Sample records for water ingression test

  1. Water Ingress Testing of the Turbula Jar and U-233 Lead Pig Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Kirk Patrick; Karns, Tristan; Smith, Paul Herrick

    Understanding the water ingress behavior of containers used at the TA-55 Plutonium Facility has significant implications for criticality safety. The purpose of this report is to document the water ingress behavior of the Turbula Jar with Bakelite lid and Viton gaskets (Turbula Jar) used in oxide blending operations and the U-233 lead pig container used to store and transport U-233 material. The technical basis for water resistant containers at TA-55 is described in LA-UR-15-22781, “Water Resistant Container Technical Basis Document for the TA-55 Criticality Safety Program.” Testing of the water ingress behavior of various containers is described in LA-CP-13-00695, “Watermore » Penetration Tests on the Filters of Hagan and SAVY Containers,” LA-UR-15-23121, “Water Ingress into Crimped Convenience Containers under Flooding Conditions,” and in LA-UR- 16-2411, “Water Ingress Testing for TA-55 Containers.” Water ingress criteria are defined in TA55-AP-522 “TA-55 Criticality Safety Program”, and in PA-RD-01009 “TA55 Criticality Safety Requirements.” The water ingress criteria for submersion is no more than 50 ml of water ingress at a 6” water column height for a period of 2 hours.« less

  2. Water ingress detection in honeycomb sandwich panels by passive infrared thermography using a high-resolution thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Brault, L.; Marcotte, F.; Genest, M.; Farley, V.; Maldague, X.

    2012-06-01

    Water ingress in honeycomb structures is of great concern for the civil and military aerospace industries. Pressure and temperature variations during take-off and landing produce considerable stress on aircraft structures, promoting moisture ingress (by diffusion through fibers or by direct ingress through voids, cracks or unsealed joints) into the core. The presence of water (or other fluids such as kerosene, hydraulic fluid and de-icing agents) in any of its forms (gas vapor, liquid or ice) promotes corrosion, cell breakage, and induce composite layer delaminations and skin disbonds. In this study, testing specimens were produced from unserviceable parts from military aircraft. In order to simulate atmospheric conditions during landing, selected core areas were filled with measured quantities of water and then frozen in a cold chamber. The specimens were then removed from the chamber and monitored for over 20 minutes as they warm up using a cooled high-resolution infrared camera. Results have shown that detection and quantification of water ingress on honeycomb sandwich structures by passive infrared thermography is possible using a HD mid-wave infrared cameras for volumes of water as low as 0.2 ml and from a distance as far as 20 m from the target.

  3. Evaluation of moisture ingress from the perimeter of photovoltaic modules: Evaluation of moisture ingress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Dameron, Arrelaine A.; Reese, Matthew O.

    2013-05-14

    Many thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge-seal around the perimeter to prevent water vapor ingress. These edge-seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge-seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge-seal and encapsulant materials in a mannermore » that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge-seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry.« less

  4. Analysis of helium purification system capability during water ingress accident in RDE

    NASA Astrophysics Data System (ADS)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  5. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  6. Moisture ingress prediction in polyisobutylene-based edge seal with molecular sieve desiccant

    DOE PAGES

    Kempe, Michael D.; Nobles, Dylan L.; Postak, Lori; ...

    2017-10-26

    Often photovoltaic modules are constructed with materials that are sensitive to water. This is most often the case with thin film technologies, including perovskite cells, where the active layers are a few microns thick and can be sensitive to moisture, liquid water or both. When moisture or liquid water can ingress, a small amount of water can lead to corrosion and depending on the resulting reactions, a larger local detrimental effect is possible. To prevent moisture from contacting photovoltaic components, impermeable frontsheets and backsheets are used with a polyisobutylene (PIB)-based edge seal material around the perimeter. Here, we evaluate themore » ability of a PIB-based edge seal using a molecular sieve desiccant to keep moisture out for the expected module lifetime. Moisture ingress is evaluated using test coupons where the edge seal is placed between 2 pieces of glass, one of which has a metallic calcium film on it, and monitoring the moisture ingress distance as a function of time. We expose samples to different temperature and humidity conditions to create permeation models useful for extrapolation to field use. This extrapolation indicates that this PIB material is capable of keeping moisture out of a module for the desired lifetime.« less

  7. Moisture ingress prediction in polyisobutylene-based edge seal with molecular sieve desiccant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Nobles, Dylan L.; Postak, Lori

    Often photovoltaic modules are constructed with materials that are sensitive to water. This is most often the case with thin film technologies, including perovskite cells, where the active layers are a few microns thick and can be sensitive to moisture, liquid water or both. When moisture or liquid water can ingress, a small amount of water can lead to corrosion and depending on the resulting reactions, a larger local detrimental effect is possible. To prevent moisture from contacting photovoltaic components, impermeable frontsheets and backsheets are used with a polyisobutylene (PIB)-based edge seal material around the perimeter. Here, we evaluate themore » ability of a PIB-based edge seal using a molecular sieve desiccant to keep moisture out for the expected module lifetime. Moisture ingress is evaluated using test coupons where the edge seal is placed between 2 pieces of glass, one of which has a metallic calcium film on it, and monitoring the moisture ingress distance as a function of time. We expose samples to different temperature and humidity conditions to create permeation models useful for extrapolation to field use. This extrapolation indicates that this PIB material is capable of keeping moisture out of a module for the desired lifetime.« less

  8. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Vacuum decay container/closure integrity testing technology. Part 2. Comparison to dye ingress tests.

    PubMed

    Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Mulhall, Brian; Guazzo, Dana Morton

    2009-01-01

    Part 1 of this series demonstrated that a container closure integrity test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method using a VeriPac 325/LV vacuum decay leak tester by Packaging Technologies & Inspection, LLC (PTI) is capable of detecting leaks > or = 5.0 microm (nominal diameter) in rigid, nonporous package systems, such as prefilled glass syringes. The current study compared USP, Ph.Eur. and ISO dye ingress integrity test methods to PTI's vacuum decay technology for the detection of these same 5-, 10-, and 15-microm laser-drilled hole defects in 1-mL glass prefilled syringes. The study was performed at three test sites using several inspectors and a variety of inspection conditions. No standard dye ingress method was found to reliably identify all holed syringes. Modifications to these standard dye tests' challenge conditions increased the potential for dye ingress, and adjustments to the visual inspection environment improved dye ingress detection. However, the risk of false positive test results with dye ingress tests remained. In contrast, the nondestructive vacuum decay leak test method reliably identified syringes with holes > or = 5.0 microm.

  10. 42 CFR 84.302 - Required components, attributes, and instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... component, an attribute, or other means by which a person can detect any ingress of water or water vapor..., fogging, and permeation by gas, vapor, and smoke, as specified under § 84.308(c); (2) Thermal exposure... gasoline vapors. To verify such resistance, NIOSH will test one unit by applying the gasoline vapor...

  11. 42 CFR 84.302 - Required components, attributes, and instructions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... component, an attribute, or other means by which a person can detect any ingress of water or water vapor..., fogging, and permeation by gas, vapor, and smoke, as specified under § 84.308(c); (2) Thermal exposure... gasoline vapors. To verify such resistance, NIOSH will test one unit by applying the gasoline vapor...

  12. 42 CFR 84.302 - Required components, attributes, and instructions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... component, an attribute, or other means by which a person can detect any ingress of water or water vapor..., fogging, and permeation by gas, vapor, and smoke, as specified under § 84.308(c); (2) Thermal exposure... gasoline vapors. To verify such resistance, NIOSH will test one unit by applying the gasoline vapor...

  13. Daily variation in ingress of fall-spawned larval fishes into Delaware Bay in relation to alongshore and along-estuary wind components

    NASA Astrophysics Data System (ADS)

    Schieler, Brittany M.; Hale, Edward A.; Targett, Timothy E.

    2014-12-01

    Identifying factors that affect ingress of larval fishes from offshore spawning areas into estuarine nurseries is important to improve understanding of variability in recruitment of many coastal marine species. This study investigated the ingress of larval Atlantic croaker (Micropogonias undulatus), Atlantic menhaden (Brevoortia tyrannus), and summer flounder (Paralichthys dentatus) at Roosevelt Inlet, near the mouth of Delaware Bay, USA in relation to short-term wind events. Nightly abundances, from November 15 to December 15, 2010, were analyzed with alongshore and along-estuary wind components (direction and speed) using cross-correlation analysis to determine if winds affect larval ingress. Ingress of Atlantic croaker and summer flounder correlated with along-estuary winds, whereas Atlantic menhaden showed no significant correlations with either alongshore or along-estuary winds. Although along-estuary winds during this period were predominantly down-estuary, Atlantic croaker ingress was correlated with positive along-estuary winds (blowing up-estuary), with a three-day lag; and a particularly large ingress peak occurred following the largest up-estuary wind peak. Ingress of summer flounder was correlated with negative along-estuary winds (blowing down-estuary), with a two-day lag. These results suggest that species-specific vertical position in the water column influenced ingress into Delaware Bay. The lag results also suggest that ingressing Atlantic croaker and summer flounder may have a pooling stage outside the mouth of Delaware Bay.

  14. Water Resistant Container Technical Basis Document for the TA-55 Criticality Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul Herrick; Teague, Jonathan Gayle

    Criticality safety at TA-55 relies on nuclear material containers that are water resistant to prevent significant amounts of water from coming into contact with fissile material in the event of a fire that causes a breach of glovevbox confinement and subsequent fire water ingress. A “water tight container” is a container that will not allow more than 50ml of water ingress when fully submerged, except when under sufficient pressure to produce structural discontinuity. There are many types of containers, welded containers, hermetically sealed containers, filtered containers, etc.

  15. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieboldt, M.; Mechtcherine, V., E-mail: mechtcherine@tu-dresden.de

    2013-10-15

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement,more » the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well.« less

  16. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less

  17. CFD Analyses of Air-Ingress Accident for VHTRs

    NASA Astrophysics Data System (ADS)

    Ham, Tae Kyu

    The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental strategy and apparatus installation to obtain the best results when conducting an experiment. The validation of the generated CFD solutions will be performed with the OSU air-ingress experimental results. (Abstract shortened by UMI.).

  18. Inter and intra-estuary variability in ingress, condition and settlement of the American eel Anguilla rostrata: implications for estimating and understanding recruitment.

    PubMed

    Sullivan, M C; Wuenschel, M J; Able, K W

    2009-06-01

    The objective of this study was to quantify spatial and temporal variability of anguillid glass eel ingress within and between adjacent watersheds in order to help illuminate the mechanisms moderating annual recruitment. Because single fixed locations are often used to assess annual recruitment, the intra-annual dynamics of ingress across multiple sites often remains unresolved. To address this question, plankton nets and eel collectors were deployed weekly to synoptically quantify early stage Anguilla rostrata abundance at 12 sites across two New Jersey estuaries over an ingress season. Numbers of early-stage glass eels collected at the inlet mouths were moderately variable within and between estuaries over time and showed evidence for weak lunar phase and water temperature correlations. The relative condition of glass eels, although highly variable, declined significantly over the ingress season and indicated a tendency for lower condition A. rostrata to colonize sites in the lower estuary. Accumulations of glass eels and early-stage elvers retrieved from collectors (one to >1500 A. rostrata per collector) at lower estuary sites were highly variable over time, producing only weak correlations between estuaries. By way of contrast, development into late-stage elvers, coupled with the large-scale colonization of up-river sites, was highly synchronized between and within estuaries and contingent on water temperatures reaching c. 10-12 degrees C. Averaged over the ingress season, abundance estimates were remarkably consistent between paired sites across estuaries, indicating a low degree of interestuary variability. Within an estuary, however, abundance estimates varied considerably depending on location. These results and methodology have important implications for the planning and interpretation of early-stage anguillid eel surveys as well as the understanding of the dynamic nature of ingress and the spatial scales over which recruitment varies.

  19. Liquid ingress recognition in honeycomb structure by pulsed thermography

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zeng, Zhi; Tao, Ning; Zhang, Cunlin; Zhang, Zheng

    2013-05-01

    Pulsed thermography has been proven to be a fast and effective method to detect fluid ingress in aircraft honeycomb structure; however, water and hydraulic oil may have similar appearance in the thermal image sequence. It is meaningful to identify what kind of liquid ingress it is for aircraft maintenance. In this study, honeycomb specimens with glass fiber and aluminum skin are injected different kinds of liquids: water and oil. Pulsed thermography is adopted; a recognition method is proposed to first get the reference curve by linear fitting the beginning of the logarithmic curve, and then an algorithm based on the thermal contrast between liquid and reference is used to recognize what kind of fluid it is by calculating their thermal properties. It is verified with the results of theory and the finite element simulation.

  20. Submarine Propulsion Shaft Life: Probabilistic Prediction and Extension through Prevention of Water Ingress

    DTIC Science & Technology

    2014-06-01

    Even well- controlled laboratory testing saw a range of COV from less than 10 percent to over 500 percent for different steels (Tryon & Cruse...identified. This 6-year limit is driven by concerns about corrosion fatigue , a process initiated by water gaining access to the carbon steel of the shaft...physics and is controlled by different parameters and interactions of the many variables involved. Figure 2 depicts the corrosion fatigue sequence of

  1. Modeling the Effect of a Hydrophobic Concrete Admixture on Chloride Ingress: Contractors Supplemental Report for CPC Project F09-AR05A

    DTIC Science & Technology

    2017-12-01

    of acronyms  ASTM: American Society for Testing and Materials  CSA: Canadian Standard Association  FA: fly ash  GU: general use ( cement )  ICP...OES: inductively coupled plasma optical emission spectrometry  OPC: Ordinary Portland cement  RH: relative humidity  UFGS: Unified Facilities Guide...Specifications  w/b: water-to-binder ratio  w/c: water-to- cement ratio SIMCO Technologies Inc. 2013 Page | 3 1 Executive summary SIMCO

  2. Pharmaceutical container/closure integrity. II: The relationship between microbial ingress and helium leak rates in rubber-stoppered glass vials.

    PubMed

    Kirsch, L E; Nguyen, L; Moeckly, C S; Gerth, R

    1997-01-01

    Helium leak rate measurements were quantitatively correlated to the probability of microbial ingress for rubber-stoppered glass vials subjected to immersion challenge. Standard 10-mL tubing glass vials were modified by inserting micropipettes of various sizes (0.1 to 10 microns nominal diameter) into a side wall hole and securing them with epoxy. Butyl rubber closures and aluminum crimps were used to seal the vials. The test units were sealed in a helium-filled glove bag, then the absolute helium leak rates were determined. The test units were disassembled, filled with media, resealed, and autoclaved. The test units were thermally treated to eliminate airlocks within the micropipette lumen and establish a liquid path between microbial challenge media and the test units' contents. Microbial challenge was performed by immersing the test units in a 35 degrees C bath containing magnesium ion and 8 to 10 logs of viable P. diminuta and E. coli for 24 hours. The test units were then incubated at 35 degrees C for an additional 13 days. Microbial ingress was detected by turbidity and plating on blood agar. The elimination of airlocks was confirmed by the presence of magnesium ions in the vial contents by atomic absorption spectrometry. A total of 288 vials were subjected to microbial challenge testing. Those test units whose contents failed to show detectable magnesium ions were eliminated from further analysis. At large leak rates, the probability of microbial ingress approached 100% and at very low leak rates microbial ingress rates were 0%. A dramatic increase in microbial failure occurred in the leak rate region 10(-4.5) to 10(-3) std cc/sec, which roughly corresponded to leak diameters ranging from 0.4 to 2 microns. Below a leak rate of 10(-4.5) std cc/sec the microbial failure rate was < 10%. The critical leak rate in our studies, i.e. the value below which microbial ingress cannot occur because the leak is too small, was observed to be between 10(-5) and 10(-5.8) std cc/sec, which corresponds to an approximate leak diameter of 0.2-0.3 micron.

  3. Non-destructive evaluation of water ingress in photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Mihail; Kotovsky, Jack

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less

  4. Non-destructive vacuum decay method for pre-filled syringe closure integrity testing compared with dye ingress testing and high-voltage leak detection.

    PubMed

    Simonetti, Andrea; Amari, Filippo

    2015-01-01

    In reaction to the limitations of the traditional sterility test methods, in 2008, the U.S. Food and Drug Administration issued the guidance "Container and Closure System Integrity Testing in Lieu of Sterility Testing as a Component of the Stability Protocol for Sterile Products" encouraging sterile drug manufacturers to use properly validated physical methods, apart from conventional microbial challenge testing, to confirm container closure integrity as part of the stability protocol. The case study presented in this article investigated the capability of four container closure integrity testing methods to detect simulated defects of different sizes and types on glass syringes, prefilled both with drug product intended for parenteral administration and sterile water. The drug product was a flu vaccine (Agrippal, Novartis Vaccines, Siena, Italy). Vacuum decay, pharmacopoeial dye ingress test, Novartis specific dye ingress test, and high-voltage leak detection were, in succession, the methods involved in the comparative studies. The case study execution was preceded by the preparation of two independent sets of reference prefilled syringes, classified, respectively, as examples of conforming to closure integrity requirements (negative controls) and as defective (positive controls). Positive controls were, in turn, split in six groups, three of with holes laser-drilled through the prefilled syringe glass barrel, while the other three with capillary tubes embedded in the prefilled syringe plunger. These reference populations were then investigated by means of validated equipment used for container closure integrity testing of prefilled syringe commercial production; data were collected and analyzed to determine the detection rate and the percentage of false results. Results showed that the vacuum decay method had the highest performance in terms of detection sensitivity and also ensured the best reliability and repeatability of measurements. An innovative technical solution, preventing possible prefilled syringe plunger movement during container closure integrity testing execution, is presented as well. The growing need to meet sterile drug products' regulatory, quality, and safety expectations has progressively driven new developments and improvements both in container closure integrity testing methods and in the respective equipment, over the last years. Indeed, container closure integrity testing establishes the container closure system capability to provide required protection to the drug product and to demonstrate maintenance of product sterility over its shelf life. This article describes the development of four container closure integrity testing approaches for the evaluation of glass prefilled syringe closure integrity, including two destructive (pharmacopoeial and Novartis specific dye ingress test) and two non-destructive (vacuum decay and high-voltage leak detection) methods. The important finding from the validation of comparative studies was that the vacuum decay method resulted in the most effective, reliable and repeatable detection of defective samples, whether the defect was exposed to sterile water, to drug product, or to air. Complete sets of known defects were created for this purpose (5 μm, 10 μm, 20 μm certified leakages by laser drilled holes and capillary tubes). All investigations and studies were conducted at Bonfiglioli Engineering S.r.l. (Vigarano Pieve, Ferrara, Italy) and at Novartis Vaccines (Sovicille, Siena, Italy). © PDA, Inc. 2015.

  5. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed)more » while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.« less

  6. Watertight cataract incision closure using fibrin tissue adhesive.

    PubMed

    Hovanesian, John A; Karageozian, Vicken H

    2007-08-01

    To determine whether a simple method for applying fibrin tissue adhesive to a clear corneal cataract incision can create a watertight seal. Laboratory investigation. Clear corneal cataract incisions were simulated in 8 eye-bank eyes. In 4 eyes, fibrin adhesive was applied to the incision in a simple manner; the other 4 eyes were controls with no adhesive. Each eye was tested under low pressure conditions to detect fluid ingress of India Ink on the eye's surface. The eyes were tested again with external compression to distort the incision to detect fluid egress. In the eyes with fibrin adhesive, there was no egress of fluid with incision distortion and no ingress of India Ink. In the 4 eyes without adhesive, there was ingress and egress of fluid. A simple method of applying fibrin adhesive to cataract incisions created a watertight seal.

  7. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    PubMed Central

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  8. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging.

    PubMed

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-05-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. A scaling and experimental approach for investigating in-vessel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, R.E.

    1997-02-01

    The TMI-2 accident experienced the relocation of a large quantity of core material to the lower plenum. The TMI-2 vessel investigation project concluded that approximately 20 metric tonnes of once molten fuel material drained into the RPV lower head. As a result, the lower head wall experienced a thermal transient that has been characterized as reaching temperatures as high as 1100{degrees}C, then a cooling transient with a rate of 10 to 100{degrees}C/min. Two mechanisms have been proposed as possible explanations for this cooling behavior. One is the ingression of water through core material as a result of interconnected cracks inmore » the frozen debris and/or water ingression around the crust which is formed on internal structures (core supports and in-core instrumentation) in the lower head. The second focuses on the lack of adhesion of oxidic core debris to the RPV wall when the debris contacts the wall. Furthermore, the potential for strain of the RPV lower head when the wall is overheated could provide for a significant cooling path for water to ingress between the RPV and the frozen core material next to the wall. To examine these proposed mechanisms, a set of scaled experiments have been developed to examine the potential for cooling. These are performed in a scaled system in which the high temperature molten material is iron termite and the RPV wall is carbon steel. A termite mass of 40 kg is used and the simulated reactor vessels have water in the lower head at pressures up to 2.2 MPa. Furthermore, two different thicknesses of the vessel wall are examined with the thicker vessel having virtually no potential for material creep during the experiment and the thinner wall having the potential for substantial creep. Moreover, the experiment includes the option of having molten iron as the first material to drain into the RPV lower head or molten aluminum oxide being the only material that drains into the test configuration.« less

  10. Contamination of piped medical gas supply with water.

    PubMed

    Hay, H

    2000-08-01

    The failure of anaesthetic equipment as a result of maintenance is extremely rare. The ingress of water into the flowmeters of an anaesthetic machine from the piped medical air supply is reported and is possibly unique. The piped medical air supply was open to the atmosphere during maintenance. Water condensed in the gas pipeline and this was not noticed during subsequent testing. Water was seen leaking from the orthopaedic air tools used for surgery but was assumed to be from the autoclaving process. Later the same day, when medical air from the piped source was used as part of the gas mixture for a general anaesthetic, water was seen filling the barrel of the flowmeter air control valve. This could have had far-reaching and dangerous consequences for the patient, which were fortunately averted.

  11. Predicting Air Quality at First Ingress into Vehicles Visiting the International Space Station.

    PubMed

    Romoser, Amelia A; Scully, Robert R; Limero, Thomas F; De Vera, Vanessa; Cheng, Patti F; Hand, Jennifer J; James, John T; Ryder, Valerie E

    2017-02-01

    NASA regularly performs ground-based offgas tests (OGTs), which allow prediction of accumulated volatile pollutant concentrations at first entry on orbit, on whole modules and vehicles scheduled to connect to the International Space Station (ISS). These data guide crew safety operations and allow for estimation of ISS air revitalization systems impact from additional pollutant load. Since volatiles released from vehicle, module, and payload materials can affect crew health and performance, prediction of first ingress air quality is important. To assess whether toxicological risk is typically over or underpredicted, OGT and first ingress samples from 10 vehicles and modules were compared. Samples were analyzed by gas chromatography and gas chromatography-mass spectrometry. The rate of pollutant accumulation was extrapolated over time. Ratios of analytical values and Spacecraft Maximum Allowable Concentrations were used to predict total toxicity values (T-values) at first entry. Results were also compared by compound. Frequently overpredicted was 2-butanone (9/10), whereas propanal (6/10) and ethanol (8/10) were typically underpredicted, but T-values were not substantially affected. Ingress sample collection delay (estimated by octafluoropropane introduced from ISS atmosphere) and T-value prediction accuracy correlated well (R2 = 0.9008), highlighting the importance of immediate air sample collection and accounting for ISS air dilution. Importantly, T-value predictions were conservative 70% of the time. Results also suggest that T-values can be normalized to octafluoropropane levels to adjust for ISS air dilution at first ingress. Finally, OGT and ingress sampling has allowed small leaks in vehicle fluid systems to be recognized and addressed.Romoser AA, Scully RR, Limero TF, De Vera V, Cheng PF, Hand JJ, James JT, Ryder VE. Predicting air quality at first ingress into vehicles visiting the International Space Station. Aerosp Med Hum Perform. 2017; 88(2):104-113.

  12. Identifying risk factors for exposure to culturable allergenic moulds in energy efficient homes by using highly specific monoclonal antibodies.

