Sample records for water distribution structures

  1. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.

    PubMed

    Chen, Xianfeng; Weber, Irene; Harrison, Robert W

    2008-09-25

    Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (

  2. Molecular dynamics approach to water structure of HII mesophase of monoolein

    NASA Astrophysics Data System (ADS)

    Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim

    2012-02-01

    The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.

  3. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  4. Bacterial Composition in a Metropolitan Drinking Water Distribution System Utilizing Different Source Waters

    EPA Science Inventory

    The microbial community structure was investigated from bulk phase water samples of multiple collection sites from two service areas within the Cincinnati drinking water distribution system (DWDS). Each area is associated with a different primary source of water (i.e., groundwat...

  5. Structural control of coalbed methane production in Alabama

    USGS Publications Warehouse

    Pashin, J.C.; Groshong, R.H.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.

  6. Water in a Soft Confinement: Structure of Water in Amorphous Sorbitol.

    PubMed

    Shalaev, Evgenyi; Soper, Alan K

    2016-07-28

    The structure of water in 70 wt % sorbitol-30 wt % water mixture is investigated by wide-angle neutron scattering (WANS) as a function of temperature. WANS data are analyzed using empirical potential structure refinement to obtain the site-site radial distribution functions (RDFs). Orientational structure of water is represented using OW-OW-OW triangles distributions and a tetrahedrality parameter, q, while water-water correlation function is used to estimate size of water clusters. Water structure in the sorbitol matrix is compared with that of water confined in nanopores of MCM41. The results indicate the existence of voids in the sorbitol matrix with the length scale of approximately 5 Å, which are filled by water. At 298 K, positional water structure in these voids is similar to that of water in MCM41, whereas there is a difference in the tetrahedral (orientational) arrangement. Cooling to 213 K strengthens tetrahedrality, with the orientational order of water in sorbitol becoming similar to that of confined water in MCM41 at 210 K, whereas further cooling to 100 K does not introduce any additional changes in the tetrahedrality. The results obtained allow us to propose, for the first time, that such confinement of water in a sorbitol matrix is the main reason for the lack of ice formation in this system.

  7. Condition Assessment Technologies for Water Transmission and Distribution Systems

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  8. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    PubMed

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  10. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  11. Condition Assessment of Drinking Water Transmission and Distribution Systems

    EPA Science Inventory

    Condition assessment of water transmission and distribution mains is the collection of data and information through direct and/or indirect methods, followed by analysis of the data and information, to make a determination of the current and/or future structural, water quality, an...

  12. Ecological patterns, distribution and population structure of Prionace glauca (Chondrichthyes: Carcharhinidae) in the tropical-subtropical transition zone of the north-eastern Pacific.

    PubMed

    Vögler, Rodolfo; Beier, Emilio; Ortega-García, Sofía; Santana-Hernández, Heriberto; Valdez-Flores, J Javier

    2012-02-01

    Regional ecological patterns, distribution and population structure of Prionace glauca were analyzed based on samples collected on-board two long-line fleets operating in oceanic waters (1994-96/2000-02) and in coastal oceanic waters (2003-2009) of the eastern tropical Pacific off México. Generalized additive models were applied to catch per unit of effort data to evaluate the effect of spatial, temporal and environmental factors on the horizontal distribution of the life stages (juvenile, adult) and the sexes at the estimated depth of catch. The presence of breeding areas was explored. The population structure was characterized by the presence of juveniles' aggregations and pregnant females towards coastal waters and the presence of adult males' aggregations towards oceanic waters. The species exhibited horizontal segregation by sex-size and vertical segregation by sex. Distribution of the sex-size groups at oceanic waters was seasonally affected by the latitude; however, at coastal oceanic waters mainly females were influenced by the longitude. Latitudinal changes on the horizontal distribution were coupled to the seasonal forward and backward of water masses through the study area. Adult males showed positive relationship with high temperatures and high-salinities waters (17.0°-20.0 °C; 34.2-34.4) although they were also detected in low-salinities waters. The distribution of juvenile males mainly occurred beyond low temperatures and low-salinities waters (14.0°-15.0 °C; 33.6-34.1), suggesting a wide tolerance of adult males to explore subartic and subtropical waters. At oceanic areas, adult females were aggregated towards latitudes <25.0°N, mainly associated to subtropical waters during summer. The distribution of juvenile females indicated its preference by lower temperatures and more saline waters. Presence of pregnant females suggests that the eastern tropical Pacific off México represents an ecological key region to the reproductive cycle of P. glauca. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Spatial Description of Drinking Water Bacterial Community Structures in Bulk Water Samples Collected in a Metropolitan Distribution System

    EPA Science Inventory

    The description of microorganisms inhabiting drinking water distribution systems has commonly been performed using techniques that are biased towards easy to culture bacterial populations. As most environmental microorganisms cannot be grown on artificial media, our understanding...

  14. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.

  15. A Long-Term Study of the Microbial Community Structure in a Simulated Chloraminated Drinking Water Distribution System

    EPA Science Inventory

    Free chlorine is used as the primary disinfectant in most drinking water distribution systems(DWDS). However, chlorine disinfection promotes the formation of disinfectant by-products (DBPs)and as a result, many US water treatment facilities use chloramination to ensure regulatory...

  16. Three-dimensional water impact at normal incidence to a blunt structure

    PubMed Central

    Cooker, M. J.; Korobkin, A. A.

    2016-01-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912

  17. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach

    NASA Astrophysics Data System (ADS)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta

    2017-12-01

    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  18. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  19. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  20. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  1. SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.

  2. 24 CFR 1003.202 - Eligible rehabilitation and preservation activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the efficient use of water through such means as water saving faucets and shower heads and repair of water leaks; (6) Connection of residential structures to water distribution lines or local sewer...

  3. Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics.

    PubMed

    Stirnemann, Guillaume; Laage, Damien

    2012-07-21

    We combine molecular dynamics simulations and analytic modeling to determine the origin of the non-Arrhenius temperature dependence of liquid water's reorientation and hydrogen-bond dynamics between 235 K and 350 K. We present a quantitative model connecting hydrogen-bond exchange dynamics to local structural fluctuations, measured by the asphericity of Voronoi cells associated with each water molecule. For a fixed local structure the regular Arrhenius behavior is recovered, and the global anomalous temperature dependence is demonstrated to essentially result from a continuous shift in the unimodal structure distribution upon cooling. The non-Arrhenius behavior can thus be explained without invoking an equilibrium between distinct structures. In addition, the large width of the homogeneous structural distribution is shown to cause a growing dynamical heterogeneity and a non-exponential relaxation at low temperature.

  4. On the probabilistic structure of water age: Probabilistic Water Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porporato, Amilcare; Calabrese, Salvatore

    We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less

  5. On the probabilistic structure of water age: Probabilistic Water Age

    DOE PAGES

    Porporato, Amilcare; Calabrese, Salvatore

    2015-04-23

    We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less

  6. 24 CFR 570.202 - Eligible rehabilitation and preservation activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... increase the efficient use of water through such means as water savings faucets and shower heads and repair of water leaks; (6) Connection of residential structures to water distribution lines or local sewer...

  7. Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model.

    PubMed

    Setny, Piotr

    2015-12-08

    Buried water molecules are ubiquitous in protein structures and are found at the interface of most protein-ligand complexes. Determining their distribution and thermodynamic effect is a challenging yet important task, of great of practical value for the modeling of biomolecular structures and their interactions. In this study, we present a novel method aimed at the prediction of buried water molecules in protein structures and estimation of their binding free energies. It is based on a semiexplicit, discrete solvation model, which we previously introduced in the context of small molecule hydration. The method is applicable to all macromolecular structures described by a standard all-atom force field, and predicts complete solvent distribution within a single run with modest computational cost. We demonstrate that it indicates positions of buried hydration sites, including those filled by more than one water molecule, and accurately differentiates them from sterically accessible to water but void regions. The obtained estimates of water binding free energies are in fair agreement with reference results determined with the double decoupling method.

  8. Probing the water distribution in porous model sands with two immiscible fluids: A nuclear magnetic resonance micro-imaging study

    NASA Astrophysics Data System (ADS)

    Lee, Bum Han; Lee, Sung Keun

    2017-10-01

    The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first analyses of the cube-counting fractal dimension (and other structural properties) and convergence rates in porous networks consisting of two fluid components. These results indicate that the convergence rates correlate with the geometric factor that characterizes the porous networks and transport property of the porous networks.

  9. Molecular diversity of drinking water bacterial communities using 16S rRNA gene sequence analyses

    EPA Science Inventory

    Our understanding of the microbial community structure of drinking water distribution system has relied on culture-based methods. However, recent studies have suggested that the majority of bacteria inhabiting distribution systems are unable to grow on artificial media. The goal ...

  10. Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.

    PubMed

    Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram

    2014-01-01

    Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.

  11. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    PubMed

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Water Uptake Profile In a Model Ion-Exchange Membrane: Conditions For Water-Rich Channels

    DTIC Science & Technology

    2014-12-01

    these issues, more research is needed to improve their performance. Aqueous alkaline electrolytes such as potassium hydroxide (KOH) trace their begin...1.2 Water distribution Motivation Hydroxide ion transport through the membrane is fundamentally dependent on the amount and distribution of water...hydrophilic-to-hydrophobic ratio, for several reasons. First, this is the case for Nafion, the gold standard for PEM membranes; its unique pore structure

  13. On the probabilistic structure of water age

    NASA Astrophysics Data System (ADS)

    Porporato, Amilcare; Calabrese, Salvatore

    2015-05-01

    The age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it can be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. We illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.

  14. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    PubMed

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm.

    PubMed

    Wang, Hong; Masters, Sheldon; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy

    2014-01-01

    Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P < 0.05). Interactive effects of disinfectant, pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).

  16. Rehabilitation of Wastewater Collection and Water Distribution Systems -State of Technology Review Report

    EPA Science Inventory

    This White Paper is intended to provide an overview of the current state-of-the-practice and current state-of-the-art for rehabilitation of pipes and structures within the wastewater collection and water distribution systems. Rehabilitation is defined as repair, renewal, and rep...

  17. Lithotype characterizations by Nuclear Magnetic Resonance (NMR): A case study on limestone and associated rocks from the eastern Dahomey Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Olatinsu, O. B.; Olorode, D. O.; Clennell, B.; Esteban, L.; Josh, M.

    2017-05-01

    Three representative rock types (limestone, sandstone, and shale) and glauconite samples collected from Ewekoro Quarry, eastern Dahomey Basin in Nigeria were characterized using low field 2 MHz and 20 MHz Nuclear Magnetic Resonance (NMR) techniques. NMR T2 relaxation time decay measurement was conducted on disc samples under partial water-saturation and full water-saturation conditions using CPMG spin-echo routine. The T2 relaxation decay was converted into T2 distribution in the time domain to assess and evaluate the pore size distribution of the samples. Good agreement exists between water content from T2 NMR distributions and water imbibition porosity (WIP) technique. Results show that the most useful characteristics to discriminate the different facies come from full saturation NMR 2 MHz pore size distribution (PSD). Shale facies depict a quasi-unimodal distribution with greater than 90% contribution from clay bound water component (T2s) coupled to capillary bound water component (T2i) centred on 2 ms. The other facies with well connected pore structure show either bimodal or trimodal T2 distribution composed of the similar clay bound water component centred on 0.3 ms and quasi-capillary bound water component centred on 10 ms. But their difference depends on the movable water T2 component (T2l) that does not exist in the glauconite facies (bimodal distribution) while it exists in both the sandstone and limestone facies. The basic difference between the limestone and sandstone facies is related to the longer T2 coupling: T2i and T2l populations are coupled in sandstone generating a single population which convolves both populations (bimodal distribution). Limestone with a trimodal distribution attests to the fact that carbonate rocks have more complex pore system than siliclastic rocks. The degree of pore connectivity is highest in sandstone, followed by limestone and least in glauconite. Therefore a basic/quick NMR log run on samples along a geological formation can provide precise lithofacies characterization with quantitative information on pore size, structure and distributions.

  18. Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge

    NASA Astrophysics Data System (ADS)

    Rustenburg, Ariën S.; Dancer, Justin; Lin, Baiwei; Feng, Jianwen A.; Ortwine, Daniel F.; Mobley, David L.; Chodera, John D.

    2016-11-01

    Small molecule distribution coefficients between immiscible nonaqueuous and aqueous phases—such as cyclohexane and water—measure the degree to which small molecules prefer one phase over another at a given pH. As distribution coefficients capture both thermodynamic effects (the free energy of transfer between phases) and chemical effects (protonation state and tautomer effects in aqueous solution), they provide an exacting test of the thermodynamic and chemical accuracy of physical models without the long correlation times inherent to the prediction of more complex properties of relevance to drug discovery, such as protein-ligand binding affinities. For the SAMPL5 challenge, we carried out a blind prediction exercise in which participants were tasked with the prediction of distribution coefficients to assess its potential as a new route for the evaluation and systematic improvement of predictive physical models. These measurements are typically performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. Cyclohexane was suggested to avoid issues with the high water content and persistent heterogeneous structure of water-saturated octanol phases, since it has greatly reduced water content and a homogeneous liquid structure. Using a modified shake-flask LC-MS/MS protocol, we collected cyclohexane/water distribution coefficients for a set of 53 druglike compounds at pH 7.4. These measurements were used as the basis for the SAMPL5 Distribution Coefficient Challenge, where 18 research groups predicted these measurements before the experimental values reported here were released. In this work, we describe the experimental protocol we utilized for measurement of cyclohexane-water distribution coefficients, report the measured data, propose a new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, and provide insights to help guide future iterations of this valuable exercise in predictive modeling.

  19. Pore-scale water dynamics during drying and the impacts of structure and surface wettability

    NASA Astrophysics Data System (ADS)

    Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.

    2017-07-01

    Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.

  20. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    PubMed

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  1. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    PubMed

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  3. SCALE-MODEL STUDIES OF MIXING IN DRINKING WATER STORAGE TANKS

    EPA Science Inventory

    Storage tanks and reservoirs are commonly used in drinking water distribution systems to equalize pumping requirements and operating pressures, and to provide emergency water for fire-fighting and pumping outages. Poor mixing in these structures can create pockets of older water...

  4. Well logging evaluation of water-flooded layers and distribution rule of remaining oil in marine sandstone reservoirs of the M oilfield in the Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Gao, Yunfeng; Fan, Hongjun

    2017-03-01

    In the marine sandstone reservoirs of the M oilfield the water cut is up to 98%, while the recovery factor is only 35%. Additionally, the distribution of the remaining oil is very scattered. In order to effectively assess the potential of the remaining oil, the logging evaluation of the water-flooded layers and the distribution rule of the remaining oil are studied. Based on the log response characteristics, the water-flooded layers can be qualitatively identified. On the basis of the mercury injection experimental data of the evaluation wells, the calculation model of the initial oil saturation is built. Based on conventional logging data, the evaluation model of oil saturation is established. The difference between the initial oil saturation and the residual oil saturation can be used to quantitatively evaluate the water-flooded layers. The evaluation result of the water-flooded layers is combined with the ratio of the water-flooded wells in the marine sandstone reservoirs. As a result, the degree of water flooding in the marine sandstone reservoirs can be assessed. On the basis of structural characteristics and sedimentary environments, the horizontal and vertical water-flooding rules of the different types of reservoirs are elaborated upon, and the distribution rule of the remaining oil is disclosed. The remaining oil is mainly distributed in the high parts of the structure. The remaining oil exists in the top of the reservoirs with good physical properties while the thickness of the remaining oil ranges from 2-5 m. However, the thickness of the remaining oil of the reservoirs with poor physical properties ranges from 5-8 m. The high production of some of the drilled horizontal wells shows that the above distribution rule of the remaining oil is accurate. In the marine sandstone reservoirs of the M oilfield, the research on the well logging evaluation of the water-flooded layers and the distribution rule of the remaining oil has great practical significance to the prediction of the distribution of the remaining oil and the optimization of well locations.

  5. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  6. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    NASA Astrophysics Data System (ADS)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  7. Learning about Biomolecular Solvation from Water in Protein Crystals.

    PubMed

    Altan, Irem; Fusco, Diana; Afonine, Pavel V; Charbonneau, Patrick

    2018-03-08

    Water occupies typically 50% of a protein crystal and thus significantly contributes to the diffraction signal in crystallography experiments. Separating its contribution from that of the protein is, however, challenging because most water molecules are not localized and are thus difficult to assign to specific density peaks. The intricateness of the protein-water interface compounds this difficulty. This information has, therefore, not often been used to study biomolecular solvation. Here, we develop a methodology to surmount in part this difficulty. More specifically, we compare the solvent structure obtained from diffraction data for which experimental phasing is available to that obtained from constrained molecular dynamics (MD) simulations. The resulting spatial density maps show that commonly used MD water models are only partially successful at reproducing the structural features of biomolecular solvation. The radial distribution of water is captured with only slightly higher accuracy than its angular distribution, and only a fraction of the water molecules assigned with high reliability to the crystal structure is recovered. These differences are likely due to shortcomings of both the water models and the protein force fields. Despite these limitations, we manage to infer protonation states of some of the side chains utilizing MD-derived densities.

  8. Water Dynamics in Egg White Peptide, Asp-His-Thr-Lys-Glu, Powder Monitored by Dynamic Vapor Sorption and LF-NMR.

    PubMed

    Yang, Shuailing; Liu, Xuye; Jin, Yan; Li, Xingfang; Chen, Feng; Zhang, Mingdi; Lin, Songyi

    2016-03-16

    Water absorbed into the bulk amorphous structure of peptides can have profound effects on their properties. Here, we elucidated water dynamics in Asp-His-Thr-Lys-Glu (DHTKE), an antioxidant peptide derived from egg white ovalbumin, using water dynamic vapor sorption (DVS) and low-field nuclear magnetic resonance (LF-NMR). The DVS results indicated that parallel exponential kinetics model fitted well to the data of sorption kinetics behavior of DHTKE. Four different proton fractions with different mobilities were identified based on the degree of interaction between peptide and water. The water could significantly change the proton distribution and structure of the sample. The different phases of moisture absorption were reflected in the T2 parameters. In addition, the combined water content was dominant in the hygroscopicity of DHTKE. This study provides an effective real-time monitoring method for water mobility and distribution in synthetic peptides, and this method may have applications in promoting peptide quality assurance.

  9. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin.

    PubMed

    Telò, Isabella; Favero, Elena Del; Cantù, Laura; Frattini, Noemi; Pescina, Silvia; Padula, Cristina; Santi, Patrizia; Sonvico, Fabio; Nicoli, Sara

    2017-10-02

    The aim of this work was to develop an innovative microemulsion with gel-like properties for the cutaneous delivery of imiquimod, an immunostimulant drug employed for the treatment of cutaneous infections and neoplastic conditions. A pseudoternary phase diagram was built using a 1/1 TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate)/Transcutol mixture as surfactant system, and oleic acid as oil phase. Eight microemulsions-selected from the 1.25/8.75 oil/surfactants ratio, along the water dilution line (from 20 to 56% w/w)-were characterized in terms of rheological behavior, optical properties via polarized microscopy, and supramolecular structure using X-ray scattering. Then, these formulations were loaded with imiquimod and the uptake and distribution into the skin was evaluated on full-thickness porcine skin. X-ray scattering experiments revealed the presence of disconnected drops in the case of microemulsion with 20% water content. Diluting the system up to 48% water content, the structure turned into an interconnected lamellar microemulsion, reaching a proper disconnected lamellar structure for the highest water percentages (52-56%). Upon water addition, also the rheological properties changed from nearly Newtonian fluids to gel-like structures, displaying the maximum of viscosity for the 48% water content. Skin uptake experiments demonstrated that formulation viscosity, drug loading, and surfactant concentration did not play an important role on imiquimod uptake into the skin, while the skin penetration was related instead to the microemulsion mesostructure. In fact, drug uptake became enhanced by locally lamellar interconnected structures, while it was reduced in the presence of disconnected structures, either drops or proper lamellae. Finally, the data demonstrated that mesostructure also affects the drug distribution between the epidermis and dermis. In particular, a significantly higher dermal accumulation was found when disconnected lamellar structures are present, suggesting the possibility of tuning both drug delivery and localization into the skin by modifying microemulsions composition.

  10. Linking Health Concepts in the Assessment and Evaluation of Water Distribution Systems

    ERIC Educational Resources Information Center

    Karney, Bryan W.; Filion, Yves R.

    2005-01-01

    The concept of health is not only a specific criterion for evaluation of water quality delivered by a distribution system but also a suitable paradigm for overall functioning of the hydraulic and structural components of the system. This article views health, despite its complexities, as the only criterion with suitable depth and breadth to allow…

  11. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are otherwise challenging to observe. The method could allow water managers to document spatiotemporal variation in PWSS flow patterns, critical for interrogating the distribution system to inform operation decision making or disaster response, optimize water supply and, monitor and enforce water rights.

  12. Distributed software framework and continuous integration in hydroinformatics systems

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  13. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  14. RESEARCH OPPORTUNITIES AND CHALLENGES REGARDING IMPROVEMENT OF STRUCTURAL INTEGRITY MONITORING FOR DRINKING WATER MAINS

    EPA Science Inventory

    The United States’ water and wastewater infrastructure is large (i.e., 16,000 publicly owned treatment works, 59,000 community water supplies, 600,000 miles of sewer, 1,000,000 miles of drinking water distribution piping), complex and expensive. The reliable and efficient functio...

  15. Variations of water's local-structure induced by solvation of NaCl

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia

    2010-03-01

    The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.

  16. The effect of pressure on the hydration structure around hydrophobic solute: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Sarma, Rahul; Paul, Sandip

    2012-03-01

    Molecular dynamics simulations are performed to study the effects of pressure on the hydrophobic interactions between neopentane molecules immersed in water. Simulations are carried out for five different pressure values ranging from 1 atm to 8000 atm. From potential of mean force calculations, we find that with enhancement of pressure, there is decrease in the well depth of contact minimum (CM) and the relative stability of solvent separated minimum over CM increases. Lower clustering of neopentane at high pressure is also observed in association constant and cluster-structure analysis. Selected site-site radial distribution functions suggest efficient packing of water molecules around neopentane molecules at elevated pressure. The orientational profile calculations of water molecules show that the orientation of water molecules in the vicinity of solute molecule is anisotropic and this distribution becomes flatter as we move away from the solute. Increasing pressure slightly changes the water distribution. Our hydrogen bond properties and dynamics calculations reveal pressure-induced formation of more and more number of water molecules with five and four hydrogen bond at the expense of breaking of two and three hydrogen bonded water molecules. We also find lowering of water-water continuous hydrogen bond lifetime on application of pressure. Implication of these results for relative dispersion of hydrophobic molecules at high pressure are discussed.

  17. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    PubMed

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this might have on drinking water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Structure and Spatial Distribution of the Chironomidae Community in Mesohabitats in a First Order Stream at the Poço D'Anta Municipal Biological Reserve in Brazil

    PubMed Central

    Vescovi Rosa, Beatriz Figueiraujo Jabour; de Oliveira, Vívian Campos; Alves, Roberto da Gama

    2011-01-01

    The Chironomidae occupy different habitats along the lotic system with their distribution determined by different factors such as the substrate characteristics and water speed. The input of vegetable material from the riparian forest allows a higher habitat diversity and food to the benthic fauna. The main aim of this paper is to verify the structure and spatial distribution of the Chironomidae fauna in different mesohabitats in a first order stream located at a Biological Reserve in the southeast of Brazil. In the months of July, August, and September 2007, and in January, February, and March 2008, samples were collected with a hand net (250 µm) in the following mesohabitats: litter from riffles, litter from pools, and sediment from pools. The community structure of each mesohabitat was analyzed through the abundance of organisms, taxa richness, Pielou's evenness, Shannon's diversity, and taxa dominance. Similarity among the mesohabitats was obtained by Cluster analysis, and Chironomidae larvae distribution through the Correspondence analysis. Indicator species analysis was used to identify possible taxa preference for a determined mesohabitat. The analyzed mesohabitats showed high species richness and diversity favored by the large environmental heterogeneity. Some taxa were indicators of the type of mesohabitat. The substrate was the main factor that determined taxa distribution in relation to water flow differences (riffle and pool). Stream characteristics such as low water speed and the presence of natural mechanisms of retention may have provided a higher faunistic similarity between the areas with different flows. The results showed that the physical characteristics of each environment presented a close relationship with the structure and spatial distribution of the Chironomidae fauna in lotic systems. PMID:21529258

  19. Fish depth distributions in the Lower Mississippi River

    USGS Publications Warehouse

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  20. Structure and dynamics of phosphate ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Pribil, Andreas B; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2008-11-15

    A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the phosphate anion. The first shell consists of 13 water molecules and each oxygen of the phosphate forms in average three hydrogens bonds to different solvent molecules. Several structural parameters such as radial distribution functions and coordination number distributions allow to fully characterize the embedding of the highly charged phosphate ion in the solvent water. The dynamics of the hydration structure of phosphate are described by mean residence times of the solvent molecules in the first hydration shell and the water exchange rate. 2008 Wiley Periodicals, Inc.

  1. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  2. Hydration of Caffeine at High Temperature by Neutron Scattering and Simulation Studies.

    PubMed

    Tavagnacco, L; Brady, J W; Bruni, F; Callear, S; Ricci, M A; Saboungi, M L; Cesàro, A

    2015-10-22

    The solvation of caffeine in water is examined with neutron diffraction experiments at 353 K. The experimental data, obtained by taking advantage of isotopic H/D substitution in water, were analyzed by empirical potential structure refinement (EPSR) in order to extract partial structure factors and site-site radial distribution functions. In parallel, molecular dynamics (MD) simulations were carried out to interpret the data and gain insight into the intermolecular interactions in the solutions and the solvation process. The results obtained with the two approaches evidence differences in the individual radial distribution functions, although both confirm the presence of caffeine stacks at this temperature. The two approaches point to different accessibility of water to the caffeine sites due to different stacking configurations.

  3. Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula.

    PubMed

    Shi, Wei; Xia, Jun

    2017-02-01

    Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.

  4. Water clusters in amorphous pharmaceuticals.

    PubMed

    Authelin, Jean-Rene; MacKenzie, Alan P; Rasmussen, Don H; Shalaev, Evgenyi Y

    2014-09-01

    Amorphous materials, although lacking the long-range translational and rotational order of crystalline and liquid crystalline materials, possess certain local (short-range) structure. This paper reviews the distribution of one particular component present in all amorphous pharmaceuticals, that is, water. Based on the current understanding of the structure of water, water molecules can exist in either unclustered form or as aggregates (clusters) of different sizes and geometries. Water clusters are reported in a range of amorphous systems including carbohydrates and their aqueous solutions, synthetic polymers, and proteins. Evidence of water clustering is obtained by various methods that include neutron and X-ray scattering, molecular dynamics simulation, water sorption isotherm, concentration dependence of the calorimetric Tg , dielectric relaxation, and nuclear magnetic resonance. A review of the published data suggests that clustering depends on water concentration, with unclustered water molecules existing at low water contents, whereas clusters form at intermediate water contents. The transition from water clusters to unclustered water molecules can be expected to change water dependence of pharmaceutical properties, such as rates of degradation. We conclude that a mechanistic understanding of the impact of water on the stability of amorphous pharmaceuticals would require systematic studies of water distribution and clustering, while such investigations are lacking. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Physical parameters of Fluvisols on flooded and non-flooded terraces

    NASA Astrophysics Data System (ADS)

    Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma

    2017-01-01

    The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.

  6. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model.

    PubMed

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  7. A Long-Term Study of the Microbial Community Structure in a Simulated Chloraminated Drinking Water Distribution System - abstract

    EPA Science Inventory

    Many US water treatment facilities use chloramination to limit regulated disinfectant by-product formation. However, chloramination has been shown to promote nitrifying bacteria, and 30 to 63% of water utilities using secondary chloramine disinfection experience nitrification ep...

  8. Catch of channel catfish with tandem-set hoop nets and gill nets in lentic systems of Nebraska

    USGS Publications Warehouse

    Richters, Lindsey K.; Pope, Kevin L.

    2011-01-01

    Twenty-six Nebraska water bodies representing two ecosystem types (small standing waters and large standing waters) were surveyed during 2008 and 2009 with tandem-set hoop nets and experimental gill nets to determine if similar trends existed in catch rates and size structures of channel catfish Ictalurus punctatus captured with these gears. Gear efficiency was assessed as the number of sets (nets) that would be required to capture 100 channel catfish given observed catch per unit effort (CPUE). Efficiency of gill nets was not correlated with efficiency of hoop nets for capturing channel catfish. Small sample sizes prohibited estimation of proportional size distributions in most surveys; in the four surveys for which sample size was sufficient to quantify length-frequency distributions of captured channel catfish, distributions differed between gears. The CPUE of channel catfish did not differ between small and large water bodies for either gear. While catch rates of hoop nets were lower than rates recorded in previous studies, this gear was more efficient than gill nets at capturing channel catfish. However, comparisons of size structure between gears may be problematic.

  9. Community structure of copepods in the oceanic and neritic waters off Adélie and George V Land, East Antarctica, during the austral summer of 2008

    NASA Astrophysics Data System (ADS)

    Tachibana, Aiko; Watanabe, Yuko; Moteki, Masato; Hosie, Graham W.; Ishimaru, Takashi

    2017-06-01

    Copepods are one of the most important components of the Southern Ocean food web, and are widely distributed from surface to deeper waters. We conducted discrete depth sampling to clarify the community structure of copepods from the epi- to bathypelagic layers of the oceanic and neritic waters off Adélie and George V Land, East Antarctica, in the austral summer of 2008. Notably high diversity and species numbers were observed in the meso- and bathypelagic layers. Cluster analysis based on the similarity of copepod communities identified seven cluster groups, which corresponded well with water masses. In the epi- and upper- mesopelagic layers of the oceanic zone, the SB (Southern Boundary of the Antarctic Circumpolar Current) divided copepod communities. Conversely, in the lower meso- and bathypelagic layers (500-2000 m depth), communities were consistent across the SB. In these layers, the distributions of copepod species were separated by habitat depth ranges and feeding behaviour. The different food webs occur in the epipelagic layer with habitat segregation by zooplankton in their horizontal distribution ranges.

  10. Paleoclimate Signals and Age Distributions from 41 Public Water Works in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Weert, J. D.; Sültenfuß, J.; Aeschbach, W.; Vonhof, H.; Casteleijns, J.

    2015-12-01

    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed.The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (< 100 yrs) and well-protected well fields with >85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well fields with an age distribution skewed towards older ages are in the Roer Valley Graben structure, where fluvial and marine aquitards provide protection from recent recharge. Especially waters from this graben structure exhibit clear paleoclimate signals, with a clear relations between NGT (ranging from 2,8 -9 °C), 4He (up to 3.3E-6 cc STP/g) and 18O (range from -8.5—5.5‰). Moreover, ¾ ratios of these graben waters suggest an influx of He from mantle origin.

  11. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  12. Global assessment of predictability of water availability: A bivariate probabilistic Budyko analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Fu, Jianyu

    2018-02-01

    Estimating continental water availability is of great importance for water resources management, in terms of maintaining ecosystem integrity and sustaining society development. To more accurately quantify the predictability of water availability, on the basis of univariate probabilistic Budyko framework, a bivariate probabilistic Budyko approach was developed using copula-based joint distribution model for considering the dependence between parameter ω of Wang-Tang's equation and the Normalized Difference Vegetation Index (NDVI), and was applied globally. The results indicate the predictive performance in global water availability is conditional on the climatic condition. In comparison with simple univariate distribution, the bivariate one produces the lower interquartile range under the same global dataset, especially in the regions with higher NDVI values, highlighting the importance of developing the joint distribution by taking into account the dependence structure of parameter ω and NDVI, which can provide more accurate probabilistic evaluation of water availability.

  13. Heterogeneous distribution of water in the mantle transition zone beneath United States inferred from seismic observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pavlis, G. L.; Li, M.

    2017-12-01

    The amount of water in the Earth's deep mantle is critical for the evolution of the solid Earth and the atmosphere. Mineral physics studies have revealed that Wadsleyite and Ringwoodite in the mantle transition zone could store several times the volume of water in the ocean. However, the water content and its distribution in the transition zone remain enigmatic due to lack of direct observations. Here we use seismic data from the full deployment of the Earthscope Transportable Array to produce 3D image of P to S scattering of the mantle transition zone beneath the United States. We compute the image volume from 141,080 pairs of high quality receiver functions defined by the Earthscope Automated Receiver Survey, reprocessed by the generalized iterative deconvolution method and imaged by the plane wave migration method. We find that the transition zone is filled with previously unrecognized small-scale heterogeneities that produce pervasive, negative polarity P to S conversions. Seismic synthetic modeling using a point source simulation method suggests two possible structures for these objects: 1) a set of randomly distributed blobs of slight difference in size, and 2) near vertical diapir structures from small scale convections. Combining with geodynamic simulations, we interpret the observation as compositional heterogeneity from small-scale, low-velocity bodies that are water enriched. Our results indicate there is a heterogeneous distribution of water through the entire mantle transition zone beneath the contiguous United States.

  14. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  15. Local structure of dilute aqueous DMSO solutions, as seen from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Idrissi, Abdenacer; Marekha, Bogdan A.; Barj, Mohammed; Miannay, François Alexandre; Takamuku, Toshiyuki; Raptis, Vasilios; Samios, Jannis; Jedlovszky, Pál

    2017-06-01

    The information about the structure of dimethyl sulfoxide (DMSO)-water mixtures at relatively low DMSO mole fractions is an important step in order to understand their cryoprotective properties as well as the solvation process of proteins and amino acids. Classical MD simulations, using the potential model combination that best reproduces the free energy of mixing of these compounds, are used to analyze the local structure of DMSO-water mixtures at DMSO mole fractions below 0.2. Significant changes in the local structure of DMSO are observed around the DMSO mole fraction of 0.1. The array of evidence, based on the cluster and the metric and topological parameters of the Voronoi polyhedra distributions, indicates that these changes are associated with the simultaneous increase of the number of DMSO-water and decrease of water-water hydrogen bonds with increasing DMSO concentration. The inversion between the dominance of these two types of H-bonds occurs around XDMSO = 0.1, above which the DMSO-DMSO interactions also start playing an important role. In other words, below the DMSO mole fraction of 0.1, DMSO molecules are mainly solvated by water molecules, while above it, their solvation shell consists of a mixture of water and DMSO. The trigonal, tetrahedral, and trigonal bipyramidal distributions of water shift to lower corresponding order parameter values indicating the loosening of these orientations. Adding DMSO does not affect the hydrogen bonding between a reference water molecule and its first neighbor hydrogen bonded water molecules, while it increases the bent hydrogen bond geometry involving the second ones. The close-packed local structure of the third, fourth, and fifth water neighbors also is reinforced. In accordance with previous theoretical and experimental data, the hydrogen bonding between water and the first, the second, and the third DMSO neighbors is stronger than that with its corresponding water neighbors. At a given DMSO mole fraction, the behavior of the intensity of the high orientational order parameter values indicates that water molecules are more ordered in the vicinity of the hydrophilic group while their structure is close-packed near the hydrophobic group of DMSO.

  16. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    PubMed

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  17. Three-dimensional evolution of water vapor distributions in the Northern Hemisphere stratosphere as observed by the MLS

    NASA Technical Reports Server (NTRS)

    Lahoz, W. A.; O'Neill, A.; Carr, E. S.; Harwood, R. S.; Froidevaux, L.; Read, W. G.; Waters, J. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    The three-dimensional evolution of stratospheric water vapor distributions observed by the Microwave Limb Sounder (MLS) during the period October 1991 - July 1992 is documented. The transport features inferred from the MLS water vapor distributions are corroborated using other dynamical fields, namely, nitrous oxide from the Cryogenic Limb Array Etalon Spectrometer instrument, analyzed winds from the U.K. Meteorological Office (UKMO), UKMO-derived potential vorticity, and the diabatic heating field. By taking a vortex-centered view and an along-track view, the authors observe in great detail the vertical and horizontal structure of the northern winter stratosphere. It is demonstrated that the water vapor distributions show clear signatures of the effects of diabatic descent through isentropic surfaces and quasi-horizontal transport along isentropic surfaces, and that the large-scale winter flow is organized by the interaction between the westerly polar vortex and the Aleutian high.

  18. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  19. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. Themore » results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.« less

  20. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport.

    PubMed

    Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; Olvera, María De La Luz; Maldonado, Arturo

    2012-03-12

    Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution.

  1. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren

    2011-10-01

    An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  2. Metal and Nutrient Distribution and Fractionation in Managed Urban Watersheds Across the US Southwest

    NASA Astrophysics Data System (ADS)

    Papelis, C.; Williams, A. C.; Boettcher, T. M.

    2008-12-01

    Metals, metalloids, and nutrients are common contaminants of concern in arid and semi-arid watersheds in the Southwestern U.S. Because of the dramatic population growth in this part of the U.S., the potential for contamination of urban watersheds has also increased over the last few decades. Streams in urban watersheds receive storm water, urban runoff, shallow groundwater, and treated wastewater, among other sources. In addition, urban watersheds are often heavily managed to mitigate flood events and sediment- related impacts. Sediment transport can have a profound effect on the water quality of affected bodies of water. However, differences in geology, hydrogeology, and land use may have dramatic effects on the distribution of nutrients and metals in different urban watersheds. To test these effects, aqueous and sediment samples were collected above and below erosion control and other structures along two heavily managed urban watersheds, namely the Las Vegas Wash in the Las Vegas Valley Watershed, Nevada, and the Rio Salado (Salt River) in the Phoenix Metropolitan Area, Arizona. The construction of such control structures has the potential to alter the distribution of metals and metalloids in bodies of water used by wildlife. In this study, all sediments were characterized by particle size distribution, specific surface area, mineralogical composition, and scanning electron microscopy. The results of total arsenic, boron, and phosphorus extractions will be discussed, as a function of sediment characteristics. Significant differences exist between the two U.S. Southwest watersheds studied, including land use, water sources, sediment characteristics, nutrient and metal distribution, and overall system complexity. These differences lead to significant variations in metalloid and nutrient distributions in the two watersheds. Differences and similarities in the two systems will be explained as a function of sediment characteristics and watershed properties.

  3. [Distribution of virtual water of crops in Beijing].

    PubMed

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  4. Understanding the role of pore size homogeneity in the water transport through graphene layers.

    PubMed

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-06-01

    Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen-Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

  5. Understanding the role of pore size homogeneity in the water transport through graphene layers

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-06-01

    Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen–Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

  6. Required Accuracy of Structural Constraints in the Inversion of Electrical Resistivity Data for Improved Water Content Estimation

    NASA Astrophysics Data System (ADS)

    Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.

    2017-12-01

    Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.

  7. Land use and hydromechanical heterogeneities in marshland soils.

    NASA Astrophysics Data System (ADS)

    Tojo Radimy, Raymond; Dupont, Jean-Paul; Dudoignon, Patrick

    2017-04-01

    In the interpretation of soil moisture profiles, mechanical properties were most often considered homogeneous. The structural heterogeneities of the soil are knows to be at the origin of the distribution and the availability of water in the vadose zone. The soils study is located in the French Atlantic coastal marshlands, characterized by the succession polderization/desiccation/consolidation and maturation. The work is carried out within the framework of the farming of old salt marshes with two concerns in the farmers: the salinity of the soil and the distribution of the available water capacity of the soils according to the crop growth. The present work shows the knowledge of the soil storage transfers during seasonal cycles on drained corn field and undrained grassland. We analyze the vertical water profiles observed to reveal the hydromechanical heterogeneities in the soils depending the porosity and gravity water parameter. This approach is based on mechanical tests between the compaction pathways carried out in the laboratory using materials taken in situ. Comparing to grasslands profiles, we highlight the influence of agricultural practices and the establishment of drainage in the marshland. However, the vertical homogenization of hydromechanical structures, desalination has been taken into account for the estimation of water in crop. The concept of a homogeneous structure is not adapted to real vertical profile. Finally, the authors conclude by discussing the notion of the mechanical availability of water in terms of porosity and gravity water. These parameters are good tools to the sustainable management of marshland soils. Keywords: hydromechanics, vadose zone, soil structure, land use, available water capacity

  8. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  9. Paleoclimate signals and age distributions from 41 public water works in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, Hans Peter; de Weert, Jasperien; Sueltenfuss, Juergen; Aeschbach-Hertig, Werner; Vonhof, Hubert; Casteleijns, Jeroen

    2015-04-01

    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources and included carbonate dissolution and methanogenesis as the defining processes. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. The use of 18O was less effective because the processes that led to more enriched values are too uncertain . Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed. The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (< 100 yrs) and well-protected well fields with >85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well fields with an age distribution skewed towards older ages are in the Roer Valley Graben structure, where fluvial and marine aquitards provide protection from recent recharge. Especially waters from this graben structure exhibit clear paleoclimate signals, with a clear relations between NGT (ranging from 2,8 -9 °C), 4He (up to 3.3E-6 cc STP/g) and 18O (range from -8.5 -- 5.5‰).

  10. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    PubMed Central

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources. PMID:27362708

  11. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  12. Accelerating the Integration of Distributed Water Solutions: A Conceptual Financing Model from the Electricity Sector

    NASA Astrophysics Data System (ADS)

    Quesnel, Kimberly J.; Ajami, Newsha K.; Wyss, Noemi

    2017-11-01

    Modern challenges require new approaches to urban water management. One solution in the portfolio of potential strategies is the integration of distributed water infrastructure, practices, and technologies into existing systems. However, many practical barriers have prevented the widespread adoption of these systems in the US. The objective of this paper is to address these challenges by developing a conceptual model encompassing regulatory, financial, and governance components that can be used to incorporate new distributed water solutions into our current network. To construct the model, case studies of successfully implemented distributed electricity systems, specifically energy efficiency and renewable energy technologies, were examined to determine how these solutions have become prominent in recent years and what lessons can be applied to the water sector in a similar pursuit. The proposed model includes four action-oriented elements: catalyzing change, establishing funding sources, using resource pathways, and creating innovative governance structures. As illustrated in the model, the water sector should use suite of coordinated policies to promote change, engage end users through fiscal incentives, and encourage research, development and dissemination of new technologies over time.

  13. Accelerating the Integration of Distributed Water Solutions: A Conceptual Financing Model from the Electricity Sector.

    PubMed

    Quesnel, Kimberly J; Ajami, Newsha K; Wyss, Noemi

    2017-11-01

    Modern challenges require new approaches to urban water management. One solution in the portfolio of potential strategies is the integration of distributed water infrastructure, practices, and technologies into existing systems. However, many practical barriers have prevented the widespread adoption of these systems in the US. The objective of this paper is to address these challenges by developing a conceptual model encompassing regulatory, financial, and governance components that can be used to incorporate new distributed water solutions into our current network. To construct the model, case studies of successfully implemented distributed electricity systems, specifically energy efficiency and renewable energy technologies, were examined to determine how these solutions have become prominent in recent years and what lessons can be applied to the water sector in a similar pursuit. The proposed model includes four action-oriented elements: catalyzing change, establishing funding sources, using resource pathways, and creating innovative governance structures. As illustrated in the model, the water sector should use suite of coordinated policies to promote change, engage end users through fiscal incentives, and encourage research, development and dissemination of new technologies over time.

  14. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    PubMed

    Stanish, Lee F; Hull, Natalie M; Robertson, Charles E; Harris, J Kirk; Stevens, Mark J; Spear, John R; Pace, Norman R

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  15. Where is the state? How is the state? Accessing water and the state in Mumbai and Johannesburg.

    PubMed

    Bawa, Zainab

    2011-01-01

    This article examines the water distribution systems in Johannesburg and Mumbai to argue that the political and institutional contexts of service delivery shape people’s access to the state and its resources, and also mediation between citizens and government institutions by councillors. Through ethnographies of water supply and distribution systems in Mumbai and Johannesburg, I explain how the organizational structure of the water utility, institutional arrangements of service delivery, regulatory systems, councillors’ proximity to decision makers and their relationship with municipal officials, civil servants and party members variously influence councillors’ mediation capacities and their ability to fulfil the claims of their constituencies for piped water supply and connections.

  16. Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Liu, Yuyou

    2017-06-01

    Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.

  17. Resolving structural influences on water-retention properties of alluvial deposits

    USGS Publications Warehouse

    Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.

    2006-01-01

    With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.

  18. Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.

    PubMed

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien

    2016-08-24

    Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.

  19. Are water markets globally applicable?

    NASA Astrophysics Data System (ADS)

    Endo, Takahiro; Kakinuma, Kaoru; Yoshikawa, Sayaka; Kanae, Shinjiro

    2018-03-01

    Water scarcity is a global concern that necessitates a global perspective, but it is also the product of multiple regional issues that require regional solutions. Water markets constitute a regionally applicable non-structural measure to counter water scarcity that has received the attention of academics and policy-makers, but there is no global view on their applicability. We present the global distribution of potential nations and states where water markets could be instituted in a legal sense, by investigating 296 water laws internationally, with special reference to a minimum set of key rules: legalization of water reallocation, the separation of water rights and landownership, and the modification of the cancellation rule for non-use. We also suggest two additional globally distributed prerequisites and policy implications: the predictability of the available water before irrigation periods and public control of groundwater pumping throughout its jurisdiction.

  20. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miner, Jacob Carlson; Garcia, Angel Enrique

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  1. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE PAGES

    Miner, Jacob Carlson; Garcia, Angel Enrique

    2018-05-29

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  2. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    NASA Astrophysics Data System (ADS)

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-01

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  3. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop.

    PubMed

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-14

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  4. [Mechanism of tritium persistence in porous media like clay minerals].

    PubMed

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  5. Transport Studies and Modeling in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.« less

  6. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network.

    PubMed

    El-Chakhtoura, Joline; Prest, Emmanuelle; Saikaly, Pascal; van Loosdrecht, Mark; Hammes, Frederik; Vrouwenvelder, Hans

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High density liquid structure enhancement in glass forming aqueous solution of LiCl.

    PubMed

    Camisasca, G; De Marzio, M; Rovere, M; Gallo, P

    2018-06-14

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H 2 O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H 2 O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  8. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    NASA Astrophysics Data System (ADS)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  9. Bacterial water quality and network hydraulic characteristics: a field study of a small, looped water distribution system using culture-independent molecular methods.

    PubMed

    Sekar, R; Deines, P; Machell, J; Osborn, A M; Biggs, C A; Boxall, J B

    2012-06-01

    To determine the spatial and temporal variability in the abundance, structure and composition of planktonic bacterial assemblages sampled from a small, looped water distribution system and to interpret results with respect to hydraulic conditions. Water samples were collected from five sampling points, twice a day at 06:00 h and 09:00 h on a Monday (following low weekend demand) and a Wednesday (higher midweek demand). All samples were fully compliant with current regulated parameter standards. This study did not show obvious changes in bacterial abundance (DAPI count) or community structure Denaturing gradient gel electrophoresis analysis with respect to sample site and hence to water age; however, the study did show temporal variability with respect to both sampling day and sample times. Data suggests that variations in the bacterial assemblages may be associated with the local system hydraulics: the bacterial composition and numbers, over short durations, are governed by the interaction of the bulk water and the biofilm influenced by the hydraulic conditions. This study demonstrates general stability in bacterial abundance, community structure and composition within the system studied. Trends and patterns supporting the transfer of idealized understanding to the real world were evident. Ultimately, such work will help to safeguard potable water quality, fundamental to public health. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  10. NMR investigation of water diffusion in different biofilm structures.

    PubMed

    Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald

    2017-12-01

    Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.

  11. Atmospheric moisture and cloud structure determined from SSM/I and global gridpoint analyses. [Special Sensor Microwave Imager

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Huang, Huo-Jin

    1989-01-01

    Data from the Special Sensor Microwave Imager/I on the DMSP satellite are used to study atmospheric moisture and cloud structure. Column-integrated water vapor and total liquid water retrievals are obtained using an algorithm based on a radiative model for brightness temperature (Wentz, 1983). The results from analyzing microwave and IR measurements are combined with independent global gridpoint analyses to study the distribution and structure of atmospheric moisture over oceanic regions.

  12. Structure and dynamics of the hydration shells of the Al3+ ion

    NASA Astrophysics Data System (ADS)

    Bylaska, Eric J.; Valiev, Marat; Rustad, James R.; Weare, John H.

    2007-03-01

    First principles simulations of the hydration shells surrounding Al3+ ions are reported for temperatures near 300°C. The predicted six water molecules in the octahedral first hydration shell were found to be trigonally coordinated via hydrogen bonds to 12s shell water molecules in agreement with the putative structure used to analyze the x-ray data, but in disagreement with the results reported from conventional molecular dynamics using two-and three-body potentials. Bond lengths and angles of the water molecules in the first and second hydration shells and the average radii of these shells also agreed very well with the results of the x-ray analysis. Water transfers into and out of the second solvation shell were observed to occur on a picosecond time scale via a dissociative mechanism. Beyond the second shell the bonding pattern substantially returned to the tetrahedral structure of bulk water. Most of the simulations were done with 64 solvating water molecules (20ps). Limited simulations with 128 water molecules (7ps) were also carried out. Results agreed as to the general structure of the solvation region and were essentially the same for the first and second shell. However, there were differences in hydrogen bonding and Al-O radial distribution function in the region just beyond the second shell. At the end of the second shell a nearly zero minimum in the Al-O radial distribution was found for the 128 water system. This minimum is less pronounced minimum found for the 64 water system, which may indicate that sizes larger than 64 may be required to reliably predict behavior in this region.

  13. 14 CFR Section 03 - Definitions for Purposes of This System of Accounts and Reports

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment, land, structures, and other tangible property; extensions of fuel, water, and oil distribution equipment; additions to buildings and other structures; and additional safety devices applied to equipment.... Equipment. Tangible property other than land, structures, and improvements. Equity security. Any instrument...

  14. Molecular dynamics study on glycolic acid in the physiological salt solution

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.

    2018-05-01

    Molecular dynamics (MD) study on glycolic acid in the physiological salt solution has been performed, which is a model of a biofuel cell. The structure and charge distribution of glycolic acid in aqueous solution used in MD is beforehand optimized by Gaussian09 utilizing the density functional theory. MD is performed in the NTV constant condition, i.e. the number of particles, temperature, and volume of MD cell are definite. The structure difference of the glycolic acid and oxalic acid is detected by the water distribution around the molecules using the pair distribution functions, gij(r), and the frequency dependent diffusion coefficients, Di(ν). The anomalous dielectric constant of the solution, i.e. about 12 times larger than that of water, has been obtained, which may be attributed to the ion pair formation in the solution.

  15. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model

    NASA Astrophysics Data System (ADS)

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M.; Phifer, Jeremy R.; Paluch, Andrew S.

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of 2.2± 0.2 log units (ranking 15 out of 62 entries), the correlation coefficient ( R) was 0.6± 0.1 (ranking 35), and 72± 6 % of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  16. The geology and distribution of aquifers in the southeastern part of San Juan County, Utah

    USGS Publications Warehouse

    Goode, Harry D.

    1958-01-01

    The structural geology and the distribution of aquifers in the southeastern part of San Juan County were studied to establish the relationships of fresh-water aquifers to the oil- and gas-bearing rocks in that area.

  17. Role of oxygen functional groups for structure and dynamics of interfacial water on low rank coal surface: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin

    2018-07-01

    Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.

  18. Wave energy and swimming performance shape coral reef fish assemblages

    PubMed Central

    Fulton, C.J; Bellwood, D.R; Wainwright, P.C

    2005-01-01

    Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance. PMID:15888415

  19. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Rivero, Mayela; Choi, S. K.

    2007-02-01

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 Å. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  20. Hydro-physical Characteristics of Selected Media Used for Containerized Agriculture Systems

    USDA-ARS?s Scientific Manuscript database

    Containerized plant production represents an extremely intensive agricultural practice with large amounts of water and fertilizer application. Hydro-physical characteristics such as water infiltration, texture and structure, particle size distribution affect the quality of the media used in containe...

  1. Building better water models using the shape of the charge distribution of a water molecule

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2017-11-01

    The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.

  2. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy.

    PubMed

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L; Amano, Ken-ichi; Fukuma, Takeshi

    2016-04-07

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.

  3. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport

    PubMed Central

    Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; De La Luz Olvera, María; Maldonado, Arturo

    2012-01-01

    Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution. PMID:28817056

  4. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A ...

    EPA Pesticide Factsheets

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to eighteen months. Significant differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity between service areas were associated with Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria, and Firmicutes. After nine months the biofilm bacterial community from both areas were dominated by Mycobacterium species. The distribution of the dominant OTU (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature, but no clear relationship was seen with free chlorine residual, pH, turbidity or total organic carbon (TOC). The results suggest that biofilm microbial communities harbor distinct and diverse bacterial communities, and that source water, treatment processes and environmental conditions may play an important role in shaping the bacterial community in the distribution system. On the other hand, several bacterial groups were present i

  5. Improving water content estimation on landslide-prone hillslopes using structurally-constrained inversion of electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Möhring, Simon; Budler, Jasmin; Weigand, Maximilian; Kemna, Andreas

    2017-04-01

    Rainfall-triggered landslides are a latent danger in almost any place of the world. Due to climate change heavy rainfalls might occur more often, increasing the risk of landslides. With pore pressure as mechanical trigger, knowledge of water content distribution in the ground is essential for hazard analysis during monitoring of potentially dangerous rainfall events. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. This applies in many scenarios, as for example during infiltration of water without a clear saturation front. Sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, on the other hand, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. Here the standard smoothness constraint is reduced along layer boundaries identified using seismic data or other additional sources. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.

  6. [Investigation of the distribution of water clusters in vegetables, fruits, and natural waters by flicker noise spectroscopy].

    PubMed

    Zubov, A V; Zubov, K V; Zubov, V A

    2007-01-01

    The distribution of water clusters in fresh rain water and in rain water that was aged for 30 days (North Germany, 53 degrees 33' N, 12 degrees 47' E, 293 K, rain on 25.06.06) as well as in fresh vegetables and fruits was studied by flicker noise spectroscopy. In addition, the development of water clusters in apples and potatoes during ripening in 2006 was investigated. A different distribution of water clusters in irrigation water (river and rain) and in the biomatrix of vegetables (potatoes, onions, tomatoes, red beets) and fruits (apples, bananas) was observed. It was concluded that the cluster structure of irrigation water differs from that of water of the biomatrix of vegetables and fruits and depends on drought and the biomatrix nature. Water clusters in plants are more stable and reproducible than water clusters in natural water. The main characteristics of cluster formation in materials studied were given. The oscillation frequencies of water clusters in plants (biofield) are given at which they interact with water clusters of the Earth hydrosphere. A model of series of clusters 16(H2O)100 <--> 4(H2O)402 <--> 2(H2O)903 <--> (H2O)1889 in the biomatrix of vegetables and fruits was discussed.

  7. Biogeography of top predators - seabirds and cetaceans - along four latitudinal transects in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jungblut, Simon; Nachtsheim, Dominik A.; Boos, Karin; Joiris, Claude R.

    2017-07-01

    The distribution, abundance, and species assemblage of top predators - seabirds and cetaceans - can be correlated to water masses as defined by hydrological parameters. In comparison to other oceans, information about the structuring effects of water masses on top predators in the Atlantic Ocean is limited. The present study aims 1) to provide baseline distributional data of top predators for future comparisons, for instance in the course of climate change, and 2) to test how water masses and seasons affect distributional patterns of seabirds and cetaceans in the temperate and tropical Atlantic. During four trans-equatorial expeditions of the RV Polarstern between 2011 and 2014, at-sea observation data of seabirds, cetaceans and other megafauna were collected. Counts of top predators were generally low in the surveyed regions. Statistical analyses for the eight most abundant seabird species and the pooled number of cetaceans revealed water masses and seasons to account for differences in counts and thus also distribution. In most cases, borders between water masses were not very distinct due to gradual changes in surface water properties. Thus, top predator counts were correlated to water masses but, in contrast to polar waters, not strongly linked to borders between water masses. Additional factors, e.g. distance to locally productive areas (upwelling), competition effects, and seabird associations to prey-accumulating subsurface predators may be similarly important in shaping distributional patterns of top predators in the tropical and temperate Atlantic, but could not be specifically tested for here.

  8. IR spectroscopy of protonation in benzene-water nanoclusters: hydronium, zundel, and eigen at a hydrophobic interface.

    PubMed

    Cheng, Timothy C; Bandyopadhyay, Biswajit; Mosley, Jonathan D; Duncan, Michael A

    2012-08-08

    The structure of ions in water at a hydrophobic interface influences important processes throughout chemistry and biology. However, experiments to measure these structures are limited by the distribution of configurations present and the inability to selectively probe the interfacial region. Here, protonated nanoclusters containing benzene and water are produced in the gas phase, size-selected, and investigated with infrared laser spectroscopy. Proton stretch, free OH, and hydrogen-bonding vibrations uniquely define protonation sites and hydrogen-bonding networks. The structures consist of protonated water clusters binding to the hydrophobic interface of neutral benzene via one or more π-hydrogen bonds. Comparison to the spectra of isolated hydronium, zundel, or eigen ions reveals the inductive effects and local ordering induced by the interface. The structures and interactions revealed here represent key features expected for aqueous hydrophobic interfaces.

  9. Volcanisme, activité anthropique et circulation des masses océaniques : leur influence respective sur la distribution des populations d'ostracodes dans la baie de Kagoshima (île de Kyushu, Japon)Impact of volcanism, human activities, and water mass circulation on the distribution of ostracod populations in Kagoshima Bay (Kyushu Island, southern Japan)

    NASA Astrophysics Data System (ADS)

    Bodergat, Anne-Marie; Oki, Kimihiko; Ishizaki, Kunihiro; Rio, Michel

    2002-11-01

    The distribution of ostracod populations in Kagoshima Bay (Japan) is analysed with reference to different environmental parameters. The bay is an area of volcanic activity of Sakurajima volcano under the influence of the Kuroshio Current. Most of the Head environment is occupied by an acidic water mass. Numbers of individual and species decrease from the Mouth of the bay towards the Basin and Head environments. In this latter, acidic water mass has a drastic effect on ostracod populations, whereas volcanic ashes and domestic inputs are not hostile. Ostracod distribution is influenced by the quality and structure of water masses. To cite this article: A.-M. Bodergat et al., C. R. Geoscience 334 (2002) 1053-1059.

  10. CLAYFORM: a FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula

    USGS Publications Warehouse

    Bodine, M.W.

    1987-01-01

    The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.

  11. Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W

    2016-05-24

    Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.

  12. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China.

    PubMed

    Ma, Xiaolei; Ma, Yanji

    2017-05-15

    With the rapid development of economic, water crisis is becoming more and more serious and would be an important obstacle to the sustainable development of society. Virtual water theory and its applications in agriculture can provide important strategies for realizing the reasonable utilization and sustainable development of water resources. Using the Penman-Monteith model and Theil index combining the CROPWAT software, this work takes Jilin Province as study area quantifying the virtual water content of agriculture and livestock husbandry and giving a comprehensive evaluation of their spatiotemporal structure evolution. This study aims to help make clear the water consumption of agriculture and livestock husbandry, and offer advice on rational water utilization and agricultural structure adjustment. The results show that the total virtual water (TVW) proportion of agriculture presents a gradual growth trend while that of livestock husbandry reduces during the study period. In space, central Jilin shows the highest virtual water content of agriculture as well as livestock husbandry, the TVW in central Jilin is about 35.8billionm 3 . The TVW of maize is highest among six studied crops, and the cattle shows the highest TVW in the four kinds of animals. The distribution of TVW calculated by us and the distribution of actual water resources have remarkable difference, which leads to the increase of water consumption and cost of agricultural production. Finally, we discuss the driving force of the spatiotemporal variation of the TVW for agriculture and livestock husbandry, and also give some advises for the planting structural adjustment. This work is helpful for the sustainable development of agricultural and livestock husbandry and realizing efficient utilization of water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Equilibrium structures and flows of polar and nonpolar liquids in different carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abramyan, Andrey K.; Bessonov, Nick M.; Mirantsev, Leonid V.; Chevrychkina, Anastasiia A.

    2018-03-01

    Molecular dynamics (MD) simulations of equilibrium structures and flows of polar water and nonpolar methane confined by single-walled carbon nanotubes (SWCNTs) with circular and square cross sections and bounding walls with regular graphene structure and random (amorphous) distribution of carbon atoms have been performed. The results of these simulations show that equilibrium structures of both confined liquids depend strongly on the shape of the cross section of SWCNTs, whereas the structure of their bounding walls has a minor influence on these structures. On contrary, the external pressure driven water and methane flows through above mentioned SWCNTs depend significantly on both the shape of their cross sections and the structure of their bounding walls.

  14. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems

    PubMed Central

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations. PMID:9435076

  15. Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems.

    PubMed

    Sibille, I; Sime-Ngando, T; Mathieu, L; Block, J C

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 x 10(7) bacterial cells liter-1) or in the biofilm (on average, 7 x 10(6) bacterial cells cm-2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 x 10(8) cells liter-1 in water and 4 x 10(7) cells cm-2 in biofilm) and protozoa (on average, 10(5) cells liter-1 in water and 10(3) cells cm-2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodin, Oleg; Price, David L.; Aoun, Bachir

    The influence of water on the structure of a prototype ionic liquid (IL) 1-octyl-3-methyimidazolium tetrafluoroborate (C8mimBF4) is examined in the IL-rich regime using high-energy x-ray diffraction (HEXRD) and molecular dynamics (MD) simulations. A many-body polarizable force field APPLE&P was developed for C8mimBF4 water mixture. It predicts structure factors of pure IL and IL-water mixture in excellent agreement with the HEXRD experiments. The MD results provide detailed insights into the structural changes from the partial structure factors, 2-D projections of the simulation box and 3-D distribution functions. Water partitioning with IL and its competition with BF4- for complexing the imidazolium ringsmore » was examined. The added water molecules occupy a diffuse coordination shell around the imidazolium ring but are not present around the alkyl tail. The strong coordination of the fluorine atoms of the BF4- anions to the imidazolium ring is not significantly changed by the addition of water. These results are consistent with the very small differences in the average structure between the pure IL and the mixture.« less

  17. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan

    2018-04-01

    We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.

  18. Ab initio study on the structural and electronic properties of water surrounding a multifunctional nanoprobe

    NASA Astrophysics Data System (ADS)

    Xia, Xiuli; Shao, Yuanzhi

    2018-02-01

    We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.

  19. In Operando Quantification of Three-Dimensional Water Distribution in Nanoporous Carbon-Based Layers in Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Alrwashdeh, Saad S; Manke, Ingo; Markötter, Henning; Klages, Merle; Göbel, Martin; Haußmann, Jan; Scholta, Joachim; Banhart, John

    2017-06-27

    Understanding the function of nanoporous materials employed in polymer electrolyte membrane fuel cells (PEMFCs) is crucial to improve their performance, durability, and cost efficiency. Up to now, the water distribution in the nm-sized pore structures was hardly accessible during operation of the cells. Here we demonstrate that phase contrast synchrotron X-ray tomography allows for an in operando quantification of the three-dimensional water distribution within the nm-sized pores of carbon-based microporous layers (MPLs). For this purpose, a fuel cell design optimized for tomographic phase contrast measurements was realized. Water in the pores of the entire MPL was detected and quantified. We found an inhomogeneous distribution of the local water saturation and a sharp boundary between mostly filled MPL and almost empty areas. We attribute the latter observation to the two-phase boundary created because condensation takes place predominantly on one side of the boundary. Furthermore, high water saturation in large areas hints at gas diffusion or transport along preferred three-dimensional paths through the material, therefore bypassing most of the MPL volume. Our approach may contribute significantly to future investigations of nanoporous fuel cell materials under realistic operating conditions.

  20. Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate

    PubMed Central

    Grudinin, Sergei; Büldt, Georg; Gordeliy, Valentin; Baumgaertner, Artur

    2005-01-01

    Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is ∼95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. PMID:15731388

  1. Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion.

    PubMed

    Sen, T; Tiddy, G J T; Casci, J L; Anderson, M W

    2003-09-07

    The room-temperature synthesis of a macro-mesoporous silica material during the natural creaming process of an oil-in-water emulsion is reported. The material has 3-dimensional interconnected macropores with a strut-like structure similar to meso-cellular silica foams with mesoporous walls of worm-hole structure. The material has very high surface area (approximately 800 m2 g(-1)) with narrow mesopore size distribution.

  2. Abyssal ocean overturning shaped by seafloor distribution.

    PubMed

    de Lavergne, C; Madec, G; Roquet, F; Holmes, R M; McDougall, T J

    2017-11-08

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows-referred to as the abyssal overturning circulation-is key to quantifying the ocean's ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  3. Abyssal ocean overturning shaped by seafloor distribution

    NASA Astrophysics Data System (ADS)

    de Lavergne, C.; Madec, G.; Roquet, F.; Holmes, R. M.; McDougall, T. J.

    2017-11-01

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  4. Structure and Dynamics of Water Confined in Imogolite Nanotubes.

    PubMed

    Scalfi, Laura; Fraux, Guillaume; Boutin, Anne; Coudert, François-Xavier

    2018-06-12

    We have studied the properties of water adsorbed inside nanotubes of hydrophilic imogolite, an aluminum silicate clay mineral, by means of molecular simulations. We used a classical force field to describe the water and the flexible imogolite nanotube and validated it against the data obtained from first-principles molecular dynamics. With it, we observe a strong structuration of the water confined in the nanotube, with specific adsorption sites and a distribution of hydrogen bond patterns. The combination of number of adsorption sites, their geometry, and the preferential tetrahedral hydrogen bonding pattern of water leads to frustration and disorder. We further characterize the dynamics of the water, as well as the hydrogen bonds formed between water molecules and the nanotube, which is found to be more than 1 order of magnitude longer than water-water hydrogen bonds.

  5. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    PubMed

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    PubMed

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  7. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture

    NASA Astrophysics Data System (ADS)

    Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.

    2008-09-01

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  8. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture.

    PubMed

    Spickermann, C; Thar, J; Lehmann, S B C; Zahn, S; Hunger, J; Buchner, R; Hunt, P A; Welton, T; Kirchner, B

    2008-09-14

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C(2)C(1)im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C(2)C(1)im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H(2)O)-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C(2)C(1)im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  9. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  10. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  11. The numerical model of the sediment distribution pattern at Lampulo National fisheries port

    NASA Astrophysics Data System (ADS)

    Irham, M.; Setiawan, I.

    2018-01-01

    The spatial distribution of sediment pattern was studied at Lampulo Fisheries Port, Krueng Aceh estuarial area, Banda Aceh. The research was conducted using the numerical model of wave-induced currents at shallow water area. The study aims to understand how waves and currents react to the pattern of sediment distribution around the beach structure in that region. The study demonstrated that the port pool area had no sedimentation and erosion occurred because the port was protected by the jetty as the breakwater to defend the incoming waves toward the pool. The protected pool created a weak current circulation to distribute the sediments. On the other hand, the sediments were heavily distributed along the beach due to the existence of longshore currents near the shoreline (outside the port pool area). Meanwhile, at the estuarial area, the incoming fresh water flow responded to the coastal shallow water currents, generating Eddy-like flow at the mouth of the river.

  12. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    NASA Astrophysics Data System (ADS)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  13. Community Structure of Macrobiota and Environmental Parameters in Shallow Water Hydrothermal Vents off Kueishan Island, Taiwan

    PubMed Central

    Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming

    2016-01-01

    Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments. PMID:26849440

  14. Investigation of water imbibition in porous stone by thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Hassanein, R.; Meyer, H. O.; Carminati, A.; Estermann, M.; Lehmann, E.; Vontobel, P.

    2006-10-01

    The understanding and modelling of the process of water imbibition is important for various applications of physics (e.g. building or soil physics). To measure the spatial distribution of the water content at arbitrary times is not trivial. Neutron radiography provides an appropriate tool for such investigations with excellent time and spatial resolution. Because of the high sensitivity to hydrogen, even small amounts of water in a porous structure can be detected in samples with dimensions up to 40 cm. Three different porous stones found in Indiana, USA, have been investigated (Mansfield sandstone, Salem limestone and Hindustan whetstone). The imbibition of deionized water and a NaCl solution in up- and downwards directions has been tracked during several hours and radiographed at regular intervals. A correction method to reduce the disturbing effects due to neutron scattering is applied. This allows a quantitative evaluation of the water content in addition to the visualization of the water distribution. The results agree well with theoretical models describing water infiltration and reproduce the water content with a pixel resolution of 272 µm in time steps of 1 min. The comparison with the radiographed structure of the dry stone explains variations in the conduction or retention of the water, respectively. The experimental and correction procedures described here can be applied to other porous media and their uptake and loss of fluids.

  15. Selenium Distribution and Fractionation in a Managed Urban Watershed

    NASA Astrophysics Data System (ADS)

    Papelis, C.; Boettcher, T. M.; Harris-Burr, R. D.

    2006-12-01

    Metals, and metalloids, are common contaminants of concern in arid and semi-arid watersheds in the Southwestern U.S. Because of the dramatic population growth in this part of the U.S., the potential for contamination of urban watersheds has also increased over the last few decades. Streams in urban watersheds receive storm water, urban runoff, shallow groundwater, and treated wastewater. In addition, urban watersheds are often heavily managed to mitigate flood events and sediment-related impacts. Clearly, sediment transport can have a profound effect on the water quality of affected bodies of water, not only by affecting water clarity, but also by facilitating the transport of chemical constituents, as well as microbiological components. The Las Vegas Wash (Wash) is the lowest point in the Las Vegas Valley Watershed and receives storm water, urban runoff, and treated wastewater from the entire Las Vegas Valley. To minimize erosion, caused by the dramatic wastewater flow increase during the last few decades, several erosion control structures are being built. In addition, wetlands being constructed in the Wash area receive most of the water from the Wash. The construction of these ponds has the potential to alter the distribution of metals and metalloids in bodies of water used by wildlife. An element of particular concern is selenium, a metalloid commonly found at elevated concentrations in soils of the U.S. Southwest. To assess the potential adverse impact on water quality, sediment samples were collected along the Wash, upstream and downstream of erosion control structures, and around current and future constructed wetlands. The sediments were characterized by particle size distribution, specific surface area, mineralogical composition, organic carbon content, and scanning electron microscopy. The total selenium, as well as the percentages associated with exchangeable, organic, carbonate, and oxide sediment fractions were determined. The distribution of selenium as a function of sediment properties and the potential of selenium availability in this environment will be discussed.

