaho, Oregon, and Washington, as in most other States, differ considerably in thickness and permeability, and well yields differ accordingly. Ground-water levels in a few areas have declined as a result of withdrawals by wells. State governments have taken steps to alleviate declines in some areas by enacting programs that either limit the number of additional wells that can be completed in a particular aquifer (Ground-Water Management Area) or prevent further ground-water development (Critical Ground-Water Area). Segment 7 includes some of the driest parts of the Nation, as well as some of the wettest. Average annual precipitation (1951-80) ranges from less than 10 inches in arid parts of Idaho, Oregon, and Washington to more than 80 inches in the western parts of Oregon and Washington (fig. 3). Most storms generally move eastward through the area. The eastward-moving air absorbs the moisture that evaporates from the Pacific Ocean. As this air encounters the fronts of mountain ranges, it rises, cools, and condenses. Accordingly, the western sides of the mountain ranges receive the most precipitation. Much of the annual precipitation moves directly to streams as overland runoff. Some of the precipitation is returned to the atmosphere by evapotranspiration, which is the combination of evaporation from the surface and transpiration from the plants. A small part of the precipitation infiltrates the soil and percolates downward to recharge underlying aquifers. Average annual runoff ( 1951-80) in the segment varies considerably (fig. 4), and the distribution of the runoff generally parallels that of precipitation. In the arid and the semiarid parts of Segment 7, most precipitation replenishes soil moisture, evaporates, or is transpired by vegetation. Little is left to maintain streamflow or to recharge aquifers. In the wetter parts, much of the precipitation runs off the land surface to maintain streamflow, and because evaporation is usually less in wetter areas, more water is available to recharge aquifers. Precipitation that falls as snow generally does not become runoff until spring thaws begin. Reservoirs constructed on major streams to mitigate flooding and to store water for irrigation, hydroelectric-power generation, and recreation also affect the timing of runoff. The runoff is stored and subsequently released during drier periods to maintain downstream flow.

  5. Base of the upper layer of the phase-three Elkhorn-Loup groundwater-flow model, north-central Nebraska

    USGS Publications Warehouse

    Stanton, Jennifer S.

    2013-01-01

    The Elkhorn and Loup Rivers in Nebraska provide water for irrigation, recreation, hydropower produc­tion, aquatic life, and municipal water systems for the Omaha and Lincoln metropolitan areas. Groundwater is another important resource in the region and is extracted primarily for agricultural irrigation. Water managers of the area are interested in balancing and sustaining the long-term uses of these essential surface-water and groundwater resources. Thus, a cooperative study was established in 2006 to compile reliable data describing hydrogeologic properties and water-budget components and to improve the understanding of stream-aquifer interactions in the Elkhorn and Loup River Basins. A groundwater-flow model was constructed as part of the first two phases of that study as a tool for under­standing the effect of groundwater pumpage on stream base flow and the effects of management strategies on hydrologically connected groundwater and surface-water supplies. The third phase of the study was implemented to gain additional geologic knowledge and update the ELM with enhanced water-budget information and refined discretization of the model grid and stress periods. As part of that effort, the ELM is being reconstructed to include two vertical model layers, whereas phase-one and phase-two simulations represented the aquifer system using one vertical model layer. This report presents a map of and methods for developing the elevation of the base of the upper model layer for the phase-three ELM. Digital geospatial data of elevation contours and geologic log sites used to esti­mate elevation contours are available as part of this report.

  6. Development of the water-analysis screening tool used in the initial screening for the Pennsylvania State Water Plan update of 2008

    USGS Publications Warehouse

    Stuckey, Marla H.

    2008-01-01

    The Water Resources Planning Act, Act 220 of 2002, requires the Pennsylvania Department of Environmental Protection (PaDEP) to update the State Water Plan by 2008. As part of this update, a water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in cooperation with the PaDEP, to provide assistance to the state in the identification of critical water-planning areas. The WAST has two primary inputs: net withdrawals and the initial screening criteria. A comprehensive water-use database that includes data from registration, estimation, discharge monitoring reports, mining data, and other sources was developed as input into the WAST. Water use in the following categories was estimated using water-use factors: residential, industrial, commercial, agriculture, and golf courses. A percentage of the 7-day, 10-year low flow is used for the initial screenings using the WAST to identify potential critical water-planning areas. This quantity, or initial screening criteria, is 50 percent of the 7-day, 10-year low flow for most streams. Using a basic water-balance equation, a screening indicator is calculated that indicates the potential influences of net withdrawals on aquatic-resource uses for watersheds generally larger than 15 square miles. Points representing outlets of these watersheds are colored-coded within the WAST to show the screening criteria for each watershed.

  7. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts containedmore » in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.« less

  8. Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report

    DTIC Science & Technology

    2016-10-01

    water use by as much as 70% in support of meeting EO 13693. Additional performance objectives were to validate energy reduction, cost effectiveness ...Additional performance objectives were to validate energy reduction, cost effectiveness , and system reliability while maintaining satisfactory plant health...developments. The demonstration was conducted for two different climatic regions in the southwestern part of the United States (U.S.), where a typical

  9. Land & Water Interactions in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The subject of this book is land and water interactions. Students examine how the Great Lakes were…

  10. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  11. Hydrology of the Tertiary-Cretaceous aquifer system in the vicinity of Fort Rucker Aviation Center, Alabama

    USGS Publications Warehouse

    Scott, J.C.; Law, L.R.; Cobb, Riley

    1984-01-01

    Fort Rucker Aviation Center, built in 1941-42, uses ground water for its water supply. The demand for water began to exceed the capacity of the well field in 1976. The Tertiary-Cretaceous aquifer system in the Fort Rucker area consists of an upper and lower aquifer. The upper aquifer consists of the basal part of the Tuscahoma Sand, the Nanafalia and Clayton Formations, and the upper part of the Providence Sand. The lower aquifer consists of the lower part of the Providence Sand and the Ripley Formation. Most large capacity (greater than 100 gal/min (gallons per minute)) wells in the Fort Rucker area are developed in one of these aquifers, and produce 500 gal/min or more. An aquifer test made at Fort Rucker during the study indicates that the transmissivity of the upper aquifer is about 7,000 ft sq/d (feet squared per day). This test and a potentiometric map of the area indicate that wells spaced too closely together is a major problem at pumping centers in the study area. (USGS)

  12. Quality Characteristics of Ground Water in the Ozark Aquifer of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006-07

    USGS Publications Warehouse

    Pope, L.M.; Mehl, H.E.; Coiner, R.L.

    2009-01-01

    Because of water quantity and quality concerns within the Ozark aquifer, the State of Kansas in 2004 issued a moratorium on most new appropriations from the aquifer until results were made available from a cooperative study between the U.S. Geological Survey and the Kansas Water Office. The purposes of the study were to develop a regional ground-water flow model and a water-quality assessment of the Ozark aquifer in northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma (study area). In 2006 and 2007, water-quality samples were collected from 40 water-supply wells completed in the Ozark aquifer and spatially distributed throughout the study area. Samples were analyzed for physical properties, dissolved solids and major ions, nutrients, trace elements, and selected isotopes. This report presents the results of the water-quality assessment part of the cooperative study. Water-quality characteristics were evaluated relative to U.S. Environmental Protection Agency drinking-water standards. Secondary Drinking-Water Regulations were exceeded for dissolved solids (11 wells), sulfate and chloride (2 wells each), fluoride (3 wells), iron (4 wells), and manganese (2 wells). Maximum Contaminant Levels were exceeded for turbidity (3 wells) and fluoride (1 well). The Maximum Contaminant Level Goal for lead (0 milligrams per liter) was exceeded in water from 12 wells. Analyses of isotopes in water from wells along two 60-mile long ground-water flow paths indicated that water in the Ozark aquifer was at least 60 years old but the upper age limit is uncertain. The source of recharge water for the wells along the flow paths appeared to be of meteoric origin because of isotopic similarity to the established Global Meteoric Water Line and a global precipitation relation. Additionally, analysis of hydrogen-3 (3H) and carbon-14 (14C) indicated that there was possible leakage of younger ground water into the lower part of the Ozark aquifer. This may be caused by cracks or fissures in the confining unit that separates the upper and lower parts of the aquifer, poorly constructed or abandoned wells, or historic mining activities. Analyses of major ions in water from wells along the flow paths indicated a transition from freshwater in the east to saline water in the west. Generally, ground water along flow paths evolved from a calcium magnesium bicarbonate type to a sodium calcium bicarbonate or a sodium calcium chloride bicarbonate type as water moved from recharge areas in Missouri into Kansas. Much of this evolution occurred within the last 20 to 25 miles of the flow paths along a water-quality transition zone near the Kansas-Missouri State line and west. The water quality of the Kansas part of the Ozark aquifer is degraded compared to the Missouri part. Geophysical and well-bore flow information and depth-dependent water-quality samples were collected from a large-capacity (1,900-2,300 gallons per minute) municipal-supply well to evaluate vertical ground-water flow accretion and variability in water-quality characteristics at different levels. Although the 1,050-foot deep supply well had 500 feet of borehole open to the Ozark aquifer, 77 percent of ground-water flow entering the borehole came from two 20-foot thick rock layers above the 1,000-foot level. For the most part, water-quality characteristics changed little from the deepest sample to the well-head sample, and upwelling of saline water from deeper geologic formations below the well was not evident. However, more saline water may be present below the bottom of the well.

  13. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    NASA Astrophysics Data System (ADS)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation

  14. Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes.

    PubMed

    Zhao, Jianbing; Liu, Ling; Culligan, Patricia J; Chen, Xi

    2009-12-01

    Thermally induced variation in wetting ability in a confined nanoenvironment, indicated by the change in infiltration pressure as water molecules enter a model single-walled carbon nanotube submerged in aqueous environment, is investigated using molecular dynamics simulations. The temperature-dependent infiltration behavior is impacted in part by the thermally excited radial oscillation of the carbon nanotube, and in part by the variations of fundamental physical properties at the molecular level, including the hydrogen bonding interaction. The thermal effect is also closely coupled with the nanotube size effect and loading rate effect. Manipulation of the thermally responsive infiltration properties could facilitate the development of a next-generation thermal energy converter based on nanoporous materials.

  15. Managing water supply systems using free-market economy approaches: A detailed review of the implications for developing countries

    NASA Astrophysics Data System (ADS)

    Chikozho, C.; Kujinga, K.

    2017-08-01

    Decision makers in developing countries are often confronted by difficult choices regarding the selection and deployment of appropriate water supply governance regimes that sufficiently take into account national socio-economic and political realities. Indeed, scholars and practitioners alike continue to grapple with the need to create the optimum water supply and allocation decision-making space applicable to specific developing countries. In this paper, we review documented case studies from various parts of the world to explore the utility of free-market economics approaches in water supply governance. This is one of the major paradigms that have emerged in the face of enduring questions regarding how best to govern water supply systems in developing countries. In the paper, we postulate that increasing pressure on available natural resources may have already rendered obsolete some of the water supply governance regimes that have served human societies very well for many decades. Our main findings show that national and municipal water supply governance paradigms tend to change in tandem with emerging national development frameworks and priorities. While many developing countries have adopted water management and governance policy prescriptions from the international arena, national and local socio-economic and political realities ultimately determine what works and what does not work on the ground. We thus, conclude that the choice of what constitutes an appropriate water supply governance regime in context is never simple. Indeed, the majority of case studies reviewed in the paper tend to rely on a mix of market economics and developmental statism to make their water governance regimes more realistic and workable on the ground.