    PubMed

    Sharpe, Richard A; Cocq, Kate Le; Nikolaou, Vasilis; Osborne, Nicholas J; Thornton, Christopher R

    2016-01-01

    The aim of this study was to determine the accuracy of monoclonal antibodies (mAbs) in identifying culturable allergenic fungi present in visible mould growth in energy efficient homes, and to identify risk factors for exposure to these known allergenic fungi. Swabs were taken from fungal contaminated surfaces and culturable yeasts and moulds isolated by using mycological culture. Soluble antigens from cultures were tested by ELISA using mAbs specific to the culturable allergenic fungi Aspergillus and Penicillium spp., Ulocladium, Alternaria, and Epicoccum spp., Cladosporium spp., Fusarium spp., and Trichoderma spp. Diagnostic accuracies of the ELISA tests were determined by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2-encoding regions of recovered fungi following ELISA. There was 100% concordance between the two methods, with ELISAs providing genus-level identity and ITS sequencing providing species-level identities (210 out of 210 tested). Species of Aspergillus/Penicillium, Cladosporium, Ulocladium/Alternaria/Epicoccum, Fusarium and Trichoderma were detected in 82% of the samples. The presence of condensation was associated with an increased risk of surfaces being contaminated by Aspergillus/Penicillium spp. and Cladosporium spp., whereas moisture within the building fabric (water ingress/rising damp) was only associated with increased risk of Aspergillus/Penicillium spp. Property type and energy efficiency levels were found to moderate the risk of indoor surfaces becoming contaminated with Aspergillus/Penicillium and Cladosporium which in turn was modified by the presence of condensation, water ingress and rising damp, consistent with previous literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Measurement and Modeling of the Ability of Crack Fillers to Prevent Chloride Ingress into Mortar.

    PubMed

    Jones, Scott Z; Bentz, Dale P; Davis, Jeffrey M; Hussey, Daniel S; Jacobson, David L; Molloy, John L; Sieber, John R

    2017-09-01

    A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, but must also intrude the damage zone surrounding the crack perimeter. Here, the performance of two commonly employed crack fillers, one epoxy, and one methacrylate, are investigated using a combined experimental and computer modeling approach. Neutron tomography and microbeam X-ray fluorescence spectrometry (μXRF) measurements are employed on pre-cracked and chloride-exposed specimens to quantify the crack filling and chloride ingress limiting abilities, respectively, of the two polymers. A two-dimensional model of chloride transport is derived from a mass balance and solved by the finite element method. Crack images provided by μXRF are used to generate the input microstructure for the simulations. When chloride binding and a time-dependent mortar diffusivity are both included in the computer model, good agreement with the experimental results is obtained. Both crack fillers significantly reduce chloride ingress during the 21 d period of the present experiments; however, the epoxy itself contains approximately 4 % by mass chlorine. Leaching studies were performed assess the epoxy as a source of deleterious ions for initiating corrosion of the steel reinforcement in concrete structures.

  14. Water Ingress Failure Analysis of Whistler II Unit

    DTIC Science & Technology

    2014-08-01

    contaminants getting in the water, possibly from the batteries, the solder flux, some other means, or some combination. The Whistler Unit was...White residue was present on many of the solder joints. Per Art Harrison, this is consistent with exposure of solder flux to moisture. c

  15. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  16. Spatially-resolved magnetic resonance study of the dissolution interface between soaps and water

    NASA Astrophysics Data System (ADS)

    Ciampi, E.; Goerke, U.; McDonald, P. J.; Chambers, J. G.; Newling, B.

    2002-06-01

    The developing interfacial region between a soap bar and water has been studied using a suite of spatially resolved NMR techniques. Stray field imaging (STRAFI) allowed the dynamics of water ingress into a shop-bought, commercial soap to be followed. A simplistic analysis of the data shows the ingress to be a Fickian process (∝t1/2) in the first 4 h. The T2 contrast employed in the STRAFI method is not sufficient to resolve detail of the mesophase formation at the interface. However, double quantum filtered 2H spectroscopy at different positions in the interfacial region allowed water concentration (and mesophase distribution) to be mapped over the first 120 h of dissolution. A simple model shows good agreement with the water concentration data. In the isotropic soap solution above the interfacial region, J-cyclic cross polarization was used to selectively interrogate the CH2 1H of the soap alkyl chains and, in combination with a pulsed field gradient measurement of self-diffusion, suggests a micellar solution in which the hydrodynamic radius of the micelles is ~5nm.

  17. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOEpatents

    Gorlov, Alexander M.

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  18. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.

    PubMed

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-10-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas films reduce Na(+) and Cl(-) ingress into leaves when submerged by saline water - the thin gas layer physically separates the floodwater from the leaf surface. This feature aids survival of plants exposed to short-term saline submergence, as well as the previously recognized beneficial effects of gas exchange under water. © 2014 John Wiley & Sons Ltd.

  19. EMERGING TECHNOLOGY BULLETIN: ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetic Soil Processing (or Electrokinetic Remediation) uses two series of electrodes (anodes and cathodes) positioned inside compartments that allow egress and ingress of pore fluids to the porous media. The compartments are filled with water or other process fluids and ...

  20. Impact of environmental hazards on internal soiling within concentrator photovoltaic (CPV) modules

    NASA Astrophysics Data System (ADS)

    Ellis, Sara

    2014-09-01

    Environmental conditions have a significant impact on internal soiling of a CPV system, which affects overall system performance and efficiency. The International Electrotechnical Commission (IEC) 62108, Section 10, standard includes accelerated testing such as temperature cycling, damp heat, and humidity freeze to assess a CPV module's ability to withstand environmental hazards that can compromise the typical 25-year lifetime. This paper discusses the IEC 60529 ingress protection (IP) test protocols and how they can be used to evaluate the performance of CPV modules to block water and particulate contaminants. Studies with GORE® Protective Vents installed in a CPV module and subjected to environmental hazard testing have shown increased reliability of the module over the lifetime of the system by protecting the seals from pressure differentials and keeping out contaminants.

  1. Leak testing in parenteral packaging: establishment of direct correlation between helium leak rate measurements and microbial ingress for two different leak types.

    PubMed

    Morrical, Bradley D; Goverde, Marcel; Grausse, Jean; Gerwig, Tanja; Vorgrimler, Lothar; Morgen, Rachel; Büttiker, Jean-Pierre

    2007-01-01

    A direct test method using helium leak detection was developed to determine microbial ingress in parenteral vial/rubber closure systems. The purpose of this study was to establish a direct correlation between the helium leak rate and the presence of ingress when vials were submersed under pressure in a broth of bacteria. Results were obtained for two different types of leaks: microholes that have been laser-drilled into thin metal plates, and thin copper wire that was placed between the rubber closure and the glass vial's sealing surface. The results from the microholes showed that the helium leak rate was a function of the square of the hole diameter and fit well with theoretical calculations. The relationship with the wire gave a far more complex dependence and was not modeled theoretically. Comparison with the microbial challenge showed that for microholes a lower size limit was found to be 2 microm with a corresponding leak rate of 1.4 x 10(-3) mbarl/s. For the fine wire experiment the lower limit was 15-microm wire and a corresponding leak rate of 1.3 x 10(-5) mbarl/s. From these tests a safe, lower limit, leak rate was established.

  2. Self-Sealing Cementitious Materials by Using Water-Swelling Rubber Particles

    PubMed Central

    Lv, Leyang; Schlangen, Erik; Xing, Feng

    2017-01-01

    Water ingress into cracked concrete structures is a serious problem, as it can cause leakage and reinforcement corrosion and thus reduce functionality and safety of the structures. In this study, the application of water-swelling rubber particles for providing the cracked concrete a self-sealing function was developed. The feasibility of applying water-swelling rubber particles and the influence of incorporating water-swelling rubber particles on the mechanical properties of concrete was investigated. The self-sealing efficiency of water-swelling rubber particles with different content and particle size was quantified through a permeability test. The sealing effect of the water swelling rubber particles was monitored by X-ray computed tomography. The experimental results show that, by using 6% of these water swelling rubber particles as a replacement of aggregates in concrete, up to 64% and 61% decrease of water permeability was realized for 0.7 mm and 1.0 mm cracks. Furthermore, when the concrete cracks, the water swelling rubber particles can act as a crack bridging filler, preventing the crack from fully separating the specimens in two pieces. PMID:28829384

  3. Predicting the potential moisture ingress characteristics of polyisobutylene based edge seals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kempe, Michael D.

    2016-09-01

    Photovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25 years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge-seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge-seal as a function of aging.

  4. Phase 1 report on the development of predictive model for bridge deck cracking and strength development.

    DOT National Transportation Integrated Search

    2009-01-01

    Early-age cracking, typically caused by drying shrinkage (and often coupled with autogenous and thermal : shrinkage), can have several detrimental effects on long-term behavior and durability. Cracking can also provide : ingress of water that can dri...

  5. Evaluation of an Army Aviator’s Ability to Conduct Ingress and Egress of the RAH-66 Comanche Crew Station While Wearing the Air Warrior Ensemble

    DTIC Science & Technology

    2004-12-01

    Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a...8 2.5 Historical Difficulties With Ingress and Egress of Helicopters ......................................9 2.6 Past Ingress and...Egress Evaluations in the RAH-66 Comanche ...................................12 2.7 Expected Ingress and Egress Difficulties With Air Warrior Based

  6. Identifying risk factors for exposure to culturable allergenic moulds in energy efficient homes by using highly specific monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Richard A.; Cocq, Kate Le; Nikolaou, Vasilis

    The aim of this study was to determine the accuracy of monoclonal antibodies (mAbs) in identifying culturable allergenic fungi present in visible mould growth in energy efficient homes, and to identify risk factors for exposure to these known allergenic fungi. Swabs were taken from fungal contaminated surfaces and culturable yeasts and moulds isolated by using mycological culture. Soluble antigens from cultures were tested by ELISA using mAbs specific to the culturable allergenic fungi Aspergillus and Penicillium spp., Ulocladium, Alternaria, and Epicoccum spp., Cladosporium spp., Fusarium spp., and Trichoderma spp. Diagnostic accuracies of the ELISA tests were determined by sequencing ofmore » the internally transcribed spacer 1 (ITS1)-5.8S-ITS2-encoding regions of recovered fungi following ELISA. There was 100% concordance between the two methods, with ELISAs providing genus-level identity and ITS sequencing providing species-level identities (210 out of 210 tested). Species of Aspergillus/Penicillium, Cladosporium, Ulocladium/Alternaria/Epicoccum, Fusarium and Trichoderma were detected in 82% of the samples. The presence of condensation was associated with an increased risk of surfaces being contaminated by Aspergillus/Penicillium spp. and Cladosporium spp., whereas moisture within the building fabric (water ingress/rising damp) was only associated with increased risk of Aspergillus/Penicillium spp. Property type and energy efficiency levels were found to moderate the risk of indoor surfaces becoming contaminated with Aspergillus/Penicillium and Cladosporium which in turn was modified by the presence of condensation, water ingress and rising damp, consistent with previous literature. - Highlights: • Monoclonal antibodies were used to track culturable allergenic moulds in homes. • Allergenic moulds were recovered from 82% of swabs from contaminated surfaces. • The mAbs were highly specific with 100% agreement to PCR of recovered fungi. • Improvements to energy efficiency lowered risk of exposure to allergenic fungi.« less

  7. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, Christopher A.; Durose, Aaron

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasingmore » as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)« less

  8. Sterility maintenance study: Dynamic evaluation of sterilized rigid containers and wrapped instrument trays to prevent bacterial ingress.

    PubMed

    Shaffer, Harry L; Harnish, Delbert A; McDonald, Michael; Vernon, Reid A; Heimbuch, Brian K

    2015-12-01

    Sterilized packaging systems are designed to maintain the sterility of surgical instruments and devices from the time of sterilization until use. This study evaluated the effectiveness of rigid containers versus wrapped instrument trays, sterilized using North American sterilization protocols, to maintain a sterile internal environment poststerilization when challenged with aerosolized bacteria under dynamic environmental conditions. Using a custom aerosol chamber, 111 rigid containers of various durations of use (unused, used <5 years, used 5-9 years) and 161 wrapped trays using 3 grades of sterilization wrap were challenged with ~10(2) colony-forming units per liter of air containing aerosolized Micrococcus luteus with a count median particle size of 1 μm, while simultaneously experiencing air volume exchanges due to vacuum cycles-two 1-psi cycles, three 0.7-psi cycles, and three 0.4-psi cycles-to simulate air exchange events occurring during the sterilization, transportation, and storage of sterilized instrument trays in health care facilities. Of 111 rigid containers tested, 97 (87%) demonstrated bacterial ingress into the container. Of 161 wrapped trays, 0 (0%) demonstrated bacterial ingress into the tray. Contamination rates of rigid containers increased significantly with increasing duration of use. In this study using a dynamic bacterial aerosol challenge, sterilized wrapped trays demonstrated significantly greater protection than sterilized rigid containers against the ingress of airborne bacteria. Copyright © 2015. Published by Elsevier Inc.

  9. Development of a cost-effective concrete bridge deck preservation program : volume 2--final results and recommendations.

    DOT National Transportation Integrated Search

    2016-07-01

    The deterioration of bridge decks has been identified as a major problem in Indiana. The primary cause of this deterioration is salt water : ingress from the application of deicing salts during the winter. Deicing chemicals placed on the road mix wit...

  10. Potential of aerobic bacteria use for remediation of groundwater of Pavlodar outskirt contaminated with soluble mercury compounds

    EPA Science Inventory

    In the Republic of Kazakhstan there are some regions contaminated with mercury as a result of technogenic releases from industrial enterprises. The mercury ingress into the environment has resulted in significant pollution of groundwater and surface water with soluble mercury com...

  11. Artificial Leaks in Container Closure Integrity Testing: Nonlinear Finite Element Simulation of Aperture Size Originated by a Copper Wire Sandwiched between the Stopper and the Glass Vial.

    PubMed

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian

    2016-01-01

    Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow. In order to correlate microbial ingress CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificially created defects (artificial leaks) are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. Up to date, the insertion of copper wires introduced leaks of unknown size and shape. With nonlinear finite element simulations, the effective aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force, and the leak shape was modelled. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to the hole size. © PDA, Inc. 2016.

  12. Interactions between chloride and cement-paste materials.

    PubMed

    Barberon, Fabien; Baroghel-Bouny, Véronique; Zanni, Hélène; Bresson, Bruno; d'Espinose de la Caillerie, Jean-Baptiste; Malosse, Lucie; Gan, Zehong

    2005-02-01

    The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress.

  13. Pulmonic Ingressive Speech in Shetland English

    ERIC Educational Resources Information Center

    Sundkvist, Peter

    2012-01-01

    This paper presents a study of pulmonic ingressive speech, a severely understudied phenomenon within varieties of English. While ingressive speech has been reported for several parts of the British Isles, New England, and eastern Canada, thus far Newfoundland appears to be the only locality where researchers have managed to provide substantial…

  14. Elucidating PID Degradation Mechanisms and In Situ Dark I–V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax based on superposition was adapted for the thin-film modules undergoing PID in view of the degradation mechanisms observed. An exponential model based on module temperature and relative humidity was fit to the PID rate for multiple stress levels in chamber tests and validated by predicting the observed degradation of the module type in the field.

  15. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  16. Development of a cost-effective concrete bridge deck preservation program : volume 1--development and implementation of the experimental program.

    DOT National Transportation Integrated Search

    2016-07-01

    The deterioration of bridge decks has been identified as a major problem in Indiana. The primary cause of this deterioration is salt water : ingress from the application of deicing salts during the winter. Deicing chemicals placed on the road mix wit...

  17. 78 FR 16040 - Petition for Exemption From the Vehicle Theft Prevention Standard; Jaguar Land Rover North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    .... If the Smart Key has a discharged battery or is damaged, there is an emergency key blade that can be..., thermal stress/shock tests, material resistance tests, dry heat, dust and fluid ingress tests). Jaguar... requirements incident to the disposition of all Part 543 petitions. Advanced listing, including the release of...

  18. 36 CFR 14.7 - Right of ingress and egress to a primary right-of-way.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Right of ingress and egress to a primary right-of-way. 14.7 Section 14.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.7 Right of ingress and egress to...

  19. 36 CFR 14.7 - Right of ingress and egress to a primary right-of-way.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Right of ingress and egress to a primary right-of-way. 14.7 Section 14.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.7 Right of ingress and egress to...

  20. Hydrochemical analysis to evaluate the seawater ingress in a small coral island of India.

    PubMed

    Banerjee, Pallavi; Singh, V S; Singh, Ajay; Prasad, R K; Rangarajan, R

    2012-06-01

    The sustainable development of the limited groundwater resources in the tropical island requires a thorough understanding of detail hydrogeological regime including the hydrochemical behavior of groundwater. Detail analysis of chemical data of groundwater helps in assessing the different groundwater zone affected by formation as well as sea water. Groundwater and saline water interaction is better understood using groundwater major ion chemistry over an island aquifer. Multivariate methods to analyze the geochemical data are used to understand geochemical evolution of groundwater. The methods are successfully used to group the data to evaluate influence of various environs in the study area. Various classification methods such as piper, correlation method, and salinity hazard measurements are also employed to critical study of geochemical characteristics of groundwater to identify vulnerable parts of the aquifer. These approaches have been used to successfully evaluate the aquifer zones of a tiny island off the west coast of India. The most part of island is found to be safe for drinking, however some parts of island are identified that are affected by sea water ingress and dissolution of formation minerals. The analysis has successfully leaded to identification of that part of aquifer on the island which needs immediate attention for restoration and avoids further deterioration.

  1. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature risemore » monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.« less

  2. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification

    PubMed Central

    Hoijman, Esteban; Fargas, L; Blader, Patrick; Alsina, Berta

    2017-01-01

    Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI: http://dx.doi.org/10.7554/eLife.25543.001 PMID:28537554

  3. Quantifying moisture transport in cementitious materials using neutron radiography

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated. It has been found through this study that small pores, namely voids created by chemical shrinkage, gel pores, and capillary pores, ranging from 0.5 nm to 50 microm, fill quickly through capillary action. However, large entrapped and entrained air voids ranging from 0.05 to 1.25 mm remain empty during the initial filling process. In mortar exposed to calcium chloride solution, a decrease in sorptivity was observed due to an increase in viscosity and surface tension of the solution as proposed by Spragg et al 2011. This work however also noted a decrease in the rate of absorption due to a reaction between the salt and matrix which results in the filling of the pores in the concrete. The results from neutron imaging can help in the interpretation of standard absorption tests. ASTM C1585 test results can be further analyzed in several ways that could give an accurate indication of the durability of the concrete. Results can be reported in depth of penetration versus the square root of time rather than mm3 of fluid per mm2 of exposed surface area. Since a known fraction of pores are initially filling before reaching the edge of the sample, the actual depth of penetration can be calculated. This work is compared with an 'intrinsic sorptivity' that can be used to interpret mass measurements. Furthermore, the influence of shrinkage reducing admixtures (SRAs) on drying was studied. Neutron radiographs showed that systems saturated in water remain "wetter" than systems saturated in 5% SRA solution. The SRA in the system reduces the moisture diffusion coefficient due an increase in viscosity and decrease in surface tension. Neutron radiography provided spatial information of the drying front that cannot be achieved using other methods.

  4. Method Development for Container Closure Integrity Evaluation via Headspace Gas Ingress by Using Frequency Modulation Spectroscopy.

    PubMed

    Victor, Ken G; Levac, Lauren; Timmins, Michael; Veale, James

    2017-01-01

    USP <1207.1> Section 3.5 states that "A deterministic leak test method having the ability to detect leaks at the product's maximum allowable leakage limit is preferred when establishing the inherent integrity of a container-closure system." Ideally, container closure integrity of parenteral packaging would be evaluated by measuring a physical property that is sensitive to the presence of any package defect that breaches package integrity by increasing its leakage above its maximum allowable leakage limit. The primary goals of the work presented herein were to demonstrate the viability of the nondestructive, deterministic method known as laser-based gas headspace analysis for evaluating container closure integrity and to provide a physical model for predicting leak rates for a variety of container volumes, headspace conditions, and defect sizes. The results demonstrate that laser-based headspace analysis provides sensitive, accurate, and reproducible measurements of the gas ingress into glass vial-stopper package assemblies that are under either diffusive or effusive leak conditions. Two different types of positive controls were examined. First, laser-drilled micro-holes in thin metal disks that were crimped on top of 15R glass vials served as positive controls with a well-characterized defect geometry. For these, a strong correlation was observed between the measured ingress parameter and the size of the defect for both diffusive and effusive conditions. Second, laser-drilled holes in the wall of glass vials served as controls that more closely simulate real-world defects. Due to their complex defect geometries, their diffusive and effusive ingress parameters did not necessarily correlate; this is an important observation that has significant implications for standardizing the characterization of container defects. Regardless, laser-based headspace analysis could readily differentiate positive and negative controls for all leak conditions, and the results provide a guide for method development of container closure integrity tests. LAY ABSTRACT: The new USP 39 <1207>, "Package Integrity Evaluation-Sterile Products", states in section 3.4.1: "tracer gas tests performed using … laser-based gas headspace analysis [have] been shown to be sensitive enough to quantitatively analyze leakage through the smallest leak paths found to pose the smallest chance of liquid leakage or microbial ingress in rigid packaging." In addition, USP <1207> also states that "for such methods, the limit of detection can be mathematically predicted on the basis of gas flow kinetics." Using the above statements as a foundation, this paper presents a theoretical basis for predicting the gas ingress through well-defined defects in product vials sealed under a variety of headspace conditions. These calculated predictions were experimentally validated by comparing them to measurements of changes in the headspace oxygen content or total pressure for several different positive controls using laser-based headspace analysis. The results demonstrated that laser-based headspace analysis can, by readily differentiating between negative controls and positive controls with a range of defect sizes on the micron scale, be used to assess container closure integrity. The work also demontrated that caution must be used when attempting to correlate a leak rate to an idealized defect-size parameter. © PDA, Inc. 2017.

  5. Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-06-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  6. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  7. Testing the Chloride Penetration Resistance of Concrete : A Literature Review.

    DOT National Transportation Integrated Search

    2001-01-01

    One of the major forms of environmental attack on reinforced concrete bridges is chloride ingress, which leads to corrosion of the reinforcing steel and a subsequent reduction in the strength, serviceability, and aesthetics of the structure.Reinforce...

  8. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  9. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE PAGES

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.; ...

    2017-09-21

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  10. Myosin II promotes the anisotropic loss of the apical domain during Drosophila neuroblast ingression

    PubMed Central

    Simões, Sérgio; Oh, Youjin; Wang, Michael F.Z.; Fernandez-Gonzalez, Rodrigo

    2017-01-01

    Epithelial–mesenchymal transitions play key roles in development and cancer and entail the loss of epithelial polarity and cell adhesion. In this study, we use quantitative live imaging of ingressing neuroblasts (NBs) in Drosophila melanogaster embryos to assess apical domain loss and junctional disassembly. Ingression is independent of the Snail family of transcriptional repressors and down-regulation of Drosophila E-cadherin (DEcad) transcription. Instead, the posttranscriptionally regulated decrease in DEcad coincides with the reduction of cell contact length and depends on tension anisotropy between NBs and their neighbors. A major driver of apical constriction and junctional disassembly are periodic pulses of junctional and medial myosin II that result in progressively stronger cortical contractions during ingression. Effective contractions require the molecular coupling between myosin and junctions and apical relaxation of neighboring cells. Moreover, planar polarization of myosin leads to the loss of anterior–posterior junctions before the loss of dorsal–ventral junctions. We conclude that planar-polarized dynamic actomyosin networks drive apical constriction and the anisotropic loss of cell contacts during NB ingression. PMID:28363972

  11. Bacterial carbonate precipitation improves water absorption of interlocking compressed earth block (ICEB)

    NASA Astrophysics Data System (ADS)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2017-11-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. The addition of many alternative materials into interlocking block in order to improve the durability has been reported. However there are currently lack of report and evidence on the application of biocalcification or microbiologically induced calcite precipitation (MICP) in improving the engineering properties of ICEB. This paper evaluate the effect of UB in improving the water absorption properties of ICEB. This paper also provide the results on SEM analysis of addition of 1%, 3% and 5% UB in ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the reduction of 14.72% with 5% UB on initial water absorption followed by the results for water absorption by 24-hour soaking which also indicates reduction of 14.68% with 5% UB on 28th days of testing compared to control specimen. It was expected that the reduction of water absorption was due to the plugging of pores by the bacterial calcite which prevent ingression of water in ICEB samples. Therefore this study hopes that the positive results from the UB as improving in water absorption of ICEB will lead to improve others ICEB properties and others construction materials.

