Industrial water pollution, water environment treatment, and health risks in China.
Wang, Qing; Yang, Zhiming
2016-11-01
The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Waldner, Cheryl L; Alimezelli, Hubert Tote; McLeod, Lianne; Zagozewski, Rebecca; Bradford, Lori Ea; Bharadwaj, Lalita A
2017-01-01
Water-related health challenges on First Nations reserves in Canada have been previously documented. Our objective was to describe factors associated with self-reported health effects from tap water in 8 First Nations reserve communities in Saskatchewan, Canada. Community-based participatory approaches were used in designing and implementing cross-sectional household surveys. Individual, household, community, and contextual effects were considered in multilevel analysis. Negative health effects from tap water were reported by 28% of households (n = 579). Concerns about environmental factors affecting water quality (odds ratio [OR] = 3.4, 95% confidence interval [CI] = 1.8-6.7), rarely or never drinking tap water (OR = 2.9, 95% CI = 1.3-6.6), insufficient tap water (OR = 3.0, 95% CI = 1.4-6.3), paying for bottled water (OR = 3.2, 95% CI = 1.2-8.7), and dissatisfaction with tap water were associated with self-reported health effects (n = 393); however, the effect of dissatisfaction was modified by respondent age ( P = .03). Quality and availability were associated with perceptions of health effects from drinking water, providing additional information on how ongoing concerns about drinking water influence self-reported health in some First Nations.
Waldner, Cheryl L; Alimezelli, Hubert Tote; McLeod, Lianne; Zagozewski, Rebecca; Bradford, Lori EA; Bharadwaj, Lalita A
2017-01-01
Water-related health challenges on First Nations reserves in Canada have been previously documented. Our objective was to describe factors associated with self-reported health effects from tap water in 8 First Nations reserve communities in Saskatchewan, Canada. Community-based participatory approaches were used in designing and implementing cross-sectional household surveys. Individual, household, community, and contextual effects were considered in multilevel analysis. Negative health effects from tap water were reported by 28% of households (n = 579). Concerns about environmental factors affecting water quality (odds ratio [OR] = 3.4, 95% confidence interval [CI] = 1.8-6.7), rarely or never drinking tap water (OR = 2.9, 95% CI = 1.3-6.6), insufficient tap water (OR = 3.0, 95% CI = 1.4-6.3), paying for bottled water (OR = 3.2, 95% CI = 1.2-8.7), and dissatisfaction with tap water were associated with self-reported health effects (n = 393); however, the effect of dissatisfaction was modified by respondent age (P = .03). Quality and availability were associated with perceptions of health effects from drinking water, providing additional information on how ongoing concerns about drinking water influence self-reported health in some First Nations. PMID:28469443
Health and aesthetic impacts of copper corrosion on drinking water.
Dietrich, A M; Glindemann, D; Pizarro, F; Gidi, V; Olivares, M; Araya, M; Camper, A; Duncan, S; Dwyer, S; Whelton, A J; Younos, T; Subramanian, S; Burlingame, G A; Khiari, D; Edwards, M
2004-01-01
Traditional research has focused on the visible effects of corrosion--failures, leaks, and financial debits--and often overlooked the more hidden health and aesthetic aspects. Clearly, corrosion of copper pipe can lead to levels of copper in the drinking water that exceed health guidelines and cause bitter or metallic tasting water. Because water will continue to be conveyed to consumers worldwide through metal pipes, the water industry has to consider both the effects of water quality on corrosion and the effects of corrosion on water quality. Integrating four key factors--chemical/biological causes, economics, health and aesthetics--is critical for managing the distribution system to produce safe water that consumers will use with confidence. As technological developments improve copper pipes to minimize scaling and corrosion, it is essential to consider the health and aesthetic effects on an equal plane with chemical/biological causes and economics to produce water that is acceptable for public consumption.
Drinking Water (Environmental Health Student Portal)
... teach students about water quality and effects on human health. Give Water a Hand (University of Wisconsin) - Project ... Medicine National Institutes of Health U.S. Department of Health and Human Services
Praveena, Sarva Mangala; Pauzi, Norfasmawati Mohd; Hamdan, Munashamimi; Sham, Shaharuddin Mohd
2015-03-15
A survey among beachgoers was conducted to determine the swimming associated health effects experienced and its relationship with beach water exposure behaviour in Morib beach. For beach water exposure behaviour, the highest frequency of visit among the respondents was once a year (41.9%). For ways of water exposure, whole body exposure including head was the highest (38.5%). For duration of water exposure, 30.8% respondents prefer to be in water for about 30 min with low possibilities of accidental ingestion of beach water. A total of 30.8% of beachgoers in Morib beach were reported of having dermal symptoms. Bivariate analysis showed only water activity, water contact and accidental ingestion of beach water showed significant association with swimming associated health effects experienced by swimmers. This study output showed that epidemiological study can be used to identify swimming associated health effects in beach water exposed to faecal contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manganese in Madison's drinking water.
Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti
2008-12-01
Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.
Dangel, Chrissy; Allgeier, Steven C; Gibbons, Darcy; Haas, Adam; Simon, Katie
2012-03-01
Effective communication and coordination are critical when investigating a possible drinking water contamination incident. A contamination warning system is designed to detect water contamination by initiating a coordinated, effective response to mitigate significant public health and economic consequences. This article describes historical communication barriers during water contamination incidents and discusses how these barriers were overcome through the public health surveillance component of the Cincinnati Drinking Water Contamination Warning System, referred to as the "Cincinnati Pilot." By enhancing partnerships in the public health surveillance component of the Cincinnati Pilot, information silos that existed in each organization were replaced with interagency information depots that facilitated effective decision making.
ERIC Educational Resources Information Center
Black, Maggie, Ed.
1983-01-01
This issue of UNICEF News explores the theme of connections between water and health in developing countries. The introductory article discusses prospects for improving health through water projects during the International Drinking Water Supply and Sanitation Decade (1981-90). Subsequent articles focus on (1) effects of a piped water supply on…
Human Health and Toxic Cyanobacteria – What do we know? ...
Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and climate change. We present the evidence for adverse human health effects associated with exposure to cyanobacteria and their toxins in drinking water, recreational water and via medical procedures. We will discuss the range of effects reported to be associated with exposure, and the current state of the epidemiology of toxic cyanobacteria. This is a description of a proposed presentation and does not necessarily reflect EPA policy. Abstract will be presented at the Water and Health conference during a session on water quality challenges in North Carolina. This summary of existing published scientific reports on the associations between adverse human health effects and toxic cyanobacteria will be of interest to the public health and water researchers in the audience. This work fits topically in the Task: SSWR 4.01B
Previous health effects research used chlorinated, concentrated natural organic matter (NOM) solutions to create whole mixtures of disinfection byproducts (DBPs). Ohio River water was used as the source water to provide the background NOM matrix. Concentrated river water was coll...
USDA-ARS?s Scientific Manuscript database
This review examines the current knowledge of water intake as it pertains to human health, including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, and the effects of variation in water intake on health and energy intake, weight, huma...
World Health Organization discontinues its drinking-water guideline for manganese.
Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra
2012-06-01
The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.
Rosen, Michael B; Pokhrel, Lok R; Weir, Mark H
2017-07-15
Lead (Pb) in public drinking water supplies has garnered much attention since the outset of the Flint water crisis. Pb is a known hazard in multiple environmental matrices, exposure from which results in long-term deleterious health effects in humans. This discussion paper aims to provide a succinct account of environmental Pb exposures with a focus on water Pb levels (WLLs) in the United States. It is understood that there is a strong correlation between WLLs and blood Pb levels (BLLs), and the associated health effects. However, within the Flint water crisis, more than water chemistry and Pb exposure occurred. A cascade of regulatory and bureaucratic failures culminated in the Flint water crisis. This paper will discuss pertinent regulations and responses including their limitations after an overview of the public health effects from Pb exposure as well as discussion on our limitations on monitoring and mitigating Pb in tap water. As the Flint water crisis also included increased Legionnares' disease, caused by Legionella pneumophila, this paper will discuss factors influencing L. pneumophila growth. This will highlight the systemic nature of changes to water chemistry and public health impacts. As we critically analyze these important aspects of water research, we offer discussions to stimulate future water quality research from a new and systemic perspective to inform and guide public health decision-making. Copyright © 2017 Elsevier B.V. All rights reserved.
Human Health Effects Associated with Exposure to Toxic Cyanobacteria
Reports of toxic cyanobacteria blooms are increasing worldwide. Warming and eutrophic surface water systems support the development of blooms. We examine the evidence for adverse human health effects associated with exposure to toxic blooms in drinking water, recreational water a...
Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: I. Biomarkers for Assessing Exposure and Effects
Judy L. Mumford, Ph.D., Mike Schmitt, M.S.P.H., Richard K. Kwok, M.S.P.H., Rebecca Calderon, Ph.D., National Health and Environmental Effect...
Health Effects and Environmental Justice Concerns of Exposure to Uranium in Drinking Water.
Corlin, Laura; Rock, Tommy; Cordova, Jamie; Woodin, Mark; Durant, John L; Gute, David M; Ingram, Jani; Brugge, Doug
2016-12-01
We discuss the recent epidemiologic literature regarding health effects of uranium exposure in drinking water focusing on the chemical characteristics of uranium. While there is strong toxicologic evidence for renal and reproductive effects as well as DNA damage, the epidemiologic evidence for these effects in people exposed to uranium in drinking water is limited. Further, epidemiologic evidence is lacking for cardiovascular and oncogenic effects. One challenge in characterizing health effects of uranium in drinking water is the paucity of long-term cohort studies with individual level exposure assessment. Nevertheless, there are environmental justice concerns due to the substantial exposures for certain populations. For example, we present original data suggesting that individuals living in the Navajo Nation are exposed to high levels of uranium in unregulated well water used for drinking. In 10 out of 185 samples (5.4 %), concentrations of uranium exceeded standards under the Safe Drinking Water Act. Therefore, efforts to mitigate exposure to toxic elements in drinking water are warranted and should be prioritized.
A Qualitative Study on the Interconnected Nature of HIV, Water, and Family.
Ramirez-Ortiz, Daisy; Zolnikov, Tara Rava
2017-03-01
Human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) and poor access to water are two primary global health issues. Poor access to water may significantly affect families infected with HIV and result in adverse social and health consequences. A qualitative study used semi-structured interviews to understand health and social outcomes of families after the implementation of water interventions in rural Kenya. One major sub-theme emerged during this research, which included the effects of water on an HIV-affected family. Prior to the water interventions, common adverse health effects from lack of nutrition, water, and poor hygiene were experienced. After receiving access to water, nutrition and hygiene were improved and additional time was gained and used to reinforce relationships and spread awareness about HIV/AIDS. This study provides need-based evidence for access to safe drinking water in order to decrease adverse health outcomes and improve the quality of life for HIV-affected individuals.
The need for congressional action to finance arsenic reductions in drinking water.
Levine, Rebecca Leah
2012-11-01
Many public water systems in the U.S. are unsafe because the communities cannot afford to comply with the current 10 parts per billion (ppb) federal arsenic standard for drinking water. Communities unable to afford improvements remain vulnerable to adverse health effects associated with higher levels of arsenic exposure. Scientific and bipartisan political consensus exists that the arsenic standard should not be less stringent than 10 ppb, and new data suggest additional adverse health effects related to arsenic exposure through drinking water. Congress has failed to reauthorize the Drinking Water State Revolving Fund program to provide reliable funding to promote compliance and reduce the risk of adverse health effects. Congress's recent ad hoc appropriations do not allow long-term planning and ongoing monitoring and maintenance. Investing in water infrastructure will lower health care costs and create American jobs. Delaying necessary upgrades will only increase the costs of improvements over time.
Hong, Young-seoub; Ye, Byeong-jin; Kim, Yu-mi; Kim, Byoung-gwon; Kang, Gyeong-hui; Kim, Jeong-jin; Song, Ki-hoon; Kim, Young-hun
2017-01-01
Recent epidemiological studies have reported adverse health effects, including skin cancer, due to low concentrations of arsenic via drinking water. We conducted a study to assess whether low arsenic contaminated ground water affected health of the residents who consumed it. For precise biomonitoring results, the inorganic (trivalent arsenite (As III) and pentavalent arsenate (As V)) and organic forms (monomethylarsonate (MMA) and dimethylarsinate (DMA)) of arsenic were separately quantified by combining high-performance liquid chromatography and inductively coupled plasma mass spectroscopy from urine samples. In conclusion, urinary As III, As V, MMA, and hair arsenic concentrations were significantly higher in residents who consumed arsenic contaminated ground water than control participants who consumed tap water. But, most health screening results did not show a statistically significant difference between exposed and control subjects. We presume that the elevated arsenic concentrations may not be sufficient to cause detectable health effects. Consumption of arsenic contaminated ground water could result in elevated urinary organic and inorganic arsenic concentrations. We recommend immediate discontinuation of ground water supply in this area for the safety of the residents. PMID:29186890
World Health Organization Discontinues Its Drinking-Water Guideline for Manganese
Frisbie, Seth H.; Mitchell, Erika J.; Dustin, Hannah; Maynard, Donald M.
2012-01-01
Background: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.” Objective: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011. Methods: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Discussion: Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. Conclusions: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn. PMID:22334150
Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: V. Biomarker Studies - a Pilot Study
Michael T. Schmitt, M.S.P.H., Judy S. Mumford, Ph.D., National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agenc...
Exposure to fecally-contaminated water has long been known to transmit infectious disease. In 2003, EPA and the CDC initiated studies to better describe the health effects associated with exposure to fecal contamination in recreational waters and to test faster ways of measuring ...
Effects of modifying water environments on water supply and human health
NASA Astrophysics Data System (ADS)
Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.
2008-12-01
Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water environments on human health, we have to develop tools to assess and predict such impacts. This paper presents methodologies to assess the current status of water resources degradation and resultant effects on human health are discussed based on some case studies.
Thomas, Gregory; Burton, Nancy Clark; Mueller, Charles; Page, Elena; Vesper, Stephen
2012-09-01
The National Institute for Occupational Safety and Health (NIOSH) conducted a health hazard evaluation (HHE) of a water-damaged school in New Orleans (NO), Louisiana. Our aim in this evaluation was to document employee health effects related to exposure to the water-damaged school, and to determine if VCS testing could serve as a biomarker of effect for occupants who experienced adverse health effects in a water-damaged building. NIOSH physicians and staff administered a work history and medical questionnaire, conducted visual contrast sensitivity (VCS) testing, and collected sticky-tape, air, and dust samples at the school. Counting, culturing, and/or a DNA-based technology, called mold-specific quantitative PCR (MSQPCR), were also used to quantify the molds. A similar health and environmental evaluation was performed at a comparable school in Cincinnati, Ohio which was not water-damaged. Extensive mold contamination was documented in the water-damaged school and employees (n = 95) had higher prevalences of work-related rashes and nasal, lower respiratory, and constitutional symptoms than those at the comparison school (n = 110). VCS values across all spatial frequencies were lower among employees at the water-damaged school. Employees exposed to an extensively water-damaged environment reported adverse health effects, including rashes and nasal, lower respiratory, and constitutional symptoms. VCS values were lower in the employees at the water-damaged school, but we do not recommend using it in evaluation of people exposed to mold. Am. J. Ind. Med. 55:844-854, 2012. This article is a U.S. Government work and is in the public domain in the USA. Published 2012 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.
Communicating effectively with vulnerable populations during water contamination events.
Nsiah-Kumi, Phyllis A
2008-01-01
Water contamination events are a public health concern worldwide with significant potential to impact the global community. When communicating with the public during these crisis situations, it is vital to consider the multiple audiences who receive the messages. Before developing or delivering messages to a particular community, it is essential to be familiar with the community's characteristics, needs, concerns, and who is considered credible to that community. Vulnerable populations are those with difficulties in comprehension or accessibility that may limit their full understanding of risks and may mitigate the effectiveness of public health strategies. Vulnerable populations include, but are not limited to, the urban/rural poor, those who are mentally ill, intellectually disabled, medically vulnerable, at the extremes of age (children and the elderly), racial/ethnic minorities, and those with low literacy or limited English proficiency.A water contamination event poses a unique opportunity to work with diverse populations to effectively convey important health messages. Each population needs to receive appropriate public health messages. Becoming familiar with vulnerable populations and their needs prior to a water contamination event will help in identifying barriers and developing and refining effective messages in such a crisis. In water contamination crises, our publics' health depends on effective, targeted crisis communication.
Drinking-water quality management: the Australian framework.
Sinclair, Martha; Rizak, Samantha
The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.
[The effects of blue algae on health].
van Riel, A J H P; Schets, F M; Meulenbelt, J
2007-08-04
Cyanobacteria (blue algae) regularly cause recreational waters to become murky and smelly. Skin irritation and mild gastrointestinal disorders have regularly been reported following recreational activities in water suspected of being contaminated with cyanobacteria. The exact cause of these effects on health is not clear. Severe effects are not to be expected from recreational exposure to water contaminated with cyanobacteria. Cyanobacteria can produce hepatotoxins, neurotoxins, cytotoxins and irritants. In Brazil lethal intoxications have occurred due to the occurrence of toxins in drinking water and in dialysis fluid. The Dutch policy is based on the Commissie Integraal Waterbeheer (Commission Integral Water Management) guidelines for recreational waters. It is not clear to what extent the other cyanotoxins occur in the Netherlands. However, several genera ofcyanobacteria capable of producing these other cyanotoxins have been found in the Netherlands. For a good risk assessment in the Netherlands, more information is needed on the effects on health of cyanobacteria. There is also a need for more data on the prevalence of different cyanobacteria and toxins in Dutch recreational waters.
Toxicological relevance of pharmaceuticals in drinking water.
Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A
2010-07-15
Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.
Thabayneh, Khalil M
2015-09-01
Radon concentration and annual effective doses were measured in drinking water in the Southern Part of West Bank - Palestine, by using both passive and active techniques. 184 samples were collected from various sources i.e. tap water, groundwater, rain waters and mineral waters. It is found that the annual effective dose resulting from inhalation and ingestion of radon emanated from all types of drinking water is negligible compared to the total annual effective dose from indoor radon in the region. Results reveal that there is no significant public health risk from radon ingested and inhalation with drinking water in the study region. Copyright © 2015. Published by Elsevier Ltd.
Health Effects Associated with Water Fluoridation.
ERIC Educational Resources Information Center
Richmond, Virginia L.
1979-01-01
Discussion is presented concerning fluoridation of water supplies. Correlation between fluoride in drinking water and improved dental health is reviewed. Relationship is expressed between fluoridation and reduced tooth decay. Use of fluoride in treating skeletal disorders is discussed. Author advocates fluoridating water supplies. (SA)
HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
VI. DEVELOPMENTAL EFFECTS
Richard K. Kwok, M.S.P.H., Judy L. Mumford, Ph.D., Pauline Mendola, Ph.D. Epidemiology and Biomarkers Branch, NHEERL, US Environmental Protection Agency; Yajua...
Simate, Geoffrey S; Iyuke, Sunny E; Ndlovu, Sehliselo; Heydenrych, Mike; Walubita, Lubinda F
2012-02-01
The volume of industrial and domestic wastewater is increasing significantly year by year with the change in the lifestyle based on mass consumption and mass disposal brought about by the dramatic development of economies and industries. Therefore, effective advanced wastewater treatment is required because wastewater contains a variety of constituents such as particles, organic materials, and emulsion depending on the resource. However, residual chemicals that remain during the treatment of wastewaters form a variety of known and unknown by-products through reactions between the chemicals and some pollutants. Chronic exposure to these by-products or residual chemicals through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. For example, residual aluminium salts in treated water may cause Alzheimer's disease (AD). As for carbon nanotubes (CNTs), despite their potential impacts on human health and the environment having been receiving more and more attention in the recent past, existing information on the toxicity of CNTs in drinking water is limited with many open questions. Furthermore, though general topics on the human health impacts of traditional water treatment chemicals have been studied, no comparative analysis has been done. Therefore, a qualitative comparison of the human health effects of both residual CNTs and traditional water treatment chemicals is given in this paper. In addition, it is also important to cover and compare the human health effects of CNTs to those of traditional water treatment chemicals together in one review because they are both used for water treatment and purification. Copyright © 2011 Elsevier Ltd. All rights reserved.
Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to reduce the previous arsenic maximum contaminant level (MCL) of ...
Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to recently reduce the previous arsenic maximum contaminant level ...
Whelan, Jessica J; Willis, Karen
2007-01-01
Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.
Workgroup report: Drinking-water nitrate and health - Recent findings and research needs
Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.
2005-01-01
Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.
Workgroup report: Drinking-water nitrate and health--recent findings and research needs.
Ward, Mary H; deKok, Theo M; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T; VanDerslice, James
2005-11-01
Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.
Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden
2016-07-15
Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to households to motivate behavioral changes to effectively protect future water resources and human health.
Gentry-Shields, Jennifer; Bartram, Jamie
2014-01-15
There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.
Health effects of drinking water disinfectants and disinfection by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condie, L.W.; Bercz, J.P.
This paper summarizes toxicological studies conducted with drinking water disinfectants. Toxicological effects, which are associated with the disinfectants themselves as well as with the by-products formed when disinfectants react with organic material present in water, are considered. The health impact of chemical reactions occurring between residual disinfectants and nutrients in the gastrointestinal tract is also discussed. 40 references, 5 tables.
World Health Organization increases its drinking-water guideline for uranium.
Frisbie, Seth H; Mitchell, Erika J; Sarkar, Bibudhendra
2013-10-01
The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-water Quality in July, 2011. In this edition, the drinking-water guideline for uranium (U) was increased to 30 μg L(-1) despite the conclusion that "deriving a guideline value for uranium in drinking-water is complex, because the data [from exposures to humans] do not provide a clear no-effect concentration" and "Although some minor biochemical changes associated with kidney function have been reported to be correlated with uranium exposure at concentrations below 30 μg L(-1), these findings are not consistent between studies" (WHO, Uranium in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, available: , accessed 13 October 2011). This paper reviews the WHO drinking-water guideline for U, from its introduction as a 2 μg L(-1) health-based guideline in 1998 through its increase to a 30 μg L(-1) health-based guideline in 2011. The current 30 μg L(-1) WHO health-based drinking-water guideline was calculated using a "no-effect group" with "no evidence of renal damage [in humans] from 10 renal toxicity indicators". However, this nominal "no-effect group" was associated with increased diastolic blood pressure, systolic blood pressure, and glucose excretion in urine. In addition, the current 30 μg L(-1) guideline may not protect children, people with predispositions to hypertension or osteoporosis, pre-existing chronic kidney disease, and anyone with a long exposure. The toxic effects of U in drinking water on laboratory animals and humans justify a re-evaluation by the WHO of its decision to increase its U drinking-water guideline.
Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health
Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.
2014-01-01
The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854
Effects of abandoned arsenic mine on water resources pollution in north west of iran.
Hajalilou, Behzad; Mosaferi, Mohammad; Khaleghi, Fazel; Jadidi, Sakineh; Vosugh, Bahram; Fatehifar, Esmail
2011-01-01
Pollution due to mining activities could have an important role in health and welfare of people who are living in mining area. When mining operation finishes, environ-ment of mining area can be influenced by related pollution e.g. heavy metals emission to wa-ter resources. The present study was aimed to evaluate Valiloo abandoned arsenic mine ef-fects on drinking water resources quality and possible health effects on the residents of min-ing area in the North West of Iran. Water samples and some limited composite wheat samples in downstream of min-ing area were collected. Water samples were analyzed for chemical parameters according to standard methods. For determination of arsenic in water samples, Graphite Furnace Atomic Absorption Spectrometric Method (GFAAS) and for wheat samples X - Ray Fluorescence (XRF) and Inductively Coupled Plasma Method (ICP) were used. Information about possible health effects due to exposure to arsenic was collected through interviews in studied villages and health center of Herris City. The highest concentrations of arsenic were measured near the mine (as high as 2000 µg/L in Valiloo mine opening water). With increasing distance from the mine, concentration was decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no health effects had been reported between residents of studied area due to exposure to arsenic. Valiloo abandoned arsenic mine has caused release of arsenic to the around en-vironment of the mine, so arsenic concentration has been increased in the groundwater and also downstream river that requires proper measures to mitigate spread of arsenic.
Household water treatment and the millennium development goals: keeping the focus on health.
Clasen, Thomas F
2010-10-01
Waterborne diseases such as diarrhea are a major killer in low-income settings, particularly of young children. For those without access to safe drinking water, household water treatment, such as boiling, chlorinating, and filtering water in the home, when combined with safe storage (HWTS) can significantly improve water quality and prevent disease, thereby contributing to the child survival and other health priorities encompassed within the Millennium Development Goals (MDGs). There is uncertainly, however, about whether HWTS should count toward the MDG water target, which promotes "sustainable access to safe drinking water". This paper reviews the relevant research and concludes that it should not. Although HWTS can significantly improve water quality, it does not improve water quantity and access-key aspects of the MDG water target that are essential for optimal improvements in health and development. A policy that excludes HWTS from the MDG water target will discourage governments from diverting scarce public resources from comprehensive and long-term improvements in water supplies. At the same time, the health-oriented MDGs provide a sufficient case for scaling up effective and appropriate HWTS among target populations. Moreover, a health-based strategy for HWTS will help ensure that promotion of the intervention is driven by measurable improvements in outcomes rather than inputs, thus encouraging advances in both hardware and programmatic delivery that will make HWTS more effective, appropriate, and accessible to vulnerable populations.
Climate change and health effects in Northwest Alaska.
Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John
2011-01-01
This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. IMPLEMENTATION PROCESS: The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.
Climate change and health effects in Northwest Alaska
Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John
2011-01-01
This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. Background In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. Implementation process The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. Objective The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Findings Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. Conclusion The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures. PMID:22022304
[Pay attention to the human health risk of drinking low mineral water].
Shu, Weiqun
2015-10-01
The consumption of low mineral drinking water has been increasing around the world with the shortage of water resources and the development of advanced water treatment technologies. Evidences from systematic document reviews, ecological epidemiological observations, and experimental drinking water intervention studies indicate that lack of minerals in drinking water may cause direct or indirect harm to human health, among which, the associations of magnesium in water with cardiovascular disease, as well as calcium in water with osteoporosis, are well proved by sufficient evidence. This article points out that it is urgent to pay more attention to the issues about establishment of health risk evaluation system on susceptible consuming population, establishment of lab evaluation system on water quality and health effect for non-traditional drinking water, and program of safety mineralization for demineralized or desalinated water and so on.
van Grinsven, Hans JM; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M
2006-01-01
Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution. PMID:16989661
Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs
Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James
2005-01-01
Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519
The need for a reassessment of the safe upper limit of selenium in drinking water.
Vinceti, Marco; Crespi, Catherine M; Bonvicini, Francesca; Malagoli, Carlotta; Ferrante, Margherita; Marmiroli, Sandra; Stranges, Saverio
2013-01-15
Results of recent epidemiologic studies suggest the need to reassess the safe upper limit in drinking water of selenium, a metalloid with both toxicological and nutritional properties. Observational and experimental human studies on health effects of organic selenium compounds consumed through diet or supplements, and of inorganic selenium consumed through drinking water, have shown that human toxicity may occur at much lower levels than previously surmised. Evidence indicates that the chemical form of selenium strongly influences its toxicity, and that its biological activity may differ in different species, emphasizing the importance of the few human studies on health effects of the specific selenium compounds found in drinking water. Epidemiologic studies that investigated the effects of selenate, an inorganic selenium species commonly found in drinking water, together with evidence of toxicity of inorganic selenium at low levels in from in vitro and animal studies, indicate that health risks may occur at exposures below the current European Union and World Health Organization upper limit and guideline of 10 and 40 μg/l, respectively, and suggest reduction to 1 μg/l in order to adequately protect human health. Although few drinking waters are currently known to have selenium concentrations exceeding this level, the public health importance of this issue should not be overlooked, and further epidemiologic research is critically needed in this area. Copyright © 2012 Elsevier B.V. All rights reserved.
USING MEMBRANES TO CONCENTRATE DISINFECTION BYPRODUCTS FOR SUBSEQUENT HEALTH EFFECTS STUDIES
Chemical disinfection of water is a major public health advance that has decreased dramatically water-borne disease. Disinfecting agents react with naturally occurring organic and inorganic matter in water to produce a wide variety of disinfection byproducts (DBPs). Although mo...
The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey
ERIC Educational Resources Information Center
Calabrese, Edward J.; And Others
1978-01-01
The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)
Access to water provides economic relief through enhanced relationships in Kenya.
Zolnikov, Tara Rava; Blodgett-Salafia, Elizabeth
2017-03-01
Sub-Saharan Africa is comprised of low- and middle-income countries subject to the residual effects of chronic poverty. Poverty contributes to health disparities and social inequities. Public health strategies and solutions seek to remedy the effects of poverty. Providing access to quality water is one priority public health project that alleviates adverse health effects, but may have additional outcomes. Previous research has not thoroughly reviewed the economic relief and relationship changes from implemented water interventions. A qualitative phenomenological approach used 52 semi-structured interviews to understand relationship experiences among primary water gatherers and their families after implemented water interventions in a community. This study took place throughout the historically semi-arid eastern region in Kitui, Kenya, where community members have been beneficiaries of various water interventions. Prior to the water intervention, relationships were strained because of economic hardships. Households experienced economic difficulties in paying for children's school fees, buying bricks for housing structures, having water for house gardens, trees for shade in the compound, crops and providing water for their animals. After receiving access to water, relationships improved, because families were able to discuss and address economic challenges. Additional financial revenue was gained and used to pay for water to make bricks to sell or use on housing structures, expand on house gardens and agricultural crops, build new businesses, purchase water for animals, and construct local water spouts near the household. Access to water improved relationships, which encouraged economic growth. This information provides a critical component in understanding the interconnected nature between access to water, poverty and family relationships. Ultimately, this research suggests an increased need for access to quality water worldwide to improve both economic situations and relationships in low- and middle-income countries. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
George E. Dissmeyer
1999-01-01
The Importance of Safe Public Drinking Water The United States Congress justified passing the Safe Drinking Water Amendments (SDWA) of 1996 (P. L. 104-182) by stating "safe drinking water is essential to the protection of public health".For 50 years the basic axiom for public health protection has been safe drinking water...
Extreme Precipitation, Public Health Emergencies, and Safe Drinking Water in the USA.
Exum, Natalie G; Betanzo, Elin; Schwab, Kellogg J; Chen, Thomas Y J; Guikema, Seth; Harvey, David E
2018-06-01
This review examines the effectiveness of drinking water regulations to inform public health during extreme precipitation events. This paper estimates the vulnerability of specific populations to flooding in their public water system, reviews the literature linking precipitation to waterborne outbreaks, examines the role that Safe Drinking Water Act and Public Notification (PN) Rule have in public health emergencies, and reviews the effectiveness of the PN Rule during the 2017 Hurricane Maria in Puerto Rico. Public water systems in large metropolitan areas have substantial portions of their customer base at risk for a waterborne outbreak during a flooding event. The PN Rule are ambiguous for who is responsible for declaring a "waterborne emergency" following a natural disaster like Hurricane Maria. Revisions to the current PN Rule that mandate public notification and water quality sampling during extreme precipitation events are necessary to ensure the public is aware of their drinking water quality following these events.
Water and the environment: a natural resource or a limited luxury?
Leder, Karin; Sinclair, Martha I; McNeil, John J
The risk of contamination of drinking water supplies with microbial pathogens is minimised by modern approaches to water management, but continues to be the major public health concern. Chemical contaminants usually pose little health risk except at very high levels, but debate continues over the potential adverse health effects of low-level, chronic exposure to compounds such as disinfection byproducts. Recreational water contact can be associated with adverse health outcomes either from microbial infections or exposure to cyanobacterial toxins. Environmental issues such as increasing salinity and global warming are likely to affect the sustainability of our current drinking water supplies and increase the threat of waterborne disease outbreaks. New technologies, use of alternative water sources, such as rainwater tanks, water reuse and restrictions will undoubtedly be part of the solution to our diminishing water resources, but have the potential to introduce new health threats.
Health beliefs about bottled water: a qualitative study.
Ward, Lorna A; Cain, Owen L; Mullally, Ryan A; Holliday, Kathryn S; Wernham, Aaron G H; Baillie, Paul D; Greenfield, Sheila M
2009-06-19
There has been a consistent rise in bottled water consumption over the last decade. Little is known about the health beliefs held by the general public about bottled water as this issue is not addressed by the existing quantitative literature. The purpose of this study was to improve understanding of the public's health beliefs concerning bottled mineral water, and the extent to which these beliefs and other views they hold, influence drinking habits. A qualitative study using semi-structured interviews, with 23 users of the Munrow Sports Centre on the University of Birmingham campus. Health beliefs about bottled water could be classified as general or specific beliefs. Most participants believed that bottled water conferred general health benefits but were unsure as to the nature of these. In terms of specific health beliefs, the idea that the minerals in bottled water conferred a health benefit was the most commonly cited. There were concerns over links between the plastic bottle itself and cancer. Participants believed that bottled water has a detrimental effect on the environment. Convenience, cost and taste were influential factors when making decisions as to whether to buy bottled water; health beliefs were unimportant motivating factors. The majority of participants believed that bottled water has some health benefits. However, these beliefs played a minor role in determining bottled water consumption and are unlikely to be helpful in explaining recent trends in bottled water consumption if generalised to the UK population. The health beliefs elicited were supported by scientific evidence to varying extents. Most participants did not feel that bottled water conferred significant, if any, health benefits over tap water.
Davies, John-Mark; Mazumder, Asit
2003-07-01
Sustaining clean and safe drinking water sources is increasingly becoming a priority because of global pollution. The means of attaining and maintaining clean drinking water sources requires effective policies that identify, document, and reduce watershed risks. These risks are defined by their potential impact to human health. Health and risk are, therefore, indelibly linked because they are in part defined by each other. Understanding pathogen ecology and identifying watershed sources remains a priority because of the associated acute risks. Surface water quality changes resulting from inputs of human waste, nutrients and chemicals are associated with higher drinking water risks. Nutrient input can increase primary production and the resulting increase of organic matter results in greater disinfection by-product formation or requires greater treatment intensity. Many drinking water disease outbreaks have resulted from breaches in treatment facilities, therefore, even with greater treatment intensity poor source water quality intrinsically has greater associated health risks. Government and international agencies play a critical role in developing policy. The goal of maintaining water supplies whose availability is maximized and risks are minimized (i.e. sustainable) should be a vital part of such policy. Health risks are discussed in the context of a multi-barrier perspective and it is concluded that both passive (protection) and active (prescriptive management) management is necessary for sustainability. Canadian aboriginal water systems, British Columbian water policy and US EPA policies are given as examples. The basis for developing effective policies includes a strong reliance on sound science and effective instrumentation with careful consideration of stakeholders' interests. Only with such directed policies can the future availability of clean drinking water sources be ensured.
Big Data and Heath Impacts of Drinking Water Quality Violation
NASA Astrophysics Data System (ADS)
Allaire, M.; Zheng, S.; Lall, U.
2017-12-01
Health impacts of drinking water quality violations are only understood at a coarse level in the United States. This limits identification of threats to water security in communities across the country. Substantial under-reporting is suspected due to requirements at U.S. public health institutes that water borne illnesses be confirmed by health providers. In the era of `big data', emerging information sources could offer insight into waterborne disease trends. In this study, we explore the use of fine-resolution sales data for over-the-counter medicine to estimate the health impacts of drinking water quality violations. We also demonstrate how unreported water quality issues can be detected by observing market behavior. We match a panel of supermarket sales data for the U.S. at the weekly level with geocoded violations data from 2006-2015. We estimate the change in anti-diarrheal medicine sale due to drinking water violations using a fixed effects model. We find that water quality violations have considerable effects on medicine sales. Sales nearly double due to Tier 1 violations, which pose an immediate health risk, and sales increase 15.1 percent due to violations related to microorganisms. Furthermore, our estimate of diarrheal illness cases associated with water quality violations indicates that the Centers for Disease Control and Prevention (CDC) reporting system may only capture about one percent of diarrheal cases due to impaired water. Incorporating medicine sales data could offer national public health institutes a game-changing way to improve monitoring of disease outbreaks. Since many disease cases are not formally diagnosed by health providers, consumption information could provide additional information to remedy under-reporting issues and improve water security in communities across the United States.
Rapolienė, Lolita; Razbadauskas, Artūras; Jurgelėnas, Antanas
2015-01-01
Stress is an element of each human's life and an indicator of its quality. Thermal mineral waters have been used empirically for the treatment of different diseases for centuries. Aim of the Study. To investigate the effects of highly mineralised geothermal water balneotherapy on distress and health risk. Methodology. A randomized controlled clinical trial was performed with 130 seafarers: 65 underwent 2 weeks of balneotherapy with 108 g/L full-mineralisation bath treatment; the others were in control group. The effect of distress was measured using the General Symptoms Distress Scale. Factorial and logistic regression analyses were used for statistical analysis. Results. A significant positive effect on distress (P < 0.001) was established after 2 weeks of treatment: the number of stress symptoms declined by 60%, while the intensity of stress symptoms reduced by 41%, and the control improved by 32%. Health risks caused by distress were reduced, and resources increased, whereas the probability of general health risk decreased by 18% (P = 0.01). Conclusion. Balneotherapy with highly mineralised geothermal water reduces distress, by reducing the health risk posed by distress by 26%, increasing the health resources by 11%, and reducing probability of general health risk by 18%. Balneotherapy is an effective preventive tool and can take a significant place in integrative medicine. PMID:25866680
Health risks from acid rain: a Canadian perspective.
Franklin, C A; Burnett, R T; Paolini, R J; Raizenne, M E
1985-11-01
Acidic deposition, commonly referred to as acid rain, is causing serious environmental damage in eastern Canada. The revenues from forest products, tourism and sport fishing are estimated to account for about 8% of the gross national product. The impact on human health is not as clearcut and a multi-department program on the Long-Range Transport of Airborne Pollutants (LRTAP) was approved by the federal government in June 1980. The objectives of the LRTAP program are to reduce wet sulfate deposition to less than 20 kg/ha per year in order to protect moderately sensitive areas. This will require a 50% reduction in Canadian SO2 emissions east of the Saskatchewan/Manitoba border and concomitant reductions in the eastern U.S.A. The objectives of the health sector of the program are to assess the risk to health posed by airborne pollutants which are subjected to long-range transport and to monitor the influence of abatement programs. Two major epidemiology studies were undertaken in 1983, one in which the health effects related to acute exposure to transported air pollutants were studied in asthmatic and nonasthmatic children, and another in which the effects of chronic exposure to these pollutants were studied in school children living in towns with high and low levels of pollutants. Preliminary analysis of the data do not indicate major health effects, but definitive conclusions must await final analysis. Studies on the indirect effects of acid deposition on water quality have shown that acidified lake water left standing in the plumbing system can adversely affect water quality and that federally set guidelines for copper and lead are exceeded. Flushing of the system before using the water rectifies the situation. Additional studies are planned to further delineate the magnitude of the health effects of acidified lake water.
Natural mineral waters: chemical characteristics and health effects
Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa
2016-01-01
Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777
Aschengrau, Ann; Janulewicz, Patricia A; White, Roberta F; Vieira, Veronica M; Gallagher, Lisa G; Getz, Kelly D; Webster, Thomas F; Ozonoff, David M
2016-01-01
Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983, widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. A retrospective cohort study (the Cape Cod Health Study) was undertaken to examine possible health consequences of early-life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the effects of prenatal and childhood exposure on neurologic outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiologic research in this unique setting. Participants were identified by cross-matching birth certificates and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (n = 1689), neuropsychological tests (n = 63), vision examinations (n = 63), and magnetic resonance imaging (n = 42). Early-life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among individuals with prenatal and early childhood PCE exposure to unexposed individuals while considering the effect of confounding variables. The study found evidence that early-life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical nature of the exposure assessments. The Cape Cod Health Study demonstrates how scientists can take advantage of unique "natural experiments" to learn about the health effects of environmental pollution. This body of work has improved our understanding of the long-term health effects of early-life exposure to this common environmental contaminant and will help risk assessors and policymakers ensure that drinking water supplies in the United States are safe for vulnerable populations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Stoler, Justin; Fink, Günther; Weeks, John R.; Otoo, Richard Appiah; Ampofo, Joseph A.; Hill, Allan G.
2011-01-01
Intraurban differentials in safe drinking water in developing cities have been exacerbated by rapid population growth that exceeds expansion of local water infrastructure. In Accra, Ghana, municipal water is rationed to meet demand, and the gap in water services is increasingly being filled by private water vendors selling packaged “sachet” water. Sachets extend drinking water coverage deeper into low-income areas and alleviate the need for safe water storage, potentially introducing a health benefit over stored tap water. We explore correlates of using sachets as the primary drinking water source for 2,093 women in 37 census areas classified as slums by UN-Habitat, and links between sachet water and reported diarrhea episodes in a subset of 810 children under five. We find that neighborhood rationing exerts a strong effect on a household's likelihood of buying sachet water, and that sachet customers tend to be the poorest of the poor. Sachet use is also associated with higher levels of self-reported overall health in women, and lower likelihood of diarrhea in children. We conclude with implications for sachet regulation in Accra and other sub-Saharan cities facing drinking water shortages. PMID:22018970
Benefit transfer protocol for long-term health risk valuation: A case of surface water contamination
NASA Astrophysics Data System (ADS)
Kask, Susan B.; Shogren, Jason F.
1994-10-01
In response to scarce financial resources, economists have promoted the concept of benefit transfer as a cost-effective alternative to new nonmarket valuation studies. Recent discussion on benefit transfer for improved water quality has focused on recreational benefits. While useful, the discussion must now be expanded to include another key benefit from improved water quality: the reduction in risk to public health. This paper develops a protocol for benefit transfer of long-term health risk reduction and presents a case study for surface water contamination. Challenges such as the multiple sources of risk, the mortality and morbidity effects indicated by a variety of symptoms, the long latency period between cause and effect, and an individual's ability to privately or collectively reduce the probability or severity of the risk are discussed.
Health beliefs about bottled water: a qualitative study
Ward, Lorna A; Cain, Owen L; Mullally, Ryan A; Holliday, Kathryn S; Wernham, Aaron GH; Baillie, Paul D; Greenfield, Sheila M
2009-01-01
Background There has been a consistent rise in bottled water consumption over the last decade. Little is known about the health beliefs held by the general public about bottled water as this issue is not addressed by the existing quantitative literature. The purpose of this study was to improve understanding of the public's health beliefs concerning bottled mineral water, and the extent to which these beliefs and other views they hold, influence drinking habits. Methods A qualitative study using semi-structured interviews, with 23 users of the Munrow Sports Centre on the University of Birmingham campus. Results Health beliefs about bottled water could be classified as general or specific beliefs. Most participants believed that bottled water conferred general health benefits but were unsure as to the nature of these. In terms of specific health beliefs, the idea that the minerals in bottled water conferred a health benefit was the most commonly cited. There were concerns over links between the plastic bottle itself and cancer. Participants believed that bottled water has a detrimental effect on the environment. Convenience, cost and taste were influential factors when making decisions as to whether to buy bottled water; health beliefs were unimportant motivating factors. Conclusion The majority of participants believed that bottled water has some health benefits. However, these beliefs played a minor role in determining bottled water consumption and are unlikely to be helpful in explaining recent trends in bottled water consumption if generalised to the UK population. The health beliefs elicited were supported by scientific evidence to varying extents. Most participants did not feel that bottled water conferred significant, if any, health benefits over tap water. PMID:19545357
NASA Astrophysics Data System (ADS)
Fuge, R.
2007-05-01
Drinking water represents a major pathway of trace elements into the human body. As such, groundwaters, the chemistry of which reflect water/rock interaction, can be a source of trace elements which will have a marked health effect on humans consuming them. Health problems associated with the consumption of groundwater enriched in various elements and compounds have been recorded for many years. For example, high-arsenic groundwaters used for public water supply were first associated with harmful health effects as early as 1917 in Córdoba Province in Argentina, where the local population suffered from skin disorders. Subsequently, in the 1960s consumption of high-arsenic groundwaters was identified as a factor in the aetiology of "black foot disease", an endemic vascular disease, in Taiwan. However, it is problems associated with the very high-arsenic groundwaters of the highly populous Ganges delta area of Bangladesh and West Bengal that has more recently highlighted the health problem of consuming high-arsenic waters. The most obvious problems of excess arsenic consumption through drinking water are arsenical skin lesions, the severity of which being generally correlated with arsenic content of the water. A high incidence of cancers of the skin, bladder and other organs has been recorded in the high-arsenic drinking water areas of the world. A high incidence of vascular disease, found in the arsenic-rich area of Taiwan, has also been shown to occur in Bangladesh. In addition, it has been suggested that high arsenic in drinking water results in increased incidence of diabetes mellitus. Fluorine is another element long recognised as having a major effect on the well-being of humans. Consumption of high-fluorine waters were first identified as having a detrimental effect on teeth in the 1920s and 30s. It was subsequently shown that where fluorine is present in drinking waters at concentrations of around 0.5 to 1 mg/L it can have beneficial effects on humans, resulting in healthy teeth and bones. However, several areas of the world where potable waters derive from the ground, very high concentrations of fluorine, generally in excess of 4 mg/L have resulted in dental fluorosis and, at very high concentrations, crippling skeletal fluorosis. The detrimental effects of consuming elevated amounts of fluorine-rich drinking water are exacerbated by a poor, low-protein diet. Radioactive elements such as radon and uranium can be transported in groundwater. Domestic water supplies enriched in radon can in some areas represent a major pathway into humans, being released during showering etc, it can be inhaled and as such contributes to the incidence of lung cancer. In addition to the potential health problems of its radioactivity, uranium has been shown to be a nephrotoxin. High-uranium groundwaters consumed by humans over the short term can result in kidney damage.
Levi, Yves
2009-06-01
Analytical laboratories can now identify and quantify an impressive number of "new" pollutants present at very low concentrations in water. Nanotechnology products are a new cause for concern. " Emerging " pollutants are defined as substances that were not previously sought or detected (plasticizers, drugs, chlorination byproducts, persistant organic pollutants, ...) and that are now being identified in many continental water resources. The biological actions of these substances, alone and in combination with other more " classical "pollutants, include such effects as endocrine disruption. Contaminants may be present in surface and groundwater resources, may be generated during treatment, and are found in drinking water distribution networks. In industrialized countries, the main source of emerging pollutants for humans is not water, but rather food, cosmetics and air. Urgent measures are needed to protect biodiversity and human health, including quantitative risk assessment, toxicologic studies of xenobiotic mixtures and chronic effects, strategies to protect water resources, technological advances in wastewater treatment, reliable potable water production, and new inert materials for transport and storage. Good sanitation and safe tap water are major contributors to human health and well-being Major efforts and investments are needed, based on rigorous, objective assessments of risks for the environment and public health.
High adherence is necessary to realize health gains from water quality interventions.
Brown, Joe; Clasen, Thomas
2012-01-01
Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. Results suggest that high adherence is essential in order to realize potential health gains from HWT.
High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions
Brown, Joe; Clasen, Thomas
2012-01-01
Background Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. Methods and Findings We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. Conclusions Results suggest that high adherence is essential in order to realize potential health gains from HWT. PMID:22586491
Public health and economic risk assessment of waterborne contaminants and pathogens in Finland.
Juntunen, Janne; Meriläinen, Päivi; Simola, Antti
2017-12-01
This study shows that a variety of mathematical modeling techniques can be applied in a comprehensive assessment of the risks involved in drinking water production. In order to track the effects from water sources to the end consumers, we employed four models from different fields of study. First, two models of the physical environment, which track the movement of harmful substances from the sources to the water distribution. Second, a statistical quantitative microbial risk assessment (QMRA) to assess the public health risks of the consumption of such water. Finally, a regional computable general equilibrium (CGE) model to assess the economic effects of increased illnesses. In order to substantiate our analysis, we used an illustrative case of a recently built artificial recharge system in Southern Finland that provides water for a 300,000 inhabitant area. We examine the effects of various chemicals and microbes separately. Our economic calculations allow for direct effects on labor productivity due to absenteeism, increased health care expenditures and indirect effects for local businesses. We found that even a considerable risk has no notable threat to public health and thus barely measurable economic consequences. Any epidemic is likely to spread widely in the urban setting we examined, but is also going to be short-lived in both public health and economic terms. Our estimate for the ratio of total and direct effects is 1.4, which indicates the importance of general equilibrium effects. Furthermore, the total welfare loss is 2.4 times higher than the initial productivity loss. The major remaining uncertainty in the economic assessment is the indirect effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Potential health consequences of ground-water contamination by nitrates in Nebraska.
Weisenburger, D D
1993-01-01
Ground water serves as the primary source of drinking water for nearly all of rural Nebraska. However, ground-water contamination by nitrates, largely due to the use of fertilizers, is an increasing problem. In an ecologic study, the author found that counties characterized by high fertilizer usage and significant ground-water contamination by nitrates also had a high incidence of non-Hodgkin's lymphoma. Other potential health effects of nitrates in drinking water are also discussed.
Potential Health Impacts of Hard Water
Sengupta, Pallav
2013-01-01
In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents. PMID:24049611
Potential health impacts of hard water.
Sengupta, Pallav
2013-08-01
In the past five decades or so evidence has been accumulating about an environmental factor, which appears to be influencing mortality, in particular, cardiovascular mortality, and this is the hardness of the drinking water. In addition, several epidemiological investigations have demonstrated the relation between risk for cardiovascular disease, growth retardation, reproductive failure, and other health problems and hardness of drinking water or its content of magnesium and calcium. In addition, the acidity of the water influences the reabsorption of calcium and magnesium in the renal tubule. Not only, calcium and magnesium, but other constituents also affect different health aspects. Thus, the present review attempts to explore the health effects of hard water and its constituents.
Arsenic exposure and its impact on health in Chile.
Ferreccio, Catterina; Sancha, Ana María
2006-06-01
The problem of arsenic in Chile was reviewed. In Chile, the population is exposed to arsenic naturally via drinking-water and by air pollution resulted from mining activities. The sources of arsenic were identified to estimate the exposure of population to arsenic through air, water, and food. Health effects, particularly early effects, observed in children and adults, such as vascular diseases (premature cardiac infarct), respiratory illnesses (bronchiectasis), and skin lesions have been described. Chronic effects, such as lung and bladder cancers, were reported 20 years after peak exposure and persisted 27 years after mitigation measures for removing arsenic from drinking surface water were initiated. Although the effects of arsenic are similar in different ethnic and cultural groups (e.g. Japanese, Chinese, Indian, Bangladeshi, American, and Taiwanese), variations could be explained by age at exposure, the dose received, smoking, and nutrition. Since health effects were observed at arsenic levels of 50 microg/L in drinking-water, it is advised that Chile follows the World Health Organization's recommendation of 10 microg/L. The Chilean experience in removal of arsenic suggests that it is feasible to reach this level using the conventional coagulation process.
ERIC Educational Resources Information Center
Pettyjohn, Wayne A.
1972-01-01
Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)
Demarest, Jeffrey; Pagsuyoin, Sheree; Learmonth, Gerard; Mellor, Jonathan; Dillingham, Rebecca
2014-01-01
Diarrhea, the second leading cause of child morbidity and mortality, can have detrimental effects in the physical and cognitive development of children in developing countries. Health interventions (e.g., increased access to health services and safe water) designed to address this problem are difficult to implement in resource-limited settings. In this paper, we present a tool for understanding the complex relationship between water and public health in rural areas of a developing country. A spatial and temporal agent-based model (ABM) was developed to simulate the current water, sanitation, and health status in two villages in Limpopo Province, South Africa. The model was calibrated using empirical data and published sources. It was used to simulate the effects of poor water quality on the frequency of diarrheal episodes in children, and consequently on child development. Preliminary simulation results show that at the current total coliform levels in the water sources of the studied villages, children are expected to experience stunting by as much as −1.0 standard deviations from the World Health Organization height norms. With minor modifications, the calibrated ABM can be used to design and evaluate intervention strategies for improving child health in these villages. The model can also be applied to other regions worldwide that face the same environmental challenges and conditions as the studied villages. PMID:25530709
Bustaffa, Elisa; Bianchi, Fabrizio
2014-01-01
Arsenic and its inorganic compounds are classified as human carcinogens. Several epidemiological studies conducted in areas of the world characterized by high arsenic concentration in drinking water, even up to 3,000 μg/l, report associations between arsenic exposure and skin, bladder, lung, liver and kidney cancer as well as cardiovascular diseases, diabetes and reproductive and developmental effects. Since general population is not exposed to these high arsenic concentrations in the last years attention focused on adverse health effects that low-to-moderate arsenic concentrations (0-150 μg/l) in drinking water could induce. The World Health Organization recommends a maximum limit of 10 μg/l for arsenic in drinking water. Almost all epidemiological studies conducted on populations exposed to low-to-moderate arsenic concentrations in drinking water are limited due to problems arising from both individual exposure assessment and low subjects number. The aim of the present review is to collect literature-based evidences regarding adverse health effects associated with exposure to low-to-moderate arsenic concentrations in drinking water (10-150 μg/l) in order to obtain a comprehensive picture of the health outcomes that such exposure can have on general population.
Kponee, Kalé Zainab; Chiger, Andrea; Kakulu, Iyenemi Ibimina; Vorhees, Donna; Heiger-Bernays, Wendy
2015-11-06
The oil-rich Niger Delta suffers from extensive petroleum contamination. A pilot study was conducted in the region of Ogoniland where one community, Ogale, has drinking water wells highly contaminated with a refined oil product. In a 2011 study, the United Nations Environment Programme (UNEP) sampled Ogale drinking water wells and detected numerous petroleum hydrocarbons, including benzene at concentrations as much as 1800 times higher than the USEPA drinking water standard. UNEP recommended immediate provision of clean drinking water, medical surveillance, and a prospective cohort study. Although the Nigerian government has provided emergency drinking water, other UNEP recommendations have not been implemented. We aimed to (i) follow up on UNEP recommendations by investigating health symptoms associated with exposure to contaminated water; and (ii) assess the adequacy and utilization of the government-supplied emergency drinking water. We recruited 200 participants from Ogale and a reference community, Eteo, and administered questionnaires to investigate water use, perceived water safety, and self-reported health symptoms. Our multivariate regression analyses show statistically significant associations between exposure to Ogale drinking water and self-reported health symptoms consistent with petroleum exposure. Participants in Ogale more frequently reported health symptoms related to neurological effects (OR = 2.8), hematological effects (OR = 3.3), and irritation (OR = 2.7). Our results are the first from a community relying on drinking water with such extremely high concentrations of benzene and other hydrocarbons. The ongoing exposure and these pilot study results highlight the need for more refined investigation as recommended by UNEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-25
The Colbert Landfill NPL site is located about fifteen miles north of Spokane, Washington. Area ground water is contaminated with several volatile organic chemicals. The medium of most concern regarding potential health effects is the ground water. Potential exposure pathways include ingestion and inhalation of volatiles from contaminated ground water and dermal exposure to contaminated ground water. The susceptible populations are remedial workers performing well water sampling on-site and populations off-site utilizing contaminated wells at levels that are of a potential health concern, for drinking, bathing, and irrigation purposes.
Alam, Noore; Corbett, Stephen J; Ptolemy, Helen C
2008-01-01
To assess the health risks associated with consumption of drinking water with elevated nickel concentration in a NSW country town named Sampleton. We used enHealth Guidelines (2002) as our risk assessment tool. Laboratory test results for nickel in water samples were compared with the Australian Drinking Water Guidelines 2004 and the World Health Organization's (WHO) Guidelines for Drinking Water Quality 2005. The mean nickel concentration in the drinking water samples tested over a 4-year period (2002-2005) was 0.03 mg/L (95% CI: 0.02-0.04). The average daily consumption of two litres of water by a 70-kg adult provided 0.06 mg (0.03 mg x 2) of nickel, which was only 7% of the lowest observed adverse effect level (LOAEL) based on experiments on nickel-sensitive people in a fasting state. The mean nickel concentration in drinking water appears to have no health risks for the inhabitants of Sampleton.
Aschengrau, Ann; Janulewicz, Patricia A.; White, Roberta F.; Vieira, Veronica M.; Gallagher, Lisa G.; Getz, Kelly D.; Webster, Thomas F.; Ozonoff, David M.
2016-01-01
Background Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983 widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. Objectives A retrospective cohort study (“the Cape Cod Health Study”) was undertaken to examine possible health consequences of early life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the impact of prenatal and childhood exposure on neurological outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiological research in this unique setting. Methods Subjects were identified by cross-matching birth certificate and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (N= 1,689), neuropsychological tests (N=63), vision exam (N=63), and magnetic resonance imaging (N=42). Early life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among subjects with prenatal and early childhood PCE exposure to unexposed subjects while considering the impact of confounding variables. Results The study found evidence that early life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical nature of the exposure assessments. Conclusions The Cape Cod Health Study demonstrates how scientists can take advantage of unique “natural experiments” to learn about the health effects of environmental pollution. This body of work has improved our understanding of the long-term health effects of early life exposure to this common environmental contaminant and will help risk assessors and policy makers ensure that U.S. drinking water supplies are safe for vulnerable populations. PMID:27325074
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... information: Community water fluoridation is the most cost-effective method of delivering fluoride for the... Drinking Water for Prevention of Dental Caries AGENCY: Office of the Secretary, Department of Health and.... The U.S. Public Health Service recommendations for optimal fluoride concentrations were based on...
Presence and risk assessment of pharmaceuticals in surface water and drinking water.
Sanderson, Hans
2011-01-01
Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low--but the public and decision-makers are concerned and would like the matter investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water. The aim of this paper is to summarize the state-of-the-science and the ongoing international debate on the topic.
NASA Astrophysics Data System (ADS)
Törnqvist, Rebecka; Jarsjö, Jerker
2010-05-01
Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in the reservoir water for the first time in a decade. However, a relatively pronounced temporal variability in concentrations was observed for many of the substances, implying that the reservoir could contain low-risk waters temporarily. Health risk factors related to lead and chromium concentrations in groundwater were up to 200 times higher than for river water. The identified major divergence in health risk between groundwater and surface water illuminates the risk of using groundwater for drinking water supply during recurrent surface water deficits in the study area. However, the severe water scarcity and lack of financial resources in the region makes the choices of alternative water supply sources limited. Due to the presence of multiple contaminants, it appears reasonable that the aggregated toxicity of contaminant mixtures should be in focus in surface and groundwater water monitoring and management in the region. Key words: Aral Sea, Drinking water, Groundwater, Health Risk, Surface Water
Freshwater availability and water fetching distance affect child health in sub-Saharan Africa.
Pickering, Amy J; Davis, Jennifer
2012-02-21
Currently, more than two-thirds of the population in Africa must leave their home to fetch water for drinking and domestic use. The time burden of water fetching has been suggested to influence the volume of water collected by households as well as time spent on income generating activities and child care. However, little is known about the potential health benefits of reducing water fetching distances. Data from almost 200, 000 Demographic and Health Surveys carried out in 26 countries were used to assess the relationship between household walk time to water source and child health outcomes. To estimate the causal effect of decreased water fetching time on health, geographic variation in freshwater availability was employed as an instrumental variable for one-way walk time to water source in a two-stage regression model. Time spent walking to a household's main water source was found to be a significant determinant of under-five child health. A 15-min decrease in one-way walk time to water source is associated with a 41% average relative reduction in diarrhea prevalence, improved anthropometric indicators of child nutritional status, and a 11% relative reduction in under-five child mortality. These results suggest that reducing the time cost of fetching water should be a priority for water infrastructure investments in Africa.
Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water.
Wu, Bing; Zhang, Xuxiang; Zhang, Xiaolin; Yasun, Aishangjiang; Zhang, Yan; Zhao, Dayong; Ford, Tim; Cheng, Shupei
2009-08-01
Determination of 24 semi-volatile organic compounds (SVOCs) and 24 trace elements in water samples was conducted in order to investigate the quality of the Nanjing source of drinking water taken from Yangtze River. The total concentrations of SVOCs and trace elements were in the range of 1,951-11,098 ng/l and 51,274-72,384 microg/l, respectively. No significant seasonal changes were found for the pollutants' concentrations. A primary health risk assessment was carried out to evaluate potential health effects. Risk quotients involving carcinogenic effects for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, bis(2-ethylhexyl)phthalate and arsenic were >1 under the worst-case scenario. The results of this study demonstrate the importance of further studies on the environmental health effects of exposure to the source water.
Mabhaudhi, Tafadzwanashe; Chibarabada, Tendai; Modi, Albert
2016-01-01
Whereas sub-Saharan Africa’s (SSA) water scarcity, food, nutrition and health challenges are well-documented, efforts to address them have often been disconnected. Given that the region continues to be affected by poverty and food and nutrition insecurity at national and household levels, there is a need for a paradigm shift in order to effectively deliver on the twin challenges of food and nutrition security under conditions of water scarcity. There is a need to link water use in agriculture to achieve food and nutrition security outcomes for improved human health and well-being. Currently, there are no explicit linkages between water, agriculture, nutrition and health owing to uncoordinated efforts between agricultural and nutrition scientists. There is also a need to develop and promote the use of metrics that capture aspects of water, agriculture, food and nutrition. This review identified nutritional water productivity as a suitable index for measuring the impact of a water-food-nutrition-health nexus. Socio-economic factors are also considered as they influence food choices in rural communities. An argument for the need to utilise the region’s agrobiodiversity for addressing dietary quality and diversity was established. It is concluded that a model for improving nutrition and health of poor rural communities based on the water-food-nutrition-health nexus is possible. PMID:26751464
The Interconnectedness of Water and Health: Translating Science Into Public Health-driven Policy
NASA Astrophysics Data System (ADS)
Lichtveld, M.
2017-12-01
Louisiana and other U.S. Gulf Coast communities' unique vulnerability stems from three interconnected stressors they face: historic health disparities, persistent environmental stressors, and a geography prone to both natural and technological disasters. The health of the ecosystem is inextricably linked to that of humans. Specifically, water presents both a central asset and an intransigent environmental health threat. Waterborne illnesses associated with infectious organisms, chemical contaminants, coastal erosion, natural and technological disasters such as hurricanes and oil spills, as well as climate change-associated sea level rise and dead zones, all can negatively impact human health. Existing water-related policies at the federal, state, and local levels have failed to effectively protect the health of communities and their environment to date. For example, despite the existence of the Clean Water Act and the Safe Drinking Water Act, oil spills and drinking water contamination continue to pose significant threats to communities' health and wellbeing. This presentation will examine water-related threats to Gulf Coast communities and their ecosystem. Emphasis will be placed on key examples of policy failure and the impact such failures. A public health-driven framework will demonstrate how science can inform evidence- based policy and in turn prevention-driven public health practice.
Angry, Scared, and Unsure: Mental Health Consequences of Contaminated Water in Flint, Michigan.
Cuthbertson, Courtney A; Newkirk, Cathy; Ilardo, Joan; Loveridge, Scott; Skidmore, Mark
2016-12-01
Natural and manmade crises impact community-level behavioral health, including mental health and substance use. This article shares findings from a larger project about community behavioral health, relevant to the ongoing water crisis in Flint, Michigan, using data from a larger study, involving monthly surveys of a panel of key informants from Genesee County. The data come from open-response questions and are analyzed as qualitative data using grounded theory techniques. Although respondents were not asked about the water issues in Flint, participants commented that the water situation was increasing stress, anxiety, and depression among the city's population. Participants thought these mental health issues would affect the entire community but would be worse among low-income, African American populations in the city. Mental health consequences were related not only to the water contamination but to distrust of public officials who are expected and have the authority to resolve the issues. The mental health effects of this public health crisis are significant and have received inadequate attention in the literature. Public health response to situations similar to the water issues in Flint should include sustained attention mental health.
Chemical qualities of water that contribute to human health in a positive way
Hopps, Howard C.
1986-01-01
The emphasis on harmful substances that may occur in potable waters has almost obscured the fact that important beneficial constituents are commonly present.The chemical substances in water that make positive contributions to human health act mainly in two ways: (i) nutritionally, by supplying essential macro and micro elements that the diet (excluding water) may not provide in adequate amounts (for example, Mg, I and Zn); and (ii) by providing macro and micro elements that inhibit the absorption and/or effects of toxic elements such as Hg, Pb and Cd. Specific examples of these beneficial effects will be given, also examples of harmful effects on health that may result from excessive intake of these ordinarily beneficial elements.Because concentrations of the essential macro and micro elements that occur in natural, potable waters vary greatly, depending upon their source, geographic considerations are very important in any studies attempting to relate water quality to health. In this context, the inverse relationship between hard water and cardiovascular disease will be discussed. Specific data relating hardness and Mg and Ca content of potable waters to specific geographic regions of the U.S.A. will be presented. These data show a strong positive correlation between low Mg content and decreased longevity, and between high Ca and Mg content and increased longevity. In the regions considered, increased longevity correlates strongly with decreased cardiovascular mortality, and the decreased longevity with increased cardiovascular mortality.
Rahman, M F; Yanful, E K; Jasim, S Y
2009-06-01
Endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) are a group of chemical compounds with diverse physical and chemical properties. Recent studies have indicated undesired effects of EDCs and PPCPs at their reported trace concentrations (ng l(-1) to microg l(-1)). This paper reviews the current knowledge on the sources, properties, occurrence and health impacts of EDCs and PPCPs, and their removal from drinking water using ozonation and ozone/hydrogen peroxide-based advanced oxidation. The paper also examines the potential threats posed by these chemicals to drinking water and public health. While these compounds are known to have adverse effects on ecosystem health, notably in the fish population, a similar link is yet to be established between ingestion of these compounds through drinking water and human health. In addition, data on the effectiveness of existing methods for the removal of these compounds are not conclusive. Further studies are required to characterize risks, and also to evaluate and optimize existing removal processes. Also concerted international effort is urgent to cut down the risk of exposure and restrain the production and marketing of toxic chemicals.
The Healthy Men Study (HMS) is a prospective multisite community study on drinking water disinfection byproducts (DBPs) and male reproductive health. We are testing whether exposure to DBPs in drinking water may be associated with altered semen quality, a hypothesis derived from...
Begum, Shaheen; Shah, Mohammad Tahir; Muhammad, Said; Khan, Sardar
2015-12-01
This study investigates the drinking water (groundwater and surface water) quality and potential risk assessment along mafic and ultramafic rocks in the Swat district of Khyber Pakhtunkhwa Provence, Pakistan. For this purpose, 82 groundwater and 33 surface water samples were collected and analyzed for physico-chemical parameters. Results showed that the majority of the physico-chemical parameters were found to be within the drinking water guidelines set by the World Health Organization. However, major cationic metals such as magnesium (Mg), and trace metals (TM) including iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr) and cobalt (Co) showed exceeded concentrations in 13%, 4%, 2%, 20%, 20% and 55% of water samples, respectively. Health risk assessment revealed that the non-carcinogenic effects or hazard quotient values through the oral ingestion pathway of water consumption for the TM (viz., Fe, Cr and Mn) were found to be greater than 1, could result in chronic risk to the exposed population. Results of statistical analyses revealed that mafic and ultramafic rocks are the main sources of metal contamination in drinking water, especially Ni and Cr. Both Ni and Cr have toxic health effects and therefore this study suggests that contaminated sites should be avoided or treated for drinking and domestic purposes.
A health risk assessment for fluoride in Central Europe.
Fordyce, F M; Vrana, K; Zhovinsky, E; Povoroznuk, V; Toth, G; Hope, B C; Iljinsky, U; Baker, J
2007-04-01
Like many elements, fluorine (which generally occurs in nature as fluoride) is beneficial to human health in trace amounts, but can be toxic in excess. The links between low intakes of fluoride and dental protection are well known; however, fluoride is a powerful calcium-seeking element and can interfere with the calcified structure of bones and teeth in the human body at higher concentrations causing dental or skeletal fluorosis. One of the main exposure routes is via drinking water and the World Health Organisation currently sets water quality guidelines for the element. In Central Europe, groundwater resources that exceed the guideline value of 1.5 mg l-1 are widespread and effects on health of high fluoride in water have been reported. The aim of the current project was to develop a geographic information system (GIS) to aid the identification of areas where high-fluoride waters and fluorosis may be a problem; hence, where water treatment technologies should be targeted. The development of the GIS was based upon the collation and digitisation of existing information relevant to fluoride risk in Ukraine, Moldova, Hungary and Slovakia assembled for the first time in a readily accessible form. In addition, geochemistry and health studies to examine in more detail the relationships between high-fluoride drinking waters and health effects in the population were carried out in Moldova and Ukraine demonstrating dental fluorosis prevalence rates of 60-90% in adolescents consuming water containing 2-7 mg l-1 fluoride.
HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
IV. DISTRIBUTION OF ARSENIC CONCENTRATIONS IN WELLS
Zhixiong Ning, B.S., Zhiyi Liu,B.S., Shiying Zhang, B.S., Chenglong Ma, B.S., Inner Mongolia Ba Men Anti-epidemic Station, Michael Ri...
Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: III. Neurological Symptoms and Pin-prick Measures
Yanhong Li, M.D.,Yajuan.Xia, M.D., Kegong Wu, M.D., Inner Mongolia Center For Endemic Disease Control and Research, Ling Ling He, B.S., Zhi...
HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC IN DRINKING WATER IN INNER MONGOLIA: II. VIBROTACTILE AND VISUAL MEASURES.
David Otto, Ph.D., Judy Mumford, Ph.D., Richard Kwok, M.S.P.H., Ken Hudnell, Ph.D.,
U.S. Environmental Protection Agency; Yanhong Li, M.D., Yajuan ...
Connecting nitrogen deposition and ecosystem services
There are tremendous human health and well-being consequences of nitrogen release to the atmosphere, land and water. The effects on human health are related to the fundamental ecosystem services providing clean air and water for human consumption. Among the highest available da...
Francis, Mark Rohit; Nagarajan, Guru; Sarkar, Rajiv; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar
2015-07-30
Acceptance and long-term sustainability of water quality interventions are pivotal to realizing continued health benefits. However, there is limited research attempting to understand the factors that influence compliance to or adoption of such interventions. Eight focus group discussions with parents of young children--including compliant and not compliant households participating in an intervention study, and three key-informant interviews with village headmen were conducted between April and May 2014 to understand perceptions on the effects of unsafe water on health, household drinking water treatment practices, and the factors influencing acceptance and sustainability of an ongoing water quality intervention in a rural population of southern India. The ability to recognize health benefits from the intervention, ease of access to water distribution centers and the willingness to pay for intervention maintenance were factors facilitating acceptance and sustainability of the water quality intervention. On the other hand, faulty perceptions on water treatment, lack of knowledge about health hazards associated with drinking unsafe water, false sense of protection from locally available water, resistance to change in taste or odor of water and a lack of support from male members of the household were important factors impeding acceptance and long term use of the intervention. This study highlights the need to effectively involve communities at important stages of implementation for long term success of water quality interventions. Timely research on the factors influencing uptake of water quality interventions prior to implementation will ensure greater acceptance and sustainability of such interventions in low income settings.
On-plot drinking water supplies and health: A systematic review.
Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie
2016-07-01
Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. Copyright © 2016 Elsevier GmbH. All rights reserved.
Health risks from acid rain: a Canadian perspective.
Franklin, C A; Burnett, R T; Paolini, R J; Raizenne, M E
1985-01-01
Acidic deposition, commonly referred to as acid rain, is causing serious environmental damage in eastern Canada. The revenues from forest products, tourism and sport fishing are estimated to account for about 8% of the gross national product. The impact on human health is not as clearcut and a multi-department program on the Long-Range Transport of Airborne Pollutants (LRTAP) was approved by the federal government in June 1980. The objectives of the LRTAP program are to reduce wet sulfate deposition to less than 20 kg/ha per year in order to protect moderately sensitive areas. This will require a 50% reduction in Canadian SO2 emissions east of the Saskatchewan/Manitoba border and concomitant reductions in the eastern U.S.A. The objectives of the health sector of the program are to assess the risk to health posed by airborne pollutants which are subjected to long-range transport and to monitor the influence of abatement programs. Two major epidemiology studies were undertaken in 1983, one in which the health effects related to acute exposure to transported air pollutants were studied in asthmatic and nonasthmatic children, and another in which the effects of chronic exposure to these pollutants were studied in school children living in towns with high and low levels of pollutants. Preliminary analysis of the data do not indicate major health effects, but definitive conclusions must await final analysis. Studies on the indirect effects of acid deposition on water quality have shown that acidified lake water left standing in the plumbing system can adversely affect water quality and that federally set guidelines for copper and lead are exceeded. Flushing of the system before using the water rectifies the situation. Additional studies are planned to further delineate the magnitude of the health effects of acidified lake water. Images FIGURE 1. FIGURE 2. PMID:4076081
Future challenges to protecting public health from drinking-water contaminants.
Murphy, Eileen A; Post, Gloria B; Buckley, Brian T; Lippincott, Robert L; Robson, Mark G
2012-04-01
Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation.
Future Challenges to Protecting Public Health from Drinking-Water Contaminants
Murphy, Eileen A.; Post, Gloria B.; Buckley, Brian T.; Lippincott, Robert L.; Robson, Mark G.
2014-01-01
Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation. PMID:22224887
Peckham, Stephen; Awofeso, Niyi
2014-01-01
Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed.
2014-01-01
Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570
Yoshida, Takahiko; Yamauchi, Hiroshi; Fan Sun, Gui
2004-08-01
Chronic arsenic (As) poisoning has become a worldwide public health issue. Most human As exposure occurs from consumption of drinking water containing high amounts of inorganic As (iAs). In this paper, epidemiological studies conducted on the dose-response relationships between iAs exposure via the drinking water and related adverse health effects are reviewed. Before the review, the methods for evaluation of the individual As exposure are summarized and classified into two types, that is, the methods depending on As concentration of the drinking water and the methods depending on biological monitoring for As exposure; certain methods may be applied as optimum As exposure indexes to study dose-response relationship based on various As exposure situation. Chronic effects of iAs exposure via drinking water include skin lesions, neurological effects, hypertension, peripheral vascular disease, cardiovascular disease, respiratory disease, diabetes mellitus, and malignancies including skin cancer. The skin is quite sensitive to arsenic, and skin lesions are some of the most common and earliest nonmalignant effects related to chronic As exposure. The increase of prevalence in the skin lesions has been observed even at the exposure levels in the range of 0.005-0.01 mg/l As in drinking waters. Skin, lung, bladder, kidney, liver, and uterus are considered as sites As-induced malignancies, and the skin is though to be perhaps the most sensitive site. Prospective studies in large area of endemic As poisoning, like Bangladesh or China, where the rate of malignancies is expected to increase within the next several decades, will help to clarify the dose-response relationship between As exposure levels and adverse health effects with enhanced accuracy.
HEALTH EFFECTS AND RISK ASSESSMENT OF ARSENIC
Abstract - In this review, we will focus on the effects of arsenic (As) exposure from drinking water sources. The primary inorganic As species in water are arsenate (V) and/or arsenite (III); their proportions depend on the water's redox potential and pH. Many As contamination...
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
Barskey, Albert E.; Shah, Priti P.; Schrag, Stephanie; Whitney, Cynthia G.; Arduino, Matthew J.; Reddy, Sujan C.; Kunz, Jasen M.; Hunter, Candis M.; Raphael, Brian H.; Cooley, Laura A.
2017-01-01
Background Legionnaires’ disease, a severe pneumonia, is typically acquired through inhalation of aerosolized water containing Legionella bacteria. Legionella can grow in the complex water systems of buildings, including health care facilities. Effective water management programs could prevent the growth of Legionella in building water systems. Methods Using national surveillance data, Legionnaires’ disease cases were characterized from the 21 jurisdictions (20 U.S. states and one large metropolitan area) that reported exposure information for ≥90% of 2015 Legionella infections. An assessment of whether cases were health care–associated was completed; definite health care association was defined as hospitalization or long-term care facility residence for the entire 10 days preceding symptom onset, and possible association was defined as any exposure to a health care facility for a portion of the 10 days preceding symptom onset. All other Legionnaires’ disease cases were considered unrelated to health care. Results A total of 2,809 confirmed Legionnaires’ disease cases were reported from the 21 jurisdictions, including 85 (3%) definite and 468 (17%) possible health care–associated cases. Among the 21 jurisdictions, 16 (76%) reported 1–21 definite health care–associated cases per jurisdiction. Among definite health care–associated cases, the majority (75, 88%) occurred in persons aged ≥60 years, and exposures occurred at 72 facilities (15 hospitals and 57 long-term care facilities). The case fatality rate was 25% for definite and 10% for possible health care–associated Legionnaires’ disease. Conclusions and Implications for Public Health Practice Exposure to Legionella from health care facility water systems can result in Legionnaires’ disease. The high case fatality rate of health care–associated Legionnaires’ disease highlights the importance of case prevention and response activities, including implementation of effective water management programs and timely case identification. PMID:28594788
Comparative Human Health Risk Analysis of Coastal Community Water and Waste Service Options
As a pilot approach to describe adverse human health effects from alternative decentralized community water systems compared to conventional centralized services (business-as-usual [BAU]), selected chemical and microbial hazards were assessed using disability adjusted life years ...
Alqahtani, Jobran M; Asaad, Ahmed M; Ahmed, Essam M; Qureshi, Mohamed A
2015-01-01
The aim was to investigate the bacteriological quality of drinking water, and explore the factors involved in the knowledge of the public about the quality of drinking water in Najran region, Saudi Arabia. A cross-sectional descriptive study. A total of 160 water samples were collected. Total coliforms, fecal coliform, and fecal streptococci were counted using Most Probable Number method. The bacterial genes lacZ and uidA specific to total coliforms and Escherichia coli, respectively, were detected using multiplex polymerase chain reaction. An interview was conducted with 1200 residents using a questionnaire. Total coliforms were detected in 8 (20%) of 40 samples from wells, 13 (32.5%) of 40 samples from tankers, and 55 (68.8%) of 80 samples from roof tanks. Twenty (25%) and 8 (10%) samples from roof tanks were positive for E. coli and Streptococcus faecalis, respectively. Of the 1200 residents participating in the study, 10%, 45.5%, and 44.5% claimed that they depended on municipal water, bottled water, and well water, respectively. The majority (95.5%) reported the use of roof water tanks as a source of water supply in their homes. Most people (80%) believed that drinking water transmitted diseases. However, only 25% of them participated in educational programs on the effect of polluted water on health. Our results could help health authorities consider a proper regular monitoring program and a sustainable continuous assessment of the quality of well water. In addition, this study highlights the importance of the awareness and educational programs for residents on the effect of polluted water on public health.
Environmental assessment model for shallow land disposal of low-level radioactive wastes
NASA Astrophysics Data System (ADS)
Little, C. A.; Fields, D. E.; Emerson, C. J.; Hiromoto, G.
1981-09-01
The PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) computer code developed to evaluate health effects from shallow land burial trenches is described. This generic model assesses radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000 y period following the end of burial operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population includes ground water transport overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the 1000 y period using a life table approach. Data bases for three shallow land burial sites (Barnwell, South Carolina, Beatty, Nevada, and West Valley, New York) are under development. The interim model, includes coding for environmental transport through air, surface water, and ground water.
Lilje, Jonathan; Mosler, Hans-Joachim
2018-04-01
Worldwide, an estimated 700 million people rely on unimproved drinking water sources; even more consume water that is not safe to drink. Inadequate drinking water quality constitutes a major risk factor for cholera and other diarrheal diseases around the globe, especially for young children in developing countries. Household water treatment and safe storage systems represent an intermediate solution for settings that lack infrastructure supplying safe drinking water. However, the correct and consistent usage of such treatment technologies rely almost exclusively on the consumer's behavior. This study targeted at evaluating effects of a behavior change campaign promoting the uptake of household drinking water chlorination in communities along the Chari and Logone rivers in Chad. The campaign was based on formative research using health psychological theory and targeted several behavioral factors identified as relevant. A total of 220 primary caregivers were interviewed concerning their household water treatment practices and mindset related to water treatment six months after the campaign. The Risks, Attitudes, Norms, Abilities, and Self-regulation (RANAS) model was used to structure the interviews as the RANAS approach had been used for designing the campaign. Results show significantly higher self-reported drinking water chlorination among participants of the intervention. Significant differences from a control group were identified regarding several behavioral factors. Mediation analysis revealed that the intervention positively affected participants' individual risk estimation for diarrheal disease, health knowledge, perceived efforts and benefits of water treatment, social support strategies, knowledge of how to perform chlorination, and perceived ability to do so. The campaign's effect on water treatment was mainly mediated through differences in health knowledge, changes in norms, and self-efficacy convictions. The findings imply that water treatment behavior can be successfully promoted using health psychological theory. However, they also indicate opportunities for improvement in the campaign design and implementation. Copyright © 2017 Elsevier B.V. All rights reserved.
Fry, Lauren M; Cowden, Joshua R; Watkins, David W; Clasen, Thomas; Mihelcic, James R
2010-12-15
Knowledge of potential benefits resulting from technological interventions informs decision making and planning of water, sanitation, and hygiene programs. The public health field has built a body of literature showing health benefits from improvements in water quality. However, the connection between improvements in water quantity and health is not well documented. Understanding the connection between technological interventions and water use provides insight into this problem. We present a model predicting reductions in diarrhea disease burden when the water demands from hygiene and sanitation improvements are met by domestic rainwater harvesting (DRWH). The model is applied in a case study of 37 West African cities. For all cities, with a total population of over 10 million, we estimate that DRWH with 400 L storage capacity could result in a 9% reduction in disability-affected life years (DALYs). If DRWH is combined with point of use (POU) treatment, this potential impact is nearly doubled, to a 16% reduction in DALYs. Seasonal variability of diarrheal incidence may have a small to moderate effect on the effectiveness of DRWH, depending on the storage volume used. Similar predictions could be made for other interventions that improve water quantity in other locations where disease burden from diarrhea is known.
Aquatic biomonitoring of reclaimed water for potable use: the San Diego Health Effects Study.
de Peyster, A; Donohoe, R; Slymen, D J; Froines, J R; Olivieri, A W; Eisenberg, D M
1993-05-01
Highly treated reclaimed wastewater was evaluated as a possible supplement to raw water sources required to meet San Diego's growing need for potable water. Biomonitoring experiments employing fathead minnows (Pimephales promelas) were used to compare reclaimed water with the city's current raw water supply. Juvenile fish were exposed in flow-through aquaria in field laboratories located at the reclamation plant (AQUA II) and at a municipal potable water treatment facility (Miramar). Biomonitoring measurements were survival and growth, swimming performance, and trace amounts of 68 base/neutral/acid extractable organics, 27 pesticides, and 27 inorganic chemicals found in fish tissues after exposure. Biomonitoring revealed differences in survival, growth, and swimming performance only after 90- and 180-d exposure. Reclaimed water and raw water were not readily distinguishable in 28-d chemical bioaccumulation tests in terms of organic chemical contaminants in fish tissue except for pesticide levels, which tended to be higher in raw water. Similar inorganic species were found in samples from both waters, although there was greater evidence of bioaccumulation of certain contaminants from raw water. Based on biomonitoring parameters included in these experiments, the use of reclaimed water to supplement raw water supplies would appear to pose no major public health threats. The results of these studies will be combined with additional health effects information before final conclusions are reached about the suitability of reclaimed water for human consumption.
Wade, Mary Margaret; Biggs, Tracey D; Insalaco, Joseph M; Neuendorff, Lisa K; Bevilacqua, Vicky L H; Schenning, Amanda M; Reilly, Lisa M; Shah, Saumil S; Conley, Edward K; Emanuel, Peter A; Zulich, Alan W
2011-01-01
Development of a rapid field test is needed capable of determining if field supplies of water are safe to drink by the warfighter during a military operation. The present study sought to assess the effectiveness of handheld assays (HHAs) in detecting ricin and Staphylococcal Enterotoxin B (SEB) in water. Performance of HHAs was evaluated in formulated tap water with and without chlorine, reverse osmosis water (RO) with chlorine, and RO with bromine. Each matrix was prepared, spiked with ricin or SEB at multiple concentrations, and then loaded onto HHAs. HHAs were allowed to develop and then read visually. Limits of detection (LOD) were determined for all HHAs in each water type. Both ricin and SEB were detected by HHAs in formulated tap water at or below the suggested health effect levels of 455 ng/mL and 4.55 ng/mL, respectively. However, in brominated or chlorinated waters, LODs for SEB increased to approximately 2,500 ng/mL. LODs for ricin increased in chlorinated water, but still remained below the suggested health effect level. In brominated water, the LOD for ricin increased to approximately 2,500 ng/mL. In conclusion, the HHAs tested were less effective at detecting ricin and SEB in disinfected water, as currently configured.
Health Risk Estimation for Unregulated DBPs in Chloraminated Drinking Water
Disinfection by-products (DBPs) are formed when natural organic matter (NOM) reacts with chemical oxidants in the water disinfection process. Halogenated DBPs are both cytotoxic and genotoxic, which have the potential to cause adverse health effects (1). Currently, 4 species of t...
Shakoor, Muhammad Bilal; Nawaz, Rab; Hussain, Fida; Raza, Maimoona; Ali, Shafaqat; Rizwan, Muhammad; Oh, Sang-Eun; Ahmad, Sajjad
2017-12-01
Arsenic (As) is a naturally occurring metalloid and Class-A human carcinogen. Exposure to As via direct intake of As-contaminated water or ingestion of As-contaminated edible crops is considered a life threatening problem around the globe. Arsenic-laced drinking water has affected the lives of over 200 million people in 105 countries worldwide. Limited data are available on various health risk assessment models/frameworks used to predict carcinogenic and non-carcinogenic health effects caused by As-contaminated water. Therefore, this discussion highlights the need for future research focusing on human health risk assessment of individual As species (both organic and inorganic) present in As-contaminated water. Various conventional and latest technologies for remediation of As-contaminated water are also reviewed along with a discussion of the fate of As-loaded waste and sludge. Copyright © 2017 Elsevier B.V. All rights reserved.
Coal seam gas water: potential hazards and exposure pathways in Queensland.
Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram
2015-01-01
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Water for the Nation: An overview of the USGS Water Resources Division
,
1998-01-01
The Water Resources Division (WRD) of the U.S. Geological Survey (USGS) provides reliable, impartial, timely information needed to understand the Nation's water resources. WRD actively promotes the use of this information by decisionmakers to: * Minimize the loss of life and property as a result of water-related hazards such as floods, droughts, and land movement. * Effectively manage ground-water and surface-water resources for domestic, agricultural, commercial, industrial, recreational, and ecological uses. * Protect and enhance water resources for human health, aquatic health, and environmental quality. * Contribute to wise physical and economic development of the Nation's resources for the benefit of present and future generations.
Perchlorate: Health Effects and Technologies for Its Removal from Water Resources
Srinivasan, Asha; Viraraghavan, Thiruvenkatachari
2009-01-01
Perchlorate has been found in drinking water and surface waters in the United States and Canada. It is primarily associated with release from defense and military operations. Natural sources include certain fertilizers and potash ores. Although it is a strong oxidant, perchlorate is very persistent in the environment. At high concentrations perchlorate can affect the thyroid gland by inhibiting the uptake of iodine. A maximum contaminant level has not been set, while a guidance value of 6 ppb has been suggested by Health Canada. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed from water by anion exchange or membrane filtration. Biological and chemical processes are also effective in removing this species from water. PMID:19440526
Health effects associated with cyanobacteria exposure among beach attendees in Puerto Rico
Cyanobacteria and their toxins are associated with adverse human health effects, although among marine waters, the pyrrhophyta, including dinoflagellates are more recognized as health hazards. We recruited beach attendees during summer 2009, at Boquerón Beach, Puerto Rico...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
7 CFR 634.14 - Review and approval of project applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...
Using Stream Discharge as a Predictor of Biotic Health in the Upper Oconee Watershed
Drought is viewed typically as an issue of water quantity, but drought also likely has strong effects on water quality in streams. These effects may occur via increased pollutant and nutrient concentrations and stream water temperature, as well as reductions in instream habitat. ...
Community effectiveness of public water fluoridation in reducing children's dental disease.
Armfield, Jason Mathew
2010-01-01
Water fluoridation is one of the most effective public health programs of the past century. However, efforts to extend water fluoridation into currently non-fluoridated areas are often thwarted. Despite considerable evidence regarding the effectiveness of water fluoridation at an individual level, published national community-based studies are rare. This study compared children's decay experience and prevalence between areas with and without water fluoridation in Australia. Oral health data were obtained from clinical examinations of 128, 990 5- to 15-year-old children attending for a regular visit with their respective Australian state or territory School Dental Service in 2002. Water fluoridation status, residence remoteness, and socioeconomic status (SES) were obtained for each child's recorded residential postcode area. Children from every age group had greater caries prevalence and more caries experience in areas with negligible fluoride concentrations in the water (<0.3 parts per million [ppm]) than in optimally fluoridated areas (> or = 0.7 ppm). Controlling for child age, residential location, and SES, deciduous and permanent caries experience was 28.7% and 31.6% higher, respectively, in low-fluoride areas compared with optimally fluoridated areas. The odds ratios for higher caries prevalence in areas with negligible fluoride compared with optimal fluoride were 1.34 (95% confidence interval [CI] 1.29, 1.39) and 1.24 (95% CI 1.21, 1.28) in the deciduous and permanent dentitions, respectively. This study demonstrates the continued community effectiveness of water fluoridation and provides support for the extension of this important oral health intervention to populations currently without access to fluoridated water.
Molloy, C Johnston; Gandy, J; Cunningham, C; Slattery, Glennon
2008-10-01
Inadequate hydration has been linked to many factors that may impact on children's education and health. Teachers play an important role in the education and behaviour of children. Previous research has demonstrated low water intake amongst children and negative teachers' attitudes to water in the classroom. The present study aimed to explore teachers' knowledge about water and the perceived barriers to allowing children access to water during lesson time. In-depth interviews were conducted with 12 teachers from primary schools in the Midlands of Ireland. Interviews were continued until there was saturation of the data. Thematic analysis of the data was conducted. Participants had a poor knowledge of hydration requirements and the associated health benefits and effect on concentration. Low water intake amongst teachers and pupils, and barriers such as disruption to class and increased need to urinate, were reported. Teachers identified the hydration effect on learning as the education message most likely to influence the decision to allow water in the classroom. The issues, opinions and perceived barriers raised by teachers as part of this qualitative research provide a basis for future health promotion around water.
Radon-222 from different sources of water and the assessment of health hazard.
Ademola, Janet A; Ojeniran, Oluwaferanmi R
2017-02-01
Water samples collected from different sources were analysed for radon concentrations in order to evaluate the health effect associated with radon in water. The radon concentrations were in the range of 3.56-98.57, 0.88-25.49, 0.73-1.35 and 0.24-1.03 Bq.L -1 for borehole, well, packaged and utility water, respectively. Samples from boreholes had the highest radon concentrations with about 67% being higher than the threshold value of 11.1 Bq.L -1 recommended by the USEPA. The mean annual effective dose (AED) due to ingestion for adult, child and infant ranged from 8.71 × 10 -3 to 0.831 mSv.y -1 for the different sources. The mean AED calculated for consuming water from boreholes and wells for the three age groups were higher than the recommended reference dose level of 0.1 mSv.y -1 . The mean AED due to inhalation of radon in drinking water was negligible, ranging from 0.13 to 6.20 μSv.y -1 . The health burden associated with radon in water in the study is through ingestion of water directly from boreholes.
Aziz, Sonia N; Boyle, Kevin J; Crocker, Tom
2015-03-01
Arsenic contamination of groundwater in Bangladesh is a widespread public health hazard. Water sources without high arsenic levels are scarce, affecting people's availability for work and other activities when they have to seek safe water to drink. While children are particularly susceptible to chronic arsenic exposure, limited information and heavy constraints on resources may preclude people in developing countries from taking protective actions. Since parents are primary decision-makers for children, a model of stochastic decision-making analytically linking parent health and child health is used to frame the valuation of avoiding arsenic exposure using an averting behavior model. The results show that safe drinking water programs do work and that people do take protective actions. The results can help guide public health mitigation policies, and examine whether factors such as child health and time required for remediation have an effect on mitigation measures.
Chronic arsenic exposure via drinking water has been of great public health concern world wide. Arsenic exposure has been associated with human cancers, diabetes and cardiovascular diseases. The objectives of this study were to investigate health effects of arsenic and to asses...
Soares, Sérgio R A; Bernardes, Ricardo S; Netto, Oscar de M Cordeiro
2002-01-01
The understanding of sanitation infrastructure, public health, and environmental relations is a fundamental assumption for planning sanitation infrastructure in urban areas. This article thus suggests elements for developing a planning model for sanitation infrastructure. The authors performed a historical survey of environmental and public health issues related to the sector, an analysis of the conceptual frameworks involving public health and sanitation systems, and a systematization of the various effects that water supply and sanitation have on public health and the environment. Evaluation of these effects should guarantee the correct analysis of possible alternatives, deal with environmental and public health objectives (the main purpose of sanitation infrastructure), and provide the most reasonable indication of actions. The suggested systematization of the sanitation systems effects in each step of their implementation is an advance considering the association between the fundamental elements for formulating a planning model for sanitation infrastructure.
Water Quality and Sustainable Environmental Health
NASA Astrophysics Data System (ADS)
Setegn, S. G.
2014-12-01
Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.
Arsenic in Illinois ground water : community and private supplies
Warner, Kelly L.; Martin, Angel; Arnold, Terri L.
2003-01-01
Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.
Ramesh, Anita; Blanchet, Karl; Ensink, Jeroen H J; Roberts, Bayard
2015-01-01
Water, sanitation, and hygiene (WASH) interventions are amongst the most crucial in humanitarian crises, although the impact of the different WASH interventions on health outcomes remains unclear. To examine the quantity and quality of evidence on WASH interventions on health outcomes in humanitarian crises, as well as evaluate current evidence on their effectiveness against health outcomes in these contexts. A systematic literature review was conducted of primary and grey quantitative literature on WASH interventions measured against health outcomes in humanitarian crises occurring from 1980-2014. Populations of interest were those in resident in humanitarian settings, with a focus on acute crisis and early recovery stages of humanitarian crises in low and middle-income countries. Interventions of interest were WASH-related, while outcomes of interest were health-related. Study quality was assessed via STROBE/CONSORT criteria. Results were analyzed descriptively, and PRISMA reporting was followed. Of 3963 studies initially retrieved, only 6 published studies measured a statistically significant change in health outcome as a result of a WASH intervention. All 6 studies employed point-of-use (POU) water quality interventions, with 50% using safe water storage (SWS) and 35% using household water treatment (HWT). All 6 studies used self-reported diarrhea outcomes, 2 studies also reported laboratory confirmed outcomes, and 2 studies reported health treatment outcomes (e.g. clinical admissions). 1 study measured WASH intervention success in relation to both health and water quality outcomes; 1 study recorded uptake (use of soap) as well as health outcomes. 2 studies were unblinded randomized-controlled trials, while 4 were uncontrolled longitudinal studies. 2 studies were graded as providing high quality evidence; 3 studies provided moderate and 1 study low quality evidence. The current evidence base on the impact of WASH interventions on health outcomes in humanitarian crises is extremely limited, and numerous methodological limitations limit the ability to determine associative, let alone causal, relationships.
Ramesh, Anita; Blanchet, Karl; Ensink, Jeroen H. J.; Roberts, Bayard
2015-01-01
Background Water, sanitation, and hygiene (WASH) interventions are amongst the most crucial in humanitarian crises, although the impact of the different WASH interventions on health outcomes remains unclear. Aim To examine the quantity and quality of evidence on WASH interventions on health outcomes in humanitarian crises, as well as evaluate current evidence on their effectiveness against health outcomes in these contexts. Methods A systematic literature review was conducted of primary and grey quantitative literature on WASH interventions measured against health outcomes in humanitarian crises occurring from 1980–2014. Populations of interest were those in resident in humanitarian settings, with a focus on acute crisis and early recovery stages of humanitarian crises in low and middle-income countries. Interventions of interest were WASH-related, while outcomes of interest were health-related. Study quality was assessed via STROBE/CONSORT criteria. Results were analyzed descriptively, and PRISMA reporting was followed. Results Of 3963 studies initially retrieved, only 6 published studies measured a statistically significant change in health outcome as a result of a WASH intervention. All 6 studies employed point-of-use (POU) water quality interventions, with 50% using safe water storage (SWS) and 35% using household water treatment (HWT). All 6 studies used self-reported diarrhea outcomes, 2 studies also reported laboratory confirmed outcomes, and 2 studies reported health treatment outcomes (e.g. clinical admissions). 1 study measured WASH intervention success in relation to both health and water quality outcomes; 1 study recorded uptake (use of soap) as well as health outcomes. 2 studies were unblinded randomized-controlled trials, while 4 were uncontrolled longitudinal studies. 2 studies were graded as providing high quality evidence; 3 studies provided moderate and 1 study low quality evidence. Conclusion The current evidence base on the impact of WASH interventions on health outcomes in humanitarian crises is extremely limited, and numerous methodological limitations limit the ability to determine associative, let alone causal, relationships. PMID:26398228
Daley, Kiley; Castleden, Heather; Jamieson, Rob; Furgal, Chris; Ell, Lorna
2014-01-01
Background Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households, however, are accessing water in quantities more typically seen in water insecure developing countries. We recommend several practical interventions and revisions to municipal water supply systems. PMID:24765615
Daley, Kiley; Castleden, Heather; Jamieson, Rob; Furgal, Chris; Ell, Lorna
2014-01-01
Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households, however, are accessing water in quantities more typically seen in water insecure developing countries. We recommend several practical interventions and revisions to municipal water supply systems.
Hebert, Armelle; Forestier, Delphine; Lenes, Dorothée; Benanou, David; Jacob, Severine; Arfi, Catherine; Lambolez, Lucie; Levi, Yves
2010-05-01
Providing microbiologically safe drinking water is a major public health issue. However, chemical disinfection can produce unintended health hazards involving disinfection by-products (DBPs). In an attempt to clarify the potential public health concerns associated with emerging disinfection by-products (EDBPs), this study was intended to help to identify those suspected of posing potential related health effects. In view of the ever-growing list of EDBPs in drinking water and the lack of consensus about them, we have developed an innovative prioritization method that would allow us to address this issue. We first set up an exhaustive database including all the current published data relating to EDBPs in drinking water (toxicity, occurrence, epidemiology and international or local guidelines/regulations). We then developed a ranking method intended to prioritize the EDBPs. This method, which was based on a calculation matrix with different coefficients, was applied to the data regarding their potential contribution to the health risk assessment process. This procedure allowed us to identify and rank three different groups of EDBPs: Group I, consisting of the most critical EDBPs with regard to their potential health effects, has moderate occurrence but the highest toxicity. Group II has moderate to elevated occurrence and is associated with relevant toxicity, and Group III has very low occurrence and unknown or little toxicity. The EDBPs identified as posing the greatest potential risk using this method were as follows: NDMA and other nitrosamines, MX and other halofuranones, chlorate, formaldehyde and acetaldehyde, 2,4,6-trichlorophenol and pentachlorophenol, hydrazine, and two unregulated halomethanes, dichloromethane and tetrachloromethane. Our approach allowed us to define the EDBPs that it is most important to monitor in order to assess population exposure and related public health issues, and thus to improve drinking water treatment and distribution. It is also important to extend our knowledge about exposure to mixtures of emerging DBPs and possible related health effects.
Alqahtani, Jobran M.; Asaad, Ahmed M.; Ahmed, Essam M.; Qureshi, Mohamed A.
2015-01-01
Aim of the Study: The aim was to investigate the bacteriological quality of drinking water, and explore the factors involved in the knowledge of the public about the quality of drinking water in Najran region, Saudi Arabia. Study Design: A cross-sectional descriptive study. Materials and Methods: A total of 160 water samples were collected. Total coliforms, fecal coliform, and fecal streptococci were counted using Most Probable Number method. The bacterial genes lacZ and uidA specific to total coliforms and Escherichia coli, respectively, were detected using multiplex polymerase chain reaction. An interview was conducted with 1200 residents using a questionnaire. Results: Total coliforms were detected in 8 (20%) of 40 samples from wells, 13 (32.5%) of 40 samples from tankers, and 55 (68.8%) of 80 samples from roof tanks. Twenty (25%) and 8 (10%) samples from roof tanks were positive for E. coli and Streptococcus faecalis, respectively. Of the 1200 residents participating in the study, 10%, 45.5%, and 44.5% claimed that they depended on municipal water, bottled water, and well water, respectively. The majority (95.5%) reported the use of roof water tanks as a source of water supply in their homes. Most people (80%) believed that drinking water transmitted diseases. However, only 25% of them participated in educational programs on the effect of polluted water on health. Conclusions: Our results could help health authorities consider a proper regular monitoring program and a sustainable continuous assessment of the quality of well water. In addition, this study highlights the importance of the awareness and educational programs for residents on the effect of polluted water on public health. PMID:25657607
Effect of increasing bromide concentration on toxicity in treated drinking water.
Sawade, Emma; Fabris, Rolando; Humpage, Andrew; Drikas, Mary
2016-04-01
Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources. Bioanalytical tests were utilised to determine cytotoxicity of the water post disinfection. Coagulation was shown to significantly reduce the cytotoxicity of the water, indicating that removal of natural organic matter DBP precursors continues to be an important factor in drinking water treatment. Most toxic species appear to form within the first half hour following disinfectant addition. Increasing bromide concentration across the two waters was shown to increase the formation of trihalomethanes and shifted the haloacetic acid species distribution from chlorinated to those with greater bromine substitution. This correlated with increasing cytotoxicity. This work demonstrates the challenges faced by WTPs and the possible effects increasing levels of bromide in source waters could have on public health.
Climate change, water resources and child health.
Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G
2010-07-01
Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.
Post, Gloria B; Gleason, Jessie A; Cooper, Keith R
2017-12-01
Perfluoroalkyl acids (PFAAs), a group of synthetic organic chemicals with industrial and commercial uses, are of current concern because of increasing awareness of their presence in drinking water and their potential to cause adverse health effects. PFAAs are distinctive among persistent, bioaccumulative, and toxic (PBT) contaminants because they are water soluble and do not break down in the environment. This commentary discusses scientific and risk assessment issues that impact the development of drinking water guidelines for PFAAs, including choice of toxicological endpoints, uncertainty factors, and exposure assumptions used as their basis. In experimental animals, PFAAs cause toxicity to the liver, the immune, endocrine, and male reproductive systems, and the developing fetus and neonate. Low-dose effects include persistent delays in mammary gland development (perfluorooctanoic acid; PFOA) and suppression of immune response (perfluorooctane sulfonate; PFOS). In humans, even general population level exposures to some PFAAs are associated with health effects such as increased serum lipids and liver enzymes, decreased vaccine response, and decreased birth weight. Ongoing exposures to even relatively low drinking water concentrations of long-chain PFAAs substantially increase human body burdens, which remain elevated for many years after exposure ends. Notably, infants are a sensitive subpopulation for PFAA's developmental effects and receive higher exposures than adults from the same drinking water source. This information, as well as emerging data from future studies, should be considered in the development of health-protective and scientifically sound guidelines for PFAAs in drinking water.
Gleason, Jessie A.; Cooper, Keith R.
2017-01-01
Perfluoroalkyl acids (PFAAs), a group of synthetic organic chemicals with industrial and commercial uses, are of current concern because of increasing awareness of their presence in drinking water and their potential to cause adverse health effects. PFAAs are distinctive among persistent, bioaccumulative, and toxic (PBT) contaminants because they are water soluble and do not break down in the environment. This commentary discusses scientific and risk assessment issues that impact the development of drinking water guidelines for PFAAs, including choice of toxicological endpoints, uncertainty factors, and exposure assumptions used as their basis. In experimental animals, PFAAs cause toxicity to the liver, the immune, endocrine, and male reproductive systems, and the developing fetus and neonate. Low-dose effects include persistent delays in mammary gland development (perfluorooctanoic acid; PFOA) and suppression of immune response (perfluorooctane sulfonate; PFOS). In humans, even general population level exposures to some PFAAs are associated with health effects such as increased serum lipids and liver enzymes, decreased vaccine response, and decreased birth weight. Ongoing exposures to even relatively low drinking water concentrations of long-chain PFAAs substantially increase human body burdens, which remain elevated for many years after exposure ends. Notably, infants are a sensitive subpopulation for PFAA’s developmental effects and receive higher exposures than adults from the same drinking water source. This information, as well as emerging data from future studies, should be considered in the development of health-protective and scientifically sound guidelines for PFAAs in drinking water. PMID:29261653
Campbell, Oona M R; Benova, Lenka; Gon, Giorgia; Afsana, Kaosar; Cumming, Oliver
2015-03-01
To explore linkages between water, sanitation and hygiene (WASH) and maternal and perinatal health via a conceptual approach and a scoping review. We developed a conceptual framework iteratively, amalgamating three literature-based lenses. We then searched literature and identified risk factors potentially linked to maternal and perinatal health. We conducted a systematic scoping review for all chemical and biological WASH risk factors identified using text and MeSH terms, limiting results to systematic reviews or meta-analyses. The remaining 10 complex behavioural associations were not reviewed systematically. The main ways poor WASH could lead to adverse outcomes are via two non-exclusive categories: 1. 'In-water' associations: (a) Inorganic contaminants, and (b) 'water-system' related infections, (c) 'water-based' infections, and (d) 'water borne' infections. 2. 'Behaviour' associations: (e) Behaviours leading to water-washed infections, (f) Water-related insect-vector infections, and (g-i) Behaviours leading to non-infectious diseases/conditions. We added a gender inequality and a life course lens to the above framework to identify whether WASH affected health of mothers in particular, and acted beyond the immediate effects. This framework led us to identifying 77 risk mechanisms (67 chemical or biological factors and 10 complex behavioural factors) linking WASH to maternal and perinatal health outcomes. WASH affects the risk of adverse maternal and perinatal health outcomes; these exposures are multiple and overlapping and may be distant from the immediate health outcome. Much of the evidence is weak, based on observational studies and anecdotal evidence, with relatively few systematic reviews. New systematic reviews are required to assess the quality of existing evidence more rigorously, and primary research is required to investigate the magnitude of effects of particular WASH exposures on specific maternal and perinatal outcomes. Whilst major gaps exist, the evidence strongly suggests that poor WASH influences maternal and reproductive health outcomes to the extent that it should be considered in global and national strategies. © 2014 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.
Human Health Screening and Public Health Significance of ...
The source water and treated drinking water from twenty five drinking water treatment plants (DWTPs) across the United States were sampled in 2010 – 2012. Samples were analyzed for 247 contaminants using 15 chemical and microbiological methods. Most of these contaminants are not regulated currently either in drinking water or in discharges to ambient water by the United States Environmental Protection Agency (EPA) or other U.S. regulatory agencies. This analysis shows that there is little public health concern for most of the contaminants detected in treated water from the 25 DWTPs participating in this study. For vanadium, the calculated MOE was less than the screening MOE in two DWTPs. Additional study, for example a national survey may be needed to determine the number of people ingesting vanadium above a level of concern. In addition, the concentrations of lithium found in treated water from several DWTPs are within the range previous research has suggested to have a human health effect. Additional investigation of this issue may also be appropriate. Finally, new toxicological data suggests that exposure to manganese at levels in public water supplies may present a public health concern which may warrant a more robust assessment of this information. This paper provides a screening-level human health risk assessment using the margin of exposure of exposure approach, of contaminants of emerging concern detected in drinking water. As far as we are a
Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.
Paranthaman, Karthikeyan; Harrison, Henrietta
2010-12-01
Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved.
Physical and environmental considerations for first responders.
Migl, Karen S; Powell, Rose M
2010-12-01
To prioritize the most common effects of a disaster, HCPs must decide in advance what is needed and how, when, and whom to provide the necessary support to deal with the posteffects of a disaster. During the rescue mission, the primary public health concern is clean drinking water, food, shelter, and medical care. Medical care is critical especially in areas where little or no medical care exists. Natural disasters do not necessarily cause an increase in infectious disease outbreaks. However, contaminated water and food supplies as well as the lack of shelter and medical care may have a secondary effect of worsening illnesses that already exists in the affected region. Appropriate preparation in the form of preplanning for immunizations as well as education about other forms of protection, such as appropriate apparel and water decontamination, promotes a safer environment for first responders and survivors. The continued need for postdisaster health monitoring for HCPs is imperative. The effects of a disaster last a long time; therefore there is an ongoing need to focus on the physical and environmental effects, including surveying and monitoring for infectious water or insect-transmitted diseases; restoring normal primary health services, water systems, transportation, housing, and employment; and continuing to assist the community’s recovery after the immediate crisis has subsided. Copyright © 2010 Elsevier Inc. All rights reserved.
Nematollahi, Shahrzad; Mansournia, Mohammad Ali; Foroushani, Abbas Rahimi; Mahmoodi, Mahmood; Alavi, Azin; Shekari, Mohammad; Holakouie-Naieni, Kourosh
2018-01-01
Consecutive community health assessments revealed that water-pipe smoking in women and impaired growth in children were among the main health concerns in suburban communities in southern Iran. The aim of the present study was to identify the effects of water-pipe smoking during pregnancy on birth weight. Data from a population-based prospective cohort study of 714 singleton live pregnancies in the suburbs of Bandar Abbas in southern Iran in 2016-2018 were used in this study. Data about water-pipe smoking patterns and birth weight were collected by questionnaires during and after the pregnancy. Low birth weight (LBW) was defined as a birth weight below 2,500 g. Statistical analyses were performed using generalized linear models, and the results were presented in terms of relative risk (RR) and 95% confidence intervals (CI). Fifty (8.2%) of the study subjects smoked water-pipe. The adjusted risk of LBW increased 2-fold in water-pipe smokers (adjusted RR [aRR], 2.09; 95% CI, 1.18 to 3.71), and by 2.0% for each 1-year increase in the duration of water-pipe smoking (aRR, 1.02; 95% CI, 0.99 to 1.05). Our results showed that water-pipe smoking during pregnancy was an important risk factor for LBW in this population sample from southern Iran. The introduction of regulations onto prevent water-pipe smoking and the implementation of community health action plans aiming at empowering women and increasing women's knowledge and awareness regarding the health consequences of water-pipe smoking are proposed.
Wong, Michelle; Wolff, Craig; Collins, Natalie; Guo, Liang; Meltzer, Dan; English, Paul
2015-01-01
Significant illness is associated with biological contaminants in drinking water, but little is known about health effects from low levels of chemical contamination in drinking water. To examine these effects in epidemiological studies, the sources of drinking water of study populations need to be known. The California Environmental Health Tracking Program developed an online application that would collect data on the geographic location of public water system (PWS) customer service areas in California, which then could be linked to demographic and drinking water quality data. We deployed the Water Boundary Tool (WBT), a Web-based geospatial crowdsourcing application that can manage customer service boundary data for each PWS in California and can track changes over time. We also conducted a needs assessment for expansion to other states. The WBT was designed for water system operators, local and state regulatory agencies, and government entities. Since its public launch in 2012, the WBT has collected service area boundaries for about 2300 individual PWS, serving more than 90% of the California population. Results of the needs assessment suggest interest and utility for deploying such a tool among states lacking statewide PWS service area boundary data. Although the WBT data set is incomplete, it has already been used for a variety of applications, including fulfilling legislatively mandated reporting requirements and linking customer service areas to drinking water quality data to better understand local water quality issues. Development of this tool holds promise to assist with outbreak investigations and prevention, environmental health monitoring, and emergency preparedness and response.
NASA Astrophysics Data System (ADS)
Kumar, Gulshan; Kumari, Punam; Kumar, Mukesh; Kumar, Arvind; Prasher, Sangeeta; Dhar, Sunil
2017-07-01
The present study deals with the radon estimation in 40 water samples collected from different natural resources and radium content in the soils of Mandi-Dharamshala Region. Radon concentration is determined by using RAD-7 detector and radium contents of the soil in vicinity of water resources is as well measured by using LR-115 type - II detector, which is further correlated with radon concentration in water samples. The potential health risks related with 222Rn have also been estimated. The results show that the radon concentrations within the range of 1.51 to 22.7Bq/l with an average value of 5.93 Bq/l for all type of water samples taken from study area. The radon concentration in water samples is found lower than 100Bq/l, the exposure limit of radon in water recommended by the World Health Organization. The calculated average effective dose of radon received by the people of study area is 0.022 mSv/y with maximum of 0.083 mSv/y and minimum 0.0056 mSv/y. The total effective dose in all sites of the studied area is found to be within the safe limit (0.1 mSv/year) recommended by World Health Organization. The average value of radium content in the soil of study area is 6.326 Bq/kg.
Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling
NASA Astrophysics Data System (ADS)
Stewart, C.; Johnston, D. M.; Leonard, G. S.; Horwell, C. J.; Thordarson, T.; Cronin, S. J.
2006-11-01
Volcanic ash is the most widely-distributed product of explosive volcanic eruptions, and can disrupt vital infrastructure on a large scale. Previous studies of effects of ashfall on natural waters and water supplies have focused mainly on the consequences of increased levels of turbidity (ash suspended in water), acidity and fluoride, with very little attention paid to other contaminants associated with volcanic ash. The aims of this paper are twofold: firstly, to review previous studies of the effects of volcanic ashfall on water supplies and identify information gaps; and secondly, to propose a simple model for predicting effects of ashfall on water supplies using available information on ash composition. We reviewed reported impacts of historic eruptions on water supplies, drawing on case studies from New Zealand, Vanuatu, Argentina, the USA, Costa Rica, Montserrat, Iceland and Guadeloupe. Elevated concentrations of fluoride, iron, sulphate and chloride, as well as turbidity and acidity, have been reported in water supplies. From a public health perspective, the two main issues appear to be: (1) outbreaks of infectious disease caused by the inhibition of disinfection by high levels of suspended ash, and (2) elevated fluoride concentrations. We devised a simple model using volcanic ash leachate composition data to predict effects on receiving waters. Applying this model to the effects of Ruapehu ash, from the 1995/1996 eruptions, suggests that the primary effects of concern are likely to be an increase in acidity (decrease in pH), and increases in concentrations of the metals aluminium, iron and manganese. These metals are not normally considered to pose health risks, and are regulated only by secondary, non-enforceable guidelines. However, exceedences of guideline values for Al, Mn, Fe and pH will cause water to become undrinkable due to a bitter metallic taste and dark colour, and may also cause corrosion, staining and scale deposition problems in water tanks and pipes. Therefore, the main issues following volcanic ashfall of similar composition to Ruapehu ash are likely to be shortages of potable water and damage to distribution systems, rather than risks to public health.
MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF
Urban stormwater runoff, a leading cause of water quality impairment related to human activities in lakes and reservoirs, can have significant negative effects on receiving water quality. It can also create human health concerns when these waters are used for drinking water reso...
Water, Water Everywhere, But is it Safe to Drink?
Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...
Wen, Zhi-Hao; Chen, Ling; Meng, Xiang-Zhou; Duan, Yan-Ping; Zhang, Zeng-Sheng; Zeng, Eddy Y
2014-08-15
Pharmaceuticals are heavily used to improve human and animal health, resulting in the frequent contamination of aquatic environments with pharmaceutical residues, which has raised considerable concern in recent years. When inadequately removed from drinking water in water treatment plants, pharmaceuticals can have potential toxic effects on human health. This study investigated the spatial distributions and seasonal variations of five pharmaceuticals, including ibuprofen (IBP), ketoprofen (KEP), naproxen (NPX), diclofenac (DFC), and clofibric acid (CA), in the Huangpu River system (a drinking water source for Shanghai) over a period of almost two years as well as the associated risk to human health for different age groups. All of the targets were ubiquitous in the river water, with levels decreasing in the following order: KEP (mean: 28.6 ng/L)≈IBP (23.3 ng/L)>DFC (13.6 ng/L)≈NPX (12.3 ng/L)>CA (1.6ng/L). The concentrations of all of the investigated compounds were at the low or medium end of the global range. The upstream tributaries contained lower IBP but higher NPX than did the mainstream and downstream tributaries. However, no significant variations were found in the levels of KEP, DFC, or CA at the different sampling sites. Except for CA in the mainstream, significantly higher pharmaceutical levels were observed in the dry season than in the wet season. Overall, a very low risk of the selected pharmaceuticals for human health via drinking water was observed, but future studies are needed to examine the fate and chronic effects of all pharmaceuticals in aquatic environments. To our knowledge, this is the first report to investigate the human health risk of pharmaceuticals in raw drinking water in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Abouleish, Mohamed Yehia Z
2016-10-01
Fluoride is needed for better health, yet if ingested at higher levels it may lead to health problems. Fluoride can be obtained from different sources, with drinking water being a major contributor. In the United Arab Emirates (UAE), bottled water is the major source for drinking. The aim of this research is to measure fluoride levels in different bottled water brands sold in UAE, to determine whether fluoride contributes to better health or health problems. The results were compared to international and local standards. Fluoride was present in seven out of 23 brands. One brand exhibited high fluoride levels, which exceeded all standards, suggesting it may pose health problems. Other brands were either below or above standards, suggesting either contribution to better health or health problems, depending on ingested amount. A risk assessment suggested a potential for non-cancer effects from some brands. The results were compared to fluoride levels in bottled water sold in UAE and neighboring countries (e.g. Saudi Arabia, Qatar, Kuwait, and Bahrain), over 24 years, to reflect on changes in fluoride levels in bottled water in this region. The research presents the need for creating, stricter regulations that require careful fluoride monitoring and new regulations that require listing fluoride level on the bottled water label, internationally and regionally. The research will have local and global health impact, as bottled water sold in UAE and neighboring countries, is produced locally and imported from international countries, e.g. Switzerland, the USA, France, Italy, New Zealand, and Fiji.
Wade, Mary Margaret; Biggs, Tracey D.; Insalaco, Joseph M.; Neuendorff, Lisa K.; Bevilacqua, Vicky L. H.; Schenning, Amanda M.; Reilly, Lisa M.; Shah, Saumil S.; Conley, Edward K.; Emanuel, Peter A.; Zulich, Alan W.
2011-01-01
Development of a rapid field test is needed capable of determining if field supplies of water are safe to drink by the warfighter during a military operation. The present study sought to assess the effectiveness of handheld assays (HHAs) in detecting ricin and Staphylococcal Enterotoxin B (SEB) in water. Performance of HHAs was evaluated in formulated tap water with and without chlorine, reverse osmosis water (RO) with chlorine, and RO with bromine. Each matrix was prepared, spiked with ricin or SEB at multiple concentrations, and then loaded onto HHAs. HHAs were allowed to develop and then read visually. Limits of detection (LOD) were determined for all HHAs in each water type. Both ricin and SEB were detected by HHAs in formulated tap water at or below the suggested health effect levels of 455 ng/mL and 4.55 ng/mL, respectively. However, in brominated or chlorinated waters, LODs for SEB increased to approximately 2,500 ng/mL. LODs for ricin increased in chlorinated water, but still remained below the suggested health effect level. In brominated water, the LOD for ricin increased to approximately 2,500 ng/mL. In conclusion, the HHAs tested were less effective at detecting ricin and SEB in disinfected water, as currently configured. PMID:21792355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, S.C.; Hamilton, L.D.
This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effectsmore » considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.« less
Public Health Risk Conditioned by Chemical Composition of Ground Water
NASA Astrophysics Data System (ADS)
Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.
2016-03-01
The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.
A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico.
González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L; Saunders, R Jesse; Drobná, Zuzana; Mendez, Michelle A; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M
2015-04-24
Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.
Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan.
Karim, Zahida
2011-06-01
Health risk caused by the exposure to trace metals in water through different exposure pathways was investigated. Graphite furnace atomic absorption spectrometry was used for the determination of trace metals (nickel, copper, chromium, lead, cobalt, manganese and iron) in drinking water samples. The concentration of metals was compared with the world health organization (WHO) drinking water quality guideline values. Risk of metals on human health was evaluated using Hazard Quotient (HQ). Hazard quotients of all metals through oral ingestion and dermal absorption are found in the range of 1.11 × 10⁻² to 1.35 × 10⁻¹ and 8.52 × 10⁻⁵ to 9.75 × 10⁻², respectively. The results of the present study reflect the unlikely potential for adverse health effects to the inhabitants of Karachi due to the oral ingestion and dermal absorption of water containing these metals.
The costs and benefits of water fluoridation in NZ.
Moore, David; Poynton, Matthew; Broadbent, Jonathan M; Thomson, W Murray
2017-11-28
Implementing community water fluoridation involves costs, but these need to be considered against the likely benefits. We aimed to assess the cost-benefit and cost-effectiveness of water fluoridation in New Zealand (NZ) in terms of expenditure and quality-adjusted life years. Based on published studies, we determined the risk reduction effects of fluoridation, we quantified its health benefits using standardised dental indexes, and we calculated financial savings from averted treatment. We analysed NZ water supplies to estimate the financial costs of fluoridation. We devised a method to represent dental caries experience in quality-adjusted life years. Over 20 years, the net discounted saving from adding fluoride to reticulated water supplies supplying populations over 500 would be NZ$1401 million, a nine times pay-off. Between 8800 and 13,700 quality-adjusted life years would be gained. While fluoridating reticulated water supplies for large communities is cost-effective, it is unlikely to be so with populations smaller than 500. Community water fluoridation remains highly cost-effective for all but very small communities. The health benefits-while (on average) small per person-add up to a substantial reduction in the national disease burden across all ethnic and socioeconomic groups.
Six-Year Review Contaminant Occurrence Data
The Safe Drinking Water Act (SDWA) requires EPA to review each National Primary Drinking Water Regulation (NPDWR) at least once every six years and revise them, if appropriate. The purpose of the review, called the Six-Year Review, is to identify those NPDWRs for which current health effects assessments, changes in technology, and/or other factors provide a health or technical basis to support a regulatory revision that will maintain or strengthen public health protection. To support the national contaminant occurrence and exposure assessments performed under the Six-Year Review process, EPA analyzes SDWA compliance monitoring data from public water supplies for regulated drinking water contaminants. This analysis allows EPA to characterize the national occurrence of contaminants to help the Agency determine if there may be a meaningful opportunity to improve public health protection.
Drinking water fluoridation and oral health inequities in Canadian children.
McLaren, Lindsay; Emery, J C Herbert
2012-02-01
One argument made in favour of drinking water fluoridation is that it is equitable in its impact on oral health. We examined the association between exposure to fluoridation and oral health inequities among Canadian children.PARTICIPANTS, SETTING AND INTERVENTION: We analyzed data from 1,017 children aged 6-11 from Cycle 1 of the Canadian Health Measures Survey, a cross-sectional, nationally representative survey that included a clinic oral health examination and a household interview. The outcome measure was a count of the number of decayed, missing (because of caries or periodontal disease) or filled teeth, either deciduous or permanent (dmftDMFT). Data were analyzed using linear (ordinary least squares) and multinomial logistic regression; we also computed the concentration index for education-related inequity in oral health. Water fluoridation status (the intervention) was assigned on the basis of the site location of data collection. Fluoridation was associated with better oral health (fewer dmftDMFT), adjusting for socio-economic and behavioural variables, and the effect was particularly strong for more severe oral health problems (three or more dmftDMFT). The effect of fluoridation on dmftDMFT was observed across income and education categories but appeared especially pronounced in lower education and higher income adequacy households. dmftDMFT were found to be disproportionately concentrated in lower-education households, though this did not vary by fluoridation status. The robust main effect of fluoridation on dmftDMFT and the beneficial effect across socio-economic groups support fluoridation as a beneficial and justifiable population health intervention. Fluoridation was equitable in the sense that its benefits were particularly apparent in those groups with the poorest oral health profiles, though the nature of the findings prompts consideration of the values underlying the judgement of health equity.
Soldatova, Evgeniya; Sun, Zhanxue; Maier, Sofya; Drebot, Valeriia; Gao, Bai
2018-03-24
Owing to their accessibility, shallow groundwater is an essential source of drinking water in rural areas while usually being used without control by authorities. At the same time, this type of water resource is one of the most vulnerable to pollution, especially in regions with extensive agricultural activity. These factors increase the probability of adverse health effects in the population as a result of the consumption of shallow groundwater. In the present research, shallow groundwater quality in the agricultural areas of Poyang Lake basin was assessed according to world and national standards for drinking water quality. To evaluate non-cancer health risk from drinking groundwater, the hazard quotient from exposure to individual chemicals and hazard index from exposure to multiple chemicals were applied. It was found that, in shallow groundwater, the concentrations of 11 components (NO 3 - , NH 4 + , Fe, Mn, As, Al, rare NO 2 - , Se, Hg, Tl and Pb) exceed the limits referenced in the standards for drinking water. According to the health risk assessment, only five components (NO 3 - , Fe, As, rare NO 2 - and Mn) likely provoke non-cancer effects. The attempt to evaluate the spatial distribution of human health risk from exposure to multiple chemicals shows that the most vulnerable area is associated with territory characterised by low altitude where reducing or near-neutral conditions are formed (lower reaches of Xiushui and Ganjiang Rivers). The largest health risk is associated with the immune system and adverse dermal effects.
Tchounwou, P B; Wilson, B; Ishaque, A
1999-01-01
Drinking water contamination by arsenic remains a major public health problem. Acute and chronic arsenic exposure via drinking water has been reported in many countries of the world; especially in Argentina, Bangladesh, India, Mexico, Thailand, and Taiwan, where a large proportion of drinking water (ground water) is contaminated with a high concentration of arsenic. Research has also pointed out significantly higher standardized mortality ratios and cumulative mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. General health effects that are associated with arsenic exposure include cardiovascular and peripheral vascular disease, developmental anomalies, neurologic and neurobehavioral disorders, diabetes, hearing loss, portal fibrosis of the liver, lung fibrosis, hematologic disorders (anemia, leukopenia, and eosinophilia), and carcinoma. Although, the clinical manifestations of arsenic poisoning appear similar, the toxicity of arsenic compounds depends largely u[on the chemical species and the form of arsenic involved. On the basis of its high degree of toxicity to humans, and the non-threshold dose-response assumption, a zero level exposure is recommended for arsenic, even though this level is practically non-attainable. In this review, we provide and discuss important information on the physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical methods, and treatment technologies that are applied to arsenic pollution. Such information is critical in assisting the federal, state and local officials who are responsible for protecting public health in dealing with the problem of drinking water contamination by arsenic and arsenic-containing compounds.
Public Water Supply, Red River Parish, Louisiana.
1981-03-01
overpumpage with resultant salt Infiltration. Health officials in the parish have com- plained about the poor quality of well water. (See letter from Dr...However, the effect of solid waste and sewage resulting from Grand Bayou Reservoir user activities can be minimized through State Board of Health ...quality and the associated public health hazards. (1-b) Possible complaints from land owners against land acquisition for pipeline right-of-way. (1-c
MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF, 2006
Urban stormwater runoff is a leading cause of water quality impairment related to human activities in lakes and reservoirs. It can have significant negative effects on receiving water quality and can create human health concerns when these waters are used for drinking water resou...
NASA Astrophysics Data System (ADS)
Lu, J.; Yuan, F.
2017-08-01
Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.
Zin, Thant; Mudin, Kamarudin D; Myint, Than; Naing, Daw K S; Sein, Tracy; Shamsul, B S
2013-01-01
Water and sanitation are major public health issues exacerbated by rapid population growth, limited resources, disasters and environmental depletion. This study was undertaken to study the influencing factors for household water quality improvement for reducing diarrhoea in resource-limited areas. Data were collected from articles and reviews from relevant randomized controlled trials, new articles, systematic reviews and meta-analyses from PubMed, World Health Organization (WHO), United Nations Children's Fund (UNICEF) and WELL Resource Centre For Water, Sanitation And Environmental Health. Water quality on diarrhoea prevention could be affected by contamination during storage, collection and even at point-of-use. Point-of-use water treatment (household-based) is the most cost-effective method for prevention of diarrhoea. Chemical disinfection, filtration, thermal disinfection, solar disinfection and flocculation and disinfection are five most promising household water treatment methodologies for resource-limited areas. Promoting household water treatment is most essential for preventing diarrhoeal disease. In addition, the water should be of acceptable taste, appropriate for emergency and non-emergency use.
Upstream watershed condition predicts rural children's health across 35 developing countries.
Herrera, Diego; Ellis, Alicia; Fisher, Brendan; Golden, Christopher D; Johnson, Kiersten; Mulligan, Mark; Pfaff, Alexander; Treuer, Timothy; Ricketts, Taylor H
2017-10-09
Diarrheal disease (DD) due to contaminated water is a major cause of child mortality globally. Forests and wetlands can provide ecosystem services that help maintain water quality. To understand the connections between land cover and childhood DD, we compiled a database of 293,362 children in 35 countries with information on health, socioeconomic factors, climate, and watershed condition. Using hierarchical models, here we find that higher upstream tree cover is associated with lower probability of DD downstream. This effect is significant for rural households but not for urban households, suggesting differing dependence on watershed conditions. In rural areas, the effect of a 30% increase in upstream tree cover is similar to the effect of improved sanitation, but smaller than the effect of improved water source, wealth or education. We conclude that maintaining natural capital within watersheds can be an important public health investment, especially for populations with low levels of built capital.Globally diarrheal disease through contaminated water sources is a major cause of child mortality. Here, the authors compile a database of 293,362 children in 35 countries and find that upstream tree cover is linked to a lower probability of diarrheal disease and that increasing tree cover may lower mortality.
Dieter, H H; Mückter, H
2007-03-01
More than 2500 chemically defined substances are approved as drugs in Germany. Unlike agricultural pesticides, these biologically active structures are not used in open environmental compartments and therefore their environmental toxicological data base is not nearly as complete. Nevertheless, some of them become environmental contaminants after their intended use. Therefore, from the viewpoint of environmental health protection, there are gaps in their health-related environmental risk assessment. Organic trace compounds that lack an adequate toxicological database, and their mixtures, in drinking water can be safely regulated and provisionally assessed by combining the "similar joint action" addition rule with the recommendation of the Federal Environment Agency of March 2003 "Assessing the presence of substances in drinking water without (adequate) toxicological database from the health point of view". The general precautionary value (Gesundheitlicher Orientierungswert GOW1=0.10 microg/l), which is a recommendation for weakly to not genotoxic compounds, re presents a workable compromise between preventive health protection, water management considerations and aesthetic quality claims (purity). Compliance with this value in the long term will only be possible if the chemical and biological degradation of pharmaceuticals and their metabolites in waste water and waste water treatment plants is effectively improved. Alternatively, there is the risk of drinking water degenerating into a sink for highly mobile, polar and persistent compounds. Their elimination at a stage as late as technical drinking water treatment would be neither close to the initial cause nor justifiable in terms of technical effectiveness. The risk assessment of their byproducts would give rise to further uncertainties. Possible conflicts with the therapeutic quality must be solved by developing substitute products which are environmentally sound.
Development of a new approach to cumulative effects assessment: a northern river ecosystem example.
Dubé, Monique; Johnson, Brian; Dunn, Gary; Culp, Joseph; Cash, Kevin; Munkittrick, Kelly; Wong, Isaac; Hedley, Kathlene; Booty, William; Lam, David; Resler, Oskar; Storey, Alex
2006-02-01
If sustainable development of Canadian waters is to be achieved, a realistic and manageable framework is required for assessing cumulative effects. The objective of this paper is to describe an approach for aquatic cumulative effects assessment that was developed under the Northern Rivers Ecosystem Initiative. The approach is based on a review of existing monitoring practices in Canada and the presence of existing thresholds for aquatic ecosystem health assessments. It suggests that a sustainable framework is possible for cumulative effects assessment of Canadian waters that would result in integration of national indicators of aquatic health, integration of national initiatives (e.g., water quality index, environmental effects monitoring), and provide an avenue where long-term monitoring programs could be integrated with baseline and follow-up monitoring conducted under the environmental assessment process.
The growing epidemic of water pipe smoking: health effects and future needs.
Bou Fakhreddine, Hisham M; Kanj, Amjad N; Kanj, Nadim A
2014-09-01
Water pipe smoking (WPS), an old method of tobacco smoking, is re-gaining widespread popularity all over the world and among various populations. Smoking machine studies have shown that the water pipe (WP) mainstream smoke (MSS) contains a wide array of chemical substances, many of which are highly toxic and carcinogenic for humans. The concentrations of some substances exceed those present in MSS of cigarettes. Despite being of low grade, current evidence indicates that WPS is associated with different adverse health effects, not only on the respiratory system but also on the cardiovascular, hematological, and reproductive systems, including pregnancy outcomes. In addition, association between WPS and malignancies, such as lung, oral and nasopharyngeal cancer, has been suggested in different studies and systematic reviews. Despite its long standing history, WPS research still harbors a lot of deficiencies. The magnitude of toxicants and carcinogen exposures, effects on human health, as well as the addiction and dependence potentials associated with WPS need to be studied in well-designed prospective trials. Unfortunately, many of the tobacco control and clean indoor policies have exempted water pipes. World wide awareness among the public, smokers, and policymakers about the potential health effects of WPS is urgently required. Furthermore, stringent policies and laws that control and ban WPS in public places, similar to those applied on cigarettes smoking need to be implemented. Copyright © 2014 Elsevier Ltd. All rights reserved.
Research considerations for more effective groundwater monitoring
Since numerous pathogens can occur in feces, water has traditionally been monitored for fecal contamination by detecting fecal indicator organisms rather than the pathogens themselves. Although this approach is backed up by health effects data in recreational waters, it has been...
Clean water, sanitation and diarrhoea in Indonesia: Effects of household and community factors.
Komarulzaman, Ahmad; Smits, Jeroen; de Jong, Eelke
2017-09-01
Diarrhoea is an important health issue in low- and middle-income countries, including Indonesia. We applied a multilevel regression analysis on the Indonesian Demographic and Health Survey to examine the effects of drinking water and sanitation facilities at the household and community level on diarrhoea prevalence among children under five (n = 33,339). The role of the circumstances was explored by studying interactions between the water and sanitation variables and other risk factors. Diarrhoea prevalence was reported by 4820 (14.4%) children, who on average were younger, poorer and were living in a poorer environment. At the household level, piped water was significantly associated with diarrhoea prevalence (OR = 0.797, 95% CI: 0.692-0.918), improved sanitation had no direct effect (OR = 0.992, 95% CI: 0.899-1.096) and water treatment was not related to diarrhoea incidence (OR = 1.106, 95% CI: 0.994-1.232). At the community level, improved water coverage had no direct effect (OR = 1.002, 95% CI: 0.950-1.057) but improved sanitation coverage was associated with lower diarrhoea prevalence (OR = 0.917, 95% CI: 0.843-0.998). Our interaction analysis showed that the protective effects of better sanitation at the community level were increased by better drinking water at the community level. This illustrates the importance of improving both drinking water and sanitation simultaneously.
1999-04-01
1994-1997). During this time, the 18th Medical Group (MDG) set fluoridating the base water supply as a goal to prevent dental caries – a noble and...related personnel. Supplemental fluoride may be an effective method of improving oral health by reducing dental caries . Water and salt fluoridation ...372-5,381. 9 Colonel Canning and Mr. Noorda, “Talking Paper on Fluoridation of Kadena AB Drinking Water ,” 26 Apr 1995. 5 Chapter 2 Dental Caries The
[Adverse health events and health hazards reflections of epidemiologists and environmentalists].
Vitale, Ksenija; Smoljanović, Mladen
2010-12-01
In this article we present management of water resources in Croatia as a model of integral approach in public health interventions. The links between provision of clean water, sanitation and good health are so strong that today management and water protection are deeply integrated in primary health care. This article is a follow up on topics presented on 2nd Croatian congress on preventive medicine and health promotion which gave us "state of art" in Croatian public health. We strongly believe that every system has its own advantages and downsides, and only by knowing the system well and continuous improvement we can protect ourselves in time of health, social or economic crisis. The model of water protection showed that to prevent and overcome the variety of water-related health risks, implementation of various activities that include general environmental protection, development of water management system, permanent water quality monitoring and control, and improvement of standards and legislative is needed. On the other hand if there is no holistic approach, to the public health problems, all the efforts in just one field will not result in health indicators improvement. Constant monitoring and uniform analysis of data could help to identify possible risks of adverse effects of various environmental factors and possible burden of disease as a consequence. That information could be a point of arguing with local governments and communities for public health interventions. It is important that epidemiological and environmental data do not remain in the domain of academic discussion or statistics, and never reach primary health care which could use them in direct health care providing. Information exchange in real time is important for the real time public health intervention. Primary health care is the front line in communication with patients and diagnostics of disease as well as prevention, and they need to have access to all relevant data.
Cohen, Alasdair; Colford, John M.
2017-01-01
Abstract. Globally, approximately 2 billion people lack microbiologically safe drinking water. Boiling is the most prevalent household water treatment method, yet evidence of its health impact is limited. To conduct this systematic review, we searched four online databases with no limitations on language or publication date. Studies were eligible if health outcomes were measured for participants who reported consuming boiled and untreated water. We used reported and calculated odds ratios (ORs) and random-effects meta-analysis to estimate pathogen-specific and pooled effects by organism group and nonspecific diarrhea. Heterogeneity and publication bias were assessed using I2, meta-regression, and funnel plots; study quality was also assessed. Of the 1,998 records identified, 27 met inclusion criteria and reported extractable data. We found evidence of a significant protective effect of boiling for Vibrio cholerae infections (OR = 0.31, 95% confidence interval [CI] = 0.13–0.79, N = 4 studies), Blastocystis (OR = 0.35, 95% CI = 0.17–0.69, N = 3), protozoal infections overall (pooled OR = 0.61, 95% CI = 0.43–0.86, N = 11), viral infections overall (pooled OR = 0.83, 95% CI = 0.7–0.98, N = 4), and nonspecific diarrheal outcomes (OR = 0.58, 95% CI = 0.45–0.77, N = 7). We found no evidence of a protective effect for helminthic infections. Although our study was limited by the use of self-reported boiling and non-experimental designs, the evidence suggests that boiling provides measureable health benefits for pathogens whose transmission routes are primarily water based. Consequently, we believe a randomized controlled trial of boiling adherence and health outcomes is needed. PMID:29016318
Lessons for Physicians from Flint's Water Crisis.
Carravallah, Laura A; Reynolds, Lawrence A; Woolford, Susan J
2017-10-01
Physicians form a vital front in recognizing unusual clinical presentations that could herald a health threat. In the Flint water crisis, physicians can be credited with playing critical roles in both uncovering the crisis and providing leadership when government failed to respond effectively. Yet most physicians in Flint were not formally trained in advocacy or leadership and might have recognized the health implications of the crisis more quickly had they received formal environmental health training. Furthermore, connections to other professional disciplines-and to the community-are vital for effective responses to environmental health threats. We explore some lessons learned in Flint that might help expedite resolution of future environmental health crises, particularly those involving aging infrastructure and diminished or dysfunctional regulation or oversight. © 2017 American Medical Association. All Rights Reserved.
Health research needed to resolve scientific issues surrounding drinking water disinfection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleffman, D.
Disinfection of drinking water will most likely continue in the United States in order to prevent exposure to microbial pathogens that can cause infectious disease. However, the emergence of concerns over possible toxicological effects, including cancer, mutagenicity, cardiovascular disease, and reproductive effects, may require that the disinfection techniques used in this country be altered or changed. First, the spectrum of possible health effects and the level of risk posed by exposure to chemicals in drinking water must be determined. This will require a continuing research program to develop the scientific data necessary to resolve these issues. In this paper, themore » authors discusses the microbiological, chemical, toxicological, and epidemiological research that is needed to address these issues.« less
MODIS water quality algorithms for northwest Florida estuaries
Synoptic and frequent monitoring of water quality parameters from satellite is useful for determining the health of aquatic ecosystems and development of effective management strategies. Northwest Florida estuaries are classified as optically-complex, or waters influenced by chlo...
Impact of effects of acid precipitation on toxicity of metals.
Nordberg, G F; Goyer, R A; Clarkson, T W
1985-01-01
Acid precipitation may increase human exposure to several potentially toxic metals by increasing metal concentrations in major pathways to man, particularly food and water, and in some instances by enhancing the conversion of metal species to more toxic forms. Human exposures to methylmercury are almost entirely by way of consumption of fish and seafood. In some countries, intakes by this route may approach the levels that can give rise to adverse health effects for population groups with a high consumption of these food items. A possible increase in methylmercury concentrations in fish from lakes affected by acid precipitation may thus be of concern to selected population groups. Human exposures to lead reach levels that are near those associated with adverse health effects in certain sensitive segments of the general population in several countries. The possibility exists that increased exposures to lead may be caused by acid precipitation through a mobilization of lead from soils into crops. A route of exposure to lead that may possibly be influenced by acid precipitation is an increased deterioration of surface materials containing lead and a subsequent ingestion by small children. A similar situation with regard to uptake from food exists for cadmium (at least in some countries). Human metal exposures via drinking water may be increased by acid precipitation. Decreasing pH increases corrosiveness of water enhancing the mobilization of metal salts from soil; metallic compounds may be mobilized from minerals, which may eventually reach drinking water. Also, the dissolution of metals (Pb, Cd, Cu) from piping systems for drinking water by soft acidic waters of high corrosivity may increase metal concentrations in drinking water. Exposures have occasionally reached concentrations which are in the range where adverse health effects may be expected in otherwise healthy persons. Dissolution from piping systems can be prevented by neutralizing the water before distribution. Increased aluminum concentrations in water is a result mainly of the occurrence of Al in acidified natural waters and the use of Al chemicals in drinking water purification. If such water is used for dialysis in patients with chronic renal failure, it may give rise to cases of dialysis dementia and other disorders. A possible influence on health of persons with normal renal function (e.g., causing Alzheimer's disease) is uncertain and requires further investigation.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3908087
Chawla, Sagar S; Gupta, Shailvi; Onchiri, Frankline M; Habermann, Elizabeth B; Kushner, Adam L; Stewart, Barclay T
2016-09-01
Although two billion people now have access to clean water, many hospitals in low- and middle-income countries (LMICs) do not. Lack of water availability at hospitals hinders safe surgical care. We aimed to review the surgical capacity literature and document the availability of water at health facilities and develop a predictive model of water availability at health facilities globally to inform targeted capacity improvements. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding water availability were extracted. Data from these assessments and national indicator data from the World Bank (e.g., gross domestic product, total health expenditure, and percent of population with improved access to water) were used to create a predictive model for water availability in LMICs globally. Of the 72 records identified, 19 reported water availability representing 430 hospitals. A total of 66% of hospitals assessed had water availability (283 of 430 hospitals). Using these data, estimated percent of water availability in LMICs more broadly ranged from under 20% (Liberia) to over 90% (Bangladesh, Ghana). Less than two-thirds of hospitals providing surgical care in 19 LMICs had a reliable water source. Governments and nongovernmental organizations should increase efforts to improve water infrastructure at hospitals, which might aid in the provision of safe essential surgical care. Future research is needed to measure the effect of water availability on surgical care and patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
The economic value of Quebec's water fluoridation program.
Tchouaket, Eric; Brousselle, Astrid; Fansi, Alvine; Dionne, Pierre Alexandre; Bertrand, Elise; Fortin, Christian
2013-01-01
Dental caries is a major public health problem worldwide, with very significant deleterious consequences for many people. The available data are alarming in Canada and the province of Quebec. The water fluoridation program has been shown to be the most effective means of preventing caries and reducing oral health inequalities. This article analyzes the cost-effectiveness of Quebec's water fluoridation program to provide decision-makers with economic information for assessing its usefulness. An approach adapted from economic evaluation was used to: (1) build a logic model for Quebec's water fluoridation program; (2) determine its implementation cost; and (3) analyze its cost-effectiveness. Documentary analysis was used to build the logic model. Program cost was calculated using data from 13 municipalities that adopted fluoridation between 2002 and 2010 and two that received only infrastructure grants. Other sources were used to collect demographic data and calculate costs for caries treatment including costs associated with travel and lost productivity. The analyses showed the water fluoridation program was cost-effective even with a conservatively estimated 1 % reduction in dental caries. The benefit-cost ratio indicated that, at an expected average effectiveness of 30 % caries reduction, one dollar invested in the program saved $71.05-$82.83 per Quebec's inhabitant in dental costs (in 2010) or more than $560 million for the State and taxpayers. The results showed that the drinking-water fluoridation program produced substantial savings. Public health decision-makers could develop economic arguments to support wide deployment of this population-based intervention whose efficacy and safety have been demonstrated and acknowledged.
Health risk assessment of potable water containing small amount of tritium oxide
NASA Astrophysics Data System (ADS)
Momot, O. A.; Synzynys, B. I.; Oudalova, A. A.
2017-01-01
The problem of groundwater pollution with tritium in a vicinity of radiation-dangerous facilities in Obninsk is considered. The information on the specific activity of tritium in Obninsk water sources is provided. The formula for the calculation of the β-radiation absorbed dose from tritium ingestion is proposed, reflecting the biological behavior of tritium in a human body. To establish the extent of tritium effects on human, the health risk is assessed. It is shown that if the specific activity of tritium in drinking water amounts to 10 Bq/l, the risk of stochastic effects of radiation will not exceed the limit of the individual lifetime risk.
A cost effectiveness analysis of community water fluoridation in New Zealand.
Fyfe, Caroline; Borman, Barry; Scott, Guy; Birks, Stuart
2015-12-18
The aim of the study was to use recent data to determine whether Community Water Fluoridation (CWF) remains a cost effective public health intervention in New Zealand, given a reduction in dental caries in all communities over time. Local authorities that fluoridated their water supplies were asked to complete a questionnaire regarding fixed and variable costs incurred from CWF. Cost savings were calculated using data from the 2009 New Zealand Oral Health Survey. The cost effectiveness of CWF in conjunction with treatment per dmft/DMFT averted was compared to an alternative of treatment alone. Calculations were made for communities with populations of less than 5,000, 5,000 to 10,000, 10,001 to 50,000 and greater than 50,000. CWF was cost effective in all communities at base case. CWF remained cost effective for communities over 5,000 under all scenarios when sensitivity analysis was conducted. For communities under 5,000 the there was a positive net cost for CWF under certain scenarios. In this study, CWF was a cost effective public health intervention in New Zealand. For smaller communities cost effectiveness would be more dependent upon the population risk profile of the community.
78 FR 52192 - Final Aquatic Life Ambient Water Quality Criteria For Ammonia-Freshwater 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... ambient water quality criteria for the protection of aquatic life from effects of ammonia in freshwater... life criteria are developed based on EPA's Guidelines for Deriving Numerical National Water Quality... quality standards for protecting aquatic life and human health. EPA's recommended water quality criteria...
Watershed protection, and associated in situ water quality improvements, has received considerable attention as a means of mitigating health risks and avoiding expenditures at drinking water treatment plants (DWTPs). This study reviews the extant cost function literature linking ...
The influence of road salts on water quality in a restored urban stream (Columbus, OH)
Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...
Watershed protection, and associated in situ water quality improvements, has received considerable attention as a means of mitigating health risks and avoiding expenditures at drinking water treatment plants (DWTPs). In this presentation, we review the literature linking raw wate...
[Water fluoridation and public health].
Barak, Shlomo
2003-11-01
Fluoridation in Israel was first mooted in 1973 and finally incorporated into law in November 2002 obligating the Ministry of Health to add fluoride to the nation's water supply. Epidemiology studies in the USA have shown that the addition of one part per million of fluoride to the drinking water reduced the caries rate of children's teeth by 50% to 60% with no side effects. Both the WHO in 1994 and the American Surgeon General's report of 2000 declared that fluoridation of drinking water was the safest and most efficient way of preventing dental caries in all age groups and populations. Opposition to fluoridation has arisen from "antifluoridation" groups who object to the "pollution" of drinking water by the addition of chemicals and mass medication in violation of the "Patient's Rights" law and the Basic Law of Human Dignity and Liberty. A higher prevalence of hip fractures in elderly osteoporotic women and osteosarcoma in teenagers has been reported in areas where excess fluoride exists in the drinking water. However, none of the many independent professional committees reviewing the negative aspects of fluoridation have found any scientific evidence associating fluoridation with any ill-effects or health problems. In Israel, where dental treatment is not included in the basket of Health Services, fluoridation is the most efficient and cheapest way of reducing dental disease, especially for the poorer members of the population.
[Urinary tract infections: Economical impact of water intake].
Bruyère, F; Buendia-Jiménez, I; Cosnefroy, A; Lenoir-Wijnkoop, I; Tack, I; Molinier, L; Daudon, M; Nuijten, M J C
2015-09-01
This study aims to estimate the impact of preventing urinary tract infections (UTI), using a strategy of increased water intake, from the payer's perspective in the French health care system. A Markov model enables a comparison of health care costs and outcomes for a virtual cohort of subjects with different levels of daily water intake. The analysis of the budgetary impact was based on a period of 5years. The analysis was based on a 25-year follow-up period to assess the effects of adequate water supply on long-term complications. The authors estimate annual primary incidence of UTI and annual risk of recurrence at 5.3% and 30%, respectively. Risk reduction associated with greater water intake reached 45% and 33% for the general and recurrent populations, respectively. The average total health care cost of a single UTI episode is €1074; for a population of 65 millions, UTI management represents a cost of €3.700 millions for payers. With adequate water intake, the model indicates a potential cost savings of €2.288 millions annually, by preventing 27 million UTI episodes. At the individual level, the potential cost savings is approximately €2915. Preventing urinary tract infections using a strategy of adequate water intake could lead to significant cost savings for a public health care system. Further studies are needed to assess the effectiveness of such an approach. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Benson, Robert; Conerly, Octavia D.; Sander, William; Batt, Angela L.; Boone, J. Scott; Furlong, Edward T.; Glassmeyer, Susan T.; Kolpin, Dana W.; Mash, Heath
2017-01-01
The source water and treated drinking water from twenty five drinking water treatment plants (DWTPs) across the United States were sampled in 2010–2012. Samples were analyzed for 247 contaminants using 15 chemical and microbiological methods. Most of these contaminants are not regulated currently either in drinking water or in discharges to ambient water by the U. S. Environmental Protection Agency (USEPA) or other U.S. regulatory agencies. This analysis shows that there is little public health concern for most of the contaminants detected in treated water from the 25 DWTPs participating in this study. For vanadium, the calculated Margin of Exposure (MOE) was less than the screening MOE in two DWTPs. For silicon, the calculated MOE was less than the screening MOE in one DWTP. Additional study, for example a national survey may be needed to determine the number of people ingesting vanadium and silicon above a level of concern. In addition, the concentrations of lithium found in treated water from several DWTPs are within the range previous research has suggested to have a human health effect. Additional investigation of this issue is necessary. Finally, new toxicological data suggest that exposure to manganese at levels in public water supplies may present a public health concern which will require a robust assessment of this information.
Benson, Robert; Conerly, Octavia D; Sander, William; Batt, Angela L; Boone, J Scott; Furlong, Edward T; Glassmeyer, Susan T; Kolpin, Dana W; Mash, Heath E; Schenck, Kathleen M; Simmons, Jane Ellen
2017-02-01
The source water and treated drinking water from twenty five drinking water treatment plants (DWTPs) across the United States were sampled in 2010-2012. Samples were analyzed for 247 contaminants using 15 chemical and microbiological methods. Most of these contaminants are not regulated currently either in drinking water or in discharges to ambient water by the U. S. Environmental Protection Agency (USEPA) or other U.S. regulatory agencies. This analysis shows that there is little public health concern for most of the contaminants detected in treated water from the 25 DWTPs participating in this study. For vanadium, the calculated Margin of Exposure (MOE) was less than the screening MOE in two DWTPs. For silicon, the calculated MOE was less than the screening MOE in one DWTP. Additional study, for example a national survey may be needed to determine the number of people ingesting vanadium and silicon above a level of concern. In addition, the concentrations of lithium found in treated water from several DWTPs are within the range previous research has suggested to have a human health effect. Additional investigation of this issue is necessary. Finally, new toxicological data suggest that exposure to manganese at levels in public water supplies may present a public health concern which will require a robust assessment of this information. Published by Elsevier B.V.
DOM in recharge waters of the Santa Ana River Basin
Leenheer, J.A.; Aiken, G.R.; Woodside, G.; O'Connor-Patel, K.
2007-01-01
The urban Santa Ana River in California is the primary source of recharge water for Orange County's groundwater basin, which provides water to more than two million residents. This study was undertaken to determine the unidentified portion of dissolved organic matter (DOM) in various natural surface and reclaimed waters of the Santa Ana River Basin and to assess the potential health risk of this material. The most abundant organic contaminants were anionic detergent degradation products (constituting about 12% of the DOM), which have no known adverse health effects. In addition, high percentages of dissolved colloids from bacterial cell walls were found during storm flows; these colloids foul membranes used in water treatment. Although no significant health risks were ascribed to the newly characterized DOM, the authors note that even the small amounts of humic substances deposited during storm flow periods were responsible for significant increases in disinfection by_product formation potential in these waters.
... cleaned, water can carry disease. Since we live, work and play so close to water, harmful bacteria have to be removed to make water safe. Effects of wastewater pollutants If wastewater is not properly treated, then the environment and human health can be negatively impacted. These ...
Regulatory Considerations to Ensure Clean and Safe Drinking Water
Federal drinking water regulations are based on risk assessment of human health effects and research conducted on source water, treatment technologies, residuals, and distribution systems. The book chapter summarizes the role that EPA research plays in ensuring pure drinking wat...
The dentist’s role in promoting community water fluoridation
Melbye, Molly L.R.; Armfield, Jason M.
2013-01-01
Background and Overview Community water fluoridation is an important public health intervention that reduces oral health disparities and increases the health of the population. Promotion of its safety and effectiveness is critical to maintaining its widespread acceptance and ensuring its continued use. Dentists are a potentially important source of knowledge regarding the oral health benefits and safety of water fluoridation. However, few dentists regularly discuss fluorides, and water fluoridation in particular, with patients. The authors aim to describe and discuss the role and importance of dentists’ promotion of public water fluoridation, barriers to dentists’ involvement and some approaches that might influence dentists to promote water fluoridation more actively. Conclusions and Practice Implications Ongoing promotion of fluoridation by dentists is a key factor in ensuring sustained municipal water fluoridation. However, current undergraduate dental curricula do not adequately prepare dentists for this role, and continuing dental education may be insufficient to change clinical practice. Although smoking-cessation literature can shed some light on how to proceed, changing dentists’ practice behavior remains a largely unstudied topic. Dental associations are a key resource for dentists, providing information that can assist them in becoming advocates for water fluoridation. PMID:23283928
Abandoned Mine Lands Program - Division of Mining, Land, and Water
, safety, general welfare and property from extreme danger resulting from the adverse effects of past coal mining practices. 2. Protection of public health, safety and general welfare from adverse effects of past lands and waters and the environment previously degraded by adverse effects of past coal mining
A Concurrent Exposure to Arsenic and Fluoride from Drinking Water in Chihuahua, Mexico
González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C.; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L.; Saunders, R. Jesse; Drobná, Zuzana; Mendez, Michelle A.; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M.
2015-01-01
Inorganic arsenic (iAs) and fluoride (F−) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F− in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F− concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F−/L. Urinary arsenic (U-tAs) and urinary F− (U-F−) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F−/mL. A strong positive correlation was found between iAs and F− concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F− concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F−, raising questions about possible contribution of F− exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F− exposures and its related health risks deserves immediate attention. PMID:25918912
Severtson, Dolores J; Baumann, Linda C; Brown, Roger L
2006-04-01
The common sense model (CSM) shows how people process information to construct representations, or mental models, that guide responses to health threats. We applied the CSM to understand how people responded to information about arsenic-contaminated well water. Constructs included external information (arsenic level and information use), experience (perceived water quality and arsenic-related health effects), representations, safety judgments, opinions about policies to mitigate environmental arsenic, and protective behavior. Of 649 surveys mailed to private well users with arsenic levels exceeding the maximum contaminant level, 545 (84%) were analyzed. Structural equation modeling quantified CSM relationships. Both external information and experience had substantial effects on behavior. Participants who identified a water problem were more likely to reduce exposure to arsenic. However, about 60% perceived good water quality and 60% safe water. Participants with higher arsenic levels selected higher personal safety thresholds and 20% reported a lower arsenic level than indicated by their well test. These beliefs would support judgments of safe water. A variety of psychological and contextual factors may explain judgments of safe water when information suggested otherwise. Information use had an indirect effect on policy beliefs through understanding environmental causes of arsenic. People need concrete information about environmental risk at both personal and environmental-systems levels to promote a comprehensive understanding and response. The CSM explained responses to arsenic information and may have application to other environmental risks.
Potential impacts of changing supply-water quality on drinking water distribution: A review.
Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter
2017-06-01
Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fungi contamination of drinking water.
Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin
2014-01-01
Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially accomplish this, by first filtering the water and finally by adding disinfection treatments adequate to remove or mitigate fungi or their toxic metabolites.
Houtman, Corine J; Kroesbergen, Jan; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter
2014-10-15
The presence of pharmaceuticals in drinking water is a topic of concern. Previous risk assessments indicate that their low concentrations are very unlikely to pose risks to human health, however often conclusions had to be based on small datasets and mixture effects were not included. The objectives of this study were to a) investigate if pharmaceuticals in surface and polder water penetrate in drinking water, b) assess the lifelong exposure of consumers to pharmaceuticals via drinking water and c) assess the possible individual and mixture health risks associated with this exposure. To fulfill these aims, a 2-year set of 4-weekly monitoring data of pharmaceuticals was used from three drinking water production plants. The 42 pharmaceuticals that were monitored were selected according to their consumption volume, earlier detection, toxicity and representation of the most relevant therapeutic classes. Lifelong exposures were calculated from concentrations and compared with therapeutic doses. Health risks were assessed by benchmarking concentrations with provisional guideline values. Combined risks of mixtures of pharmaceuticals were estimated using the concept of Concentration Addition. The lifelong exposure to pharmaceuticals via drinking water was calculated to be extremely low, i.e. a few mg, in total corresponding to <10% of the dose a patient is administered on one day. The risk of adverse health effects appeared to be negligibly low. Application of Concentration Addition confirmed this for the mixture of pharmaceuticals simultaneously present. The investigated treatment plants appeared to reduce the (already negligible) risk up to 80%. The large available monitoring dataset enabled the performance of a realistic risk assessment. It showed that working with maximum instead of average concentrations may overestimate the risk considerably. Copyright © 2014 Elsevier B.V. All rights reserved.
The status of community water fluoridation in the United States.
Easley, M W
1990-01-01
Community water fluoridation has served the American public extremely well as the cornerstone of dental caries prevention activities for 45 years. The dental and general health benefits associated with the ingestion of water-borne fluorides have been well known by researchers for an even longer period. Continued research has repeatedly confirmed the safety, effectiveness, and efficiency of community water fluoridation in preventing dental caries for Americans regardless of age, race, ethnicity, religion, educational status, or socioeconomic level. Despite the obvious benefits associated with this proven public health measure, slow progress has been made toward achieving the 1990 national fluoridation objectives as listed in "Promoting Health/Preventing Disease: Objectives for the Nation." This paper documents the lagging pace of community fluoridation by reviewing and analyzing data reported in "Fluoridation Census, 1985," a document published in late 1988 by the Public Health Service's Centers for Disease Control. Failure to attain the 1990 objectives is attributable to a combination of circumstances, including their low priority within many local, State, and Federal health agencies, inadequate funding at all levels of government, lack of a coordinated and focused national fluoridation effort, failure of most States to require fluoridation, lack of Federal legislation mandating fluoridation, general apathy of most health professional organizations toward fluoridation, misconceptions by the public about effectiveness and safety and, finally, unrelenting opposition by a highly vocal minority of the lay public.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2116635
[Possible health risks from asbestos in drinking water].
Di Ciaula, Agostino; Gennaro, Valerio
2016-01-01
The recent finding of asbestos fibres in drinking water (up to 700.000 fibres/litres) in Tuscany (Central Italy) leads to concerns about health risks in exposed communities. Exposure to asbestos has been linked with cancer at several levels of the gastrointestinal tract, and it has been documented, in an animal model, a direct cytotoxic effect of asbestos fibres on the ileum. It has been recently described a possible link between asbestos and intrahepatic cholangiocarcinoma, and asbestos fibres have been detected in humans in histological samples from colon cancer and in gallbladder bile. Taken together, these findings suggest the possibility of an enterohepatic translocation of asbestos fibres, alternative to lymphatic translocation from lungs. In animal models, asbestos fibres ingested with drinking water act as a co-carcinogen in the presence of benzo(a) pyrene and, according to the International Agency for Research on Cancer (IARC ), there is evidence pointing to a causal effect of ingested asbestos on gastric and colorectal cancer. The risk seems to be proportional to the concentration of ingested fibres, to the extent of individual water consumption, to exposure timing, and to the possible exposure to other toxics (i.e., benzo(a)pyrene). Furthermore, the exposure to asbestos by ingestion could explain the epidemiological finding of mesothelioma in subjects certainly unexposed by inhalation. In conclusion, several findings suggest that health risks from asbestos could not exclusively derive from inhalation of fibres. Health hazards might also be present after ingestion, mainly after daily ingestion of drinking water for long periods. In Italy, a systemic assessment of the presence of asbestos fibres in drinking water is still lacking, although asbestos-coated pipelines are widely diffused and still operating. Despite the fact that the existence of a threshold level for health risks linked to the presence of asbestos in drinking water is still under debate, the precautionary principle should impose all possible efforts in order to revise health policies concerning this topic, and a systematic monitoring of drinking water to quantify the presence of asbestos is certainly needed in all regions. Further epidemiological studies aimed to the identification of exposed communities and to an adequate health risk assessment in their specific geographical areas are urgently needed.
Emenike, PraiseGod Chidozie; Tenebe, Theophilus Imokhai; Omeje, Maxwell; Osinubi, Damilare Samuel
2017-08-31
The sales of sachet water (SW), also known as "pure water" (PW), in Nigeria is a lucrative business. It serves many people, especially low-income earners, by providing a more affordable access to safe drinking water when compared with table water. However, some of the producers of SW do not effectively treat raw water before packaging them for sale. This study investigates the presence and concentrations of heavy metals, such as chromium (Cr), iron (Fe), manganese (Mn), copper (Cu), aluminum (Al), and zinc (Zn) in some samples of SW sold within Ota, Ogun State, Nigeria. Samples of SW from nine different producers were purchased for four consecutive weeks and analyzed to determine the concentrations of these heavy metals in them. Furthermore, health risk indicators, such as chronic daily intake (CDI) and health risk indices (HRI) for children and adults, were calculated separately. The metal concentrations were compared with allowable limits set by the World Health Organization (WHO), Nigerian Industrial Standard (NIS), and the United States Environmental Protection Agency (US EPA). High concentrations of Cr, Fe, and Al were found in all the nine samples and exceeded the maximum allowable limits (MAL) of all the standards considered. However, the concentrations of Zn, Mn, and Cu were within permissible limits. The HRIs of heavy metals were in the order of Cu > Fe > Zn > Mn > Al > Cr, but since the standard limits set for some metals were exceeded, proper and effective treatment is required to safeguard the health of consumers.
Perceived agricultural runoff impact on drinking water.
Crampton, Andrea; Ragusa, Angela T
2014-09-01
Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.
Rish, William R; Pfau, Edward J
2018-04-01
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10 -10 and 10 -6 (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HI CUMULATIVE ) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty). © 2017 Society for Risk Analysis.
Kogevinas, Manolis; Cordier, Sylvaine; Templeton, Michael R.; Vermeulen, Roel; Nuckols, John R.; Nieuwenhuijsen, Mark J.; Levallois, Patrick
2014-01-01
Background: Safe drinking water is essential for well-being. Although microbiological contamination remains the largest cause of water-related morbidity and mortality globally, chemicals in water supplies may also cause disease, and evidence of the human health consequences is limited or lacking for many of them. Objectives: We aimed to summarize the state of knowledge, identify gaps in understanding, and provide recommendations for epidemiological research relating to chemicals occurring in drinking water. Discussion: Assessing exposure and the health consequences of chemicals in drinking water is challenging. Exposures are typically at low concentrations, measurements in water are frequently insufficient, chemicals are present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the relative risks tends to be small. Conclusions: Research should include well-designed epidemiological studies covering regions with contrasting contaminant levels and sufficient sample size; comprehensive evaluation of contaminant occurrence in combination with bioassays integrating the effect of complex mixtures; sufficient numbers of measurements in water to evaluate geographical and temporal variability; detailed information on personal habits resulting in exposure (e.g., ingestion, showering, swimming, diet); collection of biological samples to measure relevant biomarkers; and advanced statistical models to estimate exposure and relative risks, considering methods to address measurement error. Last, the incorporation of molecular markers of early biological effects and genetic susceptibility is essential to understand the mechanisms of action. There is a particular knowledge gap and need to evaluate human exposure and the risks of a wide range of emerging contaminants. Citation: Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P. 2014. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Perspect 122:213–221; http://dx.doi.org/10.1289/ehp.1206229 PMID:24380896
Does access to open water affect the health of Pekin ducks (Anas platyrhynchos)?
O'Driscoll, K K M; Broom, D M
2011-02-01
Access to open water is considered good for the welfare of Pekin ducks. These studies investigated the effect that the type of water resource, provided over either straw bedding or a rubber mesh, had on measures of duck health. Pekin strain ducklings (n = 2,600) were managed in pens of 100 on straw over a solid concrete floor. In study 1, one of two water resources (nipple, n = 5 pens; wide-lip bell drinker, n = 5 pens), was located directly over the straw. In study 2, one of three water resources (narrow-lip bell drinker, n = 6 pens; trough, n = 5 pens; and bath, n = 5 pens) was located over a rubber mesh. On d 16, 24, 29, 35, and 43, (study 1) or d 21, 29, 35, and 43 posthatch (study 2), 10 birds were selected from each pen and weighed, and then feather hygiene, footpad dermatitis, eye health, gait score, and nostril condition scores were taken. Treatment had no effect on BW in either study, but in study 2, ducks in the open water treatments had higher scores (P < 0.001) than those in the narrow-lip bell drinker treatment by d 43. In study 1, treatment had no effect on hygiene scores, but scores increased over time (P < 0.001). In study 2, ducks in the narrow-lip bell drinker treatment were dirtier than those in the bath treatment (P = 0.01), with those in the trough treatment being intermediate. In both studies, ducks with bell drinkers had worse gait scores than those in the other treatments (study 1, P < 0.01; study 2, P < 0.05). Treatment had no effect on eye health scores. However, ducks were less likely to have dirty nostrils when provided with more open water resources in both studies (P < 0.01), or were less likely to have blocked nostrils in the trough and bath treatments than in the narrow-lip bell drinker treatment in study 2 (P = 0.01). Provision of open water, particularly over a properly constructed drainage area, improved some aspects of duck health (improved feather hygiene and BW, and fewer dirty and blocked nostrils). However, further work is needed to investigate these treatments on a commercial scale.
The genomics revolution and its effect on water quality
Genomic-based molecular tools are emerging as powerful laboratory methods for assessing water quality characteristics and improving our ability to assess the human health risks posed by microbial contaminants in drinking water. To a great extent, this revolution in genomics-rese...
NEUROXOTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.
The Safe Drinking Water Act requires that EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection byproducts (DBPs). Dibromoacetic acid (DBA) is one of many DBPs produced by the chlorination of drinking water. Its chlorinated analog, ...
RECREATIONAL WATER QUALITY AND SWIMMING ASSOCIATED HEALTH EFFECTS
The U.S. EPA's National Epidemiological and Environmental Assessment of Recreational Water study is currently underway with the goal of determining if new rapid methods for measuring water quality can be used to predict illness in swimmers. This lecture will provide a historical...
Bunnell, Joseph E.
2008-01-01
Coal is usually 'washed' with water and a variety of chemicals to reduce its content of sulfur and mineral matter. The 'washings' or 'coal slurry' derived from this process is a viscous black liquid containing fine particles of coal, mineral matter, and other dissolved and particulate substances. Coal slurry may be stored in impoundments or in abandoned underground mines. Human health and environmental effects potentially resulting from leakage of chemical substances from coal slurry into drinking water supplies or aquatic ecosystems have not been systematically examined. Impoundments are semipermeable, presenting the possibility that inorganic and organic substances, some of which may be toxic, may contaminate ground or surface water. The Agency for Toxic Substances and Disease Registry, part of the Centers for Disease Control and Prevention, has concluded that well water in Mingo County, West Virginia, constitutes a public health hazard.
Campbell, Oona M R; Benova, Lenka; Gon, Giorgia; Afsana, Kaosar; Cumming, Oliver
2015-01-01
Objective To explore linkages between water, sanitation and hygiene (WASH) and maternal and perinatal health via a conceptual approach and a scoping review. Methods We developed a conceptual framework iteratively, amalgamating three literature-based lenses. We then searched literature and identified risk factors potentially linked to maternal and perinatal health. We conducted a systematic scoping review for all chemical and biological WASH risk factors identified using text and MeSH terms, limiting results to systematic reviews or meta-analyses. The remaining 10 complex behavioural associations were not reviewed systematically. Results The main ways poor WASH could lead to adverse outcomes are via two non-exclusive categories: 1. ‘In-water’ associations: (a) Inorganic contaminants, and (b) ‘water-system’ related infections, (c) ‘water-based’ infections, and (d) ‘water borne’ infections. 2. ‘Behaviour’ associations: (e) Behaviours leading to water-washed infections, (f) Water-related insect-vector infections, and (g-i) Behaviours leading to non-infectious diseases/conditions. We added a gender inequality and a life course lens to the above framework to identify whether WASH affected health of mothers in particular, and acted beyond the immediate effects. This framework led us to identifying 77 risk mechanisms (67 chemical or biological factors and 10 complex behavioural factors) linking WASH to maternal and perinatal health outcomes. Conclusion WASH affects the risk of adverse maternal and perinatal health outcomes; these exposures are multiple and overlapping and may be distant from the immediate health outcome. Much of the evidence is weak, based on observational studies and anecdotal evidence, with relatively few systematic reviews. New systematic reviews are required to assess the quality of existing evidence more rigorously, and primary research is required to investigate the magnitude of effects of particular WASH exposures on specific maternal and perinatal outcomes. Whilst major gaps exist, the evidence strongly suggests that poor WASH influences maternal and reproductive health outcomes to the extent that it should be considered in global and national strategies. PMID:25430609
Health Effects Assessment for Acenaphthene
Because of the lack of data for the carcinogenicity and threshold toxicity of acenaphthene risk assessment values cannot be derived. The ambient water quality criterion of 0.2 mg/l is based on organoleptic data, which has no known relationship to potential human health effects. A...
RELATIONSHIP OF MICROBIAL INDICATORS TO HEALTH EFFECTS AT MARINE BATHING BEACHES
Finds are described from the second year of an epidemiological-microbiological study conducted at New York City beaches as part of the U.S. Environmental Protection Agency program to develop health effects-recreational water quality criteria. Symptomatology rates among swimmers (...
Types and characteristics of drinking water for hydration in the elderly.
Casado, Ángela; Ramos, Primitivo; Rodríguez, Jaime; Moreno, Norberto; Gil, Pedro
2015-01-01
The role of hydration in the maintenance of health is increasingly recognized. Hydration requirements vary for each person, depending on physical activity, environmental conditions, dietary patterns, alcohol intake, health problems, and age. Elderly individuals have higher risk of developing dehydration than adults. Diminution of liquid intake and increase in liquid losses are both involved in causing dehydration in the elderly. The water used for drinking is provided through regular public water supply and the official sanitary controls ensure their quality and hygiene, granting a range of variation for most of its physical and chemical characteristics, being sometimes these differences, though apparently small, responsible for some disorders in sensitive individuals. Hence, the advantages of using bottled water, either natural mineral water or spring water, are required by law to specify their composition, their major components, and other specific parameters. It is essential to take this into account to understand the diversity of indications and favorable effects on health that certain waters can offer.
Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...
Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...
Molybdenum distributions and variability in drinking water from England and Wales.
Smedley, P L; Cooper, D M; Lapworth, D J
2014-10-01
An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p < 0.05) differences were apparent in Mo concentration between sources. Highest concentrations were derived from groundwater from a sulphide-mineralised catchment, although concentrations were only 1.5 μg/l. Temporal variability within sites was small, and no seasonal effects (p > 0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p < 0.05) in concentrations between pre-flush and post-flush tap water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in all cases less than 2 μg/l, were more than an order of magnitude below the WHO health-based value and suggest that Mo is unlikely to pose a significant health or water supply problem in England and Wales.
Although the formation and associated health effects of disinfection by-products (DBPs) in drinking water have been studied for nearly 40 years, similar research on swimming pool and hot tub (spa) water has begun only recently. Unique to pool and spa waters is the role of human ...
USDA-ARS?s Scientific Manuscript database
Biologically active compounds originating from agricultural, residential, and industrial sources have been detected in surface waters, which have invoked concern of their potential ecological and human health effects. Automated and grab surface water samples, passive water samples - Polar Organic Co...
A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...
Effects of Yangtze River source water on genomic polymorphisms of male mice detected by RAPD.
Zhang, Xiaolin; Zhang, Zongyao; Zhang, Xuxiang; Wu, Bing; Zhang, Yan; Yang, Liuyan; Cheng, Shupei
2010-02-01
In order to evaluate the environmental health risk of drinking water from Yangtze River source, randomly amplified polymorphic DNA (RAPD) markers were used to detect the effects of the source water on genomic polymorphisms of hepatic cell of male mice (Mus musculus, ICR). After the mice were fed with source water for 90 days, RAPD-polymerase chain reactions (PCRs) were performed on hepatic genomic DNA using 20 arbitrary primers. Totally, 189 loci were generated, including 151 polymorphic loci. On average, one PCR primer produced 5.3, 4.9 and 4.8 bands for each mouse in the control, the groups fed with source water and BaP solution, respectively. Compared with the control, feeding mice with Yangtze River source water caused 33 new loci to appear and 19 to disappear. Statistical analysis of RAPD printfingers revealed that Yangtze River source water exerted a significant influence on the hepatic genomic polymorphisms of male mice. This study suggests that RAPD is a reliable and sensitive method for the environmental health risk of Yangtze River source water.
Controlling Lead in Drinking Water for Schools and Day Care Facilities: A Summary of State Programs.
ERIC Educational Resources Information Center
Environmental Protection Agency, 2004
2004-01-01
Children are susceptible to adverse health effects from lead, such as impaired mental development, IQ deficits, shorter attention span, and lower birth weight. Exposure to lead is a significant health concern, particularly for young children and infants whose growing bodies tend to absorb more lead than the average adult. Testing water in…
USDA-ARS?s Scientific Manuscript database
Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems...
Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Michael J.; Janke, Robert
Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less
Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Michael J.; Janke, Robert
Network model detail can influence the accuracy of results from analyses of water distribution systems. Previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregated adversemore » effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. However, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less
Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events
Davis, Michael J.; Janke, Robert
2015-01-01
Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less
Incorporating Risk and Indicators into a Water Security Framework
NASA Astrophysics Data System (ADS)
Allen, D. M.; Bakker, K.; Simpson, M. W.; Norman, E.; Dunn, G.
2010-12-01
The concept of water security has received growing attention over the past five years in academic debates and policy circles, particularly with respect to cumulative impacts assessment and watershed management. We propose an integrative definition for water security; one that considers both stressors and impacts (or effects) on hydrological systems. We present a water security assessment framework that considers status and risk indicators for both water quality and quantity as measures of impacts. This assessment framework also integrates the social sciences with natural science, engineering, and public health, providing opportunities to address environmental challenges, including the relationship between water and land use dynamics, the integration of aquatic ecosystem and human health concerns, and the alignment of governance with water management imperatives. We argue that this framework has the potential to advance water science, the contributing disciplines, and water policy and management.
Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv
2016-03-02
Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.
Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv
2016-01-01
Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety. PMID:26950135
Health Risk Assessment of Cyanobacterial (Blue-green Algal) Toxins in Drinking Water
Falconer, Ian R.; Humpage, Andrew R.
2005-01-01
Cyanobacterial toxins have caused human poisoning in the Americas, Europe and Australia. There is accumulating evidence that they are present in treated drinking water supplies when cyanobacterial blooms occur in source waters. With increased population pressure and depleted groundwater reserves, surface water is becoming more used as a raw water source, both from rivers and lakes/reservoirs. Additional nutrients in water which arise from sewage discharge, agricultural run-off or storm water result in overabundance of cyanobacteria, described as a ‘water bloom’. The majority of cyanobacterial water-blooms are of toxic species, producing a diversity of toxins. The most important toxins presenting a risk to the human population are the neurotoxic alkaloids (anatoxins and paralytic shellfish poisons), the cyclic peptide hepatotoxins (microcystins) and the cytotoxic alkaloids (cylindrospermopsins). At the present time the only cyanobacteral toxin family that have been internationally assessed for health risk by the WHO are the microcystins, which cause acute liver injury and are active tumour promoters. Based on sub-chronic studies in rodents and pigs, a provisional Guideline Level for drinking water of 1μg/L of microcystin-LR has been determined. This has been adopted in legislation in countries in Europe, South America and Australasia. This may be revised in the light of future teratogenicity, reproductive toxicity and carcinogenicity studies. The other cyanobacterial toxin which has been proposed for detailed health risk assessment is cylindrospermopsin, a cytotoxic compound which has marked genotoxicity, probable mutagenicity, and is a potential carcinogen. This toxin has caused human poisoning from drinking water, and occurs in water supplies in the USA, Europe, Asia, Australia and South America. An initial health risk assessment is presented with a proposed drinking water Guideline Level of 1μg/L. There is a need for both increased monitoring data for toxins in drinking water and epidemiological studies on adverse health effects in exposed populations to clarify the extent of the health risk. PMID:16705800
Climate Change and Water Scarcity: The Case of Saudi Arabia.
DeNicola, Erica; Aburizaiza, Omar S; Siddique, Azhar; Khwaja, Haider; Carpenter, David O
2015-01-01
Climate change is expected to bring increases in average global temperatures (1.4°C-5.8°C [34.52°F-42.44°F] by 2100) and precipitation levels to varying degrees around the globe. The availability and quality of water will be severely affected, and public health threats from the lack of this valuable resource will be great unless water-scarce nations are able to adapt. Saudi Arabia provides a good example of how the climate and unsustainable human activity go hand in hand in creating stress on and depleting water resources, and an example for adaptation and mitigation. A search of the English literature addressing climate change, water scarcity, human health, and related topics was conducted using online resources and databases accessed through the University at Albany, State University of New York library web page. Water scarcity, which encompasses both water availability and water quality, is an important indicator of health. Beyond drinking, water supply is intimately linked to food security, sanitation, and hygiene, which are primary contributors to the global burden of disease. Poor and disadvantaged populations are the ones who will suffer most from the negative effects of climate change on water supply and associated human health issues. Examples of adaptation and mitigation measures that can help reduce the strain on conventional water resources (surface waters and fossil aquifers or groundwater) include desalination, wastewater recycling and reuse, and outsourcing food items or "virtual water trade." These are strategies being used by Saudi Arabia, a country that is water poor primarily due to decades of irresponsible irrigation practices. The human and environmental health risks associated with these adaptation measures are examined. Finally, strategies to protect human health through international collaboration and the importance of these efforts are discussed. International, multidisciplinary cooperation and collaboration will be needed to promote global water security and to protect human health, particularly in low-income countries that do not have the resources necessary to adapt on their own. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Chemical Analysis of Drinking Water Concentrates in the Four Lab Study
The purpose of the Four Lab study was to evaluate potential health effects from exposure to disinfection by-products (DBPs). Unchlorinated water taken from a full-scale drinking water treatment plant was concentrated and chlorinated to form DBPs. Both the unchlorinated (control...
ERIC Educational Resources Information Center
Glied, Sherry; Neidell, Matthew
2010-01-01
This paper examines the effect of oral health on labor market outcomes by exploiting variation in fluoridated water exposure during childhood. The politics surrounding the adoption of water fluoridation by local governments suggests exposure to fluoride is exogenous to other factors affecting earnings. Exposure to fluoridated water increases…
Climate Change in the US: Potential Consequences for Human Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2001-01-01
The U.S. National Assessment identified five major areas of consequences of climate change in the United States: temperature-related illnesses and deaths, health effects related to extreme weather events, air pollution-related health effects, water- and food-borne diseases, and insect-, tick-, and rodent-borne diseases. The U.S. National Assessment final conclusions about these potential health effects will be described. In addition, a summary of some of the new tools for studying human health aspects of climate change as well as environment-health linkages through remotely sensed data and observations will be provided.
Recent advances in drinking water disinfection: successes and challenges.
Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James
2013-01-01
Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality, it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.
Ilmiawati, Cimi; Thang, Nguyen Dinh; Iida, Machiko; Maeda, Masao; Ohnuma, Shoko; Yajima, Ichiro; Ohgami, Nobutaka; Oshino, Reina; Al Hossain, M M Aeorangajeb; Ninomiya, Hiromasa; Kato, Masashi
2016-12-01
Since well water utilized for domestic purposes in the Red River Delta of North Vietnam has been reported to be polluted by arsenic, barium, iron, and manganese, household sand filters consisting of various components are used. Information regarding the effectiveness of various sand filters for removal of the four toxic elements in well water is limited. In this study, arsenic levels in 13/20 of well water samples and 1/7 of tap water samples exceeded World Health Organization (WHO) health-based guideline value for drinking water. Moreover, 2/20, 6/20, and 4/20 of well water samples had levels exceeding the present and previous guideline levels for barium, iron, and manganese, respectively. Levels of iron and manganese, but not arsenic, in well water treated by sand filters were lower than those in untreated water, although previous studies showed that sand filters removed all of those elements from water. A low ratio of iron/arsenic in well water may not be sufficient for efficient removal of arsenic from household sand filters. The levels of barium in well water treated by sand filters, especially a filter composed of sand and charcoal, were significantly lower than those in untreated water. Thus, we demonstrated characteristics of sand filters in North Vietnam.
Statement of National Environmental Health Assocation on Future National Health Legislation
ERIC Educational Resources Information Center
Pohlit, Nicholas; And Others
1974-01-01
This article concerns the need for more preventative health legislation to cutback increasing curative medical costs. Preventative action would provide better nutrition, better housing, and more effective controls on food, water, and solid wastes. Environmental health specialists would play a major role in the staffing of the new health systems.…
Perchlorate in Water Supplies: Sources, Exposures, and Health Effects
Steinmaus, Craig M.
2016-01-01
Perchlorate exposure occurs from ingestion of natural or manmade perchlorate in food or water. Perchlorate is used in a variety of industrial products including missile fuel, fireworks, and fertilizers, and industrial contamination of drinking water supplies has occurred in a number of areas. Perchlorate blocks iodide uptake into the thyroid, and decreases the production of thyroid hormone, a critical hormone for metabolism, neurodevelopment, and other physiologic functions. Occupational and clinical dosing studies have not identified clear adverse effects, but may be limited by small sample sizes, short study durations, and the inclusion of mostly healthy adults. Expanding evidence suggests that young children, pregnant women, fetuses, and people co-exposed to similarly acting agents may be especially susceptible to perchlorate. Given the ubiquitous nature of perchlorate exposure, and the importance of thyroid hormone for brain development, studying the impact of perchlorate on human health could have far-reaching public health implications. PMID:27026358
Spatial modelling of arsenic distribution and human health effects in Lake Victoria basin, Tanzania
NASA Astrophysics Data System (ADS)
Ijumulana, Julian; Mtalo, Felix; Bhattacharya, Prosun
2016-04-01
Increasing incidences of naturally occurring geogenic pollutants in drinking water sources and associated human health risks are the two major challenges requiring detailed knowledge to support decision making process at various levels. The presence, location and extent of environmental contamination is needed towards developing mitigation measures to achieve required standards. In this study we are developing a GIS-based model to detect and predict drinking water pollutants at the identified hotspots and monitor its variation in space. In addition, the mobility of pollutants within the affected region needs to be evaluated using topographic and hydrogeological data. Based on these geospatial data on contaminant distribution, spatial relationship of As and F contamination and reported human health effects such as dental caries, dental fluorosis, skeletal fluorosis and bone crippling, skin and other cancers etc. can be modeled for potential interventions for safe drinking water supplies.
Health Effects Associated with Wastewater Treatment and Disposal.
ERIC Educational Resources Information Center
Kowal, N. E.; Pahren, H. R.
1978-01-01
Presents a literature review of the potential health effects associated with: (1) wastewater treatment plants; (2) land application of municipal wastewater; and (3) use of renovated water. This review covers the publications of 1976-77. A list of 96 references is also presented. (HM)
Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera
2017-02-14
Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.
NASA Astrophysics Data System (ADS)
Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera
2017-02-01
Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.
Harper, D.D.; Farag, A.M.; Hogstr, C.; MacConnell, Elizabeth
2009-01-01
A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT. USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16??C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16??C) compared to those at an experimental site 10 km downstream (26??C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. ?? 2009 SETAC.
EPA's Safe and Sustainable Water Resources Research ...
Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an integrated, sustainable manner can jeopardize human and aquatic ecosystem health, which can impact our society and economy.Through innovative science and engineering, the SSWR Research Program is developing cost-effective, sustainable solutions to 21st century complex water issues and proactively developing solutions to emerging concerns. Our research is helping to ensure that clean, adequate, and equitable supplies of water are available to support human health and resilient aquatic ecosystems, now and into the future. To share information on EPA's water research program
Community Response to Impaired Drinking Water Quality: Evidence from Bottled Water Sales
NASA Astrophysics Data System (ADS)
Allaire, M.; Zheng, S.; Lall, U.
2017-12-01
Drinking water contaminants pose a harm to public health. When confronted with elevated contaminate levels, individuals can take averting actions to reduce exposure, such as bottled water purchases. This study addresses a problem of national interest given that 9 to 45 million people have been affected by drinking water quality violations in each of the past 34 years. Moreover, few studies address averting behavior and avoidance costs due to water quality violations. This study assesses how responses might differ across baseline risk of impaired water quality and demographics of service area. We match a panel of weekly supermarket sales data with geocoded violations data for 67 counties in the Southeast from 2006-2015. We estimate the change in bottled water sales due to drinking water violations using a fixed effects model. Observing market behavior also allows us to calculate the cost of these averting actions. Critical findings from this study contribute to understanding how communities respond to water quality violations. We find that violations have considerable effects on bottled water consumption. Sales increase 8.1 percent due to violations related to microorganisms and 31.2 percent due to Tier 1 violations, which pose an immediate health risk. In addition, we calculate a national cost of averting actions of $26 million for microorganism violations from 2006-2015, which represents a lower-bound estimate. Averting costs vary considerably across the U.S. and some counties bear a particularly large burden, such as in California and Texas. Overall, this study provides insight into how averting behavior differs across contaminant type, water utility characteristics, and community demographics. Such knowledge can aid public health agencies, water systems, and environmental regulators to direct assistance to communities most in need.
Public health effects of inadequately managed stormwater runoff.
Gaffield, Stephen J; Goo, Robert L; Richards, Lynn A; Jackson, Richard J
2003-09-01
This study investigated the scale of the public health risk from stormwater runoff caused by urbanization. We compiled turbidity data for municipal treated drinking water as an indication of potential risk in selected US cities and compared estimated costs of waterborne disease and preventive measures. Turbidity levels in other US cities were similar to those linked to illnesses in Milwaukee, Wis, and Philadelphia, Pa. The estimated annual cost of waterborne illness is comparable to the long-term capital investment needed for improved drinking water treatment and stormwater management. Although additional data on cost and effectiveness are needed, stormwater management to minimize runoff and associated pollution appears to make sense for protecting public health at the least cost.
Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Volume 1.
1987-04-29
Dichlorobenzene 4000.0 U.S. EPA estimate of safe levels of toxicants in drinking water for human health effects (Federal Register. 28 November 1980). (2... Plastic bottle 40C 500 ml TOC Glass bottle 40 C; H 2 So4 to pHɚ 250 al Metals Plastic bottle HNO3 to pHɚ 500 ml Volatile organics Glass vial with 40C... safe levels of toxicants in drinking water for human health effects (Federal Register. 28 November 1980). 4-3 TABLE 4-2. REGULATORY GUIDELINES OR
Frequency of use controls chemical leaching from drinking-water containers subject to disinfection.
Andra, Syam S; Makris, Konstantinos C; Shine, James P
2011-12-15
Microbial-, and chemical-based burden of disease associated with lack of access to safe water continues to primarily impact developing countries. Cost-effective health risk-mitigating measures, such as of solar disinfection applied to microbial-contaminated water stored in plastic bottles have been increasingly tested in developing countries adversely impacted by epidemic water-borne diseases. Public health concerns associated with chemical leaching from water packaging materials led us to investigate the magnitude and variability of antimony (Sb) and bromine (Br) leaching from reused plastic containers (polyethylene terephthalate, PET; and polycarbonate, PC) subject to UV and/or temperature-driven disinfection. The overall objective of this study was to determine the main and interactive effects of temperature, UV exposure duration, and frequency of bottle reuse on the extent of leaching of Sb and Br from plastic bottles into water. Regardless of UV exposure duration, frequency of reuse (up to 27 times) was the major factor that linearly increased Sb leaching from PET bottles at all temperatures tested (13-47 °C). Leached Sb concentrations (∼360 ng L(-1)) from the highly reused (27 times) PET bottles (minimal Sb leaching from PC bottles, <15 ng L(-1)) did not pose a serious risk to human health according to current daily Sb acceptable intake estimates. Leached Br concentrations from both PET and PC containers (up to ∼15 μg L(-1)) did not pose a consumer health risk either, however, no acceptable daily dose estimates exist for oral ingestion of organo-brominated, or other plasticizers/additives compounds if they were to be found in bottled water at much lower concentrations. Additional research on potential leaching of organic chemicals from water packaging materials is deemed necessary under relevant environmental conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
2010-12-01
effects on ground - water would continue to occur as a result of aircraft operations. Long-Term: No impact. Surface Water...that existed at the time the 15 study was prepared as well as a Maximum Mission Scenario that was based on the noise effects of various 16 potentially ...and human health of a community or locale. Storm water 19 is an important component of surface water systems because of its potential to
Benedict, Katharine M; Reses, Hannah; Vigar, Marissa; Roth, David M; Roberts, Virginia A; Mattioli, Mia; Cooley, Laura A; Hilborn, Elizabeth D; Wade, Timothy J; Fullerton, Kathleen E; Yoder, Jonathan S; Hill, Vincent R
2017-11-10
Provision of safe water in the United States is vital to protecting public health (1). Public health agencies in the U.S. states and territories* report information on waterborne disease outbreaks to CDC through the National Outbreak Reporting System (NORS) (https://www.cdc.gov/healthywater/surveillance/index.html). During 2013-2014, 42 drinking water-associated † outbreaks were reported, accounting for at least 1,006 cases of illness, 124 hospitalizations, and 13 deaths. Legionella was associated with 57% of these outbreaks and all of the deaths. Sixty-nine percent of the reported illnesses occurred in four outbreaks in which the etiology was determined to be either a chemical or toxin or the parasite Cryptosporidium. Drinking water contamination events can cause disruptions in water service, large impacts on public health, and persistent community concern about drinking water quality. Effective water treatment and regulations can protect public drinking water supplies in the United States, and rapid detection, identification of the cause, and response to illness reports can reduce the transmission of infectious pathogens and harmful chemicals and toxins.
Biofilm in drinking water systems is undesirable and may result in water quality degradation and subsequent non-compliance with existing regulations; therefore, effective biofilm control is desirable to maintain public health. For this purpose, drinking water utilities may use ei...
Lead in Drinking Water in Schools and Non-Residential Buildings.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This manual demonstrates how drinking water in schools and non-residential buildings can be tested for lead and how contamination problems can be corrected when found. The manual also provides background information concerning the sources and health effects of lead, how lead gets into drinking water, how lead in drinking water is regulated, and…
A spatial evaluation of global wildfire-water risks to human and natural systems
Francois-Nicolas Robinne; Kevin D. Bladon; Carol Miller; Marc-Andre Parisien; Jerome Mathieu; Mike D. Flannigan
2017-01-01
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for...
A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...
EPIDEMIOLOGIC STUDIES OF DISINFECTANTS AND DISINFECTANT BY-PRODUCTS
This article provides a review of the epidemiologic evidence for human health effects that may be associated with the disinfection of drinking water. An epidemiologic study attempts to link human health effects with exposure to a specific agent (e.g., DBCM), agents (e.g., THMs or...
Mel'tser, A V; Erastova, N V; Kiselev, A V
2013-01-01
Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.
Nahar, Nurun; Hossain, Faisal; Hossain, M Delawer
2008-05-01
This report discusses the health and socioeconomic problems that have recently emerged in the Bangladesh countryside because of arsenic contamination of the groundwater. A survey found that men in rural households are generally found to be more susceptible to arsenicosis than women. The survey also indicated that villagers with lower annual income are more likely to experience arsenicosis. About 60 percent of the respondents indicated a willingness to pay up to a dollar of their monthly income for safe water. More than 70 percent of women were found to be willing to walk for five minutes to collect safe water. Awareness campaigns conducted over the last decade seem to have been effective for villagers. Overall, findings from the survey paint a picture of a gradually evolving social and health scenario in rural Bangladesh that health officials must heed to safeguard the public health of the rural public.
The correlation of arsenic levels in drinking water with the biological samples of skin disorders.
Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul
2009-01-15
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.
Climate change, food, water and population health in China.
Tong, Shilu; Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D
2016-10-01
Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change's most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially - although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources - e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change - e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases - are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population's resilience to the risks of climate variability and change.
Climate change, food, water and population health in China
Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D
2016-01-01
Abstract Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change’s most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially – although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources – e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change – e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases – are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population’s resilience to the risks of climate variability and change. PMID:27843166
Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei
2016-01-01
This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed.
Gene expression profiles in liver of mouse after chronic exposure to drinking water.
Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei
2009-10-01
cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.
Climate change & infectious diseases in India: implications for health care providers.
Dhara, V Ramana; Schramm, Paul J; Luber, George
2013-12-01
Climate change has the potential to influence the earth's biological systems, however, its effects on human health are not well defined. Developing nations with limited resources are expected to face a host of health effects due to climate change, including vector-borne and water-borne diseases such as malaria, cholera, and dengue. This article reviews common and prevalent infectious diseases in India, their links to climate change, and how health care providers might discuss preventive health care strategies with their patients.
Climate change & infectious diseases in India: Implications for health care providers
Dhara, V. Ramana; Schramm, Paul J.; Luber, George
2013-01-01
Climate change has the potential to influence the earth's biological systems, however, its effects on human health are not well defined. Developing nations with limited resources are expected to face a host of health effects due to climate change, including vector-borne and water-borne diseases such as malaria, cholera, and dengue. This article reviews common and prevalent infectious diseases in India, their links to climate change, and how health care providers might discuss preventive health care strategies with their patients. PMID:24521625
Water and Sanitation in Schools: A Systematic Review of the Health and Educational Outcomes
Jasper, Christian; Le, Thanh-Tam; Bartram, Jamie
2012-01-01
A systematic review of the literature on the effects of water and sanitation in schools was performed. The goal was to characterize the impacts of water and sanitation inadequacies in the academic environment. Published peer reviewed literature was screened and articles that documented the provision of water and sanitation at schools were considered. Forty-one peer-reviewed papers met the criteria of exploring the effects of the availability of water and/or sanitation facilities in educational establishments. Chosen studies were divided into six fields based on their specific foci: water for drinking, water for handwashing, water for drinking and handwashing, water for sanitation, sanitation for menstruation and combined water and sanitation. The studies provide evidence for an increase in water intake with increased provision of water and increased access to water facilities. Articles also report an increase in absenteeism from schools in developing countries during menses due to inadequate sanitation facilities. Lastly, there is a reported decrease in diarrheal and gastrointestinal diseases with increased access to adequate sanitation facilities in schools. Ensuring ready access to safe drinking water, and hygienic toilets that offer privacy to users has great potential to beneficially impact children’s health. Additional studies that examine the relationship between sanitation provisions in schools are needed to more adequately characterize the impact of water and sanitation on educational achievements. PMID:23066396
Comparative human health risk analysis of coastal community water and waste service options.
Schoen, Mary E; Xue, Xiaobo; Hawkins, Troy R; Ashbolt, Nicholas J
2014-08-19
As a pilot approach to describe adverse human health effects from alternative decentralized community water systems compared to conventional centralized services (business-as-usual [BAU]), selected chemical and microbial hazards were assessed using disability adjusted life years (DALYs) as the common metric. The alternatives included: (1) composting toilets with septic system, (2) urine-diverting toilets with septic system, (3) low flush toilets with blackwater pressure sewer and on-site greywater collection and treatment for nonpotable reuse, and (4) alternative 3 with on-site rainwater treatment and use. Various pathogens (viral, bacterial, and protozoan) and chemicals (disinfection byproducts [DBPs]) were used as reference hazards. The exposure pathways for BAU included accidental ingestion of contaminated recreational water, ingestion of cross-connected sewage to drinking water, and shower exposures to DBPs. The alternative systems included ingestion of treated greywater from garden irrigation, toilet flushing, and crop consumption; and ingestion of treated rainwater while showering. The pathways with the highest health impact included the ingestion of cross-connected drinking water and ingestion of recreational water contaminated by septic seepage. These were also among the most uncertain when characterizing input parameters, particularly the scale of the cross-connection event, and the removal of pathogens during groundwater transport of septic seepage. A comparison of the health burdens indicated potential health benefits by switching from BAU to decentralized water and wastewater systems.
Anderson, Beth; Ahsan, Habibul; Aposhian, H. Vasken; Graziano, Joseph H.; Thompson, Claudia; Suk, William A.
2013-01-01
Background: Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons. Objectives: We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life. Methods: We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications. Discussion: Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood. Conclusions: These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure. PMID:23458756
Naujokas, Marisa F; Anderson, Beth; Ahsan, Habibul; Aposhian, H Vasken; Graziano, Joseph H; Thompson, Claudia; Suk, William A
2013-03-01
Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons. We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life. We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications. Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood. These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure.
Efimenko, N V; Kaĭsinova, A S; Fedorova, T E; Botvineva, L A
2015-01-01
The objective of the present study was to estimate the effectiveness of the spa and health resort-based treatment of non-alcoholic fatty liver disease in 40 patients at the mean age of 48,8 ± 5.7 years suffering from type 2 diabetes mellitus. All of them received combined therapy including the application of potable Essentuki-Novaya mineral water (20 patients) or Essentuki No 4 water (20 patients). This therapeutic modality resulted in positive dynamics of clinical symptoms of the disease, the functional liver tests, and parameters of intra-hepatic hemodynamics, lipid peroxidation homeostasis, and the hormonal status. It is concluded that the spa and health resort-based treatment with the application of local drinking Essentuki-type mineral waters for the management of non-alcoholic fatty liver disease in the patients presenting with type 2 diabetes mellitus leads to the improvement of the main functions of the liver, stabilizes carbohydrate and lipid metabolism, and prevents progression of the pathological process.
Equilibrium-based passive sampling methods are often used in aquatic environmental monitoring to measure hydrophobic organic contaminants (HOCs) and in the subsequent evaluation of their effects on ecological and human health. HOCs freely dissolved in water (Cfree) will partition...
77 FR 30280 - Final National Recommended Ambient Water Quality Criteria for Carbaryl-2012
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... national recommended water quality criteria for the protection of aquatic life from effects of carbaryl... developed the aquatic life criteria based on EPA's Guidelines for Deriving Numerical National Water Quality... quality standards for protecting aquatic life and human health. These criteria are intended to protect...
Water Pollution: Part I, Municipal Wastewaters; Part II, Industrial Wastewaters.
ERIC Educational Resources Information Center
Fowler, K. E. M.
This publication is an annotated bibliography of municipal and industrial wastewater literature. This publication consists of two parts plus appendices. Part one is entitled Municipal Wastewaters and includes publications in such areas as health effects of polluted waters, federal policy and legislation, biology and chemistry of polluted water,…
7 CFR 1780.57 - Design policies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...
7 CFR 1780.57 - Design policies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...
7 CFR 1780.57 - Design policies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...
7 CFR 1780.57 - Design policies.
Code of Federal Regulations, 2013 CFR
2013-01-01
... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...
7 CFR 1780.57 - Design policies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...
Water dynamics and population pressure in the Nepalese Himalayas.
Schreier, H; Shah, P B
1996-10-01
The authors investigate the impact of water shortages, especially water for irrigation, on development in Nepal. "The problems associated with hydropower development will be illustrated by using the Kulekhani watershed project as a case study." The possible future effects on food supplies and health are discussed. excerpt
The Role of Microbial Processes in the Oxidation and Removal of Arsenic from Drinking Water
The United States Environmental Protection Agency (EPA) recently reduced the drinking water standard for arsenic (As) in water from 0.05 to 0.010 milligrams/Liter (L) (10 micrograms/L). This reduction was prompted by new health effects research, which concluded th...
Support Documents for EPA’s Second Review of Existing Drinking Water Standards
The support documents for the Six-Year Review 2 of existing National Primary Drinking Water Standards contain extensive information including protocol for the review, and chemical contaminant health effects among others
Support Documents for EPA’s Third Review of Existing Drinking Water Standards
The support documents for the Six-Year Review 3 of existing National Primary Drinking Water Standards contain extensive information including protocol for the review, and chemical contaminant health effects among others
Water Softeners: How Much Sodium Do They Add?
... away the saltshaker and cutting back on processed foods. With Sheldon G. Sheps, M.D. Drinking water advisory: Consumer acceptability advice and health effects analysis on sodium. U.S. Environmental Protection Agency. http://www. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... biodiesel, water/diesel emulsions, several atypical additives, and renewable gasoline and diesel fuels. Tier... health effects. Tier 2 data have been submitted for baseline diesel, biodiesel, and water/diesel...
Diesel, children and respiratory disease.
Liu, Norrice M; Grigg, Jonathan
2018-01-01
Air pollution generated in urban areas is a global public health burden since half of the world's population live in either cities, megacities or periurban areas. Its direct effects include initiating and exacerbating disease, with indirect effects on health mediated via climate change putting the basic needs of water, air and food at risk.
A variety of human symptoms have been associated with exposure to the dinoflagellate
Pfiesteria and have been grouped together into a syndrome termed "possible estuary-associated
syndrome," Prospective cohort studies of health effects associated with exposure to estuarine w...
MODELING WATER QUALITY IN DRINKING WATER DISTRIBUTION SYSTEMS: SELECTED CASE STUDIES
The SDWA of 1974 and its' Amendments of 1986 require that the USEPA establish maximum contaminant level goals (MCLGs) for each contaminant which may have an adverse effect on the health of persons. Each goal must be set at a level at which no known or anticipated adverse effects ...
USDA-ARS?s Scientific Manuscript database
Water clarifying and disinfection techniques such as ozonation and ultraviolet irradiation are commonly used in recirculation aquaculture systems (RAS); however, the capital and operating costs of these technologies are expensive. Cost-effective treatment options that maintain fish health and simult...
Dunn, G; Henrich, N; Holmes, B; Harris, L; Prystajecky, N
2014-09-01
This work examines the communication interactions of water suppliers and health authorities with the general public regarding microbial source water quality for recreational and drinking water. We compare current approaches to risk communication observable in British Columbia (BC), Canada, with best practices derived from the communications literature, finding significant gaps between theory and practice. By considering public views and government practices together, we identify key disconnects, leading to the conclusion that at present, neither the public's needs nor public health officials' goals are being met. We find: (1) there is a general lack of awareness and poor understanding by the public of microbial threats to water and the associated health implications; (2) the public often does not know where to find water quality information; (3) public information needs are not identified or met; (4) information sharing by authorities is predominantly one-way and reactive (crisis-oriented); and (5) the effectiveness of communications is not evaluated. There is a need for both improved public understanding of water quality-related risks, and new approaches to ensure information related to water quality reaches audiences. Overall, greater attention should be given to planning and goal setting related to microbial water risk communication.
The Border Environmental Health Initiative-investigating the transboundary Santa Cruz watershed
Norman, Laura M.; Callegary, James; van Riper, Charles; Gray, Floyd
2010-01-01
In 2004 the U.S. Geological Survey (USGS) launched the Border Environmental Health Initiative (BEHI), a major project encompassing the entire U.S.-Mexico border region. In 2009, a study of the Santa Cruz River Watershed (SCW), located in the border region of Arizona and Sonora, Mexico, was initiated as part of the BEHI. In this borderland region of the desert Southwest, human health and the ecosystems on which humans rely depend critically on limited water resources. Surface water is scarce during much of the year, and groundwater is the primary source for industrial, agricultural, and domestic use. In order to identify risks to water resources in the SCW, and the potential consequences to riparian ecosystems and ultimately human health, the USGS is using an interdisciplinary and integrative approach that incorporates the expertise of geographers, hydrologists, biologists, and geologists to track organic and inorganic contaminants and their effects from sources to sinks in sediment, water, plants, and animals. Existing groundwater and surface-water models are being used and modified to assess contaminant and sediment transport.
Estimated nitrogen and phosphorus inputs to the Fish Creek watershed, Teton County, Wyoming, 2009–15
Eddy-Miller, Cheryl A.; Sando, Roy; MacDonald, Michael J.; Girard, Carlin E.
2016-12-15
Nutrients, such as nitrogen and phosphorus, are essential for plant and animal growth and nourishment, but the overabundance of bioavailable nitrogen and phosphorus in water can cause adverse health and ecological effects. It is generally accepted that increased primary production of surface-water bodies because of high inputs of nutrients is now the most important polluting effect in surface water in the developed world.
Sekarajasekaran, I A
1979-12-01
Development of a human community are not without changes in its environment. Such changes result in either beneficial or adverse effects on human health. In Malaysia, in the wake of the New Economic Policy aimed at the redressing of the poor population and income distribution, development of the nation has brought about various changes in the environment. Some of these changes have elevated basic public health problems, while others, particularly new agricultural practices and industrialisation programmes with urbanisation trends, have brought a new set of problems due to water pollution and sanitation. Various measures are being taken to protect and to improve the environment so that progress can be realised with minimum adverse effects. This also calls for assistance from international sources, in terms of expertise, training and funds.
1998-06-12
public health threats posed by water pollution. (b) More effective control of polluted runoff (including a strategy for achieving a net gain of... Control Strategies for Toxic Pollutants. a. The CWA requires states to identify "impaired" water bodies within their boundaries. For water...standards. Thereafter, states must develop "individual control strategies " (ICSs) to regulate such pollutants and achieve water quality standards
Murray, Audrey; Ormeci, Banu
2012-11-01
Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.
1983-04-01
Environmental Samples, ~ Health Effects Research Laboratory, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina, December, 1976. 7...Family Sapindaceae Genus cardiosperrum halicacabwn Family Malvaceae Genus Hibiscus moecheutos 0 H. militaris Family Hypericaceae Genus Hypericwn waiteri...Algal metabolites 4 can produce taste, coloration and even health problems whicn might limit water use. Orthophosphates and inorganic nitrogen (TIN) are
Occurrence of Surface Water Contaminations: An Overview
NASA Astrophysics Data System (ADS)
Shahabudin, M. M.; Musa, S.
2018-04-01
Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.
The water-energy nexus: an earth science perspective
Healy, Richard W.; Alley, William M.; Engle, Mark A.; McMahon, Peter B.; Bales, Jerad D.
2015-01-01
Relevant earth science issues analyzed and discussed herein include freshwater availability; water use; ecosystems health; assessment of saline water resources; assessment of fossil-fuel, uranium, and geothermal resources; subsurface injection of wastewater and carbon dioxide and related induced seismicity; climate change and its effect on water availability and energy production; byproducts and waste streams of energy development; emerging energy-development technologies; and energy for water treatment and delivery.
An Evaluation of the NIDS (registered trademark) ACE (trademark) Test
2014-06-30
included chemicals commonly used for drinking water disinfection (chlorine and chloramine), byproducts of cyanobacteria blooms (geosmin and 2...duration field toxicity test for Army drinking water . One component of the ESB the ACE Test) is an enzymatic assay designed to detect neurotoxicants...adverse health effects is the presence of toxic industrial chemicals (TICs) in drinking water . The current field water test kit – the water quality
The public health significance of trace chemicals in waste water utilization
Shuval, Hillel I.
1962-01-01
The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826
FECAL POLLUTION, PUBLIC HEALTH AND MICROBIAL SOURCE TRACKING
Microbial source tracking (MST) seeks to provide information about sources of fecal water contamination. Without knowledge of sources, it is difficult to accurately model risk assessments, choose effective remediation strategies, or bring chronically polluted waters into complian...
3Ts for Reducing Lead in Drinking Water: Training
It is important to train school officials to raise awareness of the potential occurrences, causes, and health effects of lead in drinking water; assist school officials in identifying potential areas where elevated lead may occur.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... for biodiesel, water/diesel emulsions, several atypical additives, and renewable gasoline and diesel... adverse health effects. Tier 2 data have been submitted for baseline diesel, biodiesel, and water/diesel...
Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95
Cowdery, T.K.
1998-01-01
Agricultural land use and soil texture can explain pesticide distributions; soil texture best explains nutrient distributions in waters in surficial aquifers. Confining beds protect waters in buried glacial aquifers from land use effects, resulting in no or low concentrations of nutrients and pesticides. Upward movement of bedrock waters high in dissolved solids concentration can increase concentrations in waters in buried glacial and, to a lesser degree, waters in surficial aquifers in the Lake Plain and Drift Prairie areas. Waters in surficial aquifers exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level in drinking water for nitrate in the Drift Prairie (27 percent) and Moraine (8 percent) areas. Their limited areal extent and susceptibility to contamination restrict the usefulness of surficial aquifers as a drinking water source. Waters in buried glacial aquifers exceeded USEPA health advisories for dissolved solids, sodium, and manganese. Sixty-six percent of waters in surficial aquifers also exceeded the Health Advisory for manganese.
Public Health Effects of Inadequately Managed Stormwater Runoff
Gaffield, Stephen J.; Goo, Robert L.; Richards, Lynn A.; Jackson, Richard J.
2003-01-01
Objectives. This study investigated the scale of the public health risk from stormwater runoff caused by urbanization. Methods. We compiled turbidity data for municipal treated drinking water as an indication of potential risk in selected US cities and compared estimated costs of waterborne disease and preventive measures. Results. Turbidity levels in other US cities were similar to those linked to illnesses in Milwaukee, Wis, and Philadelphia, Pa. The estimated annual cost of waterborne illness is comparable to the long-term capital investment needed for improved drinking water treatment and stormwater management. Conclusions. Although additional data on cost and effectiveness are needed, stormwater management to minimize runoff and associated pollution appears to make sense for protecting public health at the least cost. PMID:12948975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-18
The Ninth Avenue Dump is a 17-acre National Priorities List Site located in an industrialized area within the city limits of Gary, Indiana. A number of contaminants were detected in on-site and off-site ground water, surface water, sediments, and soil samples. Contaminants of concern at the Ninth Avenue Dump Site include: chromium, lead, benzene, polychlorinated biphenyls, 2-butanone, ethylbenzene, toluene, trichloroethylene, vinyl chloride, and xylenes. The pathways for human exposure to site contaminants is through the dermal absorption, ingestion, or inhalation of contaminants from ground water, surface water, soil, air, or contaminated food-chain entities. There is currently no documented exposure tomore » site contaminants. However, the site is considered to be of potential public health concern because of the potential risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less
Wildfire and the future of water supply.
Bladon, Kevin D; Emelko, Monica B; Silins, Uldis; Stone, Micheal
2014-08-19
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
Huang, Lei; Wu, Haiyun; van der Kuijp, Tsering Jan
2015-01-01
Chronic arsenic exposure through drinking water has been a vigorously studied and debated subject. However, the existing literature does not allow for a thorough examination of the potential regional discrepancies that may arise among arsenic-related health outcomes. The purpose of this article is to provide an updated review of the literature on arsenic exposure and commonly discussed health effects according to global geographical distribution. This geographically segmented approach helps uncover the discrepancies in the health effects of arsenic. For instance, women are more susceptible than men to a few types of cancer in Taiwan, but not in other countries. Although skin cancer and arsenic exposure correlations have been discovered in Chile, Argentina, the United States, and Taiwan, no evident association was found in mainland China. We then propose several globally applicable recommendations to prevent and treat the further spread of arsenic poisoning and suggestions of future study designs and decision-making.
Exposure Patterns and Health Effects Associated with Swimming and Surfing in Polluted Marine Waters
NASA Astrophysics Data System (ADS)
Grant, S. B.
2007-05-01
Marine bathing beaches are closed to the public whenever water quality fails to meet State and Federal standards. In this talk I will explore the science (and lack thereof!) behind these beach closures, including the health effects data upon which standards are based, shortcomings of the current approach used for testing and notification, and the high degree of spatial and temporal heterogeneity associated with human exposure to pollutants in these systems. The talk will focus on examples from Huntington Beach, where the speaker has conducted research over the past several years.
Since 2003, we have conducted a series of epidemiological studies at beach sites impacted by treated sewage discharge. The goal was to evaluate the association between swimming-associated illness and novel and faster methods of measuring water quality. In 2005 and 2007, we expand...
Processes affecting the transport of nitrogen in groundwater and factors related to slope position
USDA-ARS?s Scientific Manuscript database
Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...
Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...
"Drinking water quality at the consumer's tap is the center piece of U.S. drinking water regulations to protect people's health. Recently promulgated Stage II DBP rules are an example, which requires a system approach in a multi-barrier strategy for compliance and risk managemen...
Industrial wastes and public health: some historical notes, Part I, 1876-1932.
Tarr, J A
1985-01-01
This article has focused on the relatively low priority accorded industrial wastes compared to human wastes by the public health community in the period from 1876 through 1932. The critical reason for this prioritization was the potential for acute health effects from human wastes as compared with the belief that industrial wastes had only indirect effects. State departments of health normally only responded to industrial wastes when they endangered the potable nature of water supplies or interfered with water and sewage treatment processes. Within the public health community, however, a relatively small group of interdisciplinary professionals argued for attention to the indirect health effects of industrial wastes and their impacts on the total stream environment. In conjunction with other groups interested in clean streams--such as sportsmen and manufacturers who required high quality process water--they pushed for a broader state legislative mandate in regard to pollution control. Some states created new bureaus or boards with responsibility for industrial wastes and the larger stream environment but the attack on industrial pollution remained limited in this period. The final significant development regarding industrial pollution and public health concerned the formulation by Streeter-Phelps of the Public Health Service of a theory of stream purification with a set of general quantitative indicators. This application was of particular importance in regard to the high-oxygen consuming nature of organic industrial wastes and the wide variety of effluents that existed. Industrial wastes constituted what Harvey Brooks, in his essay "Science Indicators and Science Priorities" calls a very "messy" research problem--one that does "not lend itself to elegant and widely applicable generalizations."(ABSTRACT TRUNCATED AT 250 WORDS) Images p1061-a p1061-b p1063-a p1065-a PMID:3895993
The concentrations of arsenic and other toxic elements in Bangladesh's drinking water.
Frisbie, Seth H; Ortega, Richard; Maynard, Donald M; Sarkar, Bibudhendra
2002-11-01
For drinking water, the people of Bangladesh used to rely on surface water, which was often contaminated with bacteria causing diarrhea, cholera, typhoid, and other life-threatening diseases. To reduce the incidences of these diseases, millions of tubewells were installed in Bangladesh since independence in 1971. This recent transition from surface water to groundwater has significantly reduced deaths from waterborne pathogens; however, new evidence suggests disease and death from arsenic (As) and other toxic elements in groundwater are affecting large areas of Bangladesh. In this evaluation, the areal and vertical distribution of As and 29 other inorganic chemicals in groundwater were determined throughout Bangladesh. This study of 30 analytes per sample and 112 samples suggests that the most significant health risk from drinking Bangladesh's tubewell water is chronic As poisoning. The As concentration ranged from < 0.0007 to 0.64 mg/L, with 48% of samples above the 0.01 mg/L World Health Organization drinking water guideline. Furthermore, this study reveals unsafe levels of manganese (Mn), lead (Pb), nickel (Ni), and chromium (Cr). Our survey also suggests that groundwater with unsafe levels of As, Mn, Pb, Ni, and Cr may extend beyond Bangladesh's border into the four adjacent and densely populated states in India. In addition to the health risks from individual toxins, possible multimetal synergistic and inhibitory effects are discussed. Antimony was detected in 98% of the samples from this study and magnifies the toxic effects of As. In contrast, Se and Zn were below our detection limits in large parts of Bangladesh and prevent the toxic effects of As.
Prevalence of exposure of heavy metals and their impact on health consequences.
Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid
2018-01-01
Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.
Influence of water movement and root growth on the downward dispersion of rotylenchulus reniformis
USDA-ARS?s Scientific Manuscript database
The presence of Rotylenchulus reniformis at depths of greater than 1.5 -m can have negative effects on cotton health. Two trials were established in 7.62 -cm diameter by 75 -cm deep soil cores to determine 1) the effect of water infiltration on vertical translocation of R. reniformis, and 2) the rol...
Zhang, Li E; Huang, Daizheng; Yang, Jie; Wei, Xiao; Qin, Jian; Ou, Songfeng; Zhang, Zhiyong; Zou, Yunfeng
2017-03-01
Studies have yet to evaluate the effects of water improvement on fluoride concentrations in drinking water and the corresponding health risks to Chinese residents in endemic fluorosis areas (EFAs) at a national level. This paper summarized available data in the published literature (2008-2016) on water fluoride from the EFAs in China before and after water quality was improved. Based on these obtained data, health risk assessment of Chinese residents' exposure to fluoride in improved drinking water was performed by means of a probabilistic approach. The uncertainties in the risk estimates were quantified using Monte Carlo simulation and sensitivity analysis. Our results showed that in general, the average fluoride levels (0.10-2.24 mg/L) in the improved drinking water in the EFAs of China were lower than the pre-intervention levels (0.30-15.24 mg/L). The highest fluoride levels were detected in North and Southwest China. The mean non-carcinogenic risks associated with consumption of the improved drinking water for Chinese residents were mostly accepted (hazard quotient < 1), but the non-carcinogenic risk of children in most of the EFAs at the 95th percentile exceeded the safe level of 1, indicating the potential non-cancer-causing health effects on this fluoride-exposed population. Sensitivity analyses indicated that fluoride concentration in drinking water, ingestion rate of water, and the exposure time in the shower were the most relevant variables in the model, therefore, efforts should focus mainly on the definition of their probability distributions for a more accurate risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lead in drinking water and human blood lead levels in the United States.
Brown, Mary Jean; Margolis, Stephen
2012-08-10
Lead is a pervasive environmental contaminant. The adverse health effects of lead exposure in children and adults are well documented, and no safe blood lead threshold in children has been identified. Lead can be ingested from various sources, including lead paint and house dust contaminated by lead paint, as well as soil, drinking water, and food. The concentration of lead, total amount of lead consumed, and duration of lead exposure influence the severity of health effects. Because lead accumulates in the body, all sources of lead should be controlled or eliminated to prevent childhood lead poisoning. Beginning in the 1970s, lead concentrations in air, tap water, food, dust, and soil began to be substantially reduced, resulting in significantly reduced blood lead levels (BLLs) in children throughout the United States. However, children are still being exposed to lead, and many of these children live in housing built before the 1978 ban on lead-based residential paint. These homes might contain lead paint hazards, as well as drinking water service lines made from lead, lead solder, or plumbing materials that contain lead. Adequate corrosion control reduces the leaching of lead plumbing components or solder into drinking water. The majority of public water utilities are in compliance with the Safe Drinking Water Act Lead and Copper Rule (LCR) of 1991. However, some children are still exposed to lead in drinking water. EPA is reviewing LCR, and additional changes to the rule are expected that will further protect public health. Childhood lead poisoning prevention programs should be made aware of the results of local public water system lead monitoring measurement under LCR and consider drinking water as a potential cause of increased BLLs, especially when other sources of lead exposure are not identified.
Diesel, children and respiratory disease
Liu, Norrice M
2018-01-01
Air pollution generated in urban areas is a global public health burden since half of the world’s population live in either cities, megacities or periurban areas. Its direct effects include initiating and exacerbating disease, with indirect effects on health mediated via climate change putting the basic needs of water, air and food at risk. PMID:29862329
Knobeloch, Lynda M; Zierold, Kristina M; Anderson, Henry A
2006-06-01
During July 2000-January 2002, the Wisconsin Division of Public Health conducted a study in 19 rural townships. A high percentage of private drinking-water wells in these townships contained traces of arsenic. Residents were asked to collect well-water samples and complete a questionnaire regarding residential history, consumption of drinking-water, and family health. In total, 2,233 household wells were tested, and 6,669 residents, aged less than one year to 100 years, provided information on water consumption and health. The well-water arsenic levels ranged from less than 1.0 to 3,100 microg/L. The median arsenic level was 2.0 microg/L. The arsenic levels were below the federal drinking-water standard of 10 microg/L in 80% of the wells, while 11% had an arsenic level of above 20 microg/L. Of residents aged over 35 years, those who had consumed arsenic-contaminated water for at least 10 years were significantly more likely to report a history of skin cancer than others. Tobacco use was also associated with higher rates of skin cancer and appeared to synergize the effect of arsenic on the development of skin cancer.
75 FR 28488 - Silver Nitrate; Exemption from the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... water and surface water are derived mainly from mineralization of soil organic matter as well as from application of mineral fertilizers. The EPA IRIS lists an oral RfD for chronic noncarcinogenic health effects...
Special Report: Fluoridation of Water.
ERIC Educational Resources Information Center
Hileman, Bette
1988-01-01
Reviews the controversy regarding water fluoridation in the United States during the last 50 years. Discusses the current status; benefits; and health risks including skeletal fluorosis, kidney disease, hypersensitivity, mutagenic effects, birth defects, and cancer. Presents statistics and anecdotal accounts. (CW)
COST EFFECTIVE SEAWATER DESALINATION WITH FICP ELEMENT ARRAYS - PHASE II
Lack of fresh water hinders economic development, devastates human health, leads to environmental degradation and foments political instability. We obtain our water from limited and unevenly distributed surface and underground freshwater sources. Over withdrawal from these ...
IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...
Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle
2018-08-01
The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.
2006-09-01
primary “hazard” is chemical toxicity, not low-level radioactivity. DU’s effects on human health and the environment have been a topic of numerous...MCLs are established to protect against adverse health effects and are enforced for public drinking water supplies. Secondary MCLs are established...person’s body to cause a health effect . It includes all the steps between the release of a chemical and the population exposed: 1) a chemical release
Sultana, Farhana; Unicomb, Leanne E; Nizame, Fosiul A; Dutta, Notan Chandra; Ram, Pavani K; Luby, Stephen P; Winch, Peter J
2018-06-11
Handwashing with soap at key times is an effective means of reducing pathogen transmission. In a low-income community in urban Dhaka, we piloted and evaluated the acceptability and feasibility of a shared handwashing intervention. This included promotion by community health promoters of a homemade solution of detergent powder mixed with water and stored in a 1.5-L reclaimed mineral water bottle. Community health promoters encouraged sharing of the recurrent detergent cost among compound members. Of 152 participating compounds, fieldworkers randomly selected 60 for qualitative assessment. Fieldworkers conducted 30 in-depth interviews and five focus group discussions among purposively selected compound members. The reclaimed bottles served as an easily accessible dispenser for the soapy water, which could feasibly be retained next to the toilet and kitchen areas for communal use. Bottles functioned as a positive reminder for handwashing at recommended key times. Most compounds (45/60, 75%) shared a common soapy water system and its associated costs. There was reluctance to prepare soapy water for shared use in the remaining 25%. Soapy water was an acceptable hand cleaning agent, with the bottle as a feasible dispenser. It was simple in design, cost-effective, replicable, popular with intervention recipient, and neighboring nonrecipients, and commonly shared among nonrelated households. The need to share expenses and product preparation served as a barrier. Developing a sustainable maintenance system, therefore, is critical to ensuring the public health benefits of handwashing with soap.
One Health and Toxic Cyanobacteria | Science Inventory | US ...
One Health and toxic cyanobacteria Blooms of toxic freshwater blue-green algae or cyanobacteria (HABs) have been in the news after HABs associated with human and animal health problems have been reported in Florida, California and Utah during 2016. HABs occur in warm, slow moving or stagnant surface waters that are enriched with nutrients such as nitrogen and phosphorous. People are exposed to potentially toxic HABs during recreation in contaminated water, after exposure to contaminated drinking water or to blue-green algae supplements. Animals may be exposed to toxic HABs after drinking contaminated surface waters or coming into contact with HABs then ingesting cyanobacteria from their bodies during self-grooming activities. As HABs are being reported more frequently in the US, it is important for veterinarians to secure good exposure histories and to recognize the potential signs and health consequences of HAB exposures. We will review the current knowledge about human and animal health effects associated with freshwater HABs and scenarios that pose the highest risks for illnesses and deaths. This abstract does not necessarily reflect EPA policy. This is a summary of One Health and Cyanobacteria for public health and public practice veterinarians at the American Veterinary Medical Association annual convention. This product is associated with SSWR 4.01B
Fit-for-purpose wastewater treatment: Testing to implementation of decision support tool (II).
Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan
2017-12-31
This paper is the second in a series of two papers. In Paper I, a decision support tool (DST), FitWater, was developed for evaluating the potential of wastewater treatment (WWT) trains for various water reuse applications. In the present paper, the proposed DST has been tested and implemented. FitWater has been tested with several existing WWT plants in Canada and the USA, demonstrating FitWater's effectiveness in estimating life cycle cost (LCC), health risk, and energy use. FitWater has also been implemented in a newly planned neighbourhood in the Okanagan Valley (BC, Canada) by developing 12 alternative WWT trains for water reuse in lawn and public parks irrigation. The results show that FitWater can effectively rank WWT train alternatives based on LCC, health risk, amount of reclaimed water, energy use, and carbon emissions. Moreover, functions have been developed for the variation of unit annualized LCC and energy intensity per unit log removal of microorganisms in different treatment technologies with varying plant capacities. The functions have power relations, showing the economies of scale. FitWater can be applied to identify a cost-effective, risk-acceptable, and energy efficient wastewater treatment train with a plant capacity of 500m 3 /day or more. Furthermore, FitWater can be used to assess potential economic impacts of developing microbiologically stringent effluent standards. The capability of FitWater can be enhanced by including physio-chemical quality of wastewater, additional treatment technologies, and carbon emissions from wastewater decomposition processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Research in the United States relative to geochemistry and health
Petrie, W.L.; Cannon, H.L.
1979-01-01
Increasing concern regarding the effects of the geochemical environment on health in the United States has fostered research studies in a number of universities and government agencies. The necessity to evaluate the effects of natural and man-made elemental excesses in the environment on health requires the establishment of requirements and tolerance limits for the various elements in water and crops. Maps of the geographic distribution of these elements in rocks, surficial materials and ground and surface waters are also essential for comparison with the occurrence of disease. Funding support for research projects that relate to various parameters of these problems emanates largely from a few federal agencies, and much of the work is conducted at government, university and private facilities. An example of the latter is the National Academy of Sciences-National Research Council, which has several components that are addressing a variety of comparative studies of the geochemical environment related to health; studies involve specific trace elements (like selenium and magnesium), diseases (like cancer, urolithiasis and cardiovascular disease), other health factors (like aging and nutrition) and links with timely major problems (like the health effects of greatly increasing the use of coal). ?? 1979.
Fehr, Rainer; Mekel, Odile; Lacombe, Martin; Wolf, Ulrike
2003-01-01
Worldwide there is a tendency towards deregulation in many policy sectors - this, for example, includes liberalization and privatization of drinking-water management. However, concerns about the negative impacts this might have on human health call for prospective health impact assessment (HIA) on the management of drinking-water. On the basis of an established generic 10-step HIA procedure and on risk assessment methodology, this paper aims to produce quantitative estimates concerning health effects from increased exposure to carcinogens in drinking-water. Using data from North Rhine-Westphalia in Germany, probabilistic estimates of excess lifetime cancer risk, as well as estimates of additional cases of cancer from increased carcinogen exposure levels are presented. The results show how exposure to contaminants that are strictly within current limits could increase cancer risks and case-loads substantially. On the basis of the current analysis, we suggest that with uniform increases in pollutant levels, a single chemical (arsenic) is responsible for a large fraction of expected additional risk. The study also illustrates the uncertainty involved in predicting the health impacts of changes in water quality. Future analysis should include additional carcinogens, non-cancer risks including those due to microbial contamination, and the impacts of system failures and of illegal action, which may be increasingly likely to occur under changed management arrangements. If, in spite of concerns, water is privatized, it is particularly important to provide adequate surveillance of water quality. PMID:12894324
Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W
2000-04-01
To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the production of bromate. We applied clinical, epidemiologic, and toxicologic data on morbidity and mortality to calculate the net health benefit in DALYs. We estimated the median risk of infection with C. parvum as 10(-3)/person-year. Ozonation reduces the median risk in the baseline approximately 7-fold, but bromate is produced in a concentration above current guideline levels. However, the health benefits of preventing gastroenteritis in the general population and premature death in patients with acquired immunodeficiency syndrome outweigh health losses by premature death from renal cell cancer by a factor of > 10. The net benefit is approximately 1 DALY/million person-years. The application of DALYs in principle allows us to more explicitly compare the public health risks and benefits of different management options. In practice, the application of DALYs may be hampered by the substantial degree of uncertainty, as is typical for risk assessment.
Toxicological and ecotoxicological assessment of water tracers
NASA Astrophysics Data System (ADS)
Behrens, H.; Beims, U.; Dieter, H.; Dietze, G.; Eikmann, T.; Grummt, T.; Hanisch, H.; Henseling, H.; Käß, W.; Kerndorff, H.; Leibundgut, C.; Müller-Wegener, U.; Rönnefahrt, I.; Scharenberg, B.; Schleyer, R.; Schloz, W.; Tilkes, F.
2001-06-01
Uncertainties regarding possible negative effects on the environment or on human health of authorizing tracing experiments in groundwater and surface waters led to the establishment of a Working Group at the German Federal Environmental Agency (Umweltbundesamt - UBA) for conducting a toxicological and ecotoxicological assessment. A total of 17 water tracers was assessed by the Working Group on the basis of the results of toxicological tests, the available literature, and the group's expert knowledge. In the future, tracers that pose a risk to the environment or to human health should no longer be used. Nevertheless, there are a number of tracers that could be used in hydrogeological and hydrological investigations for water-pollution-control purposes with no adverse environmental impact.
Lantagne, Daniele S.; Cardinali, Fred; Blount, Ben C.
2010-01-01
Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6–888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines. PMID:20595492
Assmuth, Timo; Simola, Antti; Pitkänen, Tarja; Lyytimäki, Jari; Huttula, Timo
2016-01-01
Integrated assessment and management of water resources for the supply of potable water is increasingly important in light of projected water scarcity in many parts of the world. This article develops frameworks for regional-level waterborne human health risk assessment of chemical and microbiological contamination to aid water management, incorporating economic aspects of health risks. Managed aquifer recharge with surface water from a river in Southern Finland is used as an illustrative case. With a starting point in watershed governance, stakeholder concerns, and value-at-risk concepts, we merge common methods for integrative health risk analysis of contaminants to describe risks and impacts dynamically and broadly. This involves structuring analyses along the risk chain: sources-releases-environmental transport and fate-exposures-health effects-socio-economic impacts-management responses. Risks attributed to contaminants are embedded in other risks, such as contaminants from other sources, and related to benefits from improved water quality. A set of models along this risk chain in the case is presented. Fundamental issues in the assessment are identified, including 1) framing of risks, scenarios, and choices; 2) interaction of models and empirical information; 3) time dimension; 4) distributions of risks and benefits; and 5) uncertainties about risks and controls. We find that all these combine objective and subjective aspects, and involve value judgments and policy choices. We conclude with proposals for overcoming conceptual and functional divides and lock-ins to improve modeling, assessment, and management of complex water supply schemes, especially by reflective solution-oriented interdisciplinary and multi-actor deliberation. © 2015 SETAC.
Risk assessment for produced water discharges to Louisiana open bays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.
1995-11-01
Potential human health and environmental impacts from discharge of produced water to the Gulf of Mexico concern regulators at the State and Federal levels, environmental interest groups, industry and the public. Current regulations in the United States require or propose azero discharge limit for coastal facilities based primarily on studies performed in low energy,poorly flushed environments. Produced water discharges in coastal Louisiana, however,include a number located in open bays, where potential and impacts are likely to be larger than the minimal impacts associated with offshore discharges, but smaller than those demonstrated in low-energy canal environments. This paper summarizes results ofmore » a conservative screening-level health and ecological assessment for contaminants discharged in produced water to open bays in Louisiana, and reports results of a probabilistic human health risk assessment for radium and lead. The initial human health and ecological risk assessments consisted of conservative screening analyses that identified potentially important contaminants and excluded others from further consideration. A more quantitative probabilistic risk assessment was completed for the human health effects of the two contaminants identified in this screen: radium and lead. This work is part of a series of studies on the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the United States Department of Energy (USDOE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vartiainen, T.; Lampelo, S.
The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less
Popkin, Barry M.; D’Anci, Kristen E.; Rosenberg, Irwin H.
2010-01-01
This review attempts to provide some sense of our current knowledge of water including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, the effects of variation in water intake on health and energy intake, weight, and human performance and functioning. Water represents a critical nutrient whose absence will be lethal within days. Water’s importance for prevention of nutrition-related noncommunicable diseases has emerged more recently because of the shift toward large proportions of fluids coming from caloric beverages. Nevertheless, there are major gaps in knowledge related to measurement of total fluid intake, hydration status at the population level, and few longer-term systematic interventions and no published random-controlled longer-term trials. We suggest some ways to examine water requirements as a means to encouraging more dialogue on this important topic. PMID:20646222
Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Yusop, Zulkifli
2016-06-01
Massive utilization of bisphenol A (BPA) in the industrial production of polycarbonate plastics has led to the occurrence of this compound (at μg/L to ng/L level) in the water treatment plant. Nowadays, the presence of BPA in drinking water sources is a major concern among society because BPA is one of the endocrine disruption compounds (EDCs) that can cause hazard to human health even at extremely low concentration level. Parallel to these issues, membrane technology has emerged as the most feasible treatment process to eliminate this recalcitrant contaminant via physical separation mechanism. This paper reviews the occurrences and effects of BPA toward living organisms as well as the application of membrane technology for their removal in water treatment plant. The potential applications of using polymeric membranes for BPA removal are also discussed. Literature revealed that modifying membrane surface using blending approach is the simple yet effective method to improve membrane properties with respect to BPA removal without compromising water permeability. The regeneration process helps in maintaining the performances of membrane at desired level. The application of large-scale membrane process in treatment plant shows the feasibility of the technology for removing BPA and possible future prospect in water treatment process.
Management of Urban Stormwater Runoff in the Chesapeake Bay Watershed
Hogan, Dianna M.
2008-01-01
Urban and suburban development is associated with elevated nutrients, sediment, and other pollutants in stormwater runoff, impacting the physical and environmental health of area streams and downstream water bodies such as the Chesapeake Bay. Stormwater management facilities, also known as Best Management Practices (BMPs), are increasingly being used in urban areas to replace functions, such as flood protection and water quality improvement, originally performed by wetlands and riparian areas. Scientists from the U.S. Geological Survey (USGS) have partnered with local, academic, and other Federal agency scientists to better understand the effectiveness of different stormwater management systems with respect to Chesapeake Bay health. Management of stormwater runoff is necessary in urban areas to address flooding and water quality concerns. Improving our understanding of what stormwater management actions may be best suited for different types of developed areas could help protect the environmental health of downstream water bodies that ultimately receive runoff from urban landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-30
The Petro-Chemical Systems, Inc. site, located near Liberty, Texas, is a site where unauthorized disposal of petroleum-based oils has taken place. Although there is evidence of past exposure to site contaminants, the best available evidence does not indicate that humans are currently being exposed to site contaminants at levels that could cause adverse health effects. Contaminated ground water, surface water, soils, and surface water sediments have been found on the site. Although sampling was done for 144 priority pollutants, the primary contaminants of concern are benzene, ethylbenzene, xylene, naphthalene, polycyclic aromatic hydrocarbons, and lead. Because the greatest threat to publicmore » health would be contamination of drinking water, the Agency for Toxic Substances and Disease Registry (ATSDR) has recommended that necessary actions are taken to insure that private wells do not become contaminated with site contaminants.« less
Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline
2015-01-20
During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (<10 to 420 μg/L) and flushed plumbing systems (<10 to 96 μg/L) and sometimes concentrations differed among faucets within each home. All waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.
Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv
2015-01-01
Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l’Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts. PMID:26404343
Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv
2015-09-02
Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l'Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts.
Morris, Jamae Fontain; Murphy, Jennifer; Fagerli, Kirsten; Schneeberger, Chandra; Jaron, Peter; Moke, Fenny; Juma, Jane; Ochieng, J Ben; Omore, Richard; Roellig, Dawn; Xiao, Lihua; Priest, Jeffrey W; Narayanan, Jothikumar; Montgomery, Joel; Hill, Vince; Mintz, Eric; Ayers, Tracy L; O'Reilly, Ciara E
2018-04-02
Cryptosporidium is a leading cause of diarrhea among Kenyan infants. Ceramic water filters (CWFs) are used for household water treatment. We assessed the impact of CWFs on diarrhea, cryptosporidiosis prevention, and water quality in rural western Kenya. A randomized, controlled intervention trial was conducted in 240 households with infants 4-10 months old. Twenty-six weekly household surveys assessed infant diarrhea and health facility visits. Stool specimens from infants with diarrhea were examined for Cryptosporidium . Source water, filtered water, and filter retentate were tested for Cryptosporidium and/or microbial indicators. To estimate the effect of CWFs on health outcomes, logistic regression models using generalized estimating equations were performed; odds ratios (ORs) and 95% confidence intervals (CIs) are reported. Households reported using surface water (36%), public taps (29%), or rainwater (17%) as their primary drinking water sources, with no differences in treatment groups. Intervention households reported less diarrhea (7.6% versus 8.9%; OR: 0.86 [0.64-1.16]) and significantly fewer health facility visits for diarrhea (1.0% versus 1.9%; OR: 0.50 [0.30-0.83]). In total, 15% of intervention and 12% of control stools yielded Cryptosporidium ( P = 0.26). Escherichia coli was detected in 93% of source water samples; 71% of filtered water samples met World Health Organization recommendations of < 1 E. coli /100 mL. Cryptosporidium was not detected in source water and was detected in just 2% of filter rinses following passage of large volumes of source water. Water quality was improved among CWF users; however, the short study duration and small sample size limited our ability to observe reductions in cryptosporidiosis.
COMPUTATIONAL TOXICOLOGY: NEW APPROACHES TO IMPROVE ENVIRONMENTAL HEALTH PROTECTION
The mission of the U.S. Environmental Protection Agency is to safeguard public health and the environment from harmful effects that may be caused by exposure to pollutants in the air, water, soil and food.
Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste A.; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.
2017-03-22
A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.
Beck, Elizabeth M.; Smits, Judit E. G.; St Clair, Colleen Cassady
2015-01-01
Exposure to water containing petroleum waste products can generate both overt and subtle toxicological responses in wildlife, including birds. Such exposure can occur in the tailings ponds of the mineable oil sands, which are located in Alberta, Canada, under a major continental flyway for waterfowl. Over the 40 year history of the industry, a few thousand bird deaths have been reported following contact with bitumen on the ponds, but a new monitoring programme demonstrated that many thousands of birds land annually without apparent harm. This new insight creates an urgent need for more information on the sublethal effects on birds from non-bitumen toxicants that occur in the water, including naphthenic acids, polycyclic aromatic hydrocarbons, heavy metals and salts. Ten studies have addressed the effects of oil sands process-affected water (OSPW), and none reported acute or substantial adverse health effects. Interpretive caution is warranted, however, because nine of the studies addressed reclaimed wetlands that received OSPW, not OSPW ponds per se, and differences between experimental and reference sites may have been reduced by shared sources of pollution in the surrounding air and water. Two studies examined eggs of birds nesting >100 km from the mine sites. Only one study exposed birds directly and repeatedly to OSPW and found no consistent differences between treated and control birds in blood-based health metrics. If it is true that aged forms of OSPW do not markedly affect the health of birds that land briefly on the ponds, then the extensiveness of current bird-deterrent programmes is unwarranted and could exert negative net environmental effects. More directed research on bird health is urgently needed, partly because birds that land on these ponds subsequently migrate to destinations throughout North America where they are consumed by both humans and wildlife predators. PMID:27293723
Beck, Elizabeth M; Smits, Judit E G; St Clair, Colleen Cassady
2015-01-01
Exposure to water containing petroleum waste products can generate both overt and subtle toxicological responses in wildlife, including birds. Such exposure can occur in the tailings ponds of the mineable oil sands, which are located in Alberta, Canada, under a major continental flyway for waterfowl. Over the 40 year history of the industry, a few thousand bird deaths have been reported following contact with bitumen on the ponds, but a new monitoring programme demonstrated that many thousands of birds land annually without apparent harm. This new insight creates an urgent need for more information on the sublethal effects on birds from non-bitumen toxicants that occur in the water, including naphthenic acids, polycyclic aromatic hydrocarbons, heavy metals and salts. Ten studies have addressed the effects of oil sands process-affected water (OSPW), and none reported acute or substantial adverse health effects. Interpretive caution is warranted, however, because nine of the studies addressed reclaimed wetlands that received OSPW, not OSPW ponds per se, and differences between experimental and reference sites may have been reduced by shared sources of pollution in the surrounding air and water. Two studies examined eggs of birds nesting >100 km from the mine sites. Only one study exposed birds directly and repeatedly to OSPW and found no consistent differences between treated and control birds in blood-based health metrics. If it is true that aged forms of OSPW do not markedly affect the health of birds that land briefly on the ponds, then the extensiveness of current bird-deterrent programmes is unwarranted and could exert negative net environmental effects. More directed research on bird health is urgently needed, partly because birds that land on these ponds subsequently migrate to destinations throughout North America where they are consumed by both humans and wildlife predators.
Health Care Ergonomics: Contributions of Thomas Waters.
Poole Wilson, Tiffany; Davis, Kermit G
2016-08-01
The aim of this study was to assess the contributions of Thomas Waters's work in the field of health care ergonomics and beyond. Waters's research of safe patient handling with a focus on reducing musculoskeletal disorders (MSDs) in health care workers contributed to current studies and prevention strategies. He worked with several groups to share his research and assist in developing safe patient handling guidelines and curriculum for nursing students and health care workers. The citations of articles that were published by Waters in health care ergonomics were evaluated for quality and themes of conclusions. Quality was assessed using the Mixed Methods Appraisal Tool and centrality to original research rating. Themes were documented by the type of population the citing articles were investigating. In total, 266 articles that referenced the top seven cited articles were evaluated. More than 95% of them were rated either medium or high quality. The important themes of these citing articles were as follows: (a) Safe patient handling is effective in reducing MSDs in health care workers. (b) Shift work has negative impact on nurses. (c) There is no safe way to manually lift a patient. (d) Nurse curriculums should contain safe patient handling. The research of Waters has contributed significantly to the health care ergonomics and beyond. His work, in combination with other pioneers in the field, has generated multiple initiatives, such as a standard safe patient-handling curriculum and safe patient-handling programs. © 2016, Human Factors and Ergonomics Society.
NASA Astrophysics Data System (ADS)
Kendie, S. B.
1996-01-01
In the examination of the implementation of rural drinking water facilities, not enough attention has been paid to analyzing the socioeconomic and political relationships that affect the effective utilization of the facilities, particularly as these relate to women in rural society. This paper suggests that much of the difficulty in instituting the utilization of safe water supply sources has to do with the rather low economic status of women—the main water collectors. Poverty consigns women to long periods of work in activities or jobs that bring little reward. This makes it difficult to effectively digest the messages delivered by program staff and limits the extent of usage of the safe water facilities.
Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim
2014-11-01
The objectives of this study were to investigate the importance of commitment strength in the theory of planned behaviour (TPB) and to test whether behaviour change techniques (BCTs) aimed at increasing commitment strength indeed promote switching to arsenic-safe wells by changing commitment strength. A cluster-randomized controlled trial with four arms was conducted to compare an information-only intervention to information plus one, two, or three commitment-enhancing BCTs. Randomly selected households (N = 340) of Monoharganj, Bangladesh, in seven geographically separate areas, whose members were drinking arsenic-contaminated water at baseline and had access to arsenic-safe wells, participated in this trial. The areas were randomly allocated to the four intervention arms. Water consumption behaviour, variables of the TPB, commitment strength, and socio-demographic characteristics were assessed at baseline and at 3-month follow-up by structured face-to-face interviews. Mediation analysis was used to investigate the mechanisms of behaviour change. Changes in commitment strength significantly increased the explanatory power of the TPB to predict well-switching. Commitment-enhancing BCTs - public self-commitment, implementation intentions, and reminders - increased the behaviour change effects of information by up to 50%. Mediation analyses confirmed that the BCTs indeed increased well-switching by increasing commitment strength. Unexpectedly, however, mediation via changes in behavioural intentions was the strongest mechanism of the intervention effects. Commitment is an important construct to consider in water- and health-related behaviour change and may be for other health behaviours as well. BCTs that alter behavioural intentions and commitment strength proved highly effective at enhancing the behaviour change effects of information alone. Statement of contribution What is already known on this subject? Millions of people drink contaminated water even if they have access to safe water alternatives and despite increased awareness of the consequences to health. The theory of planned behaviour (TPB) and commitment strength are predictive of safe water consumption. The potentially commitment-enhancing behaviour change techniques (BCTs) - reminders, implementation intentions, and public self-commitment - can promote health behaviours, including safe water consumption. What does this study add? Changes in commitment strength significantly added to the prediction of switching to arsenic-safe wells by the TPB. Information-plus-BCTs aimed at increasing commitment strength led to >50% more well-switching than information alone. Behaviour change effects of the BCTs were mediated by changes in commitment strength and behavioural intentions. © 2013 The British Psychological Society.
EPA seeks applications for research on identifying communities at high risk of adverse health effects of lead in drinking water, identifying opportunities to mitigate these risks, conduct efforts to inform interested parties of these risks & opportunities.
WATER QUALITY AND SWIMMING-ASSOCIATED HEALTH EFFECTS
Evidence from various sources around the world indicate that there is a relationship between gastroenteritis in swimmers and the quality of the bathing water as measured with bacterial indicators of fecal contamination. Current EPA guidelines recommend the use of cultural method...
IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...
David G. Jones; William B. Summer; Masato Miwa; C. Rhett Jackson
2004-01-01
Stream hydrology and water quality in headwater streams are important components of ecosystem health. The Dry Creek Long-Term Watershed Study is designed to evaluate the effects of upland forestry operations and stream management zone (SMZ) thinning on stream hydrology, water quality, benthic macroinvertebrates, and other biologicindicators. The study also tests the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient... water quality criteria to protect against acute effects in aquatic life and is the highest instream... any aquatic life or human health use classifications in the Water Quality Control Plans for the...
Drinking water from forests and grasslands: a synthesis of the scientific literature
George E. Dissmeyer; [Editor
2000-01-01
This report reviews the scientific literature about the potential of common forest and grassland management to introduce contaminants of concern to human health into public drinking water sources.Effects of managing water, urbanization, ecreation, roads, timber, fire, pesticides, grazing, wildlife and fish habitat, and mineral, oil, and gas resources on public drinking...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Harvey Knott Drum National Priorities List site, located near Kirkwood in New Castle County, Delaware, is an inactive landfill that had received sanitary, municipal and industrial wastes. Contaminants released from the site include heavy metals and organic compounds and have entered groundwater, soils, sediments, and surface waters. The principal concern is that contaminated groundwater may migrate to off-site domestic, public, and agricultural water supply wells. Also, contaminants in off-site surface water and sediments pose some concern for recreational use and consumption of fish. Off-site contaminated soils near the west property line may be a threat to persons that trespassmore » into that area. The site is of potential health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less
Ferreira, Marcelo José Monteiro; Viana Júnior, Mário Martins; Pontes, Andrezza Graziella Veríssimo; Rigotto, Raquel Maria; Gadelha, Diego
2016-03-01
This article aims to conduct an analysis of the correlation between the management and use of water resources with the expansion of agribusiness and its reflections in environmental and human contamination, pointing toward challenges for SUS in the area of monitoring pesticides in water for human consumption. It is qualitative study with an adopted methodological framework of the case study, applied in an area of agribusiness expansion in the semi-arid region of the state of Ceará. The results demonstrate that there exists an unequal relationship in the management and use of water, in which agribusiness in Ceará is prioritized for access to water at the expense of the great majority of the rural population. As a result, pesticide contamination of surface and ground water brings challenges to surveillance of the control of pesticides in water for human consumption. In this sense, we present alternatives to develop health services with more effective actions in surveillance of health in general, and of Vigiagua in particular, such as: overcoming the fragmentation of vision and intervention regarding health problems; human exposure to multiple pesticides; the lack of laboratories and trained professionals; and enlarging the dissemination of information to the users of water.
Effects of a tropical cyclone on the drinking-water quality of a remote Pacific island.
Mosley, Luke M; Sharp, Donald S; Singh, Sarabjeet
2004-12-01
The effect of a cyclone (Ami, January 2003) on drinking-water quality on the island of Vanua Levu, Fiji was investigated. Following the cyclone nearly three-quarters of the samples analysed did not conform to World Health Organisation (WHO) guideline values for safe drinking-water in terms of chlorine residual, total and faecal coliforms, and turbidity. Turbidity and total coliform levels significantly increased (up 56 and 62 per cent, respectively) from pre-cyclone levels, which was likely due to the large amounts of silt and debris entering water-supply sources during the cyclone. The utility found it difficult to maintain a reliable supply of treated water in the aftermath of the disaster. Communities were unaware they were drinking water that had not been adequately treated. Circumstances permitted this cyclone to be used as a case study to assess whether a simple paper-strip water-quality test (the hydrogen sulphide, H(2)S) kit could be distributed and used for community-based monitoring following such a disaster event to better protect public health. The H(2)S test results correlated well with faecal and total coliform results as found in previous studies. A small percentage of samples (about 10 per cent) tested positive for faecal and total coliforms but did not test positive in the H(2)S test. It was concluded that the H(2)S test would be well suited to wider use, especially in the absence of water-quality monitoring capabilities for outer island groups as it is inexpensive and easy to use, thus enabling communities and community health workers with minimal training to test their own water supplies without outside assistance. The importance of public education before and after natural disasters is also discussed.
Wijesiri, Buddhi; Deilami, Kaveh; McGree, James; Goonetilleke, Ashantha
2018-02-01
Urban water pollution poses risks of waterborne infectious diseases. Therefore, in order to improve urban liveability, effective pollution mitigation strategies are required underpinned by predictions generated using water quality models. However, the lack of reliability in current modelling practices detrimentally impacts planning and management decision making. This research study adopted a novel approach in the form of Bayesian Networks to model urban water quality to better investigate the factors that influence risks to human health. The application of Bayesian Networks was found to enhance the integration of quantitative and qualitative spatially distributed data for analysing the influence of environmental and anthropogenic factors using three surrogate indicators of human health risk, namely, turbidity, total nitrogen and fats/oils. Expert knowledge was found to be of critical importance in assessing the interdependent relationships between health risk indicators and influential factors. The spatial variability maps of health risk indicators developed enabled the initial identification of high risk areas in which flooding was found to be the most significant influential factor in relation to human health risk. Surprisingly, population density was found to be less significant in influencing health risk indicators. These high risk areas in turn can be subjected to more in-depth investigations instead of the entire region, saving time and resources. It was evident that decision making in relation to the design of pollution mitigation strategies needs to account for the impact of landscape characteristics on water quality, which can be related to risk to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impacts of waste from concentrated animal feeding operations on water quality
Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.
2007-01-01
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.
Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality
Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael
2007-01-01
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784
Zhang, Bo; Hong, Mei; Zhang, Bai; Zhang, Xue-lin; Zhao, Yong-sheng
2007-10-01
Endemic fluorosis was investigated and studied in the west region of the Songnen plain, Northeast China in 2001-2002. The results showed that the fluorine distribution in aquatic environment was that the fluorine concentrations in the lake water and unconfined ground water were higher than that in the river water and confined ground water. The lake water (Alkali lake) is connected with unconfined ground water. In unconfined ground water, from the east and southeast areas to the west and the northwest areas of the plain, fluorine concentration fluctuated with high and low alternatively. The fluorine in the water comes from the weathering of rocks and minerals in the mountains and hills around the Songnen Plain. The main influence factors of the fluorine distribution in aquatic environment are discussed. Unconfined ground water containing high fluorine is used as drinking water. In this region, the fluorine concentration in drinking water is evidently correlated to the morbidity of dental and skeletal fluorosis. High fluorine concentration in drinking water has endangered human health.
A suite of biological and ecological responses of a Valued Ecosystem Component species, Crassostrea virginica, was used to investigate ecosystem-wide health effects of watershed alterations in the Caloosahatchee River estuary, Florida. The influence of water quality and season on...
Brown, Kathleen Ward; Gessesse, Bemnet; Butler, Lindsey J; MacIntosh, David L
2017-01-01
Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while “in use” focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells. PMID:29270018
Brown, Kathleen Ward; Gessesse, Bemnet; Butler, Lindsey J; MacIntosh, David L
2017-01-01
Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while "in use" focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells.
In vitro bioanalysis of drinking water from source to tap.
Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta
2018-08-01
The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic activities. Bioassays of AhR and Nrf2 are useful for screening of effects of a broad range of chemicals in drinking water and ER activity can be monitored with a high sensitivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05
Carpenter, Kurt D.; McGhee, Gordon
2009-01-01
Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).
Volatile Organic Compounds (VOCs)
... in the environment and their potential to cause human health effects EPA's Office of Drinking Water Regulations List ... to carbon monoxide. Carefully read the labels containing health hazard information and ... is a known human carcinogen. The main indoor sources of this chemical ...
Gulf War Air Power Survey. Volume 2. Operations and Effects and Effectiveness
1993-01-01
press attacks home at lower altitudes, even with an accompanying higher risk. The cumulative effects of the bombing reduced the food , water, and...international study team that visited Iraqi during the period 23 August-5 September 1991 to survey the effects of the war on the health and welfare...detrimental health effects " of the war cited by Arkin was 111,000 (Beth Osborne Daponte, "Iraqi Casualties from the Persian Gulf War and Its
Rugg-Gunn, A J; Spencer, A J; Whelton, H P; Jones, C; Beal, J F; Castle, P; Cooney, P V; Johnson, J; Kelly, M P; Lennon, M A; McGinley, J; O'Mullane, D; Sgan-Cohen, H D; Sharma, P P; Thomson, W M; Woodward, S M; Zusman, S P
2016-04-01
The Cochrane Review on water fluoridation for the prevention of dental caries was published in 2015 and attracted considerable interest and comment, especially in countries with extensive water fluoridation programmes. The Review had two objectives: (i) to evaluate the effects of water fluoridation (artificial or natural) on the prevention of dental caries, and (ii) to evaluate the effects of water fluoridation (artificial or natural) on dental fluorosis. The authors concluded, inter alia, that there was very little contemporary evidence, meeting the Review's inclusion criteria, that evaluated the effectiveness of water fluoridation for the prevention of dental caries. The purpose of this critique is to examine the conduct of the above Review, and to put it into context in the wider body of evidence regarding the effectiveness of water fluoridation. While the overall conclusion that water fluoridation is effective in caries prevention agrees with previous reviews, many important public health questions could not be answered by the Review because of the restrictive criteria used to judge adequacy of study design and risk of bias. The potential benefits of using wider criteria in order to achieve a fuller understanding of the effectiveness of water fluoridation are discussed.
Molina Frechero, Nelly; Sánchez Pérez, Leonor; Castañeda Castaneira, Enrique; Oropeza Oropeza, Anastasio; Gaona, Enrique; Salas Pacheco, José; Bologna Molina, Ronell
2013-01-01
Fluoride is ingested primarily through consuming drinking water. When drinking water contains fluoride concentrations>0.7 parts per million (ppm), consuming such water can be toxic to the human body; this toxicity is called "fluorosis." Therefore, it is critical to determine the fluoride concentrations in drinking water. The objective of this study was to determine the fluoride concentration in the drinking water of the city of Durango. The wells that supply the drinking water distribution system for the city of Durango were studied. One hundred eighty-nine (189) water samples were analyzed, and the fluoride concentration in each sample was quantified as established by the law NMX-AA-077-SCFI-2001. The fluoride concentrations in such samples varied between 2.22 and 7.23 ppm with a 4.313±1.318 ppm mean concentration. The highest values were observed in the northern area of the city, with a 5.001±2.669 ppm mean value. The samples produced values that exceeded the national standard for fluoride in drinking water. Chronic exposure to fluoride at such concentrations produces harmful health effects, the first sign of which is dental fluorosis. Therefore, it is essential that the government authorities implement water defluoridation programs and take preventative measures to reduce the ingestion of this toxic halogen.
Molina Frechero, Nelly; Sánchez Pérez, Leonor; Castañeda Castaneira, Enrique; Oropeza Oropeza, Anastasio; Gaona, Enrique; Salas Pacheco, José; Bologna Molina, Ronell
2013-01-01
Fluoride is ingested primarily through consuming drinking water. When drinking water contains fluoride concentrations >0.7 parts per million (ppm), consuming such water can be toxic to the human body; this toxicity is called “fluorosis.” Therefore, it is critical to determine the fluoride concentrations in drinking water. The objective of this study was to determine the fluoride concentration in the drinking water of the city of Durango. The wells that supply the drinking water distribution system for the city of Durango were studied. One hundred eighty-nine (189) water samples were analyzed, and the fluoride concentration in each sample was quantified as established by the law NMX-AA-077-SCFI-2001. The fluoride concentrations in such samples varied between 2.22 and 7.23 ppm with a 4.313 ± 1.318 ppm mean concentration. The highest values were observed in the northern area of the city, with a 5.001 ± 2.669 ppm mean value. The samples produced values that exceeded the national standard for fluoride in drinking water. Chronic exposure to fluoride at such concentrations produces harmful health effects, the first sign of which is dental fluorosis. Therefore, it is essential that the government authorities implement water defluoridation programs and take preventative measures to reduce the ingestion of this toxic halogen. PMID:24348140
Bortey-Sam, Nesta; Nakayama, Shouta M M; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi
2015-07-01
Concentrations of heavy metals and metalloid in borehole drinking water from 18 communities in Tarkwa, Ghana, were measured to assess the health risk associated with its consumption. Mean concentrations of heavy metals (μg/L) exceeded recommended values in some communities. If we take into consideration the additive effect of heavy metals and metalloid, then oral hazard index (HI) results raise concerns about the noncarcinogenic adverse health effects of drinking groundwater in Huniso. According to the US Environmental Protection Agency's (USEPA) guidelines, HI values indicating noncarcinogenic health risk for adults and children in Huniso were 0.781 (low risk) and 1.08 (medium risk), respectively. The cancer risk due to cadmium (Cd) exposure in adults and children in the sampled communities was very low. However, the average risk values of arsenic (As) for adults and children through drinking borehole water in the communities indicated medium cancer risk, but high cancer risk in some communities such as Samahu and Mile 7. Based on the USEPA assessment, the average cancer risk values of As for adults (3.65E-05) and children (5.08E-05) indicated three (adults) and five (children) cases of neoplasm in a hundred thousand inhabitants. The results of this study showed that residents in Tarkwa who use and drink water from boreholes could be at serious risk from exposure to these heavy metals and metalloid.
Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P
2018-06-13
Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Environmental Health Standards for Human Spacecraft
NASA Technical Reports Server (NTRS)
James John T.
2010-01-01
The discussion of air and water quality standards includes evidence-based standards, factors unique to spaceflight, effects from exposures to combinations of compounds, contingency versus nominal standards, tables of ISO standards for air quality (ppm) and water quality (mg/L), and updating of standards.
Health effects of desalinated water: Role of electrolyte disturbance in cancer development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nriagu, Jerome, E-mail: jnriagu@umich.edu
This review contends that “healthy” water in terms of electrolyte balance is as important as “pure” water in promoting public health. It considers the growing use of desalination (demineralization) technologies in drinking water treatment which often results in tap water with very low concentrations of sodium, potassium, magnesium and calcium. Ingestion of such water can lead to electrolyte abnormalities marked by hyponatremia, hypokalemia, hypomagnesemia and hypocalcemia which are among the most common and recognizable features in cancer patients. The causal relationships between exposure to demineralized water and malignancies are poorly understood. This review highlights some of the epidemiological and inmore » vivo evidence that link dysregulated electrolyte metabolism with carcinogenesis and the development of cancer hallmarks. It discusses how ingestion of demineralized water can have a procarcinogenic effect through mediating some of the critical pathways and processes in the cancer microenvironment such as angiogenesis, genomic instability, resistance to programmed cell death, sustained proliferative signaling, cell immortalization and tumorigenic inflammation. Evidence that hypoosmotic stress-response processes can upregulate a number of potential oncogenes is well supported by a number studies. In view of the rising production and consumption of demineralized water in most parts of the world, there is a strong need for further research on the biological importance and protean roles of electrolyte abnormalities in promoting, antagonizing or otherwise enabling the development of cancer. The countries of the Gulf Cooperative Council (GCC) where most people consume desalinated water would be a logical place to start this research. - Highlights: • Ingestion of low-mineral waters disrupts electrolyte homeostasis and cellular processes. • Electrolyte imbalance can affect the tumor microenvironment and many stages of tumorigenesis. • Electrolyte disturbance is frequently encountered in patients with malignancies. • Desalinated water consumption and cancer rates are rising in Persian Gulf countries “Balanced water” can be as important as balanced diet in safeguarding our health.« less
Kang, Sun Moon; Jhoo, Jin Woo; Pak, Jae In; Kwon, Ill Kyoung; Lee, Sung Ki; Kim, Gur Yoo
2015-09-01
Deep sea water (DSW) has health benefits and is widely used as food supplement; however, its effect in fermented products has not been explored. Here, we investigated the effect of DSW-containing yogurt on health-related serum parameters and intestinal microbiota in mice. Animals were assigned to 3 feeding groups, which received water (control), normal yogurt (N-yogurt), or DSW-containing yogurt (DSW-yogurt) with a basal diet. Mice were killed at wk 4 or 8 of feeding and analyzed for serum parameters and microbial population in the small intestine. Both yogurt groups demonstrated increased populations of intestinal lactic acid bacteria compared with the control group. The activity of serum aspartate aminotransferase and alanine aminotransferase was markedly decreased in the DSW-yogurt and N-yogurt groups, and triglyceride level tended to be lower in the DSW-yogurt group compared with that in the control mice. Furthermore, the DSW-yogurt group showed a more significant decrease in the ratio of total cholesterol to high-density lipoprotein-cholesterol than did the N-yogurt group. These findings suggest that DSW supplementation of yogurt can increase its beneficial effects on lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wolska, Małgorzata; Szerzyna, Sławomir; Machi, Justyna; Mołczan, Marek; Adamski, Wojciech; Wiśniewski, Jacek
2017-11-01
The presence of organic substances in the water intaken for consumption could be hazardous to human health due to the potential formation of disinfection by-products (TOX). The study were carried out in the pilot surface water treatment system consisting of coagulation, sedimentation, filtration, ozonation, adsorption and disinfection. Due to continuous operation of the system and interference with the parameters of the processes it was possible not only assess the effectiveness of individual water treatment processes in removing TOX, but also on factors participating on the course of unit processes.
Water system unreliability and diarrhea incidence among children in Guatemala.
Trudeau, Jennifer; Aksan, Anna-Maria; Vásquez, William F
2018-03-01
This article examines the effect of water system unreliability on diarrhea incidence among children aged 0-5 in Guatemala. We use secondary data from a nationally representative sample of 7579 children to estimate the effects of uninterrupted and interrupted water services on diarrhea incidence. The national scope of this study imposes some methodological challenges due to unobserved geographical heterogeneity. To address this issue, we estimate mixed-effects logit models that control for unobserved heterogeneity by estimating random effects of selected covariates that can vary across geographical areas (i.e. water system reliability). Compared to children without access to piped water, children with uninterrupted water services have a lower probability of diarrhea incidence by approximately 33 percentage points. Conversely, there is no differential effect between children without access and those with at least one day of service interruptions in the previous month. Results also confirm negative effects of age, female gender, spanish language, and garbage disposal on diarrhea incidence. Public health benefits of piped water are realized through uninterrupted provision of service, not merely access. Policy implications are discussed.
Johnson, N W; Lalloo, R; Kroon, J; Fernando, S; Tut, O
2014-09-01
Children in remote Indigenous communities in Australia have levels of dental caries much greater than the national average. One such, the Northern Peninsula Area of Far North Queensland (NPA), had an oral health survey conducted in 2004, shortly before the introduction of fluoridated, reticular water. Children were again surveyed in 2012, following five years exposure. An oral examination was conducted on all consenting children enrolled in schools across the community, using WHO Basic Oral Health Survey methodology. Few teeth had restorations in both surveys. Age-weighted overall caries prevalence and severity declined from 2005 to 2012 by 37.3%. The effect was most marked in younger children, dmft decreasing by approximately 50% for ages 4-9 years; at age 6, mean decayed score decreased from 5.20 to 3.43. DMFT levels also decreased by almost half in 6-9 year olds. However, significant unmet treatment needs exist at all ages. There has been considerable improvement in child dental health in the NPA over the past 6-7 years. In light of continued poor diet and oral hygiene, water fluoridation is the most likely explanation. The cost-effectiveness for this small community remains an issue which, in the current climate of political antagonism to water fluoridation in many quarters, requires continued study. © 2014 Australian Dental Association.
40 CFR Appendix B to Subpart Q of... - Standard Health Effects Language for Public Notification
Code of Federal Regulations, 2013 CFR
2013-07-01
... special health risk for infants, young children, some of the elderly, and people with severely compromised... children, some of the elderly, and people with severely compromised immune systems. 1d. Ground Water Rule... greater health risk for infants, young children, the elderly, and people with severely compromised immune...
; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Ingredients Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure (chronic) exposure to certain pesticides may increase your risk of chronic health effects. Therefore, it is
The advantages of deep ocean water for the development of functional fermentation food.
Lee, Chun-Lin
2015-03-01
Deep ocean water (DOW) is obtained from 600 m below the sea surface. In recent years, DOW has been applied in the development of fermentation biotechnologies and functional foods. DOW is rich in trace minerals, comprises multiple physiological and health functions, and is able to promote microbe growth; therefore, the application of DOW directly benefits the development of the fermentation industry and functional foods. This study integrated the current health functions and applications of DOW with the latest results from studies related to fermentation biotechnology. Subsequently, the influence of applying DOW in fermented functional food development and the effects in health function improvements were summarized. According to the previous studies, the main reasons for the increased effect of fermented functional foods through the application of DOW are increased generation of functional metabolite contents in the microbes, intrinsic health functions of DOW, and the microbial use of mechanisms of converting the absorbed inorganic ions into highly bioavailable organic ions for the human body. These combined advantages not only enhance the health functions of fermentation products but also provide fermentation products with the intrinsic health functions of DOW.
Community drinking water quality monitoring data: utility for public health research and practice.
Jones, Rachael M; Graber, Judith M; Anderson, Robert; Rockne, Karl; Turyk, Mary; Stayner, Leslie T
2014-01-01
Environmental Public Health Tracking (EPHT) tracks the occurrence and magnitude of environmental hazards and associated adverse health effects over time. The EPHT program has formally expanded its scope to include finished drinking water quality. Our objective was to describe the features, strengths, and limitations of using finished drinking water quality data from community water systems (CWSs) for EPHT applications, focusing on atrazine and nitrogen compounds in 8 Midwestern states. Water quality data were acquired after meeting with state partners and reviewed and merged for analysis. Data and the coding of variables, particularly with respect to censored results (nondetects), were not standardized between states. Monitoring frequency varied between CWSs and between atrazine and nitrates, but this was in line with regulatory requirements. Cumulative distributions of all contaminants were not the same in all states (Peto-Prentice test P < .001). Atrazine results were highly censored in all states (76.0%-99.3%); higher concentrations were associated with increased measurement frequency and surface water as the CWS source water type. Nitrate results showed substantial state-to-state variability in censoring (20.5%-100%) and in associations between concentrations and the CWS source water type. Statistical analyses of these data are challenging due to high rates of censoring and uncertainty about the appropriateness of parametric assumptions for time-series data. Although monitoring frequency was consistent with regulations, the magnitude of time gaps coupled with uncertainty about CWS service areas may limit linkage with health outcome data.
Escherichia coli: the best biological drinking water indicator for public health protection.
Edberg, S C; Rice, E W; Karlin, R J; Allen, M J
2000-01-01
Public health protection requires an indicator of fecal pollution. It is not necessary to analyse drinking water for all pathogens. Escherichia coli is found in all mammal faeces at concentrations of 10 log 9(-1), but it does not multiply appreciably in the environment. In the 1890s, it was chosen as the biological indicator of water treatment safety. Because of method deficiencies, E. coli surrogates such as the 'fecal coliform' and total coliforms tests were developed and became part of drinking water regulations. With the advent of the Defined Substrate Technology in the late 1980s, it became possible to analyse drinking water directly for E. coli (and, simultaneously, total coliforms) inexpensively and simply. Accordingly, E. coli was re-inserted in the drinking water regulations. E. coli survives in drinking water for between 4 and 12 weeks, depending on environmental conditions (temperature, microflora, etc.). Bacteria and viruses are approximately equally oxidant-sensitive, but parasites are less so. Under the conditions in distribution systems, E. coli will be much more long-lived. Therefore, under most circumstances it is possible to design a monitoring program that permits public health protection at a modest cost. Drinking water regulations currently require infrequent monitoring which may not adequately detect intermittent contamination events; however, it is cost-effective to markedly increase testing with E. coli to better protect the public's health. Comparison with other practical candidate fecal indicators shows that E. coli is far superior overall.
NASA Astrophysics Data System (ADS)
Furr-Holden, D.
2017-12-01
Flint, MI has experienced a recent, man-made public health crisis. The Flint Water Crisis, caused by a switch in the municipal water supply and subsequent violation of engineering and regulatory standards to ensure water quality lead to a large portion of the city being exposed to excess metals (including lead), bacteria and other water-borne pathogens. The data used to initially rebut the existence of the crisis were ecologically flawed as they included large numbers of people who were not on the Flint water supply. Policy-makers, municipal officials, the medical community, and public health professionals were at odds over the existence of a problem and the lack of data only fueled the debate. Pediatricians, lead by Dr. Mona Hannah-Attisha, began testing children in the Hurley Children's Medical Center for blood-lead levels and observed a 2-fold increase in elevated blood lead levels in Flint children compared to children in the area not on the Flint municipal water supply, where no increases in elevated lead were observed. Subsequent geospatial analyses revealed spatial clustering of cases based on where children live, go to school and play. These data represented the first step in data driven decision making leading to the subsequent switch of the municipal water supply and launch of subsequent advocacy efforts to remediate the effect of the Water Crisis. Since that time, a multi-disciplinary team of scientists including engineers, bench scientists, physicians and public health researchers have mounted evidence to promote complete replacement of the city's aging water infrastructure, developed a data registry to track cases and coordinate care and services for affected residents, and implemented a community engagement model that puts residents and community stakeholders at the heart of the planning and implementation efforts. The presentation will include data used at various stages to mount a public health response to the Flint Water Crisis and establish the link between data-driven decisions and subsequent policies to mediate long term consequences.
Reimann, Clemens; Banks, David
2004-10-01
Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.
Effect of home-used water purifier on fluoride concentration of drinking water in southern Iran
Jaafari-Ashkavandi, Zohreh; Kheirmand, Mehdi
2013-01-01
Background: Fluoride in drinking water plays a key role in dental health. Due to the increasing use of water-purifier, the effect of these devices on fluoride concentration of drinking water was evaluated. Materials and Methods: Drinking water samples were collected before and after passing through a home water-purifier, from four different water sources. The fluoride, calcium and magnesium concentration of the samples were measured using the quantitative spectrophotometery technique. Data were analyzed by the Wilcoxon test. P value < 0.1 was considered as significant. Results: The result showed that the concentration of fluoride was 0.05-0.61 ppm before purification and was removed completely afterward. Furthermore, other ions reduced significantly after treatment by the water purifier. Conclusion: This study revealed that this device decreases the fluoride content of water, an issue which should be considered in low and high-fluoridated water sources. PMID:24130584
Mohammadi, Ali Akbar; Yousefi, Mahmood; Mahvi, Amir Hossein
2017-08-01
Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river) was in the range mg/l 0.28-10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7-16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.
Payment, P; Franco, E; Richardson, L; Siemiatycki, J
1991-01-01
During a prospective epidemiological study of gastrointestinal health effects associated with the consumption of drinking water produced by reverse-osmosis domestic units, a correlation was demonstrated between the bacterial counts on R2A medium incubated at 35 degrees C and the reported gastrointestinal symptoms in families who used these units. A univariate correlation was found with bacterial counts on R2A medium at 20 degrees C but was confounded by the bacterial counts at 35 degrees C. Other variables, such as family size and amount of water consumed, were not independently explanatory of the rate of illness. These observations raise concerns for the possibility of increased disease associated with certain point-of-use treatment devices for domestic use when high levels of bacterial growth occur. PMID:2059052
Kellogg, Christina A.; Hopkins, M. Camille
2017-09-26
Microbiomes are the communities of microorganisms (for example, bacteria, viruses, and fungi) that live on, in, and around people, plants, animals, soil, water, and the atmosphere. Microbiomes are active in the functioning of diverse ecosystems, for instance, by influencing water quality, nutrient acquisition and stress tolerance in plants, and stability of soil and aquatic environments. Microbiome research conducted by the U.S. Geological Survey spans many of our mission areas. Key research areas include water quality, understanding climate effects on soil and permafrost, ecosystem and wildlife health, invasive species, contaminated environments to improve bioremediation, and enhancing energy production. Microbiome research will fundamentally strengthen the ability to address the global challenges of maintaining clean water, ensuring adequate food supply, meeting energy needs, and preserving human and ecosystem health.
Kirby, Miles A; Nagel, Corey L; Rosa, Ghislaine; Umupfasoni, Marie Mediatrice; Iyakaremye, Laurien; Thomas, Evan A; Clasen, Thomas F
2017-08-01
Unsafe drinking water is a substantial health risk contributing to child diarrhoea. We investigated impacts of a program that provided a water filter to households in rural Rwandan villages. We assessed drinking water quality and reported diarrhoea 12-24 months after intervention delivery among 269 households in the poorest tertile with a child under 5 from 9 intervention villages and 9 matched control villages. We also documented filter coverage and use. In Round 1 (12-18 months after delivery), 97.4% of intervention households reported receiving the filter, 84.5% were working, and 86.0% of working filters contained water. Sensors confirmed half of households with working filters filled them at least once every other day on average. Coverage and usage was similar in Round 2 (19-24 months after delivery). The odds of detecting faecal indicator bacteria in drinking water were 78% lower in the intervention arm than the control arm (odds ratio (OR) 0.22, 95% credible interval (CrI) 0.10-0.39, p<0.001). The intervention arm also had 50% lower odds of reported diarrhoea among children <5 than the control arm (OR=0.50, 95% CrI 0.23-0.90, p=0.03). The protective effect of the filter is also suggested by reduced odds of reported diarrhoea-related visits to community health workers or clinics, although these did not reach statistical significance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
NASA Astrophysics Data System (ADS)
Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William
2017-06-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Nagata, Jason M; Valeggia, Claudia R; Smith, Nathaniel W; Barg, Frances K; Guidera, Mamie; Bream, Kent D W
2011-01-01
To explore social determinants of drinking water beliefs and practices among the Tz'utujil Maya of Santiago Atitlán, Guatemala, through analysis of demographics, socioeconomic status, memory of historical events, sensory experience, and water attitudes. Parallel mixed (qualitative and quantitative) methods, including participant observation, in-depth interviews based on a purposive sample, and 201 semi-structured interviews based on a regional quota sample, were used to collect data from March 2007 to August 2008. Data analysis included the use of grounded theory methodology and Pearson's chi-square test for independence. Qualitative results based on grounded theory highlighted how memory of the Guatemalan Civil War and Hurricane Stan, attitudes about Lake Atitlán water, and the taste and smell of chlorine influenced Tz'utujil Maya drinking water beliefs. Quantitative survey results revealed that differences in ethnicity, literacy, years of schooling, distrust of the water supply during the Civil War and Hurricane Stan, and current beliefs about Lake Atitlán and tap water quality were associated with significantly different water self-treatment practices. In accordance with social determinants of health paradigms, demographic, socioeconomic, social, cultural, political, and historical factors continue to be significant determinants of water-related health. Public health water interventions must address inequalities related to these underlying factors in order to achieve maximum effectiveness.
Cobiac, Linda J; Vos, Theo
2012-08-01
Fluoride was first added to the Australian water supply in 1953, and by 2003, 69% of Australia's population was receiving the minimum recommended dose. Extending coverage of fluoridation to all remaining communities of at least 1000 people is a key strategy of Australia's National Oral Health Plan 2004-2013. We evaluate the cost-effectiveness of this strategy from an Australian health sector perspective. Health gains from the prevention of caries in the Australian population are modelled over the average 15-year lifespan of a treatment plant. Taking capital and on-going operational costs of fluoridation into account, as well as costs of caries treatment, we determine the dollars per disability-adjusted life years (DALY) averted from extending coverage of fluoridation to all large (≥ 1000 people) and small (<1000 people) communities in Australia. Extending coverage of fluoridation to all communities of at least 1000 people will lead to improved population health (3700 DALYs, 95% uncertainty interval: 2200-5700 DALYs), with a dominant cost-effectiveness ratio and 100% probability of cost-savings. Extending coverage to smaller communities leads to 60% more health gains, but is not cost-effective, with a median cost-effectiveness ratio of A$92 000/DALY and only 10% probability of being under a cost-effectiveness threshold of A$50 000/DALY. Extension of fluoridation coverage under the National Oral Health Plan is highly recommended, but given the substantial dental health disparities and inequalities in access to dental care that currently exist for more regional and remote communities, there may be good justification for extending coverage to include all Australians, regardless of where they live, despite less favourable cost-effectiveness. © 2012 John Wiley & Sons A/S.
Jones, Rachael M; Stayner, Leslie T; Demirtas, Hakan
2014-10-01
Drinking water may contain pollutants that harm human health. The frequency of pollutant monitoring may occur quarterly, annually, or less frequently, depending upon the pollutant, the pollutant concentration, and community water system. However, birth and other health outcomes are associated with narrow time-windows of exposure. Infrequent monitoring impedes linkage between water quality and health outcomes for epidemiological analyses. To evaluate the performance of multiple imputation to fill in water quality values between measurements in community water systems (CWSs). The multiple imputation method was implemented in a simulated setting using data from the Atrazine Monitoring Program (AMP, 2006-2009 in five Midwestern states). Values were deleted from the AMP data to leave one measurement per month. Four patterns reflecting drinking water monitoring regulations were used to delete months of data in each CWS: three patterns were missing at random and one pattern was missing not at random. Synthetic health outcome data were created using a linear and a Poisson exposure-response relationship with five levels of hypothesized association, respectively. The multiple imputation method was evaluated by comparing the exposure-response relationships estimated based on multiply imputed data with the hypothesized association. The four patterns deleted 65-92% months of atrazine observations in AMP data. Even with these high rates of missing information, our procedure was able to recover most of the missing information when the synthetic health outcome was included for missing at random patterns and for missing not at random patterns with low-to-moderate exposure-response relationships. Multiple imputation appears to be an effective method for filling in water quality values between measurements. Copyright © 2014 Elsevier Inc. All rights reserved.
Havelaar, A H; De Hollander, A E; Teunis, P F; Evers, E G; Van Kranen, H J; Versteegh, J F; Van Koten, J E; Slob, W
2000-01-01
To evaluate the applicability of disability adjusted life-years (DALYs) as a measure to compare positive and negative health effects of drinking water disinfection, we conducted a case study involving a hypothetical drinking water supply from surface water. This drinking water supply is typical in The Netherlands. We compared the reduction of the risk of infection with Cryptosporidium parvum by ozonation of water to the concomitant increase in risk of renal cell cancer arising from the production of bromate. We applied clinical, epidemiologic, and toxicologic data on morbidity and mortality to calculate the net health benefit in DALYs. We estimated the median risk of infection with C. parvum as 10(-3)/person-year. Ozonation reduces the median risk in the baseline approximately 7-fold, but bromate is produced in a concentration above current guideline levels. However, the health benefits of preventing gastroenteritis in the general population and premature death in patients with acquired immunodeficiency syndrome outweigh health losses by premature death from renal cell cancer by a factor of > 10. The net benefit is approximately 1 DALY/million person-years. The application of DALYs in principle allows us to more explicitly compare the public health risks and benefits of different management options. In practice, the application of DALYs may be hampered by the substantial degree of uncertainty, as is typical for risk assessment. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:10753089
2012-01-01
Lead is an old environmental metal which is presented everywhere and lead poisoning is an important health issue in many countries in the world including Iran. It is known as a silent environmental disease which can have life-long adverse health effects. In children, the most vulnerable population, mental development of children health effects is of the greatest influence. Low level lead exposure can significantly induce motor dysfunctions and cognitive impairment in children. The sources of lead exposure vary among countries. Occupational lead exposure is an important health issue in Iran and mine workers, employees of paint factories, workers of copying centers, drivers, and tile making factories are in higher risk of lead toxicity. Moreover lead processing industry has always been a major of concern which affects surface water, drinking waters, and ground waters, even water of Caspian Sea, Persian Gulf and rivers due to increasing the number of industries in vicinity of rivers that release their waste discharges into river or sea. In addition, lead contamination of soil and air especially in vicinity of polluted and industrialized cities is another health problem in Iran. Even foods such as rice and fishes, raw milk, and vegetables which are the most common food of Iranian population are polluted to lead in some area of Iran. Adding lead to the opium is a recently health hazard in Iran that has been observed among opium addicts. There are few studies evaluated current status of lead exposure and toxicity in the Iranian children and pregnant women which should be taken into account of authorities. We recommend to identify sources, eliminate or control sources, and monitor environmental exposures and hazards to prevent lead poisoning. PMID:23226111
The effective use of fluorides in public health.
Jones, Sheila; Burt, Brian A.; Petersen, Poul Erik; Lennon, Michael A.
2005-01-01
Dental caries remain a public health problem for many developing countries and for underprivileged populations in developed countries. This paper outlines the historical development of public health approaches to the use of fluoride and comments on their effectiveness. Early research and development was concerned with waterborne fluorides, both naturally occurring and added, and their effects on the prevalence and incidence of dental caries and dental fluorosis. In the latter half of the 20th century, the focus of research was on fluoride toothpastes and mouth rinses. More recently, systematic reviews summarizing these extensive databases have indicated that water fluoridation and fluoride toothpastes both substantially reduce the prevalence and incidence of dental caries. We present four case studies that illustrate the use of fluoride in modern public health practice, focusing on: recent water fluoridation schemes in California, USA; salt fluoridation in Jamaica; milk fluoridation in Chile; and the development of "affordable" fluoride toothpastes in Indonesia. Common themes are the concern to reduce demands for compliance with fluoride regimes that rely upon action by individuals and their families, and the issue of cost. We recommend that a community should use no more than one systemic fluoride (i.e. water or salt or milk fluoridation) combined with the use of fluoride toothpastes, and that the prevalence of dental fluorosis should be monitored in order to detect increases in or higher-than-acceptable levels. PMID:16211158
[Medico-ecological approaches to the integrated management of water resources].
El'piner, L I
2012-01-01
The necessity of taking into account the interests of public health care informing and implementing solutions for water management has been substantiated. Scientific frameworks and regulatory sanitary legislative documents relating to various areas of water management have been considered. The possibilities and the importance of performing complex territory medical ecological forecasts of effects of changes in hydrological situation have been demonstrated.
USDA-ARS?s Scientific Manuscript database
Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...
Systematic review of community health impacts of mountaintop removal mining.
Boyles, Abee L; Blain, Robyn B; Rochester, Johanna R; Avanasi, Raghavendhran; Goldhaber, Susan B; McComb, Sofie; Holmgren, Stephanie D; Masten, Scott A; Thayer, Kristina A
2017-10-01
The objective of this evaluation is to understand the human health impacts of mountaintop removal (MTR) mining, the major method of coal mining in and around Central Appalachia. MTR mining impacts the air, water, and soil and raises concerns about potential adverse health effects in neighboring communities; exposures associated with MTR mining include particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), metals, hydrogen sulfide, and other recognized harmful substances. A systematic review was conducted of published studies of MTR mining and community health, occupational studies of MTR mining, and any available animal and in vitro experimental studies investigating the effects of exposures to MTR-mining-related chemical mixtures. Six databases (Embase, PsycINFO, PubMed, Scopus, Toxline, and Web of Science) were searched with customized terms, and no restrictions on publication year or language, through October 27, 2016. The eligibility criteria included all human population studies and animal models of human health, direct and indirect measures of MTR-mining exposure, any health-related effect or change in physiological response, and any study design type. Risk of bias was assessed for observational and experimental studies using an approach developed by the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT). To provide context for these health effects, a summary of the exposure literature is included that focuses on describing findings for outdoor air, indoor air, and drinking water. From a literature search capturing 3088 studies, 33 human studies (29 community, four occupational), four experimental studies (two in rat, one in vitro and in mice, one in C. elegans), and 58 MTR mining exposure studies were identified. A number of health findings were reported in observational human studies, including cardiopulmonary effects, mortality, and birth defects. However, concerns for risk of bias were identified, especially with respect to exposure characterization, accounting for confounding variables (such as socioeconomic status), and methods used to assess health outcomes. Typically, exposure was assessed by proximity of residence or hospital to coal mining or production level at the county level. In addition, assessing the consistency of findings was challenging because separate publications likely included overlapping case and comparison groups. For example, 11 studies of mortality were conducted with most reporting higher rates associated with coal mining, but many of these relied on the same national datasets and were unable to consider individual-level contributors to mortality such as poor socioeconomic status or smoking. Two studies of adult rats reported impaired microvascular and cardiac mitochondrial function after intratracheal exposure to PM from MTR-mining sites. Exposures associated with MTR mining included reports of PM levels that sometimes exceeded Environmental Protection Agency (EPA) standards; higher levels of dust, trace metals, hydrogen sulfide gas; and a report of increased public drinking water violations. This systematic review could not reach conclusions on community health effects of MTR mining because of the strong potential for bias in the current body of human literature. Improved characterization of exposures by future community health studies and further study of the effects of MTR mining chemical mixtures in experimental models will be critical to determining health risks of MTR mining to communities. Without such work, uncertainty will remain regarding the impact of these practices on the health of the people who breathe the air and drink the water affected by MTR mining. Published by Elsevier Ltd.
EFFECT OF FEES ON WATER SERVICE CUTOFFS AND PAYMENT DELINQUENCIES
A study was conducted to determine whether increased water and sewer user fees have generated increases in payment delinquencies and service cutoff rates and whether they have created other problems such as increased health hazards. Another objective was to examine the varied use...
Human health effects associated with exposure to toxic Cyanobacteria – what is the evidence?
Reports of toxic cyanobacteria blooms are increasing worldwide, as warming water and eutrophic surface water systems support the development of blooms. As awareness of toxic cyanobacteria blooms increases, reports of associated human and animal illnesses have also increased, but ...
Epidemiology studies of recreational waters have demonstrated that swimmers exposed to faecally-contaminated recreational waters are at risk of excess gastrointestinal illness. Epidemiology studies provide valuable information on the nature and extent of health effects, the magni...
Biofilm in drinking water systems is undesirable and effective biofilm control maintains public health. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. ...
Optimal Interventions in Host-Nation Health Systems During Counterinsurgency Operations
2014-12-12
suggest. Finally, stability operations within COIN should consider childhood malnutrition rates and the access to improved water sources as good...consider childhood malnutrition rates and the access to improved water sources as good examples of potential measures of effectiveness (MOEs) that may...
Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What's New
Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...
Exposure to contaminated water during recreational swimming has long been associated with adverse health effects. Swimming in rivers, streams and lakes with high levels of fecal contamination are regularly linked to outbreaks of gastrointestinal illness and related infections. Wh...
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...
Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...
HEALTH EFFECTS FROM CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA
Arsenite and arsenate are widely present in natural waters. The inorganic forms , especially arsenite, are believed to be the most toxic species. Methylation is often considered to be the primary detoxification pathway for the metaboliism of inorganic arsenic. Recently studi...
Sun, Caiyun; Zhang, Jiquan; Ma, Qiyun; Chen, Yanan
2015-01-01
Reservoirs play an important role in living water supply and irrigation of farmlands, thus the water quality is closely related to public health. However, studies regarding human health and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the waters of reservoirs are very few. In this study, Shitou Koumen Reservoir which supplies drinking water to 8 million people was investigated. Sixteen priority PAHs were analyzed in a total of 12 water samples. In terms of the individual PAHs, the average concentration of Fla, which was 5.66 × 10−1 μg/L, was the highest, while dibenz(a,h)anthracene which was undetected in any of the water samples was the lowest. Among three PAH compositional patterns, the concentration of low-molecular-weight and 4-ring PAHs was dominant, accounting for 94%, and the concentration of the total of 16 PAHs was elevated in constructed-wetland and fish-farming areas. According to the calculated risk quotients, little or no adverse effects were posed by individual and complex PAHs in the water on the aquatic ecosystem. In addition, the results of hazard quotients for non-carcinogenic risk also showed little or no negative impacts on the health of local residents. However, it could be concluded from the carcinogenic risk results that chrysene and complex PAHs in water might pose a potential carcinogenic risk to local residents. Moreover, the possible sources of PAHs were identified as oil spills and vehicular emissions, as well as the burning of biomass and coal. PMID:26529001
Moiseenko, T I; Voinov, A A; Megorsky, V V; Gashkina, N A; Kudriavtseva, L P; Vandish, O I; Sharov, A N; Sharova, Yu; Koroleva, I N
2006-10-01
There are rich deposits of mineral and fossil natural resources in the Arctic, which make this region very attractive for extracting industries. Their operations have immediate and vast consequences for ecological systems, which are particularly vulnerable in this region. We are developing a management strategy for Arctic watersheds impacted by industrial production. The case study is Lake Imandra watershed (Murmansk oblast, Russia) that has exceptionally high levels of economic development and large numbers of people living there. We track the impacts of toxic pollution on ecosystem health and then--human health. Three periods are identified: (a) natural, pre-industrial state; (b) disturbed, under rapid economic development; and (c) partial recovery, during recent economic meltdown. The ecosystem is shown to transform into a qualitatively new state, which is still different from the original natural state, even after toxic loadings have substantially decreased. Fish disease where analyzed to produce and integral evaluation of ecosystem health. Accumulation of heavy metals in fish is correlated with etiology of many diseases. Dose-effect relationships are between integral water quality indices and ecosystem health indicators clearly demonstrates that existing water quality standards adopted in Russia are inadequate for Arctic regions. Health was also poor for people drinking water from the Lake. Transport of heavy metals from drinking water, into human organs, and their effect on liver and kidney diseases shows the close connection between ecosystem and human health. A management system is outlined that is based on feedback from indices of ecosystem and human health and control over economic production and/or the amount of toxic loading produced. We argue that prospects for implementation of such a system are quite bleak at this time, and that more likely we will see a continued depopulation of these Northern regions.
Craft-Blacksheare, Melva Gale
The Flint, Michigan water crisis raised awareness about the dangers of lead-tainted drinking water and the role of the nurse in addressing such a crisis. Although lead exposure is dangerous for all people, research indicates that pregnant and nursing women and their infants are especially vulnerable to prenatal and postnatal lead exposure. This information is of national importance because of the aging infrastructure of American cities and the likelihood of similar problems in other locations. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.
Water as consumed and its impact on the consumer--do we understand the variables?
Bates, A J
2000-01-01
Water is the most important natural resource in the world, without it life cannot exist. In 1854 a cholera outbreak in London caused 10, 000 deaths and positively linked enteric disease with bacterial contamination of drinking water by sewage pollution. Since then, adequate water hygiene standards and sewage purification have played the most significant role in disease eradication and public health improvements everywhere. Standards for drinking water have become an extensive range of microbiological and chemical parametric values. Which has not increased consumer, if the media is to be believed. Customers rightly expect that the water they drink is safe and wholesome. Standard setting is perceived as a precise science and meaningful to health. Is this justified and do scientists and regulators who derive and set the standards understand the uncertainties in the system? Water is the universal solvent, therefore it will never be pure; it will contain impurities prior to and after treatment. Knowledge of its potential to become contaminated is necessary to understand the epidemiology associated with waterborne contaminants and their effects. Water use patterns vary considerably and affect assumptions based on toxicology derived from laboratory studies under tightly controlled conditions. Consideration must be given to the model systems used to assess toxicity and translate results from the laboratory to the real world, if sensible scientifically-based water quality standards are to be set and achieved cost effectively.
Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo
2016-08-01
Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.
Zaibel, Inbal; Zilberg, Dina; Groisman, Ludmila; Arnon, Shai
2016-07-15
Treated wastewater (TWW) reuse for agricultural irrigation is a well-established approach to coping with water shortages in semi-arid and arid environments. Recently, additional uses of TWW have emerged, including streamflow augmentation and aquatic ecosystem restoration. The purpose of the current study was to evaluate the water quality and fish health, in an artificial reservoir located in an arid climate (the Yeruham Reservoir, Israel), which regularly receives TWW and sporadic winter floods. The temporal distribution of water levels, nutrients and organic micropollutants (OMPs) were measured during the years 2013-2014. OMPs were also measured in sediment and fish tissues. Finally, the status of fish health was evaluated by histopathology. Water levels and quality were mainly influenced by seasonal processes such as floods and evaporation, and not by the discharge of TWW. Out of 16 tested OMPs, estrone, carbamazepine, diclofenac and bezafibrate were found in the reservoir water, but mostly at concentrations below the predicted no-effect concentration (PNEC) for fish. Concentrations of PCBs and dioxins in fish muscle and liver were much lower than the EU maximal permitted concentrations, and similar to concentrations that were found in food fish in Israel and Europe. In the histopathological analysis, there were no evident tissue abnormalities, and low to moderate infection levels of fish parasites were recorded. The results from the Yeruham Reservoir demonstrated a unique model for the mixture effect between TWW reuse and natural floods to support a unique stable and thriving ecosystem in a water reservoir located in an arid region. This type of reservoir can be widely used for recreation, education, and the social and economic development of a rural environment, such as has occurred in the Yeruham region. Copyright © 2016 Elsevier B.V. All rights reserved.
Plewa, Michael J; Wagner, Elizabeth D; Richardson, Susan D
2017-08-01
The disinfection of drinking water is a major public health achievement; however, an unintended consequence of disinfection is the generation of disinfection by-products (DBPs). Many of the identified DBPs exhibit in vitro and in vivo toxicity, generate a diversity of adverse biological effects, and may be hazards to the public health and the environment. Only a few DBPs are regulated by several national and international agencies and it is not clear if these regulated DBPs are the forcing agents that drive the observed toxicity and their associated health effects. In this study, we combine analytical chemical and biological data to resolve the forcing agents associated with mammalian cell cytotoxicity of drinking water samples from three cities. These data suggest that the trihalomethanes (THMs) and haloacetic acids may be a small component of the overall cytotoxicity of the organic material isolated from disinfected drinking water. Chemical classes of nitrogen-containing DBPs, such as the haloacetonitriles and haloacetamides, appear to be the major forcing agents of toxicity in these samples. These findings may have important implications for the design of epidemiological studies that primarily rely on the levels of THMs to define DBP exposure among populations. The TIC-Tox approach constitutes a beginning step in the process of identifying the forcing agents of toxicity in disinfected water. Copyright © 2017. Published by Elsevier B.V.
Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development.
Kozul-Horvath, Courtney D; Zandbergen, Fokko; Jackson, Brian P; Enelow, Richard I; Hamilton, Joshua W
2012-01-01
Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations.
Varade, Abhay M; Yenkie, Rajshree; Shende, Rahul; Kodate, Jaya
2014-01-01
The water quality of Hingna area of Nagpur district, Central India was assessed for its suitability as drinking water. 22 water samples, representing both the surface and groundwater sources, were collected and analysed for different inorganic constituents by using the standard procedures. The result depicted abundance of major ions; Ca2+ > Mg2+ > Na+ > K+ = HCO3- > Cl- > SO4(2-) > NO3-. The concentrations of different elements in water were compared with the drinking water standards defined by World Health Organization (WHO). The hydro-chemical results reveal that most of the samples were within the desirable limits of the drinking water quality. However, few samples of the area, showed higher values of total dissolved solids (TDS), total hardness (TH), and magnesium (Mg) indicating their 'hard water type' nature and found to be unfit for the drinking purpose. Such poor water quality of these samples is found due to the combined effect of urbanization and industrial activities. The potential health risks associated with various water parameters have also been documented in this paper.
Toccalino, Patricia L.; Norman, Julia E.; Phillips, Robyn H.; Kauffman, Leon J.; Stackelberg, Paul E.; Nowell, Lisa H.; Krietzman, Sandra J.; Post, Gloria B.
2004-01-01
A state-scale pilot effort was conducted to evaluate a Health-Based Screening Level (HBSL) approach developed for communicating findings from the U.S. Geological Survey (USGS) National Water-Quality Assessment Program in a human-health context. Many aquifers sampled by USGS are used as drinking-water sources, and water-quality conditions historically have been assessed by comparing measured contaminant concentrations to established drinking-water standards and guidelines. Because drinking-water standards and guidelines do not exist for many analyzed contaminants, HBSL values were developed collaboratively by the USGS, U.S. Environmental Protection Agency (USEPA), New Jersey Department of Environmental Protection, and Oregon Health & Science University, using USEPA toxicity values and USEPA Office of Water methodologies. The main objective of this report is to demonstrate the use of HBSL approach as a tool for communicating water-quality data in a human-health context by conducting a retrospective analysis of ground-water quality data from New Jersey. Another important objective is to provide guidance on the use and interpretation of HBSL values and other human-health benchmarks in the analyses of water-quality data in a human-health context. Ground-water samples collected during 1996-98 from 30 public-supply, 82 domestic, and 108 monitoring wells were analyzed for 97 pesticides and 85 volatile organic compounds (VOCs). The occurrence of individual pesticides and VOCs was evaluated in a human-health context by calculating Benchmark Quotients (BQs), defined as ratios of measured concentrations of regulated compounds (that is, compounds with Federal or state drinking-water standards) to Maximum Contaminant Level (MCL) values and ratios of measured concentrations of unregulated compounds to HBSL values. Contaminants were identified as being of potential human-health concern if maximum detected concentrations were within a factor of 10 of the associated MCL or HBSL (that is, maximum BQ value (BQmax) greater than or equal to 0.1) in any well type (public supply, domestic, monitoring). Most (57 of 77) pesticides and VOCs with human-health benchmarks were detected at concentrations well below these levels (BQmax less than 0.1) for all three well types; however, BQmax values ranged from 0.1 to 3,000 for 6 pesticides and 14 VOCs. Of these 20 contaminants, one pesticide (dieldrin) and three VOCs (1,2-dibromoethane, tetrachloroethylene, and trichloroethylene) both (1) were measured at concentrations that met or exceeded MCL or HBSL values, and (2) were detected in more than 10 percent of samples collected from raw ground water used as sources of drinking water (public-supply and (or) domestic wells) and, therefore, are particularly relevant to human health. The occurrence of multiple pesticides and VOCs in individual wells also was evaluated in a human-health context because at least 53 different contaminants were detected in each of the three well types. To assess the relative human-health importance of the occurrence of multiple contaminants in different wells, the BQ values for all contaminants in a given well were summed. The median ratio of the maximum BQ to the sum of all BQ values for each well ranged from 0.83 to 0.93 for all well types, indicating that the maximum BQ makes up the majority of the sum for most wells. Maximum and summed BQ values were statistically greater for individual public-supply wells than for individual domestic and monitoring wells. The HBSL approach is an effective tool for placing water-quality data in a human-health context. For 79 of the 182 compounds analyzed in this study, no USEPA drinking-water standards or guidelines exist, but new HBSL values were calculated for 39 of these 79 compounds. The new HBSL values increased the number of detected pesticides and VOCs with human-health benchmarks from 65 to 77 (of 97 detected compounds), thereby expanding the basis for interpreting contaminant-occu
Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E
2014-02-01
The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. © 2013.
The health and social effects of drinking water-based infusions of kava: a review of the evidence.
Rychetnik, Lucie; Madronio, Christine M
2011-01-01
To review the evidence on the health and social effects of drinking kava; a water-based infusion of the roots of the kava plant. Included all empirical studies of the effects of kava published 1987-2008 reporting health and social outcomes. Evidence appraised on study design (level of evidence) and standard epidemiological criteria for causality. Causality indicated: scaly skin rash, weight loss, raised Gamma Glutamyl Transpeptidase liver enzyme levels, nausea, loss of appetite or indigestion; Association indicated but causality unclear: red sore eyes, impotence or loss of sexual drive, self-reported poor health, raised cholesterol, and loss of time and money, low motivation and 'slow/lazy' days following use, reduced alcohol consumption and related violence; Association hypothesised: fits or seizures, Melioidosis, Ischaemic Heart Disease, protective effects for cancer; No association indicated: cognitive performance; No association suggested: cognitive impairment, liver toxicity or permanent liver damage, other pneumonia; No association hypothesised: hallucinations. The health and social implications of chronic kava drinking can be significant for individuals and communities, although most effects of even heavy consumption appear to be reversible when consumption is stopped. An Australia-wide ban on commercial importation of kava has been in place since mid-2007, but there is no published literature to date on the impact of the ban. © 2010 Australasian Professional Society on Alcohol and other Drugs.
Darvesh, Nazia; Das, Jai K; Vaivada, Tyler; Gaffey, Michelle F; Rasanathan, Kumanan; Bhutta, Zulfiqar A
2017-11-07
In the Sustainable Development Goals (SDGs) era, there is growing recognition of the responsibilities of non-health sectors in improving the health of children. Interventions to improve access to clean water, sanitation facilities, and hygiene behaviours (WASH) represent key opportunities to improve child health and well-being by preventing the spread of infectious diseases and improving nutritional status. We conducted a systematic review of studies evaluating the effects of WASH interventions on childhood diarrhea in children 0-5 years old. Searches were run up to September 2016. We screened the titles and abstracts of retrieved articles, followed by screening of the full-text reports of relevant studies. We abstracted study characteristics and quantitative data, and assessed study quality. Meta-analyses were performed for similar intervention and outcome pairs. Pooled analyses showed diarrhea risk reductions from the following interventions: point-of-use water filtration (pooled risk ratio (RR): 0.47, 95% confidence interval (CI): 0.36-0.62), point-of-use water disinfection (pooled RR: 0.69, 95% CI: 0.60-0.79), and hygiene education with soap provision (pooled RR: 0.73, 95% CI: 0.57-0.94). Quality ratings were low or very low for most studies, and heterogeneity was high in pooled analyses. Improvements to the water supply and water disinfection at source did not show significant effects on diarrhea risk, nor did the one eligible study examining the effect of latrine construction. Various WASH interventions show diarrhea risk reductions between 27% and 53% in children 0-5 years old, depending on intervention type, providing ample evidence to support the scale-up of WASH in low and middle-income countries (LMICs). Due to the overall low quality of the evidence and high heterogeneity, further research is required to accurately estimate the magnitude of the effects of these interventions in different contexts.
Kato, Masashi; Azimi, Mohammad Daud; Fayaz, Said Hafizullah; Shah, Muhammad Dawood; Hoque, Md Zahirul; Hamajima, Nobuyuki; Ohnuma, Shoko; Ohtsuka, Tomomi; Maeda, Masao; Yoshinaga, Masafumi
2016-12-01
Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the 238 U/ 235 U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged. Copyright © 2016 Elsevier Ltd. All rights reserved.
Potential human health effects of acid rain: report of a workshop
Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.
1985-01-01
This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
...The Delaware River Basin Commission (``DRBC'' or ``Commission'') will hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan to revise the water quality criteria for polychlorinated biphenyls (``PCBs'') in the Delaware Estuary and Bay, DRBC Water Quality Management Zones 2 through 6, for the protection of human health from carcinogenic effects. The Commission will simultaneously solicit comment on a draft implementation strategy to support achievement of the criteria.
Pathway-based monitoring of biological effects at Great Lakes sites (Presntation)
The Great Lakes region suffers from degradation of water and environmental quality due to release of chemicals of emerging concern. Critical issues remain in delisting Areas of Concern (AOC) including determining sources of chemicals causing fish health impacts, relating health ...
Does wastewater discharge have relations with increase of Turner syndrome and Down syndrome?
Choi, Intae
2017-01-01
The purpose of this study is to examine whether water and air pollutants have a relationship with an increase in the genetic disorders Turner syndrome and Down syndrome, which are caused by congenital chromosomal abnormalities, and to generate a hypothesis about the genetic health effects of environmental pollutants. A panel regression based on random effect was conducted on Korea's metropolitan councils from 2012 to 2014. The dependent variable was the number of Turner syndrome and Down syndrome cases, and the main independent variables were those regarding the water and air pollution. Air pollutants did not have a significant impact on the number of Turner syndrome and Down syndrome cases; however, the increase in number of wastewater discharge companies did have a significant relationship with the number of cases. The more the number of wastewater discharge companies, the more the number Turner syndrome and Down syndrome cases were observed. Therefore, scientific investigation on water and air pollutants in relation with genetic health effects needs to be performed.
[Fluoridation of drinking water, why is it needed?].
Zusman, S P; Natapov, L; Ramon, T
2004-01-01
Dental caries is a widespread disease. It causes irreversible damage, pain and considerable expense. Fluoride is the only known substance that raises the tooth's resistance to acid attack. Natural drinking waters contain fluoride at different concentration. The most effective method of fluoride administration to the community level is by adjustng the fluoride concentration in the drinking water to about 1 part per million. To describe the mode of action of fluoride, methods of administration and to describe water fluoridation, advantages and disadvantages. Fluoridation of drinking water started in 1945 in the world and in 1981 in Israel. Today more then 300 million people in some 60 countries enjoy the defending effect of fluoride in drinking water. This is the most effective method for decreasing incidence of caries, as well as being cost effective. Over the years there were many attempts to 'blame' fluoridation with negative side effects to human health. Till today, none of the allegations passed scientific scrutiny. There is overwhelming scientific support for the Regulations that oblige the Water supplier to adjust fluoride levels to 1 ppm in every town or municipality with more then 5,000 inhabitants.
Watson, Annetta P; Armstrong, Anthony Q; White, George H; Thran, Brandolyn H
2018-02-01
U.S. military and allied contingency operations are increasingly occurring in locations with limited, unstable or compromised fresh water supplies. Non-potable graywater reuse is currently under assessment as a viable means to increase mission sustainability while significantly reducing the resources, logistics and attack vulnerabilities posed by transport of fresh water. Development of health-based (non-potable) exposure guidelines for the potential microbial components of graywater would provide a logical and consistent human-health basis for water reuse strategies. Such health-based strategies will support not only improved water security for contingency operations, but also sustainable military operations. Dose-response assessment of Vibrio cholerae based on adult human oral exposure data were coupled with operational water exposure scenario parameters common to numerous military activities, and then used to derive health risk-based water concentrations. The microbial risk assessment approach utilized oral human exposure V. cholerae dose studies in open literature. Selected studies focused on gastrointestinal illness associated with experimental infection by specific V. cholerae serogroups most often associated with epidemics and pandemics (O1 and O139). Nonlinear dose-response model analyses estimated V. cholerae effective doses (EDs) aligned with gastrointestinal illness severity categories characterized by diarrheal purge volume. The EDs and water exposure assumptions were used to derive Risk-Based Water Concentrations (CFU/100mL) for mission-critical illness severity levels over a range of water use activities common to military operations. Human dose-response studies, data and analyses indicate that ingestion exposures at the estimated ED 1 (50CFU) are unlikely to be associated with diarrheal illness while ingestion exposures at the lower limit (200CFU) of the estimated ED 10 are not expected to result in a level of diarrheal illness associated with degraded individual capability. The current analysis indicates that the estimated ED 20 (approximately 1000CFU) represents initiation of a more advanced stage of diarrheal illness associated with clinical care. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Economic benefits of arsenic removal from ground water--a case study from West Bengal, India.
Roy, Joyashree
2008-07-01
People living in almost 50% of the districts in West Bengal are exposed to arsenic contaminated water. This paper seeks to estimate the economic costs imposed by arsenic-related health problems. We use data from a primary survey of 473 households carried out in the districts of North 24 Parganas and Midnapore. We take into account household actions to either decrease the exposure of family members to unsafe water or to alleviate the health effects of consuming arsenic-contaminated water. This allows us to assess the benefits of arsenic-safe water by estimating a three equation system that includes averting actions, medical expenditures and a sickness function. We find that by reducing arsenic concentration to the safe limit of 50 microg/l, a representative household will benefit by Rs 297 ($7) per month. The current cost of supplying filtered piped water by the Kolkata Municipal Corporation to households is Rs 127 ($3) per month per household. Thus, investing in safe drinking water is economically feasible and households are willing to pay for such investments if made aware of the effective gain in welfare. Poor households, who make up the highest proportion of arsenic-affected households and incur the largest number of sick days, will be major beneficiaries of such investments.
Water fluoridation for the prevention of dental caries.
Iheozor-Ejiofor, Zipporah; Worthington, Helen V; Walsh, Tanya; O'Malley, Lucy; Clarkson, Jan E; Macey, Richard; Alam, Rahul; Tugwell, Peter; Welch, Vivian; Glenny, Anne-Marie
2015-06-18
Dental caries is a major public health problem in most industrialised countries, affecting 60% to 90% of school children. Community water fluoridation was initiated in the USA in 1945 and is currently practised in about 25 countries around the world; health authorities consider it to be a key strategy for preventing dental caries. Given the continued interest in this topic from health professionals, policy makers and the public, it is important to update and maintain a systematic review that reflects contemporary evidence. To evaluate the effects of water fluoridation (artificial or natural) on the prevention of dental caries.To evaluate the effects of water fluoridation (artificial or natural) on dental fluorosis. We searched the following electronic databases: The Cochrane Oral Health Group's Trials Register (to 19 February 2015); The Cochrane Central Register of Controlled Trials (CENTRAL; Issue 1, 2015); MEDLINE via OVID (1946 to 19 February 2015); EMBASE via OVID (1980 to 19 February 2015); Proquest (to 19 February 2015); Web of Science Conference Proceedings (1990 to 19 February 2015); ZETOC Conference Proceedings (1993 to 19 February 2015). We searched the US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization's WHO International Clinical Trials Registry Platform for ongoing trials. There were no restrictions on language of publication or publication status in the searches of the electronic databases. For caries data, we included only prospective studies with a concurrent control that compared at least two populations - one receiving fluoridated water and the other non-fluoridated water - with outcome(s) evaluated at at least two points in time. For the assessment of fluorosis, we included any type of study design, with concurrent control, that compared populations exposed to different water fluoride concentrations. We included populations of all ages that received fluoridated water (naturally or artificially fluoridated) or non-fluoridated water. We used an adaptation of the Cochrane 'Risk of bias' tool to assess risk of bias in the included studies.We included the following caries indices in the analyses: decayed, missing and filled teeth (dmft (deciduous dentition) and DMFT (permanent dentition)), and proportion caries free in both dentitions. For dmft and DMFT analyses we calculated the difference in mean change scores between the fluoridated and control groups. For the proportion caries free we calculated the difference in the proportion caries free between the fluoridated and control groups.For fluorosis data we calculated the log odds and presented them as probabilities for interpretation. A total of 155 studies met the inclusion criteria; 107 studies provided sufficient data for quantitative synthesis.The results from the caries severity data indicate that the initiation of water fluoridation results in reductions in dmft of 1.81 (95% CI 1.31 to 2.31; 9 studies at high risk of bias, 44,268 participants) and in DMFT of 1.16 (95% CI 0.72 to 1.61; 10 studies at high risk of bias, 78,764 participants). This translates to a 35% reduction in dmft and a 26% reduction in DMFT compared to the median control group mean values. There were also increases in the percentage of caries free children of 15% (95% CI 11% to 19%; 10 studies, 39,966 participants) in deciduous dentition and 14% (95% CI 5% to 23%; 8 studies, 53,538 participants) in permanent dentition. The majority of studies (71%) were conducted prior to 1975 and the widespread introduction of the use of fluoride toothpaste.There is insufficient information to determine whether initiation of a water fluoridation programme results in a change in disparities in caries across socioeconomic status (SES) levels.There is insufficient information to determine the effect of stopping water fluoridation programmes on caries levels.No studies that aimed to determine the effectiveness of water fluoridation for preventing caries in adults met the review's inclusion criteria.With regard to dental fluorosis, we estimated that for a fluoride level of 0.7 ppm the percentage of participants with fluorosis of aesthetic concern was approximately 12% (95% CI 8% to 17%; 40 studies, 59,630 participants). This increases to 40% (95% CI 35% to 44%) when considering fluorosis of any level (detected under highly controlled, clinical conditions; 90 studies, 180,530 participants). Over 97% of the studies were at high risk of bias and there was substantial between-study variation. There is very little contemporary evidence, meeting the review's inclusion criteria, that has evaluated the effectiveness of water fluoridation for the prevention of caries.The available data come predominantly from studies conducted prior to 1975, and indicate that water fluoridation is effective at reducing caries levels in both deciduous and permanent dentition in children. Our confidence in the size of the effect estimates is limited by the observational nature of the study designs, the high risk of bias within the studies and, importantly, the applicability of the evidence to current lifestyles. The decision to implement a water fluoridation programme relies upon an understanding of the population's oral health behaviour (e.g. use of fluoride toothpaste), the availability and uptake of other caries prevention strategies, their diet and consumption of tap water and the movement/migration of the population. There is insufficient evidence to determine whether water fluoridation results in a change in disparities in caries levels across SES. We did not identify any evidence, meeting the review's inclusion criteria, to determine the effectiveness of water fluoridation for preventing caries in adults.There is insufficient information to determine the effect on caries levels of stopping water fluoridation programmes.There is a significant association between dental fluorosis (of aesthetic concern or all levels of dental fluorosis) and fluoride level. The evidence is limited due to high risk of bias within the studies and substantial between-study variation.
NASA Astrophysics Data System (ADS)
Boyle, Kevin J.; Kuminoff, Nicolai V.; Zhang, Congwen; Devanney, Michael; Bell, Kathleen P.
2010-03-01
This paper examines the impact of arsenic contamination of groundwater on sale prices of residential properties and bare land transactions in two Maine towns, Buxton and Hollis, that rely on private wells to supply their drinking water. Prompted by tests of well water by the state of Maine, media attention focused on the communities in 1993 and 1994 when 14% of private wells were found to have arsenic concentrations exceeding the U.S. Environmental Protection Agency standard of 0.05 mg/L. Households could mitigate the serious health risks associated with arsenic ingestion by purchasing bottled water or by installing a reverse osmosis home treatment system. Our results indicate that the initial arsenic finding in 1993 led to significant, but temporary, 2 year decreases in property prices. This is a much shorter effect on prices than has been observed for Superfund sites, where prices can be depressed for a decade. These results suggest that a property-specific contamination incident that is treatable may not have a long-lasting effect on sale prices, but further research is needed to confirm if the dissipation of the price effect was actually due to the installation of in-home water treatment systems or due to the dissipation of perceived risk once the media coverage stopped.
PATHOGENICITY OF DRINKING WATER ISOLATES OF HETEROTROPHIC BACTERIA WITH PUTATIVE VIRULENCE FACTORS
Although the heterotrophic plate count (HPC) bacteria normally found in potable water are not a threat to the healthy population, some of them may be opportunistic pathogens that could cause adverse health effects in individuals with impaired immune systems. Earlier studies of t...
THE FEASIBILITY OF EPIDEMIOLOGIC STUDIES OF ARSENIC-RELATED HEALTH EFFECTS IN THE U.S.
The planning of the feasibility studies will rely on existing data on drinking water arsenic-exposed populations. Exposure concentrations of drinking water arsenic will be collected at the state and local levels, and other descriptive information about the populations exposed inc...
Exposure to arsenic in drinking water is known to produce a variety of health problems including peripheral neuropathy. Auditory, visual and somatosensory impairments have been reported in Mongolian farmers living in the Yellow River Valley where drinking water is contami...
Synoptic and frequent monitoring of water quality parameters from satellite is useful for determining the health of aquatic ecosystems and development of effective management strategies. Northwest Florida estuaries are classified as optically-complex, or waters influenced by chlo...
Halonitromethanes are drinking water disinfection by-products that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency. Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to deter...
Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...
Cyanotoxins can cause adverse human and ecological health effects. Large quantities of cyanotoxins can be released into water bodies during or immediately following freshwater cyanobacteria blooms, also known as harmful algal blooms (HABs). HABs exhibit complicated temporal and...
Chen, Xichao; Luo, Qian; Wang, Donghong; Gao, Jijun; Wei, Zi; Wang, Zijian; Zhou, Huaidong; Mazumder, Asit
2015-11-01
Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ≤ RQtotals ≤ 8.99 × 10) but little human health risks (6.84 × 10(-7) ≤ RQtotals ≤ 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Magwaza, Nontokozo M; Nxumalo, Edward N; Mamba, Bhekie B; Msagati, Titus A M
2017-05-20
Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites.
Magwaza, Nontokozo M.; Nxumalo, Edward N.; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-01-01
Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites. PMID:28531124
Post, Gloria B; Cohn, Perry D; Cooper, Keith R
2012-07-01
Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.
... your health Quiz: Water and your health Quiz: Water and your health Clean water is an important part of being healthy. Do you know all of these fun facts about water? Take this quiz to find out! Then, test ...
Keil, Alexander; Wing, Steven; Lowman, Amy
2011-01-01
BACKGROUND Exposure to potentially harmful agents because of waste disposal practices is receiving increased attention. Treated sewage sludge (TSS), or biosolid material, is the solid waste generated during domestic sewage treatment after it has undergone processes to reduce the number of pathogens and vector attractants. Application of TSS to land, which is the most common method for disposal, is promoted as a soil amendment and fertilizer. Few studies have examined the effects of land application on the health and quality of life of neighboring populations. We describe and summarize publicly available records that could be used to study the public health impact of practices associated with land application in North Carolina. METHODS We abstracted public records from the North Carolina Department of Natural Resources Division of Water Quality, to determine the following activities associated with land application of TSS in 8 counties in central North Carolina: the process for obtaining permits, reported applications, violations, documented concerns of residents, and penalties assessed. RESULTS The Division of Water Quality routinely collects records of permits and approvals for land application of TSS, amounts applied, and reported pollutant levels. Documentation was useful in summarizing land application practices, but lack of standardization in reporting was a concern. Research into the public health impacts of the land application program is hindered by inconsistency in documenting inspections and resident concerns. LIMITATIONS We were not able to validate state records with direct observation of land application of TSS. CONCLUSIONS Records from the Division of Water Quality would be of limited use in epidemiologic studies of the health effects of land application of biosolids. Information about locations, amounts, and dates of application are relevant to exposure potential, but additional information is needed for health investigations. PMID:21721493
Keil, Alexander; Wing, Steven; Lowman, Amy
2011-01-01
Exposure to potentially harmful agents because of waste disposal practices is receiving increased attention. Treated sewage sludge (TSS), or biosolid material, is the solid waste generated during domestic sewage treatment after it has undergone processes to reduce the number of pathogens and vector attractants. Application of TSS to land, which is the most common method for disposal, is promoted as a soil amendment and fertilizer. Few studies have examined the effects of land application on the health and quality of life of neighboring populations. We describe and summarize publicly available records that could be used to study the public health impact of practices associated with land application in North Carolina. We abstracted public records from the North Carolina Department of Natural Resources Division of Water Quality, to determine the following activities associated with land application of TSS in 8 counties in central North Carolina: the process for obtaining permits, reported applications, violations, documented concerns of residents, and penalties assessed. The Division of Water Quality routinely collects records of permits and approvals for land application of TSS, amounts applied, and reported pollutant levels. Documentation was useful in summarizing land application practices, but lack of standardization in reporting was a concern. Research into the public health impacts of the land application program is hindered by inconsistency in documenting inspections and resident concerns. We were not able to validate state records with direct observation of land application of TSS. Records from the Division of Water Quality would be of limited use in epidemiologic studies of the health effects of land application of biosolids. Information about locations, amounts, and dates of application are relevant to exposure potential, but additional information is needed for health investigations.
Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita
2017-01-01
The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances originating from waste waters and traffic which still should be taken seriously, particularly with regard to the impairment of fish health at both investigated field sites. Since the Argen is a tributary of Lake Constance, our results call for a management plan to ensure and improve the river's ecological stability.
Avni, Noa; Eben-Chaime, Moshe; Oron, Gideon
2013-05-01
Sea water desalination provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of desalinated sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%. The World Health Organization (WHO) reported on a relationship between sudden cardiac death rates and magnesium intake deficits. An optimization model, developed and tested to provide recommendations for Water Distribution System (WDS) quality control in terms of meeting optimal water quality requirements, was run in computational experiments based on an actual regional WDS. The expected magnesium deficit due to the operation of a large Sea Water Desalination Plant (SWDP) was simulated, and an optimal operation policy, in which remineralization at the SWDP was combined with blending desalinated and natural water to achieve the required quality, was generated. The effects of remineralization costs and WDS physical layout on the optimal policy were examined by sensitivity analysis. As part of the sensitivity blending natural and desalinated water near the treatment plants will be feasible up to 16.2 US cents/m(3), considering all expenses. Additional chemical injection was used to meet quality criteria when blending was not feasible. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Recommended advanced techniques for waterborne pathogen detection in developing countries.
Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N
2015-02-19
The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.
Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong
2014-10-01
The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chiou, Ren-Jie
2008-07-01
The reuse of treated municipal wastewater should be one of the new water resource target areas. The suitability of the reuse of wastewater for agricultural irrigation has to consider health risk, soil contamination and the influence of the reclaimed water on crop growth. In this work the aim is to use quantitative risk analysis to assess the health effects related to reclaimed water quality and to calculate the loading capacity of reclaimed wastewater in terms of the heavy metal accumulation. The results of chemical risk assessment show there would be slightly significant health risk and what risk there is can be limited within an acceptable level. The following exposure pathway: reclaimed water-->surface water-->fish (shellfish)-->human, and arsenic risks are of more concern. In terms of reuse impact in soil contamination, the most possible heavy metal caused accumulation is arsenic. The irrigative quantity has to reach 13,300 m(3)/ha to cause arsenic accumulation. However, only 12,000 m(3)/ha is essential for rice paddy cropland. The high total nitrogen of reclaimed water from secondary treatment makes it unfavorable for crop growth. The recommended dilution ratio is 50% during the growth period and 25% during the maturity period.
Mascie-Taylor, C G N; Karim, R; Karim, E; Akhtar, S; Ahmed, T; Montanari, R M
2003-12-01
The impact of regular health education in improving knowledge, attitude and practices in the control of intestinal parasites was examined in four rural areas of Bangladesh; two areas received health education and the other two areas were controls. By the end of the 18-month study households receiving health education showed highly significant improvements in knowledge, water and sanitation facilities and personal hygiene compared with households in the control areas. Improving knowledge by 1% cost between US dollars 0.75 and 0.82 per household, while a 1% improvement in personal hygiene cost between US dollars 1.10 and 1.32 per household and water and sanitation between US dollars 1.39 and 1.52 per household.
Clarens, Andres F; Zimmerman, Julie B; Keoleian, Greg A; Hayes, Kim F; Skerlos, Steven J
2008-11-15
A number of environmentally adapted lubricants have been proposed in response to the environmental and health impacts of metalworking fluids (MWFs). The alternatives typically substitute petroleum with vegetable-based components and/or deliver minimum quantities of lubricant in gas rather than water, with the former strategy being more prevalent than the latter. A comparative life cycle assessment of water- and gas-based systems has shown that delivery of lubricants in air rather than water can reduce solid waste by 60%, water use by 90%, and aquatic toxicity by 80%, while virtually eliminating occupational health concerns. However, air-delivery of lubricants cannot be used for severe machining operations due to limitations of cooling and lubricant delivery. For such operations, lubricants delivered in supercritical carbon dioxide (scCO2) are effective while maintaining the health and environmental advantages of air-based systems. Although delivery conditions were found to significantly influence the environmental burdens of all fluids, energy consumption was relatively constant under expected operating conditions. Global warming potential (GWP) increased when delivering lubricants in gas rather than water though all classes of MWFs have low GWP compared with other factory operations. It is therefore concluded that the possibility of increased GWP when switching to gas-based MWFs is a reasonable tradeoff for definite and large reductions in aquatic toxicity, water use, solid waste, and occupational health risks.
Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders
2012-07-01
Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.
A new framework for assessing river ecosystem health with consideration of human service demand.
Luo, Zengliang; Zuo, Qiting; Shao, Quanxi
2018-06-01
In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.
Ramirez-Andreotta, Monica D.; Lothrop, Nathan; Wilkinson, Sarah T.; Root, Robert A.; Artiola, Janick F.; Klimecki, Walter; Loh, Miranda
2015-01-01
Understanding a community’s concerns and informational needs is crucial to conducting and improving environmental health research and literacy initiatives. We hypothesized that analysis of community inquiries over time at a legacy mining site would be an effective method for assessing environmental health literacy efforts and determining whether community concerns were thoroughly addressed. Through a qualitative analysis, we determined community concerns at the time of being listed as a Superfund site. We analyzed how community concerns changed from this starting point over the subsequent years, and whether: 1) communication materials produced by the USEPA and other media were aligned with community concerns; and 2) these changes demonstrated a progression of the community’s understanding resulting from community involvement and engaged research efforts. We observed that when the Superfund site was first listed, community members were most concerned with USEPA management, remediation, site-specific issues, health effects, and environmental monitoring efforts related to air/dust and water. Over the next five years, community inquiries shifted significantly to include exposure assessment and reduction methods and issues unrelated to the site, particularly the local public water supply and home water treatment systems. Such documentation of community inquiries over time at contaminated sites is a novel method to assess environmental health literacy efforts and determine whether community concerns were thoroughly addressed. PMID:27595054
Full Scale Drinking Water System Decontamination at the Water Security Test Bed.
Szabo, Jeffrey; Hall, John; Reese, Steve; Goodrich, Jim; Panguluri, Sri; Meiners, Greg; Ernst, Hiba
2018-03-20
The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.
Watershed monitoring and modelling and USA regulatory compliance.
Turner, B G; Boner, M C
2004-01-01
The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.
Zhang, Li'e; Mo, Zhaoyu; Qin, Jian; Li, Qin; Wei, Yanhong; Ma, Shuyan; Xiong, Yuxia; Liang, Guiqiang; Qing, Li; Chen, Zhiming; Yang, Xiaobo; Zhang, Zhiyong; Zou, Yunfeng
2015-10-15
This study evaluates the effect of water source change on heavy metal concentrations in water, paddy soil, and rice, as well as the health risks to residents of three riverine communities in South China. The results show that after substituting the sources of drinking water, heavy metal levels (except for Pb at Tangjun) in drinking water were below WHO guideline values and the potential risk from drinking water may be negligible. The As (46.2-66.8%), Pb (65.7-82.6%), Cd (50.8-55.0%), and Hg (28.3-32.6%) concentrations in paddy soils in Sanhe and Lasha significantly (p<0.05) decreased with a change of irrigation water sources compared to Tangjun, without change of irrigation water source. Similarly, the Cd (39.1-81.3%) and Hg (60.0-75.0%) concentrations in rice grown at Sanhe and Lasha significantly (p<0.05) decreased compared to those at Tangjun. Consequently, replacing irrigation water source significantly (p<0.05) reduced the hazard quotient (HQ) and cancer risk for the corresponding single metal via soil ingestion and rice consumption. Despite that total non-carcinogenic and carcinogenic risks at Sanhe and Lasha were significantly decreased, they still exceeded the maximum acceptable limits recommended by US EPA, indicating that residents of these two communities remain at high risks of both non-cancer and cancer effects. Copyright © 2015. Published by Elsevier B.V.
Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D
2016-02-27
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.
Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.
2016-01-01
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152
Parkes, Margot W
2016-03-01
Renewed effort to understand the social-ecological context of health is drawing attention to the dynamics of land and water resources and their combined influence on the determinants of health. A new area of research, education and policy is emerging that focuses on the land-water-health nexus: this orientation is applicable from small wetlands through to large-scale watersheds or river basins, and draws attention to the benefits of combined land and water governance, as well as the interrelated implications for health, ecological and societal concerns. Informed by research precedents, imperatives and collaborations emerging in Canada and parts of Oceania, this review profiles three integrative, applied approaches that are bringing attention to the importance the land-water-health nexus within the Pacific Basin: wetlands and watersheds as intersectoral settings to address land-water-health dynamics; tools to integrate health, ecological and societal dynamics at the land-water-health nexus; and indigenous leadership that is linking health and well-being with land and water governance. Emphasis is given to key characteristics of a new generation of inquiry and action at the land-water-health nexus, as well as capacity-building, practice and policy opportunities to address converging environmental, social and health objectives linked to the management and governance of land and water resources.
Pathway-based monitoring of biological effects at Great Lakes sites
The Great Lakes region suffers from degradation of water and environmental quality due to release of chemicals of emerging concern (CEC) that may threaten near shore health. Critical issues remain in delisting AOC including determining sources of chemicals causing fish health im...
Georgi, J; Künzel, W
1976-03-01
Under the conditions of an optimized (with regard to caries prevention) fluoride content of the drinking uater, the authors studied (in the framework of an oral hygiene measure covering 32 months) in 149 children 6.5-8 years of age the effects of supervised daily dental and oral care on dental health. The improvement in oral hygiene (OHI) by 33% is in harmony with an additional caries reduction by 33.3% (DMF/S index) and a decrease of the PM index by 47%. A wider use of oral hygiene actions as secondary preventive measures is, therefore, recommended also for towns with fluoridated drinking water.
Science, Politics, and Communication: The Case of Community Water Fluoridation in the US.
Allukian, Myron; Carter-Pokras, Olivia D; Gooch, Barbara F; Horowitz, Alice M; Iida, Hiroko; Jacob, Matt; Kleinman, Dushanka V; Kumar, Jayanth; Maas, William R; Pollick, Howard; Rozier, R Gary
2018-06-01
Community water fluoridation (CWF) and its effect in reducing the burden of dental caries (tooth decay) is considered one of the 10 public health achievements in the 20th century. In the U.S., three-quarters (74.4%) of people on community water supplies have optimally fluoridated water, and each year approximately 90 communities actively consider starting or discontinuing CWF. CWF exists within the policy environment and includes actions taken by local community councils, health and water boards, and groups; state legislatures and health departments; national regulatory and science agencies; independent science entities; and professional and nonprofit organizations. Epidemiologists have been in the forefront of CWF. Experience with the past 70 years reveals that the coming decades will bring additional questions, recommendations, and challenges for CWF. The continued involvement of epidemiologists as part of multidisciplinary teams is needed in research, surveillance, peer review of studies, assessment of systematic review findings, and in the translation and communication of science findings to audiences with limited science/health literacy. This chapter's purpose is to 1) examine how epidemiologic evidence regarding CWF has been translated into practice and policy, 2) examine how recommendations for and challenges to CWF have affected epidemiologic research and community decision-making, and 3) identify lessons learned for epidemiologists. Copyright © 2017 Elsevier Inc. All rights reserved.
Recommended Water Quality Criteria for Octahydro-1,3,5,7-Tentranitro-1, 3,5,7-Tetrazocin (HMX).
1989-03-27
possible to derive water quality criteria for protection of aquatic life following USEPA guidelines. Based on the NOAEL of 50 mg/kg/day from the 13-week...special reference to those on human, mammalian, and aquatic health effects, and to generate water quality criteria for drinking water and for the...and discussed below. Aquatic Invertebrates Bentley et al. (1977) performed static acute toxicity tests on four species of freshwater invertebrates
Drogui, Patrick; Daghrir, Rimeh; Simard, Marie-Christine; Sauvageau, Christine; Blais, Jean François
2012-01-01
The occurrence of cyanobacterial toxins (blue-green algae) in drinking water sources is a big concern for human health. Removal of microcystin-LR (MC-LR) from drinking water was evaluated at the laboratory pilot scale using either granular activated carbon (GAC) or powdered activated carbon (PAC) and compared with the treatment using anthracite as filter material. Virgin GAC was more effective at removing MC-LR (initial concentration ranging from 9 to 47 microg L(-1)) to reach the World Health Organization recommended level (1.0 microg L(-1)). When the GAC filter was colonized by bacteria, the filter became less effective at removing MC-LR owing to competitive reactions occurring between protein adsorption (released by bacteria) and MC-LR adsorption. Using PAC, the concentration of MC-LR decreased from 22 to 3 microg L(-1) (removal of 86% of MC-LR) by the addition of 100 mg PAC L(-1).
Environmental exposure to chromium compounds in the valley of León, México.
Armienta-Hernández, M A; Rodríguez-Castillo, R
1995-01-01
The effects on the environment and health of the operation of a chromate compounds factory and tanneries in the León valley in central México are discussed. Sampling and analysis of chromium were performed in water, soil, and human urine. Groundwater has been polluted in an area of about 5 km2 by the leaching of a solid factory waste, which results in concentrations up to 50 mg/l of hexavalent chromium. The plume shape and extension appear to be controlled by the prevailing well extraction regime. Total chromium was detected in the soil around the factory as a result of both aerial transport and deposition of dust produced in the chromate process and irrigation with tannery-contaminated water. Analysis of the impact of chromium in air and water on populations with various degrees of exposure revealed that highly harmful health effects were not observed. PMID:7621799
Moorman, Michelle C.
2012-01-01
Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.
Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India
NASA Astrophysics Data System (ADS)
Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh
2017-11-01
Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.
Nigra, Anne E; Sanchez, Tiffany R; Nachman, Keeve E; Harvey, David; Chillrud, Steven N; Graziano, Joseph H; Navas-Acien, Ana
2017-11-01
The current US Environmental Protection Agency (EPA) maximum contaminant level (MCL) for arsenic in public water systems (10 µg/L) took effect in 2006. Arsenic is not federally regulated in private wells. The impact of the 2006 MCL on arsenic exposure in the US, as confirmed through biomarkers, is presently unknown. We evaluated national trends in water arsenic exposure in the US, hypothesizing that urinary arsenic levels would decrease over time among participants using public water systems but not among those using well water. We further estimated the expected number of avoided lung, bladder, and skin cancer cases. We evaluated 14,127 participants in the National Health and Nutrition Examination Survey (NHANES) 2003-2014 with urinary dimethylarsinate (DMA) and total arsenic available. To isolate water exposure, we expanded a residual-based method to remove tobacco and dietary contributions of arsenic. We applied EPA risk assessment approaches to estimate the expected annual number of avoided cancer cases comparing arsenic exposure in 2013-2014 vs. 2003-2004. Among public water users, fully adjusted geometric means (GMs) of DMA decreased from 3.01 µg/L in 2003-2004 to 2.49 µg/L in 2013-2014 (17% reduction; 95% confidence interval 10%, 24%; p-trend<0.01); no change was observed among well water users (p-trend= 0.35). Assuming these estimated exposure reductions will remain similar across a lifetime, we estimate a reduction of 200 to 900 lung and bladder cancer cases per year depending on the approach used. The decline in urinary arsenic among public water but not private well users in NHANES 2003-2014 indicates that the implementation of the current MCL has reduced arsenic exposure in the US population. Our study supports prior work showing that well water users are inadequately protected against drinking water arsenic, and confirms the critical role of federal drinking water regulations in reducing toxic exposures and protecting human health. This work was supported by the National Institute of Environmental Health Sciences (1R01ES025216, R01ES021367, 5P30ES009089 and P42ES010349). A. E. Nigra was supported by 5T32ES007322.
Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report
2016-10-01
water use by as much as 70% in support of meeting EO 13693. Additional performance objectives were to validate energy reduction, cost effectiveness ...Additional performance objectives were to validate energy reduction, cost effectiveness , and system reliability while maintaining satisfactory plant health...developments. The demonstration was conducted for two different climatic regions in the southwestern part of the United States (U.S.), where a typical
As the use of hydraulic fracturing has increased, concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values—...
INCREASED MORTALITY ASSOCIATED WITH WELL-WATER EXPOSURE IN INNER MONGOLIA, CHINA
We conducted a retrospective mortality and morbidity study in the Inner Mongolia region of China to evaluate health effects associated with arsenic exposure. The village we studied has been affected by arsenic contaminated well water since the 1980s. A complete census of the vil...
Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...
Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...
To conduct the health-effect studies described in subsequent articles, concentrated aqueous mixtures of disinfection byproducts were required for the two separate treatment trains described in the preceding article. To accomplish this, the finished drinking waters from each trea...
76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... NOEL--no observed effect level NPDWR--National Primary Drinking Water Regulation NRC--National Research... Research Council (NRC) published ``Health Implications of Perchlorate Ingestion,'' a review of the state of... the threshold. For example, if a PWS with 10 entry points serving 200,000 people had a sample from a...
Mercury-Free Analysis of Lead in Drinking Water by Anodic Stripping Square Wave Voltammetry
ERIC Educational Resources Information Center
Wilburn, Jeremy P.; Brown, Kyle L.; Cliffel, David E.
2007-01-01
The analysis of drinking water for lead, which has well-known health effects, is presented as an instructive example for undergraduate chemistry students. It allows the students to perform an experiment and evaluate to monitor risk factors and common hazard of everyday life.
Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...
OPTIMIZING ARSENIC REMOVAL DURING IRON REMOVAL: THEORETICAL AND PRACTICAL CONSIDERATIONS
New health effects research prompted the United States Environmental Protection Agency (USEPA) to reduce the drinking water standard for arsenic from 0.05 to 0.010 mg/L (10 µg/L), and as a result many drinking water systems (particularly smaller ones) throughout the country will ...
Dental unit water lines (DUWL) are susceptible to biofilm development and bacterial growth leading to water contamination, causing health and ecological effects. This study monitors the interactions between a commonly used nanosilver disinfectant (ASAP-AGX-32, an antimicrobial c...
Escher, Beate I; Neale, Peta A; Leusch, Frederic D L
2015-09-15
Cell-based bioassays are becoming increasingly popular in water quality assessment. The new generations of reporter-gene assays are very sensitive and effects are often detected in very clean water types such as drinking water and recycled water. For monitoring applications it is therefore imperative to derive trigger values that differentiate between acceptable and unacceptable effect levels. In this proof-of-concept paper, we propose a statistical method to read directly across from chemical guideline values to trigger values without the need to perform in vitro to in vivo extrapolations. The derivation is based on matching effect concentrations with existing chemical guideline values and filtering out appropriate chemicals that are responsive in the given bioassays at concentrations in the range of the guideline values. To account for the mixture effects of many chemicals acting together in a complex water sample, we propose bioanalytical equivalents that integrate the effects of groups of chemicals with the same mode of action that act in a concentration-additive manner. Statistical distribution methods are proposed to derive a specific effect-based trigger bioanalytical equivalent concentration (EBT-BEQ) for each bioassay of environmental interest that targets receptor-mediated toxicity. Even bioassays that are indicative of the same mode of action have slightly different numeric trigger values due to differences in their inherent sensitivity. The algorithm was applied to 18 cell-based bioassays and 11 provisional effect-based trigger bioanalytical equivalents were derived as an illustrative example using the 349 chemical guideline values protective for human health of the Australian Guidelines for Water Recycling. We illustrate the applicability using the example of a diverse set of water samples including recycled water. Most recycled water samples were compliant with the proposed triggers while wastewater effluent would not have been compliant with a few. The approach is readily adaptable to any water type and guideline or regulatory framework and can be expanded from the protection goal of human health to environmental protection targets. While this work constitutes a proof of principle, the applicability remains limited at present due to insufficient experimental bioassay data on individual regulated chemicals and the derived effect-based trigger values are of course only provisional. Once the experimental database is expanded and made more robust, the proposed effect-based trigger values may provide guidance in a regulatory context. Copyright © 2015 Elsevier Ltd. All rights reserved.
Population Health in Regions Adjacent to the Semipalatinsk Nuclear Test Site
1998-09-01
HEALTH OCEANS, AND FISHERIES EFFECTS OF RADIATION ATTN: DIRECTOR U.S. FOOD AND DRUG ADMINISTRATION ATTN: WINCHESTER ENGINEERING AND OAK RIDGE ASSOCIATED...radionuclides [7]. This commission assessed population health strontium-90 and cesium-137 through the human and hygienic, environmental, and radiation food ...as intake of radioactive sub- identified strontium-90 and potassium-40 in the stances with food and water are provided below. 19 Population Health in
Peter S. Murdoch; John L. Hom; Yude Pan; Jeffrey M. Fischer
2008-01-01
To complete the collaborative monitoring study of forested landscapes within the DRB, regional perspective on the cumulative effect of different disturbances on overall ecosystem health. This section describes two modeling activities used as integrating tools for the CEMRI database and a validation system that used nested river monitoring stations.