  16. Molecular polarizability of water from local dielectric response theory

    DOE PAGES

    Ge, Xiaochuan; Lu, Deyu

    2017-08-08

    Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less

  17. Portable water quality monitoring system

    NASA Astrophysics Data System (ADS)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  18. Enhancement Of Water-Jet Stripping Of Foam

    NASA Technical Reports Server (NTRS)

    Cosby, Steven A.; Shockney, Charles H.; Bates, Keith E.; Shalala, John P.; Daniels, Larry S.

    1995-01-01

    Improved robotic high-pressure-water-jet system strips foam insulation from parts without removing adjacent coating materials like paints, primers, and sealants. Even injects water into crevices and blind holes to clean out foam, without harming adjacent areas. Eliminates both cost of full stripping and recoating and problem of disposing of toxic solutions used in preparation for coating. Developed for postflight refurbishing of aft skirts of booster rockets. System includes six-axis robot provided with special end effector and specially written control software, called Aftfoam. Adaptable to cleaning and stripping in other industrial settings.

  19. National Program for Inspection of Non-Federal Dams. Pattaconk Reservoir Dam (CT 00398), Connecticut River Basin, Chester, Connecticut. Phase I inspection Report

    DTIC Science & Technology

    1979-03-01

    approximately 824 acre-feet of water with the reservoir level at the top of the dam, which is approximately 23 feet above the bed of Pattaconk Brook. According...Pattaconk Brook, from 2 to 4 feet above the water level. Should the dam breach, there is potential for loss of life at this downstream development. e...under the jurisdiction of the Water Resources Commission as af State Park in 1959. f. Operator - None. g. Purpose of the Dam - Recreational; Part of

  20. STS-47 Payload Specialist Mohri during Homestead water survival training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Payload Specialist Mamoru Mohri participates in water survival training exercises at Homestead Air Force Base, Florida. Mohri ignites a flare used to find assistance during an emergency as training personnel look on. The flare familiarization was part of an overall course on water survival, attended by STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 SLJ mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  1. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  2. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    NASA Astrophysics Data System (ADS)

    Antoine, D.; Hooker, S. B.; Bélanger, S.; Matsuoka, A.; Babin, M.

    2013-07-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  3. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    NASA Astrophysics Data System (ADS)

    Antoine, D.; Hooker, S. B.; Belanger, S.; Matsuoka, A.; Babin, M.

    2013-03-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (MALINA project) is analysed in order to describe apparent optical properties (AOPs) in this sea, which is subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean colour sensor. The data set includes offshore clear waters of the Beaufort basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by coloured dissolved organic matter (CDOM) is responsible for this high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This is questioning the role of ocean colour remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g. the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  4. The Role of Science in Managed Aquifer Recharge--the Equus Beds aquifer near Wichita, Kansas Andrew Ziegler, Director Brian Kelly, Office Chief Michael Jacobs, Manager of Water Planning and Production Debra Ary, Engineer, Water Systems Planning (Invited)

    NASA Astrophysics Data System (ADS)

    Ziegler, A. C.; Jacobs, M.; Ary, D.; Kelly, B.

    2013-12-01

    Data collection and interpretation using statistical, geochemical, and numerical simulation tools are essential parts of a long-term cooperative study between the city of Wichita, U.S. Geological Survey, and others to describe water quantity and quality conditions in a 165 square-mile part of the Equus Beds aquifer and Arkansas and Little Arkansas Rivers. The Equus Beds aquifer, eastern part of the High Plains Aquifer in south-central Kansas, is a vital water resource for agriculture and city of Wichita. Withdrawals for public supply began in the 1940s and agricultural irrigation began in the 1950-60s. These withdrawals led to water-level declines of up to 40 feet (historic low in 1993), a storage loss of 250,000 acre feet compared to predevelopment, and may enhance movement of chloride contamination from a past oilfield disposal area near Burrton and from natural chloride along the Arkansas River. Monitoring data and modeling show chloride near Burrton moved about 3 miles in 45 years, is about 1 mile away from the nearest public supply wells, and will continue to move for decades to centuries making the water unusable for irrigation or water supply without treatment. These concerns led to development of Wichita's 1993 integrated local water-supply plan that increased use of Cheney Reservoir and implemented aquifer storage and recovery (ASR) within the aquifer using high flows from the Little Arkansas River. ASR benefits include replacing depleted storage and slowing chloride movement. Decreased withdrawals, increased precipitation, and artificial recharge increased water levels and added 100,000 acre feet of storage through 2010, but drought since 2011 has increased withdrawals. A calibrated model will be used to simulate transport of chloride under several withdrawal scenarios using MODFLOW coupled with SEAWAT. Since 1995, water-quality data collection for more than 400 organic and inorganic compounds in surface water, treated source water for artificial recharge, and groundwater identified indicator bacteria, atrazine, chloride, sodium, nitrate, arsenic, iron, and manganese as constituents of concern exceeding water-quality criteria in baseline samples. Techniques were developed to estimate Little Arkansas River water quality in real-time for treatment. Geochemical modeling using PHREEQC and PHAST shows that groundwater quality is not changed if groundwater and recharge water are of similar redox potential. If different, calcite or metal hydroxides may precipitate and decrease water infiltration. A network of 38 locations with shallow and deep wells characterizes the recharge quantities and qualities for the city of Wichita to withdraw when needed from storage. Through 2013, the Demonstration project and Phase 1 and 2 facilities (capacity 40 MGD) have artificially recharged about 2 billion gallons. Total construction costs are about $300,000,000. Data-collection, interpretative geochemical and numerical simulations and water-quality transport modeling tools developed in the past 70 years are a scientific foundation to effectively and objectively manage this aquifer system.

  5. A primer on water

    USGS Publications Warehouse

    Leopold, Luna Bergere; Langbein, Walter Basil

    1960-01-01

    When you open the faucet you expect water to flow. And you expect it to flow night or day, summer or winter, whether you want to fill a glass or water the lawn. It should be clean and pure, without any odor.You have seen or read about places where the water doesn't have these qualities. You may have lived in a city where you were allowed to water the lawn only during a few hours of certain days. We know a large town where the water turns brown after every big rainstorm.Beginning shortly after World War II, large areas in the Southwestern United States had a 10-year drought, and newspapers published a lot of information about its effects. Some people say that the growing demand for water will cause serious shortages over much of the country in the next 10 to 40 years. But it has always been true that while water wells and springs dry up in some places, floods may be occurring in other places at the same time.Nearly every month news stories are published describing floods somewhere in the country. In fact, every year, on the average, 75,000 persons are forced from their homes by floods. In some years, as in 1951 when the lower Kansas River experienced a great flood, half a million people are affected. To understand the reasons for such recurring distress, it is necessary to know something about rivers and about the flat land or flood plain that borders the river.Interest in water and related problems is growing as our population increases and as the use of water becomes steadily greater. To help meet this heightened interest in general information about water and its use and control is the reason this primer was written. The primer is in two parts. The first part tells about hydrology, or the science that concerns the relation of water to our earth, and the second part describes the development of water supplies and the use of water. The Geological Survey is publishing this primer in nontechnical language in the hope that it will enable the general reader to understand the facts about water as a part of nature, and that by having this understanding the people can solve their water problems.We, as representatives of the Geological Survey, acknowledge with thanks the helpful suggestions made on an early draft by Marion Loizeaux, Maria Lord Converse, Constance Foley, Laura R. Langbein, and Bruce C. Leopold. We are also indebted to various geologists and engineers of the Survey for their discerning critical reviews.

  6. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    USGS Publications Warehouse

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    Armenia is a landlocked country located in the mountainous Caucasus region between Asia and Europe. It shares borders with the countries of Georgia on the north, Azerbaijan on the east, Iran on the south, and Turkey and Azerbaijan on the west. The Ararat Basin is a transboundary basin in Armenia and Turkey. The Ararat Basin (or Ararat Valley) is an intermountain depression that contains the Aras River and its tributaries, which also form the border between Armenia and Turkey and divide the basin into northern and southern regions. The Ararat Basin also contains Armenia’s largest agricultural and fish farming zone that is supplied by high-quality water from wells completed in the artesian aquifers that underlie the basin. Groundwater constitutes about 40 percent of all water use, and groundwater provides 96 percent of the water used for drinking purposes in Armenia. Since 2000, groundwater withdrawals and consumption in the Ararat Basin of Armenia have increased because of the growth of aquaculture and other uses. Increased groundwater withdrawals caused decreased springflow, reduced well discharges, falling water levels, and a reduction of the number of flowing artesian wells in the southern part of Ararat Basin in Armenia.In 2016, the U.S. Geological Survey and the U.S. Agency for International Development (USAID) began a cooperative study in Armenia to share science and field techniques to increase the country’s capabilities for groundwater study and modeling. The purpose of this report is to describe the hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia based on data collected in 2016 and previous hydrogeologic studies. The study area includes the Ararat Basin in Armenia. This report was completed through a partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships effort through the Advanced Science and Partnerships for Integrated Resource Development program and associated partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter.The hydrogeologic framework of the Ararat Basin includes several basin-fill stratigraphic units consisting of interbedded dense clays, gravels, sands, volcanic basalts, and andesite deposits. Previously published cross sections and well lithologic logs were used to map nine general hydrogeologic units. Hydrogeologic units were mapped based on lithology and water-bearing potential. Water-level data measured in the water-bearing hydrogeologic units 2, 4, 6, and 8 in 2016 were used to create potentiometric surface maps. In hydrogeologic unit 2, the estimated direction of groundwater flow is from the west to north in the western part of the basin (away from the Aras River) and from north to south (toward the Aras River) in the eastern part of the basin. In hydrogeologic unit 4, the direction of groundwater flow is generally from west to east and north to south (toward the Aras River) except in the western part of the basin where groundwater flow is toward the north or northwest. Hydrogeologic unit 6 has the same general pattern of groundwater flow as unit 4. Hydrogeologic unit 8 is the deepest of the water-bearing units and is confined in the basin. Groundwater flow generally is from the south to north (away from the Aras River) in the western part of the basin and from west to east and north to south (toward the Aras River) elsewhere in the basin.In addition to water levels, personnel from Armenia’s Hydrogeological Monitoring Center also measured specific conductance at 540 wells and temperature at 2,470 wells in the Ararat Basin using U.S. Geological Survey protocols in 2016. The minimum specific conductance was 377 microsiemens per centimeter (μS/cm), the maximum value was 4,000 μS/cm, and the mean was 998 μS/cm. The maximum water temperature was 24.2 degrees Celsius. An analysis between water temperature and well depth indicated no relation; however, spatially, most wells with cooler water temperatures were within the 2016 pressure boundary or in the western part of the basin. Wells with generally warmer water temperatures were in the eastern part of the basin.Samples were collected from four groundwater sites and one surface-water site by the U.S. Geological Survey in 2016. The stable-isotope values were similar for all five sites, indicating similar recharge sources for the sampled wells. The Hrazdan River sample was consistent with the groundwater samples, indicating the river could serve as a source of recharge to the Ararat artesian aquifer.