  12. Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas: A review

    NASA Astrophysics Data System (ADS)

    Teodósio, Maria Alexandra; Paris, Claire B.; Wolanski, Eric; Morais, Pedro

    2016-12-01

    A series of complementary hypotheses have been proposed to explain the recruitment of marine and temperate pelagic fish larvae originated from pelagic eggs in coastal environments. In this review, we propose a new and complementary hypothesis describing the biophysical processes intervening in the recruitment of temperate fish larvae into estuaries. This new hypothesis, the Sense Acuity And Behavioral (SAAB) hypothesis, recognizes that recruitment is unlikely if the larvae drift passively with the water currents, and that successful recruitment requires the sense acuity of temperate fish larvae and their behavioral response to the estuarine cues present in coastal areas. We propose that temperate fish larvae use a hierarchy of sensory cues (odor, sound, visual and geomagnetic cues) to detect estuarine nursery areas and to aid during navigation towards these areas. The sensorial acuity increases along ontogeny, which coincides with increased swimming capabilities. The swimming strategies of post-flexion larvae differ from offshore areas to the tidal zone. In offshore areas, innate behavior might lead larvae towards the coast guided by a sun compass or by the earth's geomagnetic field. In areas under limited influence of estuarine plumes (either in energetic nearshore areas or offshore), post-flexion larvae display a searching swimming behavior for estuarine disconnected patches (infotaxis strategy). After finding an estuarine plume, larvae may swim along the increasing cue concentration to ingress into the estuary. Here, larvae exhibit a rheotaxis behavior and avoid displacement by longshore currents by keeping bearing during navigation. When larvae reach the vicinity of an estuary, merging diel rhythms with feeding and predator avoidance strategies with tidally induced movements is essential to increase their chances of estuarine ingress. A fish larva recruitment model developed for the Ria Formosa lagoon supports the general framework of the SAAB hypothesis. In this model, the ingress of virtual Sparidae temperate larvae into this nursery area increases from 1.5% to 32.1% when directional swimming guided by estuarine cues is included as a forcing parameter.

  13. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  14. Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water.

    PubMed

    Brady, Michael P; Ievlev, Anton V; Fayek, Mostafa; Leonard, Donovan N; Frith, Matthew G; Meyer, Harry M; Ramirez-Cuesta, Anibal J; Daemen, Luke L; Cheng, Yongqiang; Guo, Wei; Poplawsky, Jonathan D; Ovchinnikova, Olga S; Thomson, Jeffrey; Anovitz, Lawrence M; Rother, Gernot; Shin, Dongwon; Song, Guang-Ling; Davis, Bruce

    2017-11-01

    Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D 2 O/D isotopic tracer and H 2 O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at room temperature. Further, technologically important microalloying additions of <1 wt % Zr and Nd used to improve the manufacturability and mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2-3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H 2 . These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.

  15. Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water

    DOE PAGES

    Brady, Michael P.; Ievlev, Anton V.; Fayek, Mostafa; ...

    2017-10-10

    Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D 2O/D isotopic tracer and H 2O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at roommore » temperature. Further, technologically important microalloying additions of <1 wt % Zr and Nd used to improve the manufacturability and mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2–3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H 2. These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.« less

  16. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present results suggest that in addition to the commonly cited naphthenic acids, remediation of OSPW-impacted groundwater will need to address high concentrations of major ions contributing to salinization. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Air ingression calculations for selected plant transients using MELCOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kmetyk, L.N.

    1994-01-01

    Two sets of MELCOR calculations have been completed studying the effects of air ingression on the consequences of various severe accident scenarios. One set of calculations analyzed a station blackout with surge line failure prior to vessel breach, starting from nominal operating conditions; the other set of calculations analyzed a station blackout occurring during shutdown (refueling) conditions. Both sets of analyses were for the Surry plant, a three-loop Westinghouse PWR. For both accident scenarios, a basecase calculation was done, and then repeated with air ingression from containment into the core region following core degradation and vessel failure. In addition tomore » the two sets of analyses done for this program, a similar air-ingression sensitivity study was done as part of a low-power/shutdown PRA, with results summarized here; that PRA study also analyzed a station blackout occurring during shutdown (refueling) conditions, but for the Grand Gulf plant, a BWR/6 with Mark III containment. These studies help quantify the amount of air that would have to enter the core region to have a significant impact on the severe accident scenario, and demonstrate that one effect, of air ingression is substantial enhancement of ruthenium release. These calculations also show that, while the core clad temperatures rise more quickly due to oxidation with air rather than steam, the core also degrades and relocates more quickly, so that no sustained, enhanced core heatup is predicted to occur with air ingression.« less

  18. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  19. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    PubMed

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  20. Astronaut John Young ingresses Apollo spacecraft command module in training

    NASA Image and Video Library

    1968-07-05

    S68-40875 (5 July 1968) --- Astronaut John W. Young, Apollo 7 backup command module pilot, ingresses Apollo Spacecraft 101 Command Module during simulated altitude runs at the Kennedy Space Center's Pad 34.

  1. Sulfate-reducing bacteria lower sulfur-mediated pitting corrosion under conditions of oxygen ingress.

    PubMed

    Johnston, Shawna L; Voordouw, Gerrit

    2012-08-21

    The effect of oxygen ingress into sour water containing dissolved sulfide on the production of sulfur and polysulfide (S-PS) and associated iron corrosion was investigated. Biotic (active SRB present), abiotic (autoclaved SRB present), and chemical (no bacteria present) conditions were compared. Under biotic conditions formation of S-PS was only seen at a high ratio of oxygen to sulfide (R(OS)) of 1 to 2.4. General corrosion rates increased 10-fold to 0.10 mm/yr under these conditions. Under abiotic and chemical conditions S-PS formation increased over the entire range of R(OS) with general corrosion rates reaching 0.06 mm/yr. Although general corrosion rates were thus highest under biotic conditions, biotically corroded coupons showed much less pitting corrosion. Maximum pit depth increased to 40-80 μm with increasing R(OS) for coupons incubated for 1 month under abiotic or chemical conditions but not for biotically incubated coupons (10 μm). This appeared to be related to the properties and size of the sulfur formed, which was hydrophobic and in excess of 10 μm under chemical or abiotic conditions and hydrophilic and 0.5 to 1 μm under biotic conditions. Hence, perhaps contrary to expectation, SRB lowered pitting corrosion rates under conditions of oxygen ingress due to their ability to respire oxygen and produce a less aggressive form of sulfur. Microbial control, which is usually required in sour systems, may be counterproductive under these conditions.

  2. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.

    PubMed

    Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František

    2016-03-16

    The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Age, growth and hatch dates of ingressing larvae and surviving juveniles of Atlantic menhaden Brevoortia tyrannus.

    PubMed

    Lozano, C; Houde, E D; Wingate, R L; Secor, D H

    2012-10-01

    Ages, growth and hatch dates of ingressing Brevoortia tyrannus larvae were determined in a 3 year sampling survey at the mouth of the Chesapeake Bay, U.S.A. To determine if otolith-aged cohorts had variable relative survival, hatch dates of summer-caught young-of-the-year (YOY) juveniles collected throughout the Chesapeake Bay were compared with hatch dates of ingressing larvae. Modal total length of ingressing larvae was similar among years: 28 mm in 2005-2006 and 2007-2008, and 30 mm in 2006-2007. Ages of ingressing larvae ranged from 9 to 96 days post hatch (dph); mean ages were similar among years, but significantly older in 2006-2007 (50 dph) than in 2005-2006 (44 dph) and 2007-2008 (46 dph). Larval growth rates differed among years. Earliest growth, when larvae were offshore (0-20 dph), was faster in 2006-2007 (0·62 mm day(-1)), than in 2005-2006 and 2007-2008 (0·55 mm day(-1) in these years). Subsequently, from 30 to 80 dph, growth was slowest in 2006-2007. Hatch dates of ingressing larvae occurred from September to March and 90% (2007-2008) to 98% (2006-2007) had hatched prior to 31 December. In contrast, most surviving YOY juvenile B. tyrannus had hatched in January to February, suggesting selective mortality of early-hatched individuals, apparently during the overwinter, larval to juvenile transition period. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Michael P.; Ievlev, Anton V.; Fayek, Mostafa

    Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D 2O/D isotopic tracer and H 2O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at roommore » temperature. Further, technologically important microalloying additions of <1 wt % Zr and Nd used to improve the manufacturability and mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2–3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H 2. These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.« less

  5. Heart Rate Responses to Unaided Orion Side Hatch Egress in the Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    English, Kirk L.; Hwang Emma Y.; Ryder, Jeffrey W.; Kelly, Cody; Walker, Thomas; Ploutz-Snyder, Lori L.

    2016-01-01

    NASA is developing the Orion capsule as a vehicle for transporting crewmembers to and from the International Space Station (ISS) and for future human space exploration missions. Orion and other commercial vehicles are designed to splash down in the ocean where nominally support personnel will assist crewmembers in egressing the vehicle. However, off-nominal scenarios will require crewmembers to egress the vehicle unaided, deploy survival equipment, and ingress a life raft. PURPOSE: To determine the heart rate (HR) responses to unaided Orion side hatch egress and raft ingress as a part of the NASA Crew Survival Engineering Team's evaluation of the PORT Orion mockup in the Neutral Buoyancy Laboratory (NBL). METHODS: Nineteen test subjects, including four astronauts (N=19, 14 males/5 females, 38.6+/-8.4 y, 174.4+/-9.6 cm, 75.7+/-13.1 kg), completed a graded maximal test on a cycle ergometer to determine VO2peak and HRpeak and were divided into five crews of four members each; one subject served on two crews. Each crew was required to deploy a life raft, egress the Orion vehicle from the side hatch, and ingress the life raft with two 8 kg emergency packs per crew. Each crew performed this activity one to three times; a total of ten full egresses were completed. Subjects wore a suit that was similar in form, mass, and function to the Modified Advanced Crew Escape Suit (MACES) including helmet, gloves, boots, supplemental O2 bottles, and a CO2-inflated life preserver (approx.18 kg); subjects began each trial seated supine in the PORT Orion mockup with seat belts and mockup O2 and communication connections and ended each trial with all four crewmembers inside the life raft. RESULTS: VO2peak was 40.8+/-6.8 mL/kg/min (3.1+/-0.7 L/min); HRpeak was 181+/-10 bpm. Total egress time across trials was 5.0+/-1.6 min (range: 2.8-8.0 min); all subjects were able to successfully complete all trials. Average maximum HR at activity start, at the hatch opening, in the water, and in the raft, was 108, 137, 147, and 153 bpm, respectively; these values corresponded to 59+/-10%, 73+/-8%, 82+/-3%, and 84+/-6% of HRpeak, respectively. The highest HRs were seen after raft ingress and ranged from 72-99% HRpeak. Across all trials, cumulative averages of 5.4, 3.0, 1.1, and 0.2 min were spent at HRs >60%, >70%, >80%, and >90% HRpeak, respectively. CONCLUSION: Unaided Orion side hatch egress in the NBL is a relatively short-duration activity that elicits a high HR response for several min. Although all crewmembers successfully completed this activity, additional factors such as high seas, poor visibility, an incapacitated crewmember, neurovestibular perturbation, and neuromuscular deconditioning characteristic of a true operational environment may increase the physiologic demand (or decrease crewmembers' physiologic capacity) of unaided Orion side hatch egress. Additionally, landing conditions may require the crewmembers to egress from the top hatch, which is expected to be even more physiologically demanding; this condition will be evaluated in subsequent collaborative testing with the NASA Crew Survival Engineering Team.

  6. Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada).

    PubMed

    Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin

    2017-12-01

    Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.

  7. Factors contributing to variability in larval ingress of Atlantic menhaden, Brevoortia tyrannus

    NASA Astrophysics Data System (ADS)

    Lozano, C.; Houde, E. D.

    2013-02-01

    Annual recruitment levels of age-0 juvenile Atlantic menhaden to Chesapeake Bay, which historically supported >65% of coastwide recruitment, have been consistently low since the 1980s. Diminished larval supply to the Bay is one hypothesized explanation. In a three-year ichthyoplankton survey at the Chesapeake Bay mouth, abundance of ingressing larvae varied nine-fold among years. Larvae were most abundant in 2007-2008 and less abundant in 2005-2006 and 2006-2007. High month-to-month variability in larval concentrations was attributable primarily to seasonality of occurrences. There was no defined spatial pattern in distribution of larvae across the 18-km-wide Bay mouth, but larvae at the south side were longer and older on average than larvae at the middle and north side. Environmental variables measured at the times of larval collections were not correlated consistently with temporal and spatial variability in abundance of larvae at ingress, highlighting complexity and suggesting that abundance may be controlled by processes occurring offshore during the pre-ingress phase. Moreover, the substantial differences in inter-annual abundances of larvae at the Bay mouth were not concordant with subsequent abundances of age-0 juveniles in the three survey years, indicating that important processes affecting recruitment of Atlantic menhaden operate after ingress, during the larval to juvenile transition stage.

  8. Rock Mass Grouting in the Løren Tunnel: Case Study with the Main Focus on the Groutability and Feasibility of Drill Parameter Interpretation

    NASA Astrophysics Data System (ADS)

    Høien, Are Håvard; Nilsen, Bjørn

    2014-05-01

    The Løren road tunnel is a part of a major project at Ring road 3 in Oslo, Norway. The rock part of the tunnel is 915 m long and has two tubes with three lanes and breakdown lanes. Strict water ingress restriction was specified and continuous rock mass grouting was, therefore, carried out for the entire tunnel, which was excavated in folded Cambro-Silurian shales intruded by numerous dykes. This paper describes the rock mass grouting that was carried out for the Løren tunnel. Particular emphasis is placed on discussing grout consumption and the challenges that were encountered when passing under a distinct rock depression. Measurement while drilling (MWD) technology was used for this project, and, in this paper, the relationships between the drill parameter interpretation (DPI) factors water and fracturing are examined in relation to grout volumes. A lowering of the groundwater table was experienced during excavation under the rock depression, but the groundwater was nearly re-established after completion of the main construction work. A planned 80-m watertight concrete lining was not required to be built due to the excellent results from grouting in the rock depression area. A relationship was found between leakages mapped in the tunnel and the DPI water factor, indicating that water is actually present where the DPI water factor shows water in the rock. It is concluded that, for the Løren tunnel, careful planning and high-quality execution of the rock mass grouting made the measured water ingress meet the restrictions. For future projects, the DPI water factor may be used to give a better understanding of the material in which the rock mass grouting is performed and may also be used to reduce the time spent and volumes used when grouting.

  9. I-NERI Quarterly Technical Report (April 1 to June 30, 2005)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Oh; Prof. Hee Cheon NO; Prof. John Lee

    2005-06-01

    The objective of this Korean/United States/laboratory/university collaboration is to develop new advanced computational methods for safety analysis codes for very-high-temperature gas-cooled reactors (VHTGRs) and numerical and experimental validation of these computer codes. This study consists of five tasks for FY-03: (1) development of computational methods for the VHTGR, (2) theoretical modification of aforementioned computer codes for molecular diffusion (RELAP5/ATHENA) and modeling CO and CO2 equilibrium (MELCOR), (3) development of a state-of-the-art methodology for VHTGR neutronic analysis and calculation of accurate power distributions and decay heat deposition rates, (4) reactor cavity cooling system experiment, and (5) graphite oxidation experiment. Second quartermore » of Year 3: (A) Prof. NO and Kim continued Task 1. As a further plant application of GAMMA code, we conducted two analyses: IAEA GT-MHR benchmark calculation for LPCC and air ingress analysis for PMR 600MWt. The GAMMA code shows comparable peak fuel temperature trend to those of other country codes. The analysis results for air ingress show much different trend from that of previous PBR analysis: later onset of natural circulation and less significant rise in graphite temperature. (B) Prof. Park continued Task 2. We have designed new separate effect test device having same heat transfer area and different diameter and total number of U-bands of air cooling pipe. New design has smaller pressure drop in the air cooling pipe than the previous one as designed with larger diameter and less number of U-bands. With the device, additional experiments have been performed to obtain temperature distributions of the water tank, the surface and the center of cooling pipe on axis. The results will be used to optimize the design of SNU-RCCS. (C) Prof. NO continued Task 3. The experimental work of air ingress is going on without any concern: With nuclear graphite IG-110, various kinetic parameters and reaction rates for the C/CO2 reaction were measured. Then, the rates of C/CO2 reaction were compared to the ones of C/O2 reaction. The rate equation for C/CO2 has been developed. (D) INL added models to RELAP5/ATHENA to cacilate the chemical reactions in a VHTR during an air ingress accident. Limited testing of the models indicate that they are calculating a correct special distribution in gas compositions. (E) INL benchmarked NACOK natural circulation data. (F) Professor Lee et al at the University of Michigan (UM) Task 5. The funding was received from the DOE Richland Office at the end of May and the subcontract paperwork was delivered to the UM on the sixth of June. The objective of this task is to develop a state of the art neutronics model for determining power distributions and decay heat deposition rates in a VHTGR core. Our effort during the reporting period covered reactor physics analysis of coated particles and coupled nuclear-thermal-hydraulic (TH) calculations, together with initial calculations for decay heat deposition rates in the core.« less

  10. Neutron Radiography Based Visualization and Profiling of Water Uptake in (Un)cracked and Autonomously Healed Cementitious Materials

    PubMed Central

    Van den Heede, Philip; Van Belleghem, Bjorn; Alderete, Natalia; Van Tittelboom, Kim; De Belie, Nele

    2016-01-01

    Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic), the economic impacts involved would be enormous. Under those circumstances, it might be useful to have concrete with an embedded autonomous healing mechanism. In this paper, the effectiveness of incorporating encapsulated high and low viscosity polyurethane-based healing agents to ensure (multiple) crack healing has been investigated by means of capillary absorption tests on mortar while monitoring the time-dependent water ingress with neutron radiography. Overall visual interpretation and water front/sample cross-section area ratios as well as water profiles representing the area around the crack and their integrals do not show a preference for the high or low viscosity healing agent. Another observation is that in presence of two cracks, only one is properly healed, especially when using the latter healing agent. Exposure to water immediately after release of the healing agent stimulates the foaming reaction of the polyurethane and ensures a better crack closure. PMID:28773436

  11. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula

    PubMed Central

    Wen, Jason WH

    2017-01-01

    During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration. PMID:28826499

  12. Epsilon Aurigae Eclipse 2009 - Ingress

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeffrey L.; Stencel, Robert E.; Leadbeater, Robin; Beckmann, Paul J.; Buil, Christian; Collins, Donald; Colombo, Tiziano; Garrel, Thierry; Gorodenski, Stanley; Gudmundsson, Snaevarr; Karlsson, Mukund Kurtadikar; Lindberg, Hans-Goran; Loughney, Des; Mauclaire, Benji; McCandless, Brian E.; Melillo, Frank J.; Miles, Richard; Pearson, Robert T.; Samolyk, Gerard; Schanne, Lothar; Strikis, Iakovos Marios; Teyssier, François; Thizy, Olivier

    The mysterious star system epsilon Aurigae undergoes an eclipse every 27.1 years that lasts nearly two years. The most recent eclipse started during the late summer of 2009. An international campaign for observing this eclipse was created in 2006, with a web site for information and, to-date, 17 periodic newsletters for details, as well as a Yahoo forum List for immediate announcements and comments. Photometric data in the UBVRIJH bands have been submitted. Ingress occurred with first contact in the V band estimated at the second week of 2009 August and second contact estimated at 2010 mid-January. Spectroscopic data were also obtained during ingress. Spectroscopic data have been provided in the potassium I region, hydrogen alpha and beta regions and sodium D line region of the star system's spectrum. In this paper we describe details of observations and preliminary analysis during ingress and second contact. We introduce the observers and discuss plans for observing throughout totality and the end of the eclipse in 2011.

  13. Environmental testing of CIS based modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, D.

    1995-11-01

    This report describes environmental testing of Siemen`s CIS modules. Charts and diagrams are presented on data concerning: temporary power loss of laminated mini-modules; the 50 thermal cycle test; the 10 humidity freeze cycle test; results after 1000 hours of exposure to damp heat; and interconnect test structures in damp heat testing. It is concluded that moisture ingress causes permanent increases in the series resistance of modules, and that improved packaging is needed for better high humidity reliability. Also, dry dark heat caused temporary power losses which were recovered in sunlight.

  14. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

    PubMed Central

    Mignon, Arn; Snoeck, Didier; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-01-01

    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials. PMID:28772599

  15. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

    PubMed

    Mignon, Arn; Snoeck, Didier; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-02-28

    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials.

  16. Shuttle passenger couch. [design and performance of engineering model

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Stephenson, M. L.

    1974-01-01

    Conceptual design and fabrication of a full scale shuttle passenger couch engineering model are reported. The model was utilized to verify anthropometric dimensions, reach dimensions, ingress/egress, couch operation, storage space, restraint locations, and crew acceptability. These data were then incorported in the design of the passenger couch verification model that underwent performance tests.

  17. Reducing the ingress of urban noise through natural ventilation openings.

    PubMed

    Oldham, D J; de Salis, M H; Sharples, S

    2004-01-01

    For buildings in busy urban areas affected by high levels of road traffic noise the potential to use natural ventilation can be limited by excessive noise entering through ventilation openings. This paper is concerned with techniques to reduce noise ingress into naturally ventilated buildings while minimizing airflow path resistance. A combined experimental and theoretical approach to the interaction of airflow and sound transmission through ventilators for natural ventilation applications is described. A key element of the investigation has been the development of testing facilities capable of measuring the airflow and sound transmission losses for a range of ventilation noise control strategies. It is demonstrated that a combination of sound reduction mechanisms -- one covering low frequency sound and another covering high frequency sound -- is required to attenuate effectively noise from typical urban sources. A method is proposed for quantifying the acoustic performance of different strategies to enable comparisons and informed decisions to be made leading to the possibility of a design methodology for optimizing the ventilation and acoustic performance of different strategies. The need for employing techniques for combating low frequency sound in tandem with techniques for reducing high frequency sound in reducing the ingress of noise from urban sources such as road traffic to acceptable levels is demonstrated. A technique is proposed for enabling the acoustic and airflow performance of apertures for natural ventilation systems to be designed simultaneously.

  18. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  19. 78 FR 75575 - Agency Information Collection Activities: Submission for OMB Review; Comment Request; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Request; Request for the Site Inspection, Landowners Authorization/Ingress/Egress Agreement. AGENCY... . SUPPLEMENTARY INFORMATION: Collection of Information Title: Request for the Site Inspection, Landowners...-09, Request for the Site Inspection; FEMA Form 010-0-10, Landowner's Authorization Ingress- Egress...

  20. SMART PEBBLES : passive embeddable wireless sensors for chloride ingress monitoring in bridge decks.

    DOT National Transportation Integrated Search

    2003-06-01

    SRI International has developed a wireless sensor for monitoring the level of chloride : ingress into concrete bridge decks. We call this device a Smart Pebble since it has : roughly the size and weight of a typical piece of the rock aggregate tha...

  1. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    PubMed Central

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days. PMID:28788677

  2. The Development of Neutron Radiography and Tomography on a SLOWPOKE-2 Reactor

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Lewis, W. J.; Hungler, P. C.