  16. Carbon Nanotubes in Water: MD Simulations of Internal and External Flow, Self Organization

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Halicioglu, Timur; Werder, Thomas; Walther, Jens; Koumoutsakos, Petros; Arnold, James (Technical Monitor)

    2001-01-01

    We have developed computational tools, based on particle codes, for molecular dynamics (MD) simulation of carbon nanotubes (CNT) in aqueous environments. The interaction of CNTs with water is envisioned as a prototype for the design of engineering nano-devices, such as artificial sterocillia and molecular biosensors. Large scale simulations involving thousands of water molecules are possible due to our efficient parallel MD code that takes long range electrostatic interactions into account. Since CNTs can be considered as rolled up sheets of graphite, we expect the CNT-water interaction to be similar to the interaction of graphite with water. However, there are fundamental differences between considering graphite and CNTs, since the curvature of CNTs affects their chemical activity and also since capillary effects play an important role for both dynamic and static behaviour of materials inside CNTs. In recent studies Gordillo and Marti described the hydrogen bond structure as well as time dependent properties of water confined in CNTs. We are presenting results from the development of force fields describing the interaction of CNTs and water based on ab-initio quantum mechanical calculations. Furthermore, our results include both water flows external to CNTs and the behaviour of water nanodroplets inside heated CNTs. In the first case (external flows) the hydrophobic behaviour of CNTs is quantified and we analyze structural properties of water in the vicinity of CNTs with diagnostics such as hydrogen bond distribution, water dipole orientation and radial distribution functions. The presence of water leads to attractive forces between CNTs as a result of their hydrophobicity. Through extensive simulations we quantify these attractive forces in terms of the number and separation of the CNT. Results of our simulations involving arrays of CNTs indicate that these exhibit a hydrophobic behaviour that leads to self-organising structures capable of trapping water clusters. In the second case (internal flows) we study the behaviour of water droplets confined inside CNTs. Constant temperature simulations allow us to capture structural properties such as the contact angles and density profiles of the equilibrated drops. By heating and subsequently cooling of the CNT, we are able to measure the evaporation and the condensation rate of the entrapped water.

  17. The influence of pore structure parameters on the digital core recovery degree

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Zhao, Ling; Sun, Yanyu; Yuan, Shi

    2017-05-01

    Constructing digital core in the research of water flooding or polymer flooding oil displacement efficiency has its unique advantage. Using mercury injection experiment measured pore throat size distribution frequency, coordination number measured by CT scanning method and imbibition displacement method is used to measure the wettability of the data, on the basis of considering pore throat ratio, wettability, using the principle of adaptive porosity, on the basis of fitting the permeability to complete the construction of digital core. The results show that the model of throat distribution is concentrated water flooding recovery degree is higher, and distribution is more decentralized model polymer flooding recovery degree is higher. Around the same number of PV in poly, coordination number model of water flooding and polymer flooding recovery degree is higher.

  18. On the structure and dynamics of the hydrated sulfite ion in aqueous solution--an ab initio QMCF MD simulation and large angle X-ray scattering study.

    PubMed

    Eklund, Lars; Hofer, Thomas S; Pribil, Andreas B; Rode, Bernd M; Persson, Ingmar

    2012-05-07

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) Å by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.

  19. Design and control of rotating soil-like substrate plant-growing facility based on plant water requirement and computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Li, Leyuan; Liu, Hui; Zhang, Houkai; Fu, Yuming; Sun, Yi; Li, Liang

    It is necessary to process inedible plant biomass into soil-like substrate (SLS) by bio-compost to realize biological resource sustainable utilization. Although similar to natural soil in structure and function, SLS often has uneven water distribution adversely affecting the plant growth due to unsatisfactory porosity, permeability and gravity distribution. In this article, SLS plant-growing facility (SLS-PGF) were therefore rotated properly for cultivating lettuce, and the Brinkman equations coupled with laminar flow equations were taken as governing equations, and boundary conditions were specified by actual operating characteristics of rotating SLS-PGF. Optimal open-control law of the angular and inflow velocity was determined by lettuce water requirement and CFD simulations. The experimental result clearly showed that water content was more uniformly distributed in SLS under the action of centrifugal and Coriolis force, rotating SLS-PGF with the optimal open-control law could meet lettuce water requirement at every growth stage and achieve precise irrigation.

  20. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  1. Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch

    NASA Astrophysics Data System (ADS)

    Muharam, S.; Yuningsih, L. M.; Sumitra, M. R.

    2017-07-01

    Superabsorbent hydrogel was prepared by epichlorohydrin crosslink of cassava starch. Their swelling improved with added carboxymethyl group on the starch-epichlorohydrin structure. The structure and properties of starch-epichlorohydrin-carboxymethyl hydrogel were measured by SEM, FTIR, water and physiological solution absorption test and water retention test. The result showed that hydrogel displayed macroporous with heterogenous distribution and irregular surface was formed by epichlorohydrin and carboxymethyl bond in the structure of hydrogel. It was confirmed also by the FTIR spectra. The swelling ratio of starch-epichlorohydrin hydrogel to the water is 518 % and increased to 1,028.5 % with carboxymethyl addition on the structure. The best influence of the physiological solution to the swelling ratio of starch-epichlorohydrin-carboxymethyl hydrogel is urea solution. The water retention of starch-epichlorohydrin-carboxymethyl hydrogel in NaCl solution is better than in CaCl2 solution.

  2. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Specia...

  3. Spatial distribution of Illex argentinus in San Matias Gulf (Northern Patagonia, Argentina) in relation to environmental variables: A contribution to the new interpretation of the population structuring

    NASA Astrophysics Data System (ADS)

    Crespi-Abril, Augusto C.; Morsan, Enrique M.; Williams, Gabriela N.; Gagliardini, Domingo A.

    2013-03-01

    Traditionally, it was assumed that major spawning activity of Illex argentinus occurs in discrete pulses along the outer-shelf/slope off Argentina/southern Brazil during late-fall/winter and that early life stages develop near the Brazil-Malvinas Confluence (BMC). However, a novel hypothesis of the population structuring of the species was proposed that states that coastal waters may be important as spawning and feeding grounds. Here, we analyzed the spatial distribution of Illex argentinus inside San Matias Gulf based on the position of the CPUE of jiggers in order to improve the knowledge of the population structuring in coastal regions. Squids were mainly concentrated on the northern region of the gulf where favorable oceanographic conditions (e.g. water stratification, chlorophyll-a concentration peaks) to feeding and spawning are present. These results provided empirical evidences that individuals of I. argentinus use Argentinean coastal waters, particularly San Matias Gulf, as permanent feeding and spawning grounds which supports the new hypothesis.

  4. Effect of pH on the rheological and structural properties of gels of water-washed chicken-breast muscle at physiological ionic strength.

    PubMed

    Feng, Y; Hultin, H O

    2001-08-01

    Adjustment of pH from 6.4 to neutrality improved gelling ability and water-holding capacity of twice water-washed, minced chicken-breast muscle significantly at physiological ionic strength, at which the majority of the myofibrillar proteins, including myosin, are not soluble. A strain value of 2.2 was obtained at neutral pH. Myofibrils were the main components of the gel network at both pH 6.4 and 7.0; however, the myofibrillar distribution varied with the pH value. At pH 6.4, myofibrils formed a network of localized aggregates leaving large voids between, whereas at neutral pH, an evenly distributed network of myofibrils was formed. In addition, at neutral pH, a network of fine strands was found within the network of myofibrils. The network was much less developed at pH 6.4. The thin and thick filaments within each myofibrillar structure were disorganized at both pH values. The intramyofibrillar spaces were larger at neutral pH than at pH 6.4. It was proposed that adjustment of pH to neutrality increased electrostatic repulsion leading to a more even distribution of the myofibrillar proteins, a key factor responsible for the improved gel strength and water-holding capacity.

  5. Investigation of Archaeal and Bacterial community structure of five different small drinking water networks with special regard to the nitrifying microorganisms.

    PubMed

    Nagymáté, Zsuzsanna; Homonnay, Zalán G; Márialigeti, Károly

    2016-01-01

    Total microbial community structure, and particularly nitrifying communities inhabiting five different small drinking water networks characterized with different water physical and chemical parameters was investigated, using cultivation-based methods and sequence aided Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. Ammonium ion, originated from well water, was only partially oxidized via nitrite to nitrate in the drinking water distribution systems. Nitrification occurred at low ammonium ion concentration (27-46μM), relatively high pH (7.6-8.2) and over a wide range of dissolved oxygen concentrations (0.4-9.0mgL(-1)). The nitrifying communities of the distribution systems were characterized by variable most probable numbers (2×10(2)-7.1×10(4) MPN L(-1)) and probably originated from the non-treated well water. The sequence aided T-RFLP method revealed that ammonia-oxidizing microorganisms and nitrite-oxidizing Bacteria (Nitrosomonas oligotropha, Nitrosopumilus maritimus, and Nitrospira moscoviensis, 'Candidatus Nitrospira defluvii') were present in different ratios in the total microbial communities of the distinct parts of the water network systems. The nitrate generated by nitrification was partly utilized by nitrate-reducing (and denitrifying) Bacteria, present in low MPN and characterized by sequence aided T-RFLP as Comamonas sp. and Pseudomonas spp. Different environmental factors, like pH, chemical oxygen demand, calculated total inorganic nitrogen content (moreover nitrite and nitrate concentration), temperature had important effect on the total bacterial and archaeal community distribution. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Solar Plus: A Holistic Approach to Distributed Solar PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less

  7. Effects of protein conformational motions in the native form and non-uniform distribution of electrostatic interaction sites on interfacial water

    NASA Astrophysics Data System (ADS)

    Pal, Somedatta; Bandyopadhyay, Sanjoy

    2013-07-01

    Protein-water interactions and their influence on surrounding water is a long-standing problem. Despite its importance, the origin of differential water behavior at the protein surface is still elusive. We have performed molecular simulations of the protein barstar in aqueous medium. Efforts have been made to explore how the conformational motions of the protein segments in the native form and the heterogeneous electrostatic interactions with the polar and charged groups of the protein affect the interfacial water properties. The calculations reveal that reduced dimension of the hydration layer on freezing the protein's degrees of freedom does not modify the heterogeneous water distributions around the protein. However, turning off the protein-water electrostatic contribution leads to non-preferential near-uniform water arrangements at the surface. It is further shown that with protein-water electrostatic interactions turned on, the local structuring of water molecules around the segments are correlated with their degree of exposure to the solvent.

  8. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    PubMed

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.

  9. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    PubMed Central

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS. PMID:25706303

  10. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model

    USGS Publications Warehouse

    Mirus, Benjamin B.

    2015-01-01

    Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.

  11. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1987-01-01

    The relationship between the Nd isotopic composition in the Atlantic waters and the origin and circulation of the water masses was investigated. Samples were collected in the western North Atlantic between 7 and 54 deg N. The isotopic composition (Nd-143/Nd-144 ratios) showed extensive vertical structure at all locations. In regions where a thermocline was well-developed, large isotopic shifts were observed across the base of the thermocline, while regions without a thermocline were characterized by much more gradual shifts in isotopic composition with depth. The data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity measurements.

  12. Molecular dynamics studies of interfacial water at the alumina surface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior atmore » distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.« less

  13. Distribution of Arctic and Pacific copepods and their habitat in the northern Bering Sea and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Sasaki, H.; Matsuno, K.; Fujiwara, A.; Onuka, M.; Yamaguchi, A.; Ueno, H.; Watanuki, Y.; Kikuchi, T.

    2015-11-01

    The advection of warm Pacific water and the reduction of sea-ice extent in the western Arctic Ocean may influence the abundance and distribution of copepods, i.e., a key component in food webs. To understand the factors affecting abundance of copepods in the northern Bering Sea and Chukchi Sea, we constructed habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods, separately, using generalized additive models. Copepods were sampled by NORPAC net. Vertical profiles of density, temperature and salinity in the seawater were measured using CTD, and concentration of chlorophyll a in seawater was measured with a fluorometer. The timing of sea-ice retreat was determined using the satellite image. To quantify the structure of water masses, the magnitude of pycnocline and averaged density, temperature and salinity in upper and bottom layers were scored along three axes using principal component analysis (PCA). The structures of water masses indexed by the scores of PCAs were selected as explanatory variables in the best models. Large Arctic copepods were abundant in the water mass with high salinity water in bottom layer or with cold/low salinity water in upper layer and cold/high salinity water in bottom layer, and small Arctic copepods were abundant in the water mass with warm/saline water in upper layer and cold/high salinity water in bottom layers, while Pacific copepods were abundant in the water mass with warm/saline in upper layer and cold/high salinity water in bottom layer. All copepod groups were abundant in areas with deeper depth. Although chlorophyll a in upper and bottom layers were selected as explanatory variables in the best models, apparent trends were not observed. All copepod groups were abundant where the sea-ice retreated at earlier timing. Our study might indicate potential positive effects of the reduction of sea-ice extent on the distribution of all groups of copepods in the Arctic Ocean.

  14. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    NASA Astrophysics Data System (ADS)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  15. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    PubMed

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen bonding of the slightly acidic water in the nanoscale channel.

  16. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  17. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  18. Dielectric relaxation measurement and analysis of restricted water structure in rice kernels

    NASA Astrophysics Data System (ADS)

    Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki

    2007-04-01

    Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.

  19. Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis

    NASA Astrophysics Data System (ADS)

    Hirata, Fumio; Sugita, Masatake; Yoshida, Masasuke; Akasaka, Kazuyuki

    2018-01-01

    The thermodynamics hypothesis, casually referred to as "Anfinsen's dogma," is described theoretically in terms of a concept of the structural fluctuation of protein or the first moment (average structure) and the second moment (variance and covariance) of the structural distribution. The new theoretical concept views the unfolding and refolding processes of protein as a shift of the structural distribution induced by a thermodynamic perturbation, with the variance-covariance matrix varying. Based on the theoretical concept, a method to characterize the mechanism of folding (or unfolding) is proposed. The transition state, if any, between two stable states is interpreted as a gap in the distribution, which is created due to an extensive reorganization of hydrogen bonds among back-bone atoms of protein and with water molecules in the course of conformational change. Further perspective to applying the theory to the computer-aided drug design, and to the material science, is briefly discussed.

  20. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2018-07-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  1. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2017-12-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  2. Conformation Types of Ubiquitin [M+8H]8+ Ions from Water:Methanol Solutions: Evidence for the N and A States in Aqueous Solution

    PubMed Central

    Shi, Huilin; Pierson, Nicholas A.; Valentine, Stephen J.; Clemmer, David E.

    2012-01-01

    Ion mobility and mass spectrometry measurements are used to examine the gas-phase populations of [M+8H]8+ ubiquitin ions formed upon electrospraying 20 different solutions: from 100:0 to 5:95 water:methanol that are maintained at pH = 2.0. Over this range of solution conditions, mobility distributions for the +8 charge state show substantial variations. Here we develop a model that treats the combined measurements as one data set. By varying the relative abundances of a discrete set of conformation types, it is possible to represent distributions obtained from any solution. For solutions that favor the well-known A-state ubiquitin, it is possible to represent the gas-phase distributions with seven conformation types. Aqueous conditions that favor the native structure require four more structural types to represent the distribution. This analysis provides the first direct evidence for trace amounts of the A state under native conditions. The method of analysis presented here should help illuminate how solution populations evolve into new gas-phase structures as solvent is removed. Evidence for trace quantities of previously unknown states under native solution conditions may provide insight about the relationship of dynamics to protein function as well as misfolding and aggregation phenomena. PMID:22315998

  3. Power Distribution and Adoption of Agricultural Innovations: A Structural Analysis of Villages in Pakistan.

    ERIC Educational Resources Information Center

    Freeman, David M.; And Others

    1982-01-01

    Data collected from a sample of farmers representing 15 Pakistani villages show that greater equality in village power distribution is positively related to greater adoption of agricultural technology as analyzed at the village level. When effects of water control are parceled out, the power-adoption relationship is strengthened. (LC)

  4. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has only been studied for few deep-water species. A time series of roundnose grenadier Coryphaenoides rupestris recruitment spanning three decades of fisheries-independent data suggests that abundant year classes occur rarely and may influence size structure and abundance even for this long-lived species. © 2013 The Fisheries Society of the British Isles.

  5. Sensor Needs for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2000-01-01

    Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that could measure the populations of these types of bacteria would help the control and operation of bioreactors. J

  6. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  7. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    PubMed

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  8. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge (Presentation)

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speci...

  9. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  10. Resource Exploration Approaches on Mars Using Multidisciplinary Earth-based Techniques

    NASA Astrophysics Data System (ADS)

    Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Smart, K. J.

    2005-12-01

    Water is the most important Martian exploration target - key to finding evidence of past life and providing a crucial resource for future exploration. Water is thought to be present in vapor, liquid, and ice phases on Mars. Except for ice in polar regions, little direct evidence of current surface accumulation of water has been found. Existing research has addressed potential source areas, including meteoric water, glacial ice, and volcanic centers and areas of discharge such as large paleo-outflow channels. Missing from these analyses is characterization of migration pathways of water in the subsurface from sources to discharge areas, and the present distribution of water. It has been estimated that ~90% of the global inventory of water on Mars resides in the subsurface. Targeting potential subsurface accumulations has relied primarily on theoretical modeling and geomorphic analysis. While global scale thermal modeling and analysis of the stability of ground ice provide important constraints on potential locations of large deposits of ice or liquid water, these studies have not accounted for variations in stratigraphy and structure that may strongly influence local distribution. Depth to water or ice on Mars is thought to be controlled primarily by latitude and elevation. However, the distribution of outflow channels clearly indicates that structural, stratigraphic, and geomorphic features all play important roles in determining past and present distribution of water and ice on Mars as they do on Earth. Resource exploration and extraction is a multi-billion dollar industry on Earth that has developed into a highly sophisticated enterprise with constantly improving exploration technologies. Common to all successful exploration programs, whether for hydrocarbons or water, is detailed analysis and integration of all available geologic, geophysical and remotely sensed data. The primary issues for identification and characterization of water or hydrocarbon resource accumulations can be summarized by three factors: trap, reservoir and charge. This presentation focuses on a detailed characterization of the fundamental elements believed to control trap, reservoir, and charge with respect to the identification of locations for extractable resources on Mars, primarily water and ice, but also gas hydrates. This new approach to resource exploration will also provide guidance for future research and exploration activities, including movement of methane from the subsurface to the surface and potential habitat sites for past or current life on Mars.

  11. Water Distribution in the Continental and Oceanic Upper Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  12. Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong-Lei, E-mail: wangyonl@gmail.com; System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm; Sarman, Sten

    2016-08-14

    Atomistic molecular dynamics simulations have been performed to investigate effective interactions of isolated water molecules dispersed in trihexyltetradecylphosphonium-orthoborate ionic liquids (ILs). The intrinsic free energy changes in solvating one water molecule from gas phase into bulk IL matrices were estimated as a function of temperature, and thereafter, the calculations of potential of mean force between two dispersed water molecules within different IL matrices were performed using umbrella sampling simulations. The systematic analyses of local ionic microstructures, orientational preferences, probability and spatial distributions of dispersed water molecules around neighboring ionic species indicate their preferential coordinations to central polar segments in orthoboratemore » anions. The effective interactions between two dispersed water molecules are partially or totally screened as their separation distance increases due to interference of ionic species in between. These computational results connect microscopic anionic structures with macroscopically and experimentally observed difficulty in completely removing water from synthesized IL samples and suggest that the introduction of hydrophobic groups to central polar segments and the formation of conjugated ionic structures in orthoborate anions can effectively reduce residual water content in the corresponding IL samples.« less

  13. High Energy Moisture Characteristics: Linking Between Soil Physical Processes and Structure Stability

    USDA-ARS?s Scientific Manuscript database

    Water storage and flow in soils is usually complicated by the intricate nature of and changes in soil pore size distribution (PSD) due to modifications in soil structure following changes in agricultural management. The paper presents the Soil High Energy Moisture Characteristic (Soil-HEMC) method f...

  14. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    NASA Astrophysics Data System (ADS)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 < C a (NO3) 2 < S r (NO3) 2, and it follows the trend given by experimental activity coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  15. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.

  16. Non-Invasive Methods to Characterize Soil-Plant Interactions at Different Scales

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Kemna, A.; Muench, M.; Oberdoerster, C.; Pohlmeier, A.; Vanderborght, J.; Vereecken, H.

    2006-05-01

    Root water uptake is a dynamic and non-linear process, which interacts with the soil natural variability and boundary conditions to generate heterogeneous spatial distributions of soil water. Soil-root fluxes are spatially variable due to heterogeneous gradients and hydraulic connections between soil and roots. While 1-D effective representation of the root water uptake has been successfully applied to predict transpiration and average water content profiles, finer spatial characterization of the water distribution may be needed when dealing with solute transport. Indeed, root water uptake affects the water velocity field, which has an effect on solute velocity and dispersion. Although this variability originates from small-scale processes, these may still play an important role at larger scales. Therefore, in addition to investigate the variability of the soil hydraulic properties, experimental and numerical tools for characterizing root water uptake (and its effects on soil water distribution) from the pore to the field scales are needed to predict in a proper way the solute transport. Obviously, non-invasive and modeling techniques which are helpful to achieve this objective will evolve with the scale of interest. At the pore scale, soil structure and root-soil interface phenomena have to be investigated to understand the interactions between soil and roots. Magnetic resonance imaging may help to monitor water gradients and water content changes around roots while spectral induced polarization techniques may be used to characterize the structure of the pore space. At the column scale, complete root architecture of small plants and water content depletion around roots can be imaged by magnetic resonance. At that scale, models should explicitly take into account the three-dimensional gradient dependency of the root water uptake, to be able to predict solute transport. At larger scales however, simplified models, which implicitly take into account the heterogeneous root water uptake along roots, should be preferred given the complexity of the system. At such scales, electrical resistance tomography or ground-penetrating radar can be used to map the water content changes and derive effective parameters for predicting solute transport.

  17. Experimental evidence of the role of pores on movement and distribution of bacteria in soil

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra N.; Rose, Joan B.; Marsh, Terence L.; Guber, Andrey K.

    2014-05-01

    It has been generally recognized that micro-scale heterogeneity in soil environments can have a substantial effect on movement, fate, and survival of soil microorganisms. However, only recently the development of tools for micro-scale soil analyses, including X-ray computed micro-tomography (μ-CT), enabled quantitative analyses of these effects. The long-term goal of our work is to explore how differences in micro-scale characteristics of pore structures influence movement, spatial distribution patterns, and activities of soil microorganisms. Using X-ray μ-CT we found that differences in land use and management practices lead to development of contrasting patterns in pore size-distributions within intact soil aggregates. Then our experiments with Escherichia coli added to intact soil aggregates demonstrated that the differences in pore structures can lead to substantial differences in bacteria redistribution and movement within the aggregates. Specifically, we observed more uniform E.coli redistribution in aggregates with homogeneously spread pores, while heterogeneous pore structures resulted in heterogeneous E.coli patterns. Water flow driven by capillary forces through intact aggregate pores appeared to be the main contributor to the movement patterns of the introduced bacteria. Influence of pore structure on E.coli distribution within the aggregates further continued after the aggregates were subjected to saturated water flow. E. coli's resumed movement with saturated water flow and subsequent redistribution within the soil matrix was influenced by porosity, abundance of medium and large pores, pore tortuosity, and flow rates, indicating that greater flow accompanied by less convoluted pores facilitated E. coli transport within the intra-aggregate space. We also found that intra-aggregate heterogeneity of pore structures can have an effect on spatial distribution patterns of indigenous microbial populations. Preliminary analysis showed that in aggregates from an organic agricultural system with cover crops, characterized by greater intra-aggregate pore heterogeneity, bacteria of Actinobacteria and Firmicutes groups were more abundant in presence of large as compared to small pores. In contrast, no differences were observed in the aggregates from conventionally managed soil, overall characterized by homogeneous intra-aggregate pore patterns. Further research efforts are being directed towards quantification of the pore structure effects on activities and community composition of soil microorganisms.

  18. Metropolitan Washington Area Water Supply Study. Appendix F. Structural Alternatives.

    DTIC Science & Technology

    1983-09-01

    Geology F-132 Description of Aquifers F-137 Patuxent Formation F-137 Patapsco Formation F-137 Magothy Formation F-138 Aquia Formation F-138 Aquifer...Distribution in the Patuxent Aquifer F-146 F-32 Transmissivity Distribution in the Patapsco Aquifer F-i46 F-33 Transmissivity Distribution in the Magothy ...wellfield scheme was planned to tap the region’s deep * - aquifers, particularly the Magothy and Patapsco formations. To fully penetrate these aquifers

  19. Can technical, functional and structural characteristics of dental units predict Legionella pneumophila and Pseudomonas aeruginosa contamination?

    PubMed

    Aprea, Luigi; Cannova, Lucia; Firenze, Alberto; Bivona, Maria S; Amodio, Emanuele; Romano, Nino

    2010-12-01

    Legionella pneumophila and Pseudomonas aeruginosa are common colonizers of water environments, particularly dental unit waterlines. The aim of this study was to assess whether the technical, functional and structural characteristics of dental units can influence the presence and the levels of opportunistic pathogens. Overall, 42 water samples were collected from dental units in a teaching hospital in Palermo, Italy, including 21 samples from the 21 taps supplied by the municipal water distribution system and 21 samples from oral rinsing cups at 21 dental units. L. pneumophila was present in 16 out of 21 water samples (76.2%) from dental units, and the median concentration was higher in samples from oral rinsing cups than in those from taps (P < 0.001). P. aeruginosa was equally distributed in water samples collected from oral rinsing cups and from taps. Some characteristics of dental units (age, number of chairs per room, number of patients per day and water temperature) were slightly associated with the presence of P. aeruginosa, but not with contamination by L. pneumophila. Our experience suggests that L. pneumophila is frequently detected in dental units, as reported in previous studies, whereas P. aeruginosa is not a frequent contaminant. As a consequence, microbiological control of water quality should be routinely performed, and should include the detection of opportunistic pathogens when bacterial contamination is expected.

  20. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model.

    PubMed

    Hardy, Sarah M; Lindgren, Michael; Konakanchi, Hanumantharao; Huettmann, Falk

    2011-10-01

    Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.

  1. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    NASA Astrophysics Data System (ADS)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  2. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles.

    PubMed

    Zhang, Mingcheng; Li, Fangfei; Diao, Xinping; Kong, Baohua; Xia, Xiufang

    2017-11-01

    This study investigated the effects of multiple freeze-thaw (F-T) cycles on water mobility, microstructure damage and protein structure changes in porcine longissimus muscle. The transverse relaxation time T 2 increased significantly when muscles were subjected to multiple F-T cycles (P<0.05), which means that immobile water shifted to free water and the free water mobility increased. Multiple F-T cycles caused sarcomere shortening, Z line fractures, and I band weakening and also led to microstructural destruction of muscle tissue. The decreased free amino group content and increased dityrosine in myofibrillar protein (MP) revealed that multiple F-T cycles caused protein cross-linking and oxidation. In addition, the results of size exclusion chromatography, circular dichroism spectra, UV absorption spectra, and intrinsic fluorescence spectroscopy indirectly proved that multiple F-T cycles could cause protein aggregation and degradation, α-helix structure disruption, hydrophobic domain exposure, and conformational changes of MP. Overall, repeated F-T cycles changed the protein structure and water distribution within meat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Water transparency distribution under varied currents in the largest river-connected lake of China.

    PubMed

    Wang, Hua; Zhao, Yijun; Zhang, Zhizhang; Pang, Yong; Liang, Dongfang

    2017-01-01

    Water transparency is an important ecological indicator for shallow lakes. The largest shallow lake, Poyang Lake, as well as the most typical river-connected lake in China was selected as the research area. In view of the complicated water-sediment conditions induced by its frequent water exchange with external rivers, the dominant factors driving water transparency were determined against the field investigated data from 2003 to 2013 and a specific driving function was established. A numerical model coupling suspended sediment, Chl-a and chemical oxygen demand was developed and validated, and the spatial water transparency distributions under three typical current structures in Poyang Lake, Gravity-style, Jacking-style and Backflow-style, were quantitatively estimated. The following results stood out: water transparency in the lake varied distinctly with the current status; Backflow-style current was basically characterized by the lowest water transparency, while that under Jacking-style was the highest due to the lower sediment carrying capacity. In some outlying regions in the lake, where the water current is hardly influenced by the mainstream, the water transparency was always kept at a stable level.

  4. Dielectric and structural properties of aqueous nonpolar solute mixtures.

    PubMed

    Shvab, I; Sadus, Richard J

    2012-09-28

    The dielectric properties and molecular structure of water mixtures with different nonpolar solutes (methane and noble gases) are studied using molecular dynamics. The water-water, water-solute, and solute-solute interactions are calculated using the combination of a polarizable potential [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] for water plus the Lennard-Jones potential. The effect of solute size and concentration on the solubility of the system, hydrogen bonding, dielectric constant, and dipole moment are investigated over a temperature range of 278-750 K and solute percentage mole fractions up to 30%. Solute particles affect the structure of water, resulting in the compression of oxygen-oxygen and oxygen-hydrogen radial distribution functions. The influence of the solute extends both to relatively low concentrations and high temperatures. The coordination numbers of aqueous solutions of the nonpolar solutes appear to be proportional to the size of the solute particles. Our study shows the destructive influence of the nonpolar solute on both the tetrahedral water structure and hydrogen bond formation at solute concentrations greater than 30%. The presence of nonpolar particles typically decreases both the dielectric constant and dipole moment. The decrease of dielectric constant and water dipole moment is directly proportional to the solute concentration and temperature.

  5. The exploration and prevention of mine water invasion in Feicheng area based on RS

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Guo; Wang, Ping; Ting, He

    2004-10-01

    Recently, when the ninth and tenth were mined in Feiching city mining area, several mine wells occurred on water invasion. Based on systematic interpretation of TMimages in Fei Cheng mining area, authors find that there are five zones of NS trending lineaments, which nearly distribute in radial in TM images. Image processing can be divided into three types, they are spectrum enhancement, spatial filtering and data fusion, the useful methods in this area are auto-adaptive enhancement, density slicing and K-L transform. With ninth and tenth seam coals mined, three mines of east area have broken out serious accidents of water. Statistical materials and the test of water quality drawing off five limestone indicates water-yielding zone near NS, NNE, and NW trending faults, or near intersection point of its and others. In order to solve the problem, using remote sensing and other techniques, we try to find some influential factors on mine flow. Further analyses, such as, the exploration of geology on earth, and microcosmic from rock slice, the authors find that there are some reasons which lead to water invasion such as geological structure, karsts, index and so on, in which the main reason might be north-south deep fracture which is the pathway of well water's distribution, migration and recharge of mine water. There being more complicate geologic structure in the west of mine area, at last, with RS authors point out important zone of mine water invasion which the prevention-control of hazards from mine water and some measures to avoid water blast in future.

  6. Skin lipid structure controls water permeability in snake molts.

    PubMed

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    NASA Astrophysics Data System (ADS)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  8. Quantification of water penetration into concrete through cracks by neutron radiography

    NASA Astrophysics Data System (ADS)

    Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; Tsuchiya, N.

    2009-06-01

    Improving the durability of concrete structures is one of the ways to contribute to the sustainable development of society, and it has also become a crucial issue from an environmental viewpoint. It is well known that moisture behavior in reinforced concrete is linked to phenomena such as cement hydration, volume change and cracking caused by drying shrinkage, rebar corrosion and water leakage that affect the durability of concrete. In this research, neutron radiography was applied for visualization and quantification of water penetration into concrete through cracks. It is clearly confirmed that TNR can make visible the water behavior in/near horizontal/vertical cracks and can quantify the rate of diffusion and concentration distribution of moisture with high spatial and time resolution. On detailed analysis, it is observed that water penetrates through the crack immediately after pouring and its migration speed and distribution depend on the moisture condition in the concrete.

  9. 4-D Model of CO2 Deposition at North and South of Mars from HEND/Odyssey and MOLA/MGS

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V.; Smith, D. E.; Zuber, M. T.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.

    2003-01-01

    The first 1.5 year of neutron mapping measurements onboard Mars Odyssey spacecraft are presented based on High Energy Neutron Detector (HEND) observations. HEND instrument is a part of GRS suite responsible for registration of epithermal and fast neutrons originating in Mars subsurface layer. The scattering of fast neutrons in Mars surface caused by primary cosmic rays is strongly sensitive to presence of hydrogen atoms. Even several percents of subsurface water significantly depress epithermal and fast neutron flux. It turns orbit neutron spectroscopy into one of most efficient methods for finding distribution of subsurface water. The Mars Odyssey observations revealed huge water- ice regions above 60N and 60S latitudes. It was founded that distribution of subsurface water has layered structure at these regions. It is thought that more than 50% wt water ice covered by relatively dry layer with different thickness.

  10. Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea

    PubMed Central

    Yang, Jinying; Li, Jing; Luan, Xiwu; Zhang, Yunbo; Gu, Guizhou; Xue, Rongrong; Zong, Mingyue; Klotz, Martin G.

    2013-01-01

    The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N2 fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution, and community structure of the sediment diazotrophic microbiota were investigated at 12 sampling sites, including estuarine, coastal, offshore, deep-sea, and methane hydrate reservoirs or their prospective areas by targeting nifH and some other functional biomarker genes. Diverse and novel nifH sequences were obtained, significantly extending the evolutionary complexity of extant nifH genes. Statistical analyses indicate that sediment in situ temperature is the most significant environmental factor influencing the abundance, community structure, and spatial distribution of the sediment nifH-harboring microbial assemblages in the northern SCS (nSCS). The significantly positive correlation of the sediment pore water NH4+ concentration with the nifH gene abundance suggests that the nSCS sediment nifH-harboring microbiota is active in N2 fixation and NH4+ production. Several other environmental factors, including sediment pore water PO43− concentration, sediment organic carbon, nitrogen and phosphorus levels, etc., are also important in influencing the community structure, spatial distribution, or abundance of the nifH-harboring microbial assemblages. We also confirmed that the nifH genes encoded by archaeal diazotrophs in the ANME-2c subgroup occur exclusively in the deep-sea methane seep areas, providing for the possibility to develop ANME-2c nifH genes as a diagnostic tool for deep-sea methane hydrate reservoir discovery. PMID:23064334

  11. Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)

    NASA Astrophysics Data System (ADS)

    Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno

    2018-04-01

    The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.

  12. Structural health monitoring of cylindrical bodies under impulsive hydrodynamic loading by distributed FBG strain measurements

    NASA Astrophysics Data System (ADS)

    Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2017-02-01

    Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.

  13. Water: a responsive small molecule.

    PubMed

    Shultz, Mary Jane; Vu, Tuan Hoang; Meyer, Bryce; Bisson, Patrick

    2012-01-17

    Unique among small molecules, water forms a nearly tetrahedral yet flexible hydrogen-bond network. In addition to its flexibility, this network is dynamic: bonds are formed or broken on a picosecond time scale. These unique features make probing the local structure of water challenging. Despite the challenges, there is intense interest in developing a picture of the local water structure due to water's fundamental importance in many fields of chemistry. Understanding changes in the local network structure of water near solutes likely holds the key to unlock problems from analyzing parameters that determine the three dimensional structure of proteins to modeling the fate of volatile materials released into the atmosphere. Pictures of the local structure of water are heavily influenced by what is known about the structure of ice. In hexagonal I(h) ice, the most stable form of solid water under ordinary conditions, water has an equal number of donor and acceptor bonds; a kind of symmetry. This symmetric tetrahedral coordination is only approximately preserved in the liquid. The most obvious manifestation of this altered tetrahedral bonding is the greater density in the liquid compared with the solid. Formation of an interface or addition of solutes further modifies the local bonding in water. Because the O-H stretching frequency is sensitive to the environment, vibrational spectroscopy provides an excellent probe for the hydrogen-bond structure in water. In this Account, we examine both local interactions between water and small solutes and longer range interactions at the aqueous surface. Locally, the results suggest that water is not a symmetric donor or acceptor, but rather has a propensity to act as an acceptor. In interactions with hydrocarbons, action is centered at the water oxygen. For soluble inorganic salts, interaction is greater with the cation than the anion. The vibrational spectrum of the surface of salt solutions is altered compared with that of neat water. Studies of local salt-water interactions suggest that the picture of the local water structure and the ion distribution at the surface deduced from the surface vibrational spectrum should encompass both ions of the salt.

  14. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  15. How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate

    PubMed Central

    Bai, Dongsheng; Chen, Guangjin; Zhang, Xianren; Sum, Amadeu K.; Wang, Wenchuan

    2015-01-01

    Molecular dynamics simulations were performed for CO2 dissolved in water near silica surfaces to investigate how the hydrophilicity and crystallinity of solid surfaces modulate the local structure of adjacent molecules and the nucleation of CO2 hydrates. Our simulations reveal that the hydrophilicity of solid surfaces can change the local structure of water molecules and gas distribution near liquid-solid interfaces, and thus alter the mechanism and dynamics of gas hydrate nucleation. Interestingly, we find that hydrate nucleation tends to occur more easily on relatively less hydrophilic surfaces. Different from surface hydrophilicity, surface crystallinity shows a weak effect on the local structure of adjacent water molecules and on gas hydrate nucleation. At the initial stage of gas hydrate growth, however, the structuring of molecules induced by crystalline surfaces are more ordered than that induced by amorphous solid surfaces. PMID:26227239

  16. Thermodynamic and Structural Properties of Methanol-Water Solutions Using Non-Additive Interaction Models

    PubMed Central

    Zhong, Yang; Warren, G. Lee; Patel, Sandeep

    2014-01-01

    We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339

  17. SRB attrition rate study of the aft skirt due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    A methodology was presented so that realistic attrition prediction could aid in selecting an optimum design option for minimizing the effects of updated loads on the Space Shuttle Solid Rocket Booster (SRB) aft skirt. The updated loads resulted in water impact attrition rates greater than 10 percent for the aft skirt structure. Adding weight to reinforce the aft skirt was undesirable. The refined method treats the occurrences of the load distribution probabilistically, radially and longitudinally, with respect to the critical structural response.

  18. Structural Changes in Senescing Oilseed Rape Leaves at Tissue and Subcellular Levels Monitored by Nuclear Magnetic Resonance Relaxometry through Water Status

    PubMed Central

    Musse, Maja; De Franceschi, Loriane; Cambert, Mireille; Sorin, Clément; Le Caherec, Françoise; Burel, Agnès; Bouchereau, Alain; Mariette, François; Leport, Laurent

    2013-01-01

    Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants. It was shown to be able to detect slight variations in the evolution of senescence. The NMR results were linked to physiological characterization of the leaves and to light and electron micrographs. A relationship between cell hydration and leaf senescence was revealed and associated with changes in the NMR signal. The relative intensities and the transverse relaxation times of the NMR signal components associated with vacuole water were positively correlated with senescence, describing water uptake and vacuole and cell enlargement. Moreover, the relative intensity of the NMR signal that we assigned to the chloroplast water decreased during the senescence process, in agreement with the decrease in relative chloroplast volume estimated from micrographs. The results are discussed on the basis of water flux occurring at the cellular level during senescence. One of the main applications of this study would be for plant phenotyping, especially for plants under environmental stress such as nitrogen starvation. PMID:23903438

  19. Studies of Atmospheric Water in Storms with the Nimbus 7 Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.

    1984-01-01

    The new tools for the study of midlattitude cyclones by atmospheric water channels of the scanning multichannel microwave radiometer (SMMR) on Nimbus 7, were discussed. The integrated atmospheric water vapor, total cloud liquid water and rain data were obtained from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR). The frontal structure of several midlattitude cyclones over the North Pacific Ocean as they approached the West Coast of North America were studied. It is found that fronts are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is a good indicator of frontal location. It is concluded that the onset of rain on the coast can be forecast accurately by simple advection of the SMMR observed rain areas.

  20. Canada Basin Acoustic Propagation Experiment (CANAPE)

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned...about Arctic acoustics during the Cold War is now obsolete. The goal of the Canada Basin Acoustic Propagation Experiment (CANAPE) is to determine the

  1. Grand Forks - East Grand Forks Urban Water Resources Study. Background Information Appendix.

    DTIC Science & Technology

    1981-07-01

    Social Organization 121 Introduction 121 Demography 122 Racial Distribution 139 Ethnic Groups 141 Neighborhood Groups 141 Religion 143 Crime 144...of agricultural clearing operations and urban growth. Native tree species are important because of their longevity and now relatively infrequent... Demography Geographic Distribution Governmental Organiization Economy Occupational Structure Education Social Support Services 109 CULTURAL ELEM1ENTS

  2. Drinking Water Microbiome as a Screening Tool for ...

    EPA Pesticide Factsheets

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of the bulk water (BW) microbiome from a chloraminated drinking water distribution system (DWDS) simulator. The DWDS was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. Specifically, this study focuses on biomarker discovery and their potential use to classify SF episodes. Principal coordinate analysis identified two major clusters (SS and SF; PERMANOVA, p 0.976, p < 0.01). Furthermore, models were able to correctly predict 95% (AUC = 0.983, n = 104) and 96% (AUC = 0.973, n = 72) of samples of the DWDS (community structure of two published studies) and water quality datasets, respectively. The results from this study demonstrate the feasibility of selected BW microbiome signatures as predictive biomarkers of nitrification in DWDS. This new information can be used to optimize current nitrification monitoring plans. The purpose of this research is to add to our knowledge of chloramine and chlorine disinfectants, with regards to effects on the microbial communities in drinking water distribution systems. We used a

  3. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    PubMed

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  4. Assessment of water pipes durability under pressure surge

    NASA Astrophysics Data System (ADS)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  5. The distribution of seabirds and pinnipeds in Marguerite Bay and their relationship to physical features during austral winter 2001

    USGS Publications Warehouse

    Chapman, Erik W.; Ribic, C.A.; Fraser, William R.

    2004-01-01

    The distribution of seabirds and pinnipeds and their relationship to physical oceanographic variables were investigated as part of the US Southern Ocean Global Ocean Ecosystem Dynamics field program along a study grid centered around Marguerite Bay on the west Antarctic Peninsula during late fall (April-May) and winter (July-August), 2001. Sea-ice conditions during the cruises provided an opportunity to compare the relationship among physical oceanographic variables and species distributions before and after the development of pack ice. During the fall cruise before pack ice development, both sea-ice-affiliated species and open-water-affiliated were observed in the area. The most common ice-affiliated species observed at this time were snow petrel (Pagodroma nivea, 0.7 individuals km-2) and Antarctic petrel (Thalassoica antarctica, 0.2 individuals km-2) and the most common open-water-affiliated species were blue petrel (Halobaena caerulea, 0.4 individuals km-2), cape petrel (Daption capense, 0.2 individuals km-2), and southern fulmar (Fulmarus glacialoides, 0.1 individuals km-2). In addition, Antarctic fur seals (Arctocephalus gazella, 0.1 individuals km-2) and crabeater seals (Lobodon carcinophagus, 0.4 individuals km-2) were observed in low numbers. Akaike's information criterion was used to assess competing models that predicted predator distributions based on physical oceanographic variables proposed to structure predator distribution in previous research. These analyses indicated that predator distributions were primarily associated with water-mass structure and variability in bottom depth during the fall cruise. Crabeater seal, snow petrel, Antarctic petrel, and southern fulmar had higher densities in Inner Shelf Water, particularly near Alexander Island where a coastal current was present. Blue petrel, kelp gull (Larus dominicanus), and southern giant petrel (Macronectes giganteus) were positively associated with variability in bottom depth in April-May, suggesting that hydrographic processes influenced by bathymetry may have been important in structuring bird distributions. After the development of pack ice, during July and August, only sea-ice-affiliated species, including snow petrel (1.0 individuals km-2), Antarctic petrel (0.1 individuals km-2), Ade??lie penguin (Pygoscelis adeliae, 0.4 individuals km-2), and crabeater seal (0.3 individuals km-2), were observed. Seabirds were primarily associated with sea-ice characteristics (e.g. sea-ice concentration, sea-ice type) rather than the water-column environment later in the winter. Results from this study suggest that the timing and extent of sea-ice development in the fall may influence over-winter predation by seabirds and pinnipeds on zooplankton and fish on the western Antarctic Peninsula. Delays in sea-ice development may allow seabirds and pinnipeds access to biologically important areas such as the Inner Shelf Water for a longer period of time thereby increasing predation on zooplankton and fish. ?? 2004 Elsevier Ltd. All rights reserved.

  6. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.

    PubMed

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-14

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ∼220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.

  7. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-01

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the Newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is Gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ˜220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.

  8. Spatio-temporal analysis of wildfire ignitions in the St. Johns River Water Management District, Florida

    Treesearch

    Marc G. Genton; David T. Butry; Marcia L. Gumpertz; Jeffrey P. Prestemon

    2006-01-01

    We analyse the spatio-temporal structure of wildfire ignitions in the St. Johns River Water Management District in north-eastern Florida. We show, using tools to analyse point patterns (e.g. the L-function), that wildfire events occur in clusters. Clustering of these events correlates with irregular distribution of fire ignitions, including lightning...

  9. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  10. Science and Technology to Support Fresh Water Availability in the United States

    DTIC Science & Technology

    2004-11-01

    expand research and monitoring efforts to better understand the water cycle , its variability and relation to global climate change, and to provide basic...hydrologi- cal processes on the distribution, structure, and function of ecosys- tems, and on the effects of biotic processes on elements of the water ... cycle .”22 The science has evolved from one that simply indicated what minimum flows might be needed to maintain a particular spe- cies in a river, to

  11. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions.

    PubMed

    Chen, Pan; Terenzi, Camilla; Furó, István; Berglund, Lars A; Wohlert, Jakob

    2018-05-15

    Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent 13 C NMR longitudinal relaxation times ( T 1 ) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain-chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

  12. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    PubMed

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Femtosecond movies of water near interfaces at sub-Angstrom resolution

    NASA Astrophysics Data System (ADS)

    Coridan, Robert; Hwee Lai, Ghee; Schmidt, Nathan; Abbamonte, Peter; Wong, Gerard C. L.

    2010-03-01

    The behavior of liquid water near interfaces with nanoscopic variations in chemistry influences a broad range of phenomena in biology. Using inelastic x-ray scattering (IXS) data from 3rd-generation synchrotron x-ray sources, we reconstruct the Greens function of liquid water, which describes the å-scale spatial and femtosecond-scale temporal evolution of density fluctuations. We extend this response function formalism to reconstruct the evolution of hydration structures near dynamic surfaces with different charge distributions, in order to define more precisely the molecular signature of hydrophilicity and hydrophobicity. Moreover, we investigate modifications to surface hydration structures and dynamics as the size of hydrophilic and hydrophobic patches are varied.

  14. Monte Carlo simulations of the properties and structure of hexadecyltrimethylammonium chloride micelles of various shapes in aqueous-salt solutions

    NASA Astrophysics Data System (ADS)

    Burov, S. V.; Piotrovskaya, E. M.

    2006-08-01

    The thermodynamic and structural properties of spherical and cylindrical hexadecyltrimethylammonium chloride micelles in water and a solution of sodium benzoate were studied by the Monte Carlo method. The local densities of particles in the systems, orientations of benzoate ions, two-particle distribution functions, and the influence of sodium benzoate admixtures on the properties and structure of micellar solutions were studied.

  15. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál

    2010-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

  16. Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.

    PubMed

    Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A

    2009-06-08

    Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.

  17. Plant–Water Relations (1): Uptake and Transport

    PubMed Central

    2014-01-01

    Summary Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow tracheary elements are just one of many adaptations that enable plants to cope with a very dry atmosphere. This lecture examines the physical laws that govern water uptake and transport, the biological properties of cells and plant tissues that facilitate it, and the strategies that enable plants to survive in diverse environments

  18. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    PubMed Central

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-01-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems. PMID:26251872

  19. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system.

    PubMed

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-03-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a 'core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.

  20. Ionic strength independence of charge distributions in solvation of biomolecules

    NASA Astrophysics Data System (ADS)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-01

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  1. Carrier Mediated Distribution System (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients.

    PubMed

    Wagner, Bjoern; Fischer, Holger; Kansy, Manfred; Seelig, Anna; Assmus, Frauke

    2015-02-20

    Here we present a miniaturized assay, referred to as Carrier-Mediated Distribution System (CAMDIS) for fast and reliable measurement of octanol/water distribution coefficients, log D(oct). By introducing a filter support for octanol, phase separation from water is facilitated and the tendency of emulsion formation (emulsification) at the interface is reduced. A guideline for the best practice of CAMDIS is given, describing a strategy to manage drug adsorption at the filter-supported octanol/buffer interface. We validated the assay on a set of 52 structurally diverse drugs with known shake flask log D(oct) values. Excellent agreement with literature data (r(2) = 0.996, standard error of estimate, SEE = 0.111), high reproducibility (standard deviation, SD < 0.1 log D(oct) units), minimal sample consumption (10 μL of 100 μM DMSO stock solution) and a broad analytical range (log D(oct) range = -0.5 to 4.2) make CAMDIS a valuable tool for the high-throughput assessment of log D(oc)t. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    USGS Publications Warehouse

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  3. The temperature dependence of inelastic light scattering from small particles for use in combustion diagnostic instrumentation

    NASA Technical Reports Server (NTRS)

    Cloud, Stanley D.

    1987-01-01

    A computer calculation of the expected angular distribution of coherent anti-Stokes Raman scattering (CARS) from micrometer size polystyrene spheres based on a Mie-type model, and a pilot experiment to test the feasibility of measuring CARS angular distributions from micrometer size polystyrene spheres by simply suspending them in water are discussed. The computer calculations predict a very interesting structure in the angular distributions that depends strongly on the size and relative refractive index of the spheres.

  4. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    PubMed

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A water bag theory of autoresonant Bernstein-Greene-Kruskal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khain, P.; Friedland, L.

    2007-08-15

    The adiabatic water bag theory describing formation and passage through phase-space of driven, continuously phase-locked (autoresonant) coherent structures in plasmas [L. Friedland et al., Phys. Rev. Lett. 96, 225001 (2006)] and of the associated Bernstein-Greene-Kruskal (BGK) modes is developed. The phase-locking is achieved by using a chirped frequency ponderomotive drive, passing through kinetic Cerenkov-type resonances. The theory uses the adiabatic invariants (conserved actions of limiting trajectories) in the problem and, for a flat-top initial distribution of the electrons, reduces the calculation of the self-field of the driven BGK mode to solution of a few algebraic equations. The adiabatic multiwater bagmore » extension of the theory for applications to autoresonant BGK structures with more general initial distributions is suggested. The results of the theories are in very good agreement with numerical simulations.« less

  6. Deformation analysis and prediction of bank protection structure with river level fluctuations

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Xing, Yixuan

    2017-04-01

    Bank structure is an important barrier to maintain the safety of the embankment. The deformation of bank protection structure is not only affected by soil pressure caused by the excavation of the riverway, but also by the water pressure caused river water level fluctuations. Thus, it is necessary to establish a coupled soil-water model to analyze the deformation of bank structure. Based on Druck-Prager failure criteria and groundwater seepage theory, a numerical model of bank protection structure with consideration of the pore water pressure of soil mass is established. According to the measured river level data with seasonal fluctuating, numerical analysis of the deformation of bank protection structure is implemented. The simulation results show that the river water level fluctuation has clear influence on the maximum lateral displacement of the pile. Meanwhile, the distribution of plastic zone is related to the depth of groundwater level. Finally, according to the river water level data of the recent ten years, we analyze the deformation of the bank structure under extreme river level. The result shows that, compared with the scenario of extreme high river level, the horizontal displacement of bank protection structure is larger (up to 65mm) under extreme low river level, which is a potential risk to the embankment. Reference Schweiger H F. On the use of drucker-prager failure criteria for earth pressure problems[J]. Computers and Geotechnics, 1994, 16(3): 223-246. DING Yong-chun,CHENG Ze-kun. Numerical study on performance of waterfront excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):515-521. Wu L M, Wang Z Q. Three gorges reservoir water level fluctuation influents on the stability of the slope[J]. Advanced Materials Research. Trans Tech Publications, 2013, 739: 283-286.

  7. The case for regime-based water quality standards

    USGS Publications Warehouse

    Poole, Geoffrey C.; Dunham, J.B.; Keenan, D.M.; Sauter, S.T.; McCullough, D.A.; Mebane, Christopher; Lockwood, Jeffrey C.; Essig, Don A.; Hicks, Mark P.; Sturdevant, Debra J.; Materna, E.J.; Spalding, M.; Risley, John; Deppman, Marianne

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type of water quality standarda??a a??regime standarda??a??would describe desirable distributions of conditions over space and time within a stream network. By mandating the protection and restoration of the aquatic ecosystem dynamics that are required to support beneficial uses in streams, well-designed regime standards would facilitate more effective strategies for management of natural water quality parameters.

  8. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses[OPEN

    PubMed Central

    Robbins, Neil E.

    2016-01-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  9. Effects of Concentration on Like-Charge Pairing of Guanidinium Ions and on the Structure of Water: An All-Atom Molecular Dynamics Simulation Study.

    PubMed

    Bandyopadhyay, Dibyendu; Bhanja, K; Mohan, Sadhana; Ghosh, Swapan K; Choudhury, Niharendu

    2015-08-27

    Like-charge ion-pair formation in an aqueous solution of guanidinium chloride (GdmCl) has two important facets. On one hand, it describes the role of the arginine (ARG) side chain in aggregation and dimer formation in proteins, and on the other hand, it lends support for the direct mechanism of protein denaturation by GdmCl. We employ all-atom molecular dynamics simulations to investigate the effect of GdmCl concentration on the like-charge ion-pair formation of guanidinium ions (Gdm(+)). From analyses of the radial distribution function (RDF) between the carbon atoms of two guanidinium moieties, the existence of both contact pairs and solvent-separated pairs has been observed. Although the peak height corresponding to the contact-pair state decreases, the number of Gdm(+) ions in the contact-pair state actually increases with increasing GdmCl concentration. We have also investigated the effect of the concentration of Gdm(+) on the structure of water. The effect of GdmCl concentration on the radial and tetrahedral structures of water is found to be negligibly small; however, GdmCl concentration has a considerable effect on the hydrogen-bonding structure of water. It is demonstrated that the presence of chloride ions, not Gdm(+), in the first solvation shell of water causes the distortion in the hydrogen-bonding network of water. In order to establish that Gdm(+) not only stacks against another Gdm(+) but also directly attacks the ARG residue of a protein or peptide, simulation of an ARG-rich peptide in 6 M aqueous solution of GdmCl has been performed. The analyses of RDFs and orientation distributions reveal that the Gdm(+) moiety of the GdmCl attacks the same moiety in the ARG side chain with a parallel stacking orientation.

  10. Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves

    NASA Astrophysics Data System (ADS)

    Kirby, James; Derakhti, Morteza

    2017-11-01

    We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.

  11. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures.

    PubMed

    Kirillova, Svetlana; Carugo, Oliviero

    2011-10-19

    Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs.

  12. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures

    PubMed Central

    2011-01-01

    Background Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. Results A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. Conclusions The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs. PMID:22011380

  13. Choosing optimum station configurations for summarizing water quality characteristics, in 1994 Annual Report, San Francisco Estuary Regional Monitoring Program for Trace Substances: San Francisco Estuary Institute

    USGS Publications Warehouse

    Cloern, James E.; Cole, Brian E.; Caffrey, J.M.

    1996-01-01

    In this report, we focus on selection of an “optimum” station configuration for the channel of San Francisco Bay for vertical profiling of water quality. Our analysis is based on the monthly cruises conducted by the USGS under the auspices of the Regional Monitoring Program for Trace Substances (Caffrey et al. 1994; SFEI 1994). The underlying rationale for undertaking the analysis is that the distribution of trace substances is structured, at least in part, by the same forces acting on water quality parameters. This must be true to some extent, as trace substance concentrations are partially dependent on water quality characteristics such as salinity. On the other hand, the quantitative importance of these parameters in accounting for overall variability in individual trace substances is unknown. Furthermore, trace substances have their own unique sources, and these sources may dominate their distribution.

  14. Structure-quality relationship in commercial pasta: a molecular glimpse.

    PubMed

    Bonomi, Francesco; D'Egidio, Maria Grazia; Iametti, Stefania; Marengo, Mauro; Marti, Alessandra; Pagani, Maria Ambrogina; Ragg, Enzio Maria

    2012-11-15

    Presence and stability of a protein network was evaluated by fluorescence spectroscopy, by protein solubility studies, and by assessing the accessibility of protein thiols in samples of commercial Italian semolina pasta made in industrial plants using different processes. The pasting properties of starch in each sample were evaluated by means of a viscoamylograph. Magnetic resonance imaging (MRI) was used to evaluate water distribution and water mobility in dry pasta, and at various cooking times. The molecular information derived from these studies was related to sensory indices, indicating that protein reticulation was dependent on the process conditions, which affected water penetration, distribution, and mobility during cooking. Products with a crosswise gradient of water mobility once cooked had the best sensory scores at optimal cooking time, whereas products with a less compact protein network performed better when slightly overcooked. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Patterns of fish diversity and assemblage structure and water quality in the longest Asian tropical river (Mekong)

    NASA Astrophysics Data System (ADS)

    Chea, R.; Lek, S.; Grenouillet, G.

    2016-12-01

    Although the Mekong River is one of the world's 35 biodiversity hotspots, the large-scale patterns of fish diversity and assemblage structure remain poorly addressed. The present study aimed to investigate the spatial variability of water quality in the Lower Mekong Basin and the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH, and total phosphorus. Specifically, upstream assemblages were characterized by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch-like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR. Overall of the LMR water quality, we found that the water in the mainstream was less polluted than its tributaries; eutrophication and salinity could be key factors affecting water quality in LMR. Moreover, the seasonal variation of water quality seemed to be less marked than spatial variation occurring along the longitudinal gradient of Mekong River. Significant degradations were mainly associated with human disturbance and particularly apparent in sites distributed along the man-made canals in Vietnam delta where population growth and agricultural development are intensive.

  16. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-01

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  17. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.

    PubMed

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-07

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  18. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  19. Modelling the Interior Structure of Enceladus Based on the 2014's Cassini Gravity Data.

    PubMed

    Taubner, R-S; Leitner, J J; Firneis, M G; Hitzenberger, R

    2016-06-01

    We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth's sea floors.

  20. Membrane formation in liquids by adding an antagonistic salt

    NASA Astrophysics Data System (ADS)

    Sadakane, Koichiro; Seto, Hideki

    2018-03-01

    Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  1. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Yang; Wu, Ying; Zhang, Xiao-Liu; Ni, Xu; Chen, Ze-Guo; Lu, Ming-Hui; Chen, Yan-Feng

    2013-10-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  2. Flow behaviour and structure of heterogeneous particles-water mixture in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2018-06-01

    The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.

  3. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  4. Structure and dynamics of the UO(2)(2+) ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Frick, Robert J; Hofer, Thomas S; Pribil, Andreas B; Randolf, Bernhard R; Rode, Bernd M

    2009-11-12

    A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion. These data were compared to recent experimental data obtained from LAXS and EXAFS and results of various theoretical calculations. Some properties were explained with the aid of charge distribution plots for the solute. The solvent dynamics around the ion were investigated using distance plots and mean ligand residence times and the results compared to experimental and theoretical data of related ions.

  5. Study of nanoscale structures in hydrated biomaterials using small-angle neutron scattering

    PubMed Central

    Luk, Arnold; Murthy, N. Sanjeeva; Wang, Wenjie; Rojas, Ramiro; Kohn, Joachim

    2012-01-01

    Distribution of water in three classes of biomedically relevant and degradable polymers was investigated using small-angle neutron scattering. In semicrystalline polymers, such as poly(lactic acid) and poly(glycolic acid), water was found to diffuse preferentially into the noncrystalline regions. In amorphous polymers, such as poly(D,L-lactic acid) and poly(lactic-co-glycolic acid), the scattering after 7-days of incubation was attributed to water in microvoids that form following the hydrolytic degradation of the polymer. In amorphous copolymers containing hydrophobic segments (desaminotyrosyl-tyrosine ethyl ester) and hydrophilic blocks (poly(ethylene glycol) PEG), a sequence of distinct regimes of hydration were observed: homogeneous distribution (~ 10 Å length scales) at <13 wt% PEG (~ 1 water per EG), clusters of hydrated domains (~50 Å radius) separated at 24 wt% PEG (1 to 2 water per EG), uniformly distributed hydrated domains at 41 wt% PEG (~ 4 water per EG), and phase inversion at > 50 wt% PEG ( > 6 water per EG ). Increasing PEG content increased the number of these domains with only a small decrease in distance between the domains. These discrete domains appeared to coalesce to form submicron droplets at ~60 °C, above the melting temperature of crystalline PEG. Significance of such observations on the evolution of μm size channels that form during hydrolytic erosion is discussed. PMID:22227373

  6. The plume of the Yukon River in relation to the oceanography of the Bering Sea

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Mcroy, C. Peter; Ahlnas, Kristina; Springer, Alan

    1989-01-01

    The ecosystem of the northern Bering-Sea shelf was studied using data from the NOAA Very High Resolution Radiometer and AVHRR and the Landsat MSS and Thematic Mapper (TM) in conjunction with shipboard measurements. Emphasis was placed on the influence of the Yukon River on this inner shelf environment and on the evaluation of the utility of the new Landsat TM data for oceanography. It was found that the patterns of water mass distribution obtained from satellite images agreed reasonably well with the areal patterns of temperature, salinity, and phytoplankton distributions. The AVHRR, MSS, and TM data show that the Yukon-River discharge is warmer and more turbid than the surrounding coastal water that originates to the south; thus, the Yukon water contributes to the higher temperatures and lower transmissivity of the coastal water. The high resolution of the TM thermal IR band made it possible to observe complex patterns and structures in the surface water that could not be resolved on previous data sets.

  7. Effects of mesoscale structures on the distribution of cephalopod paralarvae in the Gulf of California and adjacent Pacific

    NASA Astrophysics Data System (ADS)

    Ruvalcaba-Aroche, Erick D.; Sánchez-Velasco, Laura; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Pacheco, Ma. Rocío

    2018-01-01

    Vertical distribution of the cephalopod paralarvae was investigated in relation to a system of two cyclonic and three anticyclonic eddies in the southern Gulf of California and a front in the adjacent Pacific Ocean. Results showed that the preferential habitat for the Sthenoteuthis oualaniensis - Dosidicus gigas "SD-complex" in both regions was the oxygenated surface mixed layer and the thermocline. The highest abundances occurred in of one of the anticyclonic eddies and a frontal zone, which are convergent structures. Enoploteuthid and Pyroteuthid paralarvae both displayed their highest abundances in the thermocline. Pyroteuthids dominated in the cyclonic eddy whereas Enoploteuthidae were less evident in the eddy system. Pyroteuthids were observed on the western (California Current) side of the frontal zone, and Enoploteuthids on its eastern (Gulf of California) side. The octopods and the complex of Ommastrephes-Eucleoteuthis-Hyaloteuthis paralarvae were present below the thermocline. Both groups had a scarce presence in the eddy system and high abundance near the frontal zone. The octopods abounded on the eastern side in association with the low dissolved oxygen concentrations (< 44 μmol kg-1) of Subtropical-Subsurface Water; the complex on the western front side was immersed in California Current Water. It may be concluded that the spawning and early stages of development of these cephalopod groups are associated with particular mesoscale structures of the water masses. For example, the "SD complex" inhabits the surface water masses, preferentially in convergence zones generated by mesoscale activity.

  8. Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters.

    PubMed

    Timi, Juan T

    2007-06-01

    The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature-salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host-parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.

  9. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to have formed mainly at depths less than 1,000 m. Fault zone widths do not exceed 40 m (median width = 15.5 m). The mean width of fault cores (0.1 m) is nearly one order of magnitude less than that of mixed zones (0.75 m) and two orders of magnitude less than that of damage zones (9.7 m). Cements, a proxy for localized flow of ancient ground water, are common along fault zones in the basin. Silica cements are limited to faults that are near and strike north to northwest toward the Jemez volcanic field north of the basin, whereas carbonate fault cements are widely distributed. Coarse sediments (gravel and sand) host the greatest concentrations of cement within fault zones. Cements fill some extension fractures and, to a lesser degree, are concentrated along shear fractures and deformation bands within inner damage zones. Cements are commonly concentrated in mixed zones and inner damage zones on one side of a fault and thus are asymmetrically distributed within a fault zone, but cement does not consistently lie on the basinward side of faults. From observed spatial patterns of asymmetrically distributed fault zone cements, we infer that ancient ground-water flow was commonly localized along, and bounded by, faults in the basin. It is apparent from our study that the Albuquerque Basin contains a high concentration of faults. The geometry of, internal structure of, and cement and clay distribution in fault zones have created and will continue to create considerable heterogeneity of permeability within the basin aquifers. The characteristics and statistical range of fault zone features appear to be predictable and consistent throughout the basin; this predictability can be used in ground-water flow simulations that consider the influence of faults.

  10. Key diffusion mechanisms involved in regulating bidirectional water permeation across E. coli outer membrane lectin

    PubMed Central

    Sachdeva, Shivangi; Kolimi, Narendar; Nair, Sanjana Anilkumar; Rathinavelan, Thenmalarchelvi

    2016-01-01

    Capsular polysaccharides (CPSs) are major bacterial virulent determinants that facilitate host immune evasion. E. coli group1 K30CPS is noncovalently attached to bacterial surface by Wzi, a lectin. Intriguingly, structure based phylogenetic analysis indicates that Wzi falls into porin superfamily. Molecular dynamics (MD) simulations further shed light on dual role of Wzi as it also functions as a bidirectional passive water specific porin. Such a functional role of Wzi was not realized earlier, due to the occluded pore. While five water specific entry points distributed across extracellular & periplasmic faces regulate the water diffusion involving different mechanisms, a luminal hydrophobic plug governs water permeation across the channel. Coincidently, MD observed open state structure of “YQF” triad is seen in sugar-binding site of sodium-galactose cotransporters, implicating its involvement in K30CPS surface anchorage. Importance of Loop 5 (L5) in membrane insertion is yet another highlight. Change in water diffusion pattern of periplasmic substitution mutants suggests Wzi’s role in osmoregulation by aiding in K30CPS hydration, corroborating earlier functional studies. Water molecules located inside β-barrel of Wzi crystal structure further strengthens the role of Wzi in osmoregulation. Thus, interrupting water diffusion or L5 insertion may reduce bacterial virulence. PMID:27320406

  11. Measuring household consumption and waste in unmetered, intermittent piped water systems

    NASA Astrophysics Data System (ADS)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  12. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  13. Impact of solvent mixture on iron nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Chakif, M.; Prymak, O.; Slota, M.; Heintze, E.; Gurevich, E. L.; Esen, C.; Bogani, L.; Epple, M.; Ostendorf, A.

    2014-03-01

    The present work reveals the structural and magnetic properties of iron oxide (FexOy) nanoparticles (NPs) prepared by femtosecond laser ablation. The FexOy-NPs were produced in solutions consisting of different ratios of water and acetone. Laser ablation in water yields agglomerates and that in acetone yields chain structures whereas that in water/acetone show a mixture of both. We observe significant fabrication dependent properties such as different crystallinities and magnetic behaviors. The structural characterization shows a change from iron (Fe) to a FexOy state of the NPs which depends on the solution composition. Furthermore, transmission electron microscopy measurements exhibit a broad particle size distribution in all samples but with significant differences in the mean sizes. Using magnetic measurements we show that nanoparticles fabricated in pure acetone have lower coercive fields which come along with a smaller mean particle size and therefore increasing superparamagnetic behavior.

  14. Biofilm Effect on Flow Structure over a Permeable Bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2017-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  15. Detecting fluid leakage of a reservoir dam based on streaming self-potential measurements

    NASA Astrophysics Data System (ADS)

    Song, Seo Young; Kim, Bitnarae; Nam, Myung Jin; Lim, Sung Keun

    2015-04-01

    Between many reservoir dams for agriculture in suburban area of South Korea, water leakage has been reported several times. The dam under consideration in this study, which is located in Gyeong-buk, in the south-east of the Korean Peninsula, was reported to have a large leakage at the right foot of downstream side of the reservoir dam. For the detection of the leakage, not only geological survey but also geophysical explorations have been made for precision safety diagnosis, since the leakage can lead to dam failure. Geophysical exploration includes both electrical-resistivity and self-potential surveys, while geological surveys water permeability test, standard penetration test, and sampling for undisturbed sample during the course of the drilling investigation. The geophysical explorations were made not only along the top of dam but also transverse the heel of dam. The leakage of water installations can change the known-heterogeneous structure of the dam body but also cause streaming spontaneous (self) potential (SP) anomaly, which can be detected by electrical resistivity and SP measurements, respectively. For the interpretation of streaming SP, we used trial-and-error method by comparing synthetic SP data with field SP data for model update. For the computation, we first invert the resistivity data to obtain the distorted resistivity structure of the dam levee then make three-dimensional electrical-resistivity modeling for the streaming potential distribution of the dam levee. Our simulation algorithm of streaming SP distribution based on the integrated finite difference scheme computes two-dimensional (2D) SP distribution based on the distribution of calculated flow velocities of fluid for a given permeability structure together with physical properties. This permeability is repeatedly updated based on error between synthetic and field SP data, until the synthetic data match the field data. Through this trial-and-error-based SP interpretation, we locate the leakage of reservoir-water formed locally inside the levee body of the reservoir dam within the limitation due to the 2D nature of stream SP simulation.

  16. Destabilization of Human Serum Albumin by Ionic Liquids Studied Using Enhanced Molecular Dynamics Simulations.

    PubMed

    Jaeger, Vance W; Pfaendtner, Jim

    2016-12-01

    Ionic liquid (IL) containing solvents can change the structure, dynamics, function, and stability of proteins. In order to investigate the mechanisms by which ILs induce structural changes in a large multidomain protein, we study the interactions of human serum albumin (HSA) with two different ILs, 1-butyl-3-methylimidazolium tetrafluoroborate and choline dihydrogen phosphate. Root mean square deviation and fluctuation calculations indicate that high concentrations of ILs in mixtures with water lead to protein structures that remain close to their crystallographic structures on time scales of hundreds of nanoseconds. To overcome potential time scale limitations due to the high viscosity of the solvent, we employed enhanced sampling techniques to estimate the free energy of an experimentally determined important transition within the protein structure. Metadynamics simulations show that the free energy landscape of the unfolding of loop 1 of domain I is different in the presence of ILs than it is in water, consistent with previously published experimental evidence. We then apply essential dynamics coarse graining to systematically predict differences in the dynamics of proteins solvated in IL-water mixtures versus pure water systems. We also demonstrate that the presence of ionic liquids changes the distribution of intermolecular distances among several ligands, indicating that the protein structure swells in the presence of certain ILs, consistent with experimental evidence.

  17. Structural and dynamic characteristics in monolayer square ice.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-07-28

    When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.

  18. The Distribution and Appearance of Cold-Water Coral Carbonate Mounds and Mound-Like Structures in the NE Atlantic: Pre-site Appraisal for CARBONATE Drilling

    NASA Astrophysics Data System (ADS)

    Dorschel, B.; Wheeler, A. J.; Monteys, X.

    2007-12-01

    Cold-water coral carbonate mounds on the continental slope of the northeast Atlantic are certainly among the most amazing geological discoveries of the last decade. They developed as a result of hydrological, biological and geological processes with thickets of cold-water corals mainly Lophelia pertus and Madrepora oculata reported from numerous mound sites. Over the last years, research focused on selected mounds e.g. IODP Sites 1317 visited during IODP Expedition 307 has revealed that many of the investigated mounds are true coral built-ups. The recovered mound sediments were composed of loose coral frameworks embedded in a matrix of fine grained hemipelagic sediments. The additional calcium carbonate added by the corals was in the form of fragments and bioeroded fine grained carbonate flakes. This increase in calcium carbonate classifies the mounds as spots of enhanced carbonate accumulation in intermediate water depth. So far, the carbonate stored in submarine carbonate mounds in the northeast Atlantic has not been included in any carbon budget estimations. This was mainly due to the lack of information on the abundance and distribution of those mounds. The recently available high resolution multi-beam bathymetry data recorded during the Irish National Seabed Survey (INSS) allows, for the first time, a mapping of these mounds and mound-like structures enabling an estimation of their abundance and quantification of their contribution to continental slope sediments. Here, we present the first comprehensive overview and quantification of mounds and mound-like structures based on 25m rastered bathymetric data for the Irish sector of the NE Atlantic. Based on the data, we identified over 1600 mound-like structures along the NE Atlantic slope between 46°45'N and 57°30'N. The structures elevate up to 300m above the surrounding seafloor and were usually grouped into distinct provinces often associated with erosive structures such as canyons and moats. 90% of the identified features occurred in water depth between 500 and 1500m. Assessment of this data will be used to target mounds for drilling during the ESF CARBONATE project.

  19. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  20. Results on Jupiter's Atmosphere from the Juno Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Janssen, M. A.; Bolton, S. J.; Levin, S.; Adumitroaie, V.; Allison, M. D.; Arballo, J. K.; Atreya, S. K.; Bellotti, A.; Brown, S. T.; Gulkis, S.; Ingersoll, A. P.; Li, C.; Li, L.; Lunine, J. I.; Misra, S.; Orton, G. S.; Oyafuso, F. A.; Santos-Costa, D.; Sarkissian, E.; Steffes, P. G.; Zhang, Z.

    2017-12-01

    The Juno Microwave Radiometer (MWR) was designed to investigate Jupiter's atmosphere and radiation belts as one of a suite of instruments on the Juno mission. The MWR's main objective is to investigate the composition and dynamics of Jupiter's neutral atmosphere. Juno has now completed eight perijove passes that sample the atmosphere approximately every 45° in longitude, and the MWR has completed its main collection of data pertaining to the composition and structure of Jupiter's atmosphere. The primary results for atmospheric structure elaborate on the original discovery that the concentration of ammonia is far from uniformly mixed beneath its saturation level in the atmosphere and that deep atmospheric circulations control its distribution. Conversely, features of the deep circulation may be inferred from this distribution. Distinct circulation patterns are seen for three latitudinal regions: 1) Equatorial, where a column of increased ammonia concentration associated with the equatorial zone is sandwiched by off-equatorial regions of depleted ammonia in the north and south equatorial belts, with structure apparent to approximately the 100-bar pressure level, 2) Midlatitudes, where a stratified ammonia concentration appears stable, and 3) Polar, dominated by deep vertical structures associated with the observed surface vortices. Longitudinal structure is seen in the equatorial region primarily above the level of the water cloud around the 8-bar level, while significant structure appears small or absent outside and below this region. The ability of the MWR to detect lightning at its longest wavelengths was unexpected but sheds light on the presence of water and the distribution of strong convective regions in the atmosphere. The implications of these results for atmospheric dynamics and composition will be discussed.

  1. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  2. Density functional theory and molecular dynamics study of the uranyl ion (UO₂)²⁺.

    PubMed

    Rodríguez-Jeangros, Nicolás; Seminario, Jorge M

    2014-03-01

    The detection of uranium is very important, especially in water and, more importantly, in the form of uranyl ion (UO₂)²⁺, which is one of its most abundant moieties. Here, we report analyses and simulations of uranyl in water using ab initio modified force fields for water with improved parameters and charges of uranyl. We use a TIP4P model, which allows us to obtain accurate water properties such as the boiling point and the second and third shells of water molecules in the radial distribution function thanks to a fictitious charge that corrects the 3-point models by reproducing the exact dipole moment of the water molecule. We also introduced non-bonded interaction parameters for the water-uranyl intermolecular force field. Special care was taken in testing the effect of a range of uranyl charges on the structure of uranyl-water complexes. Atomic charges of the solvated ion in water were obtained using density functional theory (DFT) calculations taking into account the presence of nitrate ions in the solution, forming a neutral ensemble. DFT-based force fields were calculated in such a way that water properties, such as the boiling point or the pair distribution function stand. Finally, molecular dynamics simulations of a water box containing uranyl cations and nitrate anions are performed at room temperature. The three peaks in the oxygen-oxygen radial distribution function for water were found to be kept in the presence of uranyl thanks to the improvement of interaction parameters and charges. Also, we found three shells of water molecules surrounding the uranyl ion instead of two as was previously thought.

  3. Three-dimensional ``Mercedes-Benz'' model for water

    NASA Astrophysics Data System (ADS)

    Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  4. Three-dimensional "Mercedes-Benz" model for water.

    PubMed

    Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-07

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  5. Atmospheric water vapour over oceans from SSM/I measurements

    NASA Technical Reports Server (NTRS)

    Schluessel, Peter; Emery, William J.

    1990-01-01

    A statistical retrieval technique is developed to derive the atmospheric water vapor column content from the Special Sensor Microwave/Imager (SSM/I) measurements. The radiometer signals are simulated by means of radiative-transfer calculations for a large set of atmospheric/oceanic situations. These simulated responses are subsequently summarized by multivariate analyses, giving water-vapor coefficients and error estimates. Radiative-transfer calculations show that the SSM/I microwave imager can detect atmospheric water vapor structures with an accuracy from 0.145 to 0.17 g/sq cm. The accuracy of the method is confirmed by globally distributed match-ups with radiosonde measurements.

  6. A latitudinal survey of mesospheric and upper stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Martone, J. P.; Olivero, J. J.; Puliafito, S. E.

    1994-01-01

    As part of the LAtitudinal DIstribution of Middle Atmosphere Structure (LADIMAS) campaign, measurements of mesospheric and upper stratospheric water vapor concentration were made over a latitudinal range from 53 N to 63 S. The 22-GHz emission line of water vapor was observed by a new, portable, cryogenically cooled microwave radiometer that was carried on board the German research vessel Polarstern as it sailed from Bremerhaven, Germany, to the Antarctic during November and December, 1991. Water vapor profiles were obtained at approximately 5 deg latitude intervals for an altitude range of 40 to 80 km.

  7. A Long-Term Study of the Microbial Community Structure in a ...

    EPA Pesticide Factsheets

    Free chlorine is used as the primary disinfectant in most drinking water distribution systems(DWDS). However, chlorine disinfection promotes the formation of disinfectant by-products (DBPs)and as a result, many US water treatment facilities use chloramination to ensure regulatory compliance of targeted DBPs. However, 30 to 63% of water utilities using secondary chloramine disinfection experience nitrification episodes that detrimentally impact water quality in theirdistribution systems. While each disinfection strategy aims at mitigating the presence of pathogens, they do not completely eradicate growth of microorganisms in distribution systems. The latter has been documented using a variety of culture-based assays and culture independent approaches, such as 16S rRNA gene sequence analysis using Sanger chemistry. Most of the previous approaches are limited in scope. High-throughput sequencing approaches offer a more comprehensive view of the genetic complexity of natural and engineered environments, allowing usto better assess the microbial taxonomic diversity and metabolic potential within any given community. These approaches enhanced our understanding of processes unique to some microbiomes and provided the genetic information to track multiple populations carrying a variety of functions. In this study, we examined the microbiome of a simulated chloraminated DWDS. These results provide evidence of variations in the DWDS microbial community structure and their

  8. On the Impact Between a Water Free Surface and a Rigid Structure

    NASA Astrophysics Data System (ADS)

    Wang, An

    In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3 cm below the mean water level, a ''flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.

  9. Evaluating the quality of NMR structures by local density of protons.

    PubMed

    Ban, Yih-En Andrew; Rudolph, Johannes; Zhou, Pei; Edelsbrunner, Herbert

    2006-03-01

    Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. 2005 Wiley-Liss, Inc.

  10. Moisture-Absorption and Water Dynamics in the Powder of Egg Albumen Peptide, Met-Pro-Asp-Ala-His-Leu.

    PubMed

    Yang, Shuailing; Liu, Xuye; Zhang, Mingdi; Lin, Songyi; Chen, Feng

    2017-01-01

    Moisture absorbed into the powder of Met-Pro-Asp-Ala-His-Leu (MPDAHL)-a novel egg albumen antioxidant peptide-profoundly affects its properties. In this study, we elucidated water dynamics in MPDAHL using DVS, DSC, and low-field 1 H NMR. Based on the DVS data, we found that MPDAHL sorption kinetics obey a parallel exponential model. DSC results indicated that both water and heating could change the microstructure of MPDAHL. The T 2 parameters of NMR reflected the different phases of moisture absorption revealed that there were 4 categories of water with different states or mobility in the MPDAHL during the moisture absorption process. The fastest fraction T 2b mainly dominated the hygroscopicity of MPDAHL and the absorbed water significantly changed the proton distribution and structure of MPDAHL. Thus, this study shows that DVS, DSC, and low-field 1 H NMR are effective methods for monitoring water mobility and distribution in synthetic peptides. It can be used to improve the quality assurance of functional peptides. © 2016 Institute of Food Technologists®.

  11. Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2013-05-01

    Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography

  12. Modeling the Dynamics of Soil Structure and Water in Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.

    2017-12-01

    The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based on this concept, the dynamics of soil structure can be directly linked to soil water dynamics as a main driver for other soil processes. Further steps will include integration of temperature and solute leaching as well as defining the feedback of the water regime on the structure forming processes.

  13. Reduced Point Charge Models of Proteins: Effect of Protein-Water Interactions in Molecular Dynamics Simulations of Ubiquitin Systems.

    PubMed

    Leherte, Laurence; Vercauteren, Daniel P

    2017-10-26

    We investigate the influence of various solvent models on the structural stability and protein-water interface of three ubiquitin complexes (PDB access codes: 1Q0W , 2MBB , 2G3Q ) modeled using the Amber99sb force field (FF) and two different point charge distributions. A previously developed reduced point charge model (RPCM), wherein each amino acid residue is described by a limited number of point charges, is tested and compared to its all-atom (AA) version. The complexes are solvated in TIP4P-Ew or TIP3P type water molecules, involving either the scaling of the Lennard-Jones protein-O water interaction parameters, or the coarse-grain (CG) SIRAH water description. The best agreements between the RPCM and AA models were obtained for structural, protein-water, and ligand-ubiquitin properties when using the TIP4P-Ew water FF with a scaling factor γ of 0.7. At the RPCM level, a decrease in γ, or the inclusion of SIRAH particles, allows weakening of the protein-water interactions. It results in a slight collapse of the protein structure and a less compact hydration shell and, thus, in a decrease in the number of protein-water and water-water H-bonds. The dynamics of the surface protein atoms and of the water shell molecules are also slightly refrained, which allow the generation of stable RPCM trajectories.

  14. Structure of Hydrated Poly(d,l-lactic acid) Studied with X-ray Diffraction and Molecular Simulation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xianfeng; Murthy, N. Sanjeeva; Latour, Robert A.

    2012-10-10

    The effect of hydration on the molecular structure of amorphous poly(D,L-lactic acid) (PDLLA) with 50:50 L-to-D ratio has been studied by combining experiments with molecular simulations. X-ray diffraction measurements revealed significant changes upon hydration in the structure functions of the copolymer. Large changes in the structure functions at 10 days of incubation coincided with the large increase in the water uptake from {approx} 1 to {approx} 40% and the formation of voids in the film. Computer modeling based on the recently developed TIGER2/TIGER3 mixed sampling scheme was used to interpret these changes by efficiently equilibrating both dry and hydrated modelsmore » of PDLLA. Realistic models of bulk amorphous PDLLA structure were generated as demonstrated by close agreement between the calculated and the experimental structure functions. These molecular simulations were used to identify the interactions between water and the polymer at the atomic level including the change of positional order between atoms in the polymer due to hydration. Changes in the partial O-O structure functions, about 95% of which were due to water-polymer interactions, were apparent in the radial distribution functions. These changes, and somewhat smaller changes in the C-C and C-O partial structure functions, clearly demonstrated the ability of the model to capture the hydrogen-bonding interactions between water and the polymer, with the probability of water forming hydrogen bonds with the carbonyl oxygen of the ester group being about 4 times higher than with its ether oxygen.« less

  15. Noninvasive monitoring of moisture uptake in Ca(NO3)2 -polluted calcareous stones by 1H-NMR relaxometry.

    PubMed

    Casieri, Cinzia; Terenzi, Camilla; De Luca, Francesco

    2015-01-01

    NMR transverse relaxation time (T(2)) distribution of (1)H nuclei of water has been used to monitor the moisture condensation kinetics in Ca(NO(3))(2)  · (4)H(2)O-polluted Lecce stone, a calcareous stone with highly regular porous structure often utilized as basic material in Baroque buildings. Polluted samples have been exposed to water vapor adsorption at controlled relative humidity to mimic environmental conditions. In presence of pollutants, the T(2) distributions of water in stone exhibit a range of relaxation time values and amplitudes not observed in the unpolluted case. These characteristics could be exploited for in situ noninvasive detection of salt pollution in Lecce stone or as damage precursors in architectural buildings of cultural heritage interest. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Diabatic forcing and intialization with assimilation of cloud water and rainwater in a forecast model

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1995-01-01

    In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.

  17. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  18. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  19. Influence of the Yellow Sea Warm Current on phytoplankton community in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Chiang, Kuo-Ping; Liu, Su-Mei; Wei, Hao; Zhao, Yuan; Huang, Bang-Qin

    2015-12-01

    In early spring, a hydrological front emerges in the central Yellow Sea, resulting from the intrusion of the high temperature and salinity Yellow Sea Warm Current (YSWC). The present study, applying phytoplankton pigments and flow cytometry measurements in March of 2007 and 2009, focuses on the biogeochemical effects of the YSWC. The nutrients fronts were coincident with the hydrological front, and a positive linear relationship between nitrate and salinity was found in the frontal area. This contrast with the common situation of coastal waters where high salinity values usually correlate with poor nutrients. We suggested nutrient concentrations of the YSWC waters might have been enhanced by mixing with the local nutrient-rich waters when it invaded the Yellow Sea from the north of the Changjiang estuary. In addition, our results indicate that the relative abundance of diatoms ranged from 26% to 90%, showing a higher value in the YSCC than in YSWC waters. Similar distributions were found between diatoms and dinoflagellates, however the cyanobacteria and prasinophytes showed an opposite distribution pattern. Good correlations were found between the pigments and flow cytometry observations on the picophytoplankton groups. Prasinophytes might be the major contributor to pico-eukaryotes in the central Yellow Sea as similar distributional patterns and significant correlations between them. It seems that the front separates the YSWC from the coastal water, and different phytoplankton groups are transported in these water masses and follow their movement. These results imply that the YSWC plays important roles in the distribution of nutrients, phytoplankton biomass and also in the community structure of the central Yellow Sea.

  20. Geology, hydrology, and ground-water quality at the Byron Superfund site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Bolen, William J.; Rauman, James R.; Prinos, Scott T.

    1997-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency to define the geohydrology and contaminant distribution at a Superfund site near Byron, Illinois. Geologic units of interest beneath the site are the St. Peter Sandstone; the shale, dolomite and sandstone of the Glenwood Formation; the dolomite of the Platteville and Galena Groups; and sands, gravels, tills and loess of Quaternary age. The hydrologic units of interest are the unconsolidated aquifer, Galena-Platteville aquifer, Harmony Hill Shale semiconfining unit, and the St. Peter aquifer. Ground-water flow generally is from the upland areas northwest and southwest toward the Rock River. Water levels indicate the potential for downward ground-water flow in most of the area except near the Rock River. The Galena-Platteville aquifer can be subdivided into four zones characterized by differing water-table altitudes, hydraulic gradients, and vertical and horizontal permeabilities. Geophysical, hydraulic, and aquifer-test data indicate that lithology, stratigraphy, and tectonic structures affect the distribution of primary and secondary porosity of dolomite in the Galena and Platteville Groups, which affects the permeability distribution in the Galena-Platteville aquifer. The distribution of cyanide, chlorinated aliphatic hydrocarbons, and aromatic hydrocarbons in ground water indicates that these contaminants are derived from multiple sources in the study area. Contaminants in the northern part of this area migrate northwest to the Rock River. Contaminants in the central and southern parts of this area appear to migrate to the southwest in the general direction of the Rock River.

  1. A supramolecular structure insight for conversion property of cellulose in hot compressed water: Polymorphs and hydrogen bonds changes.

    PubMed

    Wang, Yan; Lian, Jie; Wan, Jinquan; Ma, Yongwen; Zhang, Yingshi

    2015-11-20

    Waste paper samples with different cellulose supramolecular structure were treated in hot compressed water (HCW) at 375°C and 22.5MPa within 200s to evaluate the specific effect mechanism of cellulose supramolecular structure on the conversion of waste paper to reusable resource. Although the distribution of liquid products and the oligosaccharides were related to reaction time, depolymerization and decrystallization of the cellulose, the characteristics absorption peak of cellulose from FTIR analysis and crystal structure of the cellulose detected in the residues with hydrolysis rate up 96.5% indicated crystal structure was the dominant factor that affect conversion behavior of waste paper. The conversion of cellulose Iβ to cellulose Iα or cellulose I(α+β) in HCW demonstrated that the recrystallization occurred during the decrystallization of cellulose through the rearrangement of hydrogen bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Exploration of the Ca2+ interaction modes of the nifedipine calcium channel antagonist.

    PubMed

    Liu, Huichun; Zhang, Liang; Li, Ping; Cukier, Robert I; Bu, Yuxiang

    2007-02-02

    A comprehensive study is carried out using quantum chemical computation and molecular dynamics (MD) simulations to gain insight into the interaction between Ca(2+) ions and the most important class of calcium channel antagonists--nifedipine. First, the chelating structures and energetic characters of nifedipine-Ca(2+) in the gas phase are explored, and 25 isomers are found. The most favorable chelating mode is a tridentate one, that is, Ca(2+) binds to two carbonyl O atoms and one nitryl O atom, where Ca(2+) is above the plane of the three O atoms to form a pyramidal structure. Accurate geometric structures, relative stabilities, vertical and adiabatic binding energies, and charge distributions are discussed. The differences in the geometries and energies among these isomers are analyzed from the contributions of chelating sites, electrostatics and polarizations, steric repulsions, and charge distributions. The interconversions among isomers with similar geometries and energies are also investigated because of the importance of the geometric transformation in the biological system. Furthermore, certain numbers of water molecules are added to the nifedipine-Ca(2+) system to probe the effect of water. A detailed study is performed on the hydrated geometries on the basis of the most stable isomer 1. Stepwise hydration can weaken the nifedipine-Ca(2+) interaction, and the chelating sites of nifedipine are gradually replaced by the added water molecules. Hexacoordination is found to be the most favorable geometry no matter how many water molecules were added, which can be verified by the MD simulations. The transfer of water molecules from the inner shell to the outer shell is also supported by MD simulations of the hexahydrated complexes.

  3. Rb + adsorption at the quartz(101)-aqueous interface: comparison of resonant anomalous x-ray reflectivity with ab initio calculations

    DOE PAGES

    Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...

    2015-01-29

    We study adsorption of Rb + to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb + distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights ofmore » 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb + between these two conditions. At pH 7, the lowest energy structure shows that Rb + adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb + coverage was -0.11 C/m 2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less

  4. SU-E-T-121: Analyzing the Broadening Effect On the Bragg Peak Due to Heterogeneous Geometries and Implementing User-Routines in the Monte-Carlo Code FLUKA in Order to Reduce Computation Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    2015-06-15

    Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung tissue.« less

  5. Spatial distribution of the phytoplankton in the White Sea during atypical domination of dinoflagellates (July 2009)

    NASA Astrophysics Data System (ADS)

    Ilyash, L. V.; Zhitina, L. S.; Belevich, T. A.; Shevchenko, V. P.; Kravchishina, M. D.; Pantyulin, A. N.; Tolstikov, A. V.; Chultsova, A. L.

    2016-05-01

    The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6-11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.

  6. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  7. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  8. Extension of the TRANSURANUS burnup model to heavy water reactor conditions

    NASA Astrophysics Data System (ADS)

    Lassmann, K.; Walker, C. T.; van de Laar, J.

    1998-06-01

    The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.

  9. Geometry-dependent distributed polarizability models for the water molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.

    2016-01-21

    Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less

  10. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge.

    PubMed

    Wu, Boran; Ni, Bing-Jie; Horvat, Kristine; Song, Liyan; Chai, Xiaoli; Dai, Xiaohu; Mahajan, Devinder

    2017-08-15

    The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated. The main mechanism of extracellular protein transformation during AOPs could be represented by the damage of the membrane or related external encapsulating structure and the release of intracellular substances. For the selected representative extracellular proteins, the strong correlation (R 2 > 0.97, p < 0.03) between the surface hydrophilicity index and α-helix percentages in the secondary structure indicated that the water affinity relied more on the spatial distribution of hydrophilic functional groups rather than the content. Destructing the secondary structure represented by the α-helix and stretching the polypeptide aggregation in the water phase through disulfide bond removal might be the key to eliminating the inhibitory effects of extracellular proteins on the interstitial water removal from WAS.

  11. Heat transfer and phase transitions of water in multi-layer cryolithozone-surface systems

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Nigametyanova, G. A.; Nazmutdinov, F. F.

    2018-01-01

    A mathematical model for calculating the distribution of temperature and the dynamics of the phase transfor-mations of water in multilayer systems on permafrost-zone surface is proposed. The model allows one to perform calculations in the annual cycle, taking into account the distribution of temperature on the surface in warm and cold seasons. A system involving four layers, a snow or land cover, a top layer of soil, a layer of thermal-insulation materi-al, and a mineral soil, is analyzed. The calculations by the model allow one to choose the optimal thickness and com-position of the layers which would ensure the stability of structures built on the permafrost-zone surface.

  12. Ion-specific effects under confinement: the role of interfacial water.

    PubMed

    Argyris, Dimitrios; Cole, David R; Striolo, Alberto

    2010-04-27

    All-atom molecular dynamics simulations were employed for the study of the structure and dynamics of aqueous electrolyte solutions within slit-shaped silica nanopores with a width of 10.67 A at ambient temperature. All simulations were conducted for 250 ns to capture the dynamics of ion adsorption and to obtain the equilibrium distribution of multiple ionic species (Na+, Cs+, and Cl(-)) within the pores. The results clearly support the existence of ion-specific effects under confinement, which can be explained by the properties of interfacial water. Cl(-) strongly adsorbs onto the silica surface. Although neither Na+ nor Cs+ is in contact with the solid surface, they show ion-specific behavior. The differences between the density distributions of cations within the pore are primarily due to size effects through their interaction with confined water molecules. The majority of Na+ ions appear within one water layer in close proximity to the silica surface, whereas Cs+ is excluded from well-defined water layers. As a consequence of this preferential distribution, we observe enhanced in-plane mobility for Cs+ ions, found near the center of the pore, compared to that for Na+ ions, closer to the solid substrate. These observations illustrate the key role of interfacial water in determining ion-specific effects under confinement and have practical importance in several fields, from geology to biology.

  13. Particle size analysis of some water/oil/water multiple emulsions.

    PubMed

    Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V

    2005-04-29

    Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.

  14. Water Quality Research Program: Abstracts of the International Symposium on Gas Transfer at Water Surfaces (2nd) Held in Minneapolis, Minnesota on 11-14 September 1990

    DTIC Science & Technology

    1990-08-01

    layer on the surface) it is 2 - 3 times less. Many in- situ observations show that different patterns of temperature distribution in the surface water...Coeficiente de Reaeracao dos Escoamentos Naturais da Agua com o Emprego de Tracador Gasoso. M.Sc Dissertation, Universidade de Sao Paulo, EESC, Depto. de...structure. If methane is present in measurable quantities it may prove to be an excellent in- situ tracer of gas transfer. Transfer efficiency has been used

  15. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    NASA Astrophysics Data System (ADS)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to improve quantitative models for feedbacks between terrestrial and atmospheric CO2.

  16. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  17. Design and experimental verification of a water-like pentamode material

    NASA Astrophysics Data System (ADS)

    Zhao, Aiguo; Zhao, Zhigao; Zhang, Xiangdong; Cai, Xuan; Wang, Lei; Wu, Tao; Chen, Hong

    2017-01-01

    Pentamode materials approximate tailorable artificial liquids. Recently, microscopic versions of these intricate structures have been fabricated, and the static mechanical experiments reveal that the ratio of bulk modulus to shear modulus as large as 1000 can be obtained. However, no direct acoustic experimental characterizations have been reported yet. In this paper, a water-like two-dimensional pentamode material sample is designed and fabricated with a single metallic material, which is a hollow metallic foam-like structure at centimeter scale. Acoustic simulation and experimental testing results indicate that the designed pentamode material mimics water in acoustic properties over a wide frequency range, i.e., it exhibits transparency when surrounded by water. This work contributes to the development of microstructural design of materials with specific modulus and density distribution, thus paving the way for the physical realization of special acoustic devices such as metamaterial lenses and vibration isolation.

  18. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  19. Different key roles of mesoscale oceanographic structures and ocean bathymetry in shaping larval fish distribution pattern: A case study in Sicilian waters in summer 2009

    NASA Astrophysics Data System (ADS)

    Cuttitta, Angela; Quinci, Enza Maria; Patti, Bernardo; Bonomo, Sergio; Bonanno, Angelo; Musco, Marianna; Torri, Marco; Placenti, Francesco; Basilone, Gualtiero; Genovese, Simona; Armeri, Grazia Maria; Spanò, Antonina; Arculeo, Marco; Mazzola, Antonio; Mazzola, Salvatore

    2016-09-01

    Fish larvae data collected in year 2009 were used to examine the effects of particular environmental conditions on the structure of larval assemblages in two oligotrophic Mediterranean areas (the Southern Tyrrhenian Sea and the Strait of Sicily). For this purpose, relationships with environmental variables (temperature, salinity and fluorescence), zooplankton biomass, water circulation and bathymetry are discussed. Hydrodynamic conditions resulted very differently between two study areas. The Southern Tyrrhenian Sea was characterized by moderate shallow circulation compared to the Strait of Sicily. In this framework, distribution pattern of larval density in the Tyrrhenian Sea was mainly driven by bathymetry, due to spawning behavior of adult fish. There, results defined four assemblages: two coastal assemblages dominated by pelagic and demersal families and two oceanic assemblages dominated by mesopelagic species more abundant in western offshore and less abundant in eastern offshore. The assemblage variations in the western side was related to the presence of an anti-cyclonic gyre in the northern side of the Gulf of Palermo, while in the eastern side the effect of circulation was not very strong and the environmental conditions rather than the dispersal of species determined the larval fish communities structure. Otherwise in the Strait of Sicily the currents were the main factor governing the concentration and the assemblage structure. In fact, the distribution of larvae was largely consistent with the branch of the Atlantic Ionian Stream (AIS). Moreover, very complex oceanographic structures (two cyclonic circulations in the western part of the study area and one anti-cyclonic circulation in the eastern part) caused the formation of uncommon spatial distribution of larval fish assemblages, only partially linked to bathymetry of the study area. Typically coastal larvae (pelagic families: Engraulidae and Clupeidae) were mostly concentrated in the offshore areas and off Capo Passero, where the presence of a thermo-haline front maintained their position in an area with favourable conditions for larval fish feeding and growth.

  20. The Application of Fractal and Multifractal Theory in Hydraulic-Flow-Unit Characterization and Permeability Estimation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yao, G.; Cai, J.

    2017-12-01

    Pore structure characteristics are important factors in influencing the fluid transport behavior of porous media, such as pore-throat ratio, pore connectivity and size distribution, moreover, wettability. To accurately characterize the diversity of pore structure among HFUs, five samples selected from different HFUs (porosities are approximately equal, however permeability varies widely) were chosen to conduct micro-computerized tomography test to acquire direct 3D images of pore geometries and to perform mercury injection experiments to obtain the pore volume-radii distribution. To characterize complex and high nonlinear pore structure of all samples, three classic fractal geometry models were applied. Results showed that each HFU has similar box-counting fractal dimension and generalized fractal dimension in the number-area model, but there are significant differences in multifractal spectrums. In the radius-volume model, there are three obvious linear segments, corresponding to three fractal dimension values, and the middle one is proved as the actual fractal dimension according to the maximum radius. In the number-radius model, the spherical-pore size distribution extracted by maximum ball algorithm exist a decrease in the number of small pores compared with the fractal power rate rather than the traditional linear law. Among the three models, only multifractal analysis can classify the HFUs accurately. Additionally, due to the tightness and low-permeability in reservoir rocks, connate water film existing in the inner surface of pore channels commonly forms bound water. The conventional model which is known as Yu-Cheng's model has been proved to be typically not applicable. Considering the effect of irreducible water saturation, an improved fractal permeability model was also deduced theoretically. The comparison results showed that the improved model can be applied to calculate permeability directly and accurately in such unconventional rocks.

  1. A bicontinuous tetrahedral structure in a liquid-crystalline lipid

    NASA Astrophysics Data System (ADS)

    Longley, William; McIntosh, Thomas J.

    1983-06-01

    The structure of most lipid-water phases can be visualized as an ordered distribution of two liquid media, water and hydrocarbons, separated by a continuous surface covered by the polar groups of the lipid molecules1. In the cubic phases in particular, rod-like elements are linked into three-dimensional networks1,2. Two of these phases (space groups Ia3d and Pn3m) contain two such three-dimensional networks mutually inter-woven and unconnected. Under the constraints of energy minimization3, the interface between the components in certain of these `porous fluids' may well resemble one of the periodic minimal surface structures of the type described mathematically by Schwarz4,5. A structure of this sort has been proposed for the viscous isotropic (cubic) form of glycerol monooleate (GMO) by Larsson et al.6 who suggested that the X-ray diagrams of Lindblom et al.7 indicated a body-centred crystal structure in which lipid bilayers might be arranged as in Schwarz's octahedral surface4. We have now found that at high water contents, a primitive cubic lattice better fits the X-ray evidence with the material in the crystal arranged in a tetrahedral way. The lipid appears to form a single bilayer, continuous in three dimensions, separating two continuous interlinked networks of water. Each of the water networks has the symmetry of the diamond crystal structure and the bilayer lies in the space between them following a surface resembling Schwarz's tetrahedral surface4.

  2. The community structure of over-wintering larval and small juvenile fish in a large estuary

    NASA Astrophysics Data System (ADS)

    Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin

    2014-02-01

    The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.

  3. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    PubMed

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  4. Are there general spatial patterns of mangrove structure and composition along estuarine salinity gradients in Todos os Santos Bay?

    NASA Astrophysics Data System (ADS)

    Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco

    2015-12-01

    Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.

  5. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  6. Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas

    NASA Astrophysics Data System (ADS)

    Grossmann, Mary M.; Nishikawa, Jun; Lindsay, Dhugal J.

    2015-06-01

    The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous with respect to salinity (ca. 34.00) and temperature (ca. 10 °C). The neighbouring Celebes Sea is more open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, especially at mesopelagic depths. At the surface, the cnidarian community was similar in both marginal seas, but, at depth, community structure was dependent first on sampling location and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in the Indo-Pacific. Mesopelagic and bathypelagic species recorded in the Sulu Sea did not have significantly different vertical distributions in the Celebes Sea. However, some deep mesopelagic genera were absent from the Sulu Sea in the sampled depth range. These results suggest that a combination of environmental and physiological parameters determine the distribution and dominance of pelagic cnidarians.

  7. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    NASA Astrophysics Data System (ADS)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  8. Nonmigratory, 12-kHz, deep scattering layers of Sargasso Sea origin in warm-core rings

    NASA Astrophysics Data System (ADS)

    Conte, Maureen H.; Bishop, James B.; Backus, Richard H.

    1986-11-01

    Nonmigratory, 12-kHz, deep sound-scattering layers (NMDSLs) were entrained within Sargasso Sea-Gulf Stream waters during the formation of warm-core rings 82B and 82H. At night ring water was easily distinguished from Slope Water by the presence of these well-developed features between 200 and 550 m. The distribution of NMDSLs in 82H as a function of temperature and salinity matched Sargasso Sea distributions, indicating that Sargasso Sea water was present in the center of 82H at the time of its formation. However, the distribution of NMDSLs in the center of 82B a few weeks after its formation was more consistent with the distribution found in Gulf Stream-Sargasso Sea edge water. NMDSLs were a persistent feature of the lower thermostad and upper thermocline of 82B. Their distribution in the upper thermocline approximately paralleled the decrease in thickness of the thermostad and became shallower with increasing distance from ring center. The NMDSLs disappeared at the ring edge when the bottom of the thermostad became shallower than about 100 m. Their distribution within 30 km of ring center changed very little between April and June, whereas those found in the thermocline at greater distances from ring center showed greater dispersion with respect to temperature. Following several Gulf Stream interactions in July, the NMDSLs were significantly shallower, and lay in colder water. The continued presence of the deep NMDSLs in the thermocline, even though the latter was nearly 100 m shallower, indicates that the remaining thermocline had not been significantly exchanged with Gulf Stream or Slope Water during the interactions. The changes in the temperature of the water in which the NMDSLs were found in August suggest that core waters (30 km from ring center in June) were resorbed by the Gulf Stream and that only waters of 30 km radius remained to reform the ring. We found no evidence that the animals composing the NMDSLs adjusted their vertical distributions in response to changes in environmental properties; rather, the temporal changes we observed are best explained by the physical processes affecting ring structure. No qualitative decrease in NMDSL intensity was observed in 82B between April and August, suggesting that the sound scatterers can tolerate significant changes in depth, temperature and salinity. The gonostomatid fish Cyclothone braueri and the physonect siphonophores are possibly sources of the NMDSLs.

  9. Electric double layer at metal oxide surfaces:static properties of the cassiterite-water interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, L.; Zhang, Z.; Machesky, M .L.

    2007-03-24

    The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively chargedmore » variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH{sub pzc}) that agrees very well with those determined experimentally (about 4.4 at 298 K).« less

  10. Electric double layer at metal oxide surfaces: Static properties of the cassiterite - Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Zhang, Zhan; Machesky, Michael L.

    2007-01-01

    The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively chargedmore » variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH{sub pzc}) that agrees very well with those determined experimentally (about 4.4 at 298 K).« less

  11. Water and the Interior Structure of Terrestrial Planets and Icy Bodies

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.

    2018-02-01

    Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

  12. Hydrodynamic trapping in the Cretaceous Nahr Umr lower sand of the North Area, Offshore Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, P.R.A.

    A hydrodynamic model is described to account for oil and gas occurrences in the Cretaceous of offshore Qatar, in the Arabian Gulf. Variable and inconsistent fluid levels and variable formation water potentials and salinities cannot be explained by combinations of stratigraphic and structural trapping. Indeed, there is no structural closure to the southwest of the oil and gas accumulations. The water-potential and salinity data and oil distribution are consistent with this model and indicate that a vigorous hydrodynamic system pervades the Cretaceous of the Arabian Gulf region. Extensive upward cross-formational discharge is taking place in the North Area. This cross-formationmore » water flow could be partly responsible for localized leaching and reservoir enhancement in the chalky limestones.« less

  13. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K + ) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K + ions prefer to minimize the number of nearest neighbour K + ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K + distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  14. Movement and effects of spilled oil over the outer continental shelf; inadequacy of existent data for the Baltimore Canyon Trough area

    USGS Publications Warehouse

    Knebel, Harley J.

    1974-01-01

    A deductive approach to the problem of determining the movement and effects of spilled oil over the Outer Continental Shelf requires that the potential paths of oil be determined first, in order that critical subareas may be defined for later studies. The paths of spilled oil, in turn, depend primarily on the temporal and spatial variability of four factors: the thermohaline structure of the waters, the circulation of the water, the winds, and the distribution of suspended matter. A review of the existent data concerning these factors for the Baltimore Canyon Trough area (a relatively well studied segment of the Continental Shelf) reveals that the movement and dispersal of potential oil spills cannot be reliably predicted. Variations in the thermohaline structure of waters and in the distribution of suspended matter are adequately known; the uncertainty is due to insufficient wind and storm statistics and to the lack of quantitative understanding of the relationship between the nontidal drift and its basic driving mechanisms. Similar inadequacies should be anticipated for other potentially leasable areas of the shelf because an understanding of the movement of spilled oil has not been the underlying aim of most previous studies.

  15. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    PubMed

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  16. Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byproduct derived from chlorination of phenylalanine in drinking water.

    PubMed

    Ma, Xiaoyan; Deng, Jing; Feng, Jiao; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Dietrich, Andrea M

    2016-10-01

    Unregulated disinfection byproducts (DBPs), including nitrogenous disinfection byproducts (N-DBPs), originating from chlorination of the precursor amino acid phenylalanine in aqueous systems, were identified in laboratory reactions and distributed tap. The major N-DBP identified was phenylacetonitrile, and minor DBPs of benzyl chloride, phenylacetaldehyde, 2-chlorobenzyl cyanide, and 2, 6-diphenylpyridine were also formed. Phenylacetonitrile was generated through decarboxylation, dechlorination and/or hydrolysis processes. With an aromatic structure, phenylacetonitrile has an unpleasant odor of various descriptors and an odor threshold concentration of 0.2 ppt-v as measured through gas chromatography-olfactometry. The half-life of phenylacetonitrile in reagent water and chlorinated water at 19 °C were 121 h and 792 h, respectively. The occurrence of phenylacetonitrile as an N-DBP in tap water was investigated for the first time; the results revealed that μg/L concentrations were present in nine different distributed drinking waters in China and the United States. Phenylacetonitrile deteriorates the aesthetic quality of drinking water and may present risk due to its prolonged existence in drinking water, especially in the presence of residual chlorine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Electronic structure and partial charge distribution of doxorubicin under different molecular environments

    NASA Astrophysics Data System (ADS)

    Poudel, Lokendra

    Doxorubicin (trade name Adriamycin, abbreviated DOX) is a well-known an- thracyclic chemotherapeutic used in treating a variety of cancers including acute leukemia, lymphoma, multiple myeloma, and a range of stomach, lung, bladder, bone, breast, and ovarian cancers. The purpose of the present work is to study electronic structure, partial charge distribution and interaction energy of DOX under different environments. It provides a framework for better understanding of bioactivity of DOX with DNA. While in this work, we focus on DOX -- DNA interactions; the obtained knowledge could be translated to other drug -- target interactions or biomolecular interactions. The electronic structure and partial charge distribution of DOX in three dierent molecular environments: isolated, solvated, and intercalated into a DNA complex,were studied by rst principles density functional methods. It is shown that the addition of solvating water molecules to DOX and the proximity and interaction with DNA has a signicant impact on the electronic structure as well as the partial charge distribution. The calculated total partial charges for DOX in the three models are 0.0, +0.123 and -0.06 electrons for the isolated, solvated, and intercalated state, respectively. Furthermore, by using the more accurate ab initio partial charge values on every atom in the models, signicant improvement in estimating the DOX-DNA interaction energy is obtained in conjunction with the NAnoscale Molecular Dynamics (NAMD) code. The electronic structure of the DOX-DNA is further elucidated by resolving the total density of states (TDOS) into dierent functional groups of DOX, DNA, water, co-crystallized Spermine molecule, and Na ions. The surface partial charge distribution in the DOX-DNA is calculated and displayed graphically. We conclude that the presence of the solvent as well as the details of the interaction geometry matter greatly in the determination of the stability of the DOX complexion. Ab initio calculations on realistic models are an important step towards a more accurate description of biomolecular interaction and in the eventual understanding of long-range interactions in biomolecular systems.

  18. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    PubMed

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. © 2017 John Wiley & Sons Ltd.

  19. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    USGS Publications Warehouse

    Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-01-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.

  20. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; hide

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  1. The joint time-frequency spectrogram structure of heptanes boilover noise

    NASA Astrophysics Data System (ADS)

    Xu, Qiang

    2006-04-01

    An experiment was conducted to study the noise characteristics in the boilover phenomena. The boilover occurs in the combustion of a liquid fuel floating on water. It will cause a sharp increase in burning rate and external radiation. Explosive burning of the fuel would cause potential safety consequence. Combustion noise accompanies the development of fire and displays different characteristics in typical period. These characteristics can be used to predict the start time of boilover. The acoustic signal in boilover procedure during the combustion of heptanes-water mixture is obtained in a set of experiments. Joint time-frequency analysis (JTFA) method is applied in the treatment of noise data. Several JTFA algorithms were used in the evaluation. These algorithms include Gabor, adaptive spectrogram, cone shape distribution, choi-williams distribution, Wigner-Ville Distribution, and Short Time Fourier Transform with different windows such as rectangular, Blackman, Hamming and Hanning. Time-frequency distribution patterns of the combustion noise are obtained, and they are compared with others from jet flow and small plastic bubble blow up.

  2. A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders.

    PubMed

    Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang

    2016-10-07

    In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO 4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.

  3. Quantitative photography of intermittency in surface wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, W.; Budakian, R.; Putterman, S.J.

    1997-12-31

    At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state.

  4. Observing atmospheric water in storms with the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.; Lewis, R. M.

    1984-01-01

    Employing data on integrated atmospheric water vapor, total cloud liquid water and rain rate obtainable from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), we study the frontal structure of several mid-latitude cyclones over the North Pacific Ocean as they approach the West Coast of North America in the winter of 1979. The fronts, analyzed with all available independent data, are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content, which unfortunately has received very little in situ verification, has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is also a good indicator of frontal location and rain amounts are generally within a factor of two of what is observed with rain gauges on the coast. Furthermore, the onset of rain on the coast can often be accurately forecast by simple advection of the SMMR observed rain areas.

  5. Structural features of resorcinol-formaldehyde resin chars and interfacial behavior of water co-adsorbed with low-molecular weight organics

    NASA Astrophysics Data System (ADS)

    Gun'ko, Vladimir M.; Bogatyrov, Viktor M.; Turov, Vladimir V.; Leboda, Roman; Skubiszewska-Zięba, Jadwiga; Urubkov, Iliya V.

    2013-10-01

    Products of resorcinol-formaldehyde resin carbonization (chars) are characterized by different morphology (particle shape and sizes) and texture (specific surface area, pore volume and pore size distribution) depending on water content during resin polymerization. At a low amount of water (Cw = 37.8 wt.%) during synthesis resulting in strongly cross-linked polymers, carbonization gives nonporous particles. An increase in the water content to 62.7 wt.% results in a nano/mesoporous char, but if Cw = 73.3 wt.%, a char is purely nanoporous. Despite these textural differences, the Raman spectra of all the chars are similar because of the similarity in the structure of their carbon sheets with a significant contribution of sp3 C atoms. However, the difference in the spatial organization of the carbon sheet stacks in the particles results in the significant differences in the textural and morphological characteristics and in the adsorption properties of chars with respect to water, methane, benzene, hydrogen, methylene chloride, and dimethylsulfoxide.

  6. Mapping hydration dynamics and coupled water-protein fluctuations around a protein surface

    NASA Astrophysics Data System (ADS)

    Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping

    2009-03-01

    Elucidation of the molecular mechanism of water-protein interactions is critical to understanding many fundamental aspects of protein science, such as protein folding and misfolding and enzyme catalysis. We recently carried out a global mapping of protein-surface hydration dynamics around a globular α-helical protein apomyoglobin. The intrinsic optical probe tryptophan was employed to scan the protein surface one at a time by site-specific mutagenesis. With femtosecond resolution, we mapped out the dynamics of water-protein interactions with more than 20 mutants and for two states, native and molten globular. A robust bimodal distribution of time scales was observed, representing two types of water motions: local relaxation and protein-coupled fluctuations. The time scales show a strong correlation with the local protein structural rigidity and chemical identity. We also resolved two distinct contributions to the overall Stokes-shifts from the two time scales. These results are significant to understanding the role of hydration water on protein structural stability, dynamics and function.

  7. Gravity flow and solute dispersion in variably saturated sand

    NASA Astrophysics Data System (ADS)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  8. Computer simulations of local anesthetic mechanisms: Quantum chemical investigation of procaine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeremy C; Bondar, A.N.; Suhai, Sandor

    2007-02-01

    A description at the atomic level of detail of the interaction between local anesthetics, lipid membranes and membrane proteins, is essential for understanding the mechanism of local anesthesia. The importance of performing computer simulations to decipher the mechanism of local anesthesia is discussed here in the context of the current status of understanding of the local anesthetics action. As a first step towards accurate simulations of the interaction between local anesthetics, proteins, lipid and water molecules, here we use quantum mechanical methods to assess the charge distribution and structural properties of procaine in the presence and in the absence ofmore » water molecules. The calculations indicate that, in the absence of hydrogen-bonding water molecules, protonated procaine strongly prefers a compact structure enabled by intramolecular hydrogen bonding. In the presence of water molecules the torsional energy pro?le of procaine is modified, and hydrogen bonding to water molecules is favored relative to intra-molecular hydrogen bonding.« less

  9. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Euan; Kempson, Ivan; Juhasz, Albert L.

    The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations ofmore » {mu}XRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.« less

  11. Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems.

    PubMed

    Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H

    2010-08-01

    Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Structural anomaly and dynamic heterogeneity in cycloether/water binary mixtures: Signatures from composition dependent dynamic fluorescence measurements and computer simulations

    NASA Astrophysics Data System (ADS)

    Indra, Sandipa; Guchhait, Biswajit; Biswas, Ranjit

    2016-03-01

    We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (XTHF/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ XTHF/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, XTHF/Diox ˜ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.

  13. Throughfall-mediated alterations to soil microbial community structure in a forest plot of homogenous soil texture, litter, and plant species composition

    NASA Astrophysics Data System (ADS)

    Van Stan, John; Rosier, Carl; Moore, Leslie; Gay, Trent; Reichard, James; Wu, Tiehang; Kan, Jinjun

    2015-04-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to our understanding of patterns in biogeochemical cycling and related ecological services (e.g., plant community structure, water quality, response to environmental change). Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via "throughfall"), is it possible that changes in SMC structure could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from large gaps (0% cover), to bare Quercus virginiana Mill. (southern live oak) canopy (~50-70%), to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils. Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) sampled in triplicate from locations receiving throughfall water and solutes from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). Polymerase Chain Reaction-Denaturant Gradient Gel Electrophoresis (PCR-DGGE) banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via throughfall when canopies' biomass distribution is highly heterogeneous. As SMC structure, in many instances, relates to functional diversity, we suggest that future research seek to identify functional diversity shifts (e.g., nitrogen transformation) in response to canopy structural alterations of throughfall water/solute concentration

  14. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  15. A Broadband IR Compact High Resolution Spectrometer (BIRCHES) for a Lunar Water Distribution (LWaDi) Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Macdowall, Robert J.; Reuter, Dennis; Mauk, Robin

    2014-11-01

    We are in the process of developing the BIRCH (Broadband IR for Cubesats with High Resolution) Spectrometer for characterization of a range of deep space targets. BIRCH is the first extremely compact Broadband IR spectrometer with high spectral resolution designed to measure water type and component distribution for a science-driven cubesat mission, such as the lunar orbital mission LWaDi (Lunar Water Distribution) designed to determine the systematics of lunar water and volatiles as a function of time of day, latitude, and terrain. The development of cubesat form factor instruments, such as BIRCH, capable of providing high priority science goals identified in the decadal survey is critical to achieve low cost planetary exploration promised by the cubesat paradigm by exploring volatile systems via orbiting or landed packages. On the Moon, as well as Mercury, Mars, and the asteroids, the source, distribution, and role of volatiles is a question of major importance, and has implications for formation processes, including interior structure, differentiation, and the origin of life in the early solar system. The form and distribution of water has implications for human exploration, resource exploitation, and sample curation. Recent lunar missions gave unanticipated evidence for the water from NIR instruments not optimized for finding it. Our instrument includes a compact broadband HgCdTe detector with a linear variable filter and a compact cryocooler (for operation below 140K) attached to a compact optical system with 2 off-axis parabolic mirrors and variable field stop operating below 240K. Its 10 nm or better resolution and longer wavelength upper range (1.3 to 3.7 microns) are necessary to identify and separate features associated with water type (adsorbed, bound, ice) and components. Its 4-sided adjustable iris at the field stop enables a constant spot size (10 x 10 km) regardless of altitude. BIRCH will be able to provide systematic and extensive enough information to understand water’s life cycle, temporal and spatial distribution and interactions as a function of lunar cycles, characteristic features, and regolith composition.

  16. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage.

    PubMed

    Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu

    2017-01-01

    The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tetrahedrality and hydrogen bonds in water

    NASA Astrophysics Data System (ADS)

    Székely, Eszter; Varga, Imre K.; Baranyai, András

    2016-06-01

    We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.

  18. Spatial organization and drivers of the virtual water trade: a community-structure analysis

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Carr, Joel; Laio, Francesco; Ridolfi, Luca

    2012-09-01

    The trade of agricultural commodities can be associated with a virtual transfer of the local freshwater resources used for the production of these goods. Thus, trade of food products virtually transfers large amounts of water from areas of food production to far consumption regions, a process termed the ‘globalization of water’. We consider the (time-varying) community structure of the virtual water network for the years 1986-2008. The communities are groups of countries with dense internal connections, while the connections are sparser among different communities. Between 1986 and 2008, the ratio between virtual water flows within communities and the total global trade of virtual water has continuously increased, indicating the existence of well defined clusters of virtual water transfers. In some cases (e.g. Central and North America and Europe in recent years) the virtual water communities correspond to geographically coherent regions, suggesting the occurrence of an ongoing process of regionalization of water resources. However, most communities also include countries located on different ‘sides’ of the world. As such, geographic proximity only partly explains the community structure of virtual water trade. Similarly, the global distribution of people and wealth, whose effect on the virtual water trade is expressed through simple ‘gravity models’, is unable to explain the strength of virtual water communities observed in the past few decades. A gravity model based on the availability of and demand for virtual water in different countries has higher explanatory power, but the drivers of the virtual water fluxes are yet to be adequately identified.

  19. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  20. Atmospheric water parameters in mid-latitude cyclones observed by microwave radiometry and compared to model calculations

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Hammarstrand, Ulla; Petty, Grant W.

    1990-01-01

    Existing and experimental algorithms for various parameters of atmospheric water content such as integrated water vapor, cloud water, precipitation, are used to examine the distribution of these quantities in mid latitude cyclones. The data was obtained from signals given by the special sensor microwave/imager (SSM/I) and compared with data from the nimbus scanning multichannel microwave radiometer (SMMR) for North Atlantic cyclones. The potential of microwave remote sensing for enhancing knowledge of the horizontal structure of these storms and to aid the development and testing of the cloud and precipitation aspects of limited area numerical models of cyclonic storms is investigated.

  1. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  2. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2011-12-01

    A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.

  3. Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.

    PubMed

    Hauser, Juerg; Wellmann, Florian; Trefry, Mike

    2018-03-01

    We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined. © 2017, National Ground Water Association.

  4. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.

    PubMed

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.

  5. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  6. Structural analysis on mutation residues and interfacial water molecules for human TIM disease understanding

    PubMed Central

    2013-01-01

    Background Human triosephosphate isomerase (HsTIM) deficiency is a genetic disease caused often by the pathogenic mutation E104D. This mutation, located at the side of an abnormally large cluster of water in the inter-subunit interface, reduces the thermostability of the enzyme. Why and how these water molecules are directly related to the excessive thermolability of the mutant have not been investigated in structural biology. Results This work compares the structure of the E104D mutant with its wild type counterparts. It is found that the water topology in the dimer interface of HsTIM is atypical, having a "wet-core-dry-rim" distribution with 16 water molecules tightly packed in a small deep region surrounded by 22 residues including GLU104. These water molecules are co-conserved with their surrounding residues in non-archaeal TIMs (dimers) but not conserved across archaeal TIMs (tetramers), indicating their importance in preserving the overall quaternary structure. As the structural permutation induced by the mutation is not significant, we hypothesize that the excessive thermolability of the E104D mutant is attributed to the easy propagation of atoms' flexibility from the surface into the core via the large cluster of water. It is indeed found that the B factor increment in the wet region is higher than other regions, and, more importantly, the B factor increment in the wet region is maintained in the deeply buried core. Molecular dynamics simulations revealed that for the mutant structure at normal temperature, a clear increase of the root-mean-square deviation is observed for the wet region contacting with the large cluster of interfacial water. Such increase is not observed for other interfacial regions or the whole protein. This clearly suggests that, in the E104D mutant, the large water cluster is responsible for the subunit interface flexibility and overall thermolability, and it ultimately leads to the deficiency of this enzyme. Conclusions Our study reveals that a large cluster of water buried in protein interfaces is fragile and high-maintenance, closely related to the structure, function and evolution of the whole protein. PMID:24564410

  7. Polarized View of Supercooled Liquid Water Clouds

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features varying between glaciated and liquid phases at altitudes as high as 10 km, which correspond to temperatures close to the homogeneous freezing temperature of pure water drops (about -35 C or colder). The multimodal droplet size distributions retrieved from RSP data in these cases are consistent with the multi-layer cloud structure observed by correlative Cloud Physics Lidar (CPL) measurements.

  8. Deep drilling into the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.; Browning, J.V.; Cockell, C.S.; Horton, J. Wright; Kenkmann, T.; Kulpecz, A.A.; Powars, D.S.; Sanford, W.E.; Voytek, M.A.

    2008-01-01

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  9. The influence of adsorbed molecules on the framework vibrations of Na-Faujasites studied with FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferwerda, R.; van der Maas, J. H.

    1995-11-01

    The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.

  10. Deep drilling into the Chesapeake Bay impact structure.

    PubMed

    Gohn, G S; Koeberl, C; Miller, K G; Reimold, W U; Browning, J V; Cockell, C S; Horton, J W; Kenkmann, T; Kulpecz, A A; Powars, D S; Sanford, W E; Voytek, M A

    2008-06-27

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  11. Spatial Distribution, Structure, Biomass, and Physiology of Microbial Assemblages across the Southern Ocean Frontal Zones during the Late Austral Winter

    PubMed Central

    Hanson, Roger B.; Lowery, H. Kenneth

    1985-01-01

    We examined the spatial distributions of picoplankton, nanoplankton, and microplankton biomass and physiological state relative to the hydrography of the Southern Ocean along 90° W longitude and across the Drake Passage in the late austral winter. The eastern South Pacific Ocean showed some large-scale biogeographical differences and size class variability. Microbial ATP biomass was greatest in euphotic surface waters. The horizontal distributions of microbial biomass and physiological state (adenylate energy charge ratio) coincided with internal currents (fronts) of the Antarctic Circumpolar Current. In the Drake Passage, the biological scales in the euphotic and aphotic zones were complex, and ATP, total adenylate, and adenylate energy charge ratio isopleths were compressed due to the extension of the sea ice from Antarctica and constriction of the Circumpolar Current through the narrow passage. The physiological state of microbial assemblages and biomass were much higher in the Drake Passage than in the eastern South Pacific Ocean. The temperature of Antarctic waters, not dissolved organic carbon, was the major variable controlling picoplankton growth. Estimates of picoplankton production based on ATP increments with time suggest that production under reduced predation pressure was 1 to 10 μg of carbon per liter per day. Our results demonstrate the influence of large-scale hydrographic processes on the distribution and structure of microplankton, nanoplankton, and picoplankton across the Southern Ocean. PMID:16346777

  12. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.

    PubMed

    Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody

    2012-03-01

    Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.

  13. Can a simple lumped parameter model simulate complex transit time distributions? Benchmarking experiments in a virtual watershed.

    NASA Astrophysics Data System (ADS)

    Wilusz, D. C.; Maxwell, R. M.; Buda, A. R.; Ball, W. P.; Harman, C. J.

    2016-12-01

    The catchment transit-time distribution (TTD) is the time-varying, probabilistic distribution of water travel times through a watershed. The TTD is increasingly recognized as a useful descriptor of a catchment's flow and transport processes. However, TTDs are temporally complex and cannot be observed directly at watershed scale. Estimates of TTDs depend on available environmental tracers (such as stable water isotopes) and an assumed model whose parameters can be inverted from tracer data. All tracers have limitations though, such as (typically) short periods of observation or non-conservative behavior. As a result, models that faithfully simulate tracer observations may nonetheless yield TTD estimates with significant errors at certain times and water ages, conditioned on the tracer data available and the model structure. Recent advances have shown that time-varying catchment TTDs can be parsimoniously modeled by the lumped parameter rank StorAge Selection (rSAS) model, in which an rSAS function relates the distribution of water ages in outflows to the composition of age-ranked water in storage. Like other TTD models, rSAS is calibrated and evaluated against environmental tracer data, and the relative influence of tracer-dependent and model-dependent error on its TTD estimates is poorly understood. The purpose of this study is to benchmark the ability of different rSAS formulations to simulate TTDs in a complex, synthetic watershed where the lumped model can be calibrated and directly compared to a virtually "true" TTD. This experimental design allows for isolation of model-dependent error from tracer-dependent error. The integrated hydrologic model ParFlow with SLIM-FAST particle tracking code is used to simulate the watershed and its true TTD. To add field intelligence, the ParFlow model is populated with over forty years of hydrometric and physiographic data from the WE-38 subwatershed of the USDA's Mahantango Creek experimental catchment in PA, USA. The results are intended to give practical insight into tradeoffs between rSAS model structure and skill, and define a new performance benchmark to which other transit time models can be compared.

  14. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion products obtained from pipes transporting groundwater had higher levels of Br, Ti, Ba, Cu, Sr, V, Cr, La, Pb and As. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.

    PubMed

    Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans

    2012-03-15

    Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society

  16. Predicted Water and Carbon Fluxes as well as Vegetation Distribution on the Korean Peninsula in the Future with the Ecosystem Demography Model version 2

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kim, Y.

    2017-12-01

    This study investigates how the water and carbon fluxes as well as vegetation distribution on the Korean peninsula would vary with climate change. Ecosystem Demography (ED) Model version 2 (ED2) is used in this study, which is an integrated terrestrial biosphere model that can utilize a set of size- and age- structured partial differential equations that track the changing structure and composition of the plant canopy. With using the vegetation distribution data of Jeju Island, located at the southern part of the Korean Peninsula, ED2 is setup and driven for the past 10 years. Then the results of ED2 are evaluated and adjusted with observed forestry data, i.e., growth and mortality, and the flux tower and MODIS satellite data, i.e., evapotranspiration (ET) and gross primary production (GPP). This adjusted ED2 are used to simulate the water and carbon fluxes as well as vegetation dynamics in the Korean Peninsula for the historical period with evaluating the model against the MODIS satellite data. Finally, the climate scenarios of RCP 2.6 and 6.0 are used to predict the fluxes and vegetation distribution of the Korean Peninsula in the future. With using the state-of-art terrestrial ecosystem model, this study would provide us better understanding of the future ecosystem vulnerability of the Korean Peninsula. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  17. Assessing land ownership as a driver of change in the distribution, structure, and composition of California's forests.

    NASA Astrophysics Data System (ADS)

    Easterday, K.; Kelly, M.; McIntyre, P. J.

    2015-12-01

    Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.

  18. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    NASA Astrophysics Data System (ADS)

    García-Ibáñez, Maribel I.; Pérez, Fiz F.; Lherminier, Pascale; Zunino, Patricia; Mercier, Herlé; Tréguer, Paul

    2018-04-01

    We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland-Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002-2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002-2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002-2010, with the increase being consistent with other estimates of ISOW transports along 58-59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002-2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in 2014 compared to the 2002-2010 mean was related to both the increase in the northward transport of Central Waters in the AMOC upper limb and to the increase in the southward flow of Irminger Basin SPMW and ISOW in the AMOC lower limb.

  19. Predator-guided sampling reveals biotic structure in the bathypelagic.

    PubMed

    Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A

    2016-02-24

    We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column. © 2016 The Author(s).

  20. Biofilm effect on flow structure over a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook Smith, Gregory; Christensen, Kenneth

    2017-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction. Funded by UK Natural Environment Research Council.

  1. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    PubMed

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  2. Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale

    USGS Publications Warehouse

    Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.

  3. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir

  4. Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective's immersion liquid.

    PubMed

    Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan

    2011-06-01

    We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America

  5. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation.

    PubMed

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  6. Effect of water on structure and dynamics of [BMIM][PF{sub 6}] ionic liquid: An all-atom molecular dynamics simulation investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anirban; Ghorai, Pradip Kr., E-mail: pradip@iiserkol.ac.in

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF{sub 6}]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure ILmore » but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.« less

  7. Water-dependent photonic bandgap in silica artificial opals.

    PubMed

    Gallego-Gómez, Francisco; Blanco, Alvaro; Canalejas-Tejero, Victor; López, Cefe

    2011-07-04

    Some characteristics of silica--based structures-like the photonic properties of artificial opals formed by silica spheres--can be greatly affected by the presence of adsorbed water. The reversible modification of the water content of an opal is investigated here by moderate heating (below 300 °C) and measuring in situ the changes in the photonic bandgap. Due to reversible removal of interstitial water, large blueshifts of 30 nm and a bandgap narrowing of 7% are observed. The latter is particularly surprising, because water desorption increases the refractive index contrast, which should lead instead to bandgap broadening. A quantitative explanation of this experiment is provided using a simple model for water distribution in the opal that assumes a nonclose-packed fcc structure. This model further predicts that, at room temperature, about 50% of the interstitial water forms necks between nearest-neighbor spheres, which are separated by 5% of their diameter. Upon heating, dehydration predominantly occurs at the sphere surfaces (in the opal voids), so that above 65 °C the remaining water resides exclusively in the necks. A near-close-packed fcc arrangement is only achieved above 200 °C. The high sensitivity to water changes exhibited by silica opals, even under gentle heating of few degrees, must be taken into account for practical applications. Remarkably, accurate control of the distance between spheres--from 16 to 1 nm--is obtained with temperature. In this study, novel use of the optical properties of the opal is made to infer quantitative information about water distribution within silica beads and dehydration phenomena from simple reflection spectra. Taking advantage of the well-defined opal morphology, this approach offers a simple tool for the straightforward investigation of generic adsorption-desorption phenomena, which might be extrapolated to many other fields involving capillary condensation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Understanding structure, metal distribution, and water adsorption in mixed-metal MOF-74

    DOE PAGES

    Howe, Joshua D.; Morelock, Cody R.; Jiao, Yang; ...

    2016-11-30

    We present a joint computational and experimental study of Mg–Ni-MOF-74 and Mg–Cd-MOF-74 to gain insight into the mixing of metals and understand how metal mixing affects the structure of the undercoordinated open-metal sites. Our calculations predict that metal mixing is energetically preferred in these materials. Recent experimental work has demonstrated that Mg–Ni-MOF-74 shows a much greater surface area retention in the presence of water than Mg-MOF-74. To probe this effect, we study H 2O adsorption in Mg–Ni-MOF-74, finding that the adsorption energetics and electronic structure do not change significantly at the metal sites when compared to Mg-MOF-74 and Ni-MOF-74, respectively.more » Lastly, we conclude that the increased stability of Mg–Ni-MOF-74 is a result of a M–O bond length distortion in mixed-metal MOF-74, consistent with recent work on the stability of MOF-74 under water exposure.« less

  9. Holographic Aquaculture

    NASA Astrophysics Data System (ADS)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  10. Vulnerability of water supply systems to cyber-physical attacks

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi

    2016-04-01

    The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.

  11. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  12. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  13. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part II. In operando synchrotron imaging for microscale liquid water transport characterization

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Ge, N.; Lee, J.; George, M. G.; Liu, H.; Shrestha, P.; Muirhead, D.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    This is the second paper in a two-part series in which we investigate the impact of the gas diffusion layer structure on the liquid water distribution in an operating polymer electrolyte membrane (PEM) fuel cell through the procedures of design, fabrication, and testing of novel hydrophobic electrospun gas diffusion layers (eGDLs). In this work, fibre diameters and alignment in eGDLs are precisely controlled, and concurrent synchrotron X-ray radiography and electrochemical impedance spectroscopy (EIS) are used to evaluate the influence of the controlled eGDL parameters on the liquid water distribution and on membrane liquid water content. For eGDLs with small fibre diameters (150-200 nm) and correspondingly smaller pore sizes, reduced liquid water accumulation under the flow field ribs is observed. However, more liquid water is pinned onto the eGDL - at the interface with flow field channels. Orienting fibre alignment perpendicular to the flow field channel direction leads to improved eGDL-catalyst layer contact and prevents rib-channel membrane deformation. On the other hand, eGDLs facilitate significant membrane dry-out, even under highly humidified operating conditions at high current densities.

  14. Future Carbon Dynamics of the Northern Rockies Ecoregion due to Climate Impacts and Fire Effects

    NASA Astrophysics Data System (ADS)

    Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.

    2016-12-01

    The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based on this concept, the dynamics of soil structure can be directly linked to soil water dynamics as a main driver for other soil processes. Further steps will include integration of temperature and solute leaching as well as defining the feedback of the water regime on the structure forming processes.

  15. Evaluation of a semi-distributed model through an assessment of the spatial coherence of Intercatchment Groundwater Flows

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2016-04-01

    Semi-distributed hydrological models aim to provide useful information to understand and manage the spatial distribution of water resources. However, their evaluation is often limited to independent and single evaluations at each sub-catchment within larger catchments. This enables to qualify model performance at different points, but does not provide a coherent assessment of the overall spatial consistency of the model. To cope with these methodological deficiencies, we propose a two-step strategy. First, we apply a sequential spatial calibration procedure to define spatially consistent model parameters. Secondly, we evaluate the hydrological simulations using variables that involve some dependency between sub-catchments to evaluate the overall coherence of model outputs. In this study, we particularly choose to look at the simulated Intercatchment Groundwater Flows (IGF). The idea is that the water that is lost in one place should be recovered somewhere else within the catchment to guarantee a spatially coherent water balance in time. The model used is a recently developed daily semi-distributed model, which is based on a spatial distribution of the lumped GR5J model. The model has five parameters for each sub-catchments and a streamflow velocity parameter for flow routing between them. It implements two reservoirs, one for production and one for routing, and estimates IGF according to the level of the second in a way that catchment can release water to IGF during high flows and receive water through IGF during low flows. The calibration of the model is performed from upstream to downstream, making an efficient use of spatially distributed streamflow measurements. To take model uncertainty into account, we implemented three variants of the original model structure, each one computing in a different way the IGF in each sub-catchment. The study is applied on over 1000 catchments in France. By exploring a wide area and a variability of hydrometeorological conditions, we aim to detect IGF even between catchments which can be quite distant from one another.

  16. Water Hazard in Coastal Area: Actions for conserving and protecting European World Heritage Cities

    NASA Astrophysics Data System (ADS)

    Biscarini, C.; Carnevali, C.; Andah, K.

    2009-04-01

    It is well known that many of the European UNESCO World Heritage sites and cities are closely related to water bodies in their different forms, as they have close links with the sea (such as Venice, San Rossore, Dubrovnik) and with rivers (like Florence, Rome, Ferrara, etc). Surely there are many others with problems of water supply, water treatment, wastewater disposal, etc. The main objective of the work is therefore to institute measures which will permit to contribute towards the conservation and protection of such precious heritage sites and cities, particularly in coastal area, in the context of present urbanization and climatic modifications. It has therefore become necessary to identify and classify not only urban centres of historical importance but also historical hydraulic structures and works developed for both beneficial and harmful water management, hereinafter referred to as good water and bad water respectively. Another objective is to raise the awareness of institutions and the public in general on the historical values of Heritage cities and hence the need to protect them. The main activities of the study are directed at the following: 1) Collection and collation of information and documentation on water sources, intakes and distribution structures, flood events especially around urban centres, structural characteristics of bridges, defensive hydraulic structures of rivers from ancient times to the present. 2) Creation of an integrative water-urban data base in the form of a virtual museum. 3) Design and preparation of feasibility strategies for relevant historical works for renovation purposes and also hydrological analysis of flood events and reconstruction of historical flood series towards re-qualification of urban and riverine environments in the face of climate change. 4) Hydraulic risk analysis of complex hydraulic systems, performing flooding scenarios at different flow rates.

  17. Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification

    NASA Astrophysics Data System (ADS)

    Ríos, Francisco; Kilian, Rolf; Mutschke, Erika

    2016-08-01

    Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.

  18. Depressions and other lake-floor morphologic features in deep water, southern Lake Michigan

    USGS Publications Warehouse

    Colman, Steven M.; Foster, D.S.; Harrison, D.W.

    1992-01-01

    The most common features are subcircular depressions, commonly compound, that are irregularly distributed across the lake floor. The depressions are most common in the southern basin of the lake where lacustrine sediments are more than a few meters thick, corresponding to water depths greater than about 90 m. We have divided the depressions into three types on the basis of their internal structure seen in seismic-reflection profiles. The depressions show varying degrees of muting, ranging from fresh to completely buried, suggesting a range in the time of their formation. The origin of the depressions is problematic, but their structure suggests collapse and(or) subsidence. -from Authors

  19. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    NASA Astrophysics Data System (ADS)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  20. Review: Characterization, evolution, and environmental issues of karst water systems in Northern China

    NASA Astrophysics Data System (ADS)

    Liang, Yongping; Gao, Xubo; Zhao, Chunhong; Tang, Chunlei; Shen, Haoyong; Wang, Zhiheng; Wang, Yanxin

    2018-05-01

    In Northern China, karst systems in widely distributed carbonate rocks are one of the most important water supplies for local inhabitants. Constrained by the specific geological and geomorphological conditions, most karst water in this region is discharged as individual or groups of springs. This paper summarizes the characteristics, chemistry, and environmental quality of these karst systems in Northern China. Five structural models of karst water systems were identified based on the relationships between the karst geological strata and karst groundwater flow fields. These specific structural models may closely relate to the attendant environmental geological issues and consistent risks from pollution. Over the past 40 years, the karst water systems in Northern China have suffered from various environmental problems, including deteriorating water quality, the drying up of springs, a continuous decline in the level of karst water, and so on. Based on the field investigation and previous data, a preliminary summary is provided of the environmental problems related to the development and evolutionary trends of karst water in this region. The results highlight the significant challenges associated with karst water, and it is essential that all segments of society be made aware of the situation in order to demand change. In addition, the study provides a scientific basis for the management, protection, and sustainable utilization of karst water resources.

  1. Monitoring Change: SIPI Students Engage in Long-Term Ecological Research

    ERIC Educational Resources Information Center

    Porter, Margaret; Bennett, T. M. Bull

    2013-01-01

    American Indian tribes across the nation are facing pressing ecological challenges related to alterations in species distribution, access and availability of water, shifting community structures, and other phenomena correlated to climate change. At the Southwestern Indian Polytechnic Institute (SIPI, Albuquerque, NM), faculty and staff believe the…

  2. Exploiting Discrete Structure for Learning On-Line in Distributed Robot Systems

    DTIC Science & Technology

    2009-10-21

    accelerating rate over the next 20 years. Service robotics currently shares some important characteristics with the automobile industry in the early...Authorization Act for Fiscal Year 2001, S. 2549, Sec. 217). The same impact is expected for pilotless air and water vehicles, where drone aircraft for

  3. Short-term thermal stratification and partial overturning events in a warm polymictic reservoir: effects on distribution of phytoplankton community.

    PubMed

    Santos, R M; Saggio, A A; Silva, T L R; Negreiros, N F; Rocha, O

    2015-01-01

    In lentic freshwater ecosystems, patterns of thermal stratification play a considerable part in determining the population dynamics of phytoplankton. In this study we investigated how these thermal patterns and the associated hydrodynamic processes affect the vertical distribution of phytoplankton during two consecutive diel cycles in a warm polymictic urban reservoir in the metropolitan region of São Paulo, Brazil. Water samples were taken and physical, chemical and biological data collected at half-meter intervals of depth along a water column at a fixed site, every 3 hours throughout the 48-hour period. Two events of stratification, followed by deepening of the thermocline occurred during the study period and led to changes in the vertical distribution of phytoplankton populations. Aphanocapsa delicatissima Nägeli was the single dominant species throughout the 48-hour period. In the second diel cycle, the density gradient induced by temperature differences avoided the sedimentation of Mougeotia sp. C. Agardh to the deepest layers. On the other hand, Pseudanabaena galeata Böcher remained in the 4.0-5.5 m deep layer. The thermal structure of the water was directly affected by two meteorological factors: air temperature and wind speed. Changes in the cell density and vertical distribution of the phytoplankton were controlled by the thermal and hydrodynamic events.

  4. The Ins and Outs of Water in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Gaetani, G. A.; Shaw, A. M.; Kelley, K. A.; Saal, A. E.

    2005-12-01

    Most of the hydrogen in the Earth's upper mantle is dissolved in nominally anhydrous minerals such as olivine, orthopyroxene, clinopyroxene and garnet as structural OH [e.g. 1 ]. Considering the significant influence of hydrogen on mantle properties such as solidus temperature, rheology, conductivity and seismic velocity, it is important to understand both the distribution of water among mantle phases and the mass transfer processes that influence water distribution in the Earth's mantle. Despite the important role of water in the mantle, experimental determinations of the equilibrium distribution of trace amounts of hydrogen among coexisting silicate phases remain extremely limited. Improved analytical techniques have recently paved the way for quantitative investigations of water partitioning and abundances in nominally anhydrous mantle minerals [e.g. 2]. Several studies of submarine glasses have revealed correlated increases in incompatible elements and water contents along segments of mid-ocean ridges approaching hotspots [e.g. 3,4]. A source-related increase in the water content of the mantle is typically postulated to explain such observations, but elevated hotspot H2O contents may also relate to pressure differences in partitioning of water, analogous to the case for rare-earth elements (e.g. the "garnet signature"). New experimental water partitioning data illuminate these differences. Hydrogen isotope ratios vary in submarine glasses from ocean ridges, back-arc basins and hotspots, and in hydrous phases from arcs and hotspots, suggesting significant hydrogen isotopic variability in the mantle, which may be related to the subduction of water. Water clearly enters the upper mantle at subduction zones, however the full water budget for any single subduction zone is highly uncertain [e.g. 5]. This uncertainty in the water budget at convergent margins indicates that we do not even know whether the present-day net flux of water is into or out of the Earth. This talk will highlight areas of both knowledge and ignorance on the origin and distribution of water in the Earth's mantle. [1] Bell, D.R. & Rossman, G.R., 1992, Science, 255: 1391-1397. [2] Koga, K. et. al, 2002, Geochem. Geophys. Geosys. 4, doi: 10.1029/2002GC000378. [3] Dixon, J. E. et. al, 2002, Nature 420, 385-389. [4] Asimow, P. D. et. al, 2003, Geochem. Geophys. Geosys. 5, doi:10.1029/2003GC000568. [5] Hilton D. R.. et. al, 2002, in Noble Gases in Cosmochemistry and Geochemistry, 47:319-370.

  5. CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure

    NASA Astrophysics Data System (ADS)

    Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.

    2018-06-01

    In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.

  6. Molecular Dynamics of a Water-Lipid Bilayer Interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1994-01-01

    We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.

  7. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  8. Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam).

    PubMed

    Hoang, Hang Thi Thu; Duong, Thi Thuy; Nguyen, Kien Trung; Le, Quynh Thi Phuong; Luu, Minh Thi Nguyet; Trinh, Duc Anh; Le, Anh Hung; Ho, Cuong Tu; Dang, Kim Dinh; Némery, Julien; Orange, Didier; Klein, Judith

    2018-01-08

    Planktons are a major component of food web structure in aquatic ecosystems. Their distribution and community structure are driven by the combination and interactions between physical, chemical, and biological factors within the environment. In the present study, water quality and the community structure of phytoplankton and zooplankton were monthly investigated from January to December 2015 at 11 sampling sites along the gradient course of the Day River (Red River Delta, northern Vietnam). The study demonstrated that the Day River was eutrophic with the average values of total phosphorus concentration 0.17 mg/L, total nitrogen concentration 1.98 mg/L, and Chl a 54 μg/L. Microscopic plankton analysis showed that phytoplankton comprised 87 species belonging to seven groups in which Chlorophyceae, Bacillariophyceae, and Cyanobacteria accounted for the most important constituents of the river's phytoplankton assemblage. A total 53 zooplankton species belonging to three main groups including Copepoda, Cladocera, and Rotatoria were identified. Plankton biomass values were greatest in rainy season (3002.10-3 cell/L for phytoplankton and 12.573 individuals/m 3 for zooplankton). Using principal correspondence and Pearson correlation analyses, it was found that the Day River was divided into three main site groups based on water quality and characteristics of plankton community. Temperature and nutrients (total phosphorus and total nitrogen) are key factors regulating plankton abundance and distribution in the Day River.

  9. Variability of upper ocean thermohaline structure during a MJO event from DYNAMO aircraft observations

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Kalogiros, John; Guy, Nick; Jorgensen, David P.

    2017-02-01

    This paper reports upper ocean thermohaline structure and variability observed during the life cycle of an intense Madden Julian Oscillation (MJO) event occurred in the southern tropical Indian Ocean (14°S-Eq, 70°E-81°E). Water column measurements for this study were collected using airborne expendable probes deployed from NOAA's WP-3D Orion aircraft operated as a part of Dynamics of MJO field experiment conducted during November-December 2011. Purpose of the study is twofold; (1) to provide a statistical analysis of the upper ocean properties observed during different phases of MJO and, (2) to investigate how the upper ocean thermohaline structure evolved in the study region in response to the MJO induced perturbation. During the active phase of MJO, mixed layer depth (MLD) had a characteristic bimodal distribution. Primary and secondary modes were at ˜34 m and ˜65 m, respectively. Spatial heterogeneity of the upper ocean response to the MJO forcing was the plausible reason for bimodal distribution. Thermocline and isothermal layer depth deepened, respectively, by 13 and 19 m from the suppressed through the restoring phase of MJO. Thicker (>30 m) barrier layers were found to occur more frequently in the active phase of MJO, associated with convective rainfalls. Additionally, the water mass analysis indicated that, in the active phase of this MJO event the subsurface was dominated by Indonesian throughflow, nonetheless intrusion of Arabian Sea high saline water was also noted near the equator.

  10. Regional groundwater flow in structurally-complex extended terranes: An evaluation of the sources of discharge at Ash Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Bushman, Michelle; Nelson, Stephen T.; Tingey, David; Eggett, Dennis

    2010-05-01

    SummaryAsh Meadows, Nevada, USA is a site of major groundwater discharge (˜38,000 L/min) in the arid Mojave Desert, and hosts a number of endemic and threatened wetland species. In addition to these resources, Ash Meadows may also represent the future discharge location of radionuclide-laden waters from nuclear weapons testing at the Nevada Test Site. More importantly, however, Ash Meadows provides the opportunity to understand the controls on water transfer between basins through fractured bedrock. 4000+ solute analyses were assembled from the literature into a single database. The data were screened for spatial distribution, completeness, charge balance, and elevated temperatures (⩾20 °C and within regional flow systems), with 246 candidate up-gradient water remaining distributed among six potential source areas in addition to and Ash Meadows itself. These potential sources include both carbonate, volcanic and perhaps valley-fill aquifer systems. These waters were characterized by cluster analysis in order to sort similar waters in an objective fashion into potential flow paths and to establish representative endmember waters for inverse geochemical models and other modes of analysis. Isotopic tracers, both conservative and those reflecting water-rock interaction, all suggest that waters at Ash Meadows are derived by southward flow from volcanic terranes, parallel to the preferred permeability structure induced by active regional east-west extension. Solute balances support this conclusion. However, this runs counter to the prevailing model that waters at Ash Meadows are derived from easterly and northeasterly flows from the Spring Mountains and Pahranagat Valley areas by interbasin flow through a continuous fractured carbonate aquifer. This work suggests that carbonate aquifer systems in extended terranes are more compartmentalized than previously appreciated and that anisotropy in fracture permeability is key to compartmentalization and the control of flow directions.

  11. Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet

    NASA Astrophysics Data System (ADS)

    Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.

    2014-12-01

    The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.

  12. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  13. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant.

    PubMed Central

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-01-01

    To study the structure-function relationship of pulmonary surfactant under conditions close to nature, molecular films of a model system consisting of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, and surfactant-associated protein C were prepared at the air-water interface of air bubbles about the size of human alveoli (diameter of 100 microm). The high mechanical stability as well as the absence of substantial film flow, inherent to small air bubbles, allowed for scanning force microscopy (SFM) directly at the air-water interface. The SFM topographical structure was correlated to the local distribution of fluorescent-labeled dipalmitoylphosphatidylcholine, as revealed from fluorescence light microscopy of the same bubbles. Although SFM has proven before to be exceptionally well suited to probe the structure of molecular films of pulmonary surfactant, the films so far had to be transferred onto a solid support from the air-water interface of a film balance, where they had been formed. This made them prone to artifacts imposed by the transfer. Moreover, the supported monolayers disallowed the direct observation of the structural dynamics associated with expansion and compression of the films as upon breathing. The current findings are compared in this respect to our earlier findings from films, transferred onto a solid support. PMID:11751334

  14. Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.

    PubMed

    Li, Jialin; Li, Nan; Li, Fuchao; Zou, Tao; Yu, Shuxian; Wang, Yinchu; Qin, Song; Wang, Guangyi

    2014-01-01

    The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.

  15. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes.

    PubMed Central

    Hummer, G; García, A E; Soumpasis, D M

    1995-01-01

    A computationally efficient method to describe the organization of water around solvated biomolecules is presented. It is based on a statistical mechanical expression for the water-density distribution in terms of particle correlation functions. The method is applied to analyze the hydration of small nucleic acid molecules in the crystal environment, for which high-resolution x-ray crystal structures have been reported. Results for RNA [r(ApU).r(ApU)] and DNA [d(CpG).d(CpG) in Z form and with parallel strand orientation] and for DNA-drug complexes [d(CpG).d(CpG) with the drug proflavine intercalated] are described. A detailed comparison of theoretical and experimental data shows positional agreement for the experimentally observed water sites. The presented method can be used for refinement of the water structure in x-ray crystallography, hydration analysis of nuclear magnetic resonance structures, and theoretical modeling of biological macromolecules such as molecular docking studies. The speed of the computations allows hydration analyses of molecules of almost arbitrary size (tRNA, protein-nucleic acid complexes, etc.) in the crystal environment and in aqueous solution. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 9 FIGURE 12 FIGURE 13 PMID:7542034

  16. Combined point and distributed techniques for multidimensional estimation of spatial groundwater-stream water exchange in a heterogeneous sand bed-stream.

    NASA Astrophysics Data System (ADS)

    Gaona Garcia, J.; Lewandowski, J.; Bellin, A.

    2017-12-01

    Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using thermal measurements with combined point and distributed techniques requires the integration of physical drivers because of the heterogeneity of the flux patterns. Combined experimental and modeling approaches may help to obtain more reliable understanding of groundwater-surface water interactions at multiple scales.

  17. Effect of water availability in opening containers of breeding site on Aedes aegypti life cycle

    NASA Astrophysics Data System (ADS)

    Tokachil, Najir; Yusoff, Nuraini; Saaid, Alif; Appandi, Najwa; Harun, Farhana

    2017-11-01

    The distribution of rainfall is one of the factors which contribute to the development of Aedes aegypti life cycle. The fluctuation of rainfall might influence the acceleration of Aedes aegypti growth by providing sufficient breeding sites. In this research, the availability of water in an opening container of the breeding site is considered as a significant variable which affects the distinct stages structure in mosquito life cycle which egg, larva, pupa, and adult. A stage-structured Lefkovitch matrix model was used by considering the quantity of water contains in an opening container and life cycle of Aedes aegypti. The maximum depth of water in the container was also taken into account in order to find the time duration of mosquito life cycle to complete. We found that the maximum depth of water availability in mosquito breeding site influenced the abundance of the mosquito population. Hence, the containers are filled with sufficient water be able to stand from hot temperature for several days before drying out might continue to provide mosquito breeding site. In the future, it is recommended to consider other factors which affect the quantity of water in mosquito breeding sites such as heavy rain and wind blows.

  18. Numerical simulations of heat transfer considering hydraulic discontinuity for an enhanced geothermal system development in Seokmo Island, Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.; Hyun, Y.; Lee, K.; Lee, T.

    2011-12-01

    The construction of the first geothermal plant in Korea is under planning in Seokmo Island, where a few artesian wells showing relatively high water temperature of around 70 degrees were discovered lately. Geologic structure in this region is characterized by the fractured granite. Numerical simulations for the temperature evolution in a fractured geothermal reservoir in Seokmo Island under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity in Seokmo Island region, which reflected the analysis from several geophysical explorations and drilled rock core, was generated. Supposing the N05°E, NW83° fracture zone containing the pumping range, the numerical simulation results show that temperature of the extracted geothermal water decreases after 15 years of operation, which decreases the overall efficiency of the expected geothermal plant. This is because the colder water from the injection well, which is 400 m apart, begins to flow into the more permeable fracture zone from the 15th year, resulting in a decrease in temperature near the pumping well. Temperature distribution calculated from the simulation also shows a rise of relatively hot geothermal water along the fracture plane. All of the results are different from the non-fracture MINC model, which shows a low temperature contour in concentric circle shape around the injection well and relatively consistent extracting temperature. This demonstrates that the distribution and the structure of fracture system influence the major mass and heat flow mechanisms in geologic medium. Therefore, an intensive geologic investigation for the fractures including their structure, permeability and connecting relation is important. Acknowledgement This study was financially supported by KIGAM, KETEP and BK21.

  19. Enzymatic activity inside and outside of water-stable aggregates in soils under different land use

    NASA Astrophysics Data System (ADS)

    Garbuz, S. A.; Yaroslavtseva, N. V.; Kholodov, V. A.

    2016-03-01

    A method is presented for assessing the distribution of enzymatic activity inside and outside of water-stable aggregates. Two samples of water-stable aggregates >1 mm have been isolated from dry aggregates of 1-2 mm. To determine the enzymatic activity, a substrate has been added to one of the samples without disaggregation; the other sample has been preliminarily disaggregated. Enzymatic activity within waterstable aggregates has been assessed from the difference between the obtained results under the supposition that the penetration of substrate within the water-saturated aggregates is hampered, and enzymatic reactions occur only at the periphery. The levels and distributions of enzymatic (peroxidase, polyphenol oxidase, and catalase) activities in water-stable aggregates of soddy-podzolic soils under forest and plowland and typical chernozems of long-term field experiments have been studied. The peroxidase, polyphenol oxidase, and catalase activities of water-stable aggregates vary from 6 to 23, from 7 to 30, and from 5 to 7 mmol/(g h), respectively. The ratio between the enzymatic activities inside and outside of soil aggregates showed a higher dependence on soil type and land use, as well as on the input of organic matter and the structural state, than the general activity level in water-stable aggregates.

  20. Pore-water chemistry from the ICDP-USGS coer hole in the Chesapeake Bay impact structure--Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, Ward E.; Voytek, Mary A.; Powars, David S.; Jones, Blair F.; Cozzarelli, Isabelle M.; Eganhouse, Robert P.; Cockell, Charles S.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between fresh and saline water from 100 to 500 m depth in the post-impact sediment section, and an underlying syn-impact section that is almost entirely filled with brine. The presence of brine in the lowermost post-impact section and the trend in the dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting its occurrence may be common in the inner crater. However, groundwater flow conditions in the structure may reduce the salt-water-intrusion hazard associated with the brine.

  1. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  2. Diffuse optical tomography with structured-light patterns to quantify breast density

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2016-02-01

    Breast density is an independent risk factor for breast cancer, where women with denser breasts are more likely to develop cancer. By identifying women at higher risk, healthcare providers can suggest screening at a younger age to effectively diagnose and treat breast cancer in its earlier stages. Clinical risk assessment models currently do not incorporate breast density, despite its strong correlation with breast cancer. Current methods to measure breast density rely on mammography and MRI, both of which may be difficult to use as a routine risk assessment tool. We propose to use diffuse optical tomography with structured-light to measure the dense, fibroglandular (FGT) tissue volume, which has a different chromophore signature than the surrounding adipose tissue. To test the ability of this technique, we performed simulations by creating numerical breast phantoms from segmented breast MR images. We looked at two different cases, one with a centralized FGT distribution and one with a dispersed distribution. As expected, the water and lipid volumes segmented at half-maximum were overestimated for the dispersed case. However, it was noticed that the recovered water and lipid concentrations were lower and higher, respectively, than the centralized case. This information may provide insight into the morphological distribution of the FGT and can be a correction in estimating the breast density.

  3. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    PubMed

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  4. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.

  5. Intrinsically disordered proteins--relation to general model expressing the active role of the water environment.

    PubMed

    Kalinowska, Barbara; Banach, Mateusz; Konieczny, Leszek; Marchewka, Damian; Roterman, Irena

    2014-01-01

    This work discusses the role of unstructured polypeptide chain fragments in shaping the protein's hydrophobic core. Based on the "fuzzy oil drop" model, which assumes an idealized distribution of hydrophobicity density described by the 3D Gaussian, we can determine which fragments make up the core and pinpoint residues whose location conflicts with theoretical predictions. We show that the structural influence of the water environment determines the positions of disordered fragments, leading to the formation of a hydrophobic core overlaid by a hydrophilic mantle. This phenomenon is further described by studying selected proteins which are known to be unstable and contain intrinsically disordered fragments. Their properties are established quantitatively, explaining the causative relation between the protein's structure and function and facilitating further comparative analyses of various structural models. © 2014 Elsevier Inc. All rights reserved.

  6. Review on Water Distribution of Cooling Tower in Power Station

    NASA Astrophysics Data System (ADS)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  7. Response of walleye and yellow perch to water-level fluctuations in glacial lakes

    USGS Publications Warehouse

    Dembkowski, D.J.; Chipps, Steven R.; Blackwell, B. G.

    2014-01-01

    The influence of water levels on population characteristics of yellow perch, Perca flavescens (Mitchill), and walleye, Sander vitreus (Mitchill), was evaluated across a range of glacial lakes in north-eastern South Dakota, USA. Results showed that natural variation in water levels had an important influence on frequently measured fish population characteristics. Yellow perch abundance was significantly (P<0.10) greater during elevated water levels. Yellow perch size structure, as indexed by the proportional size distribution of quality- and preferred-length fish (PSD and PSD-P), was significantly greater during low-water years, as was walleye PSD. Mean relative weight of walleye increased significantly during high-water periods. The dynamic and unpredictable nature of water-level fluctuations in glacial lakes ultimately adds complexity to management of these systems.

  8. Physical-biological coupling in the Amundsen Sea, Antarctica: Influence of physical factors on phytoplankton community structure and biomass

    NASA Astrophysics Data System (ADS)

    Lee, Youngju; Yang, Eun Jin; Park, Jisoo; Jung, Jinyoung; Kim, Tae Wan; Lee, SangHoon

    2016-11-01

    To understand the spatial distribution of phytoplankton communities in various habitats in the Amundsen Sea, western Antarctica, a field survey was conducted at 15 stations during the austral summer, from December 2013 to January 2014. Water samples were analyzed by microscopy. We found high phytoplankton abundance and biomass in the Amundsen Sea polynya (ASP). Their strong positive correlation with water temperature suggests that phytoplankton biomass accumulated in the surface layer of the stratified polynya. In the ASP, the predominant phytoplankton species was Phaeocystis antarctica, while diatoms formed a major group in the sea ice zone, especially Fragilariopsis spp., Chaetoceros spp., and Proboscia spp. Although this large diatom abundance sharply decreased just off the marginal sea ice zone, weakly silicified diatoms, due to their high buoyancy, were distributed at almost all stations on the continental shelf. Dictyocha speculum appeared to favor the area between the marginal sea ice zone and the ASP in contrast to cryptophytes and picophytoplankton, whose abundance was higher in the area between the continental shelf and the open ocean of Amundsen Sea. Several environmental factors were found to affect the spatial variation of phytoplankton species, but the community structure appeared to be controlled mainly by the seawater density related to sea-ice melting and water circulation in the Amundsen Sea.

  9. Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy.

    PubMed

    Kharche, Neerav; Hybertsen, Mark S; Muckerman, James T

    2014-06-28

    The GaN/ZnO alloy functions as a visible-light photocatalyst for splitting water into hydrogen and oxygen. As a first step toward understanding the mechanism and energetics of water-splitting reactions, we investigate the microscopic structure of the aqueous interfaces of the GaN/ZnO alloy and compare them with the aqueous interfaces of pure GaN and ZnO. Specifically, we have studied the (101̄0) surface of GaN and ZnO and the (101̄0) and (12̄10) surfaces of the 1 : 1 GaN/ZnO alloy. The calculations are carried out using first-principles density functional theory based molecular dynamics (DFT-MD). The structure of water within a 3 Å distance from the semiconductor surface is significantly altered by the acid/base chemistry of the aqueous interface. Water adsorption on all surfaces is substantially dissociative such that the surface anions (N or O) act as bases accepting protons from dissociated water molecules while the corresponding hydroxide ions bond with surface cations (Ga or Zn). Additionally, the hard-wall interface presented by the semiconductor imparts ripples in the density of water. Beyond a 3 Å distance from the semiconductor surface, water exhibits a bulk-like hydrogen bond network and oxygen-oxygen radial distribution function. Taken together, these characteristics represent the resting (or "dark") state of the catalytic interface. The electronic structure analysis of the aqueous GaN/ZnO interface suggests that the photogenerated holes may get trapped on interface species other than the adsorbed OH(-) ions. This suggests additional dynamical steps in the water oxidation process.

  10. Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.

    1984-01-01

    A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.

  11. Mesoscale and synoptic scale features of North Pacific weather systems observed with the scanning multichannel microwave radiometer on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.; Lewis, R. M.

    1986-01-01

    Employing data on integrated atmospheric water vapor, total cloud liquid water and rain rate obtainable from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), the frontal structure of several mid-latitude cyclones over the North Pacific Ocean as they approach the West Coast of North America in the winter of 1979. The fronts, analyzed with all available independent data, are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content, which unfortunately has received very little in situ verification, has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is also a good indicator of frontal location and rain amounts are generally within a factor of two of what is observed with rain gauges on the coast. Furthermore, the onset of rain on the coast can often be accurately forecast by simple advection of the SMMR observed rain areas.

  12. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Equatorial and Apical Solvent Shells of the UO₂²⁺ Ion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Pat; Bylaska, Eric J.; Schenter, Gregory K.

    2008-03-08

    First principles molecular dynamics simulations of the hydration shells surrounding UO₂²⁺ ions are reported for temperatures near 300 K. Most of the simulations were done with 64 solvating water molecules (22 ps). Simulations with 122 water molecules (9 ps) were also carried out. The hydration structure predicted from the simulations was found to agree very well known results from X-ray data. The average U=O bond length was found to be 1.77Å . The first hydration shell contained five trigonally coordinated water molecules that were equatorially oriented about the O-U-O axis with the hydrogen atoms oriented away from the uranium atom.more » The five waters in the first shell were located at an average distance of 2.44Å (2.46Å - 122 water simulation). The second hydration shell was composed of distinct equatorial and apical regions resulting in a peak in the U-O radial distribution function at 4.59Å. The equatorial second shell contained 10 water molecules hydrogen-bonded to the five first shell molecules. Above and below the UO₂²⁺ ion, the water molecules were found to be significantly less structured. In these apical regions, water molecules were found to sporadically hydrogen bond to the oxygen atoms of the UO₂²⁺; oriented in such way as to have their protons pointed towards the cation. While the number of apical waters varied greatly, an average of 5-6 waters was found in this region. Many water transfers into and out of the equatorial and apical second solvation shells were observed to occur on a picosecond (ps) time scale via dissociative mechanisms. Beyond these shells, the bonding pattern substantially returned to the tetrahedral structure of bulk water.« less

  14. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.

    PubMed

    Song, Bin; Molinero, Valeria

    2013-08-07

    Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.

  15. Defense Infrastructure: DOD’s 2013 Facilities Corrosion Study Addressed Reporting Elements

    DTIC Science & Technology

    2014-03-27

    the coating system to metal structures helped prevent corrosion and provided resistance to fire . For the second element, to review a sampling of...noted, was to apply an epoxy coating system to metal structures to prevent corrosion and provide fire resistance. In 2006, DOD applied an epoxy... heat exchange  Fuel distribution  Plumbing  Bridge  Fuel storage  Roof  Building exterior—paint  Generator  Signage  Compressor  Hot water

  16. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2012-02-02

    Temperature programmed desorption (TPD) is utilized to determine the length distribution of cracks formed through amorphous solid water (ASW) during crystallization. This distribution is determined by monitoring how the thickness of an ASW overlayer alters desorption of an underlayer of O2. As deposited the ASW overlayer prevents desorption of O2. During crystallization, cracks form through the ASW overlayer and open a path to vacuum which allows O2 to escape in a rapid episodic release known as the 'molecular volcano'. Sufficiently thick ASW overlayers further trap O2 resulting in a second O2 desorption peak commensurate with desorption of the last ofmore » the ASW overlayer. The evolution of this trapping peak with overlayer thickness is the basis for determining the distribution of crystallization induced cracks through the ASW. Reflection adsorption infrared spectroscopy (RAIRS) and TPD of multicomponent parfait structures of ASW, O2 and Kr indicate that a preponderance of these cracks propagate down from the outer surface of the ASW.« less

  17. A 22,000 year record of changing redox conditions from the Peruvian Oxygen Minimum Zone (OMZ): benthic foraminifera approach

    NASA Astrophysics Data System (ADS)

    Erdem, Z.; Schönfeld, J.; Glock, N.

    2015-12-01

    Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment-water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today's world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22-32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.

  18. Predicting the melting temperature of ice-Ih with only electronic structure information as input.

    PubMed

    Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng

    2012-07-07

    The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.

  19. First-Principles Molecular Dynamics Study of a Deep Eutectic Solvent: Choline Chloride/Urea and Its Mixture with Water

    DOE PAGES

    Fetisov, Evgenii O.; Harwood, David B.; Kuo, I-Feng William; ...

    2017-12-07

    First-principles molecular dynamics simulations in the canonical ensemble at temperatures of 333 and 363 K and at the corresponding experimental densities are carried out to investigate the behavior of the 1:2 choline chloride/urea (reline) deep eutectic solvent and its equimolar mixture with water. Analysis of atom–atom radial and spatial distribution functions and of the H-bond network reveals the microheterogeneous structure of these complex liquid mixtures. In neat reline, the structure is governed by strong H-bonds of the trans- and cis-H atoms of urea to the chloride ion. In hydrous reline, water competes for the anions, and the H atoms ofmore » urea have similar propensities to bond to the chloride ions and the O atoms of urea and water. Finally, the vibrational spectra exhibit relatively broad peaks reflecting the heterogeneity of the environment. Although the 100 ps trajectories allow only for a qualitative assessment of transport properties, the simulations indicate that water is more mobile than the other species and its addition also fosters faster motion of urea.« less

  20. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.

    PubMed

    Mori Cortés, Noelia; Lorenzo, Gabriel; Califano, Alicia N

    2018-05-01

    Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fabrication and Characterization of Porous MgAl₂O₄ Ceramics via a Novel Aqueous Gel-Casting Process.

    PubMed

    Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun

    2017-11-30

    A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl₂O₄ ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl₂O₄ ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl₂O₄ ceramics had a high apparent porosity (52.5-65.8%), a small average pore size structure (around 1-3 μm) and a relatively high compressive strength (12-28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al₂O₃-based porous ceramics.

  2. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Danielson, Seth L.; Eisner, Lisa; Ladd, Carol; Mordy, Calvin; Sousa, Leandra; Weingartner, Thomas J.

    2017-01-01

    Survey data from the northern Bering and Chukchi sea continental shelves in August-September 2012 and 2013 reveal inter-annual differences in the spatial structure of water masses along with statistically significant differences in thermohaline properties, chemical properties, and phytoplankton communities. We provide a set of water mass definitions applicable to the northern Bering and Chukchi continental shelves, and we find that the near-bottom Bering-Chukchi Summer Water (BCSW) was more saline in 2012 and Alaskan Coastal Water (ACW) was warmer in 2013. Both of these water masses carried higher nutrient concentrations in 2012, supporting a larger chlorophyll a biomass that was comprised primarily of small (<10 μm) size class phytoplankton, so the classical relation between higher nutrient loads and larger phytoplankton does not hold for this region in late summer. The distributions of phytoplankton biomass and size structure reveal linkages between the wind fields, seafloor topography, water mass distributions and the pelagic production. The water mass structure, including the strength and location of stratification and fronts, respectively, differed primarily because of the August regional wind field, which was more energetic in 2012 but was more persistent in direction in 2013. High concentrations of ice in winter and early spring in 2012 and 2013 resembled conditions of the 1980s and early 1990s but the regional ice retreat rate has accelerated in the late 1990s and 2000s so the summer and fall ice concentrations more closely resembled those of the last two decades. Our data show that wind forcing can shut down the Alaskan Coastal Current in the NE Chukchi Sea for periods of weeks to months during the ice-covered winter and during the summer when buoyancy forcing is at its annual maximum. We hypothesize that a decrease in salinity and nutrients from 2012 to 2013 was a consequence of a decreased net Bering Strait transport from 2011 to 2012. Biological ramifications of an accelerated ice melt-back, restructuring of shelf flow pathways, and inter-annually varying Bering Strait nutrient fluxes are mostly unknown but all of these variations are potentially important to the Arctic ecosystem. Our results have implications for the total magnitude and seasonal evolution of primary productivity, secondary production, and the fate of fresh water, heat, and pelagic production on the Bering-Chukchi shelves.

  3. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  4. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    PubMed

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  5. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.

    PubMed

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm

    2013-09-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.

  6. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  7. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fujiwara, A.; Hirawake, T.; Suzuki, K.; Imai, I.; Saitoh, S.-I.

    2014-04-01

    This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008-2010 were analysed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years-the sea ice retreat in 2008 was 1-2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.

  8. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    name prefix surname suffix, given; Fujiwara, A.; Hirawake, T.; Suzuki, K.; Imai, I.; Saitoh, S.-I.

    2013-09-01

    This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008-2010 were analyzed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years - the sea ice retreat in 2008 was 1-2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.

  9. Spatial and temporal distribution of the vibrionaceae in coastal waters of Hawaii, Australia, and France.

    PubMed

    Jones, B W; Maruyama, A; Ouverney, C C; Nishiguchi, M K

    2007-08-01

    Relatively little is known about large-scale spatial and temporal fluctuations in bacterioplankton, especially within the bacterial families. In general, however, a number of abiotic factors (namely, nutrients and temperature) appear to influence distribution. Community dynamics within the Vibrionaceae are of particular interest to biologists because this family contains a number of important pathogenic, commensal, and mutualist species. Of special interest to this study is the mutualism between sepiolid squids and Vibrio fischeri and Vibrio logei, where host squids seed surrounding waters daily with their bacterial partners. This study seeks to examine the spatial and temporal distribution of the Vibrionaceae with respect to V. fischeri and V. logei in Hawaii, southeastern Australia, and southern France sampling sites. In particular, we examine how the presence of sepiolid squid hosts influences community population structure within the Vibrionaceae. We found that abiotic (temperature) and biotic (host distribution) factors both influence population dynamics. In Hawaii, three sites within squid host habitat contained communities of Vibrionaceae with higher proportions of V. fischeri. In Australia, V. fischeri numbers at host collection sites were greater than other populations; however, there were no spatial or temporal patterns seen at other sample sites. In France, host presence did not appear to influence Vibrio communities, although sampled populations were significantly greater in the winter than summer sampling periods. Results of this study demonstrate the importance of understanding how both abiotic and biotic factors interact to influence bacterial community structure within the Vibrionaceae.

  10. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  11. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments

    NASA Astrophysics Data System (ADS)

    Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.

    2016-07-01

    We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.

  12. Infrared remote sensing of the vertical and horizontal distribution of clouds

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.; Haskins, R. D.

    1982-01-01

    An algorithm has been developed to derive the horizontal and vertical distribution of clouds from the same set of infrared radiance data used to retrieve atmospheric temperature profiles. The method leads to the determination of the vertical atmospheric temperature structure and the cloud distribution simultaneously, providing information on heat sources and sinks, storage rates and transport phenomena in the atmosphere. Experimental verification of this algorithm was obtained using the 15-micron data measured by the NOAA-VTPR temperature sounder. After correcting for water vapor emission, the results show that the cloud cover derived from 15-micron data is less than that obtained from visible data.

  13. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  14. RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface

    NASA Astrophysics Data System (ADS)

    Sahin, Halil Turgut

    2013-01-01

    An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.

  15. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE PAGES

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  16. Weak genetic differentiation in cobia, Rachycentron canadum from Indian waters as inferred from mitochondrial DNA ATPase 6 and 8 genes.

    PubMed

    Joy, Linu; Mohitha, C; Divya, P R; Gopalakrishnan, A; Basheer, V S; Jena, J K

    2016-07-01

    Cobia, Rachycentron canadum, is an economically important migratory fish distributed in tropical waters worldwide and is a candidate fish species for aquaculture practices. The genetic stock structure of R. canadum distributed along the Indian waters was identified using mitochondrial ATPase 6 and 8 genes. A total of 842 bp sequence of ATPase 6/8 genes obtained in this study revealed 15 haplotypes with mean low nucleotide diversity (π = 0.001) and high haplotype diversity (h = 0.785). AMOVA indicated the genetic differentiation of 90.47% for individuals within the population. This is well supported by co-efficient of genetic differentiation (FST) values obtained for pairwise populations that were low and non-significant with an overall value of 0.002. The parsimony network tree revealed star-like phylogeny and all the haplotypes were connected with each other by single mutational event. The findings of the present study indicated the panmixia nature of the species which can be managed as a unit stock in Indian waters.

  17. Dielectric analysis of the APG/n-butanol/cyclohexane/water nonionic microemulsions.

    PubMed

    He, K J; Zhao, K S; Chai, J L; Li, G Z

    2007-09-15

    The nonionic APG/n-butanol/cyclohexane/water microemulsions with different microstructure, which is induced by the variation of water contents, are investigated by the dielectric spectroscopy. An appropriate dielectric theory, Hanai theory and the corresponding analytical method are applied to obtain the internal properties of the constituent phases of microemulsions, such as the relative permittivity and conductivity of continuous and dispersed phases and the volume fraction of dispersed phase. Using these parameters, the distribution of n-butanol in constituent phases, which is of important in the study field of the microstructure of microemulsion, is obtained quantitatively. It is found that the n-butanol molecules not only distribute in the interfacial APG layer but also in the continuous and dispersed phases. In addition, the percolation threshold is interpreted by using the dynamic percolation model. The structural and dynamic information are obtained, for instance, the critical volume fraction of water when percolation occurs and the characteristic time for the rearrangement of clusters. These parameters are intimately related to the properties of microemulsions, especially the characteristics of the interfacial layer.

  18. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants.

    PubMed

    Rougé, Pierre; Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical alpha-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution of electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH4+) and gas (NH(3)) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.

  19. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouge, Pierre; Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical {alpha}-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution ofmore » electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH{sub 4}{sup +}) and gas (NH{sub 3}) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.« less

  20. De nouveaux éléments structuraux du complexe aquifère profond du bassin du Rharb (Maroc) : implications hydrogéologiques

    NASA Astrophysics Data System (ADS)

    Kili, Malika; El Mansouri, Bouabid; Chao, Jamal; Fora, Abderrahman Ait

    2006-12-01

    The Rharb basin is located in northwestern Morocco. It is a part of one of the most important hydrogeological basins of Morocco, and extends over some 4000 km 2. The nature of its Plio-Quaternary sedimentary fill and its structural and palaeoenvironmental contexts are reflected by great variations in aerial and temporal facies distribution. This distribution, in turn, is a direct cause of the observed complexity in the geometry of potentially water-bearing beds. In the present work, we present an image of potential new hydrogeological reservoirs and define new structures that partially explain their architecture. To cite this article: M. Kili et al., C. R. Geoscience 338 (2006).

  1. Comparison of the structure of lower and upper estuary food webs for Yaquina Bay (OR)

    EPA Science Inventory

    Food web models can be used to estimate effects of water quality, habitat distribution or species loss on productivity, carbon flow and ecosystem service production in Pacific NW estuaries. Here we present a comparison of floral and faunal data used to parameterize food web mode...

  2. 7 CFR 1781.7 - Loan and advance limitations and obligations incurred before loan closing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Land treatment measures on individual farms except as provided in § 1781.6(a)(5)(iv). (ii) Buildings... structural measures for flood prevention. (v) Facilities for the production and harvesting of fish and.... (xv) Primarily for water and sewage treatment plants and distribution systems. (xvi) Drainage...

  3. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  4. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals.

    PubMed Central

    Anderson, D M; Gruner, S M; Leibler, S

    1988-01-01

    Bicontinuous cubic phases, composed of bilayers arranged in the geometries of periodic minimal surfaces, are found in a variety of different lipid/water systems. It has been suggested recently that these cubic structures arrive as the result of competition between two free-energy terms: the curvature energy of each monolayer and the stretching energy of the lipid chains. This scenario, closely analogous to the one that explains the origin of the hexagonal phases, is investigated here by means of simple geometrical calculations. It is first assumed that the lipid bilayer is of constant thickness and the distribution of the (local) mean curvature of the phospholipid-water interfaces is calculated. Then, assuming the mean curvature of these interfaces is constant, the distribution of the bilayer's thickness is calculated. Both calculations quantify the fact that the two energy terms are frustrated and cannot be satisfied simultaneously. However, the amount of the frustration can be smaller for the cubic phase than for the lamellar and hexagonal structures. Therefore, this phase can appear in the phase diagram between the other two, as observed in many recent experiments. PMID:3399497

  5. Regional Evaluation of Groundwater Age Distributions Using Lumped Parameter Models with Large, Sparse Datasets: Example from the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Jurgens, B. C.; Bohlke, J. K.; Voss, S.; Fram, M. S.; Esser, B.

    2015-12-01

    Tracer-based, lumped parameter models (LPMs) are an appealing way to estimate the distribution of age for groundwater because the cost of sampling wells is often less than building numerical groundwater flow models sufficiently complex to provide groundwater age distributions. In practice, however, tracer datasets are often incomplete because of anthropogenic or terrigenic contamination of tracers, or analytical limitations. While age interpretations using such datsets can have large uncertainties, it may still be possible to identify key parts of the age distribution if LPMs are carefully chosen to match hydrogeologic conceptualization and the degree of age mixing is reasonably estimated. We developed a systematic approach for evaluating groundwater age distributions using LPMs with a large but incomplete set of tracer data (3H, 3Hetrit, 14C, and CFCs) from 535 wells, mostly used for public supply, in the Central Valley, California, USA that were sampled by the USGS for the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment or the USGS National Water Quality Assessment Programs. In addition to mean ages, LPMs gave estimates of unsaturated zone travel times, recharge rates for pre- and post-development groundwater, the degree of age mixing in wells, proportion of young water (<60 yrs), and the depth of the boundary between post-development and predevelopment groundwater throughout the Central Valley. Age interpretations were evaluated by comparing past nitrate trends with LPM predicted trends, and whether the presence or absence of anthropogenic organic compounds was consistent with model results. This study illustrates a practical approach for assessing groundwater age information at a large scale to reveal important characteristics about the age structure of a major aquifer, and of the water supplies being derived from it.

  6. Clouds and Water Vapor in the Climate System: Remotely Piloted Aircraft and Satellites

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1999-01-01

    The objective of this work was to attack unanswered questions that lie at the intersection of radiation, dynamics, chemistry and climate. Considerable emphasis was placed on scientific collaboration and the innovative development of instruments required to address these scientific issues. The specific questions addressed include: Water vapor distribution in the Tropical Troposphere: An understanding of the mechanisms that dictate the distribution of water vapor in the middle-upper troposphere; Atmospheric Radiation: In the spectral region between 200 and 600/cm that encompasses the water vapor rotational and continuum structure, where most of the radiative cooling of the upper troposphere occurs, there is a critical need to test radiative transfer calculations using accurate, spectrally resolved radiance observations of the cold atmosphere obtained simultaneously with in situ species concentrations; Thin Cirrus: Cirrus clouds play a central role in the energy and water budgets of the tropical tropopause region; Stratosphere-Troposphere Exchange: Assessment of our ability to predict the behavior of the atmosphere to changes in the boundary conditions defined by thermal, chemical or biological variables; Correlative Science with Satellite Observations: Linking this research to the developing series of EOS observations is critical for scientific progress.

  7. Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms

    PubMed Central

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories. PMID:22075624

  8. Pronounced microheterogeneity in a sorbitol-water mixture observed through variable temperature neutron scattering.

    PubMed

    Chou, Shin G; Soper, Alan K; Khodadadi, Sheila; Curtis, Joseph E; Krueger, Susan; Cicerone, Marcus T; Fitch, Andrew N; Shalaev, Evgenyi Y

    2012-04-19

    In this study, the structure of concentrated d-sorbitol-water mixtures is studied by wide- and small-angle neutron scattering (WANS and SANS) as a function of temperature. The mixtures are prepared using both deuterated and regular sorbitol and water at a molar fraction of sorbitol of 0.19 (equivalent to 70% by weight of regular sorbitol in water). Retention of an amorphous structure (i.e., absence of crystallinity) is confirmed for this system over the entire temperature range, 100-298 K. The glass transition temperature, Tg, is found from differential scanning calorimetry to be approximately 200 K. WANS data are analyzed using empirical potential structure refinement, to obtain the site-site radial distribution functions (RDFs) and coordination numbers. This analysis reveals the presence of nanoscaled water clusters surrounded by (and interacting with) sorbitol molecules. The water clusters appear more structured compared to bulk water and, especially at the lowest temperatures, resemble the structure of low-density amorphous ice (LDA). Upon cooling to 100 K the peaks in the water RDFs become markedly sharper, with increased coordination number, indicating enhanced local (nanometer-scale) ordering, with changes taking place both above and well below the Tg. On the mesoscopic (submicrometer) scale, although there are no changes between 298 and 213 K, cooling the sample to 100 K results in a significant increase in the SANS signal, which is indicative of pronounced inhomogeneities. This increase in the scattering is partly reversed during heating, although some hysteresis is observed. Furthermore, a power law analysis of the SANS data indicates the existence of domains with well-defined interfaces on the submicrometer length scale, probably as a result of the appearance and growth of microscopic voids in the glassy matrix. Because of the unusual combination of small and wide scattering data used here, the present results provide new physical insight into the structure of aqueous glasses over a broad temperature and length scale, leading to an improved understanding of the mechanisms of temperature- and water-induced (de)stabilization of various systems, including proteins, pharmaceuticals, and biological objects.

  9. Shift in the microbial community composition of surface water and sediment along an urban river.

    PubMed

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO 3 - (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Water use efficiency and integrated water resource management for river basin

    NASA Astrophysics Data System (ADS)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  11. The Mineralogy of Martian Dust: Design and Analysis Considerations for an X-Ray Diffraction/X-Ray Fluorescence (XRD/XRF) Instrument for Exobiological Studies

    NASA Technical Reports Server (NTRS)

    Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)

    1994-01-01

    A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.

  12. New Insights on Water Buffalo Genomic Diversity and Post-Domestication Migration Routes From Medium Density SNP Chip Data.

    PubMed

    Colli, Licia; Milanesi, Marco; Vajana, Elia; Iamartino, Daniela; Bomba, Lorenzo; Puglisi, Francesco; Del Corvo, Marcello; Nicolazzi, Ezequiel L; Ahmed, Sahar S E; Herrera, Jesus R V; Cruz, Libertado; Zhang, Shujun; Liang, Aixin; Hua, Guohua; Yang, Liguo; Hao, Xingjie; Zuo, Fuyuan; Lai, Song-Jia; Wang, Shuilian; Liu, Ruyu; Gong, Yundeng; Mokhber, Mahdi; Mao, Yongjiang; Guan, Feng; Vlaic, Augustin; Vlaic, Bogdan; Ramunno, Luigi; Cosenza, Gianfranco; Ahmad, Ali; Soysal, Ihsan; Ünal, Emel Ö; Ketudat-Cairns, Mariena; Garcia, José F; Utsunomiya, Yuri T; Baruselli, Pietro S; Amaral, Maria E J; Parnpai, Rangsun; Drummond, Marcela G; Galbusera, Peter; Burton, James; Hoal, Eileen; Yusnizar, Yulnawati; Sumantri, Cece; Moioli, Bianca; Valentini, Alessio; Stella, Alessandra; Williams, John L; Ajmone-Marsan, Paolo

    2018-01-01

    The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.

  13. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions.

    PubMed

    Takahashi, Yoshio; Tada, Akisa; Shimizu, Hiroshi

    2004-09-01

    REE (rare earth element) distribution coefficients (Kd) between the aqueous phase and montmorillonite surface were obtained to investigate the relation between the REE distribution patterns and the species of REE sorbed on the solid-water interface. It was shown that the features in the REE patterns, such as the slope of the REE patterns, the tetrad effect, and the Y/Ho ratio, were closely related to the REE species at the montmorillonite-water interface. In a binary system (REE-montmorillonite) below pH 5, three features (a larger Kd value for a lighter REE, the absence of the tetrad effect, and the Y/Ho ratio being unchanged from its initial value) suggest that hydrated REE are directly sorbed as an outer-sphere complex at the montmorillonite-water interface. Above pH 5.5, the features in the REE patterns, the larger Kd value for heavier REE, the M-type tetrad effect, and the reduced Y/Ho ratio, showed the formation of an inner-sphere complex of REE with -OH group at the montmorillonite surface. In addition, the REE patterns in the presence of humic acid at pH 5.9 were also studied, where the REE patterns became flat, suggesting that the humate complex is dominant as both dissolved and sorbed species of REE in the ternary system. All of these results were consistent with the spectroscopic data (laser-induced fluorescence spectroscopy) showing the local structure of Eu(III) conducted in the same experimental system. The present results suggest that the features in the REE distribution patterns include information on the REE species at the solid-water interface.

  14. New Insights on Water Buffalo Genomic Diversity and Post-Domestication Migration Routes From Medium Density SNP Chip Data

    PubMed Central

    Colli, Licia; Milanesi, Marco; Vajana, Elia; Iamartino, Daniela; Bomba, Lorenzo; Puglisi, Francesco; Del Corvo, Marcello; Nicolazzi, Ezequiel L.; Ahmed, Sahar S. E.; Herrera, Jesus R. V.; Cruz, Libertado; Zhang, Shujun; Liang, Aixin; Hua, Guohua; Yang, Liguo; Hao, Xingjie; Zuo, Fuyuan; Lai, Song-Jia; Wang, Shuilian; Liu, Ruyu; Gong, Yundeng; Mokhber, Mahdi; Mao, Yongjiang; Guan, Feng; Vlaic, Augustin; Vlaic, Bogdan; Ramunno, Luigi; Cosenza, Gianfranco; Ahmad, Ali; Soysal, Ihsan; Ünal, Emel Ö.; Ketudat-Cairns, Mariena; Garcia, José F.; Utsunomiya, Yuri T.; Baruselli, Pietro S.; Amaral, Maria E. J.; Parnpai, Rangsun; Drummond, Marcela G.; Galbusera, Peter; Burton, James; Hoal, Eileen; Yusnizar, Yulnawati; Sumantri, Cece; Moioli, Bianca; Valentini, Alessio; Stella, Alessandra; Williams, John L.; Ajmone-Marsan, Paolo

    2018-01-01

    The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species. PMID:29552025

  15. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    PubMed

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  16. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    PubMed Central

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  17. Numerical simulation of hydrodynamic processes beneath a wind-driven water surface

    NASA Astrophysics Data System (ADS)

    Tsai, Wu-ting

    Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.

  18. The Effect of Water Molecules on Mechanical Properties of Cell Walls

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Youssefian, Sina

    The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.

  19. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    NASA Astrophysics Data System (ADS)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.

  20. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    NASA Astrophysics Data System (ADS)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow hillslope compartments are controlled by topography, and therefore application and further development of the simple "kinematic pathway" approach is promising for their modeling.

  1. The properties of residual water molecules in ionic liquids: a comparison between direct and inverse Kirkwood-Buff approaches.

    PubMed

    Kobayashi, Takeshi; Reid, Joshua E S J; Shimizu, Seishi; Fyta, Maria; Smiatek, Jens

    2017-07-26

    We study the properties of residual water molecules at different mole fractions in dialkylimidazolium based ionic liquids (ILs), namely 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM/BF 4 ) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM/BF 4 ) by means of atomistic molecular dynamics (MD) simulations. The corresponding Kirkwood-Buff (KB) integrals for the water-ion and ion-ion correlation behavior are calculated by a direct evaluation of the radial distribution functions. The outcomes are compared to the corresponding KB integrals derived by an inverse approach based on experimental data. Our results reveal a quantitative agreement between both approaches, which paves a way towards a more reliable comparison between simulation and experimental results. The simulation outcomes further highlight that water even at intermediate mole fractions has a negligible influence on the ion distribution in the solution. More detailed analysis on the local/bulk partition coefficients and the partial structure factors reveal that water molecules at low mole fractions mainly remain in the monomeric state. A non-linear increase of higher order water clusters can be found at larger water concentrations. For both ILs, a more pronounced water coordination around the cations when compared to the anions can be observed, which points out that the IL cations are mainly responsible for water pairing mechanisms. Our simulations thus provide detailed insights in the properties of dialkylimidazolium based ILs and their effects on water binding.

  2. Benthic foraminifera as indicators of habitat in a Mediterranean delta: implications for ecological and palaeoenvironmental studies

    NASA Astrophysics Data System (ADS)

    Benito, Xavier; Trobajo, Rosa; Cearreta, Alejandro; Ibáñez, Carles

    2016-10-01

    The ecology and modern distribution of benthic foraminiferal assemblages were analysed in the Ebro Delta (NW Mediterranean Sea). Foraminiferal distributions were from 191 sediment surface samples covering a wide range of deltaic habitats and adjacent open sea areas. According to similarity in species composition, cluster analysis identified four habitat types: (1) offshore habitat, (2) nearshore and outer bays, (3) salt and brackish marshes and (4) coastal lagoons and inner bays. Canonical Correspondence Analysis identified water depth, salinity and sand content as the main environmental factors structuring living foraminiferal assemblages. Partial Canonical Correspondence Analysis revealed water depth as the most statistically significant associated with the distribution of modern foraminifera in the Ebro Delta. Thus, a transfer function for water depth using Weighted Average Partial Least Squares regression was successfully developed. Although depth per se is unlikely to affect the foraminifera directly but will exert its effects via various environmental variables that co-vary with depth in the deltaic habitats (e.g. hydrodynamics, oxygen, food availability, etc), the resulting model (r2 = 0.89; RMSEP = 0.32 log10 m) suggested a strong correlation between observed and foraminifera-predicted water depths, and therefore provided a potentially useful tool for water-depth reconstructions in the Ebro Delta. This work indicated the potential role of modern foraminifera as quantitative indicators of water depth and habitat types in the Ebro Delta. This complementary approach (transfer function and indicator species) will allow reconstruction of the palaeoenvironmental changes that have occurred in the Ebro Delta based on the benthic foraminiferal record.

  3. Nonstationary frequency analysis for the trivariate flood series of the Weihe River

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Xiong, Lihua

    2016-04-01

    Some intensive human activities such as water-soil conservation can significantly alter the natural hydrological processes of rivers. In this study, the effect of the water-soil conservation on the trivariate flood series from the Weihe River located in the Northwest China is investigated. The annual maxima daily discharge, annual maxima 3-day flood volume and annual maxima 5-day flood volume are chosen as the study data and used to compose the trivariate flood series. The nonstationarities in both the individual univariate flood series and the corresponding antecedent precipitation series generating the flood events are examined by the Mann-Kendall trend test. It is found that all individual univariate flood series present significant decreasing trend, while the antecedent precipitation series can be treated as stationary. It indicates that the increase of the water-soil conservation land area has altered the rainfall-runoff relationship of the Weihe basin, and induced the nonstationarities in the three individual univariate flood series. The time-varying moments model based on the Pearson type III distribution is applied to capture the nonstationarities in the flood frequency distribution with the water-soil conservation land area introduced as the explanatory variable of the flood distribution parameters. Based on the analysis for each individual univariate flood series, the dependence structure among the three univariate flood series are investigated by the time-varying copula model also with the water-soil conservation land area as the explanatory variable of copula parameters. The results indicate that the dependence among the trivariate flood series is enhanced by the increase of water-soil conservation land area.

  4. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors

    USGS Publications Warehouse

    Leland, Harry V.

    1995-01-01

    Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.

  5. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use and other environmental factors

    USGS Publications Warehouse

    Leland, Harry V.

    1995-01-01

    Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.

  6. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Supercritical bedforms and sedimentary structures from field and core studies, Middle Eocene deep-marine base-of-slope environment, Ainsa Basin, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Cornard, Pauline; Pickering, Kevin

    2017-04-01

    In recent years, many researchers have focussed on supercritical- and subcritical-flow deposits using flume-tank experiments (e.g., Cartigny el al., 2011; Postma et al., 2014; Postma and Cartigny, 2014), or from direct observations on presently active deep-water systems (e.g., Hughes et al., 2012). Using outcrop and core examples from a base-of-slope environment in the Middle Eocene Ainsa Basin, Spanish Pyrenees, and with published experimental work, a range of deposits are interpreted as upper-flow regime sedimentary structures. This contribution focusses on the interpretation of several supercritical bedforms (antidunes and chutes-and-pools) observed on the field and upper-flow regime sedimentary structures recognized in cores. The spatial distribution of supercritical-flow deposits obtained from an analysis of field outcrops and core sedimentary logs are evaluated in relation to the depositional environment (channel axis, off-axis, margin and interfan). The frequency distributions of the bed thicknesses are also analysed in relation to supercritical versus subcritical bed-thickness distributions.

  8. Contrasting water strategies of two Mediterranean shrubs of limited distribution: uncertain future under a drier climate.

    PubMed

    Lázaro-Nogal, Ana; Forner, Alicia; Traveset, Anna; Valladares, Fernando

    2013-12-01

    Plants have evolved different strategies to cope with drought, involving alternative ecophysiologies and different levels of plasticity. These strategies are critical for species of limited distribution, which are especially vulnerable to the current rates of rapid environmental change. The aim of this study was to assess the water strategy of two species with limited distribution, Cneorum tricoccon L. and Rhamnus ludovici-salvatoris Chodat., and evaluate their interpopulation variability along an aridity gradient to estimate their vulnerability to a drier climate. We measured different ecophysiological traits influenced by drought--stomatal conductance, maximum photochemical efficiency of photosynthesis II, carbon isotope ratio and chlorophyll concentration--in two climatically contrasting years, before and during summer drought. Both species were vulnerable to drought at the aridity limit of the gradient, but showed contrasting water strategies: while C. tricoccon was consistent in its water conservation strategy across the aridity gradient, R. ludovici-salvatoris was not, displaying higher and more variable stomatal conductances and being able to increase water-use efficiency at the most xeric sites. Changes in length and intensity of drought events may favor one species' strategy to the detriment of the other: C. tricoccon is more vulnerable to chronic and prolonged droughts, whereas short but acute droughts might have a stronger effect on R. ludovici-salvatoris. In those communities where these two species coexist, such different strategies might lead to changes in community structure under climate change scenarios, with unknown cascade effects on ecosystem functioning.

  9. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  10. Recent and historic drivers of landscape change in the Everglades ridge, slough, and Tree Island mosaic

    USGS Publications Warehouse

    Larsen, Laurel G.; Nicholas Aumen,; Bernhardt, Christopher E.; Vic Engel,; Givnish, Thomas J.; S Hagerthey, P McCormick; Harvey, Judson; Lynn Leonard,; McCormick, P.; McVoy, Christopher; Noe, Gregory; Nungesser, Martha K.; Rutchey, K.; Sklar, Fred; Troxler, Tiffany G.; Volin, John C.; Willard, Debra A.

    2011-01-01

    More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.

  11. Biogeochemical control points in a water-limited critical zone

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Brooks, P. D.; Gallery, R. E.; McIntosh, J. C.; Olshansky, Y.; Rasmussen, C.

    2017-12-01

    The routing of water and carbon through complex terrain is postulated to control structure evolution in the sub-humid critical zone of the southwestern US. By combining measurements of land-atmosphere exchange, ecohydrologic partitioning, and subsurface biogeochemistry, we seek to quantify how a heterogeneous (in time and space) distribution of "reactants" impacts both short-term (sub-)catchment response (e.g., pore and surface water chemical dynamics) and long-term landscape evolution (e.g., soil geochemistry/morphology and regolith weathering depth) in watersheds underlain by rhyolite and schist. Instrumented pedons in convergent, planar, and divergent landscape positions show distinct depth-dependent responses to precipitation events. Wetting front propagation, dissolved carbon flux and associated biogeochemical responses (e.g., pulses of CO2 production, O2 depletion, solute release) vary with topography, revealing the influence of lateral subsidies of water and carbon. The impacts of these episodes on the evolution of porous media heterogeneity is being investigated by statistical analysis of pore water chemistry, chemical/spectroscopic studies of solid phase organo-mineral products, sensor-derived water characteristic curves, and quantification of co-located microbial community activity/composition. Our results highlight the interacting effects of critical zone structure and convergent hydrologic flows in the evolution of biogeochemical control points.

  12. In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance

    PubMed Central

    Kim, Byoung Chul; Yamamoto, Takuji; Kim, Young Han

    2015-01-01

    A quartz crystal microbalance (QCM) was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate) (PMMA) binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread. PMID:26516859

  13. Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Shatova, O. A.; Wing, S. R.; Hoffmann, L. J.; Wing, L. C.; Gault-Ringold, M.

    2017-05-01

    Phytoplankton biomass, productivity and community structure are strongly influenced by differences in nutrient concentrations among oceanographic water masses. Changes in community composition, particularly in the distribution of cell sizes, can result in dramatic changes in the energetics of pelagic food webs and ecosystem function in terms of biogeochemical cycling and carbon sequestration. Here we examine responses of natural phytoplankton communities from four major water masses in the Southern Ocean to enrichment from seabird guano, a concentrated source of bioactive metals (Mn, Fe, Co, Ni, Cu, Zn) and macronutrients (N, P), in a series of incubation experiments. Phytoplankton communities from sub-tropical water, modified sub-tropical water from the Snares Island wake, sub-Antarctic water and Antarctic water from the Ross Sea, each showed dramatic changes in community structure following additions of seabird guano. We observed particularly high growth of prymnesiophytes in response to the guano-derived nutrients within sub-Antarctic and sub-tropical frontal zones, resulting in communities dominated by larger cell sizes than in control incubations. Community changes within treatments enriched with guano were distinct, and in most cases more extensive, than those observed for treatments with additions of macronutrients (N, P) or iron (Fe) alone. These results provide the first empirical evidence that seabird guano enrichment can drive significant changes in the structure and composition of natural phytoplankton communities. Our findings have important implications for understanding the consequences of accumulation of bioactive metals and macronutrients within food webs and the role of seabirds as nutrient vectors within the Southern Ocean ecosystem.

  14. The transformation of amorphous calcium carbonate, ACC, to crystalline phases as function of time and temperature.

    NASA Astrophysics Data System (ADS)

    Gies, Hermann; Happel, Marian; Niedermayr, Andrea; Immenhauser, Adrian

    2017-04-01

    We present results from a structural study of the transformation of freeze dried amorphous calcium carbonate, ACC, in crystalline material using pair distribution function analysis, PDF analysis, of X-ray powder diffraction data, XPD data. PDF analysis allows for the analysis of local order of structural subunit in the range between molecular unit (1. and 2. coordination sphere) and long range periodicity as in crystalline materials. ACC was precipitated from aqueous solutions at 298 K and 278 K using different amounts of Mg cations as stabilizer. The samples were immediately separated from the solution and freeze dried. For the transformation study, the samples were heated and analysed using XPD until they were crystallized. The radial distribution obtained from the XPD data were compared to simulated radial distributions of the calcium carbonate polymorphs and their hydrated phases. An ACC precipitated from a solution with Ca:Mg:CO3 = 1:5:4 at 298 K (ration in mmol, pH = 8.2) and freeze dried right after isolation from the solution revealed a close resemblance with ikaite in its local order. Another ACC with Ca:Mg:CO3 = 1:10:1.4 (T = 298, pH = 8.7) showed distinctly different local order resembling monohydrocalcite. Both ACC, however, still had considerable amounts of water dominating the Ca-coordination sphere. During the transformation to calcite, the structural changes in the sample concerned the hydrate water coordinating Ca which was removed and replaced by the carbonate oxygens. The study shows that ACC obtained from different starting solutions show specific local order. Freeze drying leads to solid ACC powder which still contain considerable amounts of hydrate water. Structural subunits are distinct in ACC and different from the crystalline phase. The study supplements recent reports presented by Konrad et al., Purgstaller et al., and Tobler et al.. F. Konrad et al., Cryst. Growth Des. 16, 6310-6317(2016) B. Purgstaller et al., Geochimica et Cosmochimica Acta 174, 180-195(2016) DJ. Tobler et al., Cryst. Growth Des. 16, 4500-4508(2016)

  15. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  16. Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    NASA Technical Reports Server (NTRS)

    Grassl, H.; Doerffer, R.; Fischer, J.; Brockmann, C.; Stoessel, M.

    1987-01-01

    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes.

  17. Picoplankton distribution influenced by thermohaline circulation in the southern Adriatic

    NASA Astrophysics Data System (ADS)

    Šilović, Tina; Mihanović, Hrvoje; Batistić, Mirna; Radić, Iris Dupčić; Hrustić, Enis; Najdek, Mirjana

    2018-03-01

    In this study, we focus on the interactive dynamics between physico-chemical processes and picoplankton distribution in order to advance our current understanding of the roles of various parameters in regulating picoplankton community structure in highly dynamic marine system such as the South Adriatic Sea. The research was carried out between October 2011 and September 2012 along the transect in the northern part of the South Adriatic Pit. The deep water convection occurred in the southern Adriatic during February 2012, with vertical mixing reaching the depth of 500 m. The picoplankton community was highly affected by this mixing event, whilst its compartments each responded differently. During deep water convection low nucleic acid heterotrophic bacteria (LNA HB) and Synechococcus had their lowest abundances (4 × 105 cell ml-1 and 8 × 102 cell ml-1, respectively), picoeucaryotes had their highest abundances (104 cell ml-1), while Prochlorococcus was absent from the area, most likely due to intense cooling and vertical mixing. In March 2012 Eastern Adriatic Current (EAC) brought warm and saline water with more nutrients, which resulted in the proliferation of high nucleic acid heterotrophic bacteria (HNA HB), having maximal abundance (4 × 105 cell ml-1). The re-establishment of Levantine Intermediate Water (LIW) intrusion after the deep water convection resulted in the re-appearance of Prochlorococcus and maximal abundances of Synechococcus (4 × 104 cell ml-1) in May 2012. The distribution of picoheterotrophs was mainly explained by the season, while the distribution of picophytoplankton was explained by the depth. Aside from nutrients, salinity was an important parameter, affecting particularly Prochlorococcus. The re-appearance of Prochlorococcus in the southern Adriatic during the period of LIW intrusion, together with their correlation with salinity, indicates their potential association with LIW. The relationship between Prochloroccocus distribution and physico-chemical environmental parameters provides an important insight into the ecological roles and niche preferences of this group.

  18. Correlation of porous and functional properties of food materials by NMR relaxometry and multivariate analysis.

    PubMed

    Haiduc, Adrian Marius; van Duynhoven, John

    2005-02-01

    The porous properties of food materials are known to determine important macroscopic parameters such as water-holding capacity and texture. In conventional approaches, understanding is built from a long process of establishing macrostructure-property relations in a rational manner. Only recently, multivariate approaches were introduced for the same purpose. The model systems used here are oil-in-water emulsions, stabilised by protein, and form complex structures, consisting of fat droplets dispersed in a porous protein phase. NMR time-domain decay curves were recorded for emulsions with varied levels of fat, protein and water. Hardness, dry matter content and water drainage were determined by classical means and analysed for correlation with the NMR data with multivariate techniques. Partial least squares can calibrate and predict these properties directly from the continuous NMR exponential decays and yields regression coefficients higher than 82%. However, the calibration coefficients themselves belong to the continuous exponential domain and do little to explain the connection between NMR data and emulsion properties. Transformation of the NMR decays into a discreet domain with non-negative least squares permits the use of multilinear regression (MLR) on the resulting amplitudes as predictors and hardness or water drainage as responses. The MLR coefficients show that hardness is highly correlated with the components that have T2 distributions of about 20 and 200 ms whereas water drainage is correlated with components that have T2 distributions around 400 and 1800 ms. These T2 distributions very likely correlate with water populations present in pores with different sizes and/or wall mobility. The results for the emulsions studied demonstrate that NMR time-domain decays can be employed to predict properties and to provide insight in the underlying microstructural features.

  19. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    NASA Astrophysics Data System (ADS)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and associated taxa were distributed throughout the spectrum of sites surveyed. Implications for the identification and conservation of saline lagoons are discussed.

  20. Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.; Sarin, P; Provis, J

    2008-01-01

    The atomic pair distribution function (PDF) method was used to study the structure of cesium aluminosilicate geopolymer. The geopolymer was prepared by reacting metakaolin with cesium silicate solution followed by curing at 50C for 24 h in a sealed container. Heating of Cs-geopolymer above 1000C resulted in formation of crystalline pollucite (CsAlSi{sub 2}O{sub 6}). PDF refinement of the pollucite phase formed displayed an excellent fit over the 10-30 {angstrom} range when compared with a cubic pollucite model. A poorer fit was attained from 1-10 {angstrom} due to an additional amorphous phase present in the heated geopolymer. On the basis ofmore » PDF analysis, unheated Cs-geopolymer displayed structural ordering similar to pollucite up to a length scale of 9 {angstrom}, despite some differences. Our results suggest that hydrated Cs{sup +} ions were an integral part of the Cs-geopolymer structure and that most of the water present was not associated with Al-OH or Si-OH bonds.« less

Top