  7. On the sustainability of inland fisheries: Finding a future for the forgotten

    USGS Publications Warehouse

    Cooke, Steven J.; Allison, Edward H.; Beard, Douglas; Arlinghaus, Robert; Arthington, Angela; Bartley, Devin; Cowx, Ian G.; Fuentevilla, Carlos; Léonard, Nancy J.; Lorenzen, Kai; Lynch, Abigail; Nguyen, Vivian M.; Youn, So-Jung; Tayor, William W.; Welcomme, Robin

    2016-01-01

    At present, inland fisheries are not often a national or regional governance priority and as a result, inland capture fisheries are undervalued and largely overlooked. As such they are threatened in both developing and developed countries. Indeed, due to lack of reliable data, inland fisheries have never been part of any high profile global fisheries assessment and are notably absent from the Sustainable Development Goals. The general public and policy makers are largely ignorant of the plight of freshwater ecosystems and the fish they support, as well as the ecosystem services generated by inland fisheries. This ignorance is particularly salient given that the current emphasis on the food-water-energy nexus often fails to include the important role that inland fish and fisheries play in food security and supporting livelihoods in low-income food deficit countries. Developing countries in Africa and Asia produce about 11 million tonnes of inland fish annually, 90 % of the global total. The role of inland fisheries goes beyond just kilocalories; fish provide important micronutrients and essentially fatty acids. In some regions, inland recreational fisheries are important, generating much wealth and supporting livelihoods. The following three key recommendations are necessary for action if inland fisheries are to become a part of the food-water-energy discussion: invest in improved valuation and assessment methods, build better methods to effectively govern inland fisheries (requires capacity building and incentives), and develop approaches to managing waters across sectors and scales. Moreover, if inland fisheries are recognized as important to food security, livelihoods, and human well-being, they can be more easily incorporated in regional, national, and global policies and agreements on water issues. Through these approaches, inland fisheries can be better evaluated and be more fully recognized in broader water resource and aquatic ecosystem planning and decision-making frameworks, enhancing their value and sustainability for the future.

  8. On the sustainability of inland fisheries: Finding a future for the forgotten.

    PubMed

    Cooke, Steven J; Allison, Edward H; Beard, T Douglas; Arlinghaus, Robert; Arthington, Angela H; Bartley, Devin M; Cowx, Ian G; Fuentevilla, Carlos; Leonard, Nancy J; Lorenzen, Kai; Lynch, Abigail J; Nguyen, Vivian M; Youn, So-Jung; Taylor, William W; Welcomme, Robin L

    2016-11-01

    At present, inland fisheries are not often a national or regional governance priority and as a result, inland capture fisheries are undervalued and largely overlooked. As such they are threatened in both developing and developed countries. Indeed, due to lack of reliable data, inland fisheries have never been part of any high profile global fisheries assessment and are notably absent from the Sustainable Development Goals. The general public and policy makers are largely ignorant of the plight of freshwater ecosystems and the fish they support, as well as the ecosystem services generated by inland fisheries. This ignorance is particularly salient given that the current emphasis on the food-water-energy nexus often fails to include the important role that inland fish and fisheries play in food security and supporting livelihoods in low-income food deficit countries. Developing countries in Africa and Asia produce about 11 million tonnes of inland fish annually, 90 % of the global total. The role of inland fisheries goes beyond just kilocalories; fish provide important micronutrients and essentially fatty acids. In some regions, inland recreational fisheries are important, generating much wealth and supporting livelihoods. The following three key recommendations are necessary for action if inland fisheries are to become a part of the food-water-energy discussion: invest in improved valuation and assessment methods, build better methods to effectively govern inland fisheries (requires capacity building and incentives), and develop approaches to managing waters across sectors and scales. Moreover, if inland fisheries are recognized as important to food security, livelihoods, and human well-being, they can be more easily incorporated in regional, national, and global policies and agreements on water issues. Through these approaches, inland fisheries can be better evaluated and be more fully recognized in broader water resource and aquatic ecosystem planning and decision-making frameworks, enhancing their value and sustainability for the future.

  9. 33 CFR Appendix C to Part 273 - Information Requirements for Aquatic Plant Control Program Environmental Impact Statements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...

  10. 33 CFR Appendix C to Part 273 - Information Requirements for Aquatic Plant Control Program Environmental Impact Statements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...

  11. 33 CFR Appendix C to Part 273 - Information Requirements for Aquatic Plant Control Program Environmental Impact Statements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...

  12. 33 CFR Appendix C to Part 273 - Information Requirements for Aquatic Plant Control Program Environmental Impact Statements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... History of infestation. Discuss obvious development as established. e. Criteria for identification of the...

  13. Minimal Data and Site Specific Approaches

    EPA Science Inventory

    As part of a workshop, Tools for Assessing Stream Dissolved Minerals, approaches and EPA tools are described for site specific development of water quality criteria based on observations from Arkansas streams using minimal data. Discussion topics will include site-specific appro...

  14. 43 CFR 2310.3-2 - Development and processing of the case file for submission to the Secretary.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... control, appropriation, use and distribution of water, or whether the withdrawal is intended to reserve... the identification of cultural resources prepared in accordance with the requirements of 36 CFR part...

  15. New findings and setting the research agenda for soil and water conservation for sustainable land management

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines and places is essential if we are to develop viable measures and approaches to soil and water conservation across the globe. In this paper we will provide an overview of the topics that are addressed in this session and give an overview of the current research in this field and using the insights we will aim to present a new research agenda oriented towards a significant impact in economic and environmental sustainability.

  16. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  17. Evaluation of potential impacts of climate change and water management on streamflow in the Rovuma River, Mozambique and Tanzania

    NASA Astrophysics Data System (ADS)

    Minihane, M.; Lettenmaier, D. P.

    2012-12-01

    Economic development and public health are tied to water resources development in many parts of the world. Effective use of water management infrastructure investments requires projections of future climatic and water use conditions. This is particularly true in developing countries. We explore in this work water resource availability in the Rovuma River, which lies in a sparsely-populated region of southeastern Africa, on the border of Mozambique and Tanzania. While there are only limited documented observations of flow of the Rovuma River and it's tributaries, particularly in recent years, there is widespread interest in development of the water resources of the region. The national governments are interested in hydropower potential while private companies, many of them large multinational organizations, have started irrigation programs to increase agricultural output. While the Mozambique and Tanzania governments have a joint agreement over the river development, there is a need to assess both current and potential future water resource conditions in the basin. The sustainability of these developments, however, may be affected by climate change. Here we quantify potential changes in streamflow in the Rovuma River under dry and wet climate projection scenarios using the delta method and the Variable Infiltration Capacity (VIC) macro-scale hydrology model. We then evaluate streamflow changes relative to water withdrawals required for a range of irrigated agriculture scenarios. Our analysis is intended to be a starting point for planners to consider potential impacts of both streamflow withdrawal permits (for irrigated agriculture) and future uncertain climate conditions.

  18. A Great Year for the Big Blue Water

    NASA Astrophysics Data System (ADS)

    Leinen, M.

    2016-12-01

    It has been a great year for the big blue water. Last year the 'United_Nations' decided that it would focus on long time remain alright for the big blue water as one of its 'Millenium_Development_Goals'. This is new. In the past the big blue water was never even considered as a part of this world long time remain alright push. Also, last year the big blue water was added to the words of the group of world people paper #21 on cooling the air and things. It is hard to believe that the big blue water was not in the paper before because 70% of the world is covered by the big blue water! Many people at the group of world meeting were from our friends at 'AGU'.

  19. Research on IoT-based water environment benchmark data acquisition management

    NASA Astrophysics Data System (ADS)

    Yan, Bai; Xue, Bai; Ling, Lin; Jin, Huang; Ren, Liu

    2017-11-01

    Over the past more than 30 years of reform and opening up, China’s economy has developed at a full speed. However, this rapid growth is under restrictions of resource exhaustion and environmental pollution. Green sustainable development has become a common goal of all humans. As part of environmental resources, water resources are faced with such problems as pollution and shortage, thus hindering sustainable development. The top priority in water resources protection and research is to manage the basic data on water resources, and determine what is the footstone and scientific foundation of water environment management. By studying the aquatic organisms in the Yangtze River Basin, the Yellow River Basin, the Liaohe River Basin and the 5 lake areas, this paper puts forward an IoT-based water environment benchmark data management platform which can transform parameters measured to electric signals by way of chemical probe identification, and then send the benchmark test data of the water environment to node servers. The management platform will provide data and theoretical support for environmental chemistry, toxicology, ecology, etc., promote researches on environmental sciences, lay a solid foundation for comprehensive and systematic research on China’s regional environment characteristics, biotoxicity effects and environment criteria, and provide objective data for compiling standards of the water environment benchmark data.

  20. Hydro-economic modeling of the role of forests on water resources production in Andalusia, Spain

    NASA Astrophysics Data System (ADS)

    Beguería, Santiago; Serrano-Notivoli, Roberto; Álvarez-Palomino, Alejandro; Campos, Pablo

    2014-05-01

    The development of more refined information tools is a pre-requisite for supporting decision making in the context of integrated water resources management. Among these tools, hydro-economic models are favoured because they allow integrating the ecological, hydrological, infrastructure and economic aspects into a coherent, scientifically-informed framework. We present a case study that assesses physically the water resources of forest lands of the Andalusia region in Spain and conducts an economic environmental income and asset valuation of the forest surface water yield. We show how, based on available hydrologic and economic data, we can develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is part of the larger RECAMAN project, which aims at providing a robust and easily replicable accounting tool to evaluate yearly the total income an capital generated by the forest land, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). Only a comprehensive integrated tool such as the one built within the RECAMAN project may serve as a basis for the development of integrated policies such as those internationally agreed and recommended for the management of water resources.

  1. A study of ecological sanitation as an integrated urban water supply system: case study of sustainable strategy for Kuching City, Sarawak, Malaysia.

    PubMed

    Seng, Darrien Mah Yau; Putuhena, Frederik Josep; Said, Salim; Ling, Law Puong

    2009-03-01

    A city consumes a large amount of water. Urban planning and development are becoming more compelling due to the fact of growing competition for water, which has lead to an increasing and conflicting demand. As such, investments in water supply, sanitation and water resources management is a strong potential for a solid return. A pilot project of greywater ecological treatment has been established in Kuching city since 2003. Such a treatment facility opens up an opportunity of wastewater reclamation for reuse as secondary sources of water for non-consumptive purposes. This paper aims to explore the potential of the intended purposes in the newly developed ecological treatment project. By utilizing the Wallingford Software model, InfoWorks WS (Water Supply) is employed to carry out a hydraulic modeling of a hypothetical greywater recycling system as an integrated part of the Kuching urban water supply, where the greywater is treated, recycled and reused in the domestic environment. The modeling efforts have shown water savings of about 40% from the investigated system reinstating that the system presents an alternative water source worth exploring in an urban environment.

  2. Geohydrology of the Flints Pond Aquifer, Hollis, New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Dorgan, Tracy H.

    1995-01-01

    Flints pond has been subjected to accelerated eutrophication as a result of watershed development (building of new homes and conversion of summer cottages into permanent homes) since the 1930's. Ground-water flow is the primary recharge and discharge mechanism for Flints Pond. The saturated thickness, transmissive properties, and altitude of the water table were determined by use of surface geophysics, test drilling, and aquifer-test data. Information on the geohydrology of the adjacent Flints Pond aquifer can be used in developing a water and nutrient budget for the pond-aquifer system. Ground-penetrating-radar surveys were done over more than 4 miles of the study area and on Flints Pond. Three distinct reflection signatures were commonly identifiable on the radar profiles: (1) thin, relatively flat-lying, continuous reflectors that represent fine-grained lacustrine sediment; (2) subparallel to hummocky and chaotic, coarse-grained reflectors that possibly represent coarse-grained ice-contact deposits or deltaic sediments in a lacustrine environment; and (3) sharply diffracted, fine-grained, chaotic reflectors that represent till and (or) till over bedrock. The saturated thickness of the aquifer exceeds 90 feet in the northern end of the study area and averages 30 to 50 feet in the southern and eastern parts. The saturated thickness of the western part is generally less than 10 feet. Test borings were completed at 19 sites and 13 wells (6 of which were nested pairs) were installed in various lithologic units. A water-table map, constructed from data collected in November 1994, represents average water-table conditions in the aquifer. Horizontal hydraulic conductivities calculated from single-well aquifer test data for stratified drift range from 2.8 to 226 feet per day. Hydraulic conductivities were quantitatively correlated with the reflector signatures produced with ground-penetrating radar so that transmissivities could be inferred for areas where well data were unavailable but where ground- penetrating-radar surveys were done. A saturated- thickness and transmissivity map for the aquifer shows that transmissivities exceeds 3,000 feet squared per day in the southern and east-central parts of the aquifer. Transmissivity ranges from 1,000 to 2,000 feet squared per day in the northern part of the aquifer and is generally less than 1,000 feet squared per day in the western part.

  3. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  4. Self-Assembly of Peptides at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet

    2013-03-01

    Peptides are commonly used as building blocks for design and development of novel materials with a variety of application areas ranging from drug design to biotechnology. The precise control of molecular architecture and specific nature of the nonbonded interactions among peptides enable aggregates with well defined structural and functional properties. The interaction of peptides with interfaces leads to dramatic changes in their conformational and aggregation behavior. In this talk, I will discuss our research on the interplay of intermolecular forces and influence of interfaces. In the first part the amphiphilic nature of short peptide oligomers and their behavior at the air/water interface will be discussed. The surface driving force and its decomposition will be analyzed. In the second part aggregation of peptides in bulk water and at an interface will be discussed. Different design features which can be tuned to control aggregation behavior will be analyzed.

  5. Shale Gas Development and Drinking Water Quality.

    PubMed

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  6. The link between water quality and tidal marshes in a highly impacted estuary.

    NASA Astrophysics Data System (ADS)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups of higher organisms, especially fish populations. It is clear that the improved water quality is to a large part due to improved waste water treatment. However detailed studies of the exchange between tidal marshes and the estuary clearly proved also the importance of these habitats for water quality. A whole ecosystem labeling experiment gave evidence on the sink function of these marshes for nitrogen. Detailed mass balance studies show also the importance of mashes in the silica cycle. Amorphous biogenic silica is imported into marshes were it accumulates in the soil, while dissolved silica is exported again to the pelagic. At times when the concentrations of dissolved silica in the estuary are limiting (during plankton blooms), the export of DSi from the marshes is highest. These results clearly indicate the crucial role tidal marshes play in the estuarine biogeochemical cycles and in their resilience against imbalanced nutrient inputs. Based on these insights new tidal marshes have been developed along the Schelde, their design being so that the delivery of ecosystems services (eg impact on water quality) is maximal.

  7. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    USGS Publications Warehouse

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes in water-quality conditions through time, characterizing potentially harmful cyanobacterial events, and indicating changes in water-quality conditions that may affect drinking-water treatment processes.

  8. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual...

  9. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual...

  10. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual...

  11. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual...

  12. 40 CFR Appendix - Tables to Part 132

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Tables to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Application of part 132 requirements in Great Lakes States and Tribes. Pt. 132, Tables Tables to Part 132 Table 1—Acute Water Quality...

  13. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    PubMed

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  14. Selected hydrologic data, through water year 1994, Black Hills Hydrology Study, South Dakota

    USGS Publications Warehouse

    Driscoll, D.G.; Bradford, W.L.; Neitzert, K.M.

    1996-01-01

    This report presents water-level, water-quality, and spring data that have been collected or compiled, through water year 1994, for the Black Hills Hydrology Study. This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District (which represents various local and county cooperators). This report is the second in a series of biennial project data reports produced for the study. Daily water-level data are presented for 39 observation wells and 2 cave sites in the Black Hills area of western South Dakota. The wells are part of a network of observation wells maintained by the Department of Environment and Natural Resources and are completed in various bedrock formations that are utilized as aquifers in the Black Hills area. Both cave sites are located within outcrops of the Madison Limestone. Data presented include site descriptions, hydrographs, and tables of daily water levels. Annual measurements of water levels collected during water years 1993-94 from a network of 20 additional, miscellaneous wells are presented. These wells are part of a Statewide network of wells completed in bedrock aquifers that was operated from 1959 through 1989 in cooperation with the Department of Environment and Natural Resources. Site descriptions and hydrographs for the entire period of record for each site also are presented. Drawdown and recovery data are presented for five wells that were pumped (or flowed) for collection of water-quality samples. These wells are part of the network of observation wells for which daily water-level records are compiled. Water-quality data are presented for 20 surface-water sites and 22 ground-water sites. Data presented include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics and isotopes, cyanide, phenols, and suspended sediment. Spring data are presented for 94 springs and 21 stream reaches with significant springflow components. Data presented include site information, discharge, and field water-quality parameters including temperature, specific conductance, dissolved oxygen, and pH.

  15. A categorization of water system breakdowns: Evidence from Liberia, Nigeria, Tanzania, and Uganda.

    PubMed

    Klug, Tori; Cronk, Ryan; Shields, Katherine F; Bartram, Jamie

    2018-04-01

    In rural sub-Saharan Africa, one in three handpumps are non-functional at any time. While there is some evidence describing factors associated with non-functional water systems, there is little evidence describing the categories of water system breakdowns that commonly occur. Insufficient water availability from broken down systems can force people to use unimproved water sources, which undermines the health benefits of an improved water source. We categorized common water system breakdowns using quantitative and qualitative monitoring data from Liberia, Nigeria, Tanzania, and Uganda (each N>3600 water systems) and examined how breakdown category varies by water system type and management characteristics. Specific broken parts were mentioned more frequently than all other reasons for breakdown; hardware parts frequently found at fault for breakdown were aprons (Liberia), pipes (Tanzania and Uganda), taps/spouts (Tanzania and Uganda), and lift mechanisms (Nigeria). Statistically significant differences in breakdown category were identified based on system type, age, management type, and fee collection type. Categorization can help to identify common reasons for water system breakdown. The analysis of these data can be used to develop improved monitoring instruments to inform actors of different breakdown types and provide reasons for system non-functionality. Improved monitoring instruments would enable actors to target appropriate resources to address specific breakdowns likely to arise based on system type and management characteristics in order to inform improved implementation of and post-construction support for water systems in sub-Saharan Africa. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  17. Hydrologic reconnaissance of Curlew Valley, Utah and Idaho

    USGS Publications Warehouse

    Bolke, E.L.; Price, Don

    1969-01-01

    This report is the fifth in a series of reports prepared by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, that describe the water resources of selected basins in western Utah. Previously published reports in this series are listed on page 35 and the areas covered by them are shown in figure 1. The purpose of this report is to present available hydrologic data on the Utah part of Curlew Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  18. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    USGS Publications Warehouse

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the agricultural industry by urban growth. Present-day agricultural supplies are obtained largely from surface-water sources in Palm Beach County and ground-water sources in Miami-Dade County, whereas Broward County agricultural growers have been largely displaced. The construction of a complex canal drainage system and large well fields has substantially altered the surface- and ground-water hydrologic systems. The drainage system constructed between 1910 and 1928 mostly failed to transport flood flows, however, and exacerbated periods of low rainfall and drought by overdraining the surficial aquifer system. Following completion of the 1930s Hoover Dike levee system that was designed to reduce Lake Okeechobee flood flows, the Central and Southern Florida Flood Control Project initiated the restructure of the existing conveyance system in 1948 through canal expansion, construction of protective levees and control structures, and greater management of ground-water levels in the surficial aquifer system. Gated canal control structures discharge excess surface water during the wet season and remain closed during the dry season to induce recharge by canal seepage and well withdrawals. Management of surface water through canal systems has successfully maintained lower ground-water levels inland to curb urban and agricultural flooding, and has been used to increase ground-water levels near the coast to impede saltwater intrusion. Coastal discharge, however, appears to have declined, due in part to water being rerouted to secondary canals, and to induced recharge to the surficial aquifer system by large municipal withdrawals. Southeastern Florida is underlain by Holocene- to Tertiary-age karstic limestone deposits that form (in descending order): a highly prolific surficial aquifer system, a poorly permeable intermediate confining system, and a permeable Floridan aquifer system. Prior to construction of a complex drainage netwo

  19. Asian water futures - Multi scenarios, models and criteria assessment -

    NASA Astrophysics Data System (ADS)

    Satoh, Yusuke; Burek, Peter; Wada, Yoshihide; Flrörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Kahil, Taher; Tramberend, Sylvia; Fischer, Günther; Wiberg, David

    2016-04-01

    A better understanding of the current and future availability of water resources is essential for the implementation of the recently agreed Sustainable Development Goals (SDGs). Long-term/efficient strategies for coping with current and potential future water-related challenges are urgently required. Although Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) were develop for the impact assessment of climate change, very few assessments have yet used the SSPs to assess water resources. Then the IIASA Water Futures and Solutions Initiative (WFaS), developed a set of water use scenarios consistent with RCPs and SSPs and applying the latest climate changes scenarios. Here this study focuses on results for Asian countries for the period 2010-2050. We present three conceivable future pathways of Asian water resources, determined by feasible combinations of two RCPs and three SSPs. Such a scenario approach provides valuable insights towards identifying appropriate strategies as gaps between a "scenario world" and reality. In addition, for the assessment of future water resources a multi-criteria analysis is applied. A classification system for countries and watershed that consists of two broad dimensions: (i) economic and institutional adaptive capacity, (ii) hydrological complexity. The latter is composed of several sub-indexes including total renewable water resources per capita, the ratio of water demand to renewable water resource, variability of runoff and dependency ratio to external. Furthermore, this analysis uses a multi-model approach to estimate runoff and discharge using 5 GCMs and 5 global hydrological models (GHMs). Three of these GHMs calculate water use based on a consistent set of scenarios in addition to water availability. As a result, we have projected hot spots of water scarcity in Asia and their spatial and temporal change. For example, in a scenario based on SSP2 and RCP6.0, by 2050, in total 2.1 billion people (46% of Asian population) are going to live in countries classified as high hydrological complexity. In particular, in Afghanistan, Azerbaijan and Pakistan, then home to 370 million people, hydrological complexity will be high while adaptation capacity is still low. On the other hand, a part of people however who live in countries with higher expected adaptive capacities may have better futures depending on policies and investment. Besides country scale, grid scale analyses clearly highlighted that a large part of population living under strong water stress in highly populated areas of Asia, such as east and coastal areas in China and large parts of India. Our preliminary results show that a significant impact of socioeconomic scenarios on each of the indexes which is comparable to that of climate scenarios. For instance, the least timing, trend and spatial distribution of water resource per capita are highly affected by projected population. This study shows that features of time series change in each indexes are also informative particularly for decision makers because they support in optimal timing of investment for countermeasures. In this presentation, we are showing our analysis framework and results of each integrated indexes.

  20. RURAL RECREATION ENTERPRISES FOR PROFIT, AN AID TO RURAL AREAS DEVELOPMENT.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    MANY RURAL AREAS OF THE U.S. POSSESS ENOUGH SPACE AND NATURAL ATTRACTIONS TO SERVE AS A BASIS FOR ESTABLISHING EITHER PART OR FULL-TIME RECREATIONAL ENTERPRISES. MOST OUTDOOR LEISURE ACTIVITIES CENTER AROUND WATER, HUNTING AND FISHING, ADMIRING SCENERY, AND ENJOYING THE NATURAL RURAL LANDSCAPE. THUS THE DEVELOPMENT OF RURAL RECREATION RESOURCES IS…

  1. Impact of Wet-Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    This research project was administered by the EPA Office of Research and Development and funded by Office of Water; Office of Policy, Economics and Innovation; and Office of Research and Development. Blending is the practice of diverting a part of peak wet-weather flows at wa...

  2. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, John; Greer, Chris; O'Connor, Ben L.

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  3. Charting New Waters: Collaborating for School Improvement in U.S. High Schools

    ERIC Educational Resources Information Center

    Schneider, Melanie; Huss-Lederman, Susan; Sherlock, Wallace

    2012-01-01

    When professional learning communities (PLCs) are developed to promote the academic achievement of English language learners (ELLs), the results can benefit not only ELLs but the whole school. This article examines the ventures of three high schools that implemented PLCs as part of a Title III National Professional Development Project. The authors…

  4. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organisms where higher doses or concentrations resulted in an adverse effect. Quantitative structure... probable or possible human carcinogen, when, because of major qualitative or quantitative limitations, the... quantitative risk assessment, but for which data are inadequate for Tier I criterion development due to a tumor...

  5. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organisms where higher doses or concentrations resulted in an adverse effect. Quantitative structure... probable or possible human carcinogen, when, because of major qualitative or quantitative limitations, the... quantitative risk assessment, but for which data are inadequate for Tier I criterion development due to a tumor...

  6. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organisms where higher doses or concentrations resulted in an adverse effect. Quantitative structure... probable or possible human carcinogen, when, because of major qualitative or quantitative limitations, the... quantitative risk assessment, but for which data are inadequate for Tier I criterion development due to a tumor...

  7. Hydrochemical analysis to evaluate the seawater ingress in a small coral island of India.

    PubMed

    Banerjee, Pallavi; Singh, V S; Singh, Ajay; Prasad, R K; Rangarajan, R

    2012-06-01

    The sustainable development of the limited groundwater resources in the tropical island requires a thorough understanding of detail hydrogeological regime including the hydrochemical behavior of groundwater. Detail analysis of chemical data of groundwater helps in assessing the different groundwater zone affected by formation as well as sea water. Groundwater and saline water interaction is better understood using groundwater major ion chemistry over an island aquifer. Multivariate methods to analyze the geochemical data are used to understand geochemical evolution of groundwater. The methods are successfully used to group the data to evaluate influence of various environs in the study area. Various classification methods such as piper, correlation method, and salinity hazard measurements are also employed to critical study of geochemical characteristics of groundwater to identify vulnerable parts of the aquifer. These approaches have been used to successfully evaluate the aquifer zones of a tiny island off the west coast of India. The most part of island is found to be safe for drinking, however some parts of island are identified that are affected by sea water ingress and dissolution of formation minerals. The analysis has successfully leaded to identification of that part of aquifer on the island which needs immediate attention for restoration and avoids further deterioration.

  8. Hydrogeology of the Sulphur Springs area, Tampa, Florida

    USGS Publications Warehouse

    Stewart, J.W.; Mills, L.R.

    1984-01-01

    The Sulfur Springs area includes about 56 square miles in west-central Hillsborough County, Florida. The north-central part of the city of Tampa is highly urbanized; the north-west part of the area is rural or undeveloped. The area has numerous sinkholes, two of which are used as retention basins for urban storm runoff. An intermittent stream discharges into a sinkhole that is hydraulically connected with the Floridian aquifer. A well-developed cavity system occurs in the upper part of the aquifer in the southwestern and southeastern parts of the area. Groundwater velocities of 4,200 to 9,200 feet per day were determined from dye tests conducted in a sinkhole area north of Sulfur Springs. Sulfur Springs provides the city of Tampa a supplemental water supply of 20 million gallons per day. Periodically, the spring pool is closed to swimming because of the high bacteria counts in the water. The source of bacteria appears to be an internally drained sinkhole area north of the spring. In 1980, groundwater use in the study area, excluding withdrawals from Sulphur Springs, was 7.2 million gallons per day, largely for public water supplies. The city of Tampa pumped an average of 48.5 million gallons per day from the Tampa Dam Reservoir on the Hillsborough River. (USGS)

  9. “All for some”: water inequity in Zambia and Zimbabwe

    NASA Astrophysics Data System (ADS)

    Robinson, Peter B.

    In southern Africa, gross disparities in access to water are symptomatic of the overall uneven pattern of development. Despite post-independence egalitarian rhetoric, in countries such as Zambia and Zimbabwe inappropriate models (piped house connections in the urban areas, high technology irrigation schemes in the agricultural sector), combined with weak macro-economies and poorly formulated sectoral policies have actually exacerbated the disparities. Zero or very low tariffs have played a major role in this. Although justified as being consistent with water's special status, inadequate tariffs in fact serve to undermine any programme of making water accessible to all. This has led to a narrowing of development options, resulting in exclusivist rather than inclusivist development, and stagnation rather than dynamism. A major part of the explanation for perpetuation of such unsatisfactory outcomes is the existence of political interest groups who benefit from the status quo. The first case study in the paper involves urban water consumers in Zambia, where those with piped water connections seek to continue the culture of low tariffs which is by now deeply embedded. The result is that the water supply authorities (in this case the newly formed, but still politically constrained 'commercialised utilities') are unable even to maintain adequate supplies to the piped customers, let alone extend service to the peri-urban dwellers, 56% of whom do not have access to safe water. The paper outlines some modest, workable principles to achieve universal, affordable access to water in the urban areas, albeit through a mix of service delivery mechanisms. In a second case study of rural productive water in Zimbabwe, the reasons for only 2% of the rural subsistence farming households being involved in formal small-scale irrigation schemes 20 years after independence are explored. Again, a major part of the explanation lies in government pursuing a water delivery model which is not affordable or sustainable on a wide scale. Its provision, via substantial capital and recurrent subsidies, for a small group has a large opportunity cost for society as a whole. The small-scale irrigators have a vested interest in ensuring that the subsidies are maintained, but in the process continue to absorb a disproportionate amount of resources which could be used for development elsewhere. By choosing simpler, cheaper water technologies, and assisting farmers with growing and marketing high value crops, the resources could instead be used to benefit a much larger proportion of households. With well designed programmes aimed at achieving equity, large numbers of subsistence farmers could improve their incomes and start working their way out of poverty.

  10. GEO Water Cycle Activities and Plans

    NASA Astrophysics Data System (ADS)

    Lawford, R.; Koike, T.; Ishida, C.; Grabs, W.

    2008-12-01

    The Group on Earth Observations (GEO) consists of more than 70 countries and 40 international organizations which are working together to develop the Global Earth Observation System of Systems (GEOSS). Since its launch in 2004, GEO has stimulated a wide range of activities related to data systems and their architecture, the development of science and technology to support observational programs, user interactions and interfaces, and capacity building. GEO tasks directed at Water Resources Management, one of the nine GEO Societal Benefit areas, are an integral part of these developments. They draw heavily upon the activities of the Integrated Global Water Cycle Observations (IGWCO) theme and on the activities and infrastructure provided through GEO and its committees. Within the GEO framework the water related activities have been focused on four specific tasks namely integrated data set development; information for floods, droughts and water management; water quality, and capacity building. Currently these efforts are being facilitated by the IGWCO theme that was formed under the former Integrated Global Observing Strategy Partnership (IGOS-P). With the dissolution of this partnership, other mechanisms, including the GEO Water Cycle Community of Practice, are being considered as new opportunitites for coordinating the work of the theme and the water-related GEO tasks. This talk provides a description of the GEO water tasks and reviews the progress that has been made in addressing them. It also provides a perspective on new opportunities and briefly describes some of the mechanisms, such as the Water Cycle Community of Practice, that could be expanded to coordinate a more comprehensive set of water tasks and greater community involvement.

  11. [Assessment system for watershed ecological health in the United States: development and application].

    PubMed

    Zhang, Hua; Luo, Yong-Ming

    2013-07-01

    To meet the water quality goals of the Clean Water Act, the environmental agencies in the United States (U.S.) have developed a comprehensive ecological assessment system of watershed health in the last two decades. The system employs a watershed approach, and includes a large set of hydrological, chemical, and biological indices, having become an essential part of the watershed water quality management system in the U.S. and provided strong support for the protection of water environment and the restoration of aquatic system. In this paper, the development and application of the ecological assessment system of watershed health by the U.S. environmental regulators, especially the U.S. Environmental Protection Agency (US EPA), were overviewed from the aspects of related laws and regulations, ecosystem function analysis, ecological health indicators, comprehensive assessment system, and monitoring and data management systems, and the health assessment systems for the rivers, lakes, estuaries, coasts, and wetlands adopted by the National$t1-1-1 Aquatic Resource Surveys (NARS) were introduced. Some suggestions for the future development of the scientific ecological assessment system of watershed health in China were put forward based on the understanding of the protection and remediation practices of our water environment.

  12. Development and use of mathematical models and software frameworks for integrated analysis of agricultural systems and associated water use impacts

    USGS Publications Warehouse

    Fowler, K. R.; Jenkins, E.W.; Parno, M.; Chrispell, J.C.; Colón, A. I.; Hanson, Randall T.

    2016-01-01

    The development of appropriate water management strategies requires, in part, a methodology for quantifying and evaluating the impact of water policy decisions on regional stakeholders. In this work, we describe the framework we are developing to enhance the body of resources available to policy makers, farmers, and other community members in their e orts to understand, quantify, and assess the often competing objectives water consumers have with respect to usage. The foundation for the framework is the construction of a simulation-based optimization software tool using two existing software packages. In particular, we couple a robust optimization software suite (DAKOTA) with the USGS MF-OWHM water management simulation tool to provide a flexible software environment that will enable the evaluation of one or multiple (possibly competing) user-defined (or stakeholder) objectives. We introduce the individual software components and outline the communication strategy we defined for the coupled development. We present numerical results for case studies related to crop portfolio management with several defined objectives. The objectives are not optimally satisfied for any single user class, demonstrating the capability of the software tool to aid in the evaluation of a variety of competing interests.

  13. Development of California Public Health Goals (PHGs) for chemicals in drinking water.

    PubMed

    Howd, R A; Brown, J P; Morry, D W; Wang, Y Y; Bankowska, J; Budroe, J D; Campbell, M; DiBartolomeis, M J; Faust, J; Jowa, L; Lewis, D; Parker, T; Polakoff, J; Rice, D W; Salmon, A G; Tomar, R S; Fan, A M

    2000-01-01

    As part of a program for evaluation of environmental contaminants in drinking water, risk assessments are being conducted to develop Public Health Goals (PHGs) for chemicals in drinking water, based solely on public health considerations. California's Safe Drinking Water Act of 1996 mandated the development of PHGs for over 80 chemicals by 31 December 1999. The law allowed these levels to be set higher or lower than federal maximum contaminant levels (MCLs), including a level of zero if data are insufficient to determine a specific level. The estimated safe levels and toxicological rationale for the first 26 of these chemicals are described here. The chemicals include alachlor, antimony, benzo[a]pyrene, chlordane, copper, cyanide, dalapon, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-D, diethylhexylphthalate, dinoseb, endothall, ethylbenzene, fluoride, glyphosate, lead, nitrate, nitrite, oxamyl, pentachlorophenol, picloram, trichlorofluoromethane, trichlorotrifluoroethane, uranium and xylene(s). These risk assessments are to be considered by the State of California in revising and developing state MCLs for chemicals in drinking water (which must not exceed federal MCLs). The estimates are also notable for incorporation or consideration of newer guidelines and principles for risk assessment extrapolations.

  14. Environmental legislation and aquatic ecotoxicology in Mexico: past, present and future scenarios.

    PubMed

    Mendoza-Cantú, Ania; Ramírez-Romero, Patricia; Pica-Granados, Yolanda

    2007-08-01

    The consolidation of environmental legislation is fundamental for governments that wish to support and promote different actions focused on reducing pollution and protecting natural water resources in order to maintain the present and future benefits that water provides for human beings and wild life. Environmental laws are essential for sustaining human activities and health, preserving biodiversity and promoting sustainable development. In this context, it is important that environmental regulations concentrate on preventing or reducing the harmful impact of pollutants on organisms and ecosystems. The introduction of toxicity bioassays in environmental regulations is a positive step toward achieving this goal. In Mexico, the development of environmental legislation and the introduction of bioassays in water regulation are part of a very recent and complex journey. This article describes how aquatic ecotoxicology tools, particularly bioassays, have influenced water pollution policies in Mexico. Three scenarios are reviewed: the background of Mexican legislation on water protection and Mexico's participation in the Watertox project; the actual efforts of SEMARNAT to develop bioassay batteries for this country; and, the challenges and perspectives of ecotoxicological bioassays as regulatory instruments.

  15. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  16. Depositional facies and sequence stratigraphy of a Lower Carboniferous bryozoan-crinoidal carbonate ramp in the Illinois Basin, mid-continent USA

    USGS Publications Warehouse

    Lasemi, Z.; Norby, R.D.; Treworgy, J.D.

    1998-01-01

    The Lower Carboniferous Fort Payne and Ullin Formations in the Illinois Basin form the transgressive and highstand systems tracts that were deposited in a carbonate ramp setting. During deposition of the Ullin Limestone, biotic communities dominated by fenestrate bryozoans and echinoderms (primarily crinoids) proliferated, possibly in response to global tectonic, biological, and oceanographic events that affected bathymetry and nutrient supply. The Fort Payne Formation consists of a dark grey-brown, siliceous and argillaceous lime mudstone in the lower part (transgressive systems tract) and a very fine-grained wackestone to packstone with rare mud mounds in the upper part (early high-stand), and was deposited in an outer ramp to basinal environment. During deposition of the lower Ullin Limestone (mostly early highstand), bryozoan-crinoidal build-ups accreted both laterally and vertically into several relatively large carbonate banks, which were partly surrounded by siliceous Fort Payne sea. Bryozoans (primarily fenestrates) were especially prevalent during the late stage of bank development and formed mud-free bioherms up to 120 m thick. In places, carbonate mud mounds also formed during the early stage of bank deposition. Bioherm development declined during deposition of the upper Ullin Limestone (late highstand), and a broad, storm-dominated carbonate ramp was established that became the site for widespread deposition of bryozoan-crinoidal sandwaves. Gradual shallowing led to ooid formation at the end of Ullin deposition. This sequence was terminated by a relative rise in sea level that resulted in deposition of the transgressive facies of the lower part of the overlying Salem Limestone. The depositional style and the nature of skeletal material of the Fort Payne and Ullin Formations are similar to those of cool-water carbonates. A deep-water setting along with upwelling of cool, nutrient-rich oceanic waters may have been responsible for the proliferation of bryozoans and crinoids at this time. The deep-water setting and abundant nutrient supply also may have restricted the formation of ooids and proliferation of shallow-water calcareous organisms.

  17. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in a future publication.

  18. Synergy of Earth Observation and In-Situ Monitoring Data for Flood Hazard Early Warning System

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Spazierova, Katerina

    2010-12-01

    In this study, we demonstrate synergy of EO and in-situ monitoring data for early warning flood hazard system in the Czech Republic developed within ESA PECS project FLOREO. The development of the demonstration system is oriented to support existing monitoring activities, especially snow melt and surface water runoff contributing to flooding events. The system consists of two main parts accordingly, the first is snow cover and snow melt monitoring driven mainly by EO data and the other is surface water runoff modeling and monitoring driven by synergy of in-situ and EO data.

  19. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER...

  20. Development and implementation of a monitoring and information system to increase water use efficiency in arid and semi-arid areas in Limarí, Central Chile (WEIN)

    NASA Astrophysics Data System (ADS)

    Berger, Erich; Balmert, David; Richter, Jürgen

    2016-10-01

    The project WEIN was funded by the Federal Ministry of Education and Research (BMBF | Berlin, Germany) in the framework of the high-tech strategy of Germany's program "KMU-Innovativ". The project started in 2012 and was completed in 2014. In the scope of the project, an integrated system for analysis, monitoring and information at river basin level was developed, which provides relevant information for all stakeholders that are concerned with water resource issues. The main objective of the project was to improve water use efficiency and hence ensure the agricultural production in the region. The pilot region, in which this system was implemented, is the semi-arid Limarí basin in Northern Central Chile. One of the main parts of the project was the development and implementation of a web- and app-based irrigation water ordering and accounting system for local farmers.

  1. The practical use of simplicity in developing ground water models

    USGS Publications Warehouse

    Hill, M.C.

    2006-01-01

    The advantages of starting with simple models and building complexity slowly can be significant in the development of ground water models. In many circumstances, simpler models are characterized by fewer defined parameters and shorter execution times. In this work, the number of parameters is used as the primary measure of simplicity and complexity; the advantages of shorter execution times also are considered. The ideas are presented in the context of constructing ground water models but are applicable to many fields. Simplicity first is put in perspective as part of the entire modeling process using 14 guidelines for effective model calibration. It is noted that neither very simple nor very complex models generally produce the most accurate predictions and that determining the appropriate level of complexity is an ill-defined process. It is suggested that a thorough evaluation of observation errors is essential to model development. Finally, specific ways are discussed to design useful ground water models that have fewer parameters and shorter execution times.

  2. Public water supplies in western Texas

    USGS Publications Warehouse

    Broadhurst, W.L.; Sundstrom, R.W.; Weaver, D.E.

    1951-01-01

    This report gives a summarized description of the public water supplies in a region comprising 81 counties of western Texas and lying generally west of the hundredth meridian. It is the fourth and last of this series of reports concerning the public water supplies of the State. It gives the available data for each of 142 communities, as follows: The population of the community; the name of the official from whom the information was obtained; the ownership of the waterworks, whether private or municipal; the source of supply, whether ground water or surface water; the amount of water consumed; the facilities for storage; the number of customers served; the character of the chemical and sanitary treatment of the water, if any; and the chemical analyses of the water. Where ground water is used the following also are given. Records of wells, including drillers' logs; character of the pumping equipment; and yield of the wells and water-level records where they are available. Of the 142 public supplies, 133 are obtained from ground water, 5 from surface water, and 4 from a combination of both. The total amount of water . used for public supply in the region averages about 78,000,000 gallons a day. Of this about 61,000,000 gallons a day is ground water and about 17,000,000 gallons a day is surface water. The ground-water resources of the region from which public water supplies are drawn are in rocks that range in age from Permian to Quaternary. The Ogallala formation of Tertiary age (Pliocene), which covers about 35,000 square miles of the High Plains in Texas, is the most important ground-water reservoir in the region. The formation furnishes water for 78 public supplies and for irrigating about 1,000,000 acres of land. The amount of water used for irrigating amounted to about 1,000,000 acre-feet in 1948. The Trinity and Fredericksburg groups of Lower Cretaceous age supply ground water in the western part of the Edwards Plateau, which constitutes an area of more than 22,000 square miles. These formations furnish small to large supplies to 20 municipalities. Sands of the Dockum group of Triassic refurnish meager to moderate supplies of water for 10 municipalities in areas east of the southern part of the High Plains and in the northern Pecos Valley in Texas. Local alluvial, bolson, or volcanic deposits furnish ground water in small to large amounts in scattered localities in the remainder of the region. The Permian rocks are of little importance as a source of ground water for public supply, owing to the highly mineralized water in them. The results of the chemical analyses of 206 samples of water obtained from the public supplies of the region are given in this report. The analyses are reported in parts per million and in equivalents per million for those ions entering into ionic balance. Of the samples analyzed 57 percent contained silica in excess of 20 parts per million; about 9 percent contained iron in excess of 0.3 part per million; 78 percent had hardness in excess of 200 parts per million; about 18 percent contained sulfate in excess of 250 parts per million; 10 percent contained chloride in excess of 250 parts per million; 3 percent contained nitrate in excess of 20 parts per million; 37 percent contained fluoride in excess of 2 parts per million; and 12 percent contained dissolved solids in excess of 1,000 parts per million.

  3. Availability of water in Kalamazoo County, southwestern Michigan

    USGS Publications Warehouse

    Allen, William Burrows; Miller, John B.; Wood, Warren W.

    1972-01-01

    Kalamazoo County comprises an area of 572 square miles in the southwestern part of Michigan. It includes parts of the Kalamazoo, St. Joseph, and Paw Paw River basins, which drain into Lake Michigan. The northern two-thirds of the county is drained by the Kalamazoo River and its tributaries. A small area in the western piart of the county is drained by the Paw Paw River, and the rest, by tributaries of the St. Joseph River. Glacial deposits, containing sand and gravel, form an upper aquifer and a lower aquifer underlying large parts of the county. Areas of high transmissibility and thick saturated deposits are sufficiently localized to be considered as separate ground-water reservoirs having limited areal extent and definite hydrologic boundaries. Ground-water runoff from the basins constitutes a large part of the streamflow. Hydrograph separation shows that ground-water runoff composed 65 and 73 percent of the discharge of Kalamazoo River at Comstock and 75 and 79 percent of the discharge of Portage River near Vicksburg in 1965 and 1966, respectively. Based on the hydrologic budgets for the same years, ground-water recharge was 9.1 and 9.0 inches in the Kalamazoo River basin and 12.2 and 11.6 inches in the St. Joseph River basin. Ground-water recharge in the Kalamazoo River basin extrapolated for the 34-year period 1933-66 ranged from 4 to 13 inches and averaged 9 inches. In the St. Joseph River basin average recharge was about 9 inches for the same period. There is a wide range in runoff in the county. Augusta Creek, Portage Creek near Kalamazoo, and Gourdneck Creek have the highest annual runoff and maintain high yields even during periods of deficient precipitation. Spring Brook also reflects large ground-water contributions to streamflow. Storage in these basins could provide additional water during low flows for municipal and industrial needs. The primary use of lakes in the county is for recreational and esthetic purposes. Maintaining lake levels is therefore of the utmost importance. Levels at Crooked and Eagle Lakes have been maintained by pumping from lower aquifers. Diversion of water from Gourdneck Creek to West and Austin Lakes has helped in maintaining levels. Several relatively undeveloped lakes could be utilized as reservoirs whose storage could be used to augment streamflow or for water supply.Water in streams is generally of good chemical quality; however, several streams, including the Kalamazoo River downstream from Kalamazoo, have been degraded by municipal and industrial waste disposal. Water in the lakes is generally of good chemical quality with the exception of Barton Lake, which has been degraded by waste disposal. There is sufficient surface water available in Kalamazoo County to meet requirements for development of large quantities of water. The total available supply (average discharge of a stream) is about 680 mgd (million gallons per day). The dependable supply (7-day Q2, or average 7-day low flow having a recurrence interval of 2 years) is about 303 mgd. By developing artificial recharge facilities, surface runoff during winter and spring could be utilized to recharge ground-water reservoirs. Surface-water withdrawal in 1966 was about 58 mgd, of which 33 mgd was withdrawn from the Kalamazoo River. The quantity of water now being withdrawn from the ground and surface sources is small compared to the total that may be obtained in the area through full utilization of these resources. Mathematical models were used to simulate hydrologic conditions in the ground-water reservoirs and to evaluate maximum drawdowns for periods of little or no recharge. The practical limits of development as determined for the ground-water reservoirs are estimated to be at the following average withdrawal rates: Kalamazoo, 39 .mgd; Schoolcraft, 17 mgd; Kalamazoo-Portage, 24 mgd; and several small reservoirs, 67 mgd. These total 147 mgd. Further development would require additional artificial recharge facilities. Average ground-water withdrawal in 1966 was about 54 mgd. The Kalamazoo River ground-water reservoir furnished about 28 mgd, the Kalamazoo-Portage ground-water reservoir, about 21 mgd, and the other reservoirs, about 5 mgd. Thus, further development without artificial recharge is estimated to be about 11 mgd in the Kalamazoo River reservoir, 17 mgd in the Schoolcraft reservoir, 62 mgd in the several small reservoirs, and only 3 mgd in the Kalamazoo-Portage reservoir.The ground water is generally of good chemical quality and is suitable for most uses; however, it is Usually very hard and may contain objectionable amounts of iron. Some deterioration of water quality- has .been observed in several areas because of seepage from stockpiles of industrial minerals. The presence of many inland lakes, streams having high ground-water runoff, and, in places, relatively undeveloped ground-water reservoirs provides -flexibility in water management.

  4. Participatory environmental governance in China: public hearings on urban water tariff setting.

    PubMed

    Zhong, Li-Jin; Mol, Arthur P J

    2008-09-01

    In the late 1990s China started to expand its market economic reform to the public sector, such as water services. This reform led to major changes in urban water management, including water tariff management. The reforms in water tariff management relate not only to tariffs, but also to the decision-making on tariffs. Water tariff decision-making seems to move away from China's conventional mode of highly centralized and bureaucratic policy- and decision-making. The legalization, institutionalization and performance of public hearings in water tariff management forms a crucial innovation in this respect. This article analyzes the emergence, development and current functioning of public hearings in water tariff setting, and assesses to what extent public hearings are part of a turning point in China's tradition of centralized bureaucratic decision-making, towards more transparent, decentralized and participative governance.

  5. Ground water in northeastern Louisville, Kentucky with reference to induced filtration

    USGS Publications Warehouse

    Rorabaugh, M.I.

    1956-01-01

    In cooperation with the city of Louisville, Ky., the U. S. Geological Survey made a detailed investigation during the period February 1945 to March 1947 of the ground-water resources of a 3-square-mile area along the Ohio River north-east of Louisville. Test drilling shows that the principal aquifer consists of about 80 feet of glacial-outwash sands and gravels lying in an old river channel which was cut into rocks of Ordovician, Silurian, and Devonian age. The total ground-water storage in the area is estimated as 7 billion gallons. The ground-water levels are affected by changes in river elevation, by rainfall, and by the effects of pumping in the downtown part of Louisville 3 miles to the southwest. In the northeastern part of the area the flow of ground water, as defined by contour maps, is toward the river, and in the southwestern part of the area it is from the river toward the downtown area of overpumping. Ground water in the area has an average temperature of 56° F. The water, which is moderately hard, is suitable for domestic and industrial uses. Analysis of a pumping test made during the investigation proves that infiltration supplies can be developed. Studies to determine the degree of connection between the river and aquifer were made on the basis of chemical analyses, sections showing temperature distribution in the aquifer during the pumping test, shapes of water-level profiles in the test area, and shapes of time-drawdown curves for a number of observation wells. Quantitative studies to evaluate the hydrologic constants of the aquifer were made by both graphical and mathematical methods. The transmissibility was determined as 121,000 gpd/ft in the test area; the distance to the line source, 400 feet; and the coefficient of storage, 0.0003. A comparison of river-level fluctuations and water-level fluctuations in observation wells shows that conditions along the 6.4-mile reach of river are not greatly different from those at the site of the pumping test. It is estimated that under adverse temperature and river-stage conditions infiltration supplies could be developed to the extent of 280 million gpd in the entire 6.4-mile reach investigated; at average river-water temperature (59° F) about 400 million gpd could be developed. Diagrams were drawn showing the estimated yield of wells of different radii, at various distances from the river, and at various spacings. In making the computations allowance was made for screen losses, dewatering of the aquifer, partial penetration of wells, location wells, eccentricity of large wells, and interference among wells.

  6. Flow Pathways of Snow and Ground Ice Melt Water During Initial Seasonal Thawing of the Active Layer on Continuous Permafrost

    NASA Astrophysics Data System (ADS)

    Sjoberg, Y.; Johansson, E.; Rydberg, J.

    2017-12-01

    In most arctic environments, the snowmelt is the main hydrologic event of the year as a large fraction of annual precipitation rapidly moves through the catchment. Flow can occur on top of the frozen ground surface or through the developing active layer, and flow pathways are critical determinants for biogeochemical transport. We study the linkages between micro topography, active layer thaw, and water partitioning on a hillslope in Greenland during late snowmelt season to explore how seasonal subsurface flow pathways develop. During snowmelt, a parallel surface drainage pattern appears across the slope, consisting of small streams, and water also collects in puddles across the slope. Thaw rates in the active layer were significantly higher (T-test p<0.01) on wet parts of the slope (0.8 cm/day), compared to drier parts of the slope (0.6 cm/day). Analyses of stable water isotopic composition show that snow had the lightest isotopic signatures, but with a large spread of values, while seasonally frozen ground and standing surface water (puddles) were heavier. The stream water became heavier over the two-week sampling period, suggesting an increasing fraction of melted soil water input over time. In contrast, standing surface water (puddles) isotopic composition did not change over time. In boreal catchments, seasonal frost has previously been found to not significantly influence flow pathways during most snowmelt events, and pre-event groundwater make out most of the stream water during snowmelt. Our results from a continuous permafrost environment show that both surface (overland) and subsurface flow pathways in the active layer are active, and that a large fraction of the water moving on the hillslope comes from melted ground ice rather than snow in the late snowmelt season. This suggests a possibility that flow pathways during snowmelt could shift to deeper subsurface flow following degradation of continuous permafrost.

  7. Future Availability of Water Supply from Karstic Springs under Probable Climate Change. The case of Aravissos, Central Macedonia, Greece.

    NASA Astrophysics Data System (ADS)

    Vafeiadis, M.; Spachos, Th.; Zampetoglou, K.; Soupilas, Th.

    2012-04-01

    The test site of Aravissos is located at 70 Km to the West (W-NW) of Thessaloniki at the south banks of mount Païko, in the north part of Central Macedonia The karstic Aravissos springs supply 40% of total volume needed for the water supply of Thessaloniki, Greece. As the water is of excellent quality, it is feed directly in the distribution network without any previous treatment. The availability of this source is therefore of high importance for the sustainable water supply of this area with almost 1000000 inhabitants. The water system of Aravissos is developed in a karstic limestone with an age of about Late Cretaceous that covers almost the entire western part of the big-anticline of Païko Mountain. The climate in this area and the water consumption area, Thessaloniki, is a typical Mediterranean climate with mild and humid winters and hot and dry summers. The total annual number of rainy days is around 110. The production of the Aravissos springs depends mostly from the annual precipitations. As the feeding catchement and the karst aquifer are not well defined, a practical empirical balance model, that contains only well known relevant terms, is applied for the simulation of the operation of the springs under normal water extraction for water supply in present time. The estimation of future weather conditions are based on GCM and RCM simulation data and the extension of trend lines of the actual data. The future evolution of the availability of adequate water quantities from the springs is finally estimated from the balance model and the simulated future climatic data. This study has been realised within the project CC-WaterS, funded by the SEE program of the European Regional Development Fund (http://www.ccwaters.eu/).

  8. Water use competition scenarios during the upcoming development of shale gas reserves across the Mexican Eagle Ford play Image already added

    NASA Astrophysics Data System (ADS)

    Arciniega, S.; Breña-Naranjo, J. A.; Hernaández Espriú, A.; Pedrozo-Acuña, A.

    2017-12-01

    Mexico has significant shale oil and gas resources mainly contained within the Mexican part of the Eagle Ford play (Mex-EF), in the Burgos Basin located in northern Mexico. Over the last years, concerns about the water use associated to shale gas development using hydraulic fracturing (HF) have been increasing in the United States and Canada. In Mexico, the recent approval of a new energy bill allows the exploration, development and production of shale gas reserves. However, several of the Mexican shale gas resources are located in water-limited environments, such as the Mex-EF. The lack of climate and hydrological gauging stations across this region constrains information about how much freshwater from surface and groundwater sources is available and whether its interannual water availability is sufficient to satisfy the water demand by other users (agricultural, urban) of the region This work projects the water availability across the Mex-EF and its water use derived from the expansion of unconventional gas developments over the next 15 years. Water availability is estimated using a water balance approach, where the irrigation's groundwater withdrawals time series were reconstructed using remote sensing products (vegetation index and hydrological outputs from LSMs) and validated with in situ observed water use at three different irrigation districts of the region. Water use for HF is inferred using type curves of gas production, flowback and produced (FP) water and curves of drilled wells per year from the US experience, mainly from the Texas-EF play. Scenarios that combine freshwater use and FP water use for HF are developed and the spatial distribution of HF well pads is projected using random samples with a range of wells' horizontal length. This proposed methodology can be applied in other shale formations of the world under water stress and it also helps to determine whether water scarcity can be a limiting factor for the shale gas industry over the next decades. Image already added

  9. There were giants in the Earth in those days: the ancient catchment and aqueduct of 'Triglio' near Taranto (Italy)

    NASA Astrophysics Data System (ADS)

    Spilotro, Giuseppe; Fidelibus, Maria Dolores; Canora, Filomena; Pellicani, Roberta

    2014-05-01

    In the area between the towns of Crispiano, Statte and Taranto, partly along the Gravina (canyon) of the Triglio, a huge aqueduct, which presently reaches Taranto, develops. The water intake apparatus, which is constituted by small underground tunnels some kilometers long and with regularly spaced pits for the digging and for the aeration of the conduct, is very notable. As a matter of fact, the water intake works deep inside very permeable calcareous rocks testify the capability of withdrawal water even from an unfriendly environment like a karst vadose zone in a semi-arid region. The first part of the work is attributed at Roman age and more precisely in the interval between the 1st century BC and AC. In 950 A.D., after the fall of the Roman Empire, Nicephorus II Phocas, Emperor of the East, rebuilds Taranto after the wars and restructures the Triglio Aqueduct that remains outside the city walls. In 1334, Catherine II of Valois, Princess of Taranto, completes the aqueduct bringing it into the city. In the nineteenth century, the aqueduct becomes the "Public Source" and the Apulian Aqueduct Authority uses the structure to provide water until 1922, when the city began to be served by the Sele. The aqueduct presently extends for about 12 km and can be divided into three parts: (1) water intake apparatus, hypogeum stretch for water interception, formed by branches of tunnels converging in a single pipe; (2) hypogeum conductor apparatus, which is a unique underground pipeline entirely excavated in the rock; (3) epigeum conductor apparatus, the final stretch of the aqueduct where it emerges from the ground level. The trend of the tunnels of the water intake apparatus has been reconstructed through studies carried out by Speleo Group Statte and other researchers. The water intake apparatus is composed by tunnels and pits excavated into a calcareous mass, draining the karst vadose zone and the alluvial deposits, where the tunnel is parallel to the water course of the canyon. Based on the average climatic conditions, it was possible to estimate an uptake of the order of 20 l/s. The tunnels of the Triglio aqueduct develops, for the entire length, into two types of calcareous rock: the Calcarenite of Gravina and the Limestone of Altamura. The interception apparatus is developed almost entirely in the Calcarenite of Gravina, while the hypogeum conductor system is developed in both lithologies. The attribution of the work to the Romans is not reflected in the purpose, as the port of Taranto was close to an area rich in springs. Moreover, the sophistication and the type of work recalls the "qanat" or "foggare" deriving from Persian, Arab or North African culture. it is therefore possible reposition the water intake apparatus as a work created by Arab hydrogeologists, which were in the southern Italy region around 900 AD. More probably, aqueduct was for human and agricultural service of some settlement placed at an altitude of about 100-150 m above the sea level. Only later (1300 BC), the water of Triglio, excellent in quality, was brought to Taranto to substitute local polluted water. It is interesting to note that the aqueduct, thanks to the use of intercepted waters and not of water from an aquifer, perfectly worked almost 1000 years under several cycles of climate changes, the last of which, the little ice Age, ended in the area about 150 years ago.

  10. Ionospheric Signatures in Radio Occultation Data

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Ao, Chi; Iijima, Byron A.; Kursinkski, E. Robert

    2012-01-01

    We can extend robustly the radio occultation data record by 6 years (+60%) by developing a singlefrequency processing method for GPS/MET data. We will produce a calibrated data set with profile-byprofile data characterization to determine robust upper bounds on ionospheric bias. Part of an effort to produce a calibrated RO data set addressing other key error sources such as upper boundary initialization. Planned: AIRS-GPS water vapor cross validation (water vapor climatology and trends).

  11. 40 CFR Appendix A to Part 7 - Types of EPA Assistance as Listed in the “Catalog of Federal Domestic Assistance”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provided by the Office of Research and Development under the Public Health Service Act as amended by the... Health Service Act, as amended by the Safe Drinking Water Act, Pub. L. 93-523; as amended by Pub. L. 93...; Pub. L. 94-580; 42 U.S.C. 6901, Public Health Service Act as amended by the Safe Drinking Water Act as...

  12. 40 CFR Appendix A to Part 7 - Types of EPA Assistance as Listed in the “Catalog of Federal Domestic Assistance”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provided by the Office of Research and Development under the Public Health Service Act as amended by the... Health Service Act, as amended by the Safe Drinking Water Act, Pub. L. 93-523; as amended by Pub. L. 93...; Pub. L. 94-580; 42 U.S.C. 6901, Public Health Service Act as amended by the Safe Drinking Water Act as...

  13. 40 CFR Appendix A to Part 7 - Types of EPA Assistance as Listed in the “Catalog of Federal Domestic Assistance”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provided by the Office of Research and Development under the Public Health Service Act as amended by the... Health Service Act, as amended by the Safe Drinking Water Act, Pub. L. 93-523; as amended by Pub. L. 93...; Pub. L. 94-580; 42 U.S.C. 6901, Public Health Service Act as amended by the Safe Drinking Water Act as...

  14. Digital data sets that describe aquifer characteristics of the Rush Springs Aquifer in western Oklahoma

    USGS Publications Warehouse

    Runkle, D.L.; Becker, M.F.; Rea, Alan

    1997-01-01

    This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Rush Spring aquifer in western Oklahoma. This area encompasses all or part of Blaine, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Stephens, and Washita Counties. These digital data sets were developed by Mark F. Becker to use as input into a computer model that simulated ground-water flow in the Rush Springs aquifer (Mark F. Becker, U.S. Geological Survey, written commun., 1997). For the purposes of modeling the ground-water flow in the Rush Springs aquifer, Mark F. Becker (written commun., 1997) defined the Rush Springs aquifer to include the Rush Springs Formation, alluvial and terrace deposits along major streams, and parts of the Marlow Formations, particularly in the eastern part of the aquifer boundary area. The Permian-age Rush Springs Formation consists of highly cross-bedded sandstone with some interbedded dolomite and gypsum. The Rush Springs Formation is overlain by Quaternary-age alluvial and terrace deposits that consist of unconsolidated clay, silt, sand, and gravel. The Rush Springs Formation is underlain by the Permian-age Marlow Formation that consists of interbedded sandstones, siltstones, mudstones, gypsum-anhydrite, and dolomite beds (Mark F. Becker, written commun., 1997). The parts of the Marlow Formation that have high permeability and porosity are where the Marlow Formation is included as part of the Rush Springs aquifer. The Rush Springs aquifer underlies about 2,400 square miles of western Oklahoma and is an important source of water for irrigation, livestock, industrial, municipal, and domestic use. Irrigation wells are reported to have well yields greater than 1,000 gallons per minute (Mark F. Becker, written commun., 1997). Mark F. Becker created some of the aquifer boundaries, hydraulic conductivity, and recharge data sets by digitizing parts of previously published surficial geology maps. The hydraulic conductivity and recharge values are the input data to the ground-water flow model (Mark F. Becker, written commun., 1997). The water-level elevation data set was prepared at a scale of 1:250,000 by Mark F. Becker (written commun., 1997) from water levels measured in wells prior to the year 1950. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  15. Water-Repellency Probe

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D.; Mitchell, Shirley M.; Jolly, Stanley R.; Jackson, Richard G.; Fleming, Scott T.; Roberts, William J.; Bell, Daniel R., III

    1996-01-01

    Instrument yielding presence or absence of waterproofing agent at any given depth in blanket developed. In original application, blankets in question part of space shuttle thermal protection system. Instrument utilized to determine extent of waterproofing "burnout" due to re-entry heating and adverse environment exposure.

  16. TRACE GAS CONCENTRATIONS IN STREAMS - EARLY WARNING INDICATORS OF STREAM IMPAIRMENT?

    EPA Science Inventory

    Surface water contamination and resultant impairment of aquatic ecosystem functioning are serious environmental problems, caused in large part by land use changes and excess organic waste inputs associated with agriculture and residential and industrial development. Headwater st...

  17. Nutrient Dynamics In Flooded Wetlands. I: Model Development

    EPA Science Inventory

    Wetlands are rich ecosystems recognized for ameliorating floods, improving water quality and providing other ecosystem benefits. In this part of a two-paper sequel, we present a relatively detailed process-based model for nitrogen and phosphorus retention, cycling and removal in...

  18. Why do these issues constitute problems? Pathogen indicators

    EPA Science Inventory

    The Water Environment Research Foundation funded a collaborative effort designed to better understand the factors affecting regrowth, odors and the sudden increase of bacterial indicators in heat treated biosolids. As part of this effort the Principal Investigators developed a w...

  19. Community Based Educational Model on Water Conservation Program

    NASA Astrophysics Data System (ADS)

    Sudiajeng, L.; Parwita, I. G. L.; Wiraga, I. W.; Mudhina, M.

    2018-01-01

    The previous research showed that there were indicators of water crisis in the northern and eastern part of Denpasar city and most of coastal area experienced on seawater intrusion. The recommended water conservation programs were rainwater harvesting and educate the community to develop a water saving and environmentally conscious culture. This research was conducted to built the community based educational model on water conservation program through ergonomics SHIP approach which placed the human aspect as the first consideration, besides the economic and technically aspects. The stakeholders involved in the program started from the problem analyses to the implementation and the maintenance as well. The model was built through three main steps, included determination of accepted design; building the recharge wells by involving local communities; guidance and assistance in developing a water saving and environmentally conscious culture for early childhood, elementary and junior high school students, community and industry. The program was implemented based on the “TRIHITA KARANA” concept, which means the relationship between human to God, human-to-human, and human to environment. Through the development of the model, it is expected to grow a sense of belonging and awareness from the community to maintain the sustainability of the program.

  20. The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Snowdon, Doug; Pickering, Karen D.; Callahan, Michael

    2007-01-01

    Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst.

Top