    Development of neutron radiography at the Royal Military College of Canada (RMC) started by trying to interest the Royal Canadian Air Force (RCAF) in this new non-destructive testing (NDT) technique. A Californium-252 based device was ordered and then installed at RMC for development of applicable techniques for aircraft by the first author. A second and transportable device was then designed, modified and used in trials at RCAF Bases and other locations for one year. This activity was the only foreign loan of the U.S. Californium Loan Program. Around this time, SLOWPOKE-2 reactors were being installed at four Canadian universities, while a new science and engineering building was being built at RMC. A reactor pool was incorporated and efforts to procure a reactor succeeded a decade later with a SLOWPOKE-2 reactor being installed at RMC. The only modification by the vendor for RMC was a thermal column replacing an irradiation site inside the reactor container for a later installation of a neutron beam tube (NBT). Development of a working NBT took several years, starting with the second author. A demonstration of the actual worth of neutron radiography took place with a CF-18 Hornet aircraft being neutron and X-radiographed at McClellan Air Force Base, Sacramento, CA. This inspection was followed by one of the rudders that had indications of water ingress being radiographed successfully at RMC just after the NBT became functional. The next step was to develop a neutron radioscopy system (NRS), initially employing film and then digital imaging, and is in use today for all flight control surfaces (FCS). With the third author, a technique capable of removing water from affected FCS was developed at RMC. Heating equipment and a vacuum system were utilized to carefully remove the water. This technique was proven using a sequence of near real time neutron images obtained during the drying process. The results of the drying process were correlated with a relative humidity gauge and an NDT technique that could be performed at Canadian Forces (CF) Bases was developed. In order to determine the structural integrity of the component having undergone this water removal, further research was required into the effect of water inside composite honeycomb structures. This need has led to the present development of neutron tomography on the reactor at RMC, which is capable of determining the exact location of water ingress inside composite components. This technique has been successfully applied to coupons as well as to complete rudders.

  3. Effects of light ingress through ventilation fan apertures on selected blood variables of male broilers

    USDA-ARS?s Scientific Manuscript database

    Increasing broiler house size and ventilation capacity have resulted in increased light ingress through ventilation system component apertures. The effective photoperiod for broilers may create local increases in light intensity, which may also impact broiler’ body homeostasis. The objective of this...

  4. Apparatus and method for fusion of compute and switching functions of exascale system into a single component by using configurable network-on-chip fabric with distributed dual mode input-output ports and programmable network interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Surhud; Somasekhar, Dinesh; More, Ankit

    Described is an apparatus which comprises: a Network-On-Chip fabric using crossbar switches, having distributed ingress and egress ports; and a dual-mode network interface coupled to at least one crossbar switch, the dual-mode network interface is to include: a dual-mode circuitry; a controller operable to: configure the dual-mode circuitry to transmit and receive differential signals via the egress and ingress ports, respectively, and configure the dual-mode circuitry to transmit and receive signal-ended signals via the egress and ingress ports, respectively.

  5. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal.

    PubMed

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K

    2017-12-01

    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour.

    PubMed

    Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Davenport, A; Street, S; Scott, T B

    2017-08-11

    Uranium encapsulated in grout was exposed to water vapour for extended periods of time. Through synchrotron x-ray powder diffraction and tomography measurements, uranium dioxide was determined the dominant corrosion product over a 50-week time period. The oxide growth rate initiated rapidly, with rates comparable to the U + H 2 O reaction. Over time, the reaction rate decreased and eventually plateaued to a rate similar to the U + H 2 O + O 2 reaction. This behaviour was not attributed to oxygen ingress, but instead the decreasing permeability of the grout, limiting oxidising species access to the metal surface.

  7. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  8. Ingress in Geography: Portals to Academic Success?

    ERIC Educational Resources Information Center

    Davis, Michael

    2017-01-01

    Niantic Labs has developed an augmented virtual reality mobile app game called Ingress in which agents must seek out and control locations for their designated factions. The app uses the Google Maps interface along with GPS to enhance a geocaching-like experience with elements of other classical games such as capture-the-flag. This study aims to…

  9. Ingressive Speech Errors: A Service Evaluation of Speech-Sound Therapy in a Child Aged 4;6

    ERIC Educational Resources Information Center

    Hrastelj, Laura; Knight, Rachael-Anne

    2017-01-01

    Background: A pattern of ingressive substitutions for word-final sibilants can be identified in a small number of cases in child speech disorder, with growing evidence suggesting it is a phonological difficulty, despite the unusual surface form. Phonological difficulty implies a problem with the cognitive process of organizing speech into sound…

  10. STS-131 crew during SSMTF Ingress/Egress Timeline training

    NASA Image and Video Library

    2010-02-10

    JSC2010-E-024620 (10 Feb. 2010) --- NASA astronaut Stephanie Wilson, STS-131 mission specialist, participates in an ingress/egress timeline training session in a shuttle mock-up in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. United Space Alliance (USA) instructors David L. Williams (left) and Gary W. Kilgo assisted Wilson.

  11. The Atmosphere of Titan from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Schinder, Paul J.; Flasar, F. M.; Marouf, E. A.; French, R. G.; McGhee, C. A.; Kliore, A. J.; Rappaport, N.; Nagy, A. F.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.

    2006-09-01

    The first two radio occultations of Cassini by Titan occurred on March 19 and May 20, 2006. On March 19, the ingress occultation occurred at a latitude of 31 S, and egress at 53 S. On May 20, ingress was at 33 S, and egress at 34 S. We present the temperature-pressure profiles for the atmosphere of Titan for these 4 locations.

  12. Toxicological Assessment of ISS Air Quality: SpaceX-2 First Ingress

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2013-01-01

    One mini-grab sample container (M-GSC) was collected by crew members onboard ISS during first ingress into SpaceX-2 on March 3, 2013, three days after late cargo loading and a pre-launch clean air purge. Recoveries of the three surrogate standards from the m-GSC were: 13C-acetone, 97%; fluorobenzene, 95%; and chlorobenzene, 68%.

  13. Characterization of an island aquifer from tidal response

    NASA Astrophysics Data System (ADS)

    Banerjee, Pallavi; Sarwade, Deepak; Singh, V. S.

    2008-08-01

    Growing demand for potable water for various needs has lead to indiscriminate exploitation of groundwater resources, particularly, in the terrain where surface water resources are negligible. One such area is an island where groundwater is the only source of fresh water. Groundwater is the prime source of fresh water on most of the atolls in the world. Groundwater on these islands is in the form of thin fragile floating lens and is often vulnerable to overexploitation, draught, tidal waves, tsunami and cyclone resulting in seawater ingress. Sustainable development of this meager source of fresh groundwater for a longer time becomes a more difficult task on small atolls with a large population depending on this vital resource. To develop a sustainable management scheme and identify the vulnerable part of aquifer, characterization of the aquifer system on islands is imperative. Groundwater on an atoll is extremely vulnerable to seawater mixing through natural as well as human activities. One such natural process is the tides of the ocean. The response of sea tide to the water table on the island offers valuable data as well as cost-effective means to characterize an aquifer system. Such characterization is vital for the management of groundwater resources on an atoll. The obtained results have compared well with the parameters obtained through a conventional pumping test. Therefore, the use of tidal response to the water table, which can easily be recorded, provides a rapid and cost-effective means to characterization of the aquifer system on the island.

  14. Test of salt marsh as a site of production and export of fish biomass with implications for impoundment management and restoration

    USGS Publications Warehouse

    Stevens, Philip W.

    2002-01-01

    Salt marshes are among the most productive ecosystems in the world, and although they are thought to enhance the productivity of open estuarine waters, the mechanism by which energy transfer occurs has been debated for decades. One possible mechanism is the transfer of saltmarsh production to estuarine waters by vagile fishes and invertebrates. Saltmarsh impoundments in the Indian River Lagoon, Florida, that have been reconnected to the estuary by culverts provide unique opportunities for studying marsh systems with respect to aquatic communities. The boundaries between salt marshes and the estuary are clearly defined by a system of dikes that confine fishes into a known area, and the exchange of aquatic organisms are restricted to culverts where they may be easily sampled. A multi-gear approach was used monthly to estimate fish standing stock, fish ingress/egress, and predation. Changes in saltmarsh fish abundance, and exchange with the estuary reflected the seasonal pattern of marsh flooding in the xv northern Indian River Lagoon system. During a six month period of marsh flooding, saltmarsh fishes had continuous access to marsh food resources. Piscivorous fishes regularly entered the marsh via creeks and ditches to prey upon marsh fishes, and piscivorous birds aggregated following major fish migrations to the marsh surface or to deep habitats. As water levels receded in winter, saltmarsh fishes concentrated into deep habitats and migration to the estuary ensued. The monthly estimates of fish standing stock, net fish ingress, and predation were used to develop a biomass budget to estimate annual production of fishes and the relative yield to predatory fish, birds, and direct migration to the estuary. Annual production of saltmarsh fishes was estimated to be 17.7 g·m-2 salt marsh, which falls within the range of previously reported values for estuarine fish communities. The relative yields were at least 21% to piscivorous fishes, 14% to piscivorous birds, and 32% to export. Annual export of fish biomass was 5.6 g fish·m-2 salt marsh, representing about 2% of saltmarsh primary production. Saltmarsh fishes convert marsh production to high quality vagile biomass (fishes concentrate energy, protein, and nutrients as body mass) and move this readily useable production to the estuary, providing an efficient link between salt marshes and estuarine predators.

  15. Oxygen Selective Membranes for Li-Air (O2) Batteries

    PubMed Central

    Crowther, Owen; Salomon, Mark

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed. PMID:24958173

  16. 36 CFR 14.5 - Nature of interest granted; settlement on right-of-way; rights of ingress and egress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Nature of interest granted; settlement on right-of-way; rights of ingress and egress. 14.5 Section 14.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.5 Nature...

  17. 36 CFR 14.5 - Nature of interest granted; settlement on right-of-way; rights of ingress and egress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Nature of interest granted; settlement on right-of-way; rights of ingress and egress. 14.5 Section 14.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.5 Nature...

  18. 36 CFR 14.5 - Nature of interest granted; settlement on right-of-way; rights of ingress and egress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Nature of interest granted; settlement on right-of-way; rights of ingress and egress. 14.5 Section 14.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.5 Nature...

  19. 36 CFR 14.5 - Nature of interest granted; settlement on right-of-way; rights of ingress and egress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Nature of interest granted; settlement on right-of-way; rights of ingress and egress. 14.5 Section 14.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.5 Nature...

  20. 36 CFR 14.5 - Nature of interest granted; settlement on right-of-way; rights of ingress and egress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Nature of interest granted; settlement on right-of-way; rights of ingress and egress. 14.5 Section 14.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.5 Nature...

  1. Effects of implant design parameters on fluid convection, potentiating third-body debris ingress into the bearing surface during THA impingement/subluxation.

    PubMed

    Lundberg, Hannah J; Pedersen, Douglas R; Baer, Thomas E; Muste, Marian; Callaghan, John J; Brown, Thomas D

    2007-01-01

    Aseptic loosening from polyethylene wear debris is the leading cause of failure for metal-on-polyethylene total hip implants. Third-body debris ingress to the bearing space results in femoral head roughening and acceleration of polyethylene wear. How third-body particles manage to enter the bearing space between the closely conforming articulating surfaces of the joint is not well understood. We hypothesize that one such mechanism is from convective fluid transport during subluxation of the total hip joint. To test this hypothesis, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated, to quantify fluid ingress into the bearing space during a leg-cross subluxation event. The results indicated that extra-articular joint fluid could be drawn nearly to the pole of the cup with even very small separations of the femoral head (<0.60mm). Debris suspended near the equator of the cup at the site of maximum fluid velocity just before the subluxation began could be transported to within 11 degrees from the cup pole. Larger head diameters resulted in increased fluid velocity at all sites around the entrance to the gap compared to smaller head sizes, with fluid velocity being greatest along the anterosuperolateral cup edge, for all head sizes. Fluid pathlines indicated that suspended debris would reach similar angular positions in the bearing space regardless of head size. Increased inset of the femoral head into the acetabular cup resulted both in higher fluid velocity and in transport of third-body debris further into the bearing space.

  2. Crew Configuration, Ingress/Egress Procedures, and In-Flight Caregiving Capacity in a Space Ambulance Based on the Boeing X-37B

    NASA Astrophysics Data System (ADS)

    Halberg, Ephriam Etan

    This study proposes that a Boeing X-37B space plane, its dimensions and performance characteristics estimated from publicly available documents, diagrams, and photographs, could be internally redesigned as a medical evacuation (ambulance) vehicle for the International Space Station. As of 2017, there is currently no spacecraft designed to accommodate a contingency medical evacuation wherein a crew member aboard the ISS is injured or ailing and must be returned to Earth for immediate medical attention. The X-37B is an unmanned vehicle with a history of success in both sub-orbital testing and all four of its long-duration orbital missions to date. Research conducted at UC Davis suggests that it is possible to retain the outer mold line of the X-37B while expanding the internal payload compartment to a volume sufficient for a crew of three--pilot, crew medical officer, and injured crew member--throughout ISS un-dock and atmospheric entry, descent, and landing. In addition to crew life support systems, this re-purposed X-37B, hereafter referred to as the X-37SA (Space Ambulance), includes medical equipment for stabilization of a patient in-transit. This study suggests an optimal, ergonomic crew configuration and berthing port location, procedures for microgravity ingress and 1G egress, a minimum medical equipment list and location within the crew cabin for the medical care and monitoring equipment. Conceptual crew configuration, ingress/egress procedures, and patient/equipment access are validated via physical simulation in a full-scale mockup of the proposed X-37SA crew cabin.

  3. Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick

    2012-01-01

    Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.

  4. Source term evaluation for accident transients in the experimental fusion facility ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virot, F.; Barrachin, M.; Cousin, F.

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  5. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Oziomek, Thomas V.

    2009-01-01

    Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable and nutritious. Development of high barrier food packaging will enable this requirement by preventing the ingress and egress of gases and moisture. New high barrier food packaging materials have been identified through a trade study. Practical application of this packaging material within a shelf life test will allow for better determination of whether this material will allow the food system to meet given requirements after the package has undergone processing. The reason to conduct shelf life testing, using a variety of packaging materials, stems from the need to preserve food used for mission durations of several years. Chemical reactions that take place during longer durations may decrease food quality to a point where crew physical or psychological well-being is compromised. This can result in a reduction or loss of mission success. The rate of chemical reactions, including oxidative rancidity and staling, can be controlled by limiting the reactants, reducing the amount of energy available to drive the reaction, and minimizing the amount of water available. Water not only acts as a media for microbial growth, but also as a reactant and means by which two reactants may come into contact with each other. The objective of this study is to evaluate three packaging materials for potential use in long duration space exploration missions.

  6. The Safety of Hospital Beds

    PubMed Central

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  7. Non-condensable gas effects in ROSA/AP600 small-break LOCA experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Hideo; Kukita, Yutaka; Shaw, R.A.

    1996-06-01

    Integral experiments simulating the postulated accidents in the Westinghouse AP600 reactor have been conducted using the ROSA-V Large Scale Test Facility (LSTF). These experiments allowed the N{sub 2} gas for the pressurization of accumulator tanks to enter the primary system after the depletion of the tank water inventory. The gas migrated into the Passive Residual Heat Removal (PRHR) system heat exchanger tubes and into the Core Makeup Tanks (CMTs), and influenced the performance of these components which are unique to the AP600 reactor. Specifically, the PRHR was disabled soon after the N{sub 2} gas discharge in most of the experiments,more » although the core decay power was removed well by the steam discharge through the Automatic Depressurization System (ADS) after the PRHR was disabled. The N{sub 2} gas ingress into the CMTs occurred in the experiments with relatively large breaks ({ge} 2 inch in equivalent diameter), and contributed to a smooth draindown of the CMT inventory into the primary system.« less

  8. Investigation of a Wedge Adhesion Test for Edge Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael; Wohlgemuth, John; Miller, David

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adaptingmore » the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be due to inconsistencies in sample history, sample batch, or small changes in sample preparation/assembly from one month to the next. Because the fracture strength of typical edge seal materials is so low, they cannot be relied upon for mechanical strength. A small stress or strain on the edge seal is capable of promoting delamination or tearing causing the edge seal to fail. Because of this, edge seals are very dependent on the processing and construction parameters in the full size PV module such that any long term evaluation of their durability must be conducted on full size modules to be accurate.« less

  9. Effects of Oxidation on Oxidation-Resistant Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William; Smith, Rebecca; Carroll, Mark

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidationmore » rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.« less

  10. TRANSIT OF EXOMOON PLASMA TORI: NEW DIAGNOSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Jaffel, Lotfi; Ballester, Gilda E., E-mail: bjaffel@iap.fr, E-mail: gilda@pirl.lpl.arizona.edu

    2014-04-20

    In the solar system, moons largely exceed planets in number. The Kepler database has been shown to be sensitive to exomoon detection down to the mass of Mars, but the first search has been unsuccessful. Here, we use a particles-in-cell code to predict the transit of the plasma torus produced by a satellite. Despite the small size of a moon, the spatial extent of its plasma torus can be large enough to produce substantial transit absorptions. The model is used for the interpretation of Hubble Space Telescope early ingress absorptions apparently observed during the WASP-12 b and HD 189733 bmore » UV transits for which no consistent explanation exists. For HD 189733 b an exomoon transiting ∼16 R{sub p} ahead of the planet and loading ∼10{sup 29} C II ions s{sup –1} into space is required to explain the tentative early ingress absorption observed for C II. For WASP-12b, a moon transiting ∼6 R{sub p} ahead from the planet and ejecting ∼10{sup 28} Mg II ions per second is required to explain the NUV early ingress absorption feature. Interestingly, both HD 189733 b and WASP-12b predicted satellites are outside the Hill sphere of their planets, an indication that the moons, if present, were not formed in situ but probably captured later. Finally, our simulations show a strong electromagnetic coupling between the polar regions of planets and the orbital position of the moons, an expected outcome of the unipolar induction DC circuit model. Future observations should test our predictions with a potential opportunity to unambiguously detect the first exomoon plasma torus.« less

  11. Lonchakov ingresses the Earth-facing port of the SM after arrival of the Soyuz TMA-13 Spacecraft

    NASA Image and Video Library

    2008-10-14

    ISS017-E-019022 (14 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, ingresses the Earth-facing port of the International Space Station's Zarya module after arriving onboard the Soyuz TMA-13 spacecraft with NASA astronaut Michael Fincke, commander, and American spaceflight participant Richard Garriott (both out of frame). Hatches between the two spacecraft were opened at 4:55 a.m. (CDT).

  12. Retrospective review of adverse incidents involving passengers seated in wheeled mobility devices while traveling in large accessible transit vehicles.

    PubMed

    Frost, Karen L; Bertocci, Gina

    2010-04-01

    Characterize wheeled mobility device (WhMD) adverse incidents on large accessible transit vehicles (LATVs) based on vehicle motion, WhMD activity during incident, incident scenario and injury. Retrospective records review. WhMD passengers traveling on LATVs while remaining seated in their. Adverse incidents characterized based on vehicle motion, WhMD activity during incident, and incident scenario. Injury characterized based on outcome, medical attention sought, vehicle activity, WhMD activity and incident scenario. 115 WhMD-related incident reports for years 2000-2005 were analyzed. Most incidents occurred when the LATV was stopped (73.9%), during ingress/egress (42.6%), and at the securement station (33.9%) when the LATV was moving. The combination of WhMD tipping and passenger falling (43.4%) occurred most frequently, and was 1.8 times more likely to occur during ingress/egress than at the securement station. One-third (33.6%) of all incidents resulted in injury, and injuries were equally distributed between ingress/egress (43.6%) and at the securement station (43.6%). WhMD users have a greater chance of incurring injury during ingress/egress than during transit. Research is needed to objectively assess real world transportation experiences of WhMD passengers, and to assess the adequacy of existing federal legislation/guidelines for accessible ramps used in public transportation. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Evidence for Likely Liquid Hydrocarbons on Titan's Surface from Cassini Radio Science Bistatic Scattering Observations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; Flasar, M.; French, R.; Kliore, A.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Simpson, R.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Kahan, D.; Kern, A.; Rochblatt, D.

    2006-12-01

    Cassini conducted the first two Radio Science bistatic scattering observations of Titan's surface on March 18 (T12) and May 20 (T14), 2006. The experiment was designed to search for mirror-like (quasi-specular) reflections from relatively flat surface regions. Three sinusoidal signals (0.94, 3.6, and 13 cm-wavelength; Ka-, X-, and S-band) transmitted by Cassini were used to illuminate and continuously track the region on Titan's surface where specular reflection is expected. The signals received at the Earth receiving stations (70-m for X and S, 34-m for Ka) of the NASA Deep Space Network were then searched for a surface echo. The transmitted signals are right circularly polarized (RCP). Both same sense (RCP) and opposite sense (LCP) polarized received components were recorded. The receivers were tuned to account for the rapidly time varying Doppler shift of the echo center frequency and the data was recorded in a 16 kHz bandwidth. Special procedures were implemented to calibrate the system noise temperature of both polarization channels, hence ensure accurate measurement of the absolute signal power. The observation geometry captured surface scattering over roughly 50 to 70 degrees incidence angle, close to the Brewster angle range of water ice and liquid and solid hydrocarbons. No strong specular echo was detectable over most of the T12 ingress track (about 40 m duration) or the T14 ingress (28 m) and egress (31 m) tracks, likely indicating very rough terrain over most regions probed (about 15 deg South latitude). However, for limited time periods (2 to 6 m), weak X- band RCP and LCP echo components are clearly detectable on both the T14 ingress and egress sides (about 140 and 14 deg west longitude, respectively). An S-band RCP echo component is also marginally detectable, but not an LCP component. No Ka-band echo is detectable, likely because of strong atmospheric gaseous absorption. The detected X-band echo appears to originate form relatively flat surface regions of less than about 100 km spatial extent. Remarkably, for both the ingress and egress locations, the measured echo polarization ratio implies a similar surface dielectric constant of about 1.6, suggesting liquid hydrocarbons (although other porous material of unknown nature can not be excluded at this time). The results suggest that the footprint of the radio beam on Titan's surface likely swept across localized regions of liquid hydrocarbons that are several tens of kilometers in extent (lakes?) embedded within an otherwise very rough surface terrain.

  14. An evaluation of controlled permeability formwork for long-term durability of structural concrete elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryavanshi, A.K.; Swamy, R.N.

    1997-07-01

    The long-term performance of a concrete slab (CPF slab) exposed to chloride ingress and atmospheric carbonation from the surface generated by controlled permeability formwork (CPF) is investigated. The results are compared with a similar slab exposed to long-term chloride ingress and atmospheric carbonation from the cast face (Control slab). Techniques such as X-ray diffraction (XRD) and differential thermal analyses (DTA) were employed to determine the resistance against carbonation while, mercury porosimetry was used for investigating the pore size distribution at the surface of the slabs. Amount of acid soluble chlorides was determined by using Volhard`s method. The CPF employed atmore » the bottom of the mould was not fully effective in its intended purpose of generating a permanent and dense impermeable concrete layer adjacent to it when the design water-cement (w/c) ration of the concrete mix was 0.60. This resulted in an almost similar extent of carbonation at the surface for both CPF and control slabs as shown by XRD and DTA studies. Similarly, there were no significant differences in the amount of chlorides and their depths of penetration for both CPF and control slabs, although the former was marginally superior in chloride penetration resistance at the surface.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, Jens; Apps, John; Zheng, Liange

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water qualitymore » of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.« less

  16. SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during C. elegans gastrulation

    PubMed Central

    Grana, Theresa M.; Cox, Elisabeth A.; Lynch, Allison M.; Hardin, Jeff

    2010-01-01

    Gastrulation is the first major morphogenetic movement in development, and requires dynamic regulation of cell adhesion and the cytoskeleton. C. elegans gastrulation begins with the migration of the two endodermal precursors, Ea and Ep, from the surface of the embryo into the interior. Ea/Ep migration provides a relatively simple system to examine the intersection of cell adhesion, cell signaling, and cell movement. Ea/Ep ingression depends on correct cell fate specification and polarization, apical myosin accumulation, and Wnt activated actomyosin contraction that drives apical constriction and ingression (Lee et al., 2006; Nance et al., 2005). Here, we show that Ea/Ep ingression also requires the function of either HMR-1/cadherin or SAX-7/L1CAM. Both cadherin complex components and L1CAM are localized at all sites of cell-cell contact during gastrulation. Either system is sufficient for Ea/Ep ingression, but loss of both together leads to a failure of apical constriction and ingression. Similar results are seen with isolated blastomeres. Ea/Ep are properly specified and appear to display correct apical-basal polarity in sax-7(eq1); hmr-1(RNAi) embryos. Significantly, in sax-7(eq1); hmr-1(RNAi) embryos Ea and Ep fail to accumulate myosin (NMY-2::GFP) at their apical surfaces, but in either sax-7(eq1) or hmr-1(RNAi) embryos, apical myosin accumulation is comparable to wildtype. Thus, the cadherin and L1CAM adhesion systems are redundantly required for localized myosin accumulation, and hence for actomyosin contractility during gastrulation. We also show that sax-7 and hmr-1 function are redundantly required for Wnt-dependent spindle polarization during division of the ABar blastomere, indicating that these cell surface proteins redundantly regulate multiple developmental events in early embryos. PMID:20515680

  17. Influence of oil type on the amounts of acrylamide generated in a model system and in French fries.

    PubMed

    Mestdagh, Frédéric J; De Meulenaer, Bruno; Van Poucke, Christof; Detavernier, Christ'l; Cromphout, Caroline; Van Peteghem, Carlos

    2005-07-27

    Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.

  18. PCDTBT based solar cells: one year of operation under real-world conditions

    PubMed Central

    Zhang, Yiwei; Bovill, Edward; Kingsley, James; Buckley, Alastair R.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Lidzey, David G.

    2016-01-01

    We present measurements of the outdoor stability of PCDTBT:PC71BM based bulk heterojunction organic solar cells for over the course of a year. We find that the devices undergo a burn-in process lasting 450 hours followed by a TS80 lifetime of up to 6200 hours. We conclude that in the most stable devices, the observed TS80 lifetime is limited by thermally-induced stress between the device layers, as well as materials degradation as a result of edge-ingress of water or moisture through the encapsulation. PMID:26857950

  19. Condition Based Maintenance Technology Impacts Study for the Military Land Environment

    DTIC Science & Technology

    2014-08-01

    3a, 2g 3b,3m,3j,3e,3d,3f,3a,3c,3i 3c,3d,3h,3n 3d,3h 3e,3k,3i 3f,3h UNCLASSIFIED DSTO-RR-0404 UNCLASSIFIED 158 3g ,3c 3h,4b 3i,3m,3j,CBM...3e -> 3k 3i Egress of 2: 3n -> 3h 4b Egress of 2: 3k -> 3j 5c Egress of 2: 4d -> 3g 3c Egress of 1: 3a -> 2g Egress of 1: 1b -> 2g Egress...Ingress+Egress of 8: 2d 3b 3g 4d 4f -> 3c -> 3d 3h 3n Ingress+Egress of 7: 1b 2e 3a -> 2g -> 3b 2e 2c 2f Ingress+Egress of 7: 2a 2d 6b 6c -> 2b -> 3a

  20. Human factors evaluation of the HL-20 full-scale model

    NASA Astrophysics Data System (ADS)

    Willshire, Kelli F.; Simonsen, Lisa C.; Willshire, William L., Jr.

    1993-09-01

    The human factors testing of the HL-20 personnel launch system full-scale model was conducted in both the vertical and horizontal positions at NASA Langley Research Center. Three main areas of testing were considered: an anthropometric fit evaluation, the ingress and egress of a 10-person crew, and pilot viewing. The subjects, ranging from the 5th to 95th percentile size, had sufficient clearance in the model, with the exception of the last two rows of seats and the cockpit area. Adjustable seat heights and/or placement of the seats farther forward would provide more headroom. In the horizontal position, the model's seat placement and aisle width allowed a quick and orderly 10-person egress for the no-keel (a structural support running the length on the aisle), 6-in.-high keel, and 12-in.-high keel conditions. Egress times were less than 20 s. For the vertical position, the model's long cylindrical shape with the ladder in the ceiling allowed a quick and orderly egress with average times less than 30 s. Ingress and egress procedures were demonstrated using shuttle partial-pressure suits. The reduced mobility experienced while wearing the suits did increase egress times, although they still remained acceptable. The window arrangement for pilot viewing was found to be reasonably acceptable, although slight modifications, such as an increased downward view, is desirable.

  1. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression.

    PubMed

    Leone, Marina; Musa, Gentian; Engel, Felix Benedikt

    2018-03-07

    After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation, and providing a new tool to distinguish these two processes. Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro as well as in vivo was associated with a failure of RhoA as well as IQGAP3 to localize to the stembody of the midbody. Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.

  2. Differentially-dimensioned furrow formation by zygotic gene expression and the MBT

    PubMed Central

    Xie, Yi

    2018-01-01

    Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis. PMID:29337989

  3. Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad, E-mail: mpourghaz@ncsu.edu

    2015-03-15

    Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and tomore » show approximately the shape and position of the water front even if the flow is nonuniform.« less

  4. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High- Strength Alloys

    DTIC Science & Technology

    1992-10-01

    high-strength steels [3-5], precipitation -hardened and work-hardened nickel-base alloys [3-61, and titanium [71 and was shown to be effective in...other two alloys, Ti-13-11-3 was tested in the unaged and age- conditions to establish the role of the secondary (x phase precipitated during aging... maraging steel , so it probably takes the form of reversible trapping [5,29]. Hence, grain boundaries are considered to be the most likely sites for

  5. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between predator and prey) resulted in intermediate fine sediment infiltration rates. The results suggest that reductions in prey availability may enhance crayfish foraging behaviour and therefore their impact on fine sediment ingress into river beds. Consequently, as invading species become more established and prey resources are depleted, the implications of invasive crayfish on fine sediment dynamics may become more prominent. These experiments demonstrate the importance of abiotic-biotic coupling in fluvial systems for both geomorphological and ecological understanding.

  6. FUEL SUBASSEMBLY CONSTRUCTION FOR RADIAL FLOW IN A NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1962-12-25

    An assembly of fuel elements for a boiling water reactor arranged for radial flow of the coolant is described. The ingress for the coolant is through a central header tube, perforated with parallel circumferertial rows of openings each having a lip to direct the coolant flow downward. Around the central tube there are a number of equally spaced concentric trays, closely fitiing the central header tube. Cylindrical fuel elements are placed in a regular pattern around the central tube, piercing the trays. A larger tube encloses the arrangement, with space provided for upward flow of coolart beyond the edge of the trays. (AEC)

  7. Copolymers enhance selective bacterial community colonization for potential root zone applications.

    PubMed

    Pham, Vy T H; Murugaraj, Pandiyan; Mathes, Falko; Tan, Boon K; Truong, Vi Khanh; Murphy, Daniel V; Mainwaring, David E

    2017-11-21

    Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.

  8. Role of turgor pressure in endocytosis in fission yeast

    PubMed Central

    Basu, Roshni; Munteanu, Emilia Laura; Chang, Fred

    2014-01-01

    Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane. PMID:24403609

  9. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  10. Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal Raman spectroscopy.

    PubMed

    Bonnist, E Y M; Gorce, J-P; Mackay, C; Pendlington, R U; Pudney, P D A

    2011-01-01

    Among the factors determining the propensity of a chemical to induce skin allergy are the penetration into skin and the kinetics of ingress. Confocal Raman spectroscopy can provide such information as it enables direct, spatially resolved measurement of the skin and of any chemical uptake. Several chemicals can be monitored at once, and the method is non-destructive (light in, light out) so that the skin can be kept intact for repeated and continuous measurement. Raman spectroscopy was used to follow the penetration of 2.5 weight percent trans-cinnamaldehyde and its delivery vehicle into skin in vitro, up to 24 h after topical application. A custom-made Bronaugh-type diffusion cell that was suitable for the Raman experiment was used. Four different vehicles were tested: absolute ethanol, 50% aqueous ethanol, propylene glycol and acetone:olive oil (4:1); these gave different time scales for cinnamaldehyde penetration. The acetone:olive oil vehicle phase-separated on the skin surface and the cinnamaldehyde penetrated at different rates in the different phases, which may be of significance since this is the preferred solvent for the local lymph node assay (an in vivo animal test used to generate hazard information on skin sensitization). In conclusion, the Raman method gives valuable detailed information on chemical ingress, clearly differentiates between different delivery rates and allows solvent monitoring alongside the chemical of interest. Copyright © 2011 S. Karger AG, Basel.

  11. Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking

    NASA Astrophysics Data System (ADS)

    Wawrzeńczyk, Jerzy; Molendowska, Agnieszka

    2017-10-01

    This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.

  12. Comparison of 2 fluid ingress/egress systems for canine stifle arthroscopy using computed tomography.

    PubMed

    Warnock, Jennifer J; Nemanic, Sarah; O'Donnell, Matthew D; Wiest, Jason E

    2014-11-01

    To evaluate volume of extra-articular fluid egress and complications associated with 2 fluid ingress/egress techniques for stifle arthroscopy. Ex vivo study. Canine cadavers (n = 14). Four cadavers (8 stifles) were used to validate 3D computed tomographic (CT) methods to quantify stifle joint intra- and extra-articular volumes of iodinated contrast medium. Ten canine cadavers (20 stifles) had preoperative CT, followed by stifle arthroscopy using a 10% solution of iodinated contrast enhanced ingress fluid delivered by pressure bag (2PB) or by arthroscopic peristaltic pump (3FP). All 3FP limbs had an additional fluid egress portal placed by cannula and obturator. Arthroscopy was limited to 20 minutes/joint. The volume of the contrast medium egress into the soft tissues was measured on postoperative 3D CT reconstructed images. Mean percentage of total ingress fluids administered that remained in the joint and extra-articular tissues postoperatively was 8.8 ± 1.2% in 3FP and 33.2 ± 8% in 2PB (P = .014). Two 3FP joints had 4-5 mm egress obturator tracks on the proximal medial trochlear ridge. Two 2PB joints had severe joint collapse from extracapsular fluid precluding further examination. Intermittent visual blurring by joint fluid mixing or fat pad fragmentation/dissolution was noted in 2PB joints. A superior technique was not identified: 2PB had greater egress fluid tissue accumulation, whereas 3FP had better viewing of intra-articular structures with less tissue egress fluid accumulation; however, cartilage damage was induced with the egress obturator. © Copyright 2014 by The American College of Veterinary Surgeons.

  13. An analysis of injuries to front-end loader operators during ingress and egress.

    PubMed

    Nasarwanji, Mahiyar F; Pollard, Jonisha; Porter, William

    2018-05-01

    Slips, trips, and falls from mobile mining equipment have been documented for decades. However, little research has been conducted to determine the events precipitating these incidents during ingress or egress. This study examined slips, trips, and falls sustained during ingress or egress from front-end loaders to determine the frequencies of factors that may contribute to injuries. Non-fatal injuries, when getting on or off of front-end wheel loaders specifically, were identified, coded, and analyzed from the Mine Safety and Health Administration's accidents, injuries, and illnesses database. Overall trends, events that precipitated the injury, injuries sustained, contributing factors, location of the individual, and equipment characteristics were analyzed. More incidents occurred during egress (63%); and egress is believed to be more hazardous than ingress. Foot slips were the most common event that precipitated the incident and the leading cause of these was contaminants on the equipment. Misstep, loss of footing, and step on/in related incidents were more common during egress and are likely due to the operator's reduced visibility when descending a ladder facing the equipment, limiting their ability to detect hazards. Egress also makes an operator less capable of avoiding unsafe ground conditions as indicated by the significant number of step on/in injuries occurring on the ground during egress. Most of the front-end loaders associated with the incidents were found to have bottom rungs with flexible rails, which may also increase fall risk during egress due to inconsistent rung heights and lengthy transition areas from the ground, through the flexible-railed rungs, to the rungs with rigid rails. Recommendations are provided to reduce the risk for slips, trips, and falls from mobile mining equipment.

  14. Demonstration and Methodology of Structural Monitoring of Stringer Runs out Composite Areas by Embedded Optical Fiber Sensors and Connectors Integrated during Production in a Composite Plant.

    PubMed

    Miguel Giraldo, Carlos; Zúñiga Sagredo, Juan; Sánchez Gómez, José; Corredera, Pedro

    2017-07-21

    Embedding optical fibers sensors into composite structures for Structural Health Monitoring purposes is not just one of the most attractive solutions contributing to smart structures, but also the optimum integration approach that insures maximum protection and integrity of the fibers. Nevertheless this intended integration level still remains an industrial challenge since today there is no mature integration process in composite plants matching all necessary requirements. This article describes the process developed to integrate optical fiber sensors in the Production cycle of a test specimen. The sensors, Bragg gratings, were integrated into the laminate during automatic tape lay-up and also by a secondary bonding process, both in the Airbus Composite Plant. The test specimen, completely representative of the root joint of the lower wing cover of a real aircraft, is comprised of a structural skin panel with the associated stringer run out. The ingress-egress was achieved through the precise design and integration of miniaturized optical connectors compatible with the manufacturing conditions and operational test requirements. After production, the specimen was trimmed, assembled and bolted to metallic plates to represent the real triform and buttstrap, and eventually installed into the structural test rig. The interrogation of the sensors proves the effectiveness of the integration process; the analysis of the strain results demonstrate the good correlation between fiber sensors and electrical gauges in those locations where they are installed nearby, and the curvature and load transfer analysis in the bolted stringer run out area enable demonstration of the consistency of the fiber sensors measurements. In conclusion, this work presents strong evidence of the performance of embedded optical sensors for structural health monitoring purposes, where in addition and most importantly, the fibers were integrated in a real production environment and the ingress-egress issue was solved by the design and integration of miniaturized connectors compatible with the manufacturing and structural test phases.

  15. Demonstration and Methodology of Structural Monitoring of Stringer Runs out Composite Areas by Embedded Optical Fiber Sensors and Connectors Integrated during Production in a Composite Plant

    PubMed Central

    Miguel Giraldo, Carlos; Zúñiga Sagredo, Juan; Sánchez Gómez, José; Corredera, Pedro

    2017-01-01

    Embedding optical fibers sensors into composite structures for Structural Health Monitoring purposes is not just one of the most attractive solutions contributing to smart structures, but also the optimum integration approach that insures maximum protection and integrity of the fibers. Nevertheless this intended integration level still remains an industrial challenge since today there is no mature integration process in composite plants matching all necessary requirements. This article describes the process developed to integrate optical fiber sensors in the Production cycle of a test specimen. The sensors, Bragg gratings, were integrated into the laminate during automatic tape lay-up and also by a secondary bonding process, both in the Airbus Composite Plant. The test specimen, completely representative of the root joint of the lower wing cover of a real aircraft, is comprised of a structural skin panel with the associated stringer run out. The ingress-egress was achieved through the precise design and integration of miniaturized optical connectors compatible with the manufacturing conditions and operational test requirements. After production, the specimen was trimmed, assembled and bolted to metallic plates to represent the real triform and buttstrap, and eventually installed into the structural test rig. The interrogation of the sensors proves the effectiveness of the integration process; the analysis of the strain results demonstrate the good correlation between fiber sensors and electrical gauges in those locations where they are installed nearby, and the curvature and load transfer analysis in the bolted stringer run out area enable demonstration of the consistency of the fiber sensors measurements. In conclusion, this work presents strong evidence of the performance of embedded optical sensors for structural health monitoring purposes, where in addition and most importantly, the fibers were integrated in a real production environment and the ingress-egress issue was solved by the design and integration of miniaturized connectors compatible with the manufacturing and structural test phases. PMID:28754009

  16. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    NASA Technical Reports Server (NTRS)

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; hide

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  17. Toxicological Assessment of ISS Air Quality: June - September 2013 (Increment 36)

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2014-01-01

    Fourteen mini grab sample containers (msGSCs) were collected on ISS between June and September 2013 and were returned on 34S; however, the ATV-4 first ingress mGSC did not contain sufficient sample to report results (initial sample pressure = 1.2 psia). Of the remaining 13 mGSCs, 12 were collected as routine monthly samples in the Russian Service Module (SM), US Laboratory (Lab), and either the Japanese Pressurized Module (JPM) or the Columbus module (Col), and 1 was collected during HTV-4 first ingress. A summary of the analytical results from the 13 valid mGSCs is shown.

  18. Beginning and end in the acquisition of the perfective aspect in Russian.

    PubMed

    Stoll, Sabine

    2005-11-01

    The goal of this research is to determine the relevant factors that aid in the acquisition of the perfective aspect in Russian. Results confirm the findings of previous research, which say that aspect is not learned as a uniform category, but rather interrelates with the acquisition of Aktionsarten. This study focuses on the factors responsible for the difference in the rate of the acquisition of two complementary Aktionsarten in the perfective aspect: telic verbs (verbs including a result/goal of the denoted event) and ingressive verbs (verbs including the beginning of the event). Since the usage of Aktionsarten strongly depends on the surrounding discourse, two experiments that varied in their discourse complexity were conducted. One study looked at the production of isolated utterances (thirty-nine children aged 3;0 to 6;11) and the other study focused on complex texts (fifty-two children aged 3;0 to 6;11). It was found that while telics are used independently of discourse context, ingressives depend strongly on contextual information. These results suggest that discourse complexity and narrative competence define the acquisitional process for ingressives, yet are irrelevant in the acquisition of telics.

  19. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Container/Closure Integrity Testing and the Identification of a Suitable Vial/Stopper Combination for Low-Temperature Storage at -80 {degrees}C.

    PubMed

    Zuleger, Brigitte; Werner, Uwe; Kort, Alexander; Glowienka, Rene; Wehnes, Engelbert; Duncan, Derek

    2012-01-01

    It was recently found that after storage of a live viral vaccine at -80 °C in glass vials closed with rubber stoppers, a phenomenon was revealed which had not been observed before with other viral products stored at -20 °C: overpressure in the vials. As this phenomenon poses a serious safety problem for medical personnel as well as for the product itself, an investigation was initiated to identify the root cause of the overpressure. After exclusion of possible root causes (differences in air temperature or atmospheric air pressure during filling and quality control testing, outgassing from the formulation buffer) the remaining hypothesis involved a possible container closure integrity issue at low temperature. The glass transition temperatures (T(g)) of many rubber stopper formulations are in the range -55 to -70 °C. At storage temperatures below T(g), the rubber stopper loses its elastic properties and there is a risk that the seal integrity of the vial could be compromised. Loss of seal integrity of the vials near storage temperatures of -80 °C would result in an ingress of cold dense gas into the vial headspace. After removal of the vials from storage at -80 °C, the rubber stoppers could regain their elastic properties and the vials would quickly reseal, thereby trapping the ingressed gas, which leads to overpressure in the vial headspace. Nondestructive laser-based headspace analysis was used to investigate the maintenance of container closure integrity as a function of the filling and capping/crimping process, storage and transport conditions, and vial/stopper designs. This analytical method is based on frequency modulation spectroscopy (FMS) and can be used for noninvasive headspace measurements of headspace pressure and headspace gas composition. Changes in the vial headspace composition and/or pressure are a clear marker for vials that have lost container closure integrity. After storage of a live viral vaccine at -80 °C in glass vials closed with rubber stoppers, overpressure in some of the vials was observed, posing a serious safety problem for medical personnel as well as for the product. A working hypothesis to explain this phenomenon involved a possible container closure integrity issue at these low temperatures. The glass transition temperatures (T(g)) of many rubber stopper formulations are in the range -55 to -70 °C. At storage temperatures below T(g), the rubber stopper loses its elastic properties, resulting in compromised seal integrity of the vial and ingress of cold dense gas into the vial headspace. Upon thawing, the rubber stoppers regain their elastic properties and the vials quickly reseal, thereby trapping the ingressed gas, which leads to overpressure in the vial headspace. Nondestructive, laser-based headspace analysis, which is able to detect changes in headspace pressure and gas composition, was used to investigate the maintenance of container closure integrity. Changes in the vial headspace composition and/or pressure are a clear marker for vials that have lost container closure integrity.

  1. Investigation of the quality of stored red blood cells after simulated air drop in the maritime environment.

    PubMed

    Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael

    2018-02-01

    Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.

  2. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.

    PubMed

    Fink, R D; McClay, D R

    1985-01-01

    At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.

  3. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the design and fabrication of the interface between the MACES and the PLSS. The MACES was not designed to interface with a PLSS, hence an interface kit must accommodate the unique design qualities of the MACES and provide the necessary life support function connections to the PLSS. A prototype interface kit for MACES to PLSS has been designed and fabricated. Unmanned and manned testing of the interface will show the usability of the kit while wearing a MACES. The testing shows viability of the kit approach as well as the operations concept. The design will be vetted through suit and PLSS experts and, with the findings from the testing, the best path forward will be determined. As the Asteroid Redirect Mission matures, the suit/life support portion of the mission will mature along with it and EVA Tools & Equipment can be iterated to accommodate the overall mission objectives and compromises inherent in EVA Suit optimization. The goal of the EVA architecture for ARCM is to continue to build on the previously developed technologies and lessons learned, and accomplish the ARCM EVAs while providing a stepping stone to future missions and destinations.

  4. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  5. Treatment of Spacecraft Wastewater Using a Hollow Fiber Membrane Biofilm Redox Control Reactor

    NASA Technical Reports Server (NTRS)

    Smith, Daniel P.

    2003-01-01

    The purpose of this project was to develop and evaluate design concepts for biological treatment reactors for the purification of spacecraft wastewater prior to reverse osmosis treatment. The motivating factor is that wastewater recovery represents the greatest single potential reduction in the resupply requirements for crewed space missions. Spacecraft wastewater composition was estimated from the characteristics of the three major component streams: urine/flush water, hygiene water, and atmospheric condensate. The key characteristics of composite spacecraft wastewater are a theoretical oxygen demand of 4519 mg/L, of which 65% is nitrogenous oxygen demand, in a volume of 11.5 liter/crew-day. The organic carbon to nitrogen ratio of composite wastewater is 0.86. Urine represents 93% of nitrogen and 49% of the organic carbon in the composite wastestream. Various bioreaction scenarios were evaluated to project stoichiometric oxygen demands and the ability of wastewater carbon to support denitrification. Ammonia nitrification to the nitrite oxidation state reduced the oxygen requirement and enabled wastewater carbon to provide nearly complete denitrification. A conceptual bioreactor design was established using hollow fiber membranes for bubbleless oxygen transfer in a gravity-free environment, in close spatial juxtaposition to a second interspaced hollow fiber array for supplying molecular hydrogen. Highly versatile redox control and an enhanced ability to engineer syntrophic associations are stated advantages. A prototype reactor was constructed using a microporous hollow fiber membrane module for aeration. Maintaining inlet gas pressure within 0.25 psi of the external water pressure resulted in bubble free operation with no water ingress into hollow fiber lumens. Recommendations include the design and operational testing of hollow fiber bioreactors using: 1) Partial nitrification/nitrite predenitrification; 2) Limited aeration for simultaneous nitrification/denitrification or for nitrite reduction/ammonia oxidation; 3) Hydrogenotrophic denitrification.

  6. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  7. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  8. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    DOEpatents

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  9. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  10. An Innovative Accident Tolerant LWR Fuel Rod Design Based on Uranium-Molybdenum Metal Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Bennett, Wendy D.; Henager, Charles H.

    2016-09-12

    The US Department of Energy is developing a uranium-molybdenum metal alloy Enhanced Accident Tolerant Fuel concept for Light Water Reactor applications that provides improved fuel performance during normal operation, anticipated operational occurrences, and postulated accidents. The high initial uranium atom density, the high thermal conductivity, and a low heat capacity permit a U-Mo-based fuel assembly to meet important design and safety requirements. These attributes also result in a fuel design that can satisfy increased fuel utilization demands and allow for improved accident tolerance in LWRs. This paper summarizes the results obtained from the on-going activities to; 1) evaluate the impactmore » of the U-10wt%Mo thermal properties on operational and accident safety margins, 2) produce a triple extrusion of stainless steel cladding/niobium liner/U-10Mo fuel rod specimen and 3) test the high temperature water corrosion of rodlet samples containing a drilled hole in the cladding. Characterization of the cladding and liner thickness uniformity, microstructural features of the U-Mo gamma phase, and the metallurgical bond between the component materials will be presented. The results from corrosion testing will be discussed which yield insights into the resistance to attack by water ingress during high temperature water exposure for the triple extruded samples containing a drilled hole. These preliminary evaluations find that the U-10Mo fuel design concept has many beneficial features that can meet or improve conventional LWR fuel performance requirements under normal operation, AOOs, and postulated accidents. The viability of a deployable U-Mo fuel design hinges on demonstrating that fabrication processes and alloying additions can produce acceptable irradiation stability during normal operation and accident conditions and controlled metal-water reaction rates in the unlikely event of a cladding perforation. In the area of enhanced accident tolerance, a key objective is to establish that the lower stored energy of the U-Mo fuel design can provide the emergency core cooling systems the opportunity to maintain the reactor core in a coolable geometry following an accident.« less

  11. An experimental investigation on the requirement of roof height and sill width for car ingress and egress.

    PubMed

    Causse, Julien; Wang, Xuguang; Denninger, Lisa

    2012-01-01

    This study aimed at experimentally investigating the influence of roof height and sill width on car ingress/egress movements. The first uncomfortable (Ht1) and the lowest acceptable (Ht2) roof heights were obtained from 26 participants of three different stature groups thanks to a multi-adjustable vehicle mock-up. Both Ht1 and Ht2 were affected neither by stature nor by vehicle type. Only a difference of 45 mm between Ht1 and Ht2 was observed. Tall volunteers more flexed the trunk and neck than short persons thanks to a larger space available around the seat when the head passing under the roof. The vehicle type had almost no effect on upper body posture. The roof height only affected neck flexion. The sill width mainly imposed a lateral translation. Results demonstrated that an appropriate roof height should be determined carefully. A small change of 45 mm in roof height may lead to an unacceptable situation. The present study experimentally investigated the effects of roof height and sill width on car ingress and egress movements. Short females required almost the same roof height as tall males due to smaller space around the seat. The results would help to optimise car dimensions for improving car accessibility.

  12. Mapping edge-based traffic measurements onto the internal links in MPLS network

    NASA Astrophysics Data System (ADS)

    Zhao, Guofeng; Tang, Hong; Zhang, Yi

    2004-09-01

    Applying multi-protocol label switching techniques to IP-based backbone for traffic engineering goals has shown advantageous. Obtaining a volume of load on each internal link of the network is crucial for traffic engineering applying. Though collecting can be available for each link, such as applying traditional SNMP scheme, the approach may cause heavy processing load and sharply degrade the throughput of the core routers. Then monitoring merely at the edge of the network and mapping the measurements onto the core provides a good alternative way. In this paper, we explore a scheme for traffic mapping with edge-based measurements in MPLS network. It is supposed that the volume of traffic on each internal link over the domain would be mapped onto by measurements available only at ingress nodes. We apply path-based measurements at ingress nodes without enabling measurements in the core of the network. We propose a method that can infer a path from the ingress to the egress node using label distribution protocol without collecting routing data from core routers. Based on flow theory and queuing theory, we prove that our approach is effective and present the algorithm for traffic mapping. We also show performance simulation results that indicate potential of our approach.

  13. Embryonic wound healing by apical contraction and ingression in Xenopus laevis.

    PubMed

    Davidson, Lance A; Ezin, Akouavi M; Keller, Ray

    2002-11-01

    We have characterized excisional wounds in the animal cap of early embryos of the frog Xenopus laevis and found that these wounds close accompanied by three distinct processes: (1) the assembly of an actin purse-string in the epithelial cells at the wound margin, (2) contraction and ingression of exposed deep cells, and (3) protrusive activity of epithelial cells at the margin. Microsurgical manipulation allowing fine control over the area and depth of the wound combined with videomicroscopy and confocal analysis enabled us to describe the kinematics and challenge the mechanics of the closing wound. Full closure typically occurs only when the deep, mesenchymal cell-layer of the ectoderm is left intact; in contrast, when deep cells are removed along with the superficial, epithelial cell-layer of the ectoderm, wounds do not close. Actin localizes to the superficial epithelial cell-layer at the wound margin immediately after wounding and forms a contiguous "purse-string" in those cells within 15 min. However, manipulation and closure kinematics of shaped wounds and microsurgical cuts made through the purse-string rule out a major force-generating role for the purse-string. Further analysis of the cell behaviors within the wound show that deep, mesenchymal cells contract their apical surfaces and ingress from the exposed surface. High resolution time-lapse sequences of cells at the leading edge of the wound show that these cells undergo protrusive activity only during the final phases of wound closure as the ectoderm reseals. We propose that assembly of the actin purse-string works to organize and maintain the epithelial sheet at the wound margin, that contraction and ingression of deep cells pulls the wound margins together, and that protrusive activity of epithelial cells at the wound margin reseals the ectoderm and re-establishes tissue integrity during wound healing in the Xenopus embryonic ectoderm. Copyright 2002 Wiley-Liss, Inc.

  14. In-line photonic microcells based on the elliptical microfibers for refractive index sensors applications

    NASA Astrophysics Data System (ADS)

    Jin, Wa; Liu, Xuejing; Jin, Wei

    2017-10-01

    We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered elliptical microfibers (MFs) inside glass tubes. The encapsulation does not change the optical property of the MF but protects the elliptical MF from external disturbance and contamination and makes the micro-laboratory robust. Such micro-laboratory can be easily integrated into standard fiber-optic circuits with low loss, making the elliptical MF-based devices more practical for real-world applications. Evanescent field sensing is realized by fabricating micro-channel on the PMC for ingress/egress of sample liquids/gas. Based on the encapsulated elliptical MF PMCs, we demonstrated RI sensitivity of 2024 nm per refractive index unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.

  15. Characterization of basin concrete in support of structural integrity demonstration for extended storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, A.

    Concrete core samples from C basin were characterized through material testing and analysis to verify the design inputs for structural analysis of the L Basin and to evaluate the type and extent of changes in the material condition of the concrete under extended service for fuel storage. To avoid the impact on operations, core samples were not collected from L area, but rather, several concrete core samples were taken from the C Basin prior to its closure. C basin was selected due to its similar environmental exposure and service history compared to L Basin. The microstructure and chemical composition ofmore » the concrete exposed to the water was profiled from the water surface into the wall to evaluate the impact and extent of exposure. No significant leaching of concrete components was observed. Ingress of carbonation or deleterious species was determined to be insignificant. No evidence of alkali-silica reactions (ASR) was observed. Ettringite was observed to form throughout the structure (in air voids or pores); however, the sulfur content was measured to be consistent with the initial concrete that was used to construct the facility. Similar ettringite trends were observed in the interior segments of the core samples. The compressive strength of the concrete at the mid-wall of the basin was measured, and similar microstructural analysis was conducted on these materials post compression testing. The microstructure was determined to be similar to near-surface segments of the core samples. The average strength was 4148 psi, which is well-above the design strength of 2500 psi. The analyses showed that phase alterations and minor cracking in a microstructure did not affect the design specification for the concrete.« less

  16. Continuum-based DFN-consistent simulations of oxygen ingress in fractured crystalline rocks

    NASA Astrophysics Data System (ADS)

    Trinchero, P.; Puigdomenech, I.; Molinero, J.; Ebrahimi, H.; Gylling, B.; Svensson, U.; Bosbach, D.; Deissmann, G.

    2016-12-01

    The potential transient infiltration of oxygenated glacial meltwater into initially anoxic and reducing fractured crystalline rocks during glaciation events is an issue of concern for some of the prospected deep geological repositories for spent nuclear fuel. Here, this problem is assessed using reactive transport calculations. First, a novel parameterisation procedure is presented, where flow, transport and geochemical parameters (i.e. hydraulic conductivity, effective/kinetic porosity, and mineral specific surface and abundance) are defined on a finite volume numerical grid based on the (spatially varying) properties of an underlying Discrete Fracture Network (DFN). Second, using this approach, a realistic reactive transport model of Forsmark, i.e. the selected site for the proposed Swedish spent nuclear fuel repository, is implemented. The model consists of more than 70 million geochemical transport degrees of freedom and simulates the ingress of oxygen-rich water from the recharge area of the domain and its depletion due to reactions with the Fe(II) mineral chlorite. Third, the calculations are solved in the supercomputer JUQUEEN of the Jülich Supercomputing Centre. The results of the simulations show that oxygen infiltrates relatively quickly along fractures and deformation zones until a steady state profile is reached, where geochemical reactions counterbalance advective transport processes. Interestingly, most of the iron-bearing minerals are consumed in the highly conductive zones, where larger mineral surfaces are available for reactions. An analysis based on mineral mass balance shows that the considered rock medium has enough capacity to buffer oxygen infiltration for a long period of time (i.e. some thousand years).

  17. Environmental protection of titanium alloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Wright, I. G.; Wood, R. A.; Seltzer, M. S.

    1974-01-01

    Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking.

  18. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  19. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    NASA Astrophysics Data System (ADS)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-06-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  20. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    PubMed

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  1. Experimental and modeling study of chloride ingress into concrete and reinforcement corrosion initiation

    NASA Astrophysics Data System (ADS)

    Yu, Hui

    Effects of reinforcement and coarse aggregate on chloride ingression into concrete and reinforcement corrosion initiation have been studied with experimental and modeling (finite element method) analyses. Once specimens were fabricated and exposed to a chloride solution, various experimental techniques were employed to determine the effect of reinforcement and coarse aggregate on time-to-corrosion and chloride ingress and concentration at corrosion locations. Model analyses were performed to verify and explain the experimental results. Based upon the results, it was determined that unexpectedly higher chloride concentrations were present on the top of the rebar trace than that to the side at the same depth and an inverse concentration gradient (increasing [ Cl-] with increasing depth) occurred near the top of rebars. Also, coarse aggregate volume profile in close proximity to the rebar and spatial distribution of these aggregates, in conjunction with the physical obstruction afforded by reinforcement to chloride flow, complicates concrete sampling for Cl- intended to define the critical concentration of this species to initiate corrosion. Modeling analyses that considered cover thickness, chloride threshold concentration, reinforcement size and shape, and coarse aggregate type and percolation confirmed the experimental findings. The results, at least in part, account for the relatively wide spread in chloride corrosion threshold values reported in the literature and illustrate that more consistent chloride threshold concentrations can be acquired from mortar or paste specimens than from concrete ones.

  2. Ostracods (Crustacea) and their palaeoenvironmental implication for the Solimões Formation (Late Miocene; Western Amazonia/Brazil)

    PubMed Central

    Gross, Martin; Ramos, Maria Ines; Caporaletti, Marco; Piller, Werner E.

    2013-01-01

    Western Amazonia's landscape and biota were shaped by an enormous wetland during the Miocene epoch. Among the most discussed topics of this ecosystem range the question on the transitory influx of marine waters. Inter alia the occurrence of typically brackish water associated ostracods is repeatedly consulted to infer elevated salinities or even marine ingressions. The taxonomical investigation of ostracod faunas derived from the upper part of the Solimões Formation (Eirunepé; W-Brazil) documents a moderately diverse assemblage (19 species). A wealth of freshwater ostracods (mainly Cytheridella, Penthesilenula) was found co-occurring with taxa (chiefly Cyprideis) usually related to marginal marine settings today. The observed faunal compositions as well as constantly very light δ18O- and δ13C-values obtained by measuring both, the freshwater and brackish water ostracod group, refer to entirely freshwater conditions. These results corroborate with previous sedimentological and palaeontological observations, which proposed a fluvial depositional system for this part of western Amazonia during the Late Miocene. We demonstrate that some endemic, “brackish” water ostracods (i.e., Cyprideis) have been effectively adapted to freshwater conditions. Thus, their occurrence is no univocal evidence for the influence of brackish or marine waters in western Amazonia during the Miocene. PMID:26523090

  3. Ostracods (Crustacea) and their palaeoenvironmental implication for the Solimões Formation (Late Miocene; Western Amazonia/Brazil).

    PubMed

    Gross, Martin; Ramos, Maria Ines; Caporaletti, Marco; Piller, Werner E

    2013-03-01

    Western Amazonia's landscape and biota were shaped by an enormous wetland during the Miocene epoch. Among the most discussed topics of this ecosystem range the question on the transitory influx of marine waters. Inter alia the occurrence of typically brackish water associated ostracods is repeatedly consulted to infer elevated salinities or even marine ingressions. The taxonomical investigation of ostracod faunas derived from the upper part of the Solimões Formation (Eirunepé; W-Brazil) documents a moderately diverse assemblage (19 species). A wealth of freshwater ostracods (mainly Cytheridella , Penthesilenula ) was found co-occurring with taxa (chiefly Cyprideis ) usually related to marginal marine settings today. The observed faunal compositions as well as constantly very light δ 18 O- and δ 13 C-values obtained by measuring both, the freshwater and brackish water ostracod group, refer to entirely freshwater conditions. These results corroborate with previous sedimentological and palaeontological observations, which proposed a fluvial depositional system for this part of western Amazonia during the Late Miocene. We demonstrate that some endemic, "brackish" water ostracods (i.e., Cyprideis ) have been effectively adapted to freshwater conditions. Thus, their occurrence is no univocal evidence for the influence of brackish or marine waters in western Amazonia during the Miocene.

  4. Fluid sampling apparatus and method

    DOEpatents

    Yeamans, David R.

    1998-01-01

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

  5. Influence of Excessive Moisture in the Subgrade on the Durability and Load-Bearing Capacity of Road Pavements

    NASA Astrophysics Data System (ADS)

    Mieczkowski, P.; Budziński, B.

    2018-05-01

    When well performed, pavement renewal or alteration shall ensure the desired properties of the road during the assumed period of operation. Presence of water in the subgrade can be one of the main factors affecting the structural capacity of pavement and can result in cracking of the bituminous layers, even after a very short period of trafficking. Reconstruction of one of regional roads in Poland has been chosen to serve as an example of inappropriate approach to the problem of the presence of water in the road structure. The project included construction of new layers of pavement and increasing the design life of the whole pavement structure to 4.06 million ESAL of 100 kN (as per the Standard Catalogue of Typical Flexible and Semi-rigid Road Pavement Structures, issue of 1997). After a relatively short period of trafficking (3-5 years) localised alligator cracking appeared on the surface along with structural deformations. The pavement condition assessment including FWD tests was carried out to reveal excessive deflections (over 500 μm) which classify the road for renewal. The analysis of data showed that the main cause of distress was softening of the subgrade caused by an ingress of precipitation water under the pavement layers through the roadway and shoulder edges. The deficiencies of the performed reconstruction occurred both in the roadway (including small step-outs in the cement-treated layer) and partly in the shoulders where the existing soil was in places replaced with impervious material, with the existing (cohesive) material left in place on a major part of the overall length.

  6. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091989 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, enters the newly-attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) of the International Space Station.

  7. Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises

    NASA Astrophysics Data System (ADS)

    Litvinova, N. A.

    2017-11-01

    The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.

  8. Human Intestinal Barrier Function in Health and Disease

    PubMed Central

    König, Julia; Wells, Jerry; Cani, Patrice D; García-Ródenas, Clara L; MacDonald, Tom; Mercenier, Annick; Whyte, Jacqueline; Troost, Freddy; Brummer, Robert-Jan

    2016-01-01

    The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed. PMID:27763627

  9. Fluid sampling apparatus and method

    DOEpatents

    Yeamans, D.R.

    1998-02-03

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

  10. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091966 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, is pictured in the newly-attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) of the International Space Station.

  11. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  12. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    PubMed

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  13. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    PubMed Central

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-01-01

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625

  14. Marine intervals in Neogene fluvial deposits of western Amazonia

    NASA Astrophysics Data System (ADS)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  15. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091940 (13 Aug. 2014) --- Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  16. Assymetry in the Polar Mesosphere Revealed by the 2012 Venus Transit Aureole

    NASA Astrophysics Data System (ADS)

    Widemann, Thomas; Tanga, P.; Reardon, K. P.; Limaye, S.; Wilson, C.; Vandaele, A.; Wilquet, V.; Mahieux, A.; Robert, S.; Pasachoff, J. M.; Schneider, G.

    2012-10-01

    Close to ingress and egress phases, the fraction of Venus disk projected outside the solar photosphere appears outlined by an irregular thin arc of light called the "aureole." We have shown that the deviation due to refraction and the aureole intensity are related to the local density scale height and the altitude of the refraction layer (Tanga et al. 2012). Since the aureole brightness is the quantity that can be measured during the transit, an appropriate model allows us to determine both parameters. We now compare this model developed for the 2004 data to the first results of 2012 campaign. Ingress pictures of NASA's SDO/HMI observations, OP-OCA/VTE coronagraph observations at Haleakala and Lowell stations, and Dunn/IBIS observations at Sacramento Peak, NM, show latitudinal structure of the aureole during the ingress phase of the Venus transit. For the HMI data, the temporal cadence is 3.75 sec and the pixel scale is 0.5 arcsec/pixel. The polar region, significantly brighter in initial phases due to the larger scale height of the polar mesosphere, appears consistently offset toward morning terminator by about 15 deg. latitude, peaking at 75N at 6:00 local time. This result reflects local latitudinal structure in the polar mesosphere, either in temperature or aerosol altitude distribution. Relation with ESA / Venus Express / SOIR simultaneous measurements and dynamical interpretation will be discussed at the meeting. Tanga et al. 2012, Icarus 218, 207-219

  17. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-08-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle.

  18. Relationships between solid dispersion preparation process, particle size and drug release--an NMR and NMR microimaging study.

    PubMed

    Dahlberg, Carina; Millqvist-Fureby, Anna; Schuleit, Michael; Furó, István

    2010-10-01

    Solid dispersion tablets prepared by either spray drying or rotoevaporation and exhibiting different grain and pore sizes were investigated under the process of hydration-swelling-gelation. (2)H and (1)H NMR microimaging experiments were used to selectively follow water penetration and polymer mobilization kinetics, respectively, while the drug release kinetics was followed by (1)H NMR spectroscopy. The obtained data, in combination with morphological information by scanning electron microscopy (SEM), reveal a complex process that ultimately leads to release of the drug into the aqueous phase. We find that the rate of water ingress has no direct influence on release kinetics, which also renders air in the tablets a secondary factor. On the other hand, drug release is directly correlated with the polymer mobilization kinetics. Water diffusion into the originally dry polymer grains determines the rate of grain swelling and the hydration within the grains varies strongly with grain size. We propose that this sets the stage for creating homogeneous gels for small grain sizes and heterogeneous gels for large grain sizes. Fast diffusion through water-rich sections of the inhomogeneous gels that exhibit a large mesh size is the factor which yields a faster drug release from tablets prepared by rotoevaporation. Copyright © 2010. Published by Elsevier B.V.

  19. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia

    NASA Astrophysics Data System (ADS)

    Uhlemann, Sebastian; Kuras, Oliver; Richards, Laura A.; Naden, Emma; Polya, David A.

    2017-10-01

    Despite being rich in water resources, many areas of South East Asia face difficulties in securing clean water supply. This is particularly problematic in regions with a rapidly growing population. In this study, the spatial variability of the thickness of a clay layer, controlling surface - groundwater interactions that affect aquifer vulnerability, was investigated using electrical resistivity tomography (ERT). Data were acquired along two transects, showing significant differences in the imaged resistivities. Borehole samples were analyzed regarding particle density and composition, and linked to their resistivity. The obtained relationships were used to translate the field electrical resistivities into lithologies. Those revealed considerable variations in the thickness of the clay layer, ranging from 0 m up to 25 m. Geochemical data, highlighting zones of increased ingress of surface water into the groundwater, confirmed areas of discontinuities in the clay layer, which act as preferential flow paths. The results may guide urban planning of the Phnom Penh city expansion, in order to supply the growing population with safe water. The presented approach of using geophysics to estimate groundwater availability, accessibility, and vulnerability is not only applicable to Kandal Province, Cambodia, but also to many other areas of fast urbanization in South East Asia and beyond.

  20. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Erpyleva, S. F.

    2017-05-01

    Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.

  1. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091921 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  2. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091918 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  3. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091919 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  4. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091922 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  5. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091969 (13 Aug. 2014) --- Surrounded by stowage containers, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, is pictured in the newly-attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) of the International Space Station.

  6. Presence of Legionella in London's water supplies.

    PubMed

    Colbourne, J S; Trew, R M

    1986-09-01

    Legionella occurs frequently (52 to 54%) in domestic water and cooling water inside commercial, industrial and health care buildings, and these types of water systems are now regarded as a normal habitat for Legionella. The factors that predispose a particular water system to colonization by these organisms are ill-defined, although it is fairly certain that biological and physicochemical environmental factors play an important role in allowing Legionella to multiply in the circulating water. It has been postulated that the organism may gain access to water systems inside buildings by one of three routes: contact with air through open points such as uncovered storage tanks or vents, ingress of soil or surface water during construction or repair, or intermittent seeding with organisms present in low numbers in the public water supply. Three studies in the USA have found Legionella in 0.4 to 8.8% of drinking-water samples, but these were not representative of the public supply network as a whole. The aim of this study was to determine, over a period of 1 year, the frequency of Legionella in London's drinking water--from the treatment plant through to the consumer's tap. To date, Legionella has not been isolated from raw river water entering London's treatment works or from treated water entering the distribution network. Sixty-two monitoring taps in buildings located in 21 supply areas have been sampled twice for Legionella; only 2 (2.4%) have proved positive during the autumn and winter of 1985/86. The strain found was L. pneumophila serotype 1, subgroup Olda, and the numbers ranged from 10(2) to 10(4)/l. Although the survey is incomplete, it is already clear that the public water supplies in London are not a source of strains of Legionella associated with disease.

  7. Enhancement of the barrier performance in organic/inorganic multilayer thin-film structures by annealing of the parylene layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Namsu, E-mail: nkim@keti.re.kr; Components and Materials Physics Research Center, #68 Yatop-dong, Korea Electronics Technology Institute, Bundang-gu, 463-816; Graham, Samuel

    2014-10-15

    Highlights: • High performance thin-film barrier structure for encapsulation was fabricated. • By annealing parylene in encapsulation structure, the barrier performance was improved. • The effective water vapor transmission rate is 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day. - Abstract: A multilayered barrier structure was fabricated by chemical vapor deposition of parylene and subsequent plasma-enhanced chemical vapor deposition of SiO{sub x} or SiN{sub x}. The barrier performance against water vapor ingress was significantly improved by annealing the parylene layer before the deposition of either SiO{sub x} or SiN{sub x}. The mechanism of this enhancement was investigated using atomic forcemore » microscopy, Raman spectroscopy, and X-ray diffraction. The surface roughness of the parylene before the deposition of either SiO{sub x} or SiN{sub x} was found to correlate closely with the barrier performance of the multilayered structures. In addition, removing absorbed water vapor in the film by annealing results in a lower water vapor transmission rate in the transient region and a longer lag time. Annealing the parylene leads to a large decrease in the effective water vapor transmission rate, which reaches 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day.« less

  8. Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand

    NASA Astrophysics Data System (ADS)

    Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.

    2017-09-01

    Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.

  9. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  10. RacGAP50C is sufficient to signal cleavage furrow formation during cytokinesis.

    PubMed

    D'Avino, Pier Paolo; Savoian, Matthew S; Capalbo, Luisa; Glover, David M

    2006-11-01

    Several studies indicate that spindle microtubules determine the position of the cleavage plane at the end of cell division, but their exact role in triggering the formation and ingression of the cleavage furrow is still unclear. Here we show that in Drosophila depletion of either the GAP (GTPase-activating protein) or the kinesin-like subunit of the evolutionary conserved centralspindlin complex prevents furrowing without affecting the association of astral microtubules with the cell cortex. Moreover, time-lapse imaging indicates that astral microtubules serve to deliver the centralspindlin complex to the equatorial cortex just before furrow formation. However, when the GAP-signaling component was mislocalized around the entire cortex using a membrane-tethering motif, this caused ectopic furrowing even in the absence of its motor partner. Thus, the GAP component of centralspindlin is both necessary and sufficient for furrow formation and ingression and astral microtubules provide a route for its delivery to the cleavage site.

  11. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited subjects performance to their unsuited performance and then applying the results to the entire range of population. The use of a transparent space vehicle mockup enabled the collection of large amounts of data during human-in-the-loop testing. Mobility data revealed that most of the tested spacesuits had sufficient ranges of motion for tasks to be performed successfully. A failed tasked by a suited subject most often stemmed from a combination of poor field of view while seated and poor dexterity of the gloves when pressurized or from suit/vehicle interface issues. Seat ingress/egress testing showed that problems with anthropometric accommodation does not exclusively occur with the largest or smallest subjects, but rather specific combinations of measurements that lead to narrower seat ingress/egress clearance.

  12. Pre-cementation of deep shaft

    NASA Astrophysics Data System (ADS)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  13. Magnetic Resonance Imaging: A Tool for Pork Pie Development

    PubMed Central

    Gaunt, Adam P.; Morris, Robert H.; Newton, Michael I.

    2013-01-01

    The traditional British pork pie consists of roughly chopped pork cooked in a hot water pastry crust. Due to shrinkage of the meat during cooking, the gap formed around the meat is usually sealed using a gelatin based jelly to exclude air and thus help to preserve the pie. The properties of the jelly are such that it will ingress into the pastry crust causing undesirable softening. The jelly is traditionally produced by simmering pig trotters with seasoning for several hours. In this work we demonstrate the potential of magnetic resonance imaging (MRI) as a tool for investigating the conditions required for producing jellies with different properties and present two examples of this use. Firstly we demonstrate that MRI can determine the ability of water to diffuse through the jelly which is critical in minimizing the amount of moisture moving from the jelly to the crust. Secondly, the impact of jelly temperature on the penetration length into the crust is investigated. These examples highlight the power of MRI as a tool for food assessment. PMID:28239124

  14. Partitions for high-rise construction using phosphogypsum

    NASA Astrophysics Data System (ADS)

    Zolotukhin, Sergey; Kukina, Olga; Abramenko, Anatoly

    2018-03-01

    Gypsum blocks are usually used to make partitions in highrise construction. Reducing the cost of materials used in high-rise construction is an urgent task of modern material science. Phosphogypsum dihydrate, which has binding properties, is one of the large-tonnage waste. The authors have proved that, after years of storage in heaps, water-soluble phosphates, fluorides and other additives included in the structure of fresh phosphogypsum dissolved in water due to weathering (humidification-drying, freezing-thawing in a water-saturated state), and the calcium hydro-and dihydrogen phosphates ingressed in the lattice underwent complete hydrolysis and disintegration, thereby changing the physicochemical properties of phosphogypsum. The data obtained by the authors on the absence of water-soluble compounds of phosphorus, fluorine in stale phosphogypsum indicate its ecological purity and the possibility of application in housing construction. Having analyzed the data of modern methods of differential scanning calorimetry and scanning electron microscopy, the authors predicted and proved by the energy of dehydration of phosphogypsum dihydrate, lime, sandy loam, the possibility of obtaining non-flammable materials with sufficient strength for wall materials. Understanding the processes occurring in water films (the thickness of the water film, the pressure, the temperature and the pH of the aqueous extract of the mixture, the drying of the materials produced), made it possible to develop a technology for obtaining wall products from lime-sandy phosphogypsum material using typical silicate brick production equipment and vibropresses for key-cog blocks production.

  15. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091979 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, is pictured in the hatch after removing the docking mechanism of the newly-attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) of the International Space Station.

  16. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  17. 43 CFR 6301.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... physical ability of property owners and their successors in interest to have ingress to and egress from... land that is completely surrounded by Congressionally designated wilderness. Mechanical transport means... require developed facilities or mechanical transport. Public lands means any lands and interests in lands...

  18. Poindexter and Love floating into Node 2

    NASA Image and Video Library

    2008-02-10

    S122-E-007074 (9 Feb. 2008) --- Astronauts Alan Poindexter (left), pilot for the Space Shuttle Atlantis' STS-122 crew, and Stanley Love, mission specialist, appear to enjoy the view aboard the International Space Station shortly after ingress on docking day.

  19. Durability of Silica-Protected Ceramics in Combustion Atmospheres

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Smialek, James L.; Fox, Dennis S.; Opila, Elizabeth J.

    1995-01-01

    This overview of oxidation and corrosion effects on silica-protected ceramics and composites is divided into two parts: (1) External effects and (2) Internal effects. In regard to the first part, the literature indicates silica the best of the common protective oxides in pure oxygen. However in actual applications, there are four major degradation routes which must be considered: (1) Formation of SiO(g); (2) water vapor enhancement of oxidation rate of Si(OH)4 volatiles; (3) low level metal cation enhancement of oxidation rate; and (4) molten salt and slag corrosion. Several protective coating concepts have been discussed, which may minimize these effects. Internal effects deal with a microcrack providing a path for oxygen ingress to the oxygen sensitive fiber and fiber coating. This is a critical area of study for theses materials. Possible solutions involve a fluid glass to fill the cracks and/or oxygen getting along the walls of the crack.

  20. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    PubMed Central

    Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.

    The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. Thismore » QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.« less

  2. Do drowning and anoxia kill head lice?

    PubMed

    Candy, Kerdalidec; Brun, Sophie; Nicolas, Patrick; Durand, Rémy; Charrel, Remi N; Izri, Arezki

    2018-01-01

    Chemical, physical, and mechanical methods are used to control human lice. Attempts have been made to eradicate head lice Pediculus humanus capitis by hot air, soaking in various fluids or asphyxiation using occlusive treatments. In this study, we assessed the maximum time that head lice can survive anoxia (oxygen deprivation) and their ability to survive prolonged water immersion. We also observed the ingress of fluids across louse tracheae and spiracle characteristics contrasting with those described in the literature. We showed that 100% of lice can withstand 8 h of anoxia and 12.2% survived 14 h of anoxia; survival was 48.9% in the untreated control group at 14 h. However, all lice had died following 16 h of anoxia. In contrast, the survival rate of water-immersed lice was significantly higher when compared with non-immersed lice after 6 h (100% vs. 76.6%, p = 0.0037), and 24 h (50.9% vs. 15.9%, p = 0.0003). Although water-immersed lice did not close their spiracles, water did not penetrate into the respiratory system. In contrast, immersion in colored dimeticone/cyclomethicone or colored ethanol resulted in penetration through the spiracles and spreading to the entire respiratory system within 30 min, leading to death in 100% of the lice. © K. Candy et al., published by EDP Sciences, 2018.

  3. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Martin, Christopher (Inventor); Goldfine, Neil J. (Inventor)

    2017-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  4. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Lyons, Robert (Inventor); Martin, Christopher (Inventor); Washabaugh, Andrew P. (Inventor); Goldfine, Neil J. (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  5. Implementation of radio frequency identification (RFID) sensors for monitoring of bridge deck corrosion in Missouri.

    DOT National Transportation Integrated Search

    2014-03-01

    Chloride ion ingress is an important parameter that helps estimate the durability and service life of reinforced concrete (RC) and : prestress concrete (PC) structures, especially in those structures exposed to marine environments and salts applied d...

  6. Mechanism of host-guest complexation by cucurbituril.

    PubMed

    Márquez, César; Hudgins, Robert R; Nau, Werner M

    2004-05-12

    The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived. The formation of the supramolecular complex is studied in detail for cyclohexylmethylammonium ion as guest. The kinetics and thermodynamics of complexation is monitored by NMR as a function of temperature, salt concentration, and cation size. The binding constants and the ingression rate constants decrease with increasing salt concentration and cation-binding constant, in agreement with a competitive binding of the ammonium site of the guest and the metal cation with the ureido carbonyl portals of CB6. Studies as a function of guest size indicate that the effective container volume of the CB6 cavity is approximately 105 A(3). It is suggested that larger guests are excluded for two reasons: a high activation barrier for ingression imposed by the tight CB6 portals and a destabilization of the complex due to steric repulsion inside. For example, in the case of the nearly spherical azoalkane homologues 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH, volume ca. 96 A(3)) and 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO, volume ca. 110 A(3)), the former forms the CB6 complex promptly with a sizable binding constant (1300 M(-1)), while the latter does not form a complex even after several months at optimized complexation conditions. Molecular mechanics calculations are performed for several CB6/guest complexes. A qualitative agreement is found between experimental and calculated activation energies for ingression as a function of both guest size and state of protonation. The potential role of constrictive binding by CB6 is discussed.

  7. Mike Kempe | NREL

    Science.gov Websites

    cells and modules. His work concerns primarily modeling and measuring moisture ingress into PV modules and studying the effect of moisture on polymer adhesion, device performance, and component corrosion Photovoltaic Modules." Solar Energy Materials and Solar Cells, 90: 2720-2738. View all NREL publications

  8. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states

    PubMed Central

    Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.

    2013-01-01

    Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438

  9. Through the looking glass: Unraveling the network structure of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, D. M.; Stec, D. F.; Botto, R. E.

    1999-12-23

    Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less

  10. Folded gastrulation and T48 drive the evolution of coordinated mesoderm internalization in flies

    PubMed Central

    Urbansky, Silvia; González Avalos, Paula; Wosch, Maike; Lemke, Steffen

    2016-01-01

    Gastrulation constitutes a fundamental yet diverse morphogenetic process of metazoan development. Modes of gastrulation range from stochastic translocation of individual cells to coordinated infolding of an epithelial sheet. How such morphogenetic differences are genetically encoded and whether they have provided specific developmental advantages is unclear. Here we identify two genes, folded gastrulation and t48, which in the evolution of fly gastrulation acted as a likely switch from an ingression of individual cells to the invagination of the blastoderm epithelium. Both genes are expressed and required for mesoderm invagination in the fruit fly Drosophila melanogaster but do not appear during mesoderm ingression of the midge Chironomus riparius. We demonstrate that early expression of either or both of these genes in C.riparius is sufficient to invoke mesoderm invagination similar to D.melanogaster. The possible genetic simplicity and a measurable increase in developmental robustness might explain repeated evolution of similar transitions in animal gastrulation. DOI: http://dx.doi.org/10.7554/eLife.18318.001 PMID:27685537

  11. Radio range measurements of coronal electron densities at 13 and 3.6 centimeter wavelengths during the 1988 solar conjunction of Voyager 2

    NASA Technical Reports Server (NTRS)

    Krisher, T. P.; Anderson, J. D.; Morabito, D. D.; Asmar, S. W.; Borutzki, S. E.; Delitsky, M. L.; Densmore, A. C.; Eshe, P. M.; Lewis, G. D.; Maurer, M. J.

    1991-01-01

    Radio range measurements of total solar plasma delay obtained during the solar conjunction of the Voyager 2 spacecraft in December 1988, which occurred near solar maximum activity in the 11 yr cycle are reported. The radio range measurements were generated by the Deep Space Network at two wavelengths on the downlink from the spacecraft: 3.6 and 13 cm. A direct measurement of the integrated electron density along the ray path between the earth stations and the spacecraft was obtained by differencing the range at the two wavelengths. Coronal electron density profiles have been derived during ingress and egress of the ray path, which approached the sun to within 5 solar radii. At 10 solar radii, the derived density profiles yield 34079 + or - 611/cu cm on ingress and 49688 + or - 983/cu cm on egress. These density levels are significantly higher than observed near previous solar maxima.

  12. Discomfort Evaluation of Truck Ingress/Egress Motions Based on Biomechanical Analysis

    PubMed Central

    Choi, Nam-Chul; Lee, Sang Hun

    2015-01-01

    This paper presents a quantitative discomfort evaluation method based on biomechanical analysis results for human body movement, as well as its application to an assessment of the discomfort for truck ingress and egress. In this study, the motions of a human subject entering and exiting truck cabins with different types, numbers, and heights of footsteps were first measured using an optical motion capture system and load sensors. Next, the maximum voluntary contraction (MVC) ratios of the muscles were calculated through a biomechanical analysis of the musculoskeletal human model for the captured motion. Finally, the objective discomfort was evaluated using the proposed discomfort model based on the MVC ratios. To validate this new discomfort assessment method, human subject experiments were performed to investigate the subjective discomfort levels through a questionnaire for comparison with the objective discomfort levels. The validation results showed that the correlation between the objective and subjective discomforts was significant and could be described by a linear regression model. PMID:26067194

  13. Prioritized retransmission in slotted all-optical packet-switched networks

    NASA Astrophysics Data System (ADS)

    Ghaffar Pour Rahbar, Akbar; Yang, Oliver

    2006-12-01

    We consider an all-optical slotted packet-switched network interconnected by a number of bufferless all-optical switches with contention-based operation. One approach to reduce the cost of the expensive contention resolution hardware could be retransmission in which each ingress switch keeps a copy of the transmitted traffic in the electronic buffer and retransmits whenever required. The conventional retransmission technique may need a higher number of retransmissions until traffic passes through the network. This in turn may lead to a retransmission at a higher layer and reduce the network throughput. In this paper, we propose and analyze a simple but effective prioritized retransmission technique in which dropped traffic is prioritized when retransmitted from ingress switches so that the core switch can process them with a higher priority. We present the analysis of both techniques in multifiber network architecture and verify it via simulation to demonstrate that our proposed algorithm can limit the number of retransmissions significantly and can improve TCP throughput better than the conventional retransmission technique.

  14. A review of outbreaks of waterborne disease associated with ships: evidence for risk management.

    PubMed Central

    Rooney, Roisin M.; Bartram, Jamie K.; Cramer, Elaine H.; Mantha, Stacey; Nichols, Gordon; Suraj, Rohini; Todd, Ewen C. D.

    2004-01-01

    OBJECTIVE: The organization of water supply to and on ships differs considerably from that of water supply on land. Risks of contamination can arise from source water at the port or during loading, storage, or distribution on the ship. The purpose of this article is to review documented outbreaks of waterborne diseases associated with passenger, cargo, fishing, and naval ships to identify contributing factors so that similar outbreaks can be prevented in the future. METHODS: The authors reviewed 21 reported outbreaks of waterborne diseases associated with ships. For each outbreak, data on pathogens/toxins, type of ship, factors contributing to outbreaks, mortality and morbidity, and remedial action are presented. RESULTS: The findings of this review show that the majority of reported outbreaks were associated with passenger ships and that more than 6,400 people were affected. Waterborne outbreaks due to Enterotoxigenic Escherichia coli, noroviruses, Salmonella spp, Shigella sp, Cryptosporidium sp, and Giardia lamblia occurred on ships. Enterotoxigenic E. coli was the pathogen most frequently associated with outbreaks. One outbreak of chemical water poisoning also occurred on a ship. Risk factors included contaminated port water, inadequate treatment, improper loading techniques, poor design and maintenance of storage tanks, ingress of contamination during repair and maintenance, cross-connections, back siphonage, and insufficient residual disinfectant. CONCLUSIONS: Waterborne disease outbreaks on ships can be prevented. The factors contributing to outbreaks emphasize the need for hygienic handling of water along the supply chain from source to consumption. A comprehensive approach to water safety on ships is essential. This may be achieved by the adoption of Water Safety Plans that cover design, construction, operation, and routine inspection and maintenance. PMID:15219801

  15. A review of outbreaks of waterborne disease associated with ships: evidence for risk management.

    PubMed

    Rooney, Roisin M; Bartram, Jamie K; Cramer, Elaine H; Mantha, Stacey; Nichols, Gordon; Suraj, Rohini; Todd, Ewen C D

    2004-01-01

    The organization of water supply to and on ships differs considerably from that of water supply on land. Risks of contamination can arise from source water at the port or during loading, storage, or distribution on the ship. The purpose of this article is to review documented outbreaks of waterborne diseases associated with passenger, cargo, fishing, and naval ships to identify contributing factors so that similar outbreaks can be prevented in the future. The authors reviewed 21 reported outbreaks of waterborne diseases associated with ships. For each outbreak, data on pathogens/toxins, type of ship, factors contributing to outbreaks, mortality and morbidity, and remedial action are presented. The findings of this review show that the majority of reported outbreaks were associated with passenger ships and that more than 6,400 people were affected. Waterborne outbreaks due to Enterotoxigenic Escherichia coli, noroviruses, Salmonella spp, Shigella sp, Cryptosporidium sp, and Giardia lamblia occurred on ships. Enterotoxigenic E. coli was the pathogen most frequently associated with outbreaks. One outbreak of chemical water poisoning also occurred on a ship. Risk factors included contaminated port water, inadequate treatment, improper loading techniques, poor design and maintenance of storage tanks, ingress of contamination during repair and maintenance, cross-connections, back siphonage, and insufficient residual disinfectant. Waterborne disease outbreaks on ships can be prevented. The factors contributing to outbreaks emphasize the need for hygienic handling of water along the supply chain from source to consumption. A comprehensive approach to water safety on ships is essential. This may be achieved by the adoption of Water Safety Plans that cover design, construction, operation, and routine inspection and maintenance.

  16. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less

  17. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less

  18. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Alani, Amir M.; Aboutalebi, Morteza; Kilic, Gokhan

    2013-10-01

    This paper presents the essence of two case studies by the authors on two major bridges in the UK. The first case study reports on the applications of GPR and associated work carried out on the Forth Road Bridge near Edinburgh, Scotland, with the main objective of identifying possible structural defects including damaged rebar and moisture ingress at specific locations of the bridge deck. The second case study focuses on a full assessment of the Pentagon Road Bridge, in Chatham, Kent, England with particular emphasis on the identification of possible defects including structural cracks within the deck structure and establishing the layout of the upper and lower rebar positions throughout the bridge. These studies present interesting results in terms of locations of rebar and an accurate estimate of concrete cover condition as well as reporting on a remarkable similarity in the processed data concerning areas affected by ingress of moisture within the deck structures of the two bridges under investigation. It is believed that this paper will be of particular interest to bridge engineers and structural engineering practitioners with enthusiasm for adopting non-destructive testing methods such as GPR in the health monitoring and assessment of bridge structures. The observed similarities in the processed data between the two reported case studies present an interesting concept within the general context of the interpretation of GPR data, with the potential for use in many other forthcoming cases. The paper also reports on the adopted method for the GPR survey with emphasis on difficulties and challenges encountered during the actual survey. The presented results benefit from advanced processing and presentation techniques.

  19. Reducing ingress of organic vapours into homes situated on contaminated land.

    PubMed

    Crump, D; Brown, V; Rowley, J; Squire, R

    2004-04-01

    The efficacy of current landfill gas and radon mitigation measures for the prevention of ingress of organic vapours was investigated by the study of four houses situated on contaminated land in North West England. The chemical present in the ground of greatest concern for health due to exposure to vapour in the indoor air was hexachlorobutadiene (HCBD) and the concentration of this compound was used to assess the effectiveness of the remedial measures. A two stage remediation was undertaken. For a house with a solid floor the top surface of the floor was sealed and then for the second stage a fan was used to pressurise the soil gas beneath the house. In a house with a suspended timber floor, extra air bricks were installed to increase ventilation of the floor void and then a fan to further increase air exchange in the void. HCBD in air was monitored by both pumped and diffusive sampling methods. Control houses were also monitored that were not subject to remediation. It is concluded that the remedial measures used for radon protection of a suspended floor have the potential to reduce indoor HCBD concentrations by about 80%, at least in downstairs rooms (where initial levels were highest). The two techniques used for properties with solid floors do not appear to be as effective, and no benefit at all was seen without making allowances for changes in concentration that occurred in the control house over the same period. Further work is required to test the efficacy of the techniques over a longer period and under different circumstances of type of contamination and building characteristics.

  20. Passing of northern pike and common carp through experimental barriers designed for use in wetland restoration

    USGS Publications Warehouse

    French, John R. P.; Wilcox, Douglas A.; Nichols, S. Jerrine

    1999-01-01

    Restoration plans for Metzger Marsh, a coastal wetland on the south shore of western Lake Erie, incorporated a fish-control system designed to restrict access to the wetland by large common carp (Cyprinus carpio). Ingress fish passageways in the structure contain slots into which experimental grates of varying size and shape can be placed to selectively allow entry and transfer of other large fish species while minimizing the number of common carp to be handled. We tested different sizes and shapes of grates in experimental tanks in the laboratory to determine the best design for testing in the field. We also tested northern pike (Esox lucius) because lack of access to wetland spawning habitat has greatly reduced their populations in western Lake Erie. Based on our results, vertical bar grates were chosen for installation because common carp were able to pass through circular grates smaller than body height by compressing their soft abdomens; they passed through rectangular grates on the diagonal. Vertical bar grates with 5-cm spacing that were installed across much of the control structure should limit access of common carp larger than 34 cm total length (TL) and northern pike larger than 70 cm. Vertical bar grates selected for initial field trials in the fish passageway had spacings of 5.8 and 6.6 cm, which increased access by common carp to 40 and 47 cm TL and by northern pike to 76 and 81 cm, respectively. The percentage of potential common carp biomass (fish seeking entry) that must be handled in lift baskets in the passageway increased from 0.9 to 4.8 to 15.4 with each increase in spacing between bars. Further increases in spacing would greatly increase the number of common carp that would have to be handled. The results of field testing should be useful in designing selective fish-control systems for other wetland restoration sites adjacent to large water bodies.

  1. Blufensin1 Negatively Impacts Basal Defense in Response to Barley Powdery Mildew

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved complex regulatory mechanisms to control the defense response against microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSIN1 (BLN1), a small peptide ...

  2. Ingress clearance requirements and seat positioning for automatic belt systems

    DOT National Transportation Integrated Search

    1981-06-01

    The purposes of this study were (1) to determine how much clearance between a seat belt and seat cushion is needed for a driver to enter the front seat of an automobile equipped with automatic seat belts---without his/her having to lift the webbing, ...

  3. 77 FR 22188 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... removing the labels if there is evidence of sealant damage or moisture ingress behind the labels. If... paint removal and cracking of the surface treatment. Before further flight after doing the detailed..., defects, and damage of the paint or surface protection, including paint removal and cracking, in...

  4. Fate of fish production in a seasonally flooded saltmarsh

    USGS Publications Warehouse

    Stevens, Philip W.; Montague, C.L.; Sulak, K.J.

    2006-01-01

    Although saltmarshes are thought to enhance the productivity of open estuarine waters, the mechanism by which energy transfer occurs has been debated for decades. One possible mechanism is the transfer of saltmarsh production to estuarine waters by vagile fishes and invertebrates. Monthly estimates of fish standing stock, net fish ingress, and predation were used to develop a biomass budget to estimate annual production of fishes and the relative yield to predatory fish, birds, and direct migration to the estuary. Annual production of saltmarsh fishes was estimated to be 31.0 g m-2 saltmarsh, which falls within the range of previously reported values for estuarine fish communities. The relative yields were 12 to 20% to piscivorous fishes, 8 to 13% to piscivorous birds, and 18 to 29% to export. Annual export of fish biomass was 5.6 g fish m-2 saltmarsh, representing about 1 to 2% of saltmarsh primary production. Saltmarsh fishes convert marsh production to high-quality vagile biomass (fishes concentrate energy, protein, and nutrients as body mass) and move this readily useable production to the estuary, providing an efficient link between saltmarshes and estuarine predators. ?? Inter-Research 2006.

  5. In-situ study of beneficial utilization of coal fly ash in reactive mine tailings.

    PubMed

    Lee, Joon Kyu; Shang, Julie Q; Wang, Hongliu; Zhao, Cheng

    2014-03-15

    Oxidation of reactive mine tailings and subsequent generation of acid mine drainage (AMD) have been long recognized as the largest environmental concern for the mining industry. Laboratory studies on utilization of coal fly ash in management of reactive mine tailings have shown reducing water and oxygen infiltration into tailings matrix, thus preventing oxidation of sulphide minerals and acid generation. However, few data from field studies to evaluate the performance of co-placement of mine tailings and fly ash (CMF hereafter) are reported in the open literature. This paper documents the construction and instrumentation of three CMF systems on the Musselwhite mine located in Ontario, Canada and presents results of 3-year real time monitoring. The field data indicates that the CMFs reduced the ingress of water due to cementation generated by hydration of fly ash. It was also found that the electrical conductivity of leachate from CMFs decreased in the early stage of co-placement, compared to the control. With further study, the principle and approach demonstrated in this paper can be adopted as a sustainable technology in the mine tailings management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Determination of the elastic modulus of fly ash-based stabilizer applied in the trackbed

    NASA Astrophysics Data System (ADS)

    Lojda, Vít; Lidmila, Martin; Pýcha, Marek

    2017-09-01

    This paper describes a unique application of a fly ash-based stabilizer in the trackbed of a railway main line. The key goals of the stabilizer application are to protect the subgrade against the ingress of rain water, to increase the frost resistance and to remediate the natural ground constituted of weathered rock. The stabilizer was designed as a mixture of fly ash, generated as a waste material from coal plants, gypsum, calcium oxide and water. The mixture recipe was developed in a laboratory over several years. In 2005, a trial section of a railway line with subgrade consisting of clay limestone (weathered marlite) was built in the municipality of Smiřice. Since then, periodical measurements including collection of samples for laboratory evaluation of the fly ash-based stabilizer have taken place. Over the time span of the measurements, changes in mineral composition and development of fly ash transforming structures leading to the formation of C-A-S-H gel were detected. This paper describes the experimental laboratory investigation of the influence of dynamic loading on the elastic modulus of fly ash stabilizer samples and the development of permanent deformation of the samples with increasing number of loading cycles.

  7. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    NASA Astrophysics Data System (ADS)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and associated taxa were distributed throughout the spectrum of sites surveyed. Implications for the identification and conservation of saline lagoons are discussed.

  8. 78 FR 53184 - Land Release for Penn Yan Airport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... easement of 0.069 +/-acres for ingress/egress to a boat storage and maintenance facility to be constructed.../egress to the Land and Sea Properties boat storage and maintenance facility from the Penn Yan Airport access road. Documents reflecting the Sponsor's request are available, by appointment only, for...

  9. 36 CFR 212.6 - Ingress and egress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... intermingled or adjacent landowners. Construction, reconstruction or maintenance of a road or highway requires... over the same and use of existing National Forest System roads and trails in order to reach their homes... regulations governing the protection and administration of the lands and the roads or trails to be used. (c...

  10. MARES

    NASA Image and Video Library

    2017-08-01

    iss052e024957 (Aug. 1, 2017) --- Astronaut Paolo Nespoli ingressed the Muscle Atrophy Research & Exercise System (MARES) chair in the Columbus module and adjusted pads and constraints for the Sarcolab-3 ankle protocol. The data collected for Sarcolab-3 will be compared to pre and postflight measurements to assess the impact of hypothesized microgravity induced muscle loss.

  11. 46 CFR 131.945 - Display of plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bulkheads together with particulars of the— (a) Fire-detection systems; (b) Manual-alarm systems; (c) Fire-extinguishing systems; (d) Fire doors; (e) Means of ingress to the different compartments; and (f) Ventilating-systems, including the— (1) Positions of the dampers; (2) Site of the remote means of stopping the fans...

  12. 75 FR 55339 - Agency Information Collection Activities: Submission for OMB Review; Comment Request, OMB No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... disasters. This information is required to determine that the infrastructure of the site supports the...; Request for the Site Inspection and Landowners Authorization/Ingress-Egress Agreement AGENCY: Federal...-1), Request for the Site Inspection; FEMA Form 010-0-10 (formerly 90-31), Landowner's Authorization...

  13. 36 CFR 251.82 - Appealable decisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.82 Appealable... National Forest System lands, including but not limited to: (1) Permits for ingress and egress to intermingled and adjacent private lands across National Forest System lands, 36 CFR 212.8 and 212.10. (2...

  14. 36 CFR 251.82 - Appealable decisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.82 Appealable... National Forest System lands, including but not limited to: (1) Permits for ingress and egress to intermingled and adjacent private lands across National Forest System lands, 36 CFR 212.8 and 212.10. (2...

  15. 36 CFR 251.82 - Appealable decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.82 Appealable... National Forest System lands, including but not limited to: (1) Permits for ingress and egress to intermingled and adjacent private lands across National Forest System lands, 36 CFR 212.8 and 212.10. (2...

  16. Ellen Ochoa and Valeri Tokarev prepare for Node 1/Unity ingress

    NASA Image and Video Library

    2017-04-20

    S96-E-5002 (29 MAY 1999) --- With the aid of a lamp, cosmonaut Valery Tokarev and astronaut Ellen Ochoa participate in the activation of SPACEHAB on Flight Day 2. The photo was recorded with an electronic still camera (ESC) at 07:18:06 GMT, May 29, 1999.

  17. View of Expedition 32 FE Hoshide during HTV3 Ingress

    NASA Image and Video Library

    2012-07-28

    ISS032-E-011406 (28 July 2012) --- Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, Expedition 32 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached JAXA H-II Transfer Vehicle (HTV-3) docked to the International Space Station?s Harmony node.

  18. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first comparing suited subjects performance with their unsuited performance, and then applying the results to the entire range of the population. The use of a transparent space vehicle mockup enabled the collection of large amounts of data during human-in-the-loop testing. Mobility data revealed that most of the tested spacesuits had sufficient ranges of motion for the selected tasks to be performed successfully. A suited subject's inability to perform a task most often stemmed from a combination of poor field of view in a seated position, poor dexterity of the pressurized gloves, or from suit/vehicle interface issues. Seat ingress and egress testing showed that problems with anthropometric accommodation did not exclusively occur with the largest or smallest subjects, but also with specific combinations of measurements that led to narrower seat ingress/egress clearance.

  19. Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.

    PubMed

    Bianchin, M; Smith, L; Beckie, R

    2015-01-01

    The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. © 2014, National Ground Water Association.

  20. Basaltic maar-diatreme volcanism in the Lower Carboniferous of the Limerick Basin (SW Ireland)

    NASA Astrophysics Data System (ADS)

    Elliott, H. A. L.; Gernon, T. M.; Roberts, S.; Hewson, C.

    2015-05-01

    Lead-zinc exploration drilling within the Limerick Basin (SW Ireland) has revealed the deep internal architecture and extra-crater deposits of five alkali-basaltic maar-diatremes. These were emplaced as part of a regional north-east south-west tectonomagmatic trend during the Lower Carboniferous Period. Field relationships and textural observations suggest that the diatremes erupted into a shallow submarine environment. Limerick trace element data indicates a genetic relationship between the diatremes and extra-crater successions of the Knockroe Formation, which records multiple diatreme filling and emptying cycles. Deposition was controlled largely by bathymetry defined by the surrounding Waulsortian carbonate mounds. An initial non-diatreme forming eruption stage occurred at the water-sediment interface, with magma-water interaction prevented by high magma ascent rates. This was followed by seawater incursion and the onset of phreatomagmatic activity. Magma-water interaction generated poorly vesicular blocky clasts, although the co-occurrence of plastically deformed and highly vesicular clasts indicate that phreatomagmatic and magmatic processes were not mutually exclusive. At a later stage, the diatreme filled with a slurry of juvenile lapilli and country rock lithic clasts, homogenised by the action of debris jets. The resulting extra-crater deposits eventually emerged above sea level, so that water ingress significantly declined, and late-stage magmatic processes became dominant. These deposits, largely confined to the deep vents, incorporate high concentrations of partially sintered globular and large `raggy' lapilli showing evidence for heat retention. Our study provides new insights into the dynamics and evolution of basaltic diatremes erupting into a shallow water (20-120 m) submarine environment.

  1. DEET (N,N-diethyl-meta-toluamide)/PMD (para-menthane-3,8-diol) repellent-treated mesh increases Culicoides catches in light traps.

    PubMed

    Murchie, A K; Clawson, S; Rea, I; Forsythe, I W N; Gordon, A W; Jess, S

    2016-09-01

    Biting midges (Culicoides spp.) are vectors of bluetongue and Schmallenberg viruses. Treatment of mesh barriers is a common method for preventing insect-vectored diseases and has been proposed as a means of limiting Culicoides ingression into buildings or livestock transporters. Assessments using animals are costly, logistically difficult and subject to ethical approval. Therefore, initial screening of test repellents/insecticides was made by applying treatments to mesh (2 mm) cages surrounding Onderstepoort light traps. Five commercial treatments were applied to cages as per manufacturers' application rates: control (water), bendiocarb, DEET/p-menthane-3,8-diol (PMD) repellent, Flygo (a terpenoid based repellent) and lambda-cyhalothrin. The experimental design was a 5 × 5 Latin square, replicated in time and repeated twice. Incongruously, the traps surrounded by DEET/PMD repellent-treated mesh caught three to four times more Obsoletus group Culicoides (the commonest midge group) than the other treatments. A proposed hypothesis is that Obsoletus group Culicoides are showing a dose response to DEET/PMD, being attracted at low concentrations and repelled at higher concentrations but that the strong light attraction from the Onderstepoort trap was sufficient to overcome close-range repellence. This study does not imply that DEET/PMD is an ineffective repellent for Culicoides midges in the presence of an animal but rather that caution should be applied to the interpretation of light trap bioassays.

  2. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like...

  3. Application of the 2-cyanoacetamide method for spectrophotometric assay of cellulase enzyme activity

    USDA-ARS?s Scientific Manuscript database

    Cellulose is the most abundant form of carbon on the planet. Breakdown of cellulose microfibrils in the plant cell wall is a means by which microbes gain ingress into their respective hosts. Cellulose degradation is also important for global carbon recycling and is the primary substrate for producti...

  4. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043875 (29 April 2011) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA

  5. Mission Specification and Control for Unmanned Aerial and Ground Vehicles for Indoor Target Discovery and Tracking

    DTIC Science & Technology

    2010-01-01

    open garage leading to the building interior. The UAV is positioned north of a potential ingress to the building. As the mission begins, the UAV...camera, the difficulty in detecting and navigating around obstacles using this non- stereo camera necessitated a precomputed map of all obstacles and

  6. 75 FR 60010 - Airworthiness Directives; Airbus Model A330-200 and -300 Series Airplanes and Model A340-200...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...

  7. 76 FR 10230 - Airworthiness Directives; Airbus Model A330-200 and -300 Series Airplanes and Model A340-200...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...

  8. Multi-Step Attack Detection via Bayesian Modeling under Model Parameter Uncertainty

    ERIC Educational Resources Information Center

    Cole, Robert

    2013-01-01

    Organizations in all sectors of business have become highly dependent upon information systems for the conduct of business operations. Of necessity, these information systems are designed with many points of ingress, points of exposure that can be leveraged by a motivated attacker seeking to compromise the confidentiality, integrity or…

  9. First report of Penicillium expansum isolates with reduced sensitivity to fludioxonil from a commercial packinghouse in Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    Blue mold is caused by Penicillium expansum and is among the most economically significant disease of stored apples worldwide. The fungus gains ingress through cracks, natural openings, and wounds in the fruit and produces mycotoxins that contaminate processed apple products. All commercial apples a...

  10. Bursch and Bloomfield in the U.S. Laboratory during STS-110's initial ingress into the ISS

    NASA Image and Video Library

    2002-04-09

    STS110-E-5093 (10 April 2002) --- Astronauts Michael J. Bloomfield (right), STS-110 mission commander, and Daniel W. Bursch, Expedition Four flight engineer, are photographed in the Destiny laboratory on the International Space Station (ISS). The image was taken with a digital still camera.

  11. Transient experiments with thermite melts for a core catcher concept based on water addition from below

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tromm, W.; Alsmeyer, H.

    1995-09-01

    A core catcher concept is proposed to be integrated into a new pressurized water reactor. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on a process of water inlet from the bottom through the melt. By highly effective heat removal that uses evaporating water in direct contact with the fragmented melt, the corium melt would solidify in a short time period, and long-term cooling could be maintained by continuous water evaporation from the flooded porous or fragmented corium bed. The key process for obtaining coolability is the coupling of the three effects: (a)more » water ingression from below and its evaporation, (b) break up and fragmentation of the corium layer, and (c) heat transfer and solidification of the let. These mechanisms are investigated in transient medium-scale experiments with thermite melts. The experimental setup represents a section of the proposed core catcher design. A thermite melt is located on the core catcher plate with a passive water supply from the bottom. After generation of the melt, the upper sacrificial layer is eroded until water penetrates into the melt for the bottom through plugs in the supporting plate. Fragmentation and fast solidification of the melt are observed, and long-term heat removal is guaranteed by the coolant water flooding the porous melt. Water inflow is sufficient to safely remove the decay heat in a comparable corium layer. The open porosity is created by the vapor streaming through the melt during the solidification process. Fracture of the solid by thermomechanical stresses is not observed. The experiments in their current stage show the principal feasibility of the proposed cooling concept and are used to prepare large-scale experiments to be performed in the modified BETA facility with sustained heating of the melt.« less

  12. The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Linhares, Ana Paula; Gaia, Valber do Carmo de Souza; Ramos, Maria Inês Feijó

    2017-11-01

    Micropalaeontological studies of borehole cores 1AS-7D-AM and 1AS-8-AM, from Atalaia do Norte, Amazonas state, Brazil, support previous evidence for Miocene marine ingressions in Western Amazonia. Three marine incursion events are recorded: the first in the Early/early Middle Miocene (in both cores), the second in the late Middle/early Late Miocene (1AS-8-AM), and the third in the Late Miocene (1AS-7D-AM). The first event is characterized by exclusively mangrove taxa, and the last two present a mixture of marine, fresh, and brackish water taxa. However, at the end of the third event an increase of fluvial influence is demonstrated by the predominance of freshwater taxa. These marine incursions reached the study area through narrow and geographically limited connections, controlled by the tectonic setting, at a time between the Early/early Middle Miocene and late Middle/Late Miocene. Thereafter, fluvial conditions were reestablished before Pliocene times.

  13. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    NASA Astrophysics Data System (ADS)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical phase change creating cracks and damage to concrete under freezing and thawing. In a cementitious system exposed to CaCl2, the chemical phase change is mainly due to the presence of calcium hydroxide (CH) in concrete. Calcium hydroxide can react with CaCl2 solution producing calcium oxychloride. Calcium oxychloride forms at room temperature (i.e., 23 °C) for CaCl 2 salt concentrations at or above ~ 12 % by mass in the solution creating expansion and degradation in concrete. In a cementitious system exposed to MgCl2, it was observed that MgCl2 can be entirely consumed in concrete by reacting with CH and produce CaCl2. As such, it followed a response that is more similar to the concrete-CaCl2-water system than that of the MgCl2-water phase diagram. Formation of calcium/magnesium oxychloride is most likely the main source of the chemical phase change (which can cause damage) in concrete exposed to MgCl2. During the LGCC testing for CaCl2 and MgCl2 salts, it was found that the chemical reactions occur rapidly (~ 10 min) and can cause a significant decrease in subsequent fluid ingress into exposed concrete in comparison to NaCl. Isothermal calorimetry, fluid absorption, oxygen permeability, oxygen diffusivity, and X-ray fluorescence testing showed that the formation of calcium oxychloride in concrete exposed to CaCl2 and MgCl 2 can block or fill in the concrete pores on the surface of the specimen; thereby decreasing the CaCl2 and MgCl2 fluid ingress into the concrete. To mitigate the damage and degradation due to the chemical phase transition, two approaches were evaluated: (1) use of a cementitious binder that does not react with salts, and (2) use of a new practical technology to melt ice and snow, thereby decreasing the demand for deicing salt usage. For the first approach, carbonated calcium silicate based cement (CCSC) was used and the CCSC mortar showed a promising performance and resistance to salt degradation than an ordinary portland mortar does. For the second approach, phase change materials (PCM), including paraffin oil and methyl laurate, were used to store heat in concrete elements and release the stored heat during cooling to reduce ice formation and snow accumulation on the surface of concrete. PCM approach also showed a promising performance in melting ice and snow, thereby decreasing the demand for salt usage.

  14. Potential performance bottleneck in Linux TCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenji; Crawford, Matt; /Fermilab

    2006-12-01

    TCP is the most widely used transport protocol on the Internet today. Over the years, especially recently, due to requirements of high bandwidth transmission, various approaches have been proposed to improve TCP performance. The Linux 2.6 kernel is now preemptible. It can be interrupted mid-task, making the system more responsive and interactive. However, we have noticed that Linux kernel preemption can interact badly with the performance of the networking subsystem. In this paper we investigate the performance bottleneck in Linux TCP. We systematically describe the trip of a TCP packet from its ingress into a Linux network end system tomore » its final delivery to the application; we study the performance bottleneck in Linux TCP through mathematical modeling and practical experiments; finally we propose and test one possible solution to resolve this performance bottleneck in Linux TCP.« less

  15. The LED and fiber based calibration system for the photomultiplier array of SNO+

    NASA Astrophysics Data System (ADS)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  16. 78 FR 50431 - Agency Information Collection Activities: Proposed Collection; Comment Request; Request for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... the temporary housing unit; (b) obtain permission to place the temporary housing unit on the property; and (c) allow ingress and egress to the property housing the temporary unit. DATES: Comments must be... place the unit on the property. The property owner certifies that they will not have a lien placed...

  17. Whitson, Poindexter and Walheim in the A/L

    NASA Image and Video Library

    2008-02-15

    S122-E-009101 (15 Feb. 2008) --- Astronaut Alan Poindexter, STS-122 pilot, inspects the gloves of astronaut Rex Walheim, mission specialist, following the ingress of astronauts Walheim and Stanley Love (partially out of frame at left) following the final space walk of a busy week. Astronaut Peggy Whitson, the International Space Station's Expedition 16 commander, checks Love's gloves.

  18. Expedition Two's Jim Voss looks through the PMA2 window minutes before the STS-100 ingress

    NASA Image and Video Library

    2001-04-23

    STS100-E-5283 (23 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, peers into the Pressurized Mating Adapter (PMA-2) prior to hatch opening. The picture was taken with a digital still camera by one of the STS-100 crew members in the PMA. Photo credit: NASA

  19. MRM2 hatch opening

    NASA Image and Video Library

    2012-10-25

    ISS033-E-016667 (25 Oct. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 33 flight engineer, opens the hatch between the International Space Station and the Soyuz TMA-06M spacecraft as the three new Expedition 33 crew members prepare to ingress the station. Docking occurred at 8:29 a.m. (EDT) at the station’s Poisk Mini-Research Module 2 (MRM2).

  20. Horowitz is hugged by Usachev in the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-12

    STS-105-E-5121 (12 August 2001) --- Yury V. Usachev of Rosaviakosmos, Expedition Two mission commander, and Scott J. Horowitz, STS-105 commander, embrace in the Zvezda Service Module with open arms during the initial ingress into the International Space Station (ISS) for the STS-105 mission. This image was taken with a digital still camera.

  1. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    NASA Astrophysics Data System (ADS)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage decreased drastically due to poor band alignment. Fe2O3 appears to be better suited to a narrower band gap material than methylammonium lead iodide perovskite. Finally, encapsulation of perovskite devices with epoxy coatings is explored as a method to improve long-term stability. Perovskites are sensitive to a variety of conditions, but most importantly water and polar molecules. Encapsulants act as a moisture/oxygen barrier, but also prevent outgassing of the organic components. Three epoxies were tested in high heat and high humidity conditions. Important factors in the curing process were uncovered such as the sensitivity of UV-epoxies to amine functional groups found in common p-type dopants and perovskite layers. Moisture ingress was the failure point for high-humidity/heat devices which was confirmed through conversion to yellow lead iodide. A revised device fabrication method is proposed to reduce moisture ingress for future experiments.

  2. Repeated Low-Level Blast Exposure: A Descriptive Human Subjects Study.

    PubMed

    Carr, Walter; Stone, James R; Walilko, Tim; Young, Lee Ann; Snook, Tianlu Li; Paggi, Michelle E; Tsao, Jack W; Jankosky, Christopher J; Parish, Robert V; Ahlers, Stephen T

    2016-05-01

    The relationship between repeated exposure to blast overpressure and neurological function was examined in the context of breacher training at the U.S. Marine Corps Weapons Training Battalion Dynamic Entry School. During this training, Students are taught to apply explosive charges to achieve rapid ingress into secured buildings. For this study, both Students and Instructors participated in neurobehavioral testing, blood toxin screening, vestibular/auditory testing, and neuroimaging. Volunteers wore instrumentation during training to allow correlation of human response measurements and blast overpressure exposure. The key findings of this study were from high-memory demand tasks and were limited to the Instructors. Specific tests showing blast-related mean differences were California Verbal Learning Test II, Automated Neuropsychological Assessment Metrics subtests (Match-to-Sample, Code Substitution Delayed), and Delayed Matching-to-Sample 10-second delay condition. Importantly, apparent deficits were paralleled with functional magnetic resonance imaging using the n-back task. The findings of this study are suggestive, but not conclusive, owing to small sample size and effect. The observed changes yield descriptive evidence for potential neurological alterations in the subset of individuals with occupational history of repetitive blast exposure. This is the first study to integrate subject instrumentation for measurement of individual blast pressure exposure, neurocognitive testing, and neuroimaging. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  3. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    PubMed Central

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  4. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    PubMed

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  5. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water

    PubMed Central

    Besmer, Michael D.; Sigrist, Jürg A.; Props, Ruben; Buysschaert, Benjamin; Mao, Guannan; Boon, Nico; Hammes, Frederik

    2017-01-01

    Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater) can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination). Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC) and intact (ICC) cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change), significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min). Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity) is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes) both in laboratory-scale research and full-scale system investigations in practice. PMID:29085343

  6. Simulating groundwater-induced sewer flooding

    NASA Astrophysics Data System (ADS)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  7. The ultrastructure of book lung development in the bark scorpion Centruroides gracilis (Scorpiones: Buthidae)

    PubMed Central

    2011-01-01

    Background Near the end of the nineteenth century the hypothesis was presented for the homology of book lungs in arachnids and book gills in the horseshoe crab. Early studies with the light microscope showed that book gill lamellae are formed by outgrowth and possibly some invagination (infolding) of hypodermis (epithelium) from the posterior surface of opisthosomal limb buds. Scorpion book lungs are formed near the bilateral sites of earlier limb buds. Hypodermal invaginations in the ventral opisthosoma result in spiracles and sac-like cavities (atria). In early histological sections of embryo book lungs, widening of the atrial entrance of some lamellae (air channels, air sacs, saccules) was interpreted as an indication of invagination as hypothesized for book gill lamellae. The hypodermal infolding was thought to produce the many rows of lamellar precursor cells anterior to the atrium. The ultrastructure of scorpion book lung development is compared herein with earlier investigations of book gill formation. Results In scorpion embryos, there is ingression (inward migration) of atrial hypodermal cells rather than invagination or infolding of the atrial hypodermal layer. The ingressing cells proliferate and align in rows anterior to the atrium. Their apical-basal polarity results in primordial air channels among double rows of cells. The cuticular walls of the air channels are produced by secretion from the apical surfaces of the aligned cells. Since the precursor cells are in rows, their secreted product is also in rows (i.e., primordial air channels, saccules). For each double row of cells, their opposed basal surfaces are gradually separated by a hemolymph channel of increasing width. Conclusions The results from this and earlier studies show there are differences and similarities in the formation of book lung and book gill lamellae. The homology hypothesis for these respiratory organs is thus supported or not supported depending on which developmental features are emphasized. For both organs, when the epithelial cells are in position, their apical-basal polarity results in alternate page-like channels of hemolymph and air or water with outward directed hemolymph saccules for book gills and inward directed air saccules for book lungs. PMID:21791110

  8. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants

    PubMed Central

    Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440–3450, 2015 PMID:26073446

  9. Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

    NASA Astrophysics Data System (ADS)

    Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2017-07-01

    Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.

  10. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy

    NASA Astrophysics Data System (ADS)

    Bucci, Antonio; Petrella, Emma; Celico, Fulvio; Naclerio, Gino

    2017-06-01

    Waterborne pathogens represent a significant health risk in both developed and developing countries with sensitive sub-populations including children, the elderly, neonates, and immune-compromised people, who are particularly susceptible to enteric infections. Annually, approximately 1.8 billion people utilize a faecally contaminated water source, and waterborne diseases are resulting in up to 2.1 million human mortalities globally. Although groundwater has traditionally been considered less susceptible to contamination by enteric pathogens than surface water due to natural attenuation by overlying strata, the degree of microbial removal attributable to soils and aquifers can vary significantly depending on several factors. Thus, accurate assessment of the variable presence and concentration of microbial contaminants, and the relative importance of potentially causative factors affecting contaminant ingress, is critical in order to develop effective source (well) and resource (aquifer) protection strategies. "Traditional" and molecular microbiological study designs, when coupled with hydrogeological, hydrochemical, isotopic, