Science.gov

Sample records for water freezing point

  1. Reproducing Black's experiments: freezing point depression and supercooling of water

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, C.; Fiolhais, M.

    2002-01-01

    We carried out two historical experiments referred to by Joseph Black, one on freezing mixtures of salted water with ice and another on freezing supercooled pure water by a small disturbance. The results confirm thermodynamical predictions for the depression of the freezing point of salted water and for the latent heat of freezing of supercooled water respectively, which came after Black. The depression of the freezing point can hardly be fitted in the framework of the caloric theory of heat, which was taken for granted by Black, and the instantaneous freezing of supercooled water also poses some difficulties for that theory.

  2. Cavitation in water under tension near the freezing point

    SciTech Connect

    Sosikov, V. A. Utkin, A. V.; Fortov, V. E.

    2008-05-15

    Experiments are reported on cavitation in water at an initial temperature of 0.7 deg. C under the dynamic tension created when a compression wave interacts with a free liquid surface. It is found that the tensile strength of water increases from 20 to 50 MPa as the strain rate is varied from 1.8 x 10{sup 4} to 5.2 x 10{sup 4} s{sup -1}. It is shown that the phase state of water obtained in experiments is in a double metastable region.

  3. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.

    PubMed

    Lee, Dong-Kuk; Kwon, Byung Soo; Ramamoorthy, Ayyalusamy

    2008-12-02

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.

  4. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.

    PubMed

    Foroutan, Masumeh; Fatemi, S Mahmood; Shokouh, F

    2016-05-01

    In this work, the melting/freezing point of confined water between two graphene sheets was calculated from the direct coexistence of the solid-liquid interface. Also, molecular dynamics simulation of confined liquid water-ice between two graphene sheets was applied. The phase transition temperature of the confined ice-water mixture was calculated as 240K that was 29K less than the non-confined ice-water system. In order to study the behavior of water molecules at different distances from the graphene sheets, 5 regions were provided using some imaginary planes, located between two graphene sheets. The obtained simulation results showed that water molecules located in the region near each graphene sheet with the thickness of 2nm had a different behavior from other water molecules located in other regions. The results demonstrated that water molecules in the vicinity of graphene sheets had more mean square displacements than those in the middle regions.

  5. Measurement of freezing point depression of water in glass capillaries and the associated ice front shape.

    PubMed

    Liu, Zhihong; Muldrew, Ken; Wan, Richard G; Elliott, Janet A W

    2003-06-01

    Variations of the Kelvin equation [W. Thomson, Philos. Mag. 42, 448 (1871)] to describe the freezing point depression of water in capillaries exist in the literature. The differing equations, coupled with the uncertainty in input parameters, lead to various predictions. The difference between the predictions may become substantial when the capillary size decreases much below micron dimensions. An experiment was designed to investigate the predicted values using a customized directional solidification stage. The capillary freezing point depression for glass tubes with radii of 87 microm-3 microm was successfully measured. The image of the ice-water interface at equilibrium was also digitally captured and analyzed to examine the contact angle and the interface shape as well. Both are important for examining the hemispherical interface assumption that was exclusively used in the theoretical derivations. Finally, an equilibrium analysis of the thermodynamic system leads to a theoretical discussion of the problem. The effect of the temperature gradient on the interface shape is addressed, and an engineering criterion for the critical temperature gradient above which the effect must be considered for the interface shape calculation is derived.

  6. The freezing point depression of mammalian tissues after sudden heating in boiling distilled water.

    PubMed

    APPELBOOM, J W; BRODSKY, W A; TUTTLE, W S; DIAMOND, I

    1958-07-20

    The calculated freezing point depression of freshly excised boiled mammalian tissue is approximately the same as that of plasma. The boiling procedure was chosen to eliminate the influence of metabolism on the level of the freezing point depression. Problems created by the boiling, such as equilibrium between tissue and diluent, change in activity coefficient by dilution, and loss of CO(2) content, are discussed. A frozen crushed tissue homogenate is hypertonic to plasma. Boiling and dilution of such hypertonic homogenate exposed to room temperature for 5 to 15 minutes did not produce significant or unexplicable decreases in its osmotic activity. Moreover, freezing and crushing of a boiled diluted tissue did not produce any increase of the isoosmotic level of freezing point depression. It is possible to explain these data either with the hypothesis of hypertonic cell fluid or with that of isotonic cell fluid. In the case of an assumed isotonic cell fluid, data can be explained with one assumption, experimentally backed. In the case of an assumed hypertonic theory data can be explained only with the help of at least three ad hoc postulates. The data support the validity of the classical concept which holds that cell fluid is isotonic to extracellular fluid.

  7. Water adsorption-desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point.

    PubMed

    Endo, Akira; Yamaura, Toshio; Yamashita, Kyohei; Matsuoka, Fumio; Hihara, Eiji; Daiguji, Hirofumi

    2012-02-01

    Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm.

  8. MAS (1)H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes.

    PubMed

    Mandal, Abhishek; van der Wel, Patrick C A

    2016-11-01

    The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS (1)H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (Tm). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants.

  9. When hot water freezes before cold

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2009-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is due to freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. The solutes are concentrated ahead of the freezing front by zone refining in water that has not been heated, reducing the temperature of the freezing front, and thereby reducing the temperature gradient and heat flux, slowing the progress of the freezing front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.

  10. Monitoring the Freezing Point of Buffalo Milk.

    PubMed

    Pesce, Antonella; Salzano, Caterina; De Felice, Anna; Garofalo, Francesca; Liguori, Salvatore; De Santo, Annunziata; Palermo, Pierpaolo; Guarino, Achille

    2016-04-19

    The aim of this study was to evaluate the basic freezing point of buffalo milk. Bulk milk samples were collected from buffalo and cattle farms in Caserta area from 2008 to 2014. The analysis involved a total of 1886 buffalo milk samples and 1711 bovine milk samples. These were also tested for fat, protein and lactose contents by means of infrared spectrometry. The freezing point was determined by means of a thermistor cryoscope. Data underwent statistical analysis. Our research showed an average freezing point of -0.528°C for buffalo milk and -0.522°C for bovine milk. Given the lack of data on the freezing point of buffalo milk, our study provides the first indication of a basic freezing point of the milk of this species in Italy.

  11. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    PubMed

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.

  12. Nanomaterials for efficiently lowering the freezing point of anti-freeze coolants.

    PubMed

    Hong, Haiping; Zheng, Yingsong; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water/50% anti-freeze coolant (PAC) or 50% water/50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g., NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  13. Device and method for determining freezing points

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  14. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  15. Water freezing and ice melting

    SciTech Connect

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  16. Water Freezing and Ice Melting.

    PubMed

    Małolepsza, Edyta; Keyes, Tom

    2015-12-08

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to the freezing of liquid water and the melting of hexagonal and cubic ice. It is confirmed that coexisting states are well-sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice ↔ liquid and cubic ice ↔ liquid with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. Pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  17. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  18. Measurement of Freezing Point Depression of Selected Food Solutions

    NASA Astrophysics Data System (ADS)

    Murata, Satoshi; Tanaka, Fumihiko; Matsuoka, Takahisa

    Freezing point depression of selected food solutions were measured at various concentrations in order to reveal the characteristics of solid-liquid phase equilibrium. The measurement were carried out on a hand made apparatus that was calibrated before the measurement by some of selected reagents (acid and sugar) with known thermal properties. The results revealed that the freezing point depression of selected food solutions deviated from the behavior of the ideal solution with increasing solute concentration, so the water activity for non-ideal solution were introduced to the freezing point depression equation. Further, assuming that the heat of fusion was a equation of temperature, thus the following new equation was led, ln {(1-Xs)/(l-Xs+α·Xs + β·Xs2)} = A(1/To - 1/Tf) - Bln(To/Tf) The goodness of fit of the equation showed the best results. Futhermore, by using the parameters a formula of freezing ratio and the relative water activities, which showed deviation from the ideal solution, were derived.

  19. Development of Flow and Heat Transfer During Filling a Pipeline with Water at the Pipe Wall Temperature Below the Freezing Point

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Smirnov, Yu. A.; Lebedev, M. E.

    2016-07-01

    The paper presents the technique of computing flow and heat transfer of water in a pipeline whose initial temperature is lower than the freezing point of water. A feature of the method is the possibility of calculating the process from the moment of pouring water into a pipe on the inner surface of whose wall a layer of ice is being formed. The system of equations describing the process involves nonstationary energy equations for the water flow, ice layer, and for the pipe wall. It is solved for each section of the pipeline passed by water in a small time interval in the process of filling the pipe and further flow. The Beginning computer program has been created and implemented in the Visual Basic language for numerical analysis of the process. The calculations made with the aid of this program allow one to estimate the possibility of appearance of an ice plug in the pipeline at the given temperature, water flow rate, pipeline diameter, and conditions of external heat transfer of water flow in the pipeline.

  20. Study of freezing-point depression of selected food extracts

    SciTech Connect

    Tanaka, Fumihiko; Murata, Satoshi; Habara, Kazuhiro; Amaratunga, K.S.P.

    1996-12-31

    The phenomenon of freezing-point depression that accompanies the solute concentration of selected food extracts was investigated to reveal the characteristics of solid-liquid phase equilibrium. The freezing curves of various food extracts did not exhibit ideal solution behavior in the higher concentration range. The experimental data were fitted to new freezing-point depression equations by the method of nonlinear least squares, and the results clearly indicated that the calculated freezing points at various concentrations were in good agreement with the experimental data. Furthermore, by using the determined parameters, the freezing ratio and the activation coefficient were derived.

  1. On laboratory simulation and the effect of small temperature oscillations about the freezing point and ice formation on the evaporation rate of water on Mars.

    PubMed

    Moore, Shauntae R; Sears, Derek W G

    2006-08-01

    We report measurements of the evaporation rate of water under Mars-like conditions (CO2 atmosphere at 7 mbar and approximately 0 degrees C) in which small temperature oscillations about the freezing point repeatedly formed and removed a thin layer of ice. We found that the average evaporation at 2.7 +/- 0.5 degrees C without an ice layer (corrected for the difference in gravity on Earth and on Mars) was 1.24 +/- 0.12 mm/h, while at -2.1 +/- 0.3 degrees C with an ice layer the average evaporation rate was 0.84 +/- 0.08 mm/h. These values are in good agreement with those calculated for the evaporation of liquid water and ice when it is assumed that evaporation only depends on diffusion and buoyancy. Our findings suggest that such differences in evaporation rates are entirely due to the temperature difference and that the ice layer has little effect on evaporation rate. We infer that the formation of thin layers of ice on pools of water on Mars does not significantly increase the stability of water on the surface of Mars.

  2. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  3. The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points.

    PubMed

    Kristiansen, E; Li, N G; Averensky, A I; Laugsand, A E; Zachariassen, K E

    2009-07-01

    Larvae of the Siberian timberman beetle Acanthocinus aedilis display a number of unique features, which may have important implications for the field of cold hardiness in general. Their supercooling points are scattered over a wide temperature range, and some individuals have supercooling points in the low range of other longhorn beetles. However, they differ from other longhorn beetles in being tolerant to freezing, and in the frozen state they tolerate cooling to below -37 degrees C. In this respect they also differ from the European timberman beetles, which have moderate supercooling capacity and die if they freeze. The combination of freezing tolerance and low supercooling points is unusual and shows that freezing at a high subzero temperature is not an absolute requirement for freezing tolerance. Like other longhorn beetles, but in contrast to other freeze-tolerant insects, the larvae of the Siberian timberman have a low cuticular water permeability and can thus stay supercooled for long periods without a great water loss. This suggests that a major function of the extracellular ice nucleators of some freeze-tolerant insects may be to prevent intolerable water loss in insects with high cuticular water permeability, rather than to create a protective extracellular freezing as has generally been assumed. The freezing tolerance of the Siberian timberman larvae is likely to be an adaptation to the extreme winter cold of Siberia.

  4. Structurally caused freezing point depression of biological tissues.

    PubMed

    BLOCH, R; WALTERS, D H; KUHN, W

    1963-01-01

    When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5 degrees C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data.

  5. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  6. Delayed freezing on water repellent materials.

    PubMed

    Tourkine, Piotr; Le Merrer, Marie; Quéré, David

    2009-07-07

    Water drops on hydrophobic microtextured materials sit on a mixture of solid and air. In standard superhydrophobic situations, the drop contacts more air than solid, so that we can think of exploiting the insulating properties of this sublayer. We show here that its presence induces a significant delay in freezing, when depositing water on cold solids. If the substrate is slightly tilted, these drops can thus be removed without freezing and without accumulating on the substrate, a property of obvious practical interest.

  7. Realization of the Temperature Scale in the Range from 234.3 K (Hg Triple Point) to 1084.62°C (Cu Freezing Point) in Croatia

    NASA Astrophysics Data System (ADS)

    Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka

    2008-06-01

    This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.

  8. Infrared spectroscopy of sulfuric acid/water aerosols: Freezing characteristics

    NASA Astrophysics Data System (ADS)

    Clapp, M. L.; Niedziela, R. F.; Richwine, L. J.; Dransfield, T.; Miller, R. E.; Worsnop, D. R.

    1997-04-01

    A low-temperature flow cell has been used in conjunction with a Fourier transform infrared (FT-IR) spectrometer to study sulfuric acid/water aerosols. The aerosols were generated with a wide range of composition (28 to 85 wt%), including those characteristic of stratospheric sulfate aerosols, and studied over the temperature range from 240 K to 160 K. The particles exhibited deep supercooling, by as much as 100 K below the freezing point in some cases. Freezing of water ice was observed in the more dilute (<40 wt% sulfuric acid) particles, in agreement with the predictions of Jensen et al. and recent observations by Bertram et al. In contrast with theoretical predictions, however, the entire particle often does not immediately freeze, at least on the timescale of the present experiments (seconds to minutes). Freezing of the entire particle is observed at lower temperatures, well below that characteristic of the polar stratosphere.

  9. Depression of soil moisture freezing point

    SciTech Connect

    Fedorov, V.I.

    1996-12-01

    Certain criteria for freezing temperature of clay soil have been found which are a relative moisture content at the soil liquid limit (W/W{sub L}) and maximum hydroscopic moisture (W/W{sub h}). On the strength of test data it has been established that the relative moisture content at the soil liquid limit (W/W{sub L}) may also serve as a criterion on compression pressure and resistance against shearing for soil paste with no structural binding. Linear correlation between the moisture content of natural soil and its paste -- the equation of moisture balance -- has been found which specifies a thermodynamic balance condition. The equation of moisture balance represents a whole set of properties for a certain type of soil, such as strength and compressibility. In this respect, it may be considered as a ``Soil equation`` which allows for further prognosis of its properties.

  10. Freezing point depression in model Lennard-Jones solutions

    NASA Astrophysics Data System (ADS)

    Koschke, Konstantin; Jörg Limbach, Hans; Kremer, Kurt; Donadio, Davide

    2015-09-01

    Crystallisation of liquid solutions is of uttermost importance in a wide variety of processes in materials, atmospheric and food science. Depending on the type and concentration of solutes the freezing point shifts, thus allowing control on the thermodynamics of complex fluids. Here we investigate the basic principles of solute-induced freezing point depression by computing the melting temperature of a Lennard-Jones fluid with low concentrations of solutes, by means of equilibrium molecular dynamics simulations. The effect of solvophilic and weakly solvophobic solutes at low concentrations is analysed, scanning systematically the size and the concentration. We identify the range of parameters that produce deviations from the linear dependence of the freezing point on the molal concentration of solutes, expected for ideal solutions. Our simulations allow us also to link the shifts in coexistence temperature to the microscopic structure of the solutions.

  11. On the time required to freeze water

    NASA Astrophysics Data System (ADS)

    Espinosa, J. R.; Navarro, C.; Sanz, E.; Valeriani, C.; Vega, C.

    2016-12-01

    By using the seeding technique the nucleation rate for the formation of ice at room pressure will be estimated for the TIP4P/ICE model using longer runs and a smaller grid of temperatures than in the previous work. The growth rate of ice will be determined for TIP4P/ICE and for the mW model of water. Although TIP4P/ICE and mW have a similar melting point and melting enthalpy, they differ significantly in the dynamics of freezing. The nucleation rate of mW is lower than that of TIP4P/ICE due to its higher interfacial free energy. Experimental results for the nucleation rate of ice are between the predictions of these two models when obtained from the seeding technique, although closer to the predictions of TIP4P/ICE. The growth rate of ice for the mW model is four orders of magnitude larger than for TIP4P/ICE. Avrami's expression is used to estimate the crystallization time from the values of the nucleation and growth rates. For mW the minimum in the crystallization time is found at approximately 85 K below the melting point and its value is of about a few ns, in agreement with the results obtained from brute force simulations by Moore and Molinero. For the TIP4P/ICE the minimum is found at about 55 K below the melting point, but its value is about ten microseconds. This value is compatible with the minimum cooling rate required to avoid the formation of ice and obtaining a glass phase. The crossover from the nucleation controlled crystallization to the growth controlled crystallization will be discussed for systems of finite size. This crossover could explain the apparent discrepancy between the values of J obtained by different experimental groups for temperatures below 230 K and should be considered as an alternative hypothesis to the two previously suggested: internal pressure and/or surface freezing effects. A maximum in the compressibility was found for the TIP4P/ICE model in supercooled water. The relaxation time is much smaller than the crystallization time

  12. Thermal properties of ration components as affected by moisture content and water activity during freezing.

    PubMed

    Li, J; Chinachoti, P; Wang, D; Hallberg, L M; Sun, X S

    2008-11-01

    Beef roast with vegetables is an example of a meal, ready-to-eat (MRE) ration entrée. It is a mixture of meat, potato, mushroom, and carrot with a gravy sauce. The thermal properties of each component were characterized in terms of freezing point, latent heat, freezable and unfreezable water contents, and enthalpy during freezing using differential scanning calorimetry. Freezing and thawing curves and the effect of freezing and thawing cycles on thermal properties were also evaluated. The freezing points of beef, potato, mushroom, and sauce were all in the range of -5.1 to -5.6 degrees C, but moisture content, water activity, latent heat, freezable and unfreezable water contents, and enthalpy varied among these components. Freezing temperature greatly affected the unfrozen water fraction. The unfreezable water content (unfrozen water fraction at -50 degrees C) of ration components was in the range of 8.2% to 9.7%. The freezing and thawing curves of vegetables with sauce differed from those of beef but took similar time to freeze or thaw. Freezing and thawing cycles did not greatly affect the thermal properties of each component. Freezing point and latent heat were reduced by decreasing moisture content and water activity of each component. Water activity was proportionally linear to freezing point at a(w) > 0.88, and moisture content was proportionally linear to freezable water content in all ration components. Water was not available for freezing when moisture content was reduced to 28.8% or less. This study indicates that moisture content and water activity are critical factors affecting thermal behavior of ration components during freezing.

  13. High-freezing-point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  14. Studies on the physical state of water in living cells and model systems. IV. Freezing and thawing point depression of water by gelatin, oxygen-containing polymers and urea-denatured proteins.

    PubMed

    Ling, G N; Zhang, Z L

    1983-01-01

    Using a differential scanning calorimeter, we studied the freezing and thawing behavior of solutions of six globular proteins (hemoglobin, bovine serum albumin, gamma-globulin, beta-lactoglobulin, egg albumin, and protamine sulfate); gelatin; and three synthetic polymers (polyvinylpyrrolidone (PVP), polyvinylmethylether (PVME), and poly(ethylene oxide) (PEO)]. The native globular proteins in concentrations up to 50% produced no major change of the freezing temperature of the bulk phase water, or of the shape of the freezing peaks. In contrast, the synthetic polymers caused a lowering of the freezing temperature and a widening of the freezing peaks; the peaks disappeared at the highest macromolecular concentration and exothermic peaks appeared during subsequent warming (warming exothermic peak or WEX). Gelatin behaved like the three polymers and so did the globular proteins after denaturation with urea but not after denaturation with sodium dodecyl sulfate (SDS). These different patterns of freezing and thawing of solutions of native globular proteins and of SDS-denatured globular proteins, on the one hand, and of gelatin, PVP, PVME, PEO, and urea-denatured globular proteins, on the other, parallels perfectly the different abilities of these groups of substances to reduce the solvency of the water for solutes, reported earlier. The major new conclusion from this study is that the presence of macromolecules to a concentration as high as 50% does not necessarily inhibit or even delay to any appreciable extent the freezing of the bulk phase water present. On the other hand, inhibition of ice-formation does occur in the presence of macromolecules (e.g., gelatin, PVP) that cause multilayer polarization of the bulk phase water. The findings allow new evidence to be derived that the bulk of water in living cells also exists in the state of polarized multilayers.

  15. Freezing and melting water in lamellar structures.

    PubMed Central

    Gleeson, J T; Erramilli, S; Gruner, S M

    1994-01-01

    The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay. PMID:7948683

  16. The Freezing Point Depression Law in Physical Chemistry.

    ERIC Educational Resources Information Center

    Franzen, Hugo F.

    1988-01-01

    Suggests a change in physical chemistry courses to use a slightly more complicated but significantly more useful generalization of the simple freezing point depression law. Lists reasons for the change and presents the treatment of solid-liquid equilibria where solid-solution is allowed. Provides a mathematical treatment. (MVL)

  17. Nano materials for efficiently lowering the freezing point of heat transfer nanofluids

    NASA Astrophysics Data System (ADS)

    Hong, Haiping; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water / 50% antifreeze coolant (PAC) or 50% water / 50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g. NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  18. High freezing point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  19. Freezing Kinetics in Overcompressed Water

    SciTech Connect

    Bastea, M; Bastea, S; Reaugh, J; Reisman, D

    2006-09-27

    We report high pressure dynamic compression experiments of liquid water along a quasi-adiabatic path leading to the formation of ice VII. We observe dynamic features resembling Van der Waals loops and find that liquid water is compacted to a metastable state close to the ice density before the onset of crystallization. By analyzing the characteristic kinetic time scale involved we estimate the nucleation barrier and conclude that liquid water has been compressed to a high pressure state close to its thermodynamic stability limit.

  20. An Equipment to Measure the Freezing Point of Soils under Higher Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei

    2014-05-01

    Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer

  1. Vapor pressure and freezing point osmolality measurements applied to a volatile screen.

    PubMed

    Draviam, E J; Custer, E M; Schoen, I

    1984-12-01

    This is a report of a rapid and precise screening procedure, developed for the determination of ethanol in serum using osmolality measurements. The osmolality of the patient is determined by freezing point method (freezing point osmometry) and dew point (water vapor pressure osmometry) method. The difference between freezing point osmolality and vapor pressure osmolality (delta osm) is due to the presence of volatiles in the serum, because the volatiles are not measured by vapor pressure osmometry. The amount of ethanol (mg/dL) in serum is estimated by multiplying delta osm by a factor of 4.2. As a comparison method, ethanol also is measured by a spectrophotometric alcohol dehydrogenase method. In addition, a significant difference between an osmometric alcohol assayed value and enzymatic spectrophotometric measurement indicates the presence of volatiles, other than ethanol. In addition to ethanol there is a linear relationship between osmolality and isopropanol or methanol when added in vitro to serum.

  2. Experimental results for the rapid determination of the freezing point of fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  3. Effect of Impurities on the Freezing Point of Zinc

    NASA Astrophysics Data System (ADS)

    Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong

    2017-03-01

    The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.

  4. Correction for solute/solvent interaction extends accurate freezing point depression theory to high concentration range.

    PubMed

    Fullerton, G D; Keener, C R; Cameron, I L

    1994-12-01

    The authors describe empirical corrections to ideally dilute expressions for freezing point depression of aqueous solutions to arrive at new expressions accurate up to three molal concentration. The method assumes non-ideality is due primarily to solute/solvent interactions such that the correct free water mass Mwc is the mass of water in solution Mw minus I.M(s) where M(s) is the mass of solute and I an empirical solute/solvent interaction coefficient. The interaction coefficient is easily derived from the constant in the linear regression fit to the experimental plot of Mw/M(s) as a function of 1/delta T (inverse freezing point depression). The I-value, when substituted into the new thermodynamic expressions derived from the assumption of equivalent activity of water in solution and ice, provides accurate predictions of freezing point depression (+/- 0.05 degrees C) up to 2.5 molal concentration for all the test molecules evaluated; glucose, sucrose, glycerol and ethylene glycol. The concentration limit is the approximate monolayer water coverage limit for the solutes which suggests that direct solute/solute interactions are negligible below this limit. This is contrary to the view of many authors due to the common practice of including hydration forces (a soft potential added to the hard core atomic potential) in the interaction potential between solute particles. When this is recognized the two viewpoints are in fundamental agreement.

  5. Immersion freezing of birch pollen washing water

    NASA Astrophysics Data System (ADS)

    Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.

    2013-11-01

    Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.

  6. Relationship of amino acid composition and molecular weight of antifreeze glycopeptides to non-colligative freezing point depression.

    PubMed

    Schrag, J D; O'Grady, S M; DeVries, A L

    1982-08-06

    Many polar fishes synthesize a group of eight glycopeptides that exhibit a non-colligative lowering of the freezing point of water. These glycopeptides range in molecular weight between 2600 and 33 700. The largest glycopeptides [1-5] lower the freezing point more than the small ones on a weight basis and contain only two amino acids, alanine and threonine, with the disaccharide galactose-N-acetyl-galactosamine attached to threonine. The small glycopeptides, 6, 7, and 8, also lower the freezing point and contain proline, which periodically substitutes for alanine. Glycopeptides with similar antifreeze properties isolated from the saffron cod and the Atlantic tomcod contain an additional amino acid, arginine, which substitutes for threonine in glycopeptide 6. In this study we address the question of whether differences in amino acid composition or molecular weight between large and small glycopeptides are responsible for the reduced freezing point depressing capability of the low molecular weight glycopeptides. The results indicate that the degree of amino acid substitutions that occur in glycopeptides 6-8 do not have a significant effect on the unusual freezing point lowering and that the observed decrease in freezing point depression with smaller glycopeptides can be accounted for on the basis of molecular weight.

  7. Melting and freezing of water in cylindrical silica nanopores.

    PubMed

    Jähnert, S; Vaca Chávez, F; Schaumann, G E; Schreiber, A; Schönhoff, M; Findenegg, G H

    2008-10-21

    Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.

  8. Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Hacker, P. T.

    1950-01-01

    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.

  9. Freezing Point of Milk: A Natural Way to Understand Colligative Properties

    ERIC Educational Resources Information Center

    Novo, Mercedes; Reija, Belen; Al-Soufi, Wajih

    2007-01-01

    A laboratory experiment is presented in which the freezing point depression is analyzed using milk as solution. The nature of milk as a mixture of different solutes makes it a suitable probe to learn about colligative properties. The first part of the experiment illustrates the analytical use of freezing point measurements to control milk quality,…

  10. Response of New zealand mudsnails Potamopyrgus antipodarum to freezing and near freezing fluctuating water temperatures

    USGS Publications Warehouse

    Moffitt, Christine M.; James, Christopher A.

    2012-01-01

    We explored the resilience of the invasive New Zealand mudsnail Potamopyrgus antipodarum to fluctuating winter freezing and near-freezing temperature cycles in laboratory tests. Our goal was to provide data to confirm field observations of mortality and presumed mortality in stream habitats with fluctuating freezing to near-freezing temperatures. We tested individuals from 2 locations with distinctly different thermal regimes and population densities. One location had low snail densities and water temperatures with strong diel and seasonal water variation. The other location had high snail densities and nearly constant water temperatures. Groups of individuals from both locations were tested in each of 3 laboratory-created diel thermal cycles around nominal temperatures of 0, 2, or 4°C. Mortality occurred in cycles around 0°C in both populations, and little to no mortality occurred at temperatures >0°C. Individuals from both sources held in diel 0°C cycles for 72 h showed 100% mortality. Our findings support observations from published field studies that survival was limited in infested habitats subject to freezing temperatures.

  11. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  12. An approximation for homogeneous freezing temperature of water droplets

    NASA Astrophysics Data System (ADS)

    O, K.-T.; Wood, R.

    2015-11-01

    In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived and proposed as a new approximation for homogeneous freezing temperature of water droplets. Without consideration of time dependence and stochastic nature of the ice nucleation process, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size and water activity of aqueous drops observed in a wide range of experimental studies. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may largely be explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that this approximation is useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.

  13. Universality of tip singularity formation in freezing water drops.

    PubMed

    Marín, A G; Enríquez, O R; Brunet, P; Colinet, P; Snoeijer, J H

    2014-08-01

    A drop of water deposited on a cold plate freezes into an ice drop with a pointy tip. While this phenomenon clearly finds its origin in the expansion of water upon freezing, a quantitative description of the tip singularity has remained elusive. Here we demonstrate how the geometry of the freezing front, determined by heat transfer considerations, is crucial for the tip formation. We perform systematic measurements of the angles of the conical tip, and reveal the dynamics of the solidification front in a Hele-Shaw geometry. It is found that the cone angle is independent of substrate temperature and wetting angle, suggesting a universal, self-similar mechanism that does not depend on the rate of solidification. We propose a model for the freezing front and derive resulting tip angles analytically, in good agreement with the experiments.

  14. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  15. Effect of ultrasonic vibration on freezing of supercooled water

    SciTech Connect

    Inada, Takaaki; Zhang, Xu; Yabe, Akira; Tanaka, Makoto; Kozawa, Yoshiyuki

    1999-07-01

    A method to actively control the supercooling of water is one of the critical issues for cold-energy storage systems utilizing ice slurry. The authors experimentally studied the use of ultrasonic water to ice. Figure A-1 shows a schematic of the experimental apparatus. A heat transfer plate made of copper was immersed in water and cooled by coolant from its upper side. The authors measured the maximum degree of supercooling in the absence of ultrasonic vibration (Exp. 1), and they examined the tendency for the supercooled water to freeze on the heat transfer surface when ultrasonic vibration was applied to the water (Exp. 2). Figure A-2 shows the probability of the freezing for pure water as a function of the degree of supercooling. A{sub e} represents the rate of surface erosion on an aluminum film attached to the heat transfer surface, which is an index of the cavitation intensity. Comparing the results of Exp. 1 and Exp. 2 shows that ultrasonic vibration is effective for promoting freezing. The results of Exp. 2 indicate that the probability of freezing on the heat transfer surface exposed to ultrasonic vibration increased as the surface erosion increased. Furthermore, the authors found that ultrasonic vibration is effective not only for controlling the freezing temperature but also for making ice slurry.

  16. Free Energy Perturbation Monte Carlo Simulations of Salt Influences on Aqueous Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Dick, Thomas J.; Wierzbicki, Andrzej; Madura, Jeffry D.

    Free energy perturbation Monte Carlo (FEP/MC) simulations are performed for both the liquid and solid phases of water to determine the melting temperature of several popular three and four-site water models. Gibbs free energy vs. temperature plots are constructed from the simulations to determine the melting temperature. For the liquid phase, standard FEP/MC simulations are used to calculate the free energy relative to the gas phase at multiple temperatures. The free energy of the solid phase relative to the gas phase is calculated at multiple temperatures using the lattice-coupling method. The intersection of the free energy regression lines determines the estimate of the melting temperature. Additionally, simulations were carried out for simple salt solutions to determine the freezing point depressions (FPD). The simulations reproduce the FPD as a function of salt concentration for solutions of NaCl, KCl, CaCl2, and MgCl2.

  17. Research on Outer Factor Affecting the Freezing of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Okawa, Seiji; Une, Hiroshi; Tanogashira, Ken'ichi; Tojiki, Akira

    In relation to the problem of supercooling for ice storage devices, various kinds of experiments were carried out to find some factors which control the supercooling phenomenon. Convection due to rotating solid in water, stirring, vibration, shock, rubbing glass with glass in water and collision of solid in water were selected as outer factors. It was found that factors such as convection, stirring, vibration, non-contacting shock have no effect on freezing supercooled water. They seem to be just adding some positive energy to water. On the other hand, collision or rubbing between solids or solid and liquid surface helps supercooled water to freeze. We believe that making water molecules closer to each other, whose motion were restricted by solid or liquid surface, induce the growth of ice embryo.

  18. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets

    DOE PAGES

    Knopf, Daniel A.; Alpert, Peter A.

    2013-04-24

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(Jhet) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can be

  19. Self-association of nicotinamide in aqueous solution: mass transport, freezing-point depression, and partition coefficient studies.

    PubMed

    Charman, W N; Lai, C S; Finnin, B C; Reed, B L

    1991-09-01

    The steady-state flux (SSF) of nicotinamide from an aqueous donor phase across a model Silastic membrane did not increase proportionally with increasing donor phase concentration. The suspected self-association of the drug in aqueous solution was evaluated by studying the concentration-dependent changes in (i) the molal osmotic coefficient of nicotinamide (freezing-point depression studies) and (ii) the partition coefficient between water and n-octanol. The freezing points of aqueous solutions of nicotinamide were measured and a plot of osmolality vs molality was nonlinear. The partition coefficient of nicotinamide, studied at 15, 25, and 32 degrees C, also decreased with increasing concentration of drug. Mathematical models describing dimerization and higher orders of association were applied to the data. The results indicated the involvement of higher orders of association and it was found that an isodesmic (step-association) model was an adequate description of the freezing-point depression and partition coefficient data. The association constant, K, ranged between 1.59 +/- 0.02 M-1 at the freezing point and 0.48 +/- 0.01 M-1 as estimated from the partition coefficient data at 32 degrees C. These models for the self-association of nicotinamide allowed estimation of the apparent concentration of "monomeric" nicotinamide in the donor phase solutions studied in the SSF experiments. When the SSF data were analyzed with regard to the concentration of monomeric nicotinamide in the donor phase, a relationship close to linearity was observed.

  20. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  1. Evaluation of methods for rapid determination of freezing point of aviation fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1982-01-01

    Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.

  2. Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine 'giant rosette' plants.

    PubMed

    Beck, E; Schulze, E D; Senser, M; Scheibe, R

    1984-09-01

    The water potentials of frozen leaves of Afroalpine plants were measured psychrometrically in the field. Comparison of these potentials with the osmotic potentials of an expressed cellular sap and the water potentials of ice indicated almost ideal freezing behaviour and suggested equilibrium freezing. On the basis of the osmotic potentials of expressed cellular sap, the fractions of frozen cellular water which correspond to the measured water potentials of the frozen leaves could be determined (e.g. 74% at -3.0° C). The freezing points of leaves were found to be in the range between 0° C and -0.5° C, rendering evidence for freezing of almost pure water and thus confirming the conclusions drawn from the water-potential measurements. The leaves proved to be frost resistant down to temperatures between -5° C and -15° C, as depending on the species. They tolerated short supercooling periods which were necessary in order to start ice nucleation. Extracellular ice caps and ice crystals in the intercellular space were observed when cross sections of frozen leaves were investigated microscopically at subfreezing temperatures.

  3. Experimental research of "microcable in a microconduct" system stability to effect of freezing water

    NASA Astrophysics Data System (ADS)

    Andreev, Vladimir A.; Burdin, Vladimir A.; Nikulina, Tatiana G.; Alekhin, Ivan N.; Gavryushin, Sergey A.; Nikulin, Aleksey G.; Praporshchikov, Denis E.

    2011-12-01

    Results of experimental researches of "optical microcable in a microduct" system stability to effect of freezing water are presented. It is shown this system is steadier to water freezing in comparison to lighten optical cable in protective polymer tube.

  4. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades.

    PubMed

    Hengherr, S; Worland, M R; Reuner, A; Brümmer, F; Schill, R O

    2009-03-01

    Many limno-terrestrial tardigrades live in unstable habitats where they experience extreme environmental conditions such as drought, heat and subzero temperatures. Although their stress tolerance is often related only to the anhydrobiotic state, tardigrades can also be exposed to great daily temperature fluctuations without dehydration. Survival of subzero temperatures in an active state requires either the ability to tolerate the freezing of body water or mechanisms to decrease the freezing point. Considering freeze tolerance in tardigrades as a general feature, we studied the survival rate of nine tardigrade species originating from polar, temperate and tropical regions by cooling them at rates of 9, 7, 5, 3 and 1 degrees C h(-1) down to -30 degrees C then returning them to room temperature at 10 degrees C h(-1). The resulting moderate survival after fast and slow cooling rates and low survival after intermediate cooling rates may indicate the influence of a physical effect during fast cooling and the possibility that they are able to synthesize cryoprotectants during slow cooling. Differential scanning calorimetry of starved, fed and cold acclimatized individuals showed no intraspecific significant differences in supercooling points and ice formation. Although this might suggest that metabolic and biochemical preparation are non-essential prior to subzero temperature exposure, the increased survival rate with slower cooling rates gives evidence that tardigrades still use some kind of mechanism to protect their cellular structure from freezing injury without influencing the freezing temperature. These results expand our current understanding of freeze tolerance in tardigrades and will lead to a better understanding of their ability to survive subzero temperature conditions.

  5. Note: equation of state and the freezing point in the hard-sphere model.

    PubMed

    Robles, Miguel; López de Haro, Mariano; Santos, Andrés

    2014-04-07

    The merits of different analytical equations of state for the hard-sphere system with respect to the recently computed high-accuracy value of the freezing-point packing fraction are assessed. It is found that the Carnahan-Starling-Kolafa and the branch-point approximant equations of state yield the best performance.

  6. A Holistic Description of Immersion Freezing of Water and Aqueous Solution Droplets Using a Water Activity Based Model

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.

    2013-12-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation in the atmosphere where it results in the glaciation of mixed-phase and cirrus clouds. Using a variety of IN types suspended in various aqueous solutions and pure water, we find that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapor pressure of the solution and the saturation water vapor pressure under the same conditions and, in equilibrium, is equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result termed the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute, applicable for pure water droplet freezing which is significant for mixed-phase cloud formation, and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing capable of predicting of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas and cooling rates of droplets containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as IN surface area increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The experimental data implicitly questions the common notion that one active site initiates the formation of an ice embryo leading to the crystallization of the aqueous phase. The log10(Jhet) values for the various IN types derived exclusively by T and aw, provide a complete description of the

  7. Measurement of the in freezing-point temperature: Effect of the liquid-solid interface structure

    NASA Astrophysics Data System (ADS)

    Ivanova, A. G.; Abasov, M. Yu.; Gerasimov, S. F.; Pokhodun, A. I.

    2013-09-01

    The results of the experimental study of the inner interface formation process under different conditions of its initiation for the indium freezing point showed that, depending on the initiation intensity, both the planar structure of the interface on the thermometer well and a noticeable intergrowth of dendrites could be obtained. However, under some specific initiation conditions dendrites disappeared partly or completely in the process of crystallization. The value of the indium freezing point temperature was measured under realization conditions corresponding to different inner interface structure.

  8. Freeze concentration of ambient waters for toxicity testing.

    PubMed

    deBruyn, A M; Rasmussen, J B

    2001-08-01

    We have developed a method to concentrate aqueous samples for toxicity testing. This method relies on the phenomenon of freezing exclusion, whereby solutes are rejected from the interstices of a growing ice crystal. Tenfold freeze concentration gave excellent recoveries of inorganic and organic analytes, phenol and ZnSO4 toxicity from spiked natural waters, and toxicity of both pre- and postdischarge municipal wastewater. Simultaneous 10-fold concentration of strong mineral or humic ambient matrices did not substantially modify the expressed toxicity of phenol or ZnSO4, and it did not seem to generate spurious toxicity to the marine bioassay organism used (Vibrio fischeri). Hundredfold freeze concentration permitted the quantification of low levels of ambient toxicity in a wide variety of natural waters using a rapid, inexpensive microbioassay. Precipitation of matrix elements may limit the degree of concentration that can be achieved with highly mineralized or strongly humic waters. This approach is well suited to ambient toxicity testing, because it is nonspecific and has low potential for solvent contamination. Furthermore, the low temperatures involved minimize volatilization and degradation of organic contaminants.

  9. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    ERIC Educational Resources Information Center

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  10. Dissemination of thermodynamic temperature above the freezing point of silver.

    PubMed

    Sadli, M; Machin, G; Anhalt, K; Bourson, F; Briaudeau, S; del Campo, D; Diril, A; Kozlova, O; Lowe, D H; Mantilla Amor, J M; Martin, M J; McEvoy, H C; Ojanen-Saloranta, M; Pehlivan, Ö; Rougié, B; Salim, S G R

    2016-03-28

    The mise-en-pratique for the definition of the kelvin at high temperatures will formally allow dissemination of thermodynamic temperature either directly or mediated through high-temperature fixed points (HTFPs). In this paper, these two distinct dissemination methods are evaluated, namely source-based and detector-based. This was achieved by performing two distinct dissemination trials: one based on HTFPs, the other based on absolutely calibrated radiation thermometers or filter radiometers. These trials involved six national metrology institutes in Europe in the frame of the European Metrology Research Programme joint project 'Implementing the new kelvin' (InK). The results have shown that both dissemination routes are possible, with similar standard uncertainties of 1-2 K, over the range 1273-2773 K, showing that, depending on the facilities available in the laboratory, it will soon be possible to disseminate thermodynamic temperatures above 1273 K to users by either of the two methods with uncertainties comparable to the current temperature scale.

  11. Deformation mechanism of nanoporous materials upon water freezing and melting

    NASA Astrophysics Data System (ADS)

    Erko, Maxim; Wallacher, Dirk; Paris, Oskar

    2012-10-01

    Temperature-induced non-monotonous reversible deformation of water-filled nanoporous silica materials is investigated experimentally using in-situ small-angle x-ray scattering. The influence of freezing and melting in the nanopores on this deformation is treated quantitatively by introducing a simple model based on the Gibbs-Thomson equation and a generalized Laplace-pressure. The physical origin of the melting/freezing induced pore lattice deformation is found to be exactly the same as for capillary condensation/evaporation, namely the curved phase boundary due to the preferred wetting of the pore walls by the liquid phase. As a practical implication, elastic properties of the nanoporous framework can be determined from the temperature-deformation curves.

  12. Metabolic activity of permafrost bacteria below the freezing point

    NASA Technical Reports Server (NTRS)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  13. Metabolic Activity of Permafrost Bacteria below the Freezing Point

    PubMed Central

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and −20°C on the basis of incorporation of 14C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5°C) to 20 days (−10°C) to ca. 160 days (−20°C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature. PMID:10919774

  14. Promising freeze protection alternatives in solar domestic hot water systems

    SciTech Connect

    Bradley, David E.

    1997-01-01

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  15. Revised equation and table for determining the freezing point depression of H[sub 2]O-NaCl solutions

    SciTech Connect

    Bodnar, R.J. )

    1993-02-01

    Salinities of H[sub 2]O-salt inclusions are most often determined by measuring the melting temperature of ice in the inclusion and then referring this value to an equation or table describing the relationship between salinity and freezing-point depression. Generally, data for the system H[sub 2]O-NaCl are used to determine an NaCl-equivalent salinity, owing to lack of information concerning the salts (or other electrolytes) actually contributing to the freezing-point depression. The equation most often used to determine the salinity of H[sub 2]O-salt inclusions from freezing measurements is that of Potter et al (1978), which is based on a regression of data available in the literature at that time. More recently, Hall et al (1988) experimentally redetermined the ice-melting temperatures of H[sub 2]O-NaCl-KCl solutions having compositions ranging from pure water to the ternary eutectic and to each of the two binary (H[sub 2]O-NaCl and H[sub 2]O-KCl) eutectics.

  16. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    PubMed

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  17. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets

    SciTech Connect

    Knopf, Daniel A.; Alpert, Peter A.

    2013-04-24

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(Jhet) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of

  18. Characterisation of the nanoporous structure of collagen-glycosaminoglycan hydrogels by freezing-out of bulk and bound water.

    PubMed

    Mikhalovska, Lyuba I; Gun'ko, Vlad M; Turov, Vlad V; Zarko, Vlad I; James, Stuart L; Vadgama, Pankaj; Tomlins, Paul E; Mikhalovsky, Sergey Victorovich

    2006-07-01

    The nanoporous structure of collagen-glycosaminoglycan (CG) hydrogels was studied using 1H NMR spectroscopy and thermally stimulated depolarisation (TSD) current with layer-by-layer freezing-out of bulk and interfacial water. The depression of the freezing point of water is related to the size of the nanopore, to which it is confined. Changes in the Gibbs free energy of the unfrozen interfacial water are related to the amount of bound water in the hydrogel matrix and to the re-arrangement of the 3D network structure of the biopolymer. Analysis of the thermodynamic properties of bulk and interfacial water using the layer-by-layer freezing-out technique combined with NMR and TSDC provides valuable information about the structural features of CG hydrogels that can be used for characterisation of different types of hydrogels and soft tissue scaffolds, artificial skin substitutes and other biomaterials.

  19. Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Pope, Francis D.; Kalberer, Markus

    2014-05-01

    Primary biological particles can act as efficient ice nuclei (IN) by initiating freezing events at temperatures warmer than the homogenous freezing temperature [1, 2]. For example, pollen grain particles can trigger freezing events at temperatures as warm as -5 °C in the contact freezing mode [3]. More recently pollen residues, which are released by washing pollen grains in water, were also observed to act as efficient IN in the immersion mode [4, 5]. In this study we developed a new cold electrodynamic balance (CEDB) system and investigated the freezing properties of single particles of supercooled pollen washing water (SPWW). The EDB technique allows for a contact free measurement of freezing events. The phase of the particle (liquid or frozen solid) can be distinguished via measuring the Mie scattering signal from the particle. Furthermore the size of liquid (spherical) particles can be determined. The freezing events are characterized through the loss of the regular Mie scattering signal from the levitated droplet as it changes state from liquid to a frozen solid. The statistical freezing probabilities of SPWW were obtained in the temperature range: -15 to -40 °C. Each temperature measurement point consists of the analysis of 30-100 droplets. Preliminary conclusions are that SPWW is IN active in the immersion mode. Further discussion will focus on the temperature range of the IN activity, the important variables (other than temperature) for IN activity, other likely modes of IN activity, and the implications of these results in terms of the atmospheric relevance of SPWW. This study was supported by the NERC. We acknowledge Professor Jonathan Reid and James Davis from the University of Bristol for providing information of the design of the warm EDB system. References: [1] Möhler, O., et al. (2007) Biogeosciences, 4, 1059-1071. [2] Prenni, A. J., et al. (2009) Nat. Geosci., 2, 401-404. [3] Diehl, K., et al. (2002) Atmos. Res., 61, 125-133. [4] Pummer, B. G

  20. Multiple Freezing Points as a Test for Viability of Plant Stems in the Determination of Frost Hardiness 1

    PubMed Central

    McLeester, R. C.; Weiser, C. J.; Hall, T. C.

    1969-01-01

    A technique is presented for a simple, rapid, and reliable means of determining the viability of plant tissue subjected to freezing temperatures. Freezing curves of excised stems of Cornus stolonifera Michx., and several other genera were studied. Tissue temperature was recorded during freezing of plant stem sections. The heat of crystallization deflected the resultant freezing curves at points where tissue froze. Living stem sections of all genera studied revealed 2 freezing points, while dead tissue exhibited only 1. The influence of variables such as moisture content, sample size, thermocouple placement, and cooling rate on freezing curves was analyzed. Stem samples wrapped in moisture-proof film with a thermocouple inserted into the pith were frozen to a predetermined test temperature, thawed, and subjected to a second freezing cycle. The presence or absence of 2 freezing points in the second freezing cycle was used as a criterion for establishing viability. The results were immediately available and identical to results from regrowth tests which took about 20 days. PMID:16657031

  1. Reappraisal of disparities between osmolality estimates by freezing point depression and vapor pressure deficit methods.

    PubMed

    Winzor, Donald J

    2004-02-15

    As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements (K. Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry--the cause of the concern.

  2. Universal behavior of repulsive two-dimensional fermions in the vicinity of the quantum freezing point

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Skinner, Brian; Fogler, Michael M.; Demler, Eugene

    2013-07-01

    We show by a meta-analysis of the available Quantum Monte Carlo (QMC) results that two-dimensional fermions with repulsive interactions exhibit universal behavior in the strongly correlated regime, and that their freezing transition can be described using a quantum generalization of the classical Hansen-Verlet freezing criterion. We calculate the liquid-state energy and the freezing point of the 2D dipolar Fermi gas (2DDFG) using a variational method by taking ground-state wave functions of 2D electron gas (2DEG) as trial states. A comparison with the recent fixed-node diffusion Monte Carlo analysis of the 2DDFG shows that our simple variational technique captures more than 95% of the correlation energy, and predicts the freezing transition within the uncertainty bounds of QMC. Finally, we utilize the ground-state wave functions of 2DDFG as trial states and provide a variational account of the effects of finite 2D confinement width. Our results indicate significant beyond mean-field effects. We calculate the frequency of collective monopole oscillations of the quasi-2D dipolar gas as an experimental demonstration of correlation effects.

  3. Influence of surface groups of proteins on water studied by freezing/thawing hysteresis and infrared spectroscopy.

    PubMed

    Zelent, Bogumil; Bryan, Michael A; Sharp, Kim A; Vanderkooi, Jane M

    2009-05-01

    The influence of proteins and solutes on hysteresis of freezing and melting of water was measured by infrared (IR) spectroscopy. Of the solutes examined, poly-L-arginine and flounder antifreeze protein produced the largest freezing point depression of water, with little effect on the melting temperature. Poly-L-lysine, poly-L-glutamate, cytochrome c and bovine serum albumin had less effect on the freezing of water. Small compounds used to mimic non-polar (trimethylamine N-oxide, methanol), positively charged (guanidinium chloride, NH(4)Cl, urea) and negatively charged (Na acetate) groups on protein surfaces were also examined. These molecules and ions depress water's freezing point and the melting profiles became broad. Since infrared absorption measures both bulk solvent and solvent bound to the solutes, this result is consistent with solutes interacting with liquid water. The amide I absorption bands of antifreeze protein and poly-L-arginine do not detectably change with the phase transition of water. An interpretation is that the antifreeze protein and poly-L-arginine order liquid water such that the water around the group is ice-like.

  4. Bovine serum albumin: survival and osmolarity effect in bovine spermatozoa stored above freezing point.

    PubMed

    Nang, C F; Osman, K; Budin, S B; Ismail, M I; Jaffar, F H F; Mohamad, S F S; Ibrahim, S F

    2012-05-01

    Liquid nitrogen preservation in remote farms is a limitation. The goal of this study was to determine optimum temperature above freezing point for bovine spermatozoa preservation using bovine serum albumin (BSA) as a supplementation. Pooled semen sample from three ejaculates was subjected to various BSA concentration (1, 4, 8 and 12 mg ml(-1)), before incubation in different above freezing point temperatures (4, 25 and 37 °C). Viability assessment was carried out against time from day 0 (fresh sample) until all spermatozoa become nonviable. Optimal condition for bovine spermatozoa storage was at 4 °C with 1 mg ml(-1) BSA for almost 7 days. BSA improved bovine spermatozoa viability declining rate to 44.28% at day 4 and 57.59% at day 7 compared to control, with 80.54% and 98.57% at day 4 and 7 respectively. Increase in BSA concentration did not improve sperm viability. Our results also confirmed that there was a strong negative correlation between media osmolarity and bovine spermatozoa survival rate with r = 0.885, P < 0.0001. Bovine serum albumin helps to improve survival rate of bovine spermatozoa stored above freezing point.

  5. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.

    PubMed

    Deshmukh, Sanket; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2014-06-06

    Understanding the phase behavior of confined water is central to fields as diverse as heterogeneous catalysis, corrosion, nanofluidics, and to emerging energy technologies. Altering the state points (temperature, pressure, etc.) or introduction of a foreign surface can result in the phase transformation of water. At room temperature, ice nucleation is a very rare event and extremely high pressures in the GPa-TPa range are required to freeze water. Here, we perform computer experiments to artificially alter the balance between electrostatic and dispersion interactions between water molecules, and demonstrate nucleation and growth of ice at room temperature in a nanoconfined environment. Local perturbations in dispersive and electrostatic interactions near the surface are shown to provide the seed for nucleation (nucleation sites), which lead to room temperature liquid-solid phase transition of confined water. Crystallization of water occurs over several tens of nanometers and is shown to be independent of the nature of the substrate (hydrophilic oxide vs. hydrophobic graphene and crystalline oxide vs. amorphous diamond-like carbon). Our results lead us to hypothesize that the freezing transition of confined water can be controlled by tuning the relative dispersive and electrostatic interaction.

  6. Heterogeneous freezing of water droplets containing kaolinite and montmorillonite particles

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.; Broadley, Sarah; Wilson, Theodore; Bull, Sophia; Wills, Rebecca

    2010-05-01

    Clouds composed of both ice particles and supercooled liquid water droplets, known as mixed phase clouds, exist at temperatures above ~236 K. These clouds, which strongly impact climate, are very sensitive to the presence of particles that can catalyse ice particle formation. In this paper we describe experiments to determine at which temperatures water droplets containing clay mineral particles froze. Water droplets containing a known amount of clay mineral were supported on a hydrophobic surface and the temperatures at which individual droplets froze, as they were cooled down, was determined by optical microscopy. The hydrophobic substrate does not significantly catalyse ice formation in droplets and pure water droplets freeze around 236 K. Droplets containing kaolinite and montmorillonite nucleate ice at warmer temperatures. The mean nucleation temperature increases from close to or at the homogeneous nucleation limit (236 K) to 240.8 ± 0.6 K as the kaolinite concentration is increased from 0.005 wt% to 1 wt%. In contrast, ice always nucleates at 245.8 ± 0.6 K when water droplets are contaminated with montmorillonite independent of mineral concentration. These results highlight the importance of understanding the ice nucleating properties of individual minerals rather than complex mixtures of minerals found in natural dusts and so-called test dusts. In addition we parameterise the results in a form suitable for modelling studies and also derive contact angles for kaolinite.

  7. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  8. Practical limitations of ITS-90 from the mercury triple point to the silver freeze point

    SciTech Connect

    Tavener, J. P.; Tavener, S. J.; Tavener, I. F.; Davies, N.

    2013-09-11

    The NPL published a forward to the ITS-90 text as follows:- 'The purpose of the ITS is to define procedures by which certain specified practical thermometers of the required quality can be calibrated in such a way that the values of temperature obtained from them can be precise and reproducible, while at the same time closely approximating the corresponding thermodynamic values.' [1]. The paper investigates the properties of thirty four lots of 6N pure metal used to make cells conforming to ITS-90 from mercury through silver over a period of twenty years. Three hundred individual cells are analysed by the impurities listed and supplied with each lot, melt and freeze curve slopes are also summarised for each lot and depressions calculated. These are then compared to the slopes and depressions suggested in the Supplementary Information for the ITS-90 and in CCT/2000-13 'Optimal Realizations'. Results are summarised, tabulated and discussed. Three lots of the thirty four were found to produce cells outside 6N expectations; however the remaining thirty one lots no matter how well or badly the accompanying certification was presented produced cells that conformed to 6N expectations as suggested in Supplementary Information to ITS-90 and CCT/2000-13.

  9. Practical limitations of ITS-90 from the mercury triple point to the silver freeze point

    NASA Astrophysics Data System (ADS)

    Tavener, J. P.; Tavener, S. J.; Tavener, I. F.; Davies, N.

    2013-09-01

    The NPL published a forward to the ITS-90 text as follows:- "The purpose of the ITS is to define procedures by which certain specified practical thermometers of the required quality can be calibrated in such a way that the values of temperature obtained from them can be precise and reproducible, while at the same time closely approximating the corresponding thermodynamic values." [1]. The paper investigates the properties of thirty four lots of 6N pure metal used to make cells conforming to ITS-90 from mercury through silver over a period of twenty years. Three hundred individual cells are analysed by the impurities listed and supplied with each lot, melt and freeze curve slopes are also summarised for each lot and depressions calculated. These are then compared to the slopes and depressions suggested in the Supplementary Information for the ITS-90 and in CCT/2000-13 "Optimal Realizations". Results are summarised, tabulated and discussed. Three lots of the thirty four were found to produce cells outside 6N expectations; however the remaining thirty one lots no matter how well or badly the accompanying certification was presented produced cells that conformed to 6N expectations as suggested in Supplementary Information to ITS-90 and CCT/2000-13.

  10. Realization of tin freezing point using a loop heat pipe-based hydraulic temperature control technique

    NASA Astrophysics Data System (ADS)

    Joung, Wukchul; Gam, Kee Sool; Kim, Yong-Gyoo

    2015-10-01

    In this work, the freezing point of tin (Sn FP) was realized by inside nucleation where the supercooling of tin and the reheating of the sample after the nucleation were achieved without extracting the cell from an isothermal apparatus. To this end, a novel hydraulic temperature control technique, which was based on the thermo-hydraulic characteristics of a pressure-controlled loop heat pipe (LHP), was employed to provide a slow cooling of the sample for deep supercooling and fast reheating after nucleation to minimize the amount of initial freeze of the sample. The required temperature controls were achieved by the active pressure control of a control gas inside the compensation chamber of the pressure-controlled LHP, and slow cooling at  -0.05 K min-1 for the deep supercooling of tin and fast heating at 2 K min-1 for reheating the sample after nucleation was attained. Based on this hydraulic temperature control technique, the nucleation of tin was realized at supercooling of around 19 K, and a satisfactorily fast reheating of the sample to the plateau-producing temperature (i.e. 0.5 K below the Sn FP) was achieved without any temperature overshoots of the isothermal region. The inside-nucleated Sn FP showed many desirable features compared to the Sn FP realized by the conventional outside nucleation method. The longer freezing plateaus and the better immersion characteristics of the Sn FP were obtained by inside nucleation, and the measured freezing temperature of the inside-nucleated Sn FP was as much as 0.37 mK higher than the outside-nucleated Sn FP with an expanded uncertainty of 0.19 mK. Details on the experiment are provided and explanations for the observed differences are discussed.

  11. Development of modulated optical transmission system to determinate the cloud and freezing points in biofuels.

    PubMed

    Jaramillo-Ochoa, Liliana; Ramirez-Gutierrez, Cristian F; Sánchez-Moguel, Alonso; Acosta-Osorio, Andrés; Rodriguez-Garcia, Mario E

    2015-01-01

    This work is focused in the development of a modulated optical transmission system with temperature control to determine the thermal properties of biodiesels such as the cloud and freezing points. This system is able to determine these properties in real time without relying on the operator skills as indicated in the American Society for Testing Materials (ASTM) norms. Thanks to the modulation of the incident laser, the noise of the signal is reduced and two information channels are generated: amplitude and phase. Lasers with different wavelengths can be used in this system but the sample under study must have optical absorption at the wavelength of the laser.

  12. Ultra-high temperature isothermal furnace liners (IFLS) for copper freeze point cells

    NASA Astrophysics Data System (ADS)

    Dussinger, P. M.; Tavener, J. P.

    2013-09-01

    Primary Laboratories use large fixed-point cells in deep calibration furnaces utilizing heat pipes to achieve temperature uniformity. This combination of furnace, heat pipe, and cell gives the smallest of uncertainties. The heat pipe, also known as an isothermal furnace liner (IFL), has typically been manufactured with Alloy 600/601 as the envelope material since the introduction of high temperature IFLs over 40 years ago. Alloy 600/601 is a widely available high temperature material, which is compatible with Cesium, Potassium, and Sodium and has adequate oxidation resistance and reasonable high temperature strength. Advanced Cooling Technologies, Inc. (ACT) Alloy 600/Sodium IFLs are rated to 1100°C for approximately 1000 hours of operation (based on creep strength). Laboratories interested in performing calibrations and studies around the copper freezing point (1084.62°C) were frustrated by the 1000 hours at 1100°C limitation and the fact that expensive freeze-point cells were getting stuck and/or crushed inside the IFL. Because of this growing frustration/need, ACT developed an Ultra High Temperature IFL to take advantage of the exceptional high temperature strength properties of Haynes 230.

  13. Improvements in the realization of the ITS-90 over the temperature range from the melting point of gallium to the freezing point of silver at NIM

    SciTech Connect

    Sun, J.; Zhang, J. T.; Ping, Q.

    2013-09-11

    The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and this will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.

  14. The migration and transformation of dissolved organic matter during the freezing processes of water.

    PubMed

    Xue, Shuang; Wen, Yang; Hui, Xiujuan; Zhang, Lina; Zhang, Zhaohong; Wang, Jie; Zhang, Ying

    2015-01-01

    This study investigated the partitioning behavior of dissolved organic matter (DOM) in liquid and ice phases, as well as the changes in the optical properties and chlorine reactivity of DOM during the freezing processes of water. DOM was rejected from the ice phase and accumulated in the remaining liquid phase during water freezing. Moreover, the decrease in freezing temperature, as well as the increase in dissolved organic carbon (DOC) concentration of feed water, caused an increase in DOM captured in the ice phase. The ultraviolet-absorbing compounds, trihalomethane precursors, as well as fulvic acid- and humic acid-like fluorescent materials, were more liable to be to be rejected from the ice phase and were more easily retained in the unfrozen liquid phase during water freezing, as compared with organics (on average) that comprise DOC. In addition, it was also found a higher accumulation of these organics in the unfrozen liquid phase during water freezing at higher temperature. The freeze/thaw processes altered the quantity, optical properties, and chlorine reactivity of DOM. The decrease in ultraviolet light at 254 nm as well as the production of aromatic protein- and soluble microbial byproduct-like fluorescent materials in DOM due to freeze/thaw were consistently observed. On the other hand, the changes in DOC, trihalomethane formation potential, and fulvic acid- and humic acid-like fluorescence caused by freeze/thaw varied significantly between samples.

  15. Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry.

    PubMed

    Grattoni, Alessandro; Canavese, Giancarlo; Montevecchi, Franco Maria; Ferrari, Mauro

    2008-04-01

    Osmometry is an essential technique for solution analysis and the investigation of chemical and biological phenomena. Commercially available osmometers rely on the measurements of freezing point, vapor pressure, and osmotic pressure of solutions. Although vapor pressure osmometry (VPO) and freezing point osmometry (FPO) can perform rapid and inexpensive measurements, they are indirect techniques, which rely on thermodynamic assumptions, which limit their applicability. While membrane osmometry (MO) provides a potentially unlimited direct measurement of osmotic pressure and solution osmolality, the conventional technique is often time-consuming and difficult to operate. In the present work, a novel membrane osmometer is presented. The instrument significantly reduces the conventional MO measurement time and is not subject to the limitations of VPO and FPO. For this paper, the osmotic pressure of aqueous sucrose solutions was collected in a molality range 0-5.5, by way of demonstration of the new instrument. When compared with data found in the literature, the experimental data were generally in good agreement. However, differences among results from the three techniques were observed.

  16. The nature of aqueous solutions: insights into multiple facets of chemistry and biochemistry from freezing-point depressions.

    PubMed

    Zavitsas, Andreas A

    2010-05-25

    Contrary to current widely held beliefs, many concentrated aqueous solutions of electrolytes and nonelectrolytes behave ideally. For both, the same simple equation yields mole fractions of water that are equal to the theoretical activities of water. No empirical activity coefficients or ad hoc parameters are needed. Thermodynamic hydration numbers and the number of particles produced per mole of solute are found by searching freezing-point depression measurements, as if asking the water, "How much available water solvent is left and how many solute particles are there?" The results answer questions currently under debate: Do solutes alter the nature of water outside their immediate surroundings? What is the number of ion pairs formed by various electrolytes and what affects extents of their formation? What are some factors that cause precipitation of proteins, latexes, and so forth from aqueous solutions upon addition of other solutes (Hofmeister series)? Which nonelectrolytes form aggregates in water and what are the implications? Why do different solutes affect viscosity differently? How do ion-selective channels in cell membranes function at the molecular level?

  17. Investigating the Mpemba Effect: When Hot Water Freezes Faster than Cold Water

    ERIC Educational Resources Information Center

    Ibekwe, R. T.; Cullerne, J. P.

    2016-01-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more…

  18. Early Mars was wet but not warm: Erosion, fluvial features, liquid water habitats, and life below freezing

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Davis, W. L.

    1993-01-01

    There is considerable evidence that Mars had liquid water early in its history and possibly at recurrent interval. It has generally been assumed that this implied that the climate was warmer as a result of a thicker CO2 atmosphere than at the present. However, recent models suggest that Mars may have had a thick atmosphere but may not have experienced mean annual temperatures above freezing. In this paper we report on models of liquid water formation and maintenance under temperatures well below freezing. Our studies are based on work in the north and south polar regions of Earth. Our results suggest that early Mars did have a thick atmosphere but precipitation and hence erosion was rare. Transient liquid water, formed under temperature extremes and maintained under thick ice covers, could account for the observed fluvial features. The main difference between the present climate and the early climate was that the total surface pressure was well above the triple point of water.

  19. Solute/solvent interaction corrections account for non-ideal freezing point depression.

    PubMed

    Zimmerman, R J; Chao, H; Fullerton, G D; Cameron, I L

    1993-02-01

    A new highly accurate curve-fitting technique for looking at freezing-point depression data was proposed by Fullerton et al. (Biochem. Cell Biol., in press). The method involve plotting mass solvent to mass solute ratio (Mw/M(s)) vs. 1/delta T (i.e. the inverse change in freezing point). A measured molecular weight and a solute/solvent interaction parameter (called I value) are inferred from the resultant linear plot. The accuracy of the molecular weight method was first demonstrated with the monomers of ethylene glycol, glycerol, propanol, mannitol, glucose and sucrose to show a mean molecular weight error of 0.02% with root mean square (RMS) error 0.9%. The RMS error (0.9%) is our best estimate of the molecular weight measurement accuracy for the method applied to a monomer. This error is consistent with the experimental precision (approximately 1%) which implies no systematic error. Non-ideality is described with a single constant, I. Polyethylene glycol (PEG) polymers of increasing length (vendor designation 200 to 10,000 Da) were analyzed to show monotonically increasing non-ideality (I values of 0.12 to 3.67) with increasing molecular weight. The measured molecular weights agreed with the end-point titration value for the three smallest polymers (where the number of polymeric units was less than or equal to 7). The method underestimates the vendor molecular weights for longer polymers. This disagreement is assigned to segmental motion (internal entropy) of longer, more flexible, PEG molecules.

  20. Estimation of lactose hydrolysis by freezing point measurements in milk and whey substrates treated with lactases from various microorganisms.

    PubMed

    Chen, S L; Frank, J F; Loewenstein, M

    1981-11-01

    beta-Galactosidase concentrates obtained from several microorganisms were used to hydrolyze skim milk, low fat (2%) milk, sweet whey, acid whey, acid whey permeate, and acid whey concentrate. Among acid substrates, the freezing point depression for each 1% lactose hydrolyzed was the greatest with the lactase from Aspergillus niger (0.0501 degrees H); among neutral substrates, the depression was greater in sweet whey (0.0495 degree H) and lesser in low fat milk (0.0445 degrees H). All data were statistically significant. The average freezing point depression for each 1% lactose hydrolyzed wa s0.0468 degrees H (range 0.0436-0.0501 degrees H). Oligosaccharides formed in the lactose hydrolysis inconsistent freezing point readings of the cryoscope at the low freezing points measured, and protease contamination in some lactases may affect the precision of freezing point determination. Hydration and volume of non-protein components in commercial enzymes, unstable color complex formed by lactose and methylamine solution, and difficulty in the use of methylamine solution might cause variations in determination of lactose by the analytical procedure. These factors can be eliminated or minimized. This method is the simplest and quickest estimation of lactose hydrolysis, and it offers great accuracy and consistency.

  1. New expressions to describe solution nonideal osmotic pressure, freezing point depression, and vapor pressure.

    PubMed

    Fullerton, G D; Zimmerman, R J; Cantu, C; Cameron, I L

    1992-12-01

    New empirical expressions for osmotic pressure, freezing point depression, and vapor pressure are proposed based on the concepts of volume occupancy and (or) hydration force. These expressions are in general inverse relationships in comparison to the standard ideal expressions for the same properties. The slopes of the new equations are determined by the molecular weight of the solute and known constants. The accuracy and precision of the molecular weights calculated from the slope are identical and approximately 1% for the experiments reported here. The nonideality of all three colligative expressions is described by a dimensionless constant called the solute-solvent interaction parameter I. The results on sucrose have the same I = 0.26 for all three solution properties. The nonideality parameter I increased from 0.26 on sucrose to 1.7 on hemoglobin to successfully describe the well-known nonideal response of macromolecules.

  2. An evaluation of osmolality measurement by freezing point depression using micro-amounts of sample

    PubMed Central

    Koumantakis, G.; Wyndham, L. E.

    1989-01-01

    An evaluation of the Advanced micro-osmometer is presented. This instrument has been shown to have an excellent analytical precision (within-run CV = 0.59%, between-day CV = 0.58%). It is accurate over an analytical range of 0-2000 mmol/kg of osmolality shown by linearity studies and split sample correlations against vapour pressure osmometry, freezing point osmometry and an external quality assurance programme. Analytical errors due to operator technique are almost eliminated because of good instrument design. Preliminary results on whole-blood osmolality are included. The required sample size of 20 μl permits osmolality measurements on most clinical samples. It is concluded that the Advanced micro-osmometer satisfies laboratory requirements. PMID:18925239

  3. An evaluation of osmolality measurement by freezing point depression using micro-amounts of sample.

    PubMed

    Koumantakis, G; Wyndham, L E

    1989-01-01

    An evaluation of the Advanced micro-osmometer is presented. This instrument has been shown to have an excellent analytical precision (within-run CV = 0.59%, between-day CV = 0.58%). It is accurate over an analytical range of 0-2000 mmol/kg of osmolality shown by linearity studies and split sample correlations against vapour pressure osmometry, freezing point osmometry and an external quality assurance programme. Analytical errors due to operator technique are almost eliminated because of good instrument design. Preliminary results on whole-blood osmolality are included. The required sample size of 20 mul permits osmolality measurements on most clinical samples. It is concluded that the Advanced micro-osmometer satisfies laboratory requirements.

  4. The freezing point depression of mammalian tissues in relation to the question of osmotic activity of cell fluid.

    PubMed

    APPELBOOM, J W; BRODSKY, W A; DENNIS, W H; DIAMOND, I; MILEY, J F; REHM, W S

    1956-11-20

    The freezing point depression of freshly excised frozen tissues, pulverized in a hydraulic press or in a mortar, is greater than that of plasma. Even at 0 degrees C. the freezing point depression of such homogenates increases significantly with time. Dilution data indicate that such freezing point data are valid. The presence of intact cells has been shown in smears of tissues pulverized in a mortar, but not in smears of those crushed in a hydraulic press. The osmolarity of various diluent solutions affects the calculated osmotic activity of tissue homogenates presumably because of delayed diffusion between the diluent and cell fluid. With a hypertonic NaCl diluent, spuriously low values of tissue osmotic activity are found from calculations assuming instantaneous mixing between homogenates and diluents. The limitations of data from cryoscopic experiments and from tissue-swelling experiments are discussed in relation to the basic question of whether or not cell fluid is isotonic to extracellular fluid.

  5. Freezing effects of oil-in-water emulsions studied by sum-frequency scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Smit, W. J.; Smolentsev, N.; Versluis, J.; Roke, S.; Bakker, H. J.

    2016-07-01

    Temperature-dependent sum-frequency scattering spectroscopy is used to study the properties of hexadecane and dodecane oil droplets in water. The sum-frequency scattering spectra contain vibrational bands that correspond to the symmetric and antisymmetric CH stretching vibrations of the methylene (CH2) and methyl (CH3) groups of the alkane molecules. The relative amplitudes of the vibrational bands provide information on the surface structure and the shape of the oil droplets. We study the sum-frequency scattering spectra over a temperature range of -48 to 24 °C, including the freezing transitions of the water matrix and the oil droplets. Hexadecane oil droplets freeze at a higher temperature than the surrounding water, whereas dodecane oil droplets freeze at a lower temperature than the surrounding water. This allows us to independently study the freezing effect of oil and water on the surface structure of the oil droplets. In both cases, freezing leads to a change in the polarization dependencies that are valid in the case of the spherical-symmetric shapes that the oil droplets assume when both water and oil are liquid. We find that the freezing of water leads to a strong distortion of the liquid dodecane surface but has little effect on the surface of already solidified hexadecane. For completely frozen emulsions a further decrease in temperature is observed to lead to a further distortion of the surface of the solid oil particles, which might be caused by increasing hardness of the ice matrix encapsulating the particles.

  6. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials.

    PubMed

    Ehre, David; Lavert, Etay; Lahav, Meir; Lubomirsky, Igor

    2010-02-05

    Although ice melts and water freezes under equilibrium conditions at 0 degrees C, water can be supercooled under homogeneous conditions in a clean environment down to -40 degrees C without freezing. The influence of the electric field on the freezing temperature of supercooled water (electrofreezing) is of topical importance in the living and inanimate worlds. We report that positively charged surfaces of pyroelectric LiTaO3 crystals and SrTiO3 thin films promote ice nucleation, whereas the same surfaces when negatively charged reduce the freezing temperature. Accordingly, droplets of water cooled down on a negatively charged LiTaO3 surface and remaining liquid at -11 degrees C freeze immediately when this surface is heated to -8 degrees C, as a result of the replacement of the negative surface charge by a positive one. Furthermore, powder x-ray diffraction studies demonstrated that the freezing on the positively charged surface starts at the solid/water interface, whereas on a negatively charged surface, ice nucleation starts at the air/water interface.

  7. The initial freezing point temperature of beef rises with the rise in pH: a short communication.

    PubMed

    Farouk, M M; Kemp, R M; Cartwright, S; North, M

    2013-05-01

    This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product.

  8. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  9. How Circulation of Water Affects Freezing in Ponds

    ERIC Educational Resources Information Center

    Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel

    2007-01-01

    One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…

  10. Experimental study on the effect of the electric filed on the freezing of the supercooled water

    NASA Astrophysics Data System (ADS)

    Okawa, Seiji; Saito, Akio; Harada, Tadahide

    Effect of the electric field on freezing of supercooled water was investigated, experimentally. The experiment was carried out by charging the electrode whose tip was inserted into supercooled water. It was found that supercooled water freeze instantly by applying the electric charge. There were many papers in the past which dealt with the effect of electrical field on freezing of supercooled water, but with a high voltage, order of a few kV. However, through this experimental study, it was found that the supercooled water can freeze at the voltage less than 100V, if D.C. voltage is applied directly to supercooled water. There was no deformation of water droplet or spark discharge as some papers suggest as a reason for the effect. It was also found that the probability of freezing depends upon the degree of supercooling, value of D.C. voltage applied, size of electrode and the distance between two electrods. The mechanism of this effect was discussed and suggested as follows: High electric field is formed locally due to the existence of surface edge or small projections on the surface. Water molecule which has a polarity is drawn near to the cluster on the surface whose motion is restricted by the existence of electric field. Therefore, embryo can transform to nucleus, instantly.

  11. Isotope quantum effects in water around the freezing point.

    PubMed

    Hart, R T; Mei, Q; Benmore, C J; Neuefeind, J C; Turner, J F C; Dolgos, M; Tomberli, B; Egelstaff, P A

    2006-04-07

    We have measured the difference in electronic structure factors between liquid H(2)O and D(2)O at temperatures of 268 and 273 K with high energy x-ray diffraction. These are compared to our previously published data measured from 279 to 318 K. We find that the total structural isotope effect increases by a factor of 3.5 over the entire range, as the temperature is decreased. Structural isochoric temperature differential and isothermal density differential functions have been used to compare these data to a thermodynamic model based upon a simple offset in the state function. The model works well in describing the magnitude of the structural differences above approximately 310 K, but fails at lower temperatures. The experimental results are discussed in light of several quantum molecular dynamics simulations and are in good qualitative agreement with recent temperature dependent, rotationally quantized rigid molecule simulations.

  12. Calculation and modeling of the energy released in result of water freezing process (WFP)

    NASA Astrophysics Data System (ADS)

    Ghodsi Hassanabad, M.; Mehrbadi, A. Dehghani

    Process of water freezing in different pressures has been studied with appropriate accuracy and freezing phenomenon has been tested in variety conditions. The effects of pressure on volume change in constant volume and constant pressure have also been reviewed. Calculation of these changes has been done by using the finite difference. Therefore, experimental model has been designed and built to validate these calculations and this experimental model has been studied the power of freezing water during the freezing process in different conditions. Finally, the results were used to design a machine that has an ability to control the power of freezing and turn it into a new clean energy. In this machine, some water is frozen due to temperature difference that is exerting between day and night and energy which is produced by this reaction consumes for creating electrical energy. The amount of extractable power from the temperature difference between day and night were calculated in different temperatures. As an overall result, the most energy extracted from freezing in one cubic meters water with a temperature below -22 °C during the night is 12.8 MJ, the equivalent of using 356 W for 10 h.

  13. Effects of freezing in and out of water on length and weight of Lake Michigan bloaters

    USGS Publications Warehouse

    Sayers, Richard E.

    1987-01-01

    The purpose of this study was to determine if freezing significantly alters the length or weight of bloaters Coregonus hoyi. Bloaters were collected from southern Lake Michigan and were frozen for periods of 2-200 d. Freezing in water caused a significant decrease in length and a significant increase in weight. These changes did not vary predictably with time. The mean change in weight was greater for adults than for juveniles, but the mean change in length was not significantly different between juveniles and adults. Regressions for weight or length after freezing versus weight or length before freezing were highly significant and can be used as correction equations for estimating the original lengths and weights of fresh specimens after fish have been frozen. Test fish that were subsequently refrozen in air shrank more than those refrozen in water.

  14. Optimization of thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) previously treated with freezing-point regulators using response surface methodology.

    PubMed

    Wang, Liang; Liu, Zunying; Zhao, Yuanhui; Dong, Shiyuan; Zeng, Mingyong; Yang, Huicheng

    2015-08-01

    Three freezing-point regulators (glycine, sodium chloride and D-sorbitol) were employed to optimize thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) using response surface methodology (RSM). The independent variables were glycine content (0.250-1.250 %), sodium chloride content (0.500-2.500 %) and D-sorbitol content (0.125-0.625 %) and analysis of variance showed that the effects of glycine, sodium chloride and D-sorbitol on the thermophysical properties were statistically significant (P < 0.05). The coefficient of determination, R (2) values for initial freezing point (T i ), unfreezable water mass fraction (W u ), apparent specific heat (C app ) and Enthalpy (H) were 0.896 ~ 0.999. The combined effects of these independent variables on T i , W u , C app and H were investigated. The results indicated that T i , C app and H varied curvilinearly with increasing of glycine, sodium chloride and D-sorbitol content whereas W u increased nearly linearly. Based on response plots and desirability functions, the optimum combination of process variables for Pacific white shrimp previously treated with freezing-point regulators were 0.876 % for glycine content, 2.298 % for sodium chloride content and 0.589 % for D-sorbitol content, correspondently the optimized thermophysical properties were T i , - 5.086 °C; W u , 17.222 %; C app , 41.038 J/g °C and H, 155.942 J/g, respectively. Briefly, the application of freezing-point regulators depressed T i and obtained the optimum W u , C app and H, which would be obviously beneficial for the exploitation of various thermal processing and food storage.

  15. Understanding and Analyzing Freezing-Point Transitions of Confined Fluids within Nanopores.

    PubMed

    Shimizu, Steven; Agrawal, Kumar Varoon; O'Mahony, Marcus; Drahushuk, Lee W; Manohar, Neha; Myerson, Allan S; Strano, Michael S

    2015-09-22

    Understanding phase transitions of fluids confined within nanopores is important for a wide variety of technological applications. It is well known that fluids confined in nanopores typically demonstrate freezing-point depressions, ΔTf, described by the Gibbs-Thomson (GT) equation. Herein, we highlight and correct several thermodynamic inconsistencies in the conventional use of the GT equation, including the fact that the enthalpy of melting, ΔHm, and the solid-liquid surface energy, γ(SL), are functions of pore diameter, complicating their prediction. We propose a theoretical analysis that employs the Turnbull coefficient, originally derived from metal nucleation theory, and show its consistency as a more reliable quantity for the prediction of ΔTf. This analysis provides a straightforward method to estimate ΔTf of nanoconfined organic fluids. As an example, we apply this technique to ibuprofen, an active pharmaceutical ingredient (API), and show that this theory fits well to the experimental ΔTf of nanoconfined ibuprofen.

  16. Freezing of ridges and water networks preserves the Gamburtsev Subglacial Mountains for millions of years

    NASA Astrophysics Data System (ADS)

    Creyts, Timothy T.; Ferraccioli, Fausto; Bell, Robin E.; Wolovick, Michael; Corr, Hugh; Rose, Kathryn C.; Frearson, Nicholas; Damaske, Detlef; Jordan, Tom; Braaten, David; Finn, Carol

    2014-11-01

    Once an ice sheet grows beyond a critical thickness, the basal thermal regime favors melting and development of subglacial water networks. Subglacial water is necessary for bedrock erosion, but the exact mechanisms that lead to preservation of subglacial topography are unclear. Here we resolve the freezing mechanisms that lead to long-term, high-altitude preservation across the Gamburtsev Subglacial Mountains in East Antarctica. Analyses of a comprehensive geophysical data set reveal a large-scale water network along valley floors. The ice sheet often drives subglacial water up steep topography where it freezes along high ridges beneath thinner ice. Statistical tests of hypsometry show the Gamburtsevs resemble younger midlatitude mountains, indicating exceptional preservation. We conclude that the Gamburtsevs have been shielded from erosion since the latest Eocene (˜34 Ma). These freezing mechanisms likely account for the spatial and temporal patterns of erosion and preservation seen in other glaciated mountain ranges.

  17. Freezing tolerance and water relations of Opuntia fragilis from Canada and the United States

    SciTech Connect

    Loik, M.E.; Nobel, P.S. )

    1993-09-01

    To investigate the influence of winter climate on freezing tolerance at the population level, minimum January air temperatures in the field and cold acclimation determined in the laboratory were compared for Opuntia fragilis. Populations occurred at 20 locations as far north as 56[degrees]46' N latitude and at elevations up to 3029 m in Canada and the United States, most of which experience extreme freezing temperatures each winter. Low-temperature responses and water relations of stems were examined in the laboratory at day/night air temperatures of 25[degrees]/15[degrees]C and 14 d after the plants were shifted to a 5[degrees]/[minus]5[degrees]C temperature cycle. Cold acclimation averaged 17[degrees]C and freezing tolerance averaged [minus]29[degrees]C for the 20 populations following a shift to low day/night air temperatures, indicating that O. fragilis has the greatest cold acclimation ability and the greatest freezing tolerance reported for any cactus. Moreover, freezing tolerance and cold acclimation were both positively correlated (r[sup 2] [congruent] 0.7) with the minimum temperatures at the 20 locations. Plants lost water during low-temperature acclimation, leading to 30% decreases in cladode and chlorenchyma thickness; the decrease in water content was greater for the five warmest populations than for the five coldest ones. Over the same period, the average osmotic pressure of the chlorenchyma increased from 1.42 to 1.64 MPa, and the relative water content (RWC) decreased from 0.58 to 0.49, but the average osmotic pressure of saturated chlorenchyma was unchanged, indicating no net change in solute content during acclimation. Although the role of water relations in freezing tolerance is unclear, the substantial freezing tolerance and cold acclimation ability of O. fragilis leads to its distribution into regions of Canada and the United States that experience minimum temperatures below [minus]40[degrees]C during the winter. 47 refs., 3 figs., 5 tabs.

  18. Exploring an approximation for the homogeneous freezing temperature of water droplets

    NASA Astrophysics Data System (ADS)

    O, Kuan-Ting; Wood, Robert

    2016-06-01

    In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived from the Boltzmann distribution function and explored as an approximation for homogeneous freezing temperature of water droplets. Without including the information of the applied cooling rate γcooling and the number of observed droplets Ntotal_droplets in the calculation, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size V and water activity aw of aqueous drops observed in a wide range of experimental studies for droplet diameter > 10 µm and aw > 0.85, suggesting the effect of γcooling and Ntotal_droplets may be secondary compared to the effect of V and aw on homogeneous freezing temperatures in these size and water activity ranges under realistic atmospheric conditions. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may be partly explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that the simplicity of this approximation makes it potentially useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.

  19. Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size

    NASA Astrophysics Data System (ADS)

    Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas

    2014-05-01

    The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume

  20. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems.

  1. Ice growth in supercooled solutions of a biological "antifreeze", AFGP 1-5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point.

    PubMed

    Knight, C A; DeVries, A L

    2009-07-21

    It is widely accepted, and we agree, that the lowering of the temperature at which ice can grow in a water solution of one of the biological antifreezes is a result of adsorption of the antifreeze molecules at the ice surface. However, how this can produce a well-defined "freezing point" that varies with the solution concentration has remained problematical. The results of a series of measurements of ice growing in supercooled solutions of an effective antifreeze are reported and interpreted in terms of this fundamental problem. It seemed that the solution of the problem would have to rely upon adsorption rate, because that appeared to be the only way for the concentration in solution to be so important. The crystal growth results are most unusual, and appear to confirm this. The growth rates over a wide range of antifreeze concentration in solution (about 0.05 to 9 mg ml(-1)) are zero from the thermodynamic freezing point down to the "non-equilibrium" freezing point, where there is a very sudden increase to a plateau value that then remains about constant as the supercooling is increased by about 2 degrees C. The plateau values of growth rate are faster than those from pure water at the lower-supercooling ends of the plateaus, but slower at higher supercooling, until the growth rate starts rising toward that from pure water. These plateau values of growth rate increase markedly with increasing concentration of the antifreeze in solution. Along with these changes there are complex changes in the growth orientations, from c-axis spicules in the plateaus to those more characteristic of growth from pure water at greater supercooling. We conclude that the non-equilibrium freezing point is determined by the adsorption rate. It is the warmest temperature at which the ice growth rate on the basal plane (where the antifreeze does not adsorb) is fast enough to prevent the area of basal face on a growing ice crystal from becoming too small to grow, which is determined in

  2. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  3. Ice slurry cooling research: Microscale study of ice particles characteristics, role of freezing point depressant, and influence on slurry fluidity

    SciTech Connect

    Hayashi, K.; Kasza, K.

    2000-05-03

    The influences of freezing-point-depressants on ice slurry characteristics in the form of ice slurry fluidity and on the microscale ice particle features are studied. The results identify microscale features of ice particles such as surface roughness that greatly influence slurry fluidity that are altered favorably by the use of a freezing point depressant. The engineering of a workable and efficient ice slurry cooling system depends very strongly on the characteristics of the individual ice particles in the slurry and, in turn, on the method of ice production. Findings from this study provide guidance on the fluidity and handleability of slurry produced by several methods currently under development and already many achieved.

  4. Water transport and estimated transmembrane potential during freezing of mouse oocytes.

    PubMed

    Toner, M; Cravalho, E G; Armant, D R

    1990-05-01

    The kinetics of water transport and the changes in transmembrane potential during freezing of mouse oocytes in isotonic phosphate buffered saline (PBS) were simulated using thermodynamic models. The permeability to water at 0 degree C, Lpg, and the activation energy, ELp, of metaphase II mouse oocytes from B6D2F1 mice were determined to be 0.044 +/- 0.008 micron/min-atm and 13.3 +/- 2.5 kcal/mol during freezing at 2 degrees C/min. The inactive cell volume was determined to be 0.214 with a correlation coefficient of 0.995, indicating that the oocytes closely follow the ideal Boyle-van't Hoff relation. The mean value of the oocyte diameter was 79.41 +/- 4.62 microns. These results were used to predict the behavior of mouse oocytes under various freezing conditions. The effect of the cooling rate on the cell volume and cytoplasm undercooling was investigated. The changes in transmembrane potential were also investigated during freezing of mouse oocytes. The computer simulations showed that at the beginning of the freezing process (-1 degrees C), the fast growth of ice in the extracellular solution causes a sharp increase of the membrane potential. It is predicted that the change in membrane potential is substantial for almost all cooling rates. Estimations show that values as high as -90 mV may be reached during freezing. The hyperpolarization of the membrane may cause orientation of the dipoles within the membrane. For membrane proteins with 300 debye dipole moment, the theoretical prediction suggests that the percentage of dipoles aligned with the membrane potential increases from 16% at 0 degrees C prior to freezing to 58% at -8 degrees C after seeding of the external ice followed with a cooling at 120 degrees C/min.

  5. Aqueous propylene-glycol concentrations for the freeze protection of thermosyphon solar energy water heaters

    SciTech Connect

    Norton, B. ); Edmonds, J.E.J. )

    1991-01-01

    Using a validated dynamic simulation model, the thermal performance of an indirect thermosyphon solar energy water heater was examined. The heat transfer fluids employed were aqueous solutions of propylene glycol. The effect of varying the glycol concentration on the hot water output and efficacy of freeze protection was determined for a specific pattern of hot water withdrawal and weather for the temperature maritime climate of London, England. The heat output is compared with that of a drain-down direct system.

  6. Evaluation of freezing point depression osmolality for classifying random urine specimens defined as substituted under HHS/DOT criteria.

    PubMed

    Cook, Janine Denis; Hannon, Mark W; Vo, Tamdan; Caplan, Yale H

    2002-10-01

    This study evaluates the analytical performance characteristics of freezing point depression osmolality in urine and osmolality as a suitable analytical indicator for determining the concentration of urine specimens submitted for workplace drug testing. Specifically, this study attempted to determine the utility of urine osmolality to serve as an indicator of substitution as defined by HHS/SAMHSA criteria. Urine osmolality was validated by determining the accuracy, precision, analytical sensitivity, reportable range, and reference interval for the method. Osmolality was measured in workplace urine specimens (n = 66) with creatinine concentrations < or = 5.0 mg/dL. Comparing the results with the lower limit of the random urine reference intervals for specific gravity (1.002) and osmolality (50 mOsm/kg), 62% had specific gravities < or = 1.001, 52% had osmolalities < 50 mOsm/kg, and 47% had both a creatinine < or = 5.0 mg/dL, specific gravity < or = 1.001 and an osmolality < 50 mOsm/kg. Urine specimens (n = 311) were collected from 35 volunteers enrolled in a controlled water loading study in which at least 80 oz (2370 mL) of fluid was ingested over a 6-h period. The lowest achieved osmolality was 28 mOsm/kg. Polyuria disorders have produced abnormally low urine osmolalities (lowest reported 18 mOsm/kg) but osmolalities < or = 23 mOsm/kg have resulted in death from water intoxication. An osmolality substitution cut-off to delineate a specimen as inconsistent with normal human urine can be set at some value < 50 mOsm/kg, when used in a population of individuals with urine creatinine concentrations < or = 5.0 mg/dL.

  7. Mathematical modeling of solute segregation and redistribution during freezing in peat and overlying water

    SciTech Connect

    Li, S.M.

    1985-01-01

    Freezing of the water in a peatland causes the redistribution of existing solutes in both the shallow water and the peat zone. Such solute redistribution phenomena are of interest for establishing the geochronology of deposits and determining the nature of pollutant burial. Understanding these phenomena is important for the consideration of peatlands as multi-use resources. This work presents the theoretical analyses and mathematical models to describe the solute redistribution processes during freezing in overlying water and interstitial water in the porous peat. The analyses include the segregation of the solute at the ice-water interface in both the overlying water and the peat zone, solute transport in overlying water, as well as adsorbable solute and non-adsorbable solute transport in the interstitial water of the peat zone. An algorithm has been developed to solve these nonlinear moving interface problems. A parameter estimation technique has been used to determine parameters in the model that are difficult to obtain directly from the experimental data. Computer simulation using this model provides good predictions for solute concentration profiles in the frozen water and the peat zones, as compared to independent experimental data. The basic theoretical analysis and the mathematical model have been utilized to describe the salt ice formation process and macrosegregation during freezing of binary alloys.

  8. Sea water desalination by dynamic layer melt crystallization: Parametric study of the freezing and sweating steps

    NASA Astrophysics Data System (ADS)

    Rich, Anouar; Mandri, Youssef; Mangin, Denis; Rivoire, Alain; Abderafi, Souad; Bebon, Christine; Semlali, Naoual; Klein, Jean-Paul; Bounahmidi, Tijani; Bouhaouss, Ahmed; Veesler, Stéphane

    2012-03-01

    This work aims at developing a dynamic layer crystallizer operated batchwise, for freezing desalination of sea water. The experiments were performed with water/NaCl solutions and with samples of sea water from Nice, Rabat and Marseille. The pilot crystallizer consists of a cooled tube immersed in a cylindrical double jacketed tank. The solution is poured into the tank and the crystallization takes place on the external surface of the tube, by applying a cooling ramp in the tube. The solution is agitated by air bubbling. The whole process involves the freezing step, leading to the crystallization of the ice layer and the sweating step, which consists of purifying in depth the ice layer by melting the impure zones. A parametric study on the effect of the operating parameters has allowed quantifying the role of the different key parameters of the freezing and sweating steps. Three experiments allowed reaching salinities lower than 0.5 g/kg, satisfying the standards of drinking water. The duration of the whole process dropped to only 8 h (5 h for freezing and 3 h for sweating), with a yield of sweating equal to about 50%, provided severe conditions were applied for sweating. Higher yields required longer times. Overall, the results show the feasibility of the technique.

  9. Supercooling Point Plasticity During Cold Storage in the Freeze-tolerant Sugarbeet Root Maggot Tetanops myopaeformis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root maggot, Tetanops myopaeformis (Röder), overwinters as a freeze-tolerant 3rd instar larva. While most larvae are thought to overwinter for only one year, some may exhibit prolonged diapause in the field. In the laboratory, they can live for over five years using a combination of ...

  10. A Photographic Study of Freezing of Water Droplets Falling Freely in Air

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Levine, Joseph

    1952-01-01

    A photographic technique for investigating water droplets of diameter less than 200 microns falling freely in air at temperatures between 0 C and -50 C has been devised and used to determine: (i) The shape of frozen droplets (2) The occurrence of collisions of partly frozen or of frozen and liquid droplets (3) The statistics on the freezing temperatures of individual free-falling droplets A considerable number of droplets were found to have a nonspherical shape after freezing because of various protuberances and frost growth, and droplet aggregates formed by collision. The observed frequency of collision of partly frozen droplets showed good order of magnitude agreement with the frequency computed from theoretical collection efficiencies. The freezing temperature statistics indicated a general similarity of the data to those obtained for droplets frozen on a metallic surface in previous experiments.

  11. Measurement and simulation of water transport during freezing in mammalian liver tissue.

    PubMed

    Pazhayannur, P V; Bischof, J C

    1997-08-01

    Optimization of cryosurgical procedures on deep tissues such as liver requires an increased understanding of the fundamental mechanisms of ice formation and water transport in tissues during freezing. In order to further investigate and quantify the amount of water transport that occurs during freezing in tissue, this study reports quantitative and dynamic experimental data and theoretical modeling of rat liver freezing under controlled conditions. The rat liver was frozen by one of four methods of cooling: Method 1-ultrarapid "slam cooling" (> or = 1000 degrees C/min) for control samples; Method 2-equilibrium freezing achieved by equilibrating tissue at different subzero temperatures (-4, -6, -8, -10 degrees C); Method 3-two-step freezing, which involves cooling at 5 degrees C/min. to -4, -6, -8, -10 or -20 degrees C followed immediately by slam cooling; or Method 4-constant and controlled freezing at rates from 5-400 degrees C/min. on a directional cooling stage. After freezing, the tissue was freeze substituted, embedded in resin, sectioned, stained, and imaged under a light microscope fitted with a digitizing system. Image analysis techniques were then used to determine the relative cellular to extracellular volumes of the tissue. The osmotically inactive cell volume was determined to be 0.35 by constructing a Boyle van't Hoff plot using cellular volumes from Method 2. The dynamic volume of the rat liver cells during cooling was obtained using cellular volumes from Method 3 (two-step freezing at 5 degrees C/min). A nonlinear regression fit of a Krogh cylinder model to the volumetric shrinkage data in Method 3 yielded the biophysical parameters of water transport in rat liver tissue of: Lpg = 3.1 x 10(-13) m3/Ns (1.86 microns/min-atm) and ELp = 290 kJ/mole (69.3 kcal/mole), with chi-squared variance of 0.00124. These parameters were then incorporated into the Krogh cylinder model and used to simulate water transport in rat liver tissue during constant cooling at

  12. Improvement of dissolution property of poorly water-soluble drug by supercritical freeze granulation.

    PubMed

    Sonoda, Ryoichi; Hara, Yuko; Iwasaki, Tomohiro; Watano, Satoru

    2009-10-01

    The dissolution property of the poorly water-soluble drug, flurbiprofen (FP) was improved by a novel supercritical freeze granulation using supercritical carbon dioxide. Supercritical freeze granulation was defined as a production method of the granulated substances by using the dry ice to generate intentionally for the rapid atomization of the supercritical carbon dioxide to the atmospheric pressure. This process utilized a rapid expansion of supercritical solutions (RESS) process with the mixture of the drug and lactose. In the supercritical freeze granulation, needle-like FP fine particles were obtained which adhered to the surface of lactose particles, which did not dissolve in supercritical carbon dioxide. The number of FP particles that adhered to the surface of particles decreased with an increase in the ratio of lactose added, leading to markedly improve the dissolution rate. This improvement was caused not only by the increase in the specific surface area but also the improvement of the dispersibility of FP in water. It is thus concluded that the supercritical freeze granulation is a useful technique to improve the dissolution property of the poorly water-soluble flurbiprofen.

  13. Neutron scattering study of the freezing of water near a cupric oxide surface

    NASA Astrophysics Data System (ADS)

    Torres, J.; Buck, Z. N.; Zhang, F. Z.; Chen, T.; Winholtz, R. A.; Kaiser, H.; Ma, H. B.; Taub, H.; Tyagi, M.

    Oscillating heat pipes (OHP) offer promising two-phase heat transfer for a variety of applications, including cooling of electronic devices.2 Recently, it has been shown that a hydrophilic CuO coating on either the evaporator or condenser sections of a flat-plate OHP can significantly enhance its thermal performance.3 This finding has motivated us to assess the strength of the CuO/H2O interaction by investigating the freezing behavior of H2O in proximity to a CuO surface. Using the High-Flux Backscattering Spectrometer at NIST, we have measured the intensity of neutrons scattered elastically from a well-hydrated sample of CuO-coated Cu foils that mimic the oxide surfaces in a flat-plate OHP. We observe abrupt freezing of bulk-like H2O above the CuO surface at 270 K followed by continuous freezing of the interfacial H2O down to 265 K. This freezing behavior is qualitatively similar to that found for water near a zwitterionic single-supported bilayer lipid membrane.3 Further studies are planned to compare the diffusion coefficients of the interfacial water for the coated and uncoated OHPs.22F.Z. Zhang et al., submitted to J. Heat Transfer. 3M. Bai et al., Europhys. Lett. 98, 48006 (2012); Miskowiec et al., Europhys. Lett. 107, 28008 (2014). Supported by NSF Grant Nos. DMR-0944772 and DGE-1069091.

  14. [Influence of the rate and the share of freezing water on hydrogen and oxygen separation].

    PubMed

    Danilov, K L; Lavrik, N L; Boriskin, V V; Fokin, G A

    2009-01-01

    The influence of the rate nu and the share of freezing water g on the separation of hydrogen D and oxygen 18O has been studied by mass spectromertry. Evidence was obtained supporting the well known facts that, upon freezing of water: (1) the concentration of D in ice is higher than in water; (2) the degree of separation for D is higher than for 18O; (3) an increase in the concentration of D and 18O in ice takes place as the nu value decreases. It was shown for the first time that, at g < 0.05, the concentrations of D at high nu values are higher than at g > 0.05, and at low nu values, it is less than at g > 0.05.

  15. Competition between ices Ih and Ic in homogeneous water freezing.

    PubMed

    Zaragoza, Alberto; Conde, Maria M; Espinosa, Jorge R; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2015-10-07

    The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

  16. Competition between ices Ih and Ic in homogeneous water freezing

    NASA Astrophysics Data System (ADS)

    Zaragoza, Alberto; Conde, Maria M.; Espinosa, Jorge R.; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2015-10-01

    The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

  17. Confined water in hydrophobic nanopores: Dynamics of freezing into bilayer ice

    NASA Astrophysics Data System (ADS)

    Slovák, Jan; Koga, Kenichiro; Tanaka, Hideki; Zeng, Xiao C.

    1999-11-01

    Molecular dynamics simulations for a thin film of water confined to a slit nanopore are performed in order to investigate the dynamic process of crystallization of the system. The system upon freezing creates a bilayer ice crystal composed of two layers of hexagonal rings. We perform one simulation at T=257 K during which the system remains a supercooled liquid state, and another one at T=253 K during which the system freezes. Many patterns of molecular arrangement are found upon freezing, and an account is given of the origin of multiple peaks in the distributions of binding energy and pair interaction energy. A definition of the solidlike cluster is introduced in order to analyze the time evolution of the clusters' population and their shapes. A large variety of shapes including highly nonspherical ones can be detected during simulations. A steady population of clusters is found at T=257 K, whereas at T=253 K a post-critical nucleus of the solid phase emerges within a few nanoseconds and continues to grow until the system freezes completely.

  18. Measurement of temperature and velocity fields of freezing water using liquid crystal tracers

    NASA Astrophysics Data System (ADS)

    Kowalewski, Tomasz A.

    A new experimental technique based on a computational analysis of the colour and displacement of thermochromic liquid crystal tracers was applied to determine both the temperature and velocity fields of freezing water. The technique combines Digital Particle Image Thermometry and Digital Particle Image Velocimetry. Full 2-D temperature and velocity fields are determined from a pair or a longer sequence, of colour images taken for the selected cross-section of the flow.

  19. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect

    Kandlikar, Satish G.; Lu, Zijie; Rao, Navalgund; Sergi, Jacqueline; Rath, Cody; McDade, Christopher; Trabold, Thomas; Owejan, Jon; Gagliardo, Jeffrey; Allen, Jeffrey; Yassar, Reza S.; Medici, Ezequiel; Herescu, Alexandru

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  20. Freezing of Water next to Solid Surfaces Probed Using Sum-Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anim-Danso, Emmanuel; Kurian, Anish; Ge, Liehui; Alizadeh, Azar; Dhinojwala, Ali

    2012-02-01

    The control of ice formation next to solid surfaces is important in many technological applications such as de-icing for aircrafts and generation of power using wind turbines. We have studied the water-ice transition next to sapphire surface to understand the freezing transition and nucleation of ice. The infrared-visible sum frequency generation spectroscopy is sensitive to the structure and orientation of water molecules next to the solid interface and provides direct information on transition kinetics at the interface. The differences in the nucleation kinetics will be discussed for water in contact with hydrophilic and hydrophobic surfaces.

  1. Watershed water circle dynamics during long term farmland conversion in freeze-thawing area

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Bing, Liu; Huang, Haobo; Hao, Fanghua; Hao, Zengchao

    2015-04-01

    Water resource is increasingly scarce in agricultural watershed under the pressure of socio-economic development. Long term land use conversion and freeze-thawing process posed additional characteristics to the water cycle. The semi-distributed hydrologic model Soil and Water Assessment Tool (SWAT) was employed for surface runoff, evaporation, and percolation simulations in freeze-thawing agricultural watershed. The interpreted five terms of land use data over three decades demonstrated that the percentage of the farmland area of the whole watershed increased from 23.5% to 62.1% and about half of dryland shifted to the paddy land in the recent ten years. The validated SWAT simulation showed that the spatial distribution of the surface runoff volume and the watershed averaged value increased 60 mm. The correlations of precipitation with surface runoff at monthly and yearly scales decreased from 0.8-0.9 to 0.6-0.7 respectively, which highlighted the impact of land use change over the surface runoff. The watershed evaporation was lower under the freeze-thawing condition, which increased from 363.7 mm to 418.5 mm over three decades. The field monitoring recorded the decreasing groundwater level, which was coincided with the expanding area of the paddy land. The watershed precipitation did not varied intensively in the whole simulation period (CV ⩽ 0.01), but the percolation varied as the result of the cultivation disturbance on soil properties. The analysis showed that the expanding paddy land decreased the groundwater level at 0.17 m/yr during 1997 and 2012, which posed new challenge on regional water management. The evapotranspiration in the extreme size of paddy land was relatively small and the groundwater level also decreased relatively slow. These characteristics demonstrated the impact of freeze-thawing on the water cycle. The proposed method can be used as an effective tool for quantitative prediction of irrigation water amount and identify the impact of land

  2. Fish antifreeze protein and the freezing and recrystallization of ice.

    PubMed

    Knight, C A; DeVries, A L; Oolman, L D

    Antifreeze glycopeptide and peptides from the blood of polar fishes prevent the growth of ice crystals in water at temperatures down to approximately 1 degree C below freezing point, but do not appreciably influence the equilibrium freezing point. This freezing point hysteresis must be a disequilibrium effect, or it would violate Gibbs' phase rule, but the separate freezing and melting points are experimentally very definite: ice neither melts nor freezes perceptibly within the 'hysteresis gap', for periods of hours or days. We report here unusual crystal faces on ice crystals grown from solutions of very low concentrations of the anti-freeze glycopeptides and peptides. This is a clue to the mechanism of freezing inhibition, and it may be the basis of a simple, very sensitive test for antifreeze material. Very low concentrations of the antifreeze protein are also remarkably effective in preventing the recrystallization of ice.

  3. Fabrication of two-dimensional nanosheets via water freezing expansion exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Wang, Tailin; Wu, Yongzhong; Ma, Fukun; Zhao, Gang; Hao, Xiaopeng

    2014-12-01

    Layered materials, if exfoliated effectively, will exhibit several unique properties, offering great potential for diverse applications. To this end, in this study, we develop a novel, universal, and environmentally friendly method named as ‘water freezing expansion exfoliation’ for producing two-dimensional nanosheets. This method exploits the expansion in the volume of water upon freezing. When the water freezing expansion condition is reproduced in layered materials, the layers exfoliate to overcome the van der Waals force between them. The expansion process is performed by repeated cycling between 4 °C and -20 °C to effectively exfoliate layered materials of graphite, hexagonal boron nitride (h-BN), MoS2 and WS2. Systematic characterization of the samples thus obtained using electron microscopy and optical studies substantiate the formation of thin flakes (graphene, h-BN, MoS2, and WS2 nanosheets). The method demonstrated in this study is cost-effective and does not demand sophisticated equipment and stringent high temperature conditions. Given this general applicability, this method holds great promise for exfoliating layered materials that are sensitive to elevated temperature.

  4. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  5. Temperature gradient osmometer and anomalies in freezing temperatures.

    PubMed

    Arav, A; Rubinsky, B

    1994-12-01

    We have developed a new device that measures freezing and melting temperatures in nanoliter volume samples and can be used as a "freezing point osmometer" with a resolution many orders of magnitude greater than that of existing freezing point osmometers. Using this device we found anomalies in the depression of the freezing temperature and thermal hysteresis in aqueous solutions of hydrophilic amino acids, polyamino acids, and lectins. These anomalies would not have been possible to detect with currently used technology. The compounds that produce anomalies in freezing temperature were reported in the literature as having the ability to bind to cell membranes. This suggests a relation between a molecule's ability to bind to cell membranes and its anomalous freezing temperature depression. The new freezing point osmometer and our results could be important for studying and understanding organic molecules and their interaction with membranes and water.

  6. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.

    PubMed

    Aliotta, Francesco; Giaquinta, Paolo V; Pochylski, Mikolaj; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Vasi, Cirino

    2013-05-14

    The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.

  7. Supercooling and freezing processes in nanoconfined water by time-resolved optical Kerr effect spectroscopy.

    PubMed

    Taschin, A; Bartolini, P; Marcelli, A; Righini, R; Torre, R

    2015-05-20

    Using heterodyne-detected optical Kerr effect (HD-OKE) measurements, we investigate the vibrational dynamics and the structural relaxation of water nanoconfined in Vycor porous silica samples (pore size ≃ 4 nm) at different levels of hydration and temperatures. At low levels of hydration corresponding to two complete superficial water layers, no freezing occurs and the water remains mobile at all the investigated temperatures with dynamic features similar, but not equal to, the bulk water. The fully hydrated sample shows the formation of ice at about 248 K. This process does not involve all the contained water; a part of it remains in a supercooled phase. The structural relaxation times measured from the decay of the time-dependent HD-OKE signal shows the temperature dependence largely affected by the hydration level; the low frequency (ν < 500 cm(-1)) vibrational spectra obtained by the Fourier transforms of the HD-OKE signal appear less affected by confinement.

  8. On the freezing behavior and diffusion of water in proximity to single-supported zwitterionic and anionic bilayer lipid membranes

    NASA Astrophysics Data System (ADS)

    Miskowiec, A.; Buck, Z. N.; Brown, M. C.; Kaiser, H.; Hansen, F. Y.; King, G. M.; Taub, H.; Jiji, R.; Cooley, J. W.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.

    2014-07-01

    We compare the freezing/melting behavior of water hydrating single-supported bilayers of a zwitterionic lipid DMPC with that of an anionic lipid DMPG. For both membranes, the temperature dependence of the elastically scattered neutron intensity indicates distinct water types undergoing translational diffusion: bulk-like water probably located above the membrane and two types of confined water closer to the lipid head groups. The membranes differ in the greater width \\Delta T of the water freezing transition near the anionic DMPG bilayer (\\Delta T \\sim 70\\ \\text{K}) compared to zwitterionic DMPC (\\Delta T \\sim 20\\ \\text{K}) as well as in the abruptness of the freezing/melting transitions of the bulk-like water.

  9. The Mpemba effect: When can hot water freeze faster than cold?

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea

    2006-06-01

    We review the Mpemba effect, where initially hot water freezes faster than initially cold water. Although the effect might appear impossible, it has been observed in numerous experiments and was discussed by Aristotle, Francis Bacon, Roger Bacon, and Descartes. It has a rich and fascinating history, including the story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon is simple to describe and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. Proposed theoretical mechanisms for the Mpemba effect and the results of contemporary experiments on the phenomenon are surveyed. The observation that hot water pipes are more likely to burst than cold water pipes is also discussed.

  10. Formation of Martian Gullies by the Flow of Simultaneously Freezing and Boiling Liquid Water

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Mellon, Michael T.; Toon, Owen B.; Pollard, Wayne H.; Mellon, Michael T.; Pitlick, John; McKay, Christopher P.; Andersen, Dale T.

    2004-01-01

    Geomorphic evidence suggests that recent gullies on Mars were formed by fluvial activity. The Martian gully features are significant because their existence implies the presence of liquid water near the surface on Mars in geologically recent times. Irrespective of the ultimate source of the fluid carving the gullies, we seek to understand the behavior of this fluid after it reaches the Martian surface. We find that, contrary to popular belief, the fluvially-carved Martian gullies require formation conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water. Mars Global Surveyor observations of gully length and our modeling of water stability are consistent with gully formation from the action of pure liquid water that is simultaneously boiling and freezing.

  11. Device Maintains Water At The Triple Point

    NASA Technical Reports Server (NTRS)

    West, J. W.; Burkett, C. G.

    1988-01-01

    Inexpensive device maintains water at 0.01 degree C for 10 weeks or longer. New device consists of four basic assemblies; small, commercial chest freezer containing insulated water tank; insulated copper cell holder; "ice switch" for cycling freezer compressor and externally-mounted air pump for circulation. Access hole in freezer lid allows triple point measurements without opening lid. Modified freezer used to calibrate standard platinum resistance thermomenters.

  12. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  13. AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J.

    1981-01-01

    Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures.

  14. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.

    PubMed

    Verslues, Paul E; Agarwal, Manu; Katiyar-Agarwal, Surekha; Zhu, Jianhua; Zhu, Jian-Kang

    2006-02-01

    The abiotic stresses of drought, salinity and freezing are linked by the fact that they all decrease the availability of water to plant cells. This decreased availability of water is quantified as a decrease in water potential. Plants resist low water potential and related stresses by modifying water uptake and loss to avoid low water potential, accumulating solutes and modifying the properties of cell walls to avoid the dehydration induced by low water potential and using protective proteins and mechanisms to tolerate reduced water content by preventing or repairing cell damage. Salt stress also alters plant ion homeostasis, and under many conditions this may be the predominant factor affecting plant performance. Our emphasis is on experiments that quantify resistance to realistic and reproducible low water potential (drought), salt and freezing stresses while being suitable for genetic studies where a large number of lines must be analyzed. Detailed protocols for the use of polyethylene glycol-infused agar plates to impose low water potential stress, assay of salt tolerance based on root elongation, quantification of freezing tolerance and the use of electrolyte leakage experiments to quantify cellular damage induced by freezing and low water potential are also presented.

  15. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    PubMed

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-05

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment.

  16. The stability against freezing of an internal liquid-water ocean in Callisto.

    PubMed

    Ruiz, J

    2001-07-26

    The discovery of the induced magnetic field of Callisto-one of Jupiter's moons-has been interpreted as evidence for a subsurface ocean, even though the presence of such an ocean is difficult to understand in the context of existing theoretical models. Tidal heating should not be significant for Callisto, and, in the absence of such heating, it is difficult to see how this internal ocean could have survived until today without freezing. Previous work indicated that an outer ice layer on the ocean would be unstable against solid-state convection, which once begun would lead to total freezing of liquid water in about 108 years. Here I show that when a methodology for more physically reasonable water ice viscosities (that is, stress-dependent non-newtonian viscosities, rather than the stress-independent newtonian viscosities considered previously) is adopted, the outer ice shell becomes stable against convection. This implies that a subsurface ocean could have survived up to the present, without the need for invoking antifreeze substances or other special conditions.

  17. Water Relations and Low-Temperature Acclimation for Cactus Species Varying in Freezing Tolerance.

    PubMed

    Goldstein, G.; Nobel, P. S.

    1994-02-01

    Opuntia ficus-indica and Opuntia streptacantha are widely cultivated cacti that can tolerate temperatures no lower than -10[deg]C, whereas Opuntia humifusa, which is native to southern Canada and the eastern United States, can tolerate -24[deg]C. As day/night air temperatures were decreased from 30/20 to 10/0[deg]C, the osmotic pressure increased 0.10 MPa for O. ficus-indica and O. streptacantha but 0.38 MPa for O. humifusa. The increases in osmotic pressures were due mostly to the synthesis of fructose, glucose, and sucrose. In addition, O. humifusa produced a substantial amount of mannitol during exposure to low temperatures. Substantial accumulation of sugars and mannitol in cells of O. humifusa may help prevent intracellular freeze dehydration and ice formation as well as provide noncolligative protection to its membranes. Mucilage was slightly higher in all three species at the lower temperatures. Extracellular nucleation of ice occurred closer to the equilibrium freezing temperature for plants at 10/0[deg]C compared with 30/20[deg]C, which could make the cellular dehydration more gradual and, thus, less damaging. Results from nuclear magnetic resonance indicated a restricted mobility of intracellular water at the lower temperatures, especially for O. humifusa, which is consistent with its lower water content and higher levels of low molecular weight solutes.

  18. Water Relations and Low-Temperature Acclimation for Cactus Species Varying in Freezing Tolerance.

    PubMed Central

    Goldstein, G.; Nobel, P. S.

    1994-01-01

    Opuntia ficus-indica and Opuntia streptacantha are widely cultivated cacti that can tolerate temperatures no lower than -10[deg]C, whereas Opuntia humifusa, which is native to southern Canada and the eastern United States, can tolerate -24[deg]C. As day/night air temperatures were decreased from 30/20 to 10/0[deg]C, the osmotic pressure increased 0.10 MPa for O. ficus-indica and O. streptacantha but 0.38 MPa for O. humifusa. The increases in osmotic pressures were due mostly to the synthesis of fructose, glucose, and sucrose. In addition, O. humifusa produced a substantial amount of mannitol during exposure to low temperatures. Substantial accumulation of sugars and mannitol in cells of O. humifusa may help prevent intracellular freeze dehydration and ice formation as well as provide noncolligative protection to its membranes. Mucilage was slightly higher in all three species at the lower temperatures. Extracellular nucleation of ice occurred closer to the equilibrium freezing temperature for plants at 10/0[deg]C compared with 30/20[deg]C, which could make the cellular dehydration more gradual and, thus, less damaging. Results from nuclear magnetic resonance indicated a restricted mobility of intracellular water at the lower temperatures, especially for O. humifusa, which is consistent with its lower water content and higher levels of low molecular weight solutes. PMID:12232118

  19. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  20. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-01-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  1. Analysis of the building constructions from the point of view of possible freeze-thaw deterioration

    NASA Astrophysics Data System (ADS)

    Maděra, Jiří; Černý, Robert

    2016-07-01

    A mathematical model for the calculation of the amount of frozen water in the porous building materials is presented in this paper. The model is based on the analysis of temperature and moisture content fields in the investigated material together with its pore size distribution function and is primarily designed for the relative assessment of building constructions. The newly formulated model is applied on several wall assemblies made of traditional structural materials and their hygrothermal performance is analyzed in terms of possible frost induced damage. Based on the model outputs some future objectives are drawn.

  2. Kinetics of osmotic water flow across cell membranes in non-ideal solutions during freezing and thawing.

    PubMed

    Weng, Lindong; Li, Weizhong; Zuo, Jianguo

    2010-10-01

    Cryopreservation requires quantitatively analytical models to simulate the biophysical responses of biomaterials during cryopreservation. The Mazur model and other improved ones, such as Karlsson model concerning solutions containing cryoprotectants (CPA), are somehow precluded by some minor points, particularly, the assumption of ideal solutions. To avoid the ideal solution assumption, in this study a new method is developed to simulate water transport across cell membranes in non-ideal solutions during cooling and thawing. The comparison between osmolalities calculated by the linear freezing-point depression used in this new method and other non-ideal ones is conducted and a good agreement is achieved. In addition, in an ideal case, besides a theoretical agreement, this new approach has been validated by its numerical simulation results. Comparisons between this new approach and the traditional ones with an ideal solution assumption have been conducted based on a spherical hypothetical cell. The main results are (1) the predicted non-ideal intracellular water content is larger than the ideal results; (2) the concentration of CPA solutions is directly proportional to the deviation between the non-ideal and ideal curves. In the end, this study presents a direct description of the degree of subcooling of the protoplasm during dynamic cooling. This study demonstrates that our experimental data-based method is a valid one with clear physical interpretations, convenient expressions and a more extensive application room than traditional ones.

  3. Hydrophobicity and freezing of a water droplet on fluoroalkylsilane coatings with different roughnesses.

    PubMed

    Suzuki, Shunsuke; Nakajima, Akira; Yoshida, Naoya; Sakai, Munetoshi; Hashimoto, Ayako; Kameshima, Yoshikazu; Okada, Kiyoshi

    2007-08-14

    Smooth (Ra approximately 0.1 nm) and rough (Ra approximately 20 nm) coatings of 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17) were prepared by controlling process conditions. The water contact angles for the smooth and rough coatings were similar (107 degrees and 110 degrees, respectively), but their sliding angles differed considerably (10 degrees and 27 degrees, respectively). The surface potential on the smooth coating, assessed using Kelvin force microscopy, showed a sharp distribution, but that on the rough coating ranged widely, implying large chemical heterogeneity including residual SiOH groups. The freezing temperature of a supercooled water droplet on the rough coating was higher than that on the smooth coating.

  4. Towards a robust water content determination of freeze-dried samples by near-infrared spectroscopy.

    PubMed

    Grohganz, Holger; Gildemyn, Delphine; Skibsted, Erik; Flink, James M; Rantanen, Jukka

    2010-08-31

    The possibility for determination of the water content in pharmaceutical samples by near-infrared (NIR) spectroscopy has been more widely investigated in the past few years. However, many studies claim that changes in sample composition will require the establishment of a new method. The aim of this study was several fold: firstly to investigate validation aspects of water content determination in samples with varying composition and furthermore to see if a model based solely on freeze-dried mannitol-sucrose mixtures can be established that will be able to predict water contents for samples containing proteins, excipients or having a lower density of freeze-dried solids. Samples were measured by NIR, standard normal variate (SNV) corrected and the obtained spectra were compared with the results from a conventional Karl-Fischer titration by means of multivariate analysis, namely principal component analysis (PCA) and partial least square regression (PLS). For the overall sample set, a highly linear correlation between the NIR and the Karl-Fischer method with a slope of 1.00, an R(2) value of 0.98 and a root mean square error of cross-validation (RMSECV) of 0.15% were found. In a second step samples solely consisting of mannitol and sucrose mixtures were used to build a calibration set, which resulted in a RMSECV of 0.16%. The prediction of the remaining samples, which included protein or excipient containing samples, as well as lower density samples, resulted in a root mean square error of prediction (RMSEP) of 0.19%. Thus the present study demonstrated, that a general model for the determination of the water content by NIR could be established, within the limits investigated.

  5. Field observations of slush ice generated during freeze-up in arctic coastal waters

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.

    1987-01-01

    In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during

  6. Neutron diffraction study of water freezing on aircraft engine combustor soot.

    PubMed

    Tishkova, V; Demirdjian, B; Ferry, D; Johnson, M

    2011-12-14

    The study of the formation of condensation trails and cirrus clouds on aircraft emitted soot particles is important because of its possible effects on climate. In the present work we studied the freezing of water on aircraft engine combustor (AEC) soot particles under conditions of pressure and temperature similar to the upper troposphere. The microstructure of the AEC soot was found to be heterogeneous containing both primary particles of soot and metallic impurities (Fe, Cu, and Al). We also observed various surface functional groups such as oxygen-containing groups, including sulfate ions, that can act as active sites for water adsorption. Here we studied the formation of ice on the AEC soot particles by using neutron diffraction. We found that for low amount of adsorbed water, cooling even up to 215 K did not lead to the formation of hexagonal ice. Whereas, larger amount of adsorbed water led to the coexistence of liquid water (or amorphous ice) and hexagonal ice (I(h)); 60% of the adsorbed water was in the form of ice I(h) at 255 K. Annealing of the system led to the improvement of the crystal quality of hexagonal ice crystals as demonstrated from neutron diffraction.

  7. Freeze substitution followed by low melting point wax embedding preserves histomorphology and allows protein and mRNA localization techniques.

    PubMed

    Durán, Iván; Marí-Beffa, Manuel; Santamaría, Jesús A; Becerra, José; Santos-Ruiz, Leonor

    2011-05-01

    Fixation and embedding are major steps in tissue preservation for histological analysis. However, conventional fixatives like aldehyde-based solutions usually mask tissular epitopes preventing their immunolocalization. Alternative fixation methods used to avoid this drawback, such as cryopreservation, alcohol- or zinc salts-based fixatives do not efficiently preserve tissue and cell morphology. Likewise, paraffin and resin embedding, commonly used for thin sectioning, frequently damage epitopes due to the clearing agents and high temperatures needed along the embedding procedure. Alternatives like cryosectioning avoid the embedding steps but yield sections of poorer quality and are not suitable for all kinds of samples. To overcome these handicaps, we have developed a method that preserves histoarchitecture as well as tissue antigenic properties. This method, which we have named CryoWax, involves freeze substitution of the samples in isopentane and methanol, followed by embedding in low melting point polyester wax. CryoWax has proven efficient in obtaining thin sections of embryos and adult tissues from different species, including amphioxus, zebrafish, and mouse. CryoWax sections displayed optimal preservation of tissue morphology and were successfully immunostained for fixation- and temperature-sensitive antigens. Furthermore, CryoWax has been tested for in situ hybridization application, obtaining positive results.

  8. Activity coefficients and free energies of nonionic mixed surfactant solutions from vapor-pressure and freezing-point osmometry.

    PubMed

    MacNeil, Jennifer A; Ray, Gargi Basu; Leaist, Derek G

    2011-05-19

    The thermodynamic properties of mixed surfactant solutions are widely investigated, prompted by numerous practical applications of these systems and by interest in molecular association and self-organization. General techniques for measuring thermodynamic activities, such as isopiestic equilibration, are well-established for multicomponent solutions. Surprisingly, these techniques have not yet been applied to mixed surfactant solutions, despite the importance of the free energy for micelle stability. In this study, equations are developed for the osmotic coefficients of solutions of nonionic surfactant A + nonionic surfactant B. A mass-action model is used, with virial equations for the activity coefficients of the micelles and free surfactant monomer species. The equations are fitted to osmotic coefficients of aqueous decylsulfobetaine + dodecylsulfobetaine solutions measured by vapor-pressure and freezing-point osmometry. Equilibrium constants for mixed-micelle formation are calculated from the free monomer concentrations at the critical micelle concentrations. The derived activity coefficients of the micelles and free monomers indicate large departures from ideal solution behavior, even for dilute solutions of the surfactants. Stoichiometric activity coefficients of the total surfactant components are evaluated by Gibbs-Duhem integration of the osmotic coefficients. Relatively simple colligative property measurements hold considerable promise for free energy studies of multicomponent surfactant solutions.

  9. Experimental investigation of freezing blowby in a copper/water heat pipe

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1992-01-01

    An experimental investigation designed to evaluate and better define the overall characteristics of freezing blowby in a copper/water heat pipe was conducted. The results from various rates of restart heat addition and channel blockage, indicate that upon breakthrough the depressurization of the evaporator may result in an effective heat transport capacity far in excess of the steady-state transport limit. The resulting transient conditions imposed on the heat pipe by the effective increased heat transport capacity can cause a loss of liquid in the evaporator and potential dryout. Evidence is presented which indicates that in order to prevent either temporary or permanent dryout, sufficient liquid inventory must be present in the evaporator wicking structure to accommodate the increased transient thermal load and allow sufficient time for the capillary wicking structure to reprime.

  10. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer.

  11. Study on the Unfrozen Water Quantity of Maximally Freeze-Concentrated Solutions for Multicomponent Lyoprotectants.

    PubMed

    Xu, Mengjie; Chen, Guangming; Zhang, Cunhai; Zhang, Shaozhi

    2017-01-01

    The concentration of maximally freeze-concentrated solutions [Formula: see text] and the corresponding glass transition temperature [Formula: see text] and ante-melting temperature [Formula: see text] of lyoprotectant solutions, are critical parameters for developing lyophilization process. Usually, the lyoprotectant solutions are multicomponent solutions composed of electrolytes, sugars, proteins, polymers, and other chemicals. In this article, the Wg(') values of several multicomponent solutions including trehalose/NaCl, bovine serum albumin/NaCl, and hydroxyethyl starch/NaCl with water were determined by differential scanning calorimetry. A linear relationship between the unfrozen water fraction Wun and the initial solute concentrations Wi was found: Wun = ∑(ai·Wi), which suggested that in the multicomponent solutions each solute could hydrate a certain amount of water ai (g water/g solute) that could not be frozen. The hypothesis was compared with more literature data. For the same solute in different solutions, variation in the fitted coefficient ai is noticed and discussed. If a "universal" value ai for each solute is adopted, both [Formula: see text] and [Formula: see text] for a multicomponent solution could be predicted if Couchman-Karasz equation is adopted for calculating glass transition temperature at the same time. The prediction discrepancies for [Formula: see text] with experimental data were less than 2°C. The finding is discussed about its molecular basis and applicability.

  12. Synergistic impacts of land-use change and soil property variation on non-point source nitrogen pollution in a freeze-thaw area

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Guo, Bobo

    2013-07-01

    Quantifying the non-point source (NPS) nitrogen pollution response to the varied land-use and soil properties in highly agricultural regions is critical for the proper management of NPS pollution. This study simulated the NPS nitrogen loading responses to variations of land-use and soil from 1979 to 2009. The Soil and Water Assessment Tool (SWAT) was used to model the NPS organic nitrogen and nitrate loading in a freeze-thaw area in northeast China. The temporal-spatial simulations of land-use in four periods indicated that the NPS nitrogen loading responded to the disappearance of wetlands and the conversion of uplands to paddy rice. After updating the soil data, the watershed NPS nitrogen loading decreased, and the spatial distribution of the loading indicated that the NPS organic nitrogen was more sensitive than was the nitrate to soil variation. F-tests were employed to assess the significance of each of the predictor variables in five types of scenarios. Overall, the results indicate that the watershed NPS nitrogen loading is sensitive to changes of soil and land-use, but soil changes have a more significant impact. The results of this study also suggest that temperature has significant effects on NPS nitrogen yield and that it caused the twin peaks in the temporal scale. Increasing the temperature above zero in April caused a temporal shift in soil water movement and transported nitrogen pollution earlier in the year, causing an increased loading in water before the summer irrigation, which is advantageous for NPS nitrogen pollution control.

  13. Considerations for osmolality measurement under elevated pCO(2): comparison of vapor pressure and freezing point osmometry.

    PubMed

    Schmelzer, A E; deZengotita, V M; Miller, W M

    2000-01-20

    Osmolality increases with pCO(2) in bioreactors with pH control, and it has been shown that osmolality compensation by decreasing the basal NaCl concentration partially mitigates the adverse effects of elevated pCO(2) on animal cell growth, protein production, and glycosylation. Thus, measurement of osmolality is important for a complete characterization of the culture environment under elevated pCO(2). However, osmolality measurement may be compromised by CO(2) evolution. Freezing point depression and vapor pressure depression osmometry were directly compared for the measurement of osmolality in samples at elevated pCO(2) (up to 250 mmHg) and at a variety of pH values (6.7-7.5). More extensive degassing may be expected with the vapor pressure osmometer due to the smaller sample volume and larger surface area employed. However, both types of osmometer yielded similar results for all pCO(2) and pH values studied. Moreover, the measured values agreed with osmolality values calculated using a semi-empirical model. Further analysis showed that, while sample degassing may result in a large decrease in pCO(2), there is little associated decrease in osmolality. The great majority of total CO(2) in solution is present as bicarbonate (HCO(3)(-)). Although a small amount of HCO(3)(-) is converted to CO(2) to compensate for CO(2) evolution, further depletion of HCO(3)(-) is inhibited by the associated increase in medium pH and by the need for HCO(3)(-) to maintain charge neutrality in solution. This explanation is consistent with the observed similarity in osmolality values for the two types of osmometer. It was also observed that osmolality did not change in samples that were frozen at -20 degrees C for up to 1 year.

  14. Serum protein and casein concentration: effect on pH and freezing point of milk with added CO2.

    PubMed

    Ma, Y; Barbano, D M

    2003-05-01

    The objective of this study was to determine the effect of protein concentration and protein type [i.e., casein (CN) and serum protein (SP)] on pH (0 degree C) and freezing point (FP) of skim milk upon CO2 injection at 0 degree C. CN-free skim milks with increasing SP content (0, 3, and 6%) and skim milks with the same SP content (0.6%) but increasing CN content (2.4, 4.8, and 7.2%) were prepared using a combination of microfiltration and ultrafiltration processes. CO2 was injected into milks at 0 degree C using a continuous flow carbonation unit (230 ml/min). Increasing SP or CN increased milk buffering capacity and protein-bound mineral content. At the same CO2 concentration at 0 degree C, a milk with a higher SP or a higher CN concentration had more resistance to pH change and a greater extent of FP decrease. The buffering capacity provided by an increase of CN was contributed by both the CN itself and the colloidal salts solublized into the serum phase from CN upon carbonation. Skim milks with the same true protein content (3%), one with 2.4% CN plus 0.6% SP and one with 3% SP, were compared. At the same true protein content (3%), increasing the proportion of CN increased milk buffering capacity and protein-bound mineral content. Milk with a higher proportion of CN had more resistance to pH change and a greater extent of FP decrease at the same carbonation level at 0 degree C. Once CO2 was dissolved in the skim portion of a milk, the extent of pH reduction and FP depression depended on protein concentration and protein type (i.e., CN and SP).

  15. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.

    PubMed

    Mori, Shoji; Choi, Jeunghwan; Devireddy, Ram V; Bischof, John C

    2012-12-01

    The current study presents a new and novel analysis of heat release signatures measured by a differential scanning calorimeter (DSC) associated with water transport (WT), intracellular ice formation (IIF) and extracellular ice formation (EIF). Correlative cryomicroscopy experiments were also performed to validate the DSC data. The DSC and cryomicroscopy experiments were performed on human dermal fibroblast cells (HDFs) at various cytocrit values (0-0.8) at various cooling rates (0.5-250 °C/min). A comparison of the cryomicroscopy experiments with the DSC analysis show reasonable agreement in the water transport (cellular dehydration) and IIF characteristics between both the techniques with the caveat that IIF measured by DSC lagged that measured by cryomicroscopy. This was ascribed to differences in the techniques (i.e. cell vs. bulk measurement) and the possibility that not all IIF is associated with visual darkening. High and low rates of 0.5 °C/min and 250 °C/min were chosen as HDFs did not exhibit significant IIF or WT at each of these extremes respectively. Analysis of post-thaw viability data suggested that 10 °C/min was the presumptive optimal cooling rate for HDFs and was independent of the cytocrit value. The ratio of measured heat values associated with IIF (q(IIF)) to the total heat released from both IIF and water transport or from the total cell water content in the sample (q(CW)) was also found to increase as the cooling rate was increased from 10 to 250 °C/min and was independent of the sample cytocrit value. Taken together, these observations suggest that the proposed analysis is capable of deconvolving water transport and IIF data from the measured DSC latent heat thermograms in cell suspensions during freezing.

  16. Zero point energy of polyhedral water clusters.

    PubMed

    Anick, David J

    2005-06-30

    Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.

  17. Poromechanics of freezing materials

    NASA Astrophysics Data System (ADS)

    Coussy, Olivier

    2005-08-01

    When subjected to a uniform cooling below the freezing point a water-infiltrated porous material undergoes a cryo-deformation resulting from various combined actions: (i) the difference of density between the liquid water and the ice crystal, which results in the initial build-up of an in-pore pressure at the onset of crystallization; (ii) the interfacial effects arising between the different constituents, which eventually govern the crystallization process in connection with the pore access radius distribution; (iii) the drainage of the liquid water expelled from the freezing sites towards the air voids; (iv) the cryo-suction process, which drives liquid water towards the already frozen pores as the temperature further decreases; (v) the thermomechanical coupling between the solid matrix, the liquid water and the ice crystal. We work out a comprehensive theory able to encompass this whole set of actions. A macroscopic approach first provides the constitutive equations of freezing poroelastic materials, including the interfacial energy effects. This approach reveals the existence of a thermodynamic state function—namely the liquid saturation degree as a function of the temperature only. The macroscopic ice-dependent poroelastic properties are then upscaled from the knowledge of the elastic properties of the solid matrix, of the pore access radius distribution, and of the capillary curve. The theory is finally illustrated by analysing quantitatively the effects of the cooling rate and of the pore radius distribution upon the cryo-deformation of water-infiltrated porous materials. The theory succeeds in accounting for the experimentally observed shrinkage of embedded air voids, while predicting the partial melting of the ice already formed when the cooling suddenly stops.

  18. Control of crystal growth in water purification by directional freeze crystallization

    NASA Technical Reports Server (NTRS)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  19. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    SciTech Connect

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  20. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  1. Xylem Embolism in Response to Freeze-Thaw Cycles and Water Stress in Ring-Porous, Diffuse-Porous, and Conifer Species 1

    PubMed Central

    Sperry, John S.; Sullivan, June E. M.

    1992-01-01

    Vulnerability to xylem embolism by freeze-thaw cycles and water stress was quantified in ring-porous (Quercus gambelii Nutt.), diffuse-porous (Populus tremuloides Michx., Betula occidentalis Hook.), and conifer species (Abies lasiocarpa Nutt., Juniperus scopulorum Sarg.). Embolism was measured by its reduction of xylem hydraulic conductivity; it was induced by xylem tension (water-stress response) and by a tension plus a freeze-thaw cycle (freeze response). Conifers showed little (Juniperus) or no (Abies) freeze response even to repeated cycles. In contrast, Quercus embolized more than 90% by freezing at tensions below 0.2 MPa, whereas similar embolism without freezing required tensions above 4.5 MPa. Diffuse-porous trees (Betula, Populus) showed an intermediate freeze response. The magnitude of the freeze response was correlated with conduit volume but occurred at higher tensions than predicted from theory. Large early-wood vessels (2.8 × 10−9 m3) in oak were most vulnerable to embolism by freezing, small vessels in Populus and Betula were intermediate (approximately 7 × 10−11 m3), and tracheids in conifers (about 3 × 10−13 m3) were most resistant. The same trend was found within a stem: embolism by freeze-thawing occurred preferentially in wider conduits. The water-stress response was not correlated with conduit volume; previous work indicates it is a function of interconduit pit membrane structure. Native embolism levels during winter corroborated laboratory results on freezing: Quercus embolized 95% with the first fall freeze, Populus and Betula showed gradual increases to more than 90% embolism by winter's end, and Abies remained below 30%. PMID:16653035

  2. Ripples in Rocks Point to Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the rock nicknamed 'Last Chance,' which lies within the outcrop near the rover's landing site at Meridiani Planum, Mars. The image provides evidence for a geologic feature known as ripple cross-stratification. At the base of the rock, layers can be seen dipping downward to the right. The bedding that contains these dipping layers is only one to two centimeters (0.4 to 0.8 inches) thick. In the upper right corner of the rock, layers also dip to the right, but exhibit a weak 'concave-up' geometry. These two features -- the thin, cross-stratified bedding combined with the possible concave geometry -- suggest small ripples with sinuous crest lines. Although wind can produce ripples, they rarely have sinuous crest lines and never form steep, dipping layers at this small scale. The most probable explanation for these ripples is that they were formed in the presence of moving water.

    Crossbedding Evidence for Underwater Origin Interpretations of cross-lamination patterns presented as clues to this martian rock's origin under flowing water are marked on images taken by the panoramic camera and microscopic imager on NASA's Opportunity.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The red arrows (Figure 1) point to features suggesting cross-lamination within the rock called 'Last Chance' taken at a distance of 4.5 meters (15 feet) during Opportunity's 17th sol (February 10, 2004). The inferred sets of fine layers at angles to each other (cross-laminae) are up to 1.4 centimeters (half an inch) thick. For scale, the distance between two vertical cracks in the rock is about 7 centimeters (2.8 inches). The feature indicated by the middle red arrow suggests a pattern called trough cross-lamination, likely produced when flowing water shaped sinuous ripples in underwater sediment and pushed the ripples to migrate

  3. Vacuum Freeze-Drying, a Method Used To Salvage Water-Damaged Archival and Library Materials: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    McCleary, John M.

    This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…

  4. Modeling of flow and solidification of liquid water during unidirectional freezing in porous media

    NASA Astrophysics Data System (ADS)

    Saruya, Tomotaka; Rempel, Alan; Kurita, Kei

    2014-05-01

    Flow and phase change of liquid in porous media are fundamental processes in earth science and soil physics. Particularly in cold region or periglacial environment, the flow and solidification of pore water in the ground simultaneously occur and their collective interactions control the growth of ice lenses and upward displacement of surface called as frost heave. In the nucleation and growth of ice lenses, the homogeneous mixture of soil particles and pore water is transformed to the heterogeneous structure due to the water redistribution and the particle migration. Unfrozen water that is adsorbed to the particle surface or confined to capillary regions plays an important role in the formation of ice lenses and its behaviors have been investigated from a perspective of premelting dynamics (e.g., Worster and Wettlaufer 2006). In the porous media below the nominal melting temperature, intermolecular forces that act between particles and ice through the liquid thin film produce the net thermomolecular force that is responsible for the particle separation form the ice lenses(Dash et al. 2006). Although the mechanisms of ice lens formation have been investigated by many researchers, still large uncertainties remain and more experimental constraints are required. Here we present experimental results of ice lens formation, particularly focusing on the role of grain size and compare the model by Rempel et al (2004). We have performed the unidirectional freezing experiments using water-saturated glass beads that have uniform structures. Since the flow of water in porous media depends on the particles size and pore throat size (Darcy's law), we have prepared various sizes of glass beads from submicron to submillimeter. Our experiments reveal the clear relationships between the host particle sizes and nucleated location and lens thickness. Part of this work is already published in Saruya et al, PRE but we extended to smaller sized regime. We compared our experimental results

  5. Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing.

    PubMed

    Lovering, Kaitlin A; Bertram, Allan K; Chou, Keng C

    2017-02-16

    We observed a transient noncentrosymmetric phase of ice at water/mineral interfaces during freezing, which enhanced the intensity of the IR-visible sum frequency generation intensity by up to 20-fold. The lifetime of the transient phase was several minutes. Since the most stable form of ice, hexagonal and cubic ice, are centrosymmetric, our study suggests the transient existence of stacking-disordered ice during the freezing process at water/mineral interfaces. Stacking-disordered ice, which has only been observed in bulk ice at temperatures lower than -20 °C, is a random mixture of layers of hexagonal ice and cubic ice. However, the transient phase at the ice/mineral interface was observed at temperatures as high as -1 °C. It suggests that the mineral surface may play a role in promoting and stabilizing the formation of stacking-disordered ice at the interface.

  6. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study.

    PubMed

    Wang, Jun; Apte, Pankaj A; Morris, James R; Zeng, Xiao Cheng

    2013-09-21

    Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ*=1, √2, √3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ100 > γ110 > γ111.

  7. Real-time Non-contact Millimeter Wave Characterization of Water-Freezing and Ice-Melting Dynamics

    SciTech Connect

    Sundaram, S. K.; Woskov, Paul P.

    2008-11-12

    We applied millimeter wave radiometry for the first time to monitor water-freezing and ice-melting dynamics in real-time non-contact. The measurements were completed at a frequency of 137 GHz. Small amounts (about 2 mL) of freshwater or saltwater were frozen over a Peltier cooler and the freezing and melting sequence was recorded. Saltwater was prepared in the laboratory that contained 3.5% of table salt to simulate the ocean water. The dynamics of freezing-melting was observed by measuring the millimeter wave temperature as well as the changes in the ice or water surface reflectivity and position. This was repeated using large amounts of freshwater and saltwater (800 mL) mimicking glaciers. Millimeter wave surface level fluctuations indicated as the top surface melted, the light ice below floated up indicating lower surface temperature until the ice completely melted. Our results are useful for remote sensing and tracking temperature for potentially large-scale environmental applications, e.g., global warming.

  8. The Freezing Bomb

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation…

  9. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    NASA Astrophysics Data System (ADS)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  10. Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus.

    PubMed

    Pinisetty, D; Huang, C; Dong, Q; Tiersch, T R; Devireddy, R V

    2005-06-01

    This study reports the subzero water transport characteristics (and empirically determined optimal rates for freezing) of sperm cells of live-bearing fishes of the genus Xiphophorus, specifically those of the southern platyfish Xiphophorus maculatus. These fishes are valuable models for biomedical research and are commercially raised as ornamental fish for use in aquariums. Water transport during freezing of X. maculatus sperm cell suspensions was obtained using a shape-independent differential scanning calorimeter technique in the presence of extracellular ice at a cooling rate of 20 degrees C/min in three different media: (1) Hanks' balanced salt solution (HBSS) without cryoprotective agents (CPAs); (2) HBSS with 14% (v/v) glycerol, and (3) HBSS with 10% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder with a length of 52.35 microm and a diameter of 0.66 microm with an osmotically inactive cell volume (Vb) of 0.6 V0, where V0 is the isotonic or initial cell volume. This translates to a surface area, SA to initial water volume, WV ratio of 15.15 microm(-1). By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the best fit membrane permeability parameters (reference membrane permeability to water at 0 degrees C, Lpg or Lpg [cpa] and the activation energy, E(Lp) or E(Lp) [cpa]) were found to range from: Lpg or Lpg [cpa] = 0.0053-0.0093 microm/minatm; E(Lp) or E(Lp) [cpa] = 9.79-29.00 kcal/mol. By incorporating these membrane permeability parameters in a recently developed generic optimal cooling rate equation (optimal cooling rate, [Formula: see text] where the units of B(opt) are degrees C/min, E(Lp) or E(Lp) [cpa] are kcal/mol, L(pg) or L(pg) [cpa] are microm/minatm and SA/WV are microm(-1)), we determined the optimal rates of freezing X. maculatus sperm cells to be 28 degrees C/min (in HBSS), 47 degrees C/min (in HBSS+14% glycerol) and 36 degrees C/min (in HBSS+10% DMSO). Preliminary empirical

  11. A study of freezing-melting hysteresis of water in different porous materials. Part II: surfactant-templated silicas.

    PubMed

    Petrov, Oleg; Furó, István

    2011-09-28

    The freezing-melting hysteresis of water in mesoporous silicas MCM-48, MCM-41 and SBA-16 has been studied by NMR cryoporometry. The hysteresis in MCM-48 was found to exhibit nearly parallel branches, matching type H1 hysteresis that had been observed earlier in controlled pore glass. The same type of hysteresis is observed in two of three different-sized MCM-41 under study (a pore diameter of 3.6 and 3 nm), superimposed with a secondary, extremely broad, type H3 hysteresis. No hysteresis was found in the smallest MCM-41 with a pore diameter < 3 nm. Finally, water in SBA-16 exhibits type H2 hysteresis with the freezing branch being essentially steeper than the melting one, which is attributed to a pore blockage upon freezing, similar to what we observed earlier in Vycor porous glass. The data were analyzed using the model of curvature-dependent metastability of a solid phase upon melting; the validity of this model has been discussed.

  12. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.

  13. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R.; Harju, J.A.

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  14. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices.

    PubMed

    Imamura, Koreyoshi; Kagotani, Ryo; Nomura, Mayo; Tanaka, Kazuhiro; Kinugawa, Kohshi; Nakanishi, Kazuhiro

    2011-04-15

    An amorphous matrix comprised of sugar molecules are frequently used in the pharmaceutical industry. The compression of the amorphous sugar matrix improves the handling. Herein, the influence of compression on the water sorption of an amorphous sugar matrix was investigated. Amorphous sugar samples were prepared by freeze-drying, using several types of sugars, and compressed at 0-443 MPa. The compressed amorphous sugar samples as well as uncompressed samples were rehumidified at given RHs, and the equilibrium water content and glass transition temperature (T(g)) were then measured. Compression resulted in a decrease in the equilibrium water content of the matrix, the magnitude of which was more significant for smaller sized sugars. Diffusivity of water vapor in the sample was also decreased to one-hundredth by the compression. The T(g) value for a given RH remained unchanged, irrespective of the compression. Accordingly, the decrease in T(g) with increasing water content increased as the result of compression. The structural relaxation of the amorphous sugar matrices were also examined and found to be accelerated to the level of a non-porous amorphous sugar matrix as the result of the compression. The findings indicate that pores contained in freeze-dried sugar samples interfere with the propagation of structural relaxation.

  15. 40 CFR 142.57 - Bottled water, point-of-use, and point-of-entry devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Bottled water, point-of-use, and point... Issued by the Administrator § 142.57 Bottled water, point-of-use, and point-of-entry devices. (a) A State may require a public water system to use bottled water, point-of-use devices, or...

  16. 40 CFR 142.57 - Bottled water, point-of-use, and point-of-entry devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Bottled water, point-of-use, and point... Issued by the Administrator § 142.57 Bottled water, point-of-use, and point-of-entry devices. (a) A State may require a public water system to use bottled water, point-of-use devices, or...

  17. 40 CFR 142.57 - Bottled water, point-of-use, and point-of-entry devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Bottled water, point-of-use, and point... Issued by the Administrator § 142.57 Bottled water, point-of-use, and point-of-entry devices. (a) A State may require a public water system to use bottled water, point-of-use devices, or...

  18. 40 CFR 142.57 - Bottled water, point-of-use, and point-of-entry devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Bottled water, point-of-use, and point... Issued by the Administrator § 142.57 Bottled water, point-of-use, and point-of-entry devices. (a) A State may require a public water system to use bottled water, point-of-use devices, or...

  19. 40 CFR 142.57 - Bottled water, point-of-use, and point-of-entry devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Bottled water, point-of-use, and point... Issued by the Administrator § 142.57 Bottled water, point-of-use, and point-of-entry devices. (a) A State may require a public water system to use bottled water, point-of-use devices, or...

  20. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  1. Microautoradiography of Water-Soluble Compounds in Plant Tissue after Freeze-Drying and Pressure Infiltration with Epoxy Resin

    PubMed Central

    Vogelmann, Thomas C.; Dickson, Richard E.

    1982-01-01

    It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible. Images Fig. 2 PMID:16662542

  2. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    PubMed

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-05-04

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy.

  3. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  4. Avoidance and tolerance of freezing in ectothermic vertebrates.

    PubMed

    Costanzo, Jon P; Lee, Richard E

    2013-06-01

    Ectothermic vertebrates have colonized regions that are seasonally or perpetually cold, and some species, particularly terrestrial hibernators, must cope with temperatures that fall substantially below 0°C. Survival of such excursions depends on either freeze avoidance through supercooling or freeze tolerance. Supercooling, a metastable state in which body fluids remain liquid below the equilibrium freezing/melting point, is promoted by physiological responses that protect against chilling injury and by anatomical and behavioral traits that limit risk of inoculative freezing by environmental ice and ice-nucleating agents. Freeze tolerance evolved from responses to fundamental stresses to permit survival of the freezing of a substantial amount of body water under thermal and temporal conditions of ecological relevance. Survival of freezing is promoted by a complex suite of molecular, biochemical and physiological responses that limit cell death from excessive shrinkage, damage to macromolecules and membranes, metabolic perturbation and oxidative stress. Although freeze avoidance and freeze tolerance generally are mutually exclusive strategies, a few species can switch between them, the mode used in a particular instance of chilling depending on prevailing physiological and environmental conditions.

  5. Inhibited ethylene and propylene glycols for corrosion and freeze protection in water-based HVAC systems

    SciTech Connect

    Roo, A.M. de; Lee, B.W.

    1997-12-31

    Industrially inhibited ethylene and propylene glycols are used extensively to provide protection against equipment damage due to corrosion and freezing. This paper will describe the proper use of these glycols, including system preparation, fluid installation, and fluid maintenance. The impact of the use of these glycols on the operation of the system is discussed along with methods for overcoming any declines in heat transfer. From this discussion, it will become clear why automotive antifreeze formulations should not be used in heating, ventilating, and airconditioning (HVAC) systems. Also included are data on the physical properties of aqueous solutions of ethylene and propylene glycol, the concept of burst vs. freeze protection, typical results of corrosion tests, and methods to use to monitor the fluid for each application.

  6. Isotope Exchange and Fractionation Corrections for Extraction of Tritiated Water in Silica Gel by Freeze-Drying Techniques

    SciTech Connect

    Guthrie, E B; Shen, N C; Bandong, B B

    2001-09-24

    A concentration correction curve was established for measuring the activity concentration of airborne tritiated water collected with dried silica gel and extracted by the LLNL Environmental Monitoring Radiological Laboratory freeze-dry technique. A tracer study using standard tritiated water with silica gel showed that the concentration of tritium in the extracted water is lower than that in the adsorbed water by a fraction proportional to the amount of adsorbed water. The observed decrease in tritium concentration in the extracted water can be accounted for by dilution due to isotopic exchange with both non-tritiated water and hydroxyl groups within the silica gel matrix. For the range of 8-35% adsorbed water, which is typical of samples collected in LLNL monitoring stations, the derived exchangeable water in the silica gel material under investigation was (5.12 {+-} 0.08)%. The contribution of the H{sub 2}O/HTO vapor pressure effect using published empirical data in the literature was also considered in calculating the degree of isotopic exchange.

  7. Final report on COOMET.T-S1. Comparison of type S thermocouples at the freezing points of zinc, aluminium and copper 2014—2015

    NASA Astrophysics Data System (ADS)

    Pokhodun, A. I.; Ivanova, A. G.; Duysebayeva, K. K.; Ivanova, K. P.

    2015-01-01

    Regional comparison of type S thermocouples at the freezing points of zinc, aluminium and copper was initiated by COOMET TC1.1-10 (the technical committee of COOMET `Thermometry and thermal physics'). Three NMI take part in COOMET regional comparison: D I Mendeleev Institute for Metrology (VNIIM) (Russian Federation), National Scientific Centre (Institute of Metrology) (NSC IM, Ukraine), Republic State Enterprise (Kazakhstan Institute of Metrology) (KazInMetr, Republic of Kazakhstan). VNIIM (Russia) was chosen as the coordinator-pilot of the regional comparison. A star type comparison was used. The participants: KazInMetr and NSC IM constructed the type S thermocouples and calibrated them in three fixed points: zinc, aluminum and copper points, using methods of ITS-90 fixed point realizations. The thermocouples have been sent to VNIIM together with the results of the calibration at three fixed points, with the values of the inhomogeneity at temperature 200 °C and the uncertainty evaluations of the results. For calibration of thermocouples the same VNIIM fixed points cells were used. Participating laboratories repeated the calibration of thermocouples after its returning in zinc, aluminum and copper points to determine the stability of its results. In result of the comparison was to evaluate the equivalence of the type S thermocouples calibration in fixed points by NMIs to confirm corresponding lines of international website for NMI's Calibration and Measurement Capabilities (CMC). This paper is the final report of the comparison including analysis of the uncertainty of measurement results. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT WG-KC, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Solid-phase extraction of explosive nitramines on macroreticular polymers modified by freezing with water or acetone.

    PubMed

    Tomaszewski, Waldemar; Gun'ko, Vladimir M; Skubiszewska-Zięba, Jadwiga

    2016-04-01

    A novel approach is proposed to modify the porous structure and surface properties of the polymers used in solid-phase extraction. The approach involves soaking in water or acetone, followed by freezing in liquid nitrogen (77.4 K) and was employed for two polymeric materials: Amberlite XAD-7 and Amberlite XAD-16. Variations in the surface properties of the adsorbents were justified by the action of acetone and water as solvents affecting the textural and other characteristic of the materials. The initial and treated adsorbents were used in extraction of explosive nitramines from aqueous samples. The performed modifications of the polymer texture allow us to increase the recovery rate as compared with the initial adsorbents. The results were justified by the swelling of fragments of the polymers and by the additional process of sorption of nitramines. The results indicate that polymeric adsorbents can be easily modified by the soaking/freezing process and the materials can be achieved that prove usefulness for the effective separation of explosive nitramines from aqueous samples.

  9. Flight Instrument for Measurement of Liquid-Water Content in Clouds at Temperatures Above and Below Freezing

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1951-01-01

    A principle formerly used in an instrument for cloud detection was further investigated to provide a simple and rapid means for measuring the liquid-water content of clouds at temperatures above and below freezing. The instrument consists of a small cylindrical element so operated at high surface temperatures that the impingement of cloud droplets creates a significant drop in the surface temperature. ? The instrument is sensitive to a wide range of liquid-water content and was calibrated at one set of fixed conditions against rotating multicylinder measurements. The limited conditions of the calibration Included an air temperature of 20 F, an air velocity of 175 miles per hour, and a surface temperature in clear air of 475 F. The results obtained from experiments conducted with the instrument indicate that the principle can be used for measurements in clouds at temperatures above and below freezing. Calibrations for ranges of airspeed, air temperature, and air density will be necessary to adapt the Instrument for general flight use.

  10. Freezing resistance in some Antarctic fishes.

    PubMed

    DeVries, A L; Wohlschlag, D E

    1969-03-07

    Measurements of serum freezing points in three Antarctic marine fishes indicated that they do not freeze in the -1.87 degrees C seawater because their blood is isosmotic to seawater. Concentrations of sodium chloride, urea, and free amino acids in the serum accounted for only half of the freezing-point depression of the serum. A protein containing carbohydrate was isolated which accounted for 30 percent of the freezing-point depression of the serum.

  11. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  12. Freeze-out extraction of monocarboxylic acids from water into acetonitrile under the action of centrifugal forces

    NASA Astrophysics Data System (ADS)

    Bekhterev, V. N.

    2016-10-01

    It is established that the efficiency of the freezing-out extraction of monocarboxylic acids C3-C;8 and sorbic acid from water into acetonitrile increases under the action of centrifugal forces. The linear growth of the partition coefficient in the homologous series of C2-C8 acids with an increase in molecule length, and the difference between the efficiency of extracting sorbic and hexanoic acid, are discussed using a theoretical model proposed earlier and based on the adsorption-desorption equilibrium of the partition of dissolved organic compounds between the resulting surface of ice and the liquid phase of the extract. The advantages of the proposed technique with respect to the degree of concentration over the method of low-temperature liquid-liquid extraction are explained in light of the phase diagram for the water-acetonitrile mixture.

  13. Immersion freezing of water and aqueous ammonium sulfate droplets initiated by humic-like substances as a function of water activity

    SciTech Connect

    Rigg, Y. J.; Alpert, P. A.; Knopf, Daniel A.

    2013-07-12

    Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curve as a function of solution aw by Δaw = 0.2703 and 0.2466, respectively. Corresponding heterogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5) × 104 and (5.4 ± 1.4) × 104 cm-2 s-1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model

  14. Immersion freezing of water and aqueous ammonium sulfate droplets initiated by humic-like substances as a function of water activity

    DOE PAGES

    Rigg, Y. J.; Alpert, P. A.; Knopf, Daniel A.

    2013-07-12

    Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curvemore » as a function of solution aw by Δaw = 0.2703 and 0.2466, respectively. Corresponding heterogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5) × 104 and (5.4 ± 1.4) × 104 cm-2 s-1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model approaches to measured frozen fractions yield similar good representations. Furthermore, when using a single parameterization of α-PDF or

  15. Accuracy limit of rigid 3-point water models

    NASA Astrophysics Data System (ADS)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  16. Accuracy limit of rigid 3-point water models.

    PubMed

    Izadi, Saeed; Onufriev, Alexey V

    2016-08-21

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water - a characteristic dependence of hydration free energy on the sign of the solute charge - in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  17. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    PubMed

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution

  18. Effect of addition of coconut water (Cocos nucifera) to the freezing media on post-thaw viability of boar sperm.

    PubMed

    Bottini-Luzardo, María; Centurión-Castro, Fernando; Alfaro-Gamboa, Militza; Aké-López, Ricardo; Herrera-Camacho, José

    2013-01-01

    The aims of this experiment were to evaluate the addition of coconut water in natura to the freezing media, compare the effect of deionized water vs filtered water of coconut over the post-thaw seminal characteristics, and evaluate the effect of the deionized water and in natura coconut water on the seminal characteristics of boar sperm at different post-thaw times. Thirty-four ejaculates were used divided in three aliquots which received one of the following treatments (T): T1, LEY (bidistilled water, lactose, and egg yolk) and LEYGO (LEY + glycerol and Orvus ET paste); T2, LEY(A) (coconut deionized water, lactose, and egg yolk)-LEYGO(A); and T3, LEY(B) (in natura coconut water, lactose, and egg yolk)-LEYGO(B). Samples of boar semen were frozen according to the Westendorf method, thawed at 38°C, and evaluated at three incubation times (0, 30, and 60 min). Seminal characteristics assessed were motility (Mot), acrosomal integrity (AInt), membrane integrity (MInt), and mitochondrial activity (MAct). T1 showed a higher percentage of viable sperm than T3 (Mot 36.5 vs 5.4 %, AInt 61.8 vs 41.2 %, MInt 50.4 vs 41.3 %, and MAct 56.9 vs 50.5 %). T2 kept a higher percentage of viable sperm at all incubation times. In natura coconut water showed a detrimental effect over the viability of the frozen-thawed boar semen. Deionized coconut water improved the boar semen viability post-thaw, outperforming results of in natura coconut water.

  19. Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach

    NASA Astrophysics Data System (ADS)

    Earle, M. E.; Kuhn, T.; Khalizov, A. F.; Sloan, J. J.

    2010-08-01

    Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV(T), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mean radii of 1.0, 1.7, and 2.9 μm. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be 0.031 ± 0.001, while that for water evaporation was 0.054 ± 0.012. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.

  20. Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach

    NASA Astrophysics Data System (ADS)

    Earle, M. E.; Kuhn, T.; Khalizov, A. F.; Sloan, J. J.

    2009-10-01

    Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV(T), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mode radii of 1.0, 1.7, and 2.9 μm. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be approximately 0.031, while that for water evaporation was 0.054. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.

  1. Non-equilibrium freezing of water-ice in sandy basaltic regoliths and implications for fluidized debris flows on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1987-01-01

    Many geomorphic features on Mars were attributed to Earth-analogous, cold-climate processes involving movement of water or ice lubricated debris. Clearly, knowledge of the behavior of water in regolith materials under Martian conditions is essential to understanding the postulated geomorphic processes. Experiments were performed with sand-sized samples of natural basaltic regoliths in order to further elucidate how water/regolith interactions depend upon grain size and mineralogy. The data reveal important contrasts with data for clay-mineral substrates and suggest that the microphysics of water/mineral interactions might affect Martian geomorphic processes in ways that are not fully appreciated. Sand and silt sized fractions of two soils from the summit of Mauna Kea were used as Mars-analogous regolith materials. Temperatures were measured for water/ice phase transitions as wet slurries of individual soil fractions which were cooled or heated at controlled rates under a carbon dioxide atmosphere. Freezing and melting of ice was studied as a function of water/soil mass ratio, soil particle size, and thermal-cycle rate. Comparison tests were done under the same conditions with U.S. Geological Survey standard rock powders.

  2. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    NASA Astrophysics Data System (ADS)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  3. A second generation distributed point polarizable water model.

    PubMed

    Kumar, Revati; Wang, Fang-Fang; Jenness, Glen R; Jordan, Kenneth D

    2010-01-07

    A distributed point polarizable model (DPP2) for water, with explicit terms for charge penetration, induction, and charge transfer, is introduced. The DPP2 model accurately describes the interaction energies in small and large water clusters and also gives an average internal energy per molecule and radial distribution functions of liquid water in good agreement with experiment. A key to the success of the model is its accurate description of the individual terms in the n-body expansion of the interaction energies.

  4. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  5. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    PubMed

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  6. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains

    PubMed Central

    Pescador, David S.; Sierra-Almeida, Ángela; Torres, Pablo J.; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  7. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  8. A novel bacterial Water Hypersensitivity-like protein shows in vivo protection against cold and freeze damage.

    PubMed

    Anderson, Dominique; Ferreras, Eloy; Trindade, Marla; Cowan, Don

    2015-08-01

    Metagenomic library screening, by functional or sequence analysis, has become an established method for the identification of novel genes and gene products, including genetic elements implicated in microbial stress response and adaptation. We have identified, using a sequence-based approach, a fosmid clone from an Antarctic desert soil metagenome library containing a novel gene which codes for a protein homologous to a Water Hypersensitivity domain (WHy). The WHy domain is typically found as a component of specific LEA (Late Embryogenesis Abundant) proteins, particularly the LEA-14 (LEA-8) variants, which occur widely in plants, nematodes, bacteria and archaea and which are typically induced by exposure to stress conditions. The novel WHy-like protein (165 amino acid, 18.6 kDa) exhibits a largely invariant NPN motif at the N-terminus and has high sequence identity to genes identified in Pseudomonas genomes. Expression of this protein in Escherichia coli significantly protected the recombinant host against cold and freeze stress.

  9. An optical-axis freezing stage for laser-scanning microscopy of broad ice-water interfaces.

    PubMed

    Neils, C M; Diller, K R

    2004-12-01

    This article presents a method to view a dynamic ice interface along the axis of ice growth using a laser-scanning microscope. A deep liquid volume is chilled from below so that ice growth is directed upward toward the microscope objective. The interface is made visible by rejection of fluorescent dye from the solid phase into the liquid. Images of the interface morphology in water with solutes of interest to cryobiology illustrate the imaging capability. These images are processed to quantify the lamellar structure of the ice interface. The optical-axis cryostage provides advantages over horizontal arrangements because (1) immersion objectives enhance, rather than disturb, the desired thermal gradient, and (2) features in the ice interface are not confined within a narrow capillary tube or microscope slide. This arrangement loses some of the thermal control found in planar freezing stages, and the dynamic, refractive interface presents challenges to confocal microscopy.

  10. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles.

    PubMed

    Zelenková, Tereza; Barresi, Antonello A; Fissore, Davide

    2015-01-01

    This work deals with the use of a water/tert-butyl alcohol (TBA) system in the manufacturing process of poly-ε-caprolactone (PCL) nanoparticles, namely in the synthesis stage, using the solvent displacement method in a confined impinging jet mixer (CIJM), and in the following freeze-drying stage. The experimental investigation evidenced that the nanoparticles size is significantly reduced with respect to the case where acetone is the solvent. Besides, the solvent evaporation step is not required before freeze-drying as TBA is fully compatible with the freeze-drying process. The effect of initial polymer concentration, flow rate, water to TBA flow rate ratio, and quench volumetric ratio on the mean nanoparticles size was investigated, and a simple equation was proposed to relate the mean nanoparticles size to these operating parameters. Then, freeze-drying of the nanoparticles suspensions was studied. Lyoprotectants (sucrose and mannitol) and steric stabilizers (Cremophor EL and Poloxamer 388) have to be used to avoid nanoparticles aggregation, thus preserving particle size distribution and mean nanoparticles size. Their effect, as well as that of the heating shelf temperature, has been investigated by means of statistical techniques, with the goal to identify which of these factors, or combination of factors, plays the key role in the nanoparticles size preservation at the end of the freeze-drying process.

  11. Experimental and analytical investigation of a freezing point depressant fluid ice protection system. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Albright, A. E.

    1984-01-01

    A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.

  12. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy.

    PubMed

    Bowker, B; Hawkins, S; Zhuang, H

    2014-07-01

    The feasibility of using visible/near-infrared spectroscopy (vis/NIR) to segregate broiler breast fillets by water-holding capacity (WHC) was determined. Broiler breast fillets (n = 72) were selected from a commercial deboning line based on visual color assessment. Meat color (L*a*b*), pH (2 and 24 h), drip loss, and salt-induced water uptake were measured. Reflectance measurements were recorded from 400 to 2,500 nm in both raw and freeze-dried breast meat samples. Raw and freeze-dried samples had similar spectra in the visible region (400-750 nm), but the freeze-dried samples exhibited numerous bands in the NIR region (750-2,500 nm) corresponding to muscle proteins and lipids that were not observed in the NIR spectra of the raw samples. Linear discriminate analyses were used to classify fillets as high-WHC or low-WHC according to predicted meat quality characteristics. Using the visible spectra (400-750 nm), fillets could be correctly classified into high-WHC and low-WHC groups based on drip loss and salt-induced water uptake with 88 to 92% accuracy in raw samples and 79 to 86% accuracy in freeze-dried samples. Using the NIR spectra (750-2,500 nm), fillets could be correctly classified into high-WHC and low-WHC groups with 74 to 76% accuracy in raw samples and 85 to 86% accuracy in freeze-dried samples. Thus, freeze-drying enhanced the accuracy of WHC classification using the NIR portion of the spectra. Data from this study demonstrate the potential for utilizing vis/NIR spectroscopy as a method for classifying broiler breast meat according to WHC.

  13. Performance Evaluation of Point-of-Use Water Heaters.

    DTIC Science & Technology

    1980-10-15

    AD-AG91 843 , JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND OEV--ETC F/6 13/1 PERFORMANCE EVALUATION OF POINT-OF-USE WATER HEATERS.(U) OCT AG P B...POINT-OF-USE WATER HEATERS P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER, COLORADO 80217 15...literature survey was conducted by Ms. Suzanne D.A. Graham who is on the Corporate Information Center staff of the Johns - Manville Research & Development

  14. New methods of subcooled water recognition in dew point hygrometers

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard

    2001-08-01

    Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.

  15. Suppression of sub-surface freezing in free-standing thin films of a coarse-grained model of water.

    PubMed

    Haji-Akbari, Amir; DeFever, Ryan S; Sarupria, Sapna; Debenedetti, Pablo G

    2014-12-21

    Freezing in the vicinity of water-vapor interfaces is of considerable interest to a wide range of disciplines, most notably the atmospheric sciences. In this work, we use molecular dynamics and two advanced sampling techniques, forward flux sampling and umbrella sampling, to study homogeneous nucleation of ice in free-standing thin films of supercooled water. We use a coarse-grained monoatomic model of water, known as mW, and we find that in this model a vapor-liquid interface suppresses crystallization in its vicinity. This suppression occurs in the vicinity of flat interfaces where no net Laplace pressure in induced. Our free energy calculations reveal that the pre-critical crystalline nuclei that emerge near the interface are thermodynamically less stable than those that emerge in the bulk. We investigate the origin of this instability by computing the average asphericity of nuclei that form in different regions of the film, and observe that average asphericity increases closer to the interface, which is consistent with an increase in the free energy due to increased surface-to-volume ratios.

  16. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    NASA Technical Reports Server (NTRS)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  17. Modelling Water Flow, Heat Transport, Soil Freezing and Thawing, and Snow Processes in a Clayey, Subsurface Drained Agricultural Field

    NASA Astrophysics Data System (ADS)

    Warsta, L.; Turunen, M.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Karvonen, T.; Taskinen, A.

    2012-12-01

    Simulation of hydrological processes for the purposes of agricultural water management and protection in boreal environment requires description of winter time processes, including heat transport, soil freezing and thawing, and snow accumulation and melt. Finland is located north of the latitude of 60 degrees and has one third to one fourth of the total agricultural land area (2.3 milj. ha) on clay soils (> 30% of clay). Most of the clayey fields are subsurface drained to provide efficient drainage and to enable heavy machines to operate on the fields as soon as possible after the spring snowmelt. Generation of drainflow and surface runoff in cultivated fields leads to nutrient and sediment load, which forms the major share of the total load reaching surface waters at the national level. Water, suspended sediment, and soluble nutrients on clayey field surface are conveyed through the soil profile to the subsurface drains via macropore pathways as the clayey soil matrix is almost impermeable. The objective of the study was to develop the missing winter related processes into the FLUSH model, including soil heat transport, snow pack simulation and the effects of soil freezing and thawing on the soil hydraulic conductivity. FLUSH is an open source (MIT license), distributed, process-based model designed to simulate surface runoff and drainflow in clayey, subsurface drained agricultural fields. 2-D overland flow is described with the diffuse wave approximation of the Saint Venant equations and 3-D subsurface flow with a dual-permeability model. Both macropores and soil matrix are simulated with the Richards equation. Soil heat transport is described with a modified 3-D convection-diffusion equation. Runoff and groundwater data was available from different periods from January 1994 to April 1999 measured in a clayey, subsurface drained field section (3.6 ha) in southern Finland. Soil temperature data was collected in two locations (to a depth of 0.8 m) next to the

  18. 21 CFR 1240.83 - Approval of watering points.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Approval of watering points. 1240.83 Section 1240.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF...

  19. 21 CFR 1240.83 - Approval of watering points.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Approval of watering points. 1240.83 Section 1240.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF...

  20. 21 CFR 1240.83 - Approval of watering points.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... communicable diseases. (b) The Commissioner of Food and Drugs may base his approval or disapproval of a... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Approval of watering points. 1240.83 Section 1240.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  1. Recent Advances in Point-of-Access Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  2. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  3. Oxime Catalysis by Freezing.

    PubMed

    Agten, Stijn M; Suylen, Dennis P L; Hackeng, Tilman M

    2016-01-20

    Chemical reaction rates are generally decreased at lower temperatures. Here, we report that an oxime ligation reaction in water at neutral pH is accelerated by freezing. The freezing method and its rate effect on oxime ligation are systematically studied on a peptide model system, and applied to a larger chemokine protein, containing a single acetyl butyrate group, which is conjugated to an aminooxy-labeled ligand. Our improved ligation protocol now makes it possible to efficiently introduce oxime-bond coupled ligands into proteins under aqueous conditions at low concentrations and neutral pH.

  4. Freezing and melting behavior of an octyl β-D-glucoside-water binary system--inhibitory effect of octyl β-D-glucoside on ice crystal formation.

    PubMed

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2012-12-21

    Phase transition behavior of lyotropic liquid crystals of an octyl β-D-glucoside (OG)-water binary system during ice freezing and melting was studied by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Not the thermotropic, but the lyotropic phase transition due to the change of OG concentration during ice freezing and melting was observed. The concentration-temperature phase diagram of the binary system was constructed. Melting temperature of ice, T(m), lyotropic phase transition temperature, T(tr), and glass transition temperatures of unfrozen phases in the absence and presence of ice, T(g) and T(g)', were shown in the phase diagram. The phase diagram indicated that the OG aqueous system was concentrated to ca. 90-92 wt% by ice freezing and exhibited glass transition at T(g)'. An observation of the concentration-gradient specimen by the cryo-POM showed the evidence of the inhibitory effects of OG on nucleation and growth of ice crystals in the extremely high OG concentration system in which the lamellar liquid crystalline phase was formed. This study provided the importance of the influence of concentration change by ice freezing on the behaviour of the sugar-based surfactant-water system under low temperature conditions.

  5. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.

    PubMed

    Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A

    2007-12-26

    Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.

  6. Molecular connectivity. II: Relationship to water solubility and boiling point.

    PubMed

    Hall, L H; Kier, L B; Murray, W J

    1975-12-01

    The connectivity index, easily computed by arithmetic and based upon the degree of connectedness at each vertex in the molecular skeleton, is shown to give highly significant correlations with water solubility of branched, cyclic, and straight-chain alcohols and hydrocarbons as well as with boiling points of alcohols. These correlations are superior to those based on well-founded theory relating to solvent cavity surface area. An empirical modification to the connectivity index gave an improved correlation for both solubilities and boiling points.

  7. Improvement of Freezing Quality of Food by Pre-dehydration with Microwave-Vacuum Drying

    NASA Astrophysics Data System (ADS)

    Hamidi, Nurkholis; Tsuruta, Takaharu

    Partial dehydration by microwave vacuum drying has been applied to tuna, oyster and mackerel prior to freezing in order to reduce quality damages due to freezing and thawing. Samples were dehydrated at pressure of 4kPa and temperature lower than 25°C. Two cooling conditions were tested in the experiment by using the freezing chamber of temperatures -20°C and -80°C. The experimental results showed that decreasing the water content in tuna could lower the freezing point temperature and made the freezing time shorter. It was also found that removing some water was effective to reduce the size of ice crystal and the drip loss in mackerel. After thawing, the pre-dehydrated mackerel showed better microstructure than that frozen without pre-treatment. Furthermore, the sensory tests have been done by a group of panelist for the evaluation on aroma, flavor, and general acceptability of mackerels.

  8. Lidar point density analysis: implications for identifying water bodies

    USGS Publications Warehouse

    Worstell, Bruce B.; Poppenga, Sandra; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  9. Freezing stresses and hydration of isolated cell walls.

    PubMed

    Yoon, Yonghyeon; Pope, Jim; Wolfe, Joe

    2003-06-01

    The hydration of the cell walls of the giant alga Chara australis was measured as a function of temperature using quantitative deuterium nuclear magnetic resonance (NMR) of samples hydrated with D2O. At temperatures 23-5K below freezing, the hydration ratio (the ratio of mass of unfrozen water in microscopic phases in the cell wall to the dry mass) increases slowly with increasing temperature from about 0.2 to 0.4. It then rises rapidly with temperature in the few Kelvin below the freezing temperature. The linewidth of the NMR signal varies approximately linearly with the reciprocal of the hydration ratio, and with the freezing point depression or water potential. These empirical relations may be useful in estimating cell wall water contents in heterogeneous samples.

  10. Freezing Water with Sized AgI Particles. Part II: Theoretical Considerations.

    DTIC Science & Technology

    as a function of the AgI particle size, shape, and surface structure, critical embryo shape, temperature, and ice-AgI contact angle in water. The...rate is inconsistent with the large uncertainty in the value of the contact angle . As a consequence, classical theory could account for the

  11. Peculiar thermodynamics of the second critical point in supercooled water.

    PubMed

    Bertrand, C E; Anisimov, M A

    2011-12-08

    On the basis of the principle of critical-point universality, we examine the peculiar thermodynamics of the liquid-liquid critical point in supercooled water. We show that the liquid-liquid criticality in water represents a special kind of critical behavior in fluids, intermediate between two limiting cases: the lattice gas, commonly used to model liquid-vapor transitions, and the lattice liquid, a weakly compressible liquid with an entropy-driven phase separation. While the ordering field in the lattice gas is associated with the chemical potential and the order parameter with the density, in the lattice liquid the ordering field is the temperature and the order parameter is the entropy. The behavior of supercooled water is much closer to lattice-liquid behavior than to lattice-gas behavior. Using new experimental data recently obtained by Mishima [J. Chem. Phys. 2010, 133, 144503], we have revised the parametric scaled equation of state, previously suggested by Fuentevilla and Anisimov [Phys. Rev. Lett. 2006, 97, 195702], and obtain a consistent description of the thermodynamic anomalies of supercooled water by adjusting linear backgrounds, one critical amplitude, and the critical pressure. We also show how the lattice-liquid description affects the finite-size scaling description of supercooled water in confined media.

  12. Carbon and Water Fluxes of Crops Exposed to the Sequence of Naturally Occurring Heat Stress, Drought and Freezing

    NASA Astrophysics Data System (ADS)

    Joo, E.; Miller, J. N.; Bernacchi, C.

    2015-12-01

    As a consequence of global climate change the occurrence of extreme weather events (heat waves, cold spells, drought, etc) are predicted to become more frequent and/or intense, which will likely have a large impact on crop production. In the winter of 2013/2014 several polar vortexes were experienced in Illinois, US, resulting in periods of extreme low temperatures between -20°C and -35°C. Prior to the extreme cold winter of 2013/2014 the region experienced drought over a hot summer in 2012. Four established fields of three perennial biofuel crops (Miscanthus x giganteus, Panicum virgatum L., and a mixture of native prairie species) and Zea mays/Glycine max agroecosystem have been studied since 2009 in order to investigate the effect of climate change and land-use change on carbon and water fluxes using the eddy covariance technique, as well as biomass production of these species. The combined effect of the heat and drought stress in 2012 resulted in severe water deficit of all species (up to -360 mm for miscanthus), which resulted in reduced net ecosystem exchange (NEE) during the drought for all species other than miscanthus. In the following year, during the recovery of these species from drought, miscanthus showed decreased NEE but the other species did not appear to be negatively influenced. As a consequence of the environmental stresses (heat and drought stress followed by extreme freezing), the water and carbon exchanges (such as ET, NEE, GPP, Reco) as well as growth parameters (LAI, biomass production) are shown to vary based on the stress tolerance of these species.

  13. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    PubMed

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications.

  14. Homogeneous condensation - Freezing nucleation rate measurements for small water droplets in an expansion cloud chamber

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.; Anderson, R. J.; Kassner, J. L., Jr.

    1981-01-01

    Experimental data on ice nucleation, presented in an earlier paper, are analyzed to yield information about the homogeneous nucleation rate of ice from supercooled liquid and the heights of energy barriers to that nucleation. The experiment consisted of using an expansion cloud chamber to nucleate from the vapor a cloud of supercooled pure water drops and the observation of the fraction of drops which subsequently froze. The analysis employed standard classical homogeneous nucleation theory. The data are used to extract the first experimental measurement (albeit indirect) of the activation energy for the transfer of a water molecule across the liquid-ice interface at temperatures near -40 C. The results provide further evidence that the local liquid structure becomes more icelike as the temperature is lowered.

  15. Nuclear magnetic resonance analysis of water in natural and deuterated mouse muscle above and below freezing.

    PubMed Central

    Peemoeller, H; Pintar, M M; Kydon, D W

    1980-01-01

    Measurements of absolute proton signal intensities, free induction decays, spin-spin relaxation times, and local fields in the rotating frame in natural and fully deuterated mouse muscle at five temperatures in the range 293-170 K are reported. The analysis is carried out at three time windows on the free induction decay. The contribution to the magnetization from protons on large molecules and water are analyzed. PMID:7295865

  16. Numerical simulation of water transport and intracellular ice formation for freezing of endothelial cells.

    PubMed

    Zhao, G; Xu, Y; Ding, W P; Hu, M B

    2013-01-01

    Endothelial cell detachment may cause failure of blood vessel and corneal cryopreservation, and thus successful cryopreservation of endothelial cells is regarded to be the first step to optimize cryopreservation of endothelial cells containing tissues. In this study, the pre-determined biophysical parameters were incorporated into the model for intracellular ice formation (IIF) and the growth of intracellular ice crystals (ICG) to calculate cell water loss, supercooling of intracellular solution, intracellular ice formation and the growth of intracellular ice crystals. The optimal protocols were determined according to the combination effect of both solution injury and IIF injury.

  17. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  18. The effect of point-of-use water conditioning systems on community fluoridated water.

    PubMed

    Brown, M D; Aaron, G

    1991-01-01

    The purpose of this investigation was to determine the effect of several point-of-use water conditioning systems on the fluoride concentration in community fluoridated water. Point-of-use water conditioning systems attach at the sink to provide the user with protection from certain water contaminants. A sampling apparatus was constructed to allow collection of water samples before and after conditioning. The apparatus connected the following types of point-of-use water conditioning systems: a faucet water filter, a cellulose fiber filter, an activated carbon filter, a reverse osmosis system, and a distillation unit. These samples were tested by an independent laboratory using colorimetric determination of fluoride concentration. All point-of-use water conditioning systems tested caused a statistically significant reduction in fluoride (P less than .001). Of particular note were reductions in fluoride concentration by the activated carbon filter (81%), the reverse osmosis system (84%), and the distillation unit (99%). These reductions are clinically significant, and necessitate supplementation for optimal fluoride intake. Patients using these water conditioning systems should be advised to have their water tested, and to consider fluoride supplementation to ensure adequate benefit from this caries prevention method.

  19. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs.

    PubMed

    Niwa, Toshiyuki; Danjo, Kazumi

    2013-11-20

    The purpose of the present research is to establish a novel nanosizing technique starting from wet nano-milling, named "dry nanosuspension" technique for poorly water-soluble drugs. The spray freeze-drying (SFD) method was applied instead of the spray-drying one previously developed. Drug particles were milled in the aqueous solution of dispersing agents using an oscillating beads-milling apparatus. The milled nanosuspension was sprayed to the surface of liquid nitrogen, and the resultant iced droplets were freeze-dried to obtain the powdery product. The loading ratio of a dispersing agent was investigated to enhance its redispersing property. Dry nanosuspension, which could be spontaneously dispersed into original nanosuspension in water, was obtained by SFD process. It was assumed that self dispersion property would be attributed to its structure with porous network, in which the primary milled drug crystals were embedded. Such unique structure contributed greatly to immediate release behaviors of the drug in gastrointestinal buffered media. These pharmaceutical properties were enhanced by increasing the ratio of the dispersing agent to the drug and the solid content in suspension to be sprayed. The present technique via wet milling and spray freeze-drying processes would be a novel dissolution-enhanced technology for poorly water-soluble drugs.

  20. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  1. Influence of freezable/non-freezable water and sucrose on the viability of Theobroma cacao somatic embryos following desiccation and freezing.

    PubMed

    Fang, Jong-Yi; Sacandé, Moctar; Pritchard, Hugh; Wetten, Andy

    2009-06-01

    Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08-1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60-95% was recorded for embryos exposed to 0.5-1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H(2)O g(-1)dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.

  2. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  3. Postmortem aging and freezing and thawing storage enhance ability of early deboned chicken pectoralis major muscle to hold added salt water.

    PubMed

    Zhuang, H; Savage, E M

    2012-05-01

    The effects of postdeboning aging and frozen storage on water-holding capacity (WHC) of chicken breast pectoralis major muscle were investigated. Broiler breast muscle was removed from carcasses either early postmortem (2 h) or later postmortem (24 h). Treatments included: no postdeboning aging; 1-d postdeboning aging at 2°C, 7-d postdeboning aging (2-h deboned meat only), and 6-d storage at -20°C plus 1-d thawing at 2°C (freezing and thawing treatment, 2-h deboned meat only). The WHC was determined by cooking loss, drip loss, a filter paper press method (results were presented as expressible fluid), and a salt-induced swelling and centrifugation method (results were presented as percentage of salt-induced water gain). There were no differences for WHC estimated by cooking loss and expressible fluid between the treatments. Only the freezing and thawing treatment resulted in a significant increase in drip loss. The average percentage of salt-induced water gains by the 24-h deboned samples, postdeboning aged 2 h samples, and frozen 2 h sample, which did not differ from each other, were significantly higher than that by the 2-h deboned sample. These results indicate that regardless of method (carcass aging vs. postdeboning aging) and time (aging for 1 d vs. for 7 d), postmortem aging more than 1 d does not affect WHC of the early deboned samples measured by dripping, cooking, and pressing. However, postmortem carcass aging, postdeboning aging, and freezing and thawing storage can significantly enhance the ability of chicken breast meat to hold added salt water or WHC measured by the salt-induced swelling and centrifuge method.

  4. Freezing increment in keratophakia.

    PubMed

    Swinger, C A; Wisnicki, H J

    In homoplastic keratomileusis, keratophakia, and epikeratophakia, the corneal tissue that provides the final refractive lenticule undergoes a conformational change when frozen. Because corneal tissue is composed primarily of water, an assumed value of 9.08% (approximate volumic percentage expansion of water when frozen) is frequently used for the increase in thickness, or freezing increment, rather than measuring it directly. We evaluated 32 cases of clinical keratophakia and found the increase in thickness to average 37 +/- 21%. In this series of 32 cases, the percentage of patients with a greater than 4 D residual refractive error was 16%. If an assumed freezing increment of 9.08% had been used, the percentage would have been 28%, with two-thirds of these 28% manifesting a marked undercorrection. Because of a lack of studies documenting the behavior of corneal tissue following cryoprotection and freezing, it is suggested that measurements be taken during homoplastic surgery to minimize the potential for significant inaccuracy in obtaining the desired optic result.

  5. Ground-water movement and water quality in Lake Point, Tooele County, Utah, 1999-2003

    USGS Publications Warehouse

    Kenney, T.A.; Wright, S.J.; Stolp, B.J.

    2006-01-01

    Water-level and water-quality data in Lake Point, Tooele County, Utah, were collected during August 1999 through August 2003. Water levels in Lake Point generally declined about 1 to 2 feet from July 2001 to July 2003, likely because of less-than-average precipitation. Ground water generally flows in two directions from the Oquirrh Mountains. One component flows north toward the regional topographic low, Great Salt Lake. The other component generally flows southwest toward a substantial spring complex, Factory/Dunne's Pond. This southwest component flows through a coarse gravel deposit believed to be a shoreline feature of historic Lake Bonneville. The dominant water-quality trend in Lake Point is an increase in dissolved-solids concentration with proximity to Great Salt Lake. The water type changes from calcium-bicarbonate adjacent to the Oquirrh Mountains to sodium-chloride with proximity to Great Salt Lake. Evaluation of chloride-bromide weight ratios indicates a mixture of fresher recharge waters with a brine similar to what currently exists in Great Salt Lake.

  6. Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous?

    PubMed

    Zachariassen, Karl Erik; Kristiansen, Erlend; Pedersen, Sindre Andre; Hammel, Harold T

    2004-06-01

    This article challenges the common view that solutions and cold-hardy freeze-avoiding insects always freeze by heterogeneous nucleation. Data are presented to show that the nucleation temperatures of a variety of solutions and freeze-avoiding insects are a function of the water volume as described by the data previously published by Bigg in 1953. The article also points out that the relationships between melting point depression and depression of nucleation temperature are different for samples undergoing homogeneous nucleation and those undergoing heterogeneous nucleation. Aqueous solutions and freeze-avoiding insects display a relationship like that of homogeneously nucleated samples. It is also argued that the identity of the "impurities" assumed to cause heterogeneous nucleation in aqueous solutions and insects is obscure and that the "impurities" have features which make their existence rather unlikely.

  7. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  8. Preservation of flavor in freeze dried green beans

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Davis, D.

    1973-01-01

    Before freeze drying, green beans are heated to point at which their cell structure is altered. Beans freeze dried with altered cell structure have improved rehydration properties and retain color, flavor, and texture.

  9. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    PubMed

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  10. Freezing Rate Due to Heterogeneous Nucleation.

    NASA Astrophysics Data System (ADS)

    Vali, Gabor

    1994-07-01

    The heterogeneous nucleation of ice from supercooled water is influenced by the nature of the foreign nuclei that serve as the sites for ice embryo formation, and by the stochastic nature of the process of embryo growth to critical size. The relative roles of these two factors have been the subject of some debate, especially as they influence the way nucleation of ice is modeled in clouds. `Freezing rate' is defined as the time-dependent rate at which a population of macroscopically identical samples (e.g., drops in a volume of air) freeze due to the nuclei contained in them. Freezing rate is the combined result of nucleus content and of time dependence. The time-dependent freezing rate model (TDFR) is consistent with available empirical evidence. For droplets cooled at rates of the order of 1°C per min, the nucleus content, or nucleus spectrum, predicts the freezing rate with reasonable accuracy. For samples exposed to a fixed temperature, the time dependence of the freezing rate becomes important, but the probability of freezing is not the same for each individual of the sample population. Stochastic models are not supported by the results. Application of the TDFR model and use of measured freezing nucleus data for precipitation provide a basis for the description of ice formation via immersion-freezing nucleation in cloud models. Limitations to full development of these models arise from inadequate knowledge about the freezing nucleus content of cloud water as a function of cloud evolution.

  11. Stability against freezing of aqueous solutions on early Mars.

    PubMed

    Fairén, Alberto G; Davila, Alfonso F; Gago-Duport, Luis; Amils, Ricardo; McKay, Christopher P

    2009-05-21

    Many features of the Martian landscape are thought to have been formed by liquid water flow and water-related mineralogies on the surface of Mars are widespread and abundant. Several lines of evidence, however, suggest that Mars has been cold with mean global temperatures well below the freezing point of pure water. Martian climate modellers considering a combination of greenhouse gases at a range of partial pressures find it challenging to simulate global mean Martian surface temperatures above 273 K, and local thermal sources cannot account for the widespread distribution of hydrated and evaporitic minerals throughout the Martian landscape. Solutes could depress the melting point of water in a frozen Martian environment, providing a plausible solution to the early Mars climate paradox. Here we model the freezing and evaporation processes of Martian fluids with a composition resulting from the weathering of basalts, as reflected in the chemical compositions at Mars landing sites. Our results show that a significant fraction of weathering fluids loaded with Si, Fe, S, Mg, Ca, Cl, Na, K and Al remain in the liquid state at temperatures well below 273 K. We tested our model by analysing the mineralogies yielded by the evolution of the solutions: the resulting mineral assemblages are analogous to those actually identified on the Martian surface. This stability against freezing of Martian fluids can explain saline liquid water activity on the surface of Mars at mean global temperatures well below 273 K.

  12. Stability against freezing of aqueous solutions on early Mars

    NASA Astrophysics Data System (ADS)

    Fairén, Alberto G.; Davila, Alfonso F.; Gago-Duport, Luis; Amils, Ricardo; McKay, Christopher P.

    2009-05-01

    Many features of the Martian landscape are thought to have been formed by liquid water flow and water-related mineralogies on the surface of Mars are widespread and abundant. Several lines of evidence, however, suggest that Mars has been cold with mean global temperatures well below the freezing point of pure water. Martian climate modellers considering a combination of greenhouse gases at a range of partial pressures find it challenging to simulate global mean Martian surface temperatures above 273K, and local thermal sources cannot account for the widespread distribution of hydrated and evaporitic minerals throughout the Martian landscape. Solutes could depress the melting point of water in a frozen Martian environment, providing a plausible solution to the early Mars climate paradox. Here we model the freezing and evaporation processes of Martian fluids with a composition resulting from the weathering of basalts, as reflected in the chemical compositions at Mars landing sites. Our results show that a significant fraction of weathering fluids loaded with Si, Fe, S, Mg, Ca, Cl, Na, K and Al remain in the liquid state at temperatures well below 273K. We tested our model by analysing the mineralogies yielded by the evolution of the solutions: the resulting mineral assemblages are analogous to those actually identified on the Martian surface. This stability against freezing of Martian fluids can explain saline liquid water activity on the surface of Mars at mean global temperatures well below 273K.

  13. Modification of physical properties of freeze-dried rice

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1971-01-01

    Freeze cycling process consists of alternately freezing and thawing precooked rice for two cycles, rice is then frozen and freeze-dehydrated in vacuum sufficient to remove water from rice by sublimitation. Process modifies rice grain structure and porosity, enabling complete rehydration in one minute in hot water.

  14. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing.

    PubMed

    Jehng, J Y; Sprague, D T; Halperin, W P

    1996-01-01

    Nuclear magnetic resonance relaxation analysis has been applied to interpret the evolution of microstructure in a cement paste during hydration. A basic understanding of the wet-dry and freeze-thaw processes of cement pastes has been developed. The pore structure evolution has been studied by the suppression of the freezing temperature of water and compared with spin-spin relaxation analysis performed at room temperature. Both methods consistently show that hydrating cement pastes have two principal components in their size distribution. The NMR relaxation times provide a measure of the characteristic pore sizes. Their interpretation is made in the context of a fast exchange model. Supercooling and thawing point depression of confined water has been studied systematically. The depression of the freezing point of liquid water confined within a pore was found to be dependent on the pore size, with capillary pore water freezing at 240 K and the remaining gel pore water freezing over a temperature range extending to as low as 160 K.A modified Gibbs-Thompson analysis was used to determine pore volume distributions from the distribution of thawing temperatures.

  15. Freeze fracture and freeze etching.

    PubMed

    Chandler, Douglas E; Sharp, William P

    2014-01-01

    Freeze fracture depends on the property of frozen tissues or cells, when cracked open, to split along the hydrophobic interior of membranes, thus revealing broad panoramas of membrane interior. These large panoramas reveal the three-dimensional contours of membranes making the methods well suited to studying changes in membrane architecture. Freshly split membrane faces are visualized by platinum or tungsten shadowing and carbon backing to form a replica that is then cleaned of tissue and imaged by TEM. Etching, i.e., removal of ice from the frozen fractured specimen by sublimation prior to shadowing, can also reveal the true surfaces of the membrane as well as the extracellular matrix and cytoskeletal networks that contact the membranes. Since the resolution of detail in the metal replicas formed is 1-2 nm, these methods can also be used to visualize macromolecules or macromolecular assemblies either in situ or displayed on a mica surface. These methods are available for either specimens that have been chemically fixed or specimens that have been rapidly frozen without chemical intervention.

  16. Care during freeze-drying of bovine pericardium tissue to be used as a biomaterial: a comparative study.

    PubMed

    Polak, Roberta; Pitombo, Ronaldo N M

    2011-10-01

    Bovine pericardium (BP) tissue is widely used in the manufacture of bioprosthetics. The effects of freeze-drying on the BP tissue have been studied by some researchers in order to decrease their cytotoxicity due to preservation in formaldehyde solution, and to increase the lifetime of the product in storage. This study was undertaken in order to study the effect of freeze-drying in the structure of BP. To perform this study BP samples were freeze-dried in two different types of freeze-dryers available in our laboratory: a laboratory freeze-dryer, in which it was not possible to control parameters and a pilot freeze-dryer, wherein all parameters during freezing and drying were controlled. After freeze-drying processes, samples were analyzed by SEM, Raman spectroscopy, tensile strength, water uptake tests and TEM. In summary, it has been demonstrated that damages occur in collagen fibers by the loss of bulk water of collagen structure implicating in a drastic decreasing of BP mechanical properties due to its structural alterations. Moreover, it was proven that the collagen fibrils suffered breakage at some points, which can be attributed to the uncontrolled parameters during drying.

  17. Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath--effect of sample dimensions and prior freezing and ageing.

    PubMed

    Oillic, Samuel; Lemoine, Eric; Gros, Jean-Bernard; Kondjoyan, Alain

    2011-07-01

    Cooking loss kinetics were measured on cubes and parallelepipeds of beef Semimembranosus muscle ranging from 1 cm × 1 cm × 1 cm to 7 cm × 7 cm × 28 cm in size. The samples were water bath-heated at three different temperatures, i.e. 50°C, 70°C and 90°C, and for five different times. Temperatures were simulated to help interpret the results. Pre-freezing the sample, difference in ageing time, and in muscle fiber orientation had little influence on cooking losses. At longer treatment times, the effects of sample size disappeared and cooking losses depended only on the temperature. A selection of the tests was repeated on four other beef muscles and on veal, horse and lamb Semimembranosus muscle. Kinetics followed similar curves in all cases but resulted in different final water contents. The shape of the kinetics curves suggests first-order kinetics.

  18. Colloid-facilitated mobilization of metals by freeze-thaw cycles.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2014-01-21

    The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.

  19. Influence of non-water-soluble placebo pellets of different sizes on the characteristics of orally disintegrating tablets manufactured by freeze-drying.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2013-06-01

    The present study describes the development of an orally disintegrating tablet containing a non-water-soluble drug delivery system. A model system was applied to evaluate the effect of different-sized particles on tablet characteristics. Cellets were incorporated into tablets prepared by freeze-drying from a 100 mg/mL mannitol or sucrose solution. Particle size distributions were 200-355 µm for Cellets 200 (C200) and 500-710 µm for Cellets 500 (C500). An examination of the tablets revealed that the particles could not be sufficiently embedded in mannitol because of its crystalline nature. The tablet hardness was also inadequate. In contrast, the hardness of sucrose tablets was increased by the addition of Cellets 500. Therefore, the sucrose-based formulation was studied further. Binders [hydroxyethylstarch, sodium alginate, methylcellulose (MC), and gelatin] were added in different concentrations, and tablets were made either with or without placebo pellets. A positive effect of the Cellets on the hardness of tablets was identified. Furthermore, disintegration time could be clearly reduced by Cellets for tablets made from 100 mg/mL sucrose with addition of 10 mg/mL MC, 20 or 40 mg/mL gelatin. The freeze-dried tablet index revealed that the formulations of sucrose with 50 mg/mL hydroxyethylstarch or 20 mg/mL gelatin were particularly advantageous.

  20. Water Rocket Seen from Educational Point of View

    NASA Astrophysics Data System (ADS)

    Takemae, Toshiaki

    The water rocket can be easily made of familiar materials. The water rocket flies well beyond expectations. Water rockets are widely used in educational activities for youngsters. The water rocket activities are interesting and educational for people of all ages. I will divide the contents of the water rocket activity into 3 steps and introduce representative examples in each step. I have considered the aim and the effect of each step. The 1st Step is the experience stage. The purpose of this step is to give a lot of children pleasure. In the 1st step, children are encouraged to have curiosity. It is important that the child enjoys the water rocket activity. It gets the children to think that they want to fly a water rocket. It is important to encourage children to have fun during the 1st step so that they will want to continue to the 2nd step. The 2nd Step is the research stage. The water rocket includes elements which show the children various physical phenomena. Through the water rocket activity, the child leans about real rockets. The children also learn the method of scientific experiments. Each child leans and experiences a scientific way of considering things. The water rocket is the optimal research subject for the club activities of school children. The 3rd Step is the creative stage. The child understands the principle of the mechanism. Then, the child improves a water rocket. To realize a variety of ideas, the child continues to repeat these activities in a variety of ways. In this way, the child gains a wide variety of experiences while advancing towards their goal. By using the water rocket as an educational tool we can teach children about many subjects and phenomena, many of which can be seen in daily life.

  1. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris

    SciTech Connect

    Greene, B.; Henzl, M.T.; Hosea, J.M.; Darnall, D.W.

    1986-01-01

    Freeze-dried preparations of Chlorella vulgaris will accumulate U(Vl) from alkaline, bicarbonate-containing waters collected from uranium mill process streams, provided that the pH is pre-adjusted to between 4.0 and 6.0. Bicarbonate ion complexes the uranyl ion in these waters and seriously interferes with the binding of U(Vl) to the algal cells at pH values above 6.0. No binding of U(Vl) to the algae occurred at the natural pH of 8.0 when Chlorella vulgaris was suspended in untreated mull-waters containing up to 2.5 x 10/sup -4/M U(Vl). However, when the pH of these waters was lowered from 8.0 to near 5.0, with nitric acid, nearly quantitative binding of U(Vl) to the alga was achieved. Binding is rapid and largely unaffected by ions including Na/sup +/, Cl/sup -/, NO/sub 3//sup -/, /sup -/OAc, and SO/sub 4//sup 2 -/. Our results indicate that provided steps are taken to eliminate bicarbonate interference, such as adjustment of the pH to near 5.0, dried algal biomass could prove useful for the removal and recovery of U(Vl) from high carbonate-containing waters.

  2. Transmission electron microscopy of thin sections of Drosophila: high-pressure freezing and freeze-substitution.

    PubMed

    McDonald, Kent L; Sharp, David J; Rickoll, Wayne

    2012-04-01

    The state of the art in fine-structure preservation for thin sectioning can be achieved by using fast-freezing technology followed by freeze substitution and embedding in resin. Samples prepared by high-pressure freezing are estimated to be "fixed" in 20-50 msec. Fast freezing also freezes every cell component regardless of its chemistry. Once frozen, tissues can be processed in a variety of ways before viewing in the electron microscope; here we describe only freeze substitution. In freeze substitution, cells are dehydrated at very low temperatures and cell water is replaced with organic solvent at -80°C to -90°C. At this temperature, large molecules such as proteins are immobilized, yet smaller molecules such as water (ice) can be dissolved and replaced with organic solvents, e.g., acetone. The ideal way to do freeze substitution is with a dedicated freeze-substitution device such as the Leica AFS2 system. These devices allow programming of the times and temperatures needed. Alternatively, if this equipment is not available, freeze substitution can still be performed using items commonly found around the laboratory, as is described here. This protocol is useful for preparing thin sections of Drosophila when the best possible preservation of ultrastructure and antigenicity is required.

  3. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary

  4. Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata.

    PubMed

    Medeiros, Juliana S; Pockman, William T

    2011-01-01

    Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well-watered or drought conditions to minimum temperatures ranging from -8 to -24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf-specific xylem hydraulic conductance (k₁). Drought-exposed plants exhibited smaller decreases in gas exchange after exposure to -8 °C compared to well-watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole-plant function following exposure to -15 °C; drought-exposed plants exhibited less cell death, greater leaf retention, higher k₁ and higher rates of gas exchange than well-watered plants. Both drought-exposed and well-watered plants experienced 100% mortality following exposure to -24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes.

  5. JV TASK 7-FIELD APPLICATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS FOR THE TREATMENT OF NATURAL GAS PRODUCED WATER IN WYOMING

    SciTech Connect

    James A. Sorensen; John Boysen; Deidre Boysen; Tim Larson

    2002-10-01

    The freeze-thaw/evaporation (FTE{reg_sign}) process treats oil and gas produced water so that the water can be beneficially used. The FTE{reg_sign} process is the coupling of evaporation and freeze-crystallization, and in climates where subfreezing temperatures seasonally occur, this coupling improves process economics compared to evaporation alone. An added benefit of the process is that water of a quality suited for a variety of beneficial uses is produced. The evolution, from concept to successful commercial deployment, of the FTE{reg_sign} process for the treatment of natural gas produced water has now been completed. In this document, the histories of two individual commercial deployments of the FTE{reg_sign} process are discussed. In Wyoming, as in many other states, the permitting and regulation of oil and gas produced water disposal and/or treatment facilities depend upon the legal relationship between owners of the facility and the owners of wells from which the water is produced. An ''owner-operated'' facility is regulated by the Wyoming Oil and Gas Conservation Commission (WOGCC) and is defined as an entity which only processes water which comes from the wells in fields of which they have an equity interest. However, if a facility processes water from wells in which the owners of the facility have no equity interest, the facility is considered a ''commercial'' facility and is permitted and regulated by the Wyoming Department of Environmental Quality. For this reason, of the two commercial FTE{reg_sign} process deployments discussed in this document, one is related to an ''owner-operated'' facility, and the other relates to a ''commercial'' facility. Case 1 summarizes the permitting, design, construction, operation, and performance of the FTE{reg_sign} process at an ''owner-operated'' facility located in the Jonah Field of southwestern Wyoming. This facility was originally owned by the McMurry Oil Company and was later purchased by the Alberta Energy

  6. Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and non-point sources

    EPA Science Inventory

    We investigated the efficacy of metabolomics for field-monitoring of fish exposed to waste water treatment plant (WWTP) effluents and non-point sources of chemical contamination. Lab-reared male fathead minnows (Pimephales promelas, FHM) were held in mobile monitoring units and e...

  7. Method of Calculating the Freezing Rate of Single-Column Water-Permeable Soils (Metod Rascheta Skorosti Zamorazhivaniya Fil’Truyushchikh Gruntov Odinochnoy Kolonkoy),

    DTIC Science & Technology

    1977-02-01

    current function n is expressed by the equation ~~~ vI2r -x ~~~~~~~~~~~~~~~~ • (49) On the cylinder surface where 11x+,2=r, we have: - ~~~ k ~~~: or...I AD—A036 1* COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER N H — F/G 8/13 METHOD OF CALCULATING THE FREEZING RATE øF SINGLE—COLUMN WATER...A N IJA ROS 1% 4 - 4 ~— -- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ — - 11 594 Draf t T rans la t ion 594 I CRREL February 1977 ~~~~~~~~~~~ METHO D OF

  8. Interspecific analysis of xylem freezing responses in Acer and Betula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperate woody plants have evolved two methods for coping with seasonal exposure to sub-zero temperatures. Supercooling is a freeze-avoidance strategy where cells are able to resist the freezing of intracellular water below sub-zero temperatures. Non-supercooling is a freeze-tolerance strategy wh...

  9. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.

    PubMed

    Niwa, Toshiyuki; Shimabara, Hiroko; Danjo, Kazumi

    2010-02-01

    Spray freeze-drying (SFD) technique using four-fluid nozzle (4N), which is a novel particle design technique previously developed by authors, has been further developed to expand its application in pharmaceutical industry. The organic solvent was utilized as a spray solvent to dissolve the poorly soluble drug instead of conventional aqueous solution. Acetonitrile solution of the drug and aqueous solution of the polymeric carrier were separately and simultaneously atomized through 4N, and collided each other at the tip of nozzle edge. The spray mists were immediately frozen in the liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier according to our proprietary method developed before. The resultant composite particles with phenytoin prepared by using acetonitrile (4N-SFD-MeCN system) were deeply characterized compared to those using aqueous solution (4N-SFD-aqua system) from morphological and physicochemical perspectives. The characteristic porous structure was observed in 4N-SFD-MeCN particles as well as 4N-SFD-aqua particles. However, it was found that the size and quantity of pore in 4N-SFD-MeCN particles were smaller than those of 4N-SFD-aqua particles. As a result, the former particles had 2- to 3-times smaller specific surface area than the latter particles independent of the type of carrier loaded. The slight difference of release profiles from the particles prepared between both systems was discussed from the microscopically structural viewpoint. In addition, ciclosporin was applied to organic solvent SFD system because this drug was poorly water soluble and cannot be applied to conventional aqueous SFD system. The release profiles from SFD particles were dramatically improved compared to the bulk material, suggesting that the new SFD technique using organic solvent has potential to develop the novel solubilized formulation for poorly water-soluble active pharmaceutical

  10. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus.

    PubMed

    Kostál, V; Vambera, J; Bastl, J

    2004-04-01

    Three acclimation groups [i.e. non-diapause (LD), diapause (SD) and diapause, cold-acclimated (SDA)] of the adult bugs Pyrrhocoris apterus differed markedly in their levels of chill tolerance. Survival time at a sub-zero, but non-freezing, temperature of -5 degrees C (Lt50) extended from 7.6 days, through 35.6 days, to >60 days in the LD, SD and SDA insects, respectively. The time necessary for recovery after chill-coma increased linearly with the increasing time of exposure to -5 degrees C, and the steepness of the slope of linear regression decreased in the order LD>SD>SDA. The capacity to prevent/counteract leakage of Na(+) down the electrochemical gradient (from haemolymph to tissues) during the exposure to -5 degrees C increased in the order LDwater loss. Most of the water was lost from the haemolymph compartment. The ability to regulate a certain fraction of ion pools into the hindgut fluid was the highest in the SDA group, medium in the SD group and missing in the LD group. The adenylate energy charge in the fat body cells was constant in all three groups. The total pools of ATP, ADP and AMP, however, decreased in the SD and SDA groups but remained constant in the LD group. The inability of insects to maintain ion gradients at sub-zero temperature is discussed as an important cause of pre-freeze mortality.

  11. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.

    PubMed

    Sun, Kai; Li, Ruixin; Jiang, Wenxue; Sun, Yufu; Li, Hui

    2016-09-02

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young's modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering.

  12. Effects of In Vitro Zinc Sulphate Additive to The Semen Extender on Water Buffalo (Bubalusbubalis) Spermatozoa before and after Freezing

    PubMed Central

    Dorostkar, Kamran; Alavi Shoushtari, Sayed Mortaza; Khaki, Amir

    2014-01-01

    Background The objective of the study was to investigate the effects of in vitro zinc sulphate additive to semen extender on sperm parameters (progressive motility, viability, membrane integrity and DNA stability) after cryopreservation. Materials and Methods In this Prospective longitudinal laboratory study, semen samples of 5 buffalo bulls of 3-5 years old were collected at 5 different occasions from Iran, Urmia during summer and autumn 2011, 25 samples were used in each treatment. Sperm progressive motility, viability and abnormal morphology were measured before and at 0.5 (T0), 1(T1) and 2(T2) hours after diluting semen(1:10 v/v) in Tris-citric acid based extender (without egg yolk and glycerol) at 37˚C containing none (control group), 0.072, 0.144, 0.288, 0.576 and 1.152 mg/L zinc sulphate to investigate dose and time effects. Next, a Tris-citric acid-egg yolk-glycerol extender (20% egg yolk and 7% glycerol) containing the same amount of zinc sulphate was prepared, diluted semen (1:10 v/v) was cooled and kept into a refrigerated chamber (4˚C) for 4 hours to equilibrate. Sperm progressive motility, viability, abnormal morphology, membrane integrity and DNA damage were estimated.The equilibrated semen was loaded in 0.5 ml French straws and frozen in liquid nitrogen. Later, the frozen semen was thawed and the same parameters as well as total antioxidant capacity (TAC) of the frozen-thawed semen were determined. Results The results showed that zinc sulphate additive at the rate of 0.288 mg/L gave a higher protection of sperm progressive motility (53.7 ± 1.8% vs. 40.5 ± 1.7%), viability (70.8 ± 1.8% vs. 60.1 ± 1.5%), membrane integrity (67.3 ± 1.6% vs. 56.6 ± 1.7%), DNA stability (10.1 ± 0.47% vs. 11.8 ± 0.33% damaged DNA) through the process of dilution, equilibration and freeze-thawing and caused a higher TAC level (81 ± 3.3% vs. 63 ± 3.2 µmol/L) after freez-thawing compared to the control group. Adding 0.576 and 1.152 mg/L zinc sulphate, however

  13. California State Waters Map Series: offshore of Salt Point, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    Potential marine benthic habitats in the Offshore of Salt Point map area include unconsolidated continental shelf sediments, mixed continental shelf substrate, and hard continental shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.

  14. Modelling the effects of water-point closure and fencing removal: a GIS approach.

    PubMed

    Graz, F Patrick; Westbrooke, Martin E; Florentine, Singarayer K

    2012-08-15

    Artificial water-points in the form of troughs or ground tanks are used to augment natural water supplies within rangelands in many parts of the world. Access to such water-points leads to the development of a distinct ecological sub-system, the piosphere, where trampling and grazing impact modify the vegetation. This study aims to consolidate existing information in a GIS based model to investigate grazing patterns within the landscape. The model focuses on the closure of water-points and removal of fences on Nanya Station, New South Wales, Australia. We found that the manipulation of water-points and fences in one management intervention may change grazing activity in a way different to that which would be experienced if each had been modified separately. Such effects are further modified by the spatial distribution of the water-points and the underlying vegetation.

  15. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  16. RADON REMOVAL USING POINT-OF-ENTRY WATER TREATMENT TECHNIQUES

    EPA Science Inventory

    The purpose of the EPA Cooperative Agreement was to evaluate the performance of POE granular activated carbon (GAC), and diffused bubble and bubble place aeration systems treating a ground water supply containing radon (35,620 ±6,717 pCi/L). The pattern of loading to the uni...

  17. Stability of α-tocopherol in freeze-dried sugar-protein-oil emulsion solids as affected by water plasticization and sugar crystallization.

    PubMed

    Zhou, Yankun; Roos, Yrjö H

    2012-08-01

    Water plasticization of sugar-protein encapsulants may cause structural changes and decrease the stability of encapsulated compounds during storage. The retention of α-tocopherol in freeze-dried lactose-milk protein-oil, lactose-soy protein-oil, trehalose-milk protein-oil, and trehalose-soy protein-oil systems at various water activities (a(w)) and in the presence of sugar crystallization was studied. Water sorption was determined gravimetrically. Glass transition and sugar crystallization were studied using differential scanning calorimetry and the retention of α-tocopherol spectrophotometrically. The loss of α-tocopherol followed lipid oxidation, but the greatest stability was found at 0 a(w) presumably because of α-tocopherol immobilization at interfaces and consequent reduction in antioxidant activity. A considerable loss of α-tocopherol coincided with sugar crystallization. The results showed that glassy matrices may protect encapsulated α-tocopherol; however, its role as an antioxidant at increasing aw accelerated its loss. Sugar crystallization excluded the oil-containing α-tocopherol from the protecting matrices and exposed it to surroundings, which decreased the stability of α-tocopherol.

  18. California State Waters Map Series: offshore of Tomales Point, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.

  19. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method.

    PubMed

    Zu, Yuangang; Wu, Weiwei; Zhao, Xiuhua; Li, Yong; Zhong, Chen; Zhang, Yin

    2014-12-30

    This study selected γ-cyclodextrin (γ-CD) as the inclusion material and prepared inclusion complex of taxifolin-γ-CD by the emulsion solvent evaporation and the freeze drying combination method to achieve the improvement of the solubility and oral bioavailability of taxifolin. We selected ethyl acetate as the oil phase, deionized water as the water phase. The taxifolin emulsion was prepared using adjustable speed homogenate machine in the process of this experiment, whose particle size was related to the concentration of taxifolin solution, the volume ratio of water phase to oil phase, the speed and time of homogenate. We knew through the single-factor test that, the optimum conditions were: the concentration of taxifolin solution was 40 mg/ml, the volume ratio of water phase to oil phase was 1.5, the speed of homogenate was 5,000 rpm, the homogenate time was 11 min. Taxifolin emulsion with a MPS of 142.5 nm was obtained under the optimum conditions, then the high-concentration taxifolin solution (3mg/ml) was obtained by the rotary evaporation process. Finally, the inclusion complex of taxifolin-γ-CD was prepared by vacuum freeze-dry. The characteristics of the inclusion complex of taxifolin-γ-CD were analyzed using SEM, FTIR, XRD, DSC, and TG. The FTIR results analyzed the interaction of taxifolin and γ-CD and determined the molecular structure of the inclusion complex of taxifolin-γ-CD. The analysis results of XRD, DSC and TG indicated that the inclusion complex of taxifolin-γ-CD was obtained and showed significantly different characteristics with taxifolin. In addition, dissolving capability test, antioxidant capacity test, solvent residue test were also carried out. The experimental datas showed that the solubility of inclusion complex of taxifolin-γ-CD at 25°C and 37°C were about 18.5 times and 19.8 times of raw taxifolin, the dissolution rate of inclusion complex of taxifolin-γ-CD were about 2.84 times of raw taxifolin, the bioavailability of

  20. Freezing of living cells

    SciTech Connect

    Mazur, P.

    1985-01-01

    It can be calculated that a living cell will survive more than 5000 years at -196/sup 0/C. This ability to essentially stop biological time has important implications in medicine and agriculture, and in biological research. In medicine the chief implications are in the banking of transplantable tissues and organs and in in vitro fertilization. In agriculture the applications stem in part from the role of frozen embryos in amplifying the number of calves produced by high quanlity cows. The problem is how can cells survive both the cooling to such very low temperatures and the return to normal temperatures. The answers involve fundamental characteristics of cells such as the permeability of their surface membranes to water and solutes. These characteristics determine whether or not cells undergo lethal internal ice formation and other response during freezing and thawing. 27 refs., 12 figs.

  1. Ice VI freezing of meat: supercooling and ultrastructural studies.

    PubMed

    Molina-García, Antonio D; Otero, Laura; Martino, Miriam N; Zaritzky, Noemí E; Arabas, Jacek; Szczepek, Janusz; Sanz, Pedro D

    2004-03-01

    While "classical" freezing (to ice I) is disruptive to the microstructure of meat, freezing to ice VI has been found to preserve it. Ice VI freeze-substitution microscopy showed no traces of structural alteration on muscle fibres compared with the extensive damage caused by ice I freezing. The different signs of the freezing volume changes associated with these two ice phases is the most likely explanation for the above effects. Ice VI exists only at high pressure (632.4-2216 MPa) but can be formed and kept at room temperature. It was found that its nucleation requires a higher degree of supercooling than ice I freezing does, both for pure water and meat. Monitoring of the freezing process (by temperature and/or pressure measurements) is, thus, essential. The possible applications of ice VI freezing for food and other biological materials and the nucleation behaviour of this ice phase are discussed.

  2. Repeatability and randomness in heterogeneous freezing nucleation

    NASA Astrophysics Data System (ADS)

    Vali, G.

    2008-08-01

    This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from -6°C to -24°C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1°C) for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5°C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

  3. Repeatability and randomness in heterogeneous freezing nucleation

    NASA Astrophysics Data System (ADS)

    Vali, G.

    2008-02-01

    This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from -6°C to -24°C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1°C) for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5°C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

  4. The Water Quality Portal: a single point of access for water quality data

    NASA Astrophysics Data System (ADS)

    Kreft, J.

    2015-12-01

    The Water Quality Portal (WQP) is a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (EPA) overseen by the National Water Quality Monitoring Council (NWQMC). It was launched in April of 2012 as a single point of access for discrete water quality samples stored in the USGS NWIS and EPA STORET systems. Since launch thousands of users have visited the Water Quality Portal to download billions of results that are pertinent to their interests. Numerous tools have also been developed that use WQP web services as a source of data for further analysis. Since the launch of the Portal, the WQP development team at the USGS Center for Integrated Data Analytics has worked with USGS and EPA stakeholders as well as the wider user community to add significant new features to the WQP. WQP users can now directly plot sites of interest on a web map based on any of the 164 WQP query parameters, and then download data of interest directly from that map. In addition, the WQP has expanded beyond just serving out NWIS and STORET data, and provides data from the US Department of Agriculture's Agricultural Research Service STEWARDS system, the USGS BioData system and is working with others to bring in additional data. Finally, the WQP is linked to another NWQMC-supported project, the National Environmental Methods Index (NEMI), so WQP users can easily find the method behind the data that they are using. Future work is focused on incorporating additional biological data from the USGS BioData system, broadening the scope of discrete water quality sample types from STORET, and developing approaches to make the data in the WQP more visible and usable. The WQP team is also exploring ways to further integrate with other systems, such as those operated the U.S. Department of Agriculture Forest Service and other federal agencies to facilitate the overarching goal of improving access to water quality data for all users.

  5. New particle dependant parameterizations of heterogeneous freezing processes.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Mitra, Subir K.

    2014-05-01

    For detailed investigations of cloud microphysical processes an adiabatic air parcel model with entrainment is used. It represents a spectral bin model which explicitly solves the microphysical equations. The initiation of the ice phase is parameterized and describes the effects of different types of ice nuclei (mineral dust, soot, biological particles) in immersion, contact, and deposition modes. As part of the research group INUIT (Ice Nuclei research UnIT), existing parameterizations have been modified for the present studies and new parameterizations have been developed mainly on the basis of the outcome of INUIT experiments. Deposition freezing in the model is dependant on the presence of dry particles and on ice supersaturation. The description of contact freezing combines the collision kernel of dry particles with the fraction of frozen drops as function of temperature and particle size. A new parameterization of immersion freezing has been coupled to the mass of insoluble particles contained in the drops using measured numbers of ice active sites per unit mass. Sensitivity studies have been performed with a convective temperature and dew point profile and with two dry aerosol particle number size distributions. Single and coupled freezing processes are studied with different types of ice nuclei (e.g., bacteria, illite, kaolinite, feldspar). The strength of convection is varied so that the simulated cloud reaches different levels of temperature. As a parameter to evaluate the results the ice water fraction is selected which is defined as the relation of the ice water content to the total water content. Ice water fractions between 0.1 and 0.9 represent mixed-phase clouds, larger than 0.9 ice clouds. The results indicate the sensitive parameters for the formation of mixed-phase and ice clouds are: 1. broad particle number size distribution with high number of small particles, 2. temperatures below -25°C, 3. specific mineral dust particles as ice nuclei such

  6. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Anomalous Freezing of Nano-Confined Water in Room-Temperature Ionic Liquid 1-Butyl-3-Methylimidazolium Nitrate.

    PubMed

    Abe, Hiroshi; Takekiyo, Takahiro; Yoshimura, Yukihiro; Saihara, Koji; Shimizu, Akio

    2016-04-18

    Non-crystal formation of ice is investigated by simultaneous X-ray diffraction and differential scanning calorimetry measurements upon cooling to -100 °C. At room temperature, size-tunable water confinement (≈20 Å size) in a room-temperature ionic liquid (RTIL, 1-butyl-3-methylimidazolium nitrate, [C4 mim][NO3 ]) exists in a water-rich region (70-90 mol % D2 O). The confined water (water pocket) is characterized by almost monodispersive size distribution. In [C4 mim][NO3 ]-x mol % D2 O (70

  8. The nuclear freeze controversy

    SciTech Connect

    Payne, K.B.; Gray, C.S.

    1984-01-01

    This book presents papers on nuclear arms control. Topics considered include the background and rationale behind the nuclear freeze proposal, nuclear deterrence, national defense, arms races, arms buildup, warfare, the moral aspects of nuclear deterrence, treaty verification, the federal budget, the economy, a historical perspective on Soviet policy toward the freeze, the other side of the Soviet peace offensive, and making sense of the nuclear freeze debate.

  9. EURAMET.T-K7 Key Comparison of Water Triple-Point Cells

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bosma, R.; Kerkhof, O.; Rosenkranz, P.; Del Campo Maldonado, M. D.; Strnad, R.; Nielsen, J.; Anagnostou, M.; Veliki, T.; Zvizdic, D.; Grudnewicz, E.; Nedea, M.; Neagu, D. M.; Steur, P.; Filipe, E.; Lobo, I.; Antonsen, I.; Renaot, E.; Heinonen, M.; Weckstrom, T.; Bojkovski, J.; Turzo-Andras, E.; Nemeth, S.; White, M.; Tegeler, E.; Dobre, M.; Duris, S.; Kartal Dogan, A.; Uytun, A.; Augevicius, V.; Pauzha, A.; Pokhodun, A.; Simic, S.

    2011-12-01

    The results of a EURAMET key comparison of water triple-point cells (EURAMET.T-K7) are reported. The equipment used, the measuring conditions applied, and the procedures adopted for the water triple-point measurement at the participating laboratories are synthetically presented. The definitions of the national reference for the water triple-point temperature adopted by each laboratory are disclosed. The multiplicity of degrees of equivalence arising for the linking laboratories with respect to the "mother" comparison CCT-K7 is discussed in detail.

  10. Theory and numerical application of subsurface flow and transport for transient freezing conditions

    SciTech Connect

    White, M.D.

    1995-04-01

    Protective barriers are being investigated for the containment of radioactive waste within subsurface environments. Predicting the effectiveness of cryogenic barriers and near-surface barriers in temperate or arctic climates requires capabilities for numerically modeling subsurface flow and transport for freezing soil conditions. A predictive numerical model is developed herein to simulate the flow and transport of radioactive solutes for three-phase (water-ice-air) systems under freezing conditions. This physically based model simulates the simultaneous flow of water, air, heat, and radioactive solutes through variably saturated and variably frozen geologic media. Expressions for ice (frozen water) and liquid water saturations as functions of temperature, interfacial pressure differences, and osmotic potential are developed from nonhysteretic versions of the Brooks and Corey and van Genuchten functions for soil moisture retention. Aqueous relative permeability functions for variably saturated and variably frozen geologic media are developed from the Mualem and Burdine theories for predicting relative permeability of unsaturated soil. Soil deformations, caused by freezing and melting transitions, are neglected. Algorithms developed for predicting ice and liquid water saturations and aqueous-phase permeabilities were incorporated into the finite-difference based numerical simulator STOMP (Subsurface Transport Over Multiple Phases). Application of the theory is demonstrated by the solution of heat and mass transport in a horizontal cylinder of partially saturated porous media with differentially cooled ends, with the colder end held below the liquid water freezing point. This problem represents an essential capability for modeling cryogenic barriers in variably saturated geologic media.

  11. Physicochemical properties and biological activity: thermodynamic properties of compounds related to acetylcholine assessed from depression of freezing-point and enthalpies of dilution.

    PubMed

    Barlow, R B

    1974-07-01

    1 Measurements have been made of the osmotic coefficients and enthalpies of dilution of acetylcholine and of compounds related to it in which the carbonyl and ether groups have been replaced by methylene and the trimethylammonium group by triethylammonium. All were iodides. Measurements were also made with tetraethylammonium iodide and agree with published values.2 Where necessary the affinities of the compounds for acetylcholine receptors in the guinea-pig ileum and frog rectus, or their activities relative to acetylcholine, have been measured.3 The osmotic coefficients were used to calculate activity coefficients and excess free energies, which have been used with the excess enthalpies to calculate the excess entropies of the solutions. These indicate that the ester and carbonyl groups have a marked ordering effect on the ions in water compared with methylene groups; the ether group has an intermediate effect.4 When the results are interpreted in terms of ion-pair formation they can be used to calculate the ion-association constants and enthalpies and entropies of formation of ion-pairs, and lead to similar conclusions: that the order associated with ion-pair formation is greater with the esters and ketones. There appears to be extensive ion-association in the concentrations (0.5 to 1M) usually used in n.m.r. studies.5 There is no obvious correlation between the effects of groups on water and their activity or affinity at muscarine-sensitive acetylcholine receptors but it is possible that ability to activate nicotine-sensitive receptors may be associated with an increase in order, though it would be necessary to study entropy changes in systems actually involving receptors in order to prove this. It is also necessary to suppose that ability to activate these receptors is limited to compounds with small onium groups.

  12. A chemical test of critical point isomorphism: reactive dissolution of ionic solids in isobutyric acid + water near the consolute point.

    PubMed

    Baird, James K; Baker, Jonathan D; Hu, Baichuan; Lang, Joshua R; Joyce, Karen E; Sides, Alison K; Richey, Randi D

    2015-03-12

    Binary liquid mixtures having a consolute point can be used as solvents for chemical reactions. When excess cerium(IV) oxide is brought into equilibrium with a mixture of isobutyric acid + water, and the concentration of cerium in the liquid phase is plotted in van't Hoff form, a straight line results for temperatures sufficiently in excess of the critical solution temperature. Within 1 K of the critical temperature, however, the concentration becomes substantially suppressed, and the van't Hoff slope diverges toward negative infinity. According to the phase rule, one mole fraction can be fixed. Given this restriction, the temperature behavior of the data is in exact agreement with the predictions of both the principle of critical point isomorphism and the Gibbs-Helmholtz equation. In addition, we have determined the concentration of lead in the liquid phase when crystalline lead(II) sulfate reacts with potassium iodide in isobutyric acid + water. When plotted in van't Hoff form, the data lie on a straight line for all temperatures including the critical region. The phase rule indicates that two mole fractions can be fixed. With this restriction, the data are in exact agreement with the principle of critical point isomorphism.

  13. Feasibility of Freeze-Drying Oil-in-Water Emulsion Adjuvants and Subunit Proteins to Enable Single Vial Vaccine Drug Products.

    PubMed

    Iyer, Vidyashankara; Cayatte, Corinne; Marshall, Jason D; Sun, Jenny; Schneider-Ohrum, Kirsten; Maynard, Sean K; Rajani, Gaurav Manohar; Bennett, Angie Snell; Remmele, Richard L; Bishop, Steve M; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2017-03-01

    To generate potent vaccine responses, subunit protein antigens typically require co-formulation with an adjuvant. Oil-in-water emulsions are among the most widely investigated adjuvants, based on their demonstrated ability to elicit robust antibody and cellular immune responses in the clinic. However, most emulsions cannot be readily frozen or lyophilized, due to the risk of phase separation, and may have a deleterious effect on protein antigen stability when stored long term as a liquid co-formulation. To circumvent this, current emulsion-formulated vaccines generally require a complex multi-vial presentation with obvious drawbacks, making a single vial presentation for such products highly desirable. We describe the development of a stable, lyophilized squalene emulsion adjuvant through innovative formulation and process development approaches. Upon reconstitution, freeze-dried emulsion preparations were found to have a minimal increase in particle size of ∼20nm and conferred immunogenicity in BALB/c mice similar in potency to freshly-prepared emulsion co-formulations in liquid form.

  14. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala).

    PubMed

    Elavarasan, K; Shamasundar, B A; Badii, Faraha; Howell, Nazlin

    2016-09-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-dried (OD-FPH) and freeze-dried (FD-FPH) protein hydrolysates derived from fresh water fish (Cirrhinus mrigala) muscle, using papain, were investigated. Amino acid profiles indicated a higher proportion of hydrophobic residues in OD-FPH and hydrophilic residues in FD-FPH samples. Fourier transform infrared (FT-IR) spectra revealed random coil structure in OD-FPH and β-sheet in FD-FPH samples. The approximate molecular weight of peptides in OD-FPH and FD-FPH was in the range of 7030-339Da. The IC50 values for ACE inhibition by OD-FPH and FD-FPH samples were found to be 1.15 and 1.53mg of proteinml(-1), respectively. The ACE-inhibitory activity of OD-FPH was more stable (during sequential digestion, using pepsin and pancreatin) than that of FD-FPH sample. The study suggested that the ACE inhibitory activity of protein hydrolysate was not affected by oven-drying.

  15. Interim Significant Noncompliance Policy for Clean Water Act Violations Associated with CSOs, SSOs, CAFOs, and Storm Water Point Sources

    EPA Pesticide Factsheets

    This policy addresses significant noncompliance (SNC) violations associated with combined sewer overflows (CSOs), sanitary sewer overflows (SSOs), concentrated animal feeding operations (CAFOs), and storm water point source discharges covered by the National Pollutant Discharge Elimination System (NPDES) program under the Clean Water Act (CWA).

  16. The relationship between technology and functionality of rural water points: evidence from Tanzania.

    PubMed

    Jiménez, A; Pérez-Foguet, A

    2011-01-01

    This paper presents an analysis of the relationships between technology of water point, management related practices and functionality over time through an extensive water point mapping study made in 15 rural districts of Tanzania, which covered 15% of the total rural population of the country. Results show irregular functionality rates at district level by technology, but reveal statistical dependence between functionality and technology at regional level. Management-related questions show that reported expenditure is the indicator most related to functionality. All categories of water points show very low performance over time. In the first five years of operation, about 30% of water points become non-functional. Only between 35% and 47% of water points are working 15 years after installation, depending on the technology. By categories, hand pumps are the less durable of the technologies studied. We suggest that more emphasis has to be placed on the creation of community capacities to manage the services during and after the installation of water points. At the same time, the role of decentralised government has to be strengthened to provide support to community services in the long term.

  17. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  18. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  19. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  20. Assessing arsenic exposure in households using bottled water or point-of-use treatment systems to mitigate well water contamination.

    PubMed

    Smith, Andrew E; Lincoln, Rebecca A; Paulu, Chris; Simones, Thomas L; Caldwell, Kathleen L; Jones, Robert L; Backer, Lorraine C

    2016-02-15

    There is little published literature on the efficacy of strategies to reduce exposure to residential well water arsenic. The objectives of our study were to: 1) determine if water arsenic remained a significant exposure source in households using bottled water or point-of-use treatment systems; and 2) evaluate the major sources and routes of any remaining arsenic exposure. We conducted a cross-sectional study of 167 households in Maine using one of these two strategies to prevent exposure to arsenic. Most households included one adult and at least one child. Untreated well water arsenic concentrations ranged from <10 μg/L to 640 μg/L. Urine samples, water samples, daily diet and bathing diaries, and household dietary and water use habit surveys were collected. Generalized estimating equations were used to model the relationship between urinary arsenic and untreated well water arsenic concentration, while accounting for documented consumption of untreated water and dietary sources. If mitigation strategies were fully effective, there should be no relationship between urinary arsenic and well water arsenic. To the contrary, we found that untreated arsenic water concentration remained a significant (p ≤ 0.001) predictor of urinary arsenic levels. When untreated water arsenic concentrations were <40 μg/L, untreated water arsenic was no longer a significant predictor of urinary arsenic. Time spent bathing (alone or in combination with water arsenic concentration) was not associated with urinary arsenic. A predictive analysis of the average study participant suggested that when untreated water arsenic ranged from 100 to 500 μg/L, elimination of any untreated water use would result in an 8%-32% reduction in urinary arsenic for young children, and a 14%-59% reduction for adults. These results demonstrate the importance of complying with a point-of-use or bottled water exposure reduction strategy. However, there remained unexplained, water-related routes of exposure.

  1. Surface freezing of n-octane nanodroplets

    NASA Astrophysics Data System (ADS)

    Modak, Viraj; Pathak, Harshad; Thayer, Mitchell; Singer, Sherwin; Wyslouzil, Barbara

    2013-05-01

    Surface freezing, at temperatures up to a few degrees above the equilibrium melting point, has been observed for intermediate chain length (16≤ i≤ 50) n-alkanes [B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang and M. Deutsch, Phys. Rev. E, 1997, 55, 3164-3182]. Our recent experimental results suggest that surface freezing is also the first step when highly supercooled nanodroplets of n-octane crystallize. Our data yield surface and bulk nucleation rates on the order of ˜1015/cm2.s and ˜1022/cm3.s, respectively. Complementary molecular dynamics simulations also show that the surface of the droplet freezes almost immediately, and freezing of the remainder of the droplet progresses in a layer-by-layer manner.

  2. Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus.

    PubMed

    Silva, A L Patrício; Holmstrup, M; Kostal, V; Amorim, M J B

    2013-07-15

    Enchytraeus albidus is a freeze-tolerant enchytraeid found in diverse habitats, ranging from supralittoral to terrestrial and spanning temperate to arctic regions. Its freeze tolerance is well known but the effect of salinity in this strategy is still poorly understood. We therefore studied the combined effect of salinity (0, 15, 35, 50‰ NaCl) and sub-zero temperatures (-5, -14, -20°C) on the freeze tolerance of E. albidus collected from two distinct geographical regions (Greenland and Germany). A full factorial design was used to study survival, and physiological and biochemical end points. The effect of salinity on the reproduction of German E. albidus was also assessed. Exposure for 48 h to saline soils prior to cold exposure triggered an increase in osmolality and decrease in water content. Worms exposed to saline soils had an improved survival of freezing compared to worms frozen in non-saline soils, particularly at -20°C (survival more than doubled). Differential scanning calorimetry measurements showed that the fraction of water frozen at -5 and -14°C was lower in worms exposed to 35‰ NaCl than in control worms. The lowering of ice content by exposure to saline soils was probably the main explanation for the better freeze survival in saline-exposed worms. Glucose increased with decreasing temperature, but was lower in saline than in non-saline soils. Thus, glucose accumulation patterns did not explain differences in freeze survival. Overall, the physiological responses to freezing of E. albidus from Greenland and Germany were similar after exposure to saline soils. Soil salinity up to 30‰ improved reproduction by a factor of ca. 10.

  3. Extracting cross sections and water levels of vegetated ditches from LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Roelens, Jennifer; Dondeyne, Stefaan; Van Orshoven, Jos; Diels, Jan

    2016-12-01

    The hydrologic response of a catchment is sensitive to the morphology of the drainage network. Dimensions of bigger channels are usually well known, however, geometrical data for man-made ditches is often missing as there are many and small. Aerial LiDAR data offers the possibility to extract these small geometrical features. Analysing the three-dimensional point clouds directly will maintain the highest degree of information. A longitudinal and cross-sectional buffer were used to extract the cross-sectional profile points from the LiDAR point cloud. The profile was represented by spline functions fitted through the minimum envelop of the extracted points. The cross-sectional ditch profiles were classified for the presence of water and vegetation based on the normalized difference water index and the spatial characteristics of the points along the profile. The normalized difference water index was created using the RGB and intensity data coupled to the LiDAR points. The mean vertical deviation of 0.14 m found between the extracted and reference cross sections could mainly be attributed to the occurrence of water and partly to vegetation on the banks. In contrast to the cross-sectional area, the extracted width was not influenced by the environment (coefficient of determination R2 = 0.87). Water and vegetation influenced the extracted ditch characteristics, but the proposed method is still robust and therefore facilitates input data acquisition and improves accuracy of spatially explicit hydrological models.

  4. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    ERIC Educational Resources Information Center

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  5. Exploring the Nature of Contact Freezing

    NASA Astrophysics Data System (ADS)

    Kiselev, A. A.; Hoffmann, N.; Duft, D.; Leisner, T.

    2012-12-01

    The freezing of supercooled water droplets upon contact with aerosol particles (contact nucleation of ice) is the least understood mechanism of ice formation in atmospheric clouds. Although experimental evidences suggest that some aerosols can be better IN in the contact than in the immersion mode (that is, triggering ice nucleation at higher temperature), no final explanation of this phenomena currently exists. On the other hand, the contact freezing is believed to be responsible for the enhanced rate of secondary ice formation occasionally observed in LIDAR measurements in the cold mixed phase clouds. Recently we have been able to show that the freezing of supercooled droplets electrodynamically levitated in the laminar flow containing mineral dust particles (kaolinite) is a process solely governed by a rate of collisions between the supercooled droplet and the aerosol particles. We have shown that the probability of droplet freezing on a single contact with aerosol particle may differ over an order of magnitude for kaolinite particles having different genesis and morphology. In this presentation we extend the study of contact nucleation of ice and compare the IN efficiency measured for DMA-selected kaolinite, illite and hematite particles. We show that the freezing probability increases towards unity as the temperature decreases and discuss the functional form of this temperature dependence. We explore the size dependence of the contact freezing probability and show that it scales with the surface area of the particles, thus resembling the immersion freezing behavior. However, for all minerals investigated so far, the contact freezing has been shown to dominate over immersion freezing on the short experimental time scales. Finally, based on the combined ESEM and electron microprobe analysis, we discuss the significance of particle morphology and variability of chemical composition on its IN efficiency in contact mode.

  6. Costs and water quality effects of controlling point and nonpoint pollution sources

    SciTech Connect

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    Costs and water quality effects of controlling point and nonpoint pollution sources are compared for the DuPage River basin in northern Illinois. Costs are estimated for effluent standards for municipal wastewater treatment plants and for the alternative, controlling runoff from nonpoint sources such as streets, agricultural lands, and forests. A dynamic water-quality/hydrology simulation model is used to determine water quality effects of various treatment plant standards and nonpoint-source controls. Costs and water quality data are combined, and the point-source and nonpoint-source plans are compared on a cost-effectiveness basis. Nonpoint-source controls are found to be more cost-effective than stricter control of pollutants from point sources.

  7. Freezing-thawing action in the deterioration of the stones of Chambord Castle

    NASA Astrophysics Data System (ADS)

    Alomari, Asaad; Brunetaud, Xavier; Beck, Kevin; Al-Mukhtar, Muzahim

    2013-04-01

    Limestone is very common in architecture (monuments and cultural heritage buildings) and used in the sculptures. The soft and porous limestone soaks up water and show weathering patterns and forms: alveolar weathering, granular disintegration, efflorescences. Freezing-thawing actions can be considered as one of the processes that contribute in the deterioration of stones located in the "cold regions" characterized with air temperatures below freezing point temperature. The amount of water within the pore space of the stones is a crucial factor of the decay. The experimental work presented in this paper is a part of a research program that aims to study the mechanisms that lead to the degradation of stone building materials due to the variation of climatic conditions. The analysis of the meteorological data of the field around the castle of Chambord shows the magnitude of temperature variations and the frequency of freezing-thawing cycles. The critical degrees of saturation at which the stone start to deteriorate after treatment with freezing-thawing cycles were examined in the tests conducted. The study concerns two porous limestone used in the construction and conservation of Chambord castle; highly porous Tuffeau stone having a total porosity of about 48 %, and medium porous Richemont stone with a total porosity of 27 %. Richemont stone has been used as a substitute stone of the degraded Tuffeau stone on the castle. The main physical properties, total porosity, apparent dry density and skeleton density and sound velocity for mechanical properties were measured for the stone samples before and during freezing-thawing cycles. ASTM (D5312-04) procedure was applied in the freezing-thawing tests. Tuffeau and Richmond samples were prepared at nine different degrees of saturations; 0, 20, 40, 70, 80, 85, 90, 95 and 100%, and properties were measured after different freezing-thawing cycles conditions; 2, 4, 8, 12, 16, 20, 30 and 50 cycles. The results of these tests show

  8. A novel point-of-use water treatment method by antimicrobial nanosilver textile material.

    PubMed

    Liu, Hongjun; Tang, Xiaosheng; Liu, Qishan

    2014-12-01

    Pathogenic bacteria are one of the main reasons for worldwide water-borne disease causing a big threat to public health, hence there is an urgent need to develop cost-effective water treatment technologies. Nano-materials in point-of-use systems have recently attracted considerable research and commercial interests as they can overcome the drawbacks of traditional water treatment techniques. We have developed a new point-of-use water disinfection kit with nanosilver textile material. The silver nanoparticles were in-situ generated and immobilized onto cotton textile, followed by fixing to a plastic tube to make a water disinfection kit. By soaking and stirring the kit in water, pathogenic bacteria have been killed within minutes. The silver leaching from the kit was insignificant, with values <100 ppb - the current US EPA and WHO limit for silver level in drinking water. Herein, the nanosilver textile water disinfection kit could be a new, efficient and cost-effective point-of-use water treatment method for rural areas and emergency preparedness.

  9. Inhibition of heavy metal ion corrosion on aluminum in fresh water cooling systems using propylene glycol anti-freeze

    SciTech Connect

    Hack, H.P.; Corbett, R.; Krantz, B.

    1998-12-31

    Electronics cooling and environmental control systems are required in enclosed manned spaces such as the inside of spacecraft or submersibles. Because egress from such spaces may not be possible in a short time frame, coolant leaks must have minimum toxicity. For this reason, propylene glycol coolants are preferred over the traditional ethylene glycol coolants. Corrosion inhibitor formulations are well developed for ethylene glycol coolants, but there is concern that the inhibitor suite for propylene glycol systems may not be as mature. In particular, coolant systems with a mixture of aluminum and copper can develop heavy metal ion corrosion of the aluminum due to precipitation of copper ions from solution onto the aluminum. This type of accelerated corrosion of aluminum does not require electrical contact with copper, as is the case for galvanic corrosion, nor is significant coolant conductivity required for corrosion to occur. This paper presents a study of the ability of a commercial inhibited propylene glycol coolant to prevent heavy metal ion corrosion of aluminum when copper is also present in the coolant system. The inhibited propylene glycol`s performance is compared to that of reagent propylene glycol without inhibitors, a mature ethylene glycol inhibited coolant, and to tap water. The inhibitor suite in the inhibited propylene glycol was found to be as effective in controlling heavy metal ion corrosion as that of the inhibited ethylene glycol coolant, while uninhibited reagent propylene glycol was ineffective in controlling heavy metal ion corrosion.

  10. Efflux of red cell water into buffered hypertonic solutions.

    PubMed

    OLMSTEAD, E G

    1960-03-01

    Buffered NaCl solutions hypertonic to rabbit serum were prepared and freezing point depressions of each determined after dilution with measured amounts of water. Freezing point depression of these dilutions was a linear function of the amount of water added. One ml. of rabbit red cells was added to each 4 ml. of the hypertonic solutions and after incubation at 38 degrees C. for 30 minutes the mixture was centrifuged and a freezing point depression determined on the supernatant fluid. The amount of water added to the hypertonic solutions by the red cells was calcuated from this freezing point depression. For each decrease in the freezing point of -0.093 degrees C. of the surrounding solution red cells gave up approximately 5 ml. of water per 100 ml. of red cells in the range of -0.560 to -0.930 degrees C. Beyond -0.930 degrees C. the amount of water given up by 100 ml. of red cells fits best a parabolic equation. The maximum of this equation occurred at a freezing point of the hypertonic solution of -2.001 degrees C. at which time the maximum amount of water leaving the red cells would be 39.9 ml. per 100 ml. of red cells. The data suggest that only about 43 per cent of the red cell water is available for exchange into solutions of increasing tonicity.

  11. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water.

    PubMed

    Spayd, Steven E; Robson, Mark G; Buckley, Brian T

    2015-02-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples was collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations was significantly lower (p<0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment.

  12. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    PubMed Central

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  13. Application of cloud point extraction for the determination of pyrene in natural water.

    PubMed

    Pongpiachan, Siwatt

    2009-03-01

    Triton X-114 (Triton X-114) surfactant separates into two isotropic phases at room temperature and can be successfully used in cloud point extraction for the analysis of polycyclic aromatic hydrocarbons (PAHs). We studied which type of container is the most suitable for PAHs extraction with this method and how the water affects PAH recovery. We used a generator and mini-centrifuge with a cloud point method to determine pyrene levels in water in the field. An on-site thermostat can be used along with pouring hot water from a canteen into a plastic bucket to keep the temperature stable. Significant losses of pyrene due to adsorption onto the container wall can be minimized by storing water samples in glass containers. Variation in critical micelle concentration (cmc) can be avoided by bringing the water temperature to 40 degrees C for 5 minutes. These methods allowed pyrene to be determined in a remote tropical peat swamp area in Central Kalimantan, Indonesia.

  14. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica.

    PubMed

    Elnitsky, Michael A; Hayward, Scott A L; Rinehart, Joseph P; Denlinger, David L; Lee, Richard E

    2008-02-01

    During winter, larvae of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae), must endure 7-8 months of continuous subzero temperatures, encasement in a matrix of soil and ice, and severely desiccating conditions. This environment, along with the fact that larvae possess a high rate of water loss and are extremely tolerant of desiccation, may promote the use of cryoprotective dehydration as a strategy for winter survival. This study investigates the capacity of larvae to resist inoculative freezing and undergo cryoprotective dehydration at subzero temperatures. Slow cooling to -3 degrees C in an environment at equilibrium with the vapor pressure of ice reduced larval water content by approximately 40% and depressed the body fluid melting point more than threefold to -2.6 degrees C. This melting point depression was the result of the concentration of existing solutes (i.e. loss of body water) and the de novo synthesis of osmolytes. By day 14 of the subzero exposure, larval survival was still >95%, suggesting larvae have the capacity to undergo cryoprotective dehydration. However, under natural conditions the use of cryoprotective dehydration may be constrained by inoculative freezing as result of the insect's intimate contact with environmental ice. During slow cooling within a substrate of frozen soil, the ability of larvae to resist inoculative freezing and undergo cryoprotective dehydration was dependent upon the moisture content of the soil. As detected by a reduction of larval water content, the percentage of larvae that resisted inoculative freezing increased with decreasing soil moisture. These results suggest that larvae of the Antarctic midge have the capacity to resist inoculative freezing at relatively low soil moisture contents and likely undergo cryoprotective dehydration when exposed to subzero temperatures during the polar winter.

  15. Future freeze forecasting

    NASA Technical Reports Server (NTRS)

    Bartholic, J. F.; Sutherland, R. A.

    1979-01-01

    Real time GOES thermal data acquisition, an energy balance minimum temperature prediction model and a statistical model are incorporated into a minicomputer system. These components make up the operational "Satellite Freeze Forecast System" being used to aid NOAA, NWS forecasters in developing their freeze forecasts. The general concept of the system is presented in this paper. Specific detailed aspects of the system can be found in the reference cited.

  16. Freeze-fracture-autoradiography.

    PubMed

    Rix, E; Schiller, A; Taugner, R

    A new method for the electron microscope autoradiography of soluble substances in frozen tissue is described. The basic features of the method are freeze fracturing, the application of a suitable monolayer followed by exposure at low temperature and finally the separation of tissue and the replica-monolayer-sandwich after photographic processing. The advantages and limitations of the new method are discussed in terms of monolayer quality, contact, histochemography, resolution, freezing and recrystallisation artefacts.

  17. Periodic ice banding in freezing colloidal dispersions.

    PubMed

    Anderson, Anthony M; Worster, M Grae

    2012-12-04

    Concentrated colloidal alumina dispersions were frozen in a directional solidification apparatus that provides independent control of the freezing rate and temperature gradient. Two distinct steady-state modes of periodic ice banding were observed in the range of freezing rates examined. For each mode, the wavelength between successive bands of segregated ice decreases with increasing freezing rate. At low freezing rates (0.25-3 μm s(-1)), the ice segregates from the suspension into ice lenses, which are cracklike in appearance, and there is visible structure in the layer of rejected particles in the unfrozen region ahead of the ice lenses. In this regime, we argue that compressive cryosuction forces lead to the irreversible aggregation of the rejected particles into a close-packed cohesive layer. The temperature in the aggregated layer is depressed below the bulk freezing point by more than 2 °C before the ice lenses are encountered; moreover, this undercooled region appears as a light-colored layer. The magnitude of the undercooling and the color change in this region both suggest the presence of pore ice and the formation of a frozen fringe. The possibility of a frozen fringe is supported by a quantitative model of the freezing behavior. At intermediate freezing rates, around 4 μm s(-1), the pattern of ice segregation is disordered, coinciding with the disappearance of the dark- and light-colored layers. Finally, at high freezing rates (5-10 μm s(-1)), there is a new mode of periodic ice banding that is no longer cracklike and is absent of any visible structure in the suspension ahead of the ice bands. We discuss the implications of our experimental findings for theories of ice lensing.

  18. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events

    PubMed Central

    O’Keefe, Kimberly; Nippert, Jesse B.; Swemmer, Anthony M.

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  19. Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers.

    PubMed

    Duhain, G L M C; Minnaar, A; Buys, E M

    2012-05-01

    Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.

  20. Water quality at points-of-use in the Galapagos Islands.

    PubMed

    Gerhard, William A; Choi, Wan Suk; Houck, Kelly M; Stewart, Jill R

    2017-04-01

    Piped drinking water is often considered a gold standard for protecting public health but research is needed to explicitly evaluate the effect of centralized treatment systems on water quality in developing world settings. This study examined the effect of a new drinking water treatment plant (DWTP) on microbial drinking water quality at the point-of-use on San Cristobal Island, Galapagos using fecal indicator bacteria total coliforms and Escherichia coli. Samples were collected during six collection periods before and after operation of the DWTP began from the freshwater sources (n=4), the finished water (n=6), and 50 sites throughout the distribution system (n=287). This study found that there was a significant decrease in contamination by total coliforms (two orders of magnitude) and E. coli (one order of magnitude) after DWTP operation began (p<0.001). However, during at least one post-construction collection cycle, total coliforms and E. coli were still found at 66% and 28% of points-of-use (n=50), respectively. During the final collection period, conventional methods were augmented with human-specific Bacteroides assays - validated herein - with the goal of elucidating possible microbial contamination sources. Results show that E. coli contamination was not predictive of contamination by human wastes and suggests that observed indicator bacteria contamination may have environmental origins. Together these findings highlight the necessity of a holistic approach to drinking water infrastructure improvements in order to deliver high quality water through to the point-of-use.

  1. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    SciTech Connect

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    2010-04-21

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

  2. Quality of Drinking Water Treated at Point of Use in Residential Healthcare Facilities for the Elderly

    PubMed Central

    Sacchetti, Rossella; De Luca, Giovanna; Guberti, Emilia; Zanetti, Franca

    2015-01-01

    Municipal tap water is increasingly treated at the point of use (POU) to improve the acceptability and palatability of its taste. The aim of this study was to assess the bacteriologic and nutritional characteristics of tap water treated at the point of use in residential healthcare facilities for the elderly. Two types of POU devices were used: microfiltered water dispensers (MWDs) and reverse-osmosis water dispensers (ROWDs). All samples of water entering the devices and leaving them were tested for the bacteriological parameters set by Italian regulations for drinking water and for opportunistic pathogens associated with various infections in healthcare settings; in addition, the degree of mineralization of the water was assessed. The results revealed widespread bacterial contamination in the POU treatment devices, particularly from potentially pathogenic species. As expected, the use of ROWDs led to a decrease in the saline content of the water. In conclusion, the use of POU treatment in healthcare facilities for the elderly can be considered advisable only if the devices are constantly and carefully maintained. PMID:26371025

  3. Quality of Drinking Water Treated at Point of Use in Residential Healthcare Facilities for the Elderly.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Guberti, Emilia; Zanetti, Franca

    2015-09-09

    Municipal tap water is increasingly treated at the point of use (POU) to improve the acceptability and palatability of its taste. The aim of this study was to assess the bacteriologic and nutritional characteristics of tap water treated at the point of use in residential healthcare facilities for the elderly. Two types of POU devices were used: microfiltered water dispensers (MWDs) and reverse-osmosis water dispensers (ROWDs). All samples of water entering the devices and leaving them were tested for the bacteriological parameters set by Italian regulations for drinking water and for opportunistic pathogens associated with various infections in healthcare settings; in addition, the degree of mineralization of the water was assessed. The results revealed widespread bacterial contamination in the POU treatment devices, particularly from potentially pathogenic species. As expected, the use of ROWDs led to a decrease in the saline content of the water. In conclusion, the use of POU treatment in healthcare facilities for the elderly can be considered advisable only if the devices are constantly and carefully maintained.

  4. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  5. Characterization of the freeze sensitivity of a hepatitis B vaccine.

    PubMed

    Chen, Dexiang; Tyagi, Anil; Carpenter, John; Perkins, Shalimar; Sylvester, David; Guy, Mark; Kristensen, Debra D; Braun, Latoya Jones

    2009-01-01

    Recent studies have revealed that vaccines containing aluminum adjuvant are exposed to sub-zero temperatures while in the cold chain more frequently than was previously believed. This raises concerns that these freeze-sensitive vaccines may be damaged and offer inadequate protection. This study was undertaken to characterize the immediate qualitative changes of one such vaccine, hepatitis B, caused by freeze exposure. Hepatitis B vaccine was subjected to freezing temperatures ranging from 0 degrees C to -20 degrees C for up to three episodes with durations ranging from 1 hour to 7 days. The vaccine was analyzed for freezing point, particle size distribution, tertiary structure, and in vitro and in vivo potency. Whether or not hepatitis B vaccine freezes was shown to be dependent on an array of factors including temperature, rate of temperature change, duration of exposure, supercooling effects and vibration. Vaccine exposed to "mild" freezing (-4 degrees C or warmer) temperatures did not freeze and remained qualitatively unaltered. Single or repeated freezing events at temperatures of -10 degrees C or lower were associated with aggregation of the adjuvant-antigen particles, structural damage of the antigen, and reduction of immunogenicity in mice. Damage to the vaccine increased with duration of freezing, lower temperature, and the number of freezing episodes. With vibration, vaccine froze at -6 degrees C after 1 hour and damage occurred. Freezing and freeze damage to vaccines containing aluminum salt adjuvant represent real risks to the effectiveness of immunization and should be prevented by strengthening the cold chain system or, alternatively, development of freeze-stable vaccine formulations.

  6. POINT-OF-USE TREATMENT OF DRINKING WATER IN SAN YSIDRO, NM

    EPA Science Inventory

    This study was conducted to determine whether point-of-use (POU) reverse osmosis (RO) units could satisfactorily function in lieu of central treatment to remove arsenic and fluoride from the drinking water supply of San Ysidro, NM. POU treatment was evaluated for removal efficien...

  7. A point focusing collector for an integrated water/power complex

    NASA Technical Reports Server (NTRS)

    Zewen, H.; Schmidt, G.; Moustafa, S.

    1982-01-01

    The utilization potential of the point focusing parabolic dish is identified. Its main design parameters are summarized. Performance tests and the utilization of the collector as primary energy source in a food-water-power complex are described. Process heat, heat storage, heat transfer, and cogeneration are discussed.

  8. Plant responses, climate pivot points, and trade-offs in water-limited ecosystems

    USGS Publications Warehouse

    Munson, Seth M.

    2013-01-01

    Plant species in dryland ecosystems are limited by water availability and may be vulnerable to increases in aridity. Methods are needed to monitor and assess the rate of change in plant abundance and composition in relation to climate, understand the potential for degradation in dryland ecosystems, and forecast future changes in plant species assemblages. I employ nearly a century of vegetation monitoring data from three North American deserts to demonstrate an approach to determine plant species responses to climate and critical points over a range of climatic conditions at which plant species shift from increases to decreases in abundance (climate pivot points). I assess these metrics from a site to regional scale and highlight how these indicators of plant performance can be modified by the physical and biotic environment. For example, shrubs were more responsive to drought and high temperatures on shallow soils with limited capacity to store water and fine-textured soils with slow percolation rates, whereas perennial grasses were more responsive to precipitation in sparse shrublands than in relatively dense grasslands and shrublands, where competition for water is likely more intense. The responses and associated climate pivot points of plant species aligned with their lifespan and structural characteristics, and the relationship between responses and climate pivot points provides evidence of the trade-off between the capacity of a plant species to increase in abundance when water is available and its drought resistance.

  9. Tandem High-pressure Freezing and Quick Freeze Substitution of Plant Tissues for Transmission Electron Microscopy

    PubMed Central

    Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.

    2014-01-01

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  10. Tandem high-pressure freezing and quick freeze substitution of plant tissues for transmission electron microscopy.

    PubMed

    Bobik, Krzysztof; Dunlap, John R; Burch-Smith, Tessa M

    2014-10-13

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  11. Molecular Physiology of Freeze Tolerance in Vertebrates.

    PubMed

    Storey, Kenneth B; Storey, Janet M

    2017-04-01

    Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.

  12. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    SciTech Connect

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.

  13. Ice/Water Interface: Zeta Potential, Point of Zero Charge, and Hydrophobicity.

    PubMed

    Drzymala; Sadowski; Holysz; Chibowski

    1999-12-15

    The ice/water interface is a common and important part of many biological, environmental, and technological systems. In contrast to its importance, the system has not been extensively studied and is not well understood. Therefore, in this paper the properties of the H(2)O ice/water and D(2)O ice/water interfaces were investigated. Although the zeta potential vs pH data points were significantly scattered, it was determined that the isoelectric point (iep) of D(2)O ice particles in water at 3.5 degrees C containing 10(-3) M NaCl occurs at about pH 3.0. The negative values of the zeta potential, calculated from the electrophoretic mobility, seem to decrease with decreasing content of NaCl, while the iep shifts to a higher pH. The point of zero charge (pzc) of D(2)O ice and H(2)O ice, determined by changes in pH of 10(-4) M NaCl aqueous solution at 0.5 degrees C after the ice particle addition, was found to be very different from the iep and equal to pH 7.0 +/- 0.5. The shift of the iep with NaCl concentration and the difference in the positions of the iep and pzc on the pH scale point to complex specific adsorption of ions at the interface. Interestingly, similar values of iep and pzc were found for very different systems, such as hydrophilic ice and highly hydrophobic hexadecane droplets in water. A comparison of the zeta potential vs pH curves for hydrophilic ice and hydrophobic materials that do not possess dissociative functional groups at the interface (diamond, air bubbles, bacteria, and hexadecane) indicated that all of them have an iep near pH 3.5. These results indicate that the zeta potential and surface charge data alone cannot be used to delineate the electrochemical properties of a given water/moiety interface because similar electrical properties do not necessary mean a similar structure of the interfacial region. A good example is the aliphatic hydrocarbon/water interface in comparison to the ice/water interface. Although the experiments were carried

  14. Ultrasound-Assisted Freezing

    NASA Astrophysics Data System (ADS)

    Delgado, A. E.; Sun, Da-Wen

    Freezing is a well-known preservation method widely used in the food industry. The advantages of freezing are to a certain degree counterbalanced by the risk of damage caused by the formation and size of ice crystals. Over recent years new approaches have been developed to improve and control the crystallization process, and among these approaches sonocrystallization has proved to be very useful, since it can enhance both the nucleation rate and the crystal growth rate. Although ultrasound has been successfully used for many years in the evaluation of various aspects of foods and in medical applications, the use of power ultrasound to directly improve processes and products is less popular in food manufacturing. Foodstuffs are very complex materials, and research is needed in order to define the specific sound parameters that aid the freezing process and that can later be used for the scale-up and production of commercial frozen food products.

  15. Percolation with Constant Freezing

    NASA Astrophysics Data System (ADS)

    Mottram, Edward

    2014-06-01

    We introduce and study a model of percolation with constant freezing ( PCF) where edges open at constant rate , and clusters freeze at rate independently of their size. Our main result is that the infinite volume process can be constructed on any amenable vertex transitive graph. This is in sharp contrast to models of percolation with freezing previously introduced, where the limit is known not to exist. Our interest is in the study of the percolative properties of the final configuration as a function of . We also obtain more precise results in the case of trees. Surprisingly the algebraic exponent for the cluster size depends on the degree, suggesting that there is no lower critical dimension for the model. Moreover, even for , it is shown that finite clusters have algebraic tail decay, which is a signature of self organised criticality. Partial results are obtained on , and many open questions are discussed.

  16. New High-Performance Droplet Freezing Assay (HP-DFA) for the Analysis of Ice Nuclei with Complex Composition

    NASA Astrophysics Data System (ADS)

    Kunert, Anna Theresa; Scheel, Jan Frederik; Helleis, Frank; Klimach, Thomas; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water above homogeneous freezing is catalyzed by ice nucleation active (INA) particles called ice nuclei (IN), which can be of various inorganic or biological origin. The freezing temperatures reach up to -1 °C for some biological samples and are dependent on the chemical composition of the IN. The standard method to analyze IN in solution is the droplet freezing assay (DFA) established by Gabor Vali in 1970. Several modifications and improvements were already made within the last decades, but they are still limited by either small droplet numbers, large droplet volumes or inadequate separation of the single droplets resulting in mutual interferences and therefore improper measurements. The probability that miscellaneous IN are concentrated together in one droplet increases with the volume of the droplet, which can be described by the Poisson distribution. At a given concentration, the partition of a droplet into several smaller droplets leads to finely dispersed IN resulting in better statistics and therefore in a better resolution of the nucleation spectrum. We designed a new customized high-performance droplet freezing assay (HP-DFA), which represents an upgrade of the previously existing DFAs in terms of temperature range and statistics. The necessity of observing freezing events at temperatures lower than homogeneous freezing due to freezing point depression, requires high-performance thermostats combined with an optimal insulation. Furthermore, we developed a cooling setup, which allows both huge and tiny temperature changes within a very short period of time. Besides that, the new DFA provides the analysis of more than 750 droplets per run with a small droplet volume of 5 μL. This enables a fast and more precise analysis of biological samples with complex IN composition as well as better statistics for every sample at the same time.

  17. Evaluation of Point of Use Water Treatment Devices for Removal of Mine Wastes from Well Water

    EPA Science Inventory

    U.S. EPA Region VII and the Office of Research and Development (ORD) are conducting a large-scale study to identify the prevalence of lead (Pb) and other contaminants in drinking water at four mine waste areas in Washington County, Missouri. Numerous households in Potosi, Richwoo...

  18. Physiological responses to freezing in hatchlings of freeze-tolerant and -intolerant turtles.

    PubMed

    Costanzo, Jon P; Baker, Patrick J; Lee, Richard E

    2006-09-01

    Freeze tolerance is a complex cold-hardiness adaptation that has independently evolved in a diverse group of organisms, including several ectothermic vertebrates. Because little is known about the mechanistic basis for freeze tolerance in reptiles, we compared responses to experimental freezing in winter-acclimatized hatchlings representing nine taxa of temperate North American turtles, including ones that tolerated freezing and others that did not. Viability rates of hatchlings frozen to -3 degrees C for 72 h ranged from 0 to 100%. Tolerance to freezing was poor in Sternotherus odoratus, Graptemys geographica and Trachemys scripta, intermediate in Chelydra serpentina, and high in Emydoidea blandingii, Chrysemys picta bellii, C. p. marginata, Malaclemys terrapin, and Terrapene ornata, and generally reflected the winter thermal ecology of each taxon. Plasma activity of lactate dehydrogenase (LDH), a novel in vivo index of freeze/thaw damage, corroborated viability assessments and demonstrated that cryoinjury occurred even in surviving turtles. Irrespective of taxon, cryoinjury tended to be higher in smaller individuals and in those having relatively low water contents; however, bases for these associations were not apparent. Screening for certain organic osmolytes that might promote freezing survival by colligatively reducing ice content and limiting cell dehydration showed that the plasma of unfrozen (control) turtles contained small quantities of glucose (1.3-5.8 mmol l(-1)) and lactate (0.6-3.2 mmol l(-1)) and modest amounts of urea (range of mean values for all taxa 8.2-52.3 mmol l(-1)). Frozen/thawed turtles of all taxa accumulated modest amounts of glucose and lactate that jointly raised the plasma solute concentration by 30-100 mmol l(-1). We conclude that organic osmolytes accumulated both before and during freezing may promote survival in species that have evolved a tolerance to freezing, but are not necessarily accumulated for that purpose.

  19. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained <20-41 CFU/mL in two of the filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  20. Double freezing of (NH(4))(2)SO(4)/H(2)O droplets below the eutectic point and the crystallization of (NH(4))(2)SO(4) to the ferroelectric phase.

    PubMed

    Bogdan, A

    2010-09-23

    This paper presents the differential scanning calorimetry (DSC) results obtained from measurements of single droplets of different subeutectic concentrations (<40 wt % (NH4)2SO4) and diameters of 1-1.5 mm. The measurements show that despite the fact that the freezing of the droplets takes place below the eutectic temperature of Te ≈ 254.5 K, a phase separation into ice and a residual freeze-concentrated solution occurs. The residual solution is formed by the expulsion of NH4+ and SO42- ions from the ice lattice during the nucleation and growth of ice and may possess the eutectic concentration of 40 wt % (NH4)2SO4. On further cooling, the residual solution freezes to the eutectic solid mixture of ice/(NH4)2SO4 at a temperature that is either above or below the ferroelectric "Curie" temperature of Tc ≈ 223 K. If the freezing of the residual solution takes place below the Tc, then (NH4)2SO4 crystallizes directly into the ferroelectric phase.

  1. Comparing contact and immersion freezing from continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Nagare, Baban; Marcolli, Claudia; Welti, André; Stetzer, Olaf; Lohmann, Ulrike

    2016-07-01

    due to the position of the INP on the droplet, and we discriminate it from collisional contact freezing, which assumes an enhancement due to the collision of the particle with the droplet. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber Immersion Mode Cooling chAmber-Zurich Ice Nucleation Chamber (IMCA-ZINC) for a 3 s residence time. In IMCA-ZINC, each INP is activated into a droplet in IMCA and provides its surface for ice nucleation in the ZINC chamber. The comparison of contact and immersion freezing results did not confirm a general enhancement of freezing efficiency for contact compared with immersion freezing experiments. For AgI particles the onset of heterogeneous freezing in CLINCH was even shifted to lower temperatures compared with IMCA-ZINC. For ATD, freezing efficiencies for contact and immersion freezing experiments were similar. For kaolinite particles, contact freezing became detectable at higher temperatures than immersion freezing. Using contact angle information between water and the INP, it is discussed how the position of the INP in or on the droplets may influence its ice nucleation activity.

  2. SU-E-T-154: Calculation of Tissue Dose Point Kernels Using GATE Monte Carlo Simulation Toolkit to Compare with Water Dose Point Kernel

    SciTech Connect

    Khazaee, M; Asl, A Kamali; Geramifar, P

    2015-06-15

    Purpose: the objective of this study was to assess utilizing water dose point kernel (DPK)instead of tissue dose point kernels in convolution algorithms.to the best of our knowledge, in providing 3D distribution of absorbed dose from a 3D distribution of the activity, the human body is considered equivalent to water. as a Result tissue variations are not considered in patient specific dosimetry. Methods: In this study Gate v7.0 was used to calculate tissue dose point kernel. the beta emitter radionuclides which have taken into consideration in this simulation include Y-90, Lu-177 and P-32 which are commonly used in nuclear medicine. the comparison has been performed for dose point kernels of adipose, bone, breast, heart, intestine, kidney, liver, lung and spleen versus water dose point kernel. Results: In order to validate the simulation the Result of 90Y DPK in water were compared with published results of Papadimitroulas et al (Med. Phys., 2012). The results represented that the mean differences between water DPK and other soft tissues DPKs range between 0.6 % and 1.96% for 90Y, except for lung and bone, where the observed discrepancies are 6.3% and 12.19% respectively. The range of DPK difference for 32P is between 1.74% for breast and 18.85% for bone. For 177Lu, the highest difference belongs to bone which is equal to 16.91%. For other soft tissues the least discrepancy is observed in kidney with 1.68%. Conclusion: In all tissues except for lung and bone, the results of GATE for dose point kernel were comparable to water dose point kernel which demonstrates the appropriateness of applying water dose point kernel instead of soft tissues in the field of nuclear medicine.

  3. Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve

    NASA Astrophysics Data System (ADS)

    Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.

    2009-04-01

    Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.

  4. Genetic Enhancement of an Anti-Freeze Protein for use as a Substitute for Ethylene Glycol for Aircraft Anti-icing

    DTIC Science & Technology

    2001-10-01

    in the solution (water) but not on its nature, and therefore freezing point depression is called a " colligative property ", denoting "depending on the collection". 2 ...programs costing over $8.2M. Additionally, an Air Force policy has been issued banning future purchase of ethylene glycol. Traditional Colligative

  5. Freezing of Lennard-Jones-type fluids

    SciTech Connect

    Khrapak, Sergey A.; Chaudhuri, Manis; Morfill, Gregor E.

    2011-02-07

    We put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S.A.Khrapak, M.Chaudhuri, G.E.Morfill, Phys. Rev. B 134, 052101 (2010)]. In this paper, we test this approach using a wide range of the LJ-type potentials, including LJ n-6 and exp-6 models, and find that it remains sufficiently accurate and reliable in reproducing the corresponding freezing curves, down to the triple-point temperatures. One of the possible application of the method--estimation of the freezing conditions in complex (dusty) plasmas with ''tunable'' interactions--is briefly discussed.

  6. Characteristics of the Self-evaporation Behavior of Sprinkled Water near the Triple Point

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuo; Hayashi, Kanetoshi; Ogoshi, Hidemasa; Maeyama, Katsuya; Yonezawa, Noriyuki

    For the sake of capturing the basic data in concern with the designing of vacuum evaporation apparatus, characteristics of the self-evaporation behavior of sprinkled water near the triple point has been investigated experimentally. The relationship between the amount of the vaporized water and the pressure in the vessel was elucidated quantitatively on the condition that over-heated water was sprinkled from water supplying nozzles of diameter of 4 mm into the center of the steam area in the heat insulation glass evaporation vessel having diameter of 200 mm and height of 1100 mm. Even under the mild water sprinkling conditions such as no small particle formation, small Reynolds number, and small Weber number, the temperature effectiveness of the self-evaporation in the center of the steam was as high as 80%, which clearly shows the effectiveness of this water-sprinkling method. In addition, the basic data for system designing such as water evaporation coefficient from water layer surface and temperature effectiveness of self-evaporation during the f1ight in the steam space were obtained.

  7. Freezing and thawing processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permea...

  8. [Impacts of the urbanization on waters non-point source pollution].

    PubMed

    Yang, Liu; Ma, Ke-Ming; Guo, Qing-hai; Zhao, Jing-zhu

    2004-11-01

    Non-point source (NPS) pollution is the prominent source of water pollution in many countries, included America and China, of the world. Urban NPS pollution was attached little importance for long, compared with agriculture NPS pollution. While urbanization is the dominant form of land-use change in terms of impacts on water quality, the hydrology, other physical properties of watersheds as well as their NPS pollution potential at present. The formation of urban NPS pollution of water could be described by "source-process-sink". Urbanization has changed the source, process and sink of urban NPS pollution. A review was conducted on the international researches of urbanization impacts on NPS pollution in urban water environment from the point of view of "describe-predict and evaluation-application". The studies of urbanization impacts on urban NPS pollution were focused on modeling the process of urban NPS pollution by hydrologic model, predicting the pollutants load of NPS pollution. It is a fresh methodology that the relationship between urbanization and urban NPS pollution of water was analyzed by the method of landscape change and ecological process. The research on temporal-spatial comprehensive impacts of landscape pattern changes, led by urbanization, on the urban NPS pollution will be one of the hotspots.

  9. Wall sticking of high water-cut crude oil transported at temperatures below the gel point

    NASA Astrophysics Data System (ADS)

    Zheng, Haimin; Huang, Qiyu; Wang, Changhui

    2015-12-01

    Some high water-cut crude oils can flow in the temperature below the oil gel point, while oil particles may adhere to the pipe wall as paste; this process is known as ‘wall sticking’. This can cause partial or even total blocking of the transportation pipe. Several experiments using a laboratory flow loop were conducted to study the wall sticking characteristics of high water-cut crude oils. The experimental results indicated that the predominant influencing factors of wall sticking included shear stress, water-cut and differences between gel point and wall temperature. The wall sticking rate and occurrence temperature decrease with the increase of water-cut and shear stress. The criterion for the wall sticking occurrence temperature (WSOT), and the regression formula of the wall sticking thickness for high water-cut crude oil were then established. Typical case studies indicated that the prediction results obtained from the WSOT criterion and the wall sticking thickness regression formula were in accordance with the measured values. The wall sticking rate and WSOT vary widely under different conditions and it is necessary to consider its non-uniformity in production.

  10. Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources.

    PubMed

    Rai, U N; Dubey, Smita; Shukla, O P; Dwivedi, S; Tripathi, R D

    2008-09-01

    The water bodies of Lucknow, Unnao and Kanpur (U.P.), India polluted through various point and non point sources were found to be either eutrophic or oligotrophic in nature. These water bodies supported a great number of algal diversity, which varied seasonally depending upon the physico-chemical properties of water. Further, the water bodies polluted through non point sources supports diverse algal species, while the water bodies polluted through point sources supports growth of tolerant blue green algae. High biomass producing algal species growing in these water bodies have accumulated significant amount of metals in their tissues. Maximum amount of Fe was found accumulated by species of Oedogonium sp. II (20,523.00 microg g(-1) dw) and Spirogyra sp. I (4,520.00 microg g(-1) dw), while maximum Chromium (Cr) was found accumulated in Phormedium bohneri (2,109.00 microg g(-1) dw) followed by Oscillatoria nigra (1,957.88 microg g(-1) dw) and Oedogonium sp. I (156.00 microg g(-1) dw) and Ni in Ulothrix sp. (495.00 microg g(-1) dw). Results showed that some of these forms growing in polluted environment and accumulating high amounts of toxic metals may be used as bioindicator species, however, their performance in metal contaminated water under different ecological niche is to be ascertained.

  11. Coulometric trace determination of water by using Karl Fischer reagent and potentiometric end-point detection.

    PubMed

    Cedergren, A

    1974-06-01

    A new approach to the determination of water via the Karl Fischer reaction is described. Iodine is coulometrically generated and the end-point corresponding to a slight excess of iodine, is detected potentiometrically with a non-polarized platinum electrode. Samples of 1-500 mul containing 0.05-200 mug of water were analysed with a standard deviation of 0.015 mug in the range 0.05-20 mug of H(2)O. A specially constructed electrolysis cell was used in combination with an LKB 16300 Coulometric Analyzer and the time for a complete analysis was 1-4 min, depending on sample size. The reagent composition has been optimized in order to enhance the rate of the main reaction and to minimize the extent of side-reactions. Decreasing the temperature reduced the extent of side-reactions. The displacement of end-point potential on dilution was studied and a correction is discussed.

  12. The effect of water contamination on the dew-point temperature scale realization with humidity generators

    NASA Astrophysics Data System (ADS)

    Vilbaste, M.; Heinonen, M.; Saks, O.; Leito, I.

    2013-08-01

    The purpose of this paper is to study the effect of contaminated water in the context of humidity generators. Investigation of different methods to determine the drop in dew-point temperature due to contamination and experiments on actual contamination rates are reported. Different methods for calculating the dew-point temperature effect from electrical conductivity and density measurements are studied with high-purity water and aqueous solutions of NaCl and LiCl. The outcomes of the calculation methods are compared with the results of direct humidity measurements. The results show that the often applied Raoult's law based calculation method is in good agreement with other methods. For studying actual contamination, water samples were kept in glass, plastic, copper and stainless-steel vessels for up to 13 months to investigate natural ionic and organic contamination in vessels with different wall materials. The amount of ionic contamination was found to be higher in copper and glass vessels than in stainless-steel and plastic vessels. The amount of organic contamination was found to be highest in the plastic vessel. In all the cases, however, the corresponding drop in dew-point temperature due to natural contamination was found to be below 0.1 mK. The largest rate of change of dew-point temperature was 26 µK/month. Thus, if proper cleanness is maintained in a humidity generator the effect of contamination of water in the saturator is insignificant compared with the major uncertainty components even in the most accurate generators today.

  13. Embolism formation during freezing in the wood of Picea abies.

    PubMed

    Mayr, Stefan; Cochard, Hervé; Améglio, Thierry; Kikuta, Silvia B

    2007-01-01

    Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of -2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding.

  14. Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria

    NASA Astrophysics Data System (ADS)

    Touil, Sami; Degre, Aurore; Nacer Chabaca, Mohamed

    2016-12-01

    Improving the accuracy of pedotransfer functions (PTFs) requires studying how prediction uncertainty can be apportioned to different sources of uncertainty in inputs. In this study, the question addressed was as follows: which variable input is the main or best complementary predictor of water retention, and at which water potential? Two approaches were adopted to generate PTFs: multiple linear regressions (MLRs) for point PTFs and multiple nonlinear regressions (MNLRs) for parametric PTFs. Reliability tests showed that point PTFs provided better estimates than parametric PTFs (root mean square error, RMSE: 0.0414 and 0.0444 cm3 cm-3, and 0.0613 and 0.0605 cm3 cm-3 at -33 and -1500 kPa, respectively). The local parametric PTFs provided better estimates than Rosetta PTFs at -33 kPa. No significant difference in accuracy, however, was found between the parametric PTFs and Rosetta H2 at -1500 kPa with RMSE values of 0.0605 cm3 cm-3 and 0.0636 cm3 cm-3, respectively. The results of global sensitivity analyses (GSAs) showed that the mathematical formalism of PTFs and their input variables reacted differently in terms of point pressure and texture. The point and parametric PTFs were sensitive mainly to the sand fraction in the fine- and medium-textural classes. The use of clay percentage (C %) and bulk density (BD) as inputs in the medium-textural class improved the estimation of PTFs at -33 kPa.

  15. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS Use of Non-Centralized Treatment Devices § 141.100 Criteria and procedures for public water... responsibility of the public water system to operate and maintain the point-of-entry treatment system. (c) The... provide health protection equivalent to central water treatment. “Equivalent” means that the water...

  16. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS Use of Non-Centralized Treatment Devices § 141.100 Criteria and procedures for public water... responsibility of the public water system to operate and maintain the point-of-entry treatment system. (c) The... provide health protection equivalent to central water treatment. “Equivalent” means that the water...

  17. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS Use of Non-Centralized Treatment Devices § 141.100 Criteria and procedures for public water... responsibility of the public water system to operate and maintain the point-of-entry treatment system. (c) The... provide health protection equivalent to central water treatment. “Equivalent” means that the water...

  18. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS Use of Non-Centralized Treatment Devices § 141.100 Criteria and procedures for public water... responsibility of the public water system to operate and maintain the point-of-entry treatment system. (c) The... provide health protection equivalent to central water treatment. “Equivalent” means that the water...

  19. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS Use of Non-Centralized Treatment Devices § 141.100 Criteria and procedures for public water... responsibility of the public water system to operate and maintain the point-of-entry treatment system. (c) The... provide health protection equivalent to central water treatment. “Equivalent” means that the water...

  20. Heat Conduction with Freezing or Thawing

    DTIC Science & Technology

    1986-01-01

    with permafrost and seasonally frozen ground, thermal storage systems for solar energy, the freezing of food or biological mater- ial, and the...solar latent heat methods, and preservation of food . 1.1 THE NATURE OF THE THERMODYNAMIC SYSTEM Before any equations or physical laws are discussed...fluids or other solids. An important example Is a soil system consisting of a mineral skeleton whose voids may contain air, water, water A - vapor, ice

  1. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.

    PubMed

    Tanghe, An; Van Dijck, Patrick; Colavizza, Didier; Thevelein, Johan M

    2004-06-01

    Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.

  2. Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination.

    PubMed

    Nelson, Kristina Y; McMartin, Dena W; Yost, Christopher K; Runtz, Ken J; Ono, Takaya

    2013-08-01

    The treatment process described in this research explores the impact of exposing water samples containing fecal coliforms to the radiation produced by single ultraviolet (UV) light-emitting diodes (LEDs) operating at 265 nm. UV LEDs are long lasting, compact in size and produce more efficient light output than traditional mercury-vapour bulbs, making them ideal for application in point-of-use disinfection systems, such as in remote areas. In this study, contaminated water samples containing either a pure culture of Escherichia coli or tertiary effluent from the City of Regina Wastewater Treatment Plant were used to study the application and efficiency of using UV LEDs for water disinfection. The results indicate that bacterial inactivation was achieved in a time-dependent manner, with 1- and 2.5-log E. coli reductions in water following 20 and 50 min of UV LED exposure, respectively. Ultraviolet radiation was less effective in reducing coliform bacteria in wastewater samples due to the elevated turbidity levels. Further work remains to be completed to optimize the application of UV LEDs for point-of-use disinfection systems; however, the results from this study support that bacterial inactivation using UV LEDs is possible, meriting further future technological development of the LEDs.

  3. Artificial Water Point for Livestock Influences Spatial Ecology of a Native Lizard Species

    PubMed Central

    Leu, Stephan T.; Bull, C. Michael

    2016-01-01

    Pastoralism is a major agricultural activity in drier environments, and can directly and indirectly impact native species in those areas. We investigated how the supply of an artificial watering point to support grazing livestock affected movement and activity patterns of the Australian sleepy lizard (Tiliqua rugosa) during a drought year. We observed 23 adult lizards; six had access to a dam, whereas 17 lizards did not. Lizards with access to the dam had larger home ranges, were substantially active on more days (days with >100 steps), and moved more steps per day compared to lizards that did not have access to the dam, both during the early and late period of our observation. Furthermore, while the two groups of lizards had similar body condition early in the season, they differed later in the season. Lizards with dam access retained, whereas lizards without access lost body condition. Local heterogeneity in access to an artificial water resource resulted in spatially dependent behavioural variation among sleepy lizard individuals. This suggests that sleepy lizards have flexible responses to changing climatic conditions, depending on the availability of water. Furthermore, while reducing activity appears a suitable short term strategy, if harsh conditions persist, then access to dams could be of substantial benefit and could support sustained lizard activity and movement and allow maintenance of body condition. Hence, artificial watering points, such as the dams constructed by pastoralists, may provide local higher quality refugia for sleepy lizards and other species during drought conditions. PMID:26800274

  4. Artificial Water Point for Livestock Influences Spatial Ecology of a Native Lizard Species.

    PubMed

    Leu, Stephan T; Bull, C Michael

    2016-01-01

    Pastoralism is a major agricultural activity in drier environments, and can directly and indirectly impact native species in those areas. We investigated how the supply of an artificial watering point to support grazing livestock affected movement and activity patterns of the Australian sleepy lizard (Tiliqua rugosa) during a drought year. We observed 23 adult lizards; six had access to a dam, whereas 17 lizards did not. Lizards with access to the dam had larger home ranges, were substantially active on more days (days with >100 steps), and moved more steps per day compared to lizards that did not have access to the dam, both during the early and late period of our observation. Furthermore, while the two groups of lizards had similar body condition early in the season, they differed later in the season. Lizards with dam access retained, whereas lizards without access lost body condition. Local heterogeneity in access to an artificial water resource resulted in spatially dependent behavioural variation among sleepy lizard individuals. This suggests that sleepy lizards have flexible responses to changing climatic conditions, depending on the availability of water. Furthermore, while reducing activity appears a suitable short term strategy, if harsh conditions persist, then access to dams could be of substantial benefit and could support sustained lizard activity and movement and allow maintenance of body condition. Hence, artificial watering points, such as the dams constructed by pastoralists, may provide local higher quality refugia for sleepy lizards and other species during drought conditions.

  5. On the realism of the re-engineered simple point charge water model

    SciTech Connect

    Chialvo, A.A. |

    1996-04-01

    The realism of the recently proposed high-temperature reparameterization of the simple point charge (SPC) water model [C. D. Berweger, W. F. van Gunsteren, and F. M{umlt u}ller-Plathe, Chem. Phys. Lett. {bold 232}, 429 (1995)] is tested by comparing the simulated microstructure and dielectric properties to the available experimental data. The test indicates that the new parameterization fails dramatically to describe the microstructural and dielectric properties of water at high temperature; it predicts rather strong short-range site{endash}site pair correlations, even stronger than those for water at ambient conditions, and a threefold smaller dielectric constant. Moreover, the resulting microstructure suggests that the high-temperature force-field parameters would predict a twofold higher critical density. The failure of the high-temperature parameterization is analyzed and some suggestions on alternative choices of the target properties for the weak-coupling are discussed. {copyright} {ital 1996 American Institute of Physics.}

  6. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    PubMed

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  7. Thermodynamics of freezing and melting.

    PubMed

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-17

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system.

  8. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  9. Point-of-Use drinking water devices for assessing microbial contamination in finished water and distribution systems.

    PubMed

    Miles, Syreeta L; Gerba, Charles P; Pepper, Ian L; Reynolds, Kelly A

    2009-03-01

    The objective of this study was to develop a method to monitor the microbial quality of treated drinking water at the tap utilizing point-of-use filter systems that are placed in water vending machines. Such vending machines have high-volume water throughput and allow for an evaluation of the occurrence of human enteric pathogens and fecal indicator bacteria in tap water over extended time periods. Seeded experiments, using Escherichia coli and bacteriophage MS-2, were performed on (i) new filters, (ii) artificially aged filters, and (iii) filters that had been used in the field (naturally aged filters) to evaluate the efficiency of recovery of these organisms from the three-component filter set (30 microm, 5 mirom, solid block carbon (SBC)) by evaluating each filter independently. SBC filters had the highest recovery of the organisms, averaging recovery of 27% and 5% for E. coli and MS-2, respectively. Subsequently, tapwatersupplieswere monitored in vending machinesthroughout Southern Arizona using SBC filters as a monitoring tool. A total of 48 filters from 41 unique site locations were surveyed for the presence of total coliforms, E. coli, enterococci, Cryptosporidium, enteroviruses, and noroviruses. Organisms were detected following the passage of large volumes of water ranging from 1000 to 17,000 L through the filters. Out of 48 SBC filters 54.2% were positive for at least one organism. The number of filters positive for total coliforms, E. coli, enterococci, and enterovirus was 13, 5, 19, and 3, respectively, corresponding to 27.1%, 10.4%, 39.6%, and 6.3% of the total filters. No filters were positive for noroviruses or Cryptosporidium. These results suggest that the SBC filter can be used to monitor large volumes of treated drinking water and detect the incidence of indicators and pathogens that may be present at low concentrations. These data show that post-treated water often contains water quality indicator and pathogenic organisms at the tap, and

  10. Inactivation of Kudoa septempunctata in olive flounder meat by liquid freezing.

    PubMed

    Ohnishi, Takahiro; Akuzawa, Sayuri; Furusawa, Hiroko; Yoshinari, Tomoya; Kamata, Yoichi; Sugita-Konishi, Yoshiko

    2014-01-01

    Kudoa septempunctata in olive flounder meat was inactivated using 3 distinct freezing methods:liquid freezing for 5 min, air blast freezing at -30℃ for 5 h, and -80℃ for 1 h. The fracture curve of olive flounder meat subjected to liquid freezing resembled that of meat stored at 4℃, indicating that the structure of olive flounder muscle was well preserved. In contrast, air blast freezing induced the disappearance of the fracture point in the fracture curve, indicating that there was deterioration in the meat quality. Liquid freezing preserved the transparency of olive flounder meat to the same degree as that of meat stored at 4°C. However, air blast freezing induced meat cloudiness. These results indicate that liquid freezing can be used for K. septempunctata inactivation without affecting the meat quality.

  11. Long-term evaluation of the performance of four point-of-use water filters.

    PubMed

    Pérez-Vidal, Andrea; Diaz-Gómez, Jaime; Castellanos-Rozo, Jose; Usaquen-Perilla, Olga Lucía

    2016-07-01

    Despite technological advances water supply quality and poor access to safe water remain a major problem in developing countries, especially in rural areas. Point-of-use (POU) water treatment has been shown to be a viable option to produce safe drinking water quality. The aim of this study was to evaluate, under laboratory conditions over 14 months, the performance of four household filtration systems: membrane filter (MF), one-candle ceramic filter (1CCF), two-candle ceramic filter (2CCF) and pot ceramic filter (PCF). The evaluation was made using spiked water having the required concentrations of turbidity, Escherichia coli and Total Dissolved Solids (TDS). The results show that all systems have high removal efficiencies for turbidity (98-99%), and E. coli 4-5 Log Reduction Value (LRV). The poorest efficiency was for TDS (9-18%). The MF and the CCF displayed no significant difference in efficiencies for these parameters. The PCF had less significant differences for turbidity removal than the other systems. The average filtration rate for all systems decreased during the operation time. The CPF showed the major potential to be used in rural communities mainly for its low operational level and maintenance requirements as well as its local craftsmanship. It was observed that the efficiency of the systems is highly sensitive to cleaning and maintenance activities and therefore, the system sustainability will depend considerably on the training and education of the potential users.

  12. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    PubMed

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  13. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    PubMed

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  14. The Use of Thermowell Bushes at the Triple Point of Water for Improving Repeatability

    NASA Astrophysics Data System (ADS)

    Smith, E.; Machin, G.; Gray, J.; Veltcheva, R.

    2010-09-01

    Water triple point cells are essential for realization of the International Temperature Scale of 1990 (ITS-90). There is some evidence that achieving the ultimate performance of water triple point cells may be restricted by the variation in the position of the platinum resistance thermometer at the bottom of the re-entrant well, and that the variation in position is not completely compensated for by correction to zero measurement sensing current. This comparative study focused on the use of quartz bushes (tubular sleeves around the thermometer) of two different lengths, to improve the thermal contact and to help locate the thermometer. It shows that an improvement in repeatability of the resistance readings was achieved. The experiments were conducted over a five-week period using a standard platinum resistance thermometer, a one water cell, and two different lengths of quartz bushes. The resistance measurements were performed using an Automatic Systems Laboratories F900 resistance bridge. A description of the experiment and results is given. Significant improvement in the repeatability of the measurement of resistance was observed (factor >2) when quartz bushes were used.

  15. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    SciTech Connect

    Miller, S. M.; Xiao, X.; Faber, K. T.

    2015-11-01

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys, and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.

  16. Proposal on a sustainable strategy to avoid point source pollution of water with plant protection products.

    PubMed

    Mestdagh, Inge; Bonicelli, Bernard; Laplana, Ramon; Roettele, Manfred

    2009-01-01

    Based on the results and lessons learned from the TOPPS project (Training the Operators to prevent Pollution from Point Sources), a proposal on a sustainable strategy to avoid point source pollution from Plant Protection Products (PPPs) was made. Within this TOPPS project (2005-2008), stakeholders were interviewed and research and analysis were done in 6 pilot catchment areas (BE, FR, DE, DK, IT, PL). Next, there was a repeated survey on operators' perception and opinion to measure changes resulting from TOPPS activities and good and bad practices were defined based on the Best Management Practices (risk analysis). Aim of the proposal is to suggest a strategy considering the differences between countries which can be implemented on Member State level in order to avoid PPP pollution of water through point sources. The methodology used for the up-scaLing proposal consists of the analysis of the current situation, a gap analysis, a consistency analysis and organisational structures for implementation. The up-scaling proposal focuses on the behaviour of the operators, on the equipment and infrastructure available with the operators. The proposal defines implementation structures to support correct behaviour through the development and updating of Best Management Practices (BMPs) and through the transfer and the implementation of these BMPs. Next, the proposal also defines requirements for the improvement of equipment and infrastructure based on the defined key factors related to point source pollution. It also contains cost estimates for technical and infrastructure upgrades to comply with BMPs.

  17. Cloud point extraction for the spectrophotometric determination of phosphorus(V) in water samples.

    PubMed

    Afkhami, Abbas; Norooz-Asl, Rasoul

    2009-08-15

    A rapid, selective and sensitive cloud point extraction process using the nonionic surfactant, Triton X-114, to extract phosphorus in the form of orthophosphate from aqueous solutions was investigated. The method is based on the color reaction of orthophosphate with molybdate in acidic medium and in the presence of Sb(III) and ascorbic acid, then cloud point extraction of phosphomolybdenum blue in micellar medium. Effects of reaction and extraction parameters were studied and optimum parameters were established. The analytical characteristics of the method (e.g., limit of detection, linear range, relative standard deviation) were obtained. Linearity was obeyed in the range of 1.0-125 ng mL(-1) of P. The detection limit of the method was 0.5 ng mL(-1) of P. The interference effect of some common ions was also tested. The method was applied to the determination of orthophosphate in natural water samples.

  18. Condensation and freezing of droplets on superhydrophobic surfaces.

    PubMed

    Oberli, Linda; Caruso, Dean; Hall, Colin; Fabretto, Manrico; Murphy, Peter J; Evans, Drew

    2014-08-01

    Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface.

  19. Evaluation and Validation of the Messinger Freezing Fraction

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    One of the most important non-dimensional parameters used in ice-accretion modeling and scaling studies is the freezing fraction defined by the heat-balance analysis of Messinger. For fifty years this parameter has been used to indicate how rapidly freezing takes place when super-cooled water strikes a solid body. The value ranges from 0 (no freezing) to 1 (water freezes immediately on impact), and the magnitude has been shown to play a major role in determining the physical appearance of the accreted ice. Because of its importance to ice shape, this parameter and the physics underlying the expressions used to calculate it have been questioned from time to time. Until now, there has been no strong evidence either validating or casting doubt on the current expressions. This paper presents experimental measurements of the leading-edge thickness of a number of ice shapes for a variety of test conditions with nominal freezing fractions from 0.3 to 1.0. From these thickness measurements, experimental freezing fractions were calculated and compared with values found from the Messinger analysis as applied by Ruff. Within the experimental uncertainty of measuring the leading-edge thickness, agreement of the experimental and analytical freezing fraction was very good. It is also shown that values of analytical freezing fraction were entirely consistent with observed ice shapes at and near rime conditions: At an analytical freezing fraction of unity, experimental ice shapes displayed the classic rime shape, while for conditions producing analytical freezing fractions slightly lower than unity, glaze features started to appear.

  20. Point source pollution and variability of nitrate concentrations in water from shallow aquifers

    NASA Astrophysics Data System (ADS)

    Nemčić-Jurec, Jasna; Jazbec, Anamarija

    2016-01-01

    Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations (F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m (F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant (F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.

  1. Point-Source Contributions to the Water Quality of an Urban Stream

    NASA Astrophysics Data System (ADS)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  2. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets.

    PubMed

    Cai, Congxi; Miao, Huiying; Qian, Hongmei; Yao, Leishuan; Wang, Bingliang; Wang, Qiaomei

    2016-11-01

    The effects of industrial pre-freezing processing and freezing handling on the contents of glucosinolates and antioxidants (vitamin C, polyphenols, carotenoid and chlorophyll), as well as the antioxidant capacity in broccoli (Brassica oleracea L. var. italica) florets were investigated in the present study. Our results showed that the glucosinolate accumulations were significantly decreased after pre-freezing processing, whereas elevated levels of phenols, carotenoids, chlorophyll, and also antioxidant capacity were observed in frozen broccoli florets. The contents of vitamin C remained constant during above mentioned processing. In conclusion, the current industrial freezing processing method is a good practice for the preservation of main antioxidant nutrients in broccoli florets, although some improvements in pre-freezing processing, such as steam blanching and ice-water cooling, are needed to attenuate the decrease in glucosinolate content.

  3. Oocyte freezing: here to stay?

    PubMed

    Van der Elst, Josiane

    2003-01-01

    Oocyte freezing is an established technology but, in contrast to embryo freezing, it has very limited application in clinical IVF programmes. Is there a chance that oocyte freezing will become an integrated routine in assisted reproductive technology? The delicate cytological architecture of the oocyte with a cold-sensitive spindle and a hardening zona have made the frozen oocyte 'unwanted' in assisted reproductive technology. Nevertheless, empirical improvements in freezing protocols and the use of ICSI for fertilization have led to an increasing number of live births. This mitigates against a simple ban on oocyte freezing. While efficiency of oocyte freezing can certainly be further improved by basic research, it is clear that there are humanitarian reasons for considering oocyte freezing as a future fully utilized assisted reproductive technology. The storage of the female genome as a particulate entity can provide an alternative in case of moral, ethical, legal or religious concerns about embryo freezing. Oocyte freezing can also offer hope for oocyte donation and preservation of fertility for women facing ovarian loss. The message is one of cautious optimism when looking for a place for oocyte freezing in routine assisted reproductive technology.

  4. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    NASA Astrophysics Data System (ADS)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  5. California State Waters Map Series—Offshore of Pigeon Point, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Watt, Janet T.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-12-15

    Seafloor habitats in the Offshore of Pigeon Point map area lie within the Shelf (continental shelf) megahabitat. Significant rocky outcrops, which support kelp-forest communities in the nearshore and rocky-reef communities in deeper water, dominate the inner shelf waters. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  6. Effective thermostat induced by coarse graining of simple point charge water.

    PubMed

    Eriksson, Anders; Jacobi, Martin Nilsson; Nyström, Johan; Tunstrøm, Kolbjørn

    2008-07-14

    We investigate how the transport properties of a united atom fluid with a dissipative particle dynamics thermostat depend on the functional form and magnitude of both the conservative and the stochastic interactions. We demonstrate how the thermostat strongly affects the hydrodynamics, especially diffusion, viscosity, and local escape times. As model system we use simple point charge (SPC) water, from which projected trajectories are used to determine the effective interactions in the united atom model. The simulation results support our argument that the thermostat should be viewed as an integral part of the coarse-grained dynamics rather than a tool for approaching thermal equilibrium. As our main result we show that the united atom model with the adjusted effective interactions approximately reproduces the diffusion constant and the viscosity of the underlying detailed SPC water model.

  7. Damage Evaluation on Freeze-Thawing Process of Food by Using NMR

    NASA Astrophysics Data System (ADS)

    Andou, Hiroko; Fukuoka, Mika; Miyawaki, Osato; Suzuki, Toru

    Freeze-thawing process gives significant damages for food structure. Several new techniques have been attempted for quantitative evaluation of the damages. In this study, using NMR (nuclear magnetic resonance) with a stimulated echo method, restricted diffusion phenomena of water molecules was measured for damaged food (onion and tuna) tissues that were subjected to the repeat of freeze-thawing, Through experiments, water permeability of tissue membrane was calculated. The water permeability of fresh tissues for onion showed clearly restricted diffusion, but after freeze-thawing, it disappeared. On the other hand, the water permeability of fresh tuna tissue was small significantly, even though it was a little higher after freeze-thawing. After all, the damage level after freeze-thawing showed a significant difference between onion and tuna. These results support the view that plant tissue is very sensitive to freeze-thawing and that the water permeability of plant is much lower than that of animal.

  8. 33 CFR 149.575 - How must objects protruding from the water, other than platforms and single point moorings, be...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How must objects protruding from the water, other than platforms and single point moorings, be marked? 149.575 Section 149.575 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION,...

  9. 33 CFR 149.575 - How must objects protruding from the water, other than platforms and single point moorings, be...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How must objects protruding from the water, other than platforms and single point moorings, be marked? 149.575 Section 149.575 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION,...

  10. 33 CFR 149.575 - How must objects protruding from the water, other than platforms and single point moorings, be...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How must objects protruding from the water, other than platforms and single point moorings, be marked? 149.575 Section 149.575 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION,...

  11. A water quality monitoring network design methodology for the selection of critical sampling points: Part I.

    PubMed

    Strobl, R O; Robillard, P D; Shannon, R D; Day, R L; McDonnell, A J

    2006-01-01

    The principal instrument to temporally and spatially manage water resources is a water quality monitoring network. However, to date in most cases, there is a clear absence of a concise strategy or methodology for designing monitoring networks, especially when deciding upon the placement of sampling stations. Since water quality monitoring networks can be quite costly, it is very important to properly design the monitoring network so that maximum information extraction can be accomplished, which in turn is vital when informing decision-makers. This paper presents the development of a methodology for identifying the critical sampling locations within a watershed. Hence, it embodies the spatial component in the design of a water quality monitoring network by designating the critical stream locations that should ideally be sampled. For illustration purposes, the methodology focuses on a single contaminant, namely total phosphorus, and is applicable to small, upland, predominantly agricultural-forested watersheds. It takes a number of hydrologic, topographic, soils, vegetative, and land use factors into account. In addition, it includes an economic as well as logistical component in order to approximate the number of sampling points required for a given budget and to only consider the logistically accessible stream reaches in the analysis, respectively. The methodology utilizes a geographic information system (GIS), hydrologic simulation model, and fuzzy logic.

  12. Liquid-liquid critical point in a simple analytical model of water

    NASA Astrophysics Data System (ADS)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  13. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment.

    PubMed

    Dankovich, Theresa A; Gray, Derek G

    2011-03-01

    There is an urgent need for cheap point-of-use methods to purify drinking water. We describe a method to deactivate pathogenic bacteria by percolation through a paper sheet containing silver nanoparticles. The silver nanoparticles are deposited by the in situ reduction of silver nitrate on the cellulose fibers of an absorbent blotting paper sheet. The aim is to achieve inactivation of bacteria during percolation through the sheet, rather than removal of bacteria from the effluent by filtration. The silver-nanoparticle containing (AgNP) papers were tested for performance in the laboratory with respect to bacteria inactivation and silver leaching as suspensions of bacteria percolated through the paper. The AgNP sheets exhibited antibacterial properties toward suspensions of Escherichia coli and Enterococcus faecalis, with log reduction values in the effluent of over log 6 and log 3, respectively. The silver loss from the AgNP sheets was minimal, with values under 0.1 ppm (the current US EPA and WHO limit for silver in drinking water). These results show promise that percolation of bacterially contaminated water through paper embedded with silver nanoparticles could be an effective emergency water treatment.

  14. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water.

  15. Atmospheric Pressure Glow Discharge for Point-of-Use Water Treatment

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Byrns, Brandon; Shannon, Steven; Knappe, Detlef

    2012-10-01

    Treatment of biological and chemical contaminants is an area of growing global interest where atmospheric pressure plasmas can make a significant contribution. Addressing key challenges of volume processing and operational cost, a large volume 162 MHz coaxial air-plasma source has been developed.footnotetextByrns (2012) J. Phys. D: Appl. Phys. 45 (2012) 195204 Because of VHF ballasting effects, the electric discharge is maintained at a steady glow, allowing formation of critical non-equilibrium chemistry. High densities, ne = 10^11-10^12, have been recorded. The atmospheric nature of the device permits straightforward and efficient treatment of water samples. [H^+] concentrations in 150 milliliter tap water samples have been shown to increase by 10^5 after five minutes of discharge exposure. Recent literature has demonstrated that increasing acidity is strongly correlated with a solution's ability to deactivate microbial contaminants.footnotetextTraylor (2011) J. Phys. D: Appl. Phys. 44 (2011) 472001 The work presented here will explore the impact of treatment gas, system configuration, and power density on water disinfection and PFC abatement. An array of plasma diagnostics, including OES and electrical measurements, are combined with post-process water analysis, including GC-MS and QT analysis of coliform and E.coli bacteria. Development of volume processing atmospheric plasma disinfection methods offers promise for point-of-use treatments in developing areas of the world, potentially supplementing or replacing supply and weather-dependent disinfection methods.

  16. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens.

    PubMed

    Choat, Brendan; Medek, Danielle E; Stuart, Stephanie A; Pasquet-Kok, Jessica; Egerton, John J G; Salari, Hooman; Sack, Lawren; Ball, Marilyn C

    2011-09-01

    Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.

  17. Did Water Leave Its Mark on Mars?

    ERIC Educational Resources Information Center

    Secosky, James J.

    1989-01-01

    Discusses the missing water on Mars. Describes five experiments simulating conditions on Mars: (1) behavior of dry ice; (2) low-pressure vacuum; (3) freezing point depression; (4) water in hydrated minerals and clay; and (5) properties of carbon dioxide. (YP)

  18. Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology.

    PubMed

    Brownell, Sarah A; Chakrabarti, Alicia R; Kaser, Forest M; Connelly, Lloyd G; Peletz, Rachel L; Reygadas, Fermin; Lang, Micah J; Kammen, Daniel M; Nelson, Kara L

    2008-03-01

    We describe a point-of-use (POU) ultraviolet (UV) disinfection technology, the UV Tube, which can be made with locally available resources around the world for under $50 US. Laboratory and field studies were conducted to characterize the UV Tube's performance when treating a flowrate of 5 L/min. Based on biological assays with MS2 coliphage, the UV Tube delivered an average fluence of 900+/-80 J/m(2) (95% CI) in water with an absorption coefficient of 0.01 cm(-1). The residence time distribution in the UV Tube was characterized as plug flow with dispersion (Peclet Number = 19.7) and a mean hydraulic residence time of 36 s. Undesirable compounds were leached or produced from UV Tubes constructed with unlined ABS, PVC, or a galvanized steel liner. Lining the PVC pipe with stainless steel, however, prevented production of regulated halogenated organics. A small field study in two rural communities in Baja California Sur demonstrated that the UV Tube reduced E. coli concentrations to less than 1/100 ml in 65 out of 70 samples. Based on these results, we conclude that the UV Tube is a promising technology for treating household drinking water at the point of use.

  19. Freezing of polar stratospheric clouds in orographically induced strong warming events

    NASA Astrophysics Data System (ADS)

    Tsias, A.; Prenni, A. J.; Carslaw, K. S.; Onasch, T. P.; Luo, B. P.; Tolbert, M. A.; Peter, Th.

    1997-09-01

    Results from laboratory experiments and microphysical modeling are presented that suggest a potential freezing nucleation mechanism for polar stratospheric cloud (PSC) particles above the water ice frost point (Tice). The mechanism requires very high HNO3 concentrations of about 58 wt% in the droplets, and leads to the freezing of nitric acid dihydrate (NAD) in a highly selective manner in the smallest droplets of an ensemble. In the stratosphere such liquid compositions are predicted to occur in aerosol droplets which are warmed adiabatically with rates of about +150 K/h from below 190 K to 194 K. Such rapid temperature changes have been observed in mountain leewaves that occur frequently in the stratosphere, clearly demonstrating the need for a stratospheric gravity wave climatology.

  20. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.

    PubMed

    Boinovich, Ludmila; Emelyanenko, Alexandre M; Korolev, Vadim V; Pashinin, Andrei S

    2014-02-18

    An increasing number of studies directed at supercooling water droplets on surfaces with different wettabilities have appeared in recent years. This activity has been stimulated by the recognition that water supercooling phenomena can be effectively used to develop methods for protecting outdoor equipment and infrastructure elements against icing and snow accretion. In this article, we discuss the nucleation kinetics of supercooled sessile water droplets on hydrophilic, hydrophobic, and superhydrophobic surfaces under isothermal conditions at temperatures of -8, -10, and -15 °C and a saturated water vapor atmosphere. The statistics of nucleation events for the ensembles of freezing sessile droplets is completed by the detailed analysis of the contact angle temperature dependence and freezing of individual droplets in a saturated vapor atmosphere. We have demonstrated that the most essential freezing delay is characteristic of the superhydrophobic coating on aluminum, with the texture resistant to contact with ice and water. This delay can reach many hours at T = -8 °C and a few minutes at -23 °C. The observed behavior is analyzed on the basis of different nucleation mechanisms. The dissimilarity in the total nucleation rate, detected for two superhydrophobic substrates having the same apparent contact angle of the water drop but different resistivities of surface texture to the contact with water/ice, is associated with the contribution of heterogeneous nucleation on external centers located at the water droplet/air interface.

  1. A diffusive anomaly of water in aqueous sodium chloride solutions at low temperatures.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-02-14

    Molecular dynamics simulations are presented for the self-diffusion coefficient of water in aqueous sodium chloride solutions. At temperatures above the freezing point of pure water, the self-diffusion coefficient is a monotonically decreasing function of salt concentration. Below the freezing point of pure water, however, the self-diffusion coefficient is a non-monotonic function of salt concentration, showing a maximum at approximately one molal salt. This suggests that sodium chloride, which is considered a structure-making salt at room temperature, becomes a structure-breaking salt at low temperatures. A qualitative understanding of this effect can be obtained by considering the effect of ions on the residence time of water molecules near other water molecules. A consideration of the freezing point depression of aqueous sodium chloride solutions suggests that the self-diffusion coefficient of water in supercooled sodium chloride solutions is always higher than that in pure (supercooled) water at the same temperature.

  2. Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited.

    PubMed

    Benson, James D; Bagchi, Aniruddha; Han, Xu; Critser, John K; Woods, Erik J

    2010-12-01

    Partial phase diagrams are of considerable utility in the development of optimized cryobiological procedures. Recent theoretical predictions of the melting points of ternary solutions of interest to cryobiology have caused us to re-examine measurements that our group made for the ethylene-glycol-sodium chloride-water phase diagram. Here we revisit our previous experiments by measuring melting points at five ethylene-glycol to sodium chloride ratios (R values; R=5, 10, 15, 30, and 45) and five levels of concentration for each ratio. Melting points were averaged from three measurements and plotted as a function of total solute concentration for each R value studied. The new measurements differed from our original experimental values and agreed with predicted values from both theoretical models. Additionally, the data were fit to the polynomial described in our previous report and the resulting equation was obtained: T(m) = (38.3-2.145 x 10⁻¹ R)w + (81.19 - 2.909×10⁻¹ R)w², where w is the total solute mass fraction. This new equation provided good fits to the experimental data as well as published values and relates the determined polynomial constants to the R value of the corresponding isopleths of the three dimensional phase diagram, allowing the liquids curve for any R value to be obtained.

  3. Dynamic response analysis of the equivalent water depth truncated point of the catenary mooring line

    NASA Astrophysics Data System (ADS)

    Zhang, Huo-ming; Kong, Ling-bin; Guan, Wei-bing; Huang, Sai-hua; Fang, Gui-sheng

    2017-03-01

    The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.

  4. Study of the ST2 model of water close to the liquid-liquid critical point.

    PubMed

    Sciortino, Francesco; Saika-Voivod, Ivan; Poole, Peter H

    2011-11-28

    We perform successive umbrella sampling grand canonical Monte Carlo computer simulations of the original ST2 model of water in the vicinity of the proposed liquid-liquid critical point, at temperatures above and below the critical temperature. Our results support the previous work of Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti [J. Chem. Phys., 2009, 131, 104508], who provided evidence for the existence and location of the critical point for ST2 using the Ewald method to evaluate the long-range forces. Our results therefore demonstrate the robustness of the evidence for critical behavior with respect to the treatment of the electrostatic interactions. In addition, we verify that the liquid is equilibrated at all densities on the Monte Carlo time scale of our simulations, and also that there is no indication of crystal formation during our runs. These findings demonstrate that the processes of liquid-state relaxation and crystal nucleation are well separated in time. Therefore, the bimodal shape of the density of states, and hence the critical point itself, is a purely liquid-state phenomenon that is distinct from the crystal-liquid transition.

  5. Freezing of Nonwoody Plant Tissue

    PubMed Central

    Brown, M. S.; Pereira, E. Sa B.; Finkle, Bernard J.

    1974-01-01

    Temperature recordings of the freezing of plant tissues include two plateaus or regions of reduced slope. During the second of these, small positive spikes were observed. When a completely frozen tissue was thawed and refrozen, neither the second plateau nor the spikes were recorded. Both were present, however, if the initial freezing had been terminated before the second plateau had been reached. The spikes appear to represent the release of heat of crystallization during the freezing of individual cells. Such a freezing and thawing cycle destroys the ability of the cells to remain supercooled in the presence of the ice that is formed as the first plateau is recorded. PMID:16658774

  6. Wastewater treatment by radial freezing with stirring effects.

    PubMed

    Gay, Guillaume; Lorain, Olivier; Azouni, Aza; Aurelle, Yves

    2003-05-01

    Radial freezing experiments on wastewater models were conducted in the presence of imposed stirring in order to remove impurities. The studied samples (dilute Na-montmorillonite suspensions charged with nitrates and with zinc or lead) were placed inside a cylindrical annulus, cooled at a controlled temperature around -7 degrees C at its inner wall which rotated around a vertical axis. The freezing front propagated toward the still outer wall which was maintained at a constant temperature around +1 degrees C. Thanks to stirring, considerable purification rates up to 99.97% were attained. It was also demonstrated that combining radial freezing and stirring ended in residual concentrations which agreed with drinking water standards.

  7. PEM Fuel Cell Freeze Durability and Cold Start Project

    SciTech Connect

    Patterson, T.; O'Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  8. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point.

    PubMed

    Hu, Baichuan; Baird, James K

    2010-01-14

    The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.

  9. Quality Evaluation of Pork with Various Freezing and Thawing Methods.

    PubMed

    Ku, Su Kyung; Jeong, Ji Yun; Park, Jong Dae; Jeon, Ki Hong; Kim, Eun Mi; Kim, Young Boong

    2014-01-01

    In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at -45℃ or electro-magnetic freezing at -55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples.

  10. Different freezing behavior of millimeter- and micrometer-scaled (NH₄)₂SO₄/H₂O droplets.

    PubMed

    Bogdan, A; Molina, M J; Tenhu, H; Mayer, E; Bertel, E; Loerting, T

    2011-01-26

    Although the freezing of aqueous solutions is important for nature and different branches of science and freeze-applications, our understanding of the freezing process is not complete. For example, numerous measurements of micrometer-scaled (NH(4))(2)SO(4)/H(2)O droplets report one freezing event below the eutectic point. However, measurements of larger millimeter-scaled droplets reveal two freezing events: the freezing out of ice and subsequent freezing of a residual freeze-concentrated solution. To resolve this apparent contradiction we performed numerous calorimetric measurements which indicate that the freezing of a residual solution of millimeter-scaled 5-38 wt% (NH(4))(2)SO(4) droplets occurs mainly between ∼ 210 and 225 K. We also find that micrometer-scaled droplets produce one freezing event which is within or in the vicinity of the ∼ 210-225 K region. This fact and the analysis of thermograms suggest that the residual solution of micrometer-scaled droplets may partly crystallize simultaneously with ice and partly transform to glass at T(g)≈172 K. Our results suggest for the first time that the size of (NH(4))(2)SO(4)/H(2)O droplets may affect the number of freezing events below the eutectic point.

  11. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    PubMed Central

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  12. Freeze-Dried Human Red Blood Cells

    DTIC Science & Technology

    1992-04-15

    freeze-dried and rehydrated blood cells will be made radioactive with " chromium and infused into my other arm through a hypodermic needle . No more than...directed at: (1) development of buffer formulations based on the glass transition and water replacement theory : (2) establishing standard...survival of transfused red blood cells. The labelled RBC were infused through a 20 gauge needle into the volunteer via a scalp vein in the right arm

  13. An update on the uncertainties of water vapor measurements using cryogenic frost point hygrometers

    NASA Astrophysics Data System (ADS)

    Vömel, Holger; Naebert, Tatjana; Dirksen, Ruud; Sommer, Michael

    2016-08-01

    Long time series of observations of essential climate variables in the troposphere and stratosphere are often impacted by inconsistencies in instrumentation and ambiguities in the interpretation of the data. To reduce these problems of long-term data series, all measurements should include an estimate of their uncertainty and a description of their sources. Here we present an update of the uncertainties for tropospheric and stratospheric water vapor observations using the cryogenic frost point hygrometer (CFH). The largest source of measurement uncertainty is the controller stability, which is discussed here in detail. We describe a method to quantify this uncertainty for each profile based on the measurements. We also show the importance of a manufacturer-independent ground check, which is an essential tool to continuously monitor the uncertainty introduced by instrument variability. A small bias, which has previously been indicated in lower tropospheric measurements, is described here in detail and has been rectified. Under good conditions, the total from all sources of uncertainty of frost point or dew point measurements using the CFH can be better than 0.2 K. Systematic errors, which are most likely to impact long-term climate series, are verified to be less than 0.1 K. The impact of the radiosonde pressure uncertainty on the mixing ratio for properly processed radiosondes is considered small. The mixing ratio uncertainty may be as low as 2 to 3 %. The impact of the ambient temperature uncertainty on relative humidity (RH) is generally larger than that of the frost point uncertainty. The relative RH uncertainty may be as low as 2 % in the lower troposphere and 5 % in the tropical tropopause region.

  14. Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities.

    PubMed

    Barstow, Christina K; Dotson, Aaron D; Linden, Karl G

    2014-12-01

    Residents of urban developing communities often have a tap in their home providing treated and sometimes filtered water but its microbial quality cannot be guaranteed. Point-of-use (POU) disinfection systems can provide safe drinking water to the millions who lack access to clean water in urban communities. While many POU systems exist, there are several concerns that can lead to low user acceptability, including low flow rate, taste and odor issues, high cost, recontamination, and ineffectiveness at treating common pathogens. An ultraviolet (UV) POU system was constructed utilizing developing community-appropriate materials and simple construction techniques based around an inexpensive low-wattage, low pressure UV bulb. The system was tested at the bench scale to characterize its hydrodynamic properties and microbial disinfection efficacy. Hydraulically the system most closely resembled a plug flow reactor with minor short-circuiting. The system was challenge tested and validated for a UV fluence of 50 mJ/cm(2) and greater, over varying flow rates and UV transmittances, corresponding to a greater than 4 log reduction of most pathogenic bacteria, viruses, and protozoa of public health concern. This study presents the designed system and testing results to demonstrate the potential architecture of a low-cost, open-source UV system for further prototyping and field-testing.

  15. Incorporation of copper nanoparticles into paper for point-of-use water purification

    PubMed Central

    Smith, James A.

    2014-01-01

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 minutes and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). PMID:25014431

  16. Incorporation of copper nanoparticles into paper for point-of-use water purification.

    PubMed

    Dankovich, Theresa A; Smith, James A

    2014-10-15

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm).

  17. Microbial Diversity of Source and Point-of-Use Water in Rural Haiti – A Pyrosequencing-Based Metagenomic Survey

    PubMed Central

    Mukherjee, Nabanita; Bartelli, Debra; Patra, Cyril; Chauhan, Bhavin V.; Dowd, Scot E.

    2016-01-01

    Haiti endures the poorest water and sanitation infrastructure in the Western Hemisphere, where waterborne diseases cause significant morbidity and mortality. Most of these diseases are reported to be caused by waterborne pathogens. In this study, we examined the overall bacterial diversity of selected source and point-of-use water from rural areas in Central Plateau, Haiti using pyrosequencing of 16s rRNA genes. Taxonomic composition of water samples revealed an abundance of Firmicutes phyla, followed by Proteobacteria and Bacteroidetes. A total of 38 bacterial families and 60 genera were identified. The presence of several Klebsiella spp. (tentatively, K. pneumoniae, K. variicola and other Klebsiella spp.) was detected in most water samples. Several other human pathogens such as Aeromonas, Bacillus, Clostridium, and Yersinia constituted significantly higher proportion of bacterial communities in the point-of-use water samples compared to source water. Bacterial genera traditionally associated with biofilm formation, such as Chryseobacterium, Fusobacterium, Prevotella, Pseudomonas were found in the point-of-use waters obtained from water filters or domestic water storage containers. Although the pyrosequencing method utilized in this study did not reveal the viability status of these pathogens, the abundance of genetic footprints of the pathogens in water samples indicate the probable risk of bacterial transmission to humans. Therefore, the importance of appropriate handling, purification, and treatment of the source water needed to be clearly communicated to the communities in rural Haiti to ensure the water is safe for their daily use and intake. PMID:27936055

  18. Biomaterials by freeze casting.

    PubMed

    Wegst, Ulrike G K; Schecter, Matthew; Donius, Amalie E; Hunger, Philipp M

    2010-04-28

    The functional requirements for synthetic tissue substitutes appear deceptively simple: they should provide a porous matrix with interconnecting porosity and surface properties that promote rapid tissue ingrowth; at the same time, they should possess sufficient stiffness, strength and toughness to prevent crushing under physiological loads until full integration and healing are reached. Despite extensive efforts and first encouraging results, current biomaterials for tissue regeneration tend to suffer common limitations: insufficient tissue-material interaction and an inherent lack of strength and toughness associated with porosity. The challenge persists to synthesize materials that mimic both structure and mechanical performance of the natural tissue and permit strong tissue-implant interfaces to be formed. In the case of bone substitute materials, for example, the goal is to engineer high-performance composites with effective properties that, similar to natural mineralized tissue, exceed by orders of magnitude the properties of its constituents. It is still difficult with current technology to emulate in synthetic biomaterials multi-level hierarchical composite structures that are thought to be the origin of the observed mechanical property amplification in biological materials. Freeze casting permits to manufacture such complex, hybrid materials through excellent control of structural and mechanical properties. As a processing technique for the manufacture of biomaterials, freeze casting therefore has great promise.

  19. Studies on Freezing RAM Semen in Absence of Glycerol.

    NASA Astrophysics Data System (ADS)

    Abdelnaby, Abdelhady Abdelhakeam

    1988-12-01

    Glycerol is widely used as a major cryoprotective agent for freezing spermatozoa of almost all species. However, it reduces fertility of sheep inseminated cervically compared with intrauterine insemination. Studies were conducted to develop a method and procedure for freezing ram semen in the absence of glycerol. Post -thaw survival of ram spermatozoa frozen in the absence of glycerol was affected by time and temperature after collection and before dilution and time after dilution and before freezing. Increase in time at 5^ circC before or after dilution and before freezing increased both post-thaw motility and number of cells passing through Sephadex filter. A cold dilution method was developed. Slow cooling of fresh ram semen and diluting at 5^circ C 2-3 hr. after collection, then freezing 1 hr. after dilution improved both post-thaw motility and number of cells passing through Sephadex filter compared with immediate dilution at 30-37^circC after collection and freezing 3-4 hr. later (P < 0.05). An extender was developed to freeze ram semen in the absence of glycerol. An increase in post-thaw motility was obtained when semen was extended in TES titrated with Tris to pH 7.0 (TEST) and osmotic pressure of 375-400 mOsm/kg, containing 25-30% (v/v) egg yolk and 10% (v/v) maltose. A special device (boat) for freezing was constructed to insure the same height of the sample above LN _2 and thus the same freezing rate from freeze to freeze. Freezing of semen in 0.25cc straws at 5-10 cm above LN_2 (73.8 to 49.5 ^circC/min) yielded higher post-thaw motility than the rates resulted from freezing at 15 cm above LN_2 or 1 cm above LN _2. Faster Thawing in 37^ circC water for 30 sec. (7.8^ circC/sec.) increased post-thaw motility compared with slower thawing in 5 or 20^circ C water (P < 0.05). A lambing rate of 52.2% was obtained in one fertility trial conducted with ram semen frozen without glycerol and 17.1% in a second trial. One injection (IM) of 15 mg PGF_{2alpha}/ewe for

  20. Freeze for action: neurobiological mechanisms in animal and human freezing

    PubMed Central

    2017-01-01

    Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions are associated with sympathetically driven heart rate acceleration. Despite the potential relevance of freezing for human stress-coping, its phenomenology and neurobiological underpinnings remain largely unexplored in humans. Studies in rodents have shown that freezing depends on amygdala projections to the brainstem (periaqueductal grey). Recent neuroimaging studies in humans have indicated that similar brain regions may be involved in human freezing. In addition, flexibly shifting between freezing and active defensive modes is critical for adequate stress-coping and relies on fronto-amygdala connections. This review paper presents a model detailing these neural mechanisms involved in freezing and the shift to fight-or-flight action. Freezing is not a passive state but rather a parasympathetic brake on the motor system, relevant to perception and action preparation. Study of these defensive responses in humans may advance insights into human stress-related psychopathologies characterized by rigidity in behavioural stress reactions. The paper therefore concludes with a research agenda to stimulate translational animal–human research in this emerging field of human defensive stress responses. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242739

  1. Performance Characteristics of an Isothermal Freeze Valve

    SciTech Connect

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  2. Freezing-induced deformation of biomaterials in cryomedicine

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  3. Semi-Lagrangian integration of a grid-point shallow water model on the sphere

    NASA Technical Reports Server (NTRS)

    Mcdonald, A.; Bates, J. R.

    1988-01-01

    This paper describes a semi-Lagrangian technique for integrating the equations of motion on the global domain. The technique uses an auxiliary spherical coordinate system at each near-polar gridpoint of the latitude-longitude grid; the auxiliary system is obtained by a rotation such that the new equator passes through the gridpoint in question and the new coordinate directions coincide with those of the original system at that point. The technique was applied to the shallow water equations, incorporating a semiimplicit treatment of the adjustment terms on a C-grid, with two-time levels. A five day integration was successfully carried out for a situation involving strong cross-polar flow. No filtering or diffusion was required to maintain stability over a five day period.

  4. Calculation of electron Dose Point Kernel in water with GEANT4 for medical application

    SciTech Connect

    Guimaraes, C. C.; Sene, F. F.; Martinelli, J. R.

    2009-06-03

    The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4 - Low Energy, Penelope and Standard - were employed. To verify the adequacy of these models, the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.

  5. FREEZING WEATHER IN PENINSULAR FLORIDA,

    DTIC Science & Technology

    The synoptic situations which bring serious freezing weather to the Florida Peninsula are discussed generally by presenting various weather charts...scheme is presented which might permanently eliminate serious freezing in the Florida Peninsula. Before any solution can be reached, it t necessary to be

  6. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    NASA Astrophysics Data System (ADS)

    Marcolli, C.

    2013-06-01

    , these will condense preferentially in pores before a coating on the surface of the particles is formed. A pore partially filled with condensed species attracts water at lower RHw than an empty pore, but the aqueous solution that forms in the pore will freeze at a higher RHi than pure water. The ice nucleation ability of pores completely filled with condensed organic species might be totally impeded. Pores might also be important for preactivation, the capability of a particle to nucleate ice at lower RHi in subsequent experiments when compared to the first initial ice nucleation event. Preactivation has often been explained by persistence of ice embryos at specific sites like dislocations, steps, kinks or pores. However, it is not clear how such features can preserve an ice embryo at RHi < 100%. Rather, ice embryos could be preserved when embedded in water. To keep liquid water at RHw well below 100%, narrow pores are needed but to avoid a strong melting point depression large pores are favorable. A narrow pore opening and a large inner volume are combined in "ink bottle" pores. Such "ink bottle" pores would be suited to preserve ice at RHi < 100% and can arise e.g. in spaces between aggregated particles.

  7. Evaluation of pedotransfer functions for estimating the soil water retention points

    NASA Astrophysics Data System (ADS)

    Bahmani, Omid; Palangi, Sahar

    2016-06-01

    Direct measurement of soil moisture has been often expensive and time-consuming. The aim of this study was determining the best method to estimate the soil moisture using the pedotransfer functions in the soil par2 model. Soil samples selected from the database UNSODA in three textures include sandy loam, silty loam and clay. In clay soil, the Campbell model indicated better results at field capacity (FC) and wilting point (WP) with RMSE = (0.06, 0.09) and d = (0.65, 0.55) respectively. In silty loam soil, the Epic model had accurate estimation with MBE = 0.00 at FC and Campbell model had the acceptable result of WP with RMSE = 0.03 and d = 0.77. In sandy loam, Hutson and Campbell models had a better result to estimation the FC and WP than others. Also Hutson model had an acceptable result to estimation the TAW (Total Available Water) with RMSE = (0.03, 0.04, 0.04) and MBE = (0.02, 0.01, 0.01) for clay, sandy loam and silty loam, respectively. These models demonstrate the moisture points had the internal linkage with the soil textures. Results indicated that the PTFs models simulate the agreement results with the experimental observations.

  8. Freezing of stratospheric aerosol droplets

    NASA Astrophysics Data System (ADS)

    Luo, Beiping; Peter, Thomas; Crutzen, Paul

    Theoretical calculations are presented for homogeneous and heterogeneous freezing of sulfuric acid droplets under stratospheric conditions, based on classical nucleation theory. In contrast to previous results it is shown that a prominent candidate for freezing, sulfuric acid tetrahydrate (SAT ≡ H2SO4·4H2O), does not freeze homogeneously. The theoretical results limit the homogeneous freezing rate at 200 K to much less than 1 cm-3s-1, a value that may be estimated from bulk phase laboratory experiments. This suggests that the experimental value is likely to be a measure of heterogeneous, not homogeneous nucleation. Thus, under statospheric conditions, freezing of SAT can only occur in the presence of suitable nuclei; however, even for heterogeneous nucleation experimental results impose strong constraints. Since a nitric acid trihydrate (NAT) embryo probably needs a solid body for nucleation, these results put an important constraint on the theory of NAT formation in polar stratospheric clouds.

  9. Dynamics of protein hydration water.

    PubMed

    Wolf, M; Emmert, S; Gulich, R; Lunkenheimer, P; Loidl, A

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water.

  10. Universal freezing of asymmetry

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Jian; Yu, Xiao-Dong; Huang, Hua-Lin; Tong, D. M.

    2017-02-01

    Asymmetry of quantum states is a useful resource in applications such as quantum metrology, quantum communication, and reference frame alignment. However, asymmetry of a state tends to be degraded in physical scenarios where environment-induced noise is described by covariant operations, e.g., open systems constrained by superselection rules, and such degradations weaken the abilities of the state to implement quantum information processing tasks. In this paper, we investigate under which dynamical conditions asymmetry of a state is totally unaffected by the noise described by covariant operations. We find that all asymmetry measures are frozen for a state under a covariant operation if and only if the relative entropy of asymmetry is frozen for the state. Our finding reveals the existence of universal freezing of asymmetry, and provides a necessary and sufficient condition under which asymmetry is totally unaffected by the noise.

  11. California State Waters Map Series: offshore of Coal Oil Point, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Dieter, Bryan E.; Conrad, James E.; Lorenson, T.D.; Krigsman, Lisa M.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Finlayson, David P.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Leifer, Ira; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Hostettler, Frances D.; Peters, Kenneth E.; Kvenvolden, Keith A.; Rosenbauer, Robert J.; Fong, Grace; Johnson, Samuel Y.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Coal Oil Point map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.0 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The cities of Goleta and Isla Vista, the main population centers in the map area, are in the western part of a contiguous urban area that extends eastward through Santa Barbara to Carpinteria. This urban area is on the south flank of the east-west-trending Santa Ynez Mountains, on coalescing alluvial fans and uplifted marine terraces underlain by folded and

  12. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.

    PubMed

    Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele

    2016-06-16

    One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.

  13. Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky

    NASA Technical Reports Server (NTRS)

    Mims, Forrest M., III; Chambers, Lin H.; Brooks, David R.

    2011-01-01

    A 2-year study affirms that the temperature (Tz) indicated by an inexpensive ($20 to $60) IR thermometer pointed at the cloud-free zenith sky provides an approximate indication of the total column water vapor (precipitable water or PW). PW was measured by a MICROTOPS II sun photometer. The coefficient of correlation (r2) of the PW and Tz was 0.90, and the rms difference was 3.2 mm. A comparison of the Tz data with the PW provided by a GPS site 31 km NNE yielded an r2 of 0.79, and an rms difference of 5.8 mm. An expanded study compared Tz from eight IR thermometers with PW at various times during the day and night from 17 May to 18 October 2010, mainly at the Texas site and 10 days at Hawaii's Mauna Loa Observatory (MLO). The best results of this comparison were provided by two IR thermometers models that yielded an r2 of 0.96 and an rms difference with the PW of 2.7 mm. The results of both the ongoing 2-year study and the 5-month instrument comparison show that IR thermometers can measure PW with an accuracy (rms difference/mean PW) approaching 10%, the accuracy typically ascribed to sun photometers.

  14. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  15. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  16. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  17. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  18. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  19. Allometry of cooling, supercooling, and freezing in the freeze-tolerant turtle Chrysemys picta.

    PubMed

    Claussen, D L; Zani, P A

    1991-09-01

    Although several vertebrates are freeze tolerant, little is known of the relationship between body size and the kinetics of cooling and freezing. We compared these responses for six hatchling and eight adult Chrysemys picta from an Ohio population. All turtles initially recovered from freezing, and all adults, but only two hatchlings (which experienced ice contents of approximately 35%), exhibited long-term survival. Rapid thawing may have compromised hatchling survival. Turtle water content was inversely related to body mass, but we found no significant correlation between the extent of supercooling and body size. Prefreezing and postfreezing cooling rates scaled with body mass to the -0.55 and -0.40 power, respectively, but the latter rate was more than two orders of magnitude slower. Theoretical (assuming 20% bound water) and calorimetric estimates of body ice agreed reasonably well. Ice contents were both body mass and time dependent. The absolute rate of ice formation scaled with body mass to the 0.4 power. Body size strongly influences the freezing response of ectotherms and deserves more attention.

  20. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  1. Role of cells in freezing-induced cell-fluid-matrix interactions within engineered tissues.

    PubMed

    Seawright, Angela; Ozcelikkale, Altug; Dutton, Craig; Han, Bumsoo

    2013-09-01

    During cryopreservation, ice forms in the extracellular space resulting in freezing-induced deformation of the tissue, which can be detrimental to the extracellular matrix (ECM) microstructure. Meanwhile, cells dehydrate through an osmotically driven process as the intracellular water is transported to the extracellular space, increasing the volume of fluid for freezing. Therefore, this study examines the effects of cellular presence on tissue deformation and investigates the significance of intracellular water transport and cell-ECM interactions in freezing-induced cell-fluid-matrix interactions. Freezing-induced deformation characteristics were examined through cell image deformetry (CID) measurements of collagenous engineered tissues embedded with different concentrations of MCF7 breast cancer cells versus microspheres as their osmotically inactive counterparts. Additionally, the development of a biophysical model relates the freezing-induced expansion of the tissue due to the cellular water transport and the extracellular freezing thermodynamics for further verification. The magnitude of the freezing-induced dilatation was found to be not affected by the cellular water transport for the cell concentrations considered; however, the deformation patterns for different cell concentrations were different suggesting that cell-matrix interactions may have an effect. It was, therefore, determined that intracellular water transport during freezing was insignificant at the current experimental cell concentrations; however, it may be significant at concentrations similar to native tissue. Finally, the cell-matrix interactions provided mechanical support on the ECM to minimize the expansion regions in the tissues during freezing.

  2. A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines?

    PubMed

    Murphy, Heather M; McBean, Edward A; Farahbakhsh, Khosrow

    2010-12-01

    Point-of-use (POU) technologies have been proposed as solutions for meeting the Millennium Development Goal (MDG) for safe water. They reduce the risk of contamination between the water source and the home, by providing treatment at the household level. This study examined two POU technologies commonly used around the world: BioSand and ceramic filters. While the health benefits in terms of diarrhoeal disease reduction have been fairly well documented for both technologies, little research has focused on the ability of these technologies to treat other contaminants that pose health concerns, including the potential for formation of contaminants as a result of POU treatment. These technologies have not been rigorously tested to see if they meet World Health Organization (WHO) drinking water guidelines. A study was developed to evaluate POU BioSand and ceramic filters in terms of microbiological and chemical quality of the treated water. The following parameters were monitored on filters in rural Cambodia over a six-month period: iron, manganese, fluoride, nitrate, nitrite and Escherichia coli. The results revealed that these technologies are not capable of consistently meeting all of the WHO drinking water guidelines for these parameters.

  3. Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis).

    PubMed

    Dorostkar, Kamran; Alavi-Shoushtari, Sayed Mortaza; Mokarizadeh, Aram

    2012-01-01

    The aim of the present study was to investigate the effect of in vitro supplementation of selenium on fresh and frozen spermatozoa quality of buffalo (Bubalus bubalis) bulls. Five healthy buffalo bulls (5 ejaculates from each bull) were used. Each ejaculate was diluted at 37 ˚C with tris-based extender containing 0 (control), 0.5, 1, 2, 4 and 8 µg mL(-1) sodium selenite and the sperm motility and viability were evaluated at 0 (T0) (immediately after dilution), 60 (T1) and 120 (T2) min after diluting semen. In the second step, semen samples were diluted with tris-egg yolk-glycerol extender containing the same amounts of sodium selenite, cooled to 4 ˚C, equilibrated and semen parameters (motility, viability, membrane integrity and DNA damage) were estimated. Then, the semen was packed in 0.5 mL French straws and frozen in liquid nitrogen. Later, the semen was thawed and analyzed for the same parameters, as well as total antioxidant capacity. Results showed that addition of 1 and 2 µgmL(-1) selenium to the semen extender significantly increased the sperm motility of fresh and equilibrated semen compared to the control without affecting other parameters. However, in frozen-thawed semen, extenders containing 1 and 2 µg mL(-1) selenium significantly improved sperm motility, viability, membrane integrity and semen total antioxidant capacity and also resulted in lower DNA damaged sperms. In this study selenium supplementation of semen extender of 4 and 8 µg mL(-1) had deleterious effects on sperm parameters as early as the samples were prepared for freezing.

  4. Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis)

    PubMed Central

    Dorostkar, Kamran; Alavi-Shoushtari, Sayed Mortaza; Mokarizadeh, Aram

    2012-01-01

    The aim of the present study was to investigate the effect of in vitro supplementation of selenium on fresh and frozen spermatozoa quality of buffalo (Bubalus bubalis) bulls. Five healthy buffalo bulls (5 ejaculates from each bull) were used. Each ejaculate was diluted at 37 ˚C with tris-based extender containing 0 (control), 0.5, 1, 2, 4 and 8 µg mL-1 sodium selenite and the sperm motility and viability were evaluated at 0 (T0) (immediately after dilution), 60 (T1) and 120 (T2) min after diluting semen. In the second step, semen samples were diluted with tris-egg yolk-glycerol extender containing the same amounts of sodium selenite, cooled to 4 ˚C, equilibrated and semen parameters (motility, viability, membrane integrity and DNA damage) were estimated. Then, the semen was packed in 0.5 mL French straws and frozen in liquid nitrogen. Later, the semen was thawed and analyzed for the same parameters, as well as total antioxidant capacity. Results showed that addition of 1 and 2 µgmL-1 selenium to the semen extender significantly increased the sperm motility of fresh and equilibrated semen compared to the control without affecting other parameters. However, in frozen-thawed semen, extenders containing 1 and 2 µg mL-1 selenium significantly improved sperm motility, viability, membrane integrity and semen total antioxidant capacity and also resulted in lower DNA damaged sperms. In this study selenium supplementation of semen extender of 4 and 8 µg mL-1 had deleterious effects on sperm parameters as early as the samples were prepared for freezing. PMID:25653769

  5. A chemical test of the principle of critical point universality: The solubility of nickel (II) oxide in isobutyric acid + water near the consolute point

    NASA Astrophysics Data System (ADS)

    Hu, Baichuan; Baird, James K.; Richey, Randi D.; Reddy, Ramana G.

    2011-04-01

    A mixture of isobutyric acid + water has an upper consolute point at 38.8 mass % isobutyric acid and temperature near 26 °C. Nickel (II) oxide dissolves in this mixture by reacting with the acid to produce water and nickel isobutyrate. The solubility of nickel (II) oxide in isobutyric acid + water has been measured as a function of temperature at compositions, 25, 38.8, and 60 mass % isobutyric acid. For values of the temperature, T, which were at least 2 K in excess of the liquid-liquid phase transition temperature, the measured values of the solubility, s, lie on a straight line when plotted in van't Hoff form with ln s versus 1/T. The slope, (∂ln s/∂(1/T)), of the line is negative indicating that the dissolution reaction is endothermic. When the temperature was within 2 K of the phase transition temperature, however, (∂ln s/∂(1/T)) diverged toward negative infinity. The principle of critical point universality predicts that when excess solid nickel (II) oxide is in dissolution equilibrium with liquid isobutyric acid + water, (∂ln s/∂(1/T)) should diverge upon approaching the consolute point along the critical isopleth at 38.8 mass % isobutyric acid. As determined by the sign of the enthalpy of solution, the sign of this divergence is expected to be negative. Not only do our experiments confirm these predictions, but they also show that identical behavior can be observed at both 25 and 60 mass % isobustyric acid, compositions which lie substantially to either side of the critical composition.

  6. An Ecological Paradox: The African Wild Dog (Lycaon Pictus) Is Not Attracted to Water Points When Water Is Scarce in Hwange National Park, Zimbabwe

    PubMed Central

    Ndaimani, Henry; Tagwireyi, Paradzayi; Sebele, Lovelater; Madzikanda, Hillary

    2016-01-01

    In dry biomes, spatio-temporal variation in surface water resource stocks is pervasive, with unknown effects on the ranging behaviour of large predators. This study assessed the effect of spatial variation in surface water resources on the ranging behaviour of the African wild dog (Lycaon pictus). We analyzed data for 1992 (dry year with 20 water points) and 2000 (wet year with 30 water points) against presence-only data for five packs of L. pictus in a part of Hwange National Park and adjacent smallholder communal farming areas in western Zimbabwe. Modelling the potential habitat for L. pictus using Maxent with distance from water points (Dw) and Normalized Difference Vegetation Index (NDVI) as predictor variables was successful for 2000 (AUC = 0.793) but not successful for 1992 (AUC = 0.423), with L. pictus probability of occurrence near water points being more for year 2000 than for year 1992. The predicted L. pictus range was wider in 1992 (~13888.1 km2) than in 2000 (~958.4 km2) (Test of Proportions, χ2 = 124.52, df = 1, P = 0.00). Using the 2nd order Multitype Nearest Neighbour Distance Function (Gcross), we also observed significant attraction between L. pictus and water points within only ~1km radius for 1992 but up to ~8km radius for 2000. Our study reinforced the notion that surface water resources attract wild dogs in the savannahs but paradoxically less so when water resources are scarce. In particular, our study furthers current understanding of the effects of changing water availability regimes on the endangered L. pictus, providing evidence that the endangered predator’s home range encroaches into potential ecological traps (i.e., smallholder communal farming areas) when water resources are scarce. PMID:26816321

  7. An Ecological Paradox: The African Wild Dog (Lycaon Pictus) Is Not Attracted to Water Points When Water Is Scarce in Hwange National Park, Zimbabwe.

    PubMed

    Ndaimani, Henry; Tagwireyi, Paradzayi; Sebele, Lovelater; Madzikanda, Hillary

    2016-01-01

    In dry biomes, spatio-temporal variation in surface water resource stocks is pervasive, with unknown effects on the ranging behaviour of large predators. This study assessed the effect of spatial variation in surface water resources on the ranging behaviour of the African wild dog (Lycaon pictus). We analyzed data for 1992 (dry year with 20 water points) and 2000 (wet year with 30 water points) against presence-only data for five packs of L. pictus in a part of Hwange National Park and adjacent smallholder communal farming areas in western Zimbabwe. Modelling the potential habitat for L. pictus using Maxent with distance from water points (Dw) and Normalized Difference Vegetation Index (NDVI) as predictor variables was successful for 2000 (AUC = 0.793) but not successful for 1992 (AUC = 0.423), with L. pictus probability of occurrence near water points being more for year 2000 than for year 1992. The predicted L. pictus range was wider in 1992 (~13888.1 km2) than in 2000 (~958.4 km2) (Test of Proportions, χ2 = 124.52, df = 1, P = 0.00). Using the 2nd order Multitype Nearest Neighbour Distance Function (Gcross), we also observed significant attraction between L. pictus and water points within only ~1km radius for 1992 but up to ~8km radius for 2000. Our study reinforced the notion that surface water resources attract wild dogs in the savannahs but paradoxically less so when water resources are scarce. In particular, our study furthers current understanding of the effects of changing water availability regimes on the endangered L. pictus, providing evidence that the endangered predator's home range encroaches into potential ecological traps (i.e., smallholder communal farming areas) when water resources are scarce.

  8. Improving Multi-Objective Management of Water Quality Tipping Points: Revisiting the Classical Shallow Lake Problem

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Reed, P. M.; Keller, K.

    2015-12-01

    Recent multi-objective extensions of the classical shallow lake problem are useful for exploring the conceptual and computational challenges that emerge when managing irreversible water quality tipping points. Building on this work, we explore a four objective version of the lake problem where a hypothetical town derives economic benefits from polluting a nearby lake, but at the risk of irreversibly tipping the lake into a permanently polluted state. The trophic state of the lake exhibits non-linear threshold dynamics; below some critical phosphorus (P) threshold it is healthy and oligotrophic, but above this threshold it is irreversibly eutrophic. The town must decide how much P to discharge each year, a decision complicated by uncertainty in the natural P inflow to the lake. The shallow lake problem provides a conceptually rich set of dynamics, low computational demands, and a high level of mathematical difficulty. These properties maximize its value for benchmarking the relative merits and limitations of emerging decision support frameworks, such as Direct Policy Search (DPS). Here, we explore the use of DPS as a formal means of developing robust environmental pollution control rules that effectively account for deeply uncertain system states and conflicting objectives. The DPS reformulation of the shallow lake problem shows promise in formalizing pollution control triggers and signposts, while dramatically reducing the computational complexity of the multi-objective pollution control problem. More broadly, the insights from the DPS variant of the shallow lake problem formulated in this study bridge emerging work related to socio-ecological systems management, tipping points, robust decision making, and robust control.

  9. Critical-point universality in adsorption: The effect of charcoal on a mixture of isobutyric acid and water near the consolute point

    NASA Astrophysics Data System (ADS)

    Giesy, Timothy J.; Chou, Alan S.; McFeeters, Robert L.; Baird, James K.; Barlow, Douglas A.

    2011-06-01

    The mixture of isobutyric acid and water has a consolute point at a temperature of 25.75 °C and mole fraction 0.1148 isobutyric acid. When charcoal is added to this mixture, the concentration of isobutyric acid is reduced by adsorption. We have measured the action of charcoal on solutions of isobutyric acid and water as a function of isobutyric acid mole fraction at temperatures of 25.85 and 32.50 °C. At the higher temperature, the specific adsorption density (y2α/m) satisfies the Freundlich equation (y2α/m)=KX21/n, where y2α is the mass of isobutyric acid adsorbed, m is the mass of charcoal, X2 is the equilibrium mole fraction of isobutyric acid, n is the Freundlich index, and K=K(T) is an amplitude that depends upon the temperature T. At 25.85 °C, a critical endpoint is located at an isobutyric acid mole fraction X2ce=0.09. When compared with the Freundlich equation at this temperature, a plot of the specific adsorption density as a function of X2 in the vicinity of the critical-endpoint composition assumes a shape which is reminiscent of the derivative of a Dirac delta function. Using critical-point scaling theory, we show that this divergent pattern is consistent with the principle of critical point universality.

  10. Critical-point universality in adsorption: the effect of charcoal on a mixture of isobutyric acid and water near the consolute point.

    PubMed

    Giesy, Timothy J; Chou, Alan S; McFeeters, Robert L; Baird, James K; Barlow, Douglas A

    2011-06-01

    The mixture of isobutyric acid and water has a consolute point at a temperature of 25.75 °C and mole fraction 0.1148 isobutyric acid. When charcoal is added to this mixture, the concentration of isobutyric acid is reduced by adsorption. We have measured the action of charcoal on solutions of isobutyric acid and water as a function of isobutyric acid mole fraction at temperatures of 25.85 and 32.50 °C. At the higher temperature, the specific adsorption density (y(2)(α)/m) satisfies the Freundlich equation (y(2)(α)/m)=KX(2)(1/n), where y(2)(α) is the mass of isobutyric acid adsorbed, m is the mass of charcoal, X(2) is the equilibrium mole fraction of isobutyric acid, n is the Freundlich index, and K=K(T) is an amplitude that depends upon the temperature T. At 25.85 °C, a critical endpoint is located at an isobutyric acid mole fraction X(2)(ce)=0.09. When compared with the Freundlich equation at this temperature, a plot of the specific adsorption density as a function of X(2) in the vicinity of the critical-endpoint composition assumes a shape which is reminiscent of the derivative of a Dirac delta function. Using critical-point scaling theory, we show that this divergent pattern is consistent with the principle of critical point universality.

  11. [The isolation of organic compounds from hydrosulfuric mineral waters with the use of the extractive freezing-out technique with centrifugation].

    PubMed

    Bekhterev, V N; Kabina, E A

    2017-01-01

    The mineral waters, enriched with organic substances find extensive application in balneotherapy. The fast and efficient methods for the identification and quantitative measurement of organic compounds (in the first place, organic acids) in such waters need to be developed for the estimation of their quality and biological activity.

  12. Freeze Tolerant Radiator for an Advanced EMU

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark

    2004-01-01

    During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using

  13. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  14. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  15. Aqueous Chemistry in the Diamond Anvil Cell up to and Beyond the Critical Point of Water

    SciTech Connect

    Bassett, William A.; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert

    2008-08-28

    The hydrothermal diamond anvil cell (HDAC) has been developed for the study of fluids and their interactions with other phases. It is capable of pressures up to 10 GPa and temperatures from -190 C to 1200 C. It has found application in studies of equations of state of fluids, reactions between fluids and solids as well as fluids and melts, hydration and dehydration of hydrous solids under P{sub H2O}, fractionation of species between fluids and solids as well as fluids and melts, the effect of P{sub H2O} on melting of silicates, structures of ions and clathrates in solution, preservation of hosts of fluid inclusions at high temperatures, and reactions in clathrates and other organic materials. Visual, spectroscopic, and X-ray methods are used to analyze samples by taking advantage of the exceptional transparency of the diamond anvils. Examples of successful apphcations of the HDAC include the equation of state (EOS) of water, stability of the various stages of hydration of montmorillonite and calcium carbonate, leaching of elements from zircon, the effect of P{sub H2O} on the melting of albite, speciation and structures of Sc, Fe, Cu, Zn, Y, La, Yb, and Br in solution, stability of methane hydrates and Ca(OH){sub 2}, identifying a new H{sub 2}O ice form and sll of methane hydrate. The description of diamond cell configuration, analytical methods, and examples of applications provide evidence of the utility of the technique for many studies of fluids at temperatures and pressures up to and beyond the critical point of water.

  16. Critical Watersheds: Climate Change, Tipping Points, and Energy-Water Impacts

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Brown, M.; Coon, E.; Linn, R.; McDowell, N. G.; Painter, S. L.; Xu, C.

    2014-12-01

    Climate change, extreme climate events, and climate-induced disturbances will have a substantial and detrimental impact on terrestrial ecosystems. How ecosystems respond to these impacts will, in turn, have a significant effect on the quantity, quality, and timing of water supply for energy security, agriculture, industry, and municipal use. As a community, we lack sufficient quantitative and mechanistic understanding of the complex interplay between climate extremes (e.g., drought, floods), ecosystem dynamics (e.g., vegetation succession), and disruptive events (e.g., wildfire) to assess ecosystem vulnerabilities and to design mitigation strategies that minimize or prevent catastrophic ecosystem impacts. Through a combination of experimental and observational science and modeling, we are developing a unique multi-physics ecohydrologic framework for understanding and quantifying feedbacks between novel climate and extremes, surface and subsurface hydrology, ecosystem dynamics, and disruptive events in critical watersheds. The simulation capability integrates and advances coupled surface-subsurface hydrology from the Advanced Terrestrial Simulator (ATS), dynamic vegetation succession from the Ecosystem Demography (ED) model, and QUICFIRE, a novel wildfire behavior model developed from the FIRETEC platform. These advances are expected to make extensive contributions to the literature and to earth system modeling. The framework is designed to predict, quantify, and mitigate the impacts of climate change on vulnerable watersheds, with a focus on the US Mountain West and the energy-water nexus. This emerging capability is used to identify tipping points in watershed ecosystems, quantify impacts on downstream users, and formally evaluate mitigation efforts including forest (e.g., thinning, prescribed burns) and watershed (e.g., slope stabilization). The framework is being trained, validated, and demonstrated using field observations and remote data collections in the

  17. An improved approach for measuring immersion freezing in large droplets over a wide temperature range

    PubMed Central

    Tobo, Yutaka

    2016-01-01

    Immersion freezing (ice nucleation by particles immersed in supercooled water) is a key process for forming ice in mixed-phase clouds. Immersion freezing experiments with particles in microliter-sized (millimeter-sized) water droplets are often applied to detecting very small numbers of ice nucleating particles (INPs). However, the application of such large droplets remains confined to the detection of INPs active at temperatures much higher than the homogeneous freezing limit, because of artifacts related to freezing of water droplets without added INPs at temperatures of −25 °C or higher on a supporting substrate. Here I report a method for measuring immersion freezing in super-microliter-sized droplets over a wide temperature range. To reduce possible artifacts, droplets are pipetted onto a thin layer of Vaseline and cooled in a clean booth. In the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system, freezing of pure (Milli-Q) water droplets are limited at temperatures above −30 °C. An intercomparison of various techniques for immersion freezing experiments with reference particles (Snomax and illite NX) demonstrates that despite the use of relatively large droplets, the CRAFT setup allows for evaluating the immersion freezing activity of the particles over almost the entire temperature range (about −30 °C to 0 °C) relevant for mixed-phase cloud formation. PMID:27596247

  18. What is 'unfreezable water', how unfreezable is it, and how much is there?

    PubMed

    Wolfe, Joe; Bryant, Gary; Koster, Karen L

    2002-01-01

    Water that remains unfrozen at temperatures below the equilibrium bulk freezing temperature, in the presence of ice, is sometimes called unfreezable or bound. This paper analyses the phenomenon in terms of quantitative measurements of the hydration interaction among membranes or macromolecules at freezing temperatures. These results are related to analogous measurements in which osmotic stress or mechanical compression is used to equilibrate water of hydration with a bulk phase. The analysis provides formulas to estimate, at a given sub-freezing temperature, the amount of unfrozen water due to equilibrium hydration effects. Even at tens of degrees below freezing, this hydration effect alone can explain an unfrozen water volume that considerably exceeds that of a single 'hydration shell' surrounding the hydrophilic surfaces. The formulas provided give a lower bound to the amount of unfrozen water for two reasons. First, the well-known freezing point depression due to small solutes is, to zeroth order, independent of the membrane or macromolecular hydration effect. Further, the unfrozen solution found between membranes or macromolecules at freezing temperatures has high viscosity and small dimensions. This means that dehydration of such systems, especially at freezing temperatures, takes so long that equilibrium is rarely achieved over normal experimental time scales. So, in many cases, the amount of unfrozen water exceeds that expected at equilibrium, which in turn usually exceeds that calculated for a single hydration shell.

  19. Recent Divergences Between Stratospheric Water Vapor Measurements by Aura MLS and Frost Point Hygrometers

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.; Read, W. G.; Voemel, H.; Selkirk, H. B.

    2015-12-01

    A recent comparison of stratospheric water vapor measurements by the Aura Microwave Limb Sounder (MLS) and frost point hygrometers (FPs) during 2004-2012 reported agreement better than 1% from 68 to 26 hPa, small but statistically significant biases at 83 and 100 hPa, and no compelling evidence of long-term linear trends in FP-MLS differences [Hurst et al., 2014]. A previous comparison [Voemel et al., 2007] also found good agreement above 83 hPa. Recently it has become evident that differences between FP and MLS stratospheric water vapor measurements have widened during the last 5 years at two Northern Hemisphere (NH) mid-latitude sounding sites. Here we examine differences between coincident MLS and FP measurements of stratospheric water vapor at five sounding sites: two in the NH mid-latitudes (Boulder, Colorado and Lindenberg, Germany), two in the tropics (San Jose, Costa Rica and Hilo, Hawaii), and one in the SH mid-latitudes (Lauder, New Zealand). Analyses of the Boulder and Lindenberg data reveal reasonably uniform breakpoints in the timeseries of FP-MLS differences throughout the stratosphere, indicating that trends after mid-2010 are statistically different from trends before mid-2010. At Boulder and Lindenberg the post-breakpoint trends are statistically significant and fairly consistent over eight MLS retrieval pressures (100-26 hPa), averaging -0.08 ± 0.02 and -0.05 ± 0.02 ppmv per year, respectively (Figure 1). These translate to mean changes in stratospheric FP-MLS differences of -0.42 ± 0.08 ppmv (-10 ± 2%) and -0.23 ± 0.08 ppmv (-6 ± 2%) between mid-2010 and mid-2015. Breakpoints for the eight MLS pressure levels above Lauder are less uniform than for the two NH sites, however forced breakpoints of mid-2010 produce a mean stratospheric trend of -0.05 ± 0.02 ppmv per year in the FP-MLS differences. Breakpoints for the two tropical sites are inconsistent, as are the trend results with forced breakpoints of mid-2010. Hurst, D.F., et al., (2014

  20. Not Just a Drop in the Bucket: Expanding Access to Point-of-Use Water Treatment Systems

    PubMed Central

    Mintz, Eric; Bartram, Jamie; Lochery, Peter; Wegelin, Martin

    2001-01-01

    Since 1990, the number of people without access to safe water sources has remained constant at approximately 1.1 billion, of whom approximately 2.2 million die of waterborne disease each year. In developing countries, population growth and migrations strain existing water and sanitary infrastructure and complicate planning and construction of new infrastructure. Providing safe water for all is a long-term goal; however, relying only on time- and resource-intensive centralized solutions such as piped, treated water will leave hundreds of millions of people without safe water far into the future. Self-sustaining, decentralized approaches to making drinking water safe, including point-of-use chemical and solar disinfection, safe water storage, and behavioral change, have been widely field-tested. These options target the most affected, enhance health, contribute to development and productivity, and merit far greater priority for rapid implementation. PMID:11574307

  1. Comparison of sand-based water filters for point-of-use arsenic removal in China.

    PubMed

    Smith, Kate; Li, Zhenyu; Chen, Bohan; Liang, Honggang; Zhang, Xinyi; Xu, Ruifei; Li, Zhilin; Dai, Huanfang; Wei, Caijie; Liu, Shuming

    2017-02-01

    Contamination of groundwater wells by arsenic is a major problem in China. This study compared arsenic removal efficiency of five sand-based point-of-use filters with the aim of selecting the most effective filter for use in a village in Shanxi province, where the main groundwater source had arsenic concentration >200 μg/L. A biosand filter, two arsenic biosand filters, a SONO-style filter and a version of the biosand filter with nails embedded in the sand were tested. The biosand filter with embedded nails was the most consistent and effective under the study conditions, likely due to increased contact time between water and nails and sustained corrosion. Effluent arsenic was below China's standard of 50 μg/L for more than six months after construction. The removal rate averaged 92% and was never below 86%. In comparison, arsenic removal for the nail-free biosand filter was never higher than 53% and declined with time. The arsenic biosand filter, in which nails sit in a diffuser basin above the sand, performed better but effluent arsenic almost always exceeded the standard. This highlights the positive impact on arsenic removal of embedding nails within the top layer of biosand filter sand and the promise of this low-cost filtration method for rural areas affected by arsenic contamination.

  2. Selective ligandless cloud point extraction of palladium from water and dust samples.

    PubMed

    Mohammadi, Sayed Zia; Mohammadnezhad, Mohsen

    2015-01-01

    In this study, the phase-separation phenomenon of non-ionic surfactants was used for separation and preconcentration of Pd(II). The cloud point extraction (CPE) method is based on the formation of PdI2 which is then entrapped in the non-ionic surfactant Triton X-114. Ethanol acidified with 0.5 M HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry. The main factors affecting CPE efficiency, such as sample solution pH, concentration of iodide ion and Triton X-114, equilibration temperature and time, were all investigated and optimized. At optimum conditions, a calibration curve was constructed for the determination of palladium according to the ligandless CPE procedure. Linearity was maintained between 1.0 to 500.0 ng/mL. The LOD based on three times the SD of the blank divided by the slope of analytical curve, (3Sb/m) was 0.3 ng/mL. Seven replicate determinations of a solution containing of 4.0 μg palladium gave a mean absorbance of 0.359 with RSD±1.85%. The high efficiency of CPE to carry out the determination of palladium in complex matrixes was demonstrated. The proposed method has been applied to the determination of trace amounts of palladium in a platinum-iridium alloy, water, and dust samples, with satisfactory results.

  3. Infiltration from a surface point source and drip irrigation: 1. The midpoint soil water pressure

    NASA Astrophysics Data System (ADS)

    Revol, P.; Vauclin, M.; Vachaud, G.; Clothier, B. E.

    1997-08-01

    Bresler [1978] proposed a procedure for drip irrigation design which is focused on the midpoint soil water pressure hc. We present a practical field test of this approach in order to evaluate the validity of the underlying assumptions. The simulated hc values were obtained from Raats' [1971] steady state theory for 32 points in the field where the hydraulic conductivity parameters Ks and αwere measured. The hc values were measured at the same locations during microirrigation of a maize crop. Measured hc's appear to be lower than the simulated ones, especially late in the season. The measured spatial variability in hc appeared to be higher than the simulated ones. This could well have been caused by root uptake activity, which is not considered in the analysis, as well as by the large but typical drippers spacing of d = 1.00 m. Thus the tensiometers could have been beyond the practical limit of wetting. Consequences for design and management are important. For design, even if a high hc value is chosen, there is no real guarantee that the wetting would be effective at the midpoint. For irrigation management, tensiometer placement too far from the dripper would lead to overirrigation, so for a large dripper spacing d, the midpoint placement is not judicious.

  4. Final report on APMP.T-K7 key comparison of water triple point cells

    NASA Astrophysics Data System (ADS)

    Tsai, S. F.; White, R.; Tamba, J.; Yamazawa, K.; Ho, M. K.; Tsui, C. M.; Zaid, G.; Achmadi, A.; Gam, K. S.; Othman, H.; Ali, N. M.; Yuan, K. H.; Shaochun, Y.; Liedberg, H.; Yaokulbodee, C.

    2016-01-01

    APMP.T-K7, was held from February 2008 to September 2009 to compare the national realizations of the water triple point among eleven NMIs. To reach the objective, each participating laboratory sent a transfer cell to CMS and stated a value for the temperature difference of the transfer cell, relative to the corresponding national standard, representing 273.16 K. CMS (Taiwan) organized the comparison, with the support from co-pilot institutes MSL (New Zealand) and NMIJ (Japan). The other eight participating laboratories included NMIA, SCL, KIM-LIPI, KRISS, NMIM/SIRIM, NMC, NMISA, and NIMT. This report presents the results of the TPW comparison, gives detailed information about the measurements made at the CMS and at the participating laboratories, and aims to link the results of APMP.T-K7 to CCT-K7. The results of this key comparison are also represented in the form of degrees of equivalence for the purposes of the MRA. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Response functions near the liquid-liquid critical point of ST2 water

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik; Kesselring, T. A.; Franzese, G.; Buldyrev, S. V.; Herrmann, H. J.; Stanley, H. E.

    2013-02-01

    We simulate the ST2 water model for time periods up to 1000 ns, and for four different system sizes, N = 63, 73, 83, and 93. We locate the liquid-liquid phase transition line and its critical point in the supercooled region. Near the liquidliquid phase transition line, we observe that the system continuously flips between the low-density and high-density liquid phases. We analyze the transition line further by calculating two thermodynamic response functions, the isobaric specific heat capacity CP and the isothermal compressibility KT. We use two different methods: (i) from fluctuations and (ii) with the relevant thermodynamic derivative. We find that, within the accuracy of our simulations, the maxima of two different response functions occur at the same temperatures. The lines of CP and KT maxima below the critical pressure approximate the Widom line which is continuous with the line of first-order transitions in the two-phase region where we observe the phase flipping.

  6. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.

  7. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology

    NASA Astrophysics Data System (ADS)

    Gouttevin, I.; Krinner, G.; Ciais, P.; Polcher, J.; Legout, C.

    2012-04-01

    Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performance to field measurements at typical application scales. Our soil freezing model exhibits a low sensitivity to the vertical discretization for spatial steps in the range of a few millimetres to a few centimetres. It is however sensitive to the temperature interval around the freezing point where phase change occurs, which should be 1 °C to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil and thermal evolution under freezing. Our approach does not allow firm discrimination of the performance of one approach over the other. The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost or subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capture the features of the Arctic hydrological regime with more accuracy. The modeling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with more accuracy, which is of crucial importance in the prospect of simulations involving the response of frozen carbon

  8. Source to point of use drinking water changes and knowledge, attitude and practices in Katsina State, Northern Nigeria

    NASA Astrophysics Data System (ADS)

    Onabolu, B.; Jimoh, O. D.; Igboro, S. B.; Sridhar, M. K. C.; Onyilo, G.; Gege, A.; Ilya, R.

    In many Sub-Saharan countries such as Nigeria, inadequate access to safe drinking water is a serious problem with 37% in the region and 58% of rural Nigeria using unimproved sources. The global challenge to measuring household water quality as a determinant of safety is further compounded in Nigeria by the possibility of deterioration from source to point of use. This is associated with the use of decentralised water supply systems in rural areas which are not fully reticulated to the household taps, creating a need for an integrated water quality monitoring system. As an initial step towards establishing the system in the north west and north central zones of Nigeria, The Katsina State Rural Water and Sanitation Agency, responsible for ensuring access to safe water and adequate sanitation to about 6 million people carried out a three pronged study with the support of UNICEF Nigeria. Part 1 was an assessment of the legislative and policy framework, institutional arrangements and capacity for drinking water quality monitoring through desk top reviews and Key Informant Interviews (KII) to ascertain the institutional capacity requirements for developing the water quality monitoring system. Part II was a water quality study in 700 households of 23 communities in four local government areas. The objectives were to assess the safety of drinking water, compare the safety at source and household level and assess the possible contributory role of end users’ Knowledge Attitudes and Practices. These were achieved through water analysis, household water quality tracking, KII and questionnaires. Part III was the production of a visual documentary as an advocacy tool to increase awareness of the policy makers of the linkages between source management, treatment and end user water quality. The results indicate that except for pH, conductivity and manganese, the improved water sources were safe at source. However there was a deterioration in water quality between source and

  9. Size control in production and freeze-drying of poly-ε-caprolactone nanoparticles.

    PubMed

    Zelenková, Tereza; Fissore, Davide; Marchisio, Daniele L; Barresi, Antonello A

    2014-06-01

    This work is focused on the control of poly-ε-caprolactone nanoparticle characteristics, notably size and size distribution, in both the production and preservation (by using freeze-drying) stages. Nanoparticles were obtained by employing the solvent displacement method in a confined impinging jets mixer. The effect of several operating conditions, namely, initial polymer concentration and solvent-to-antisolvent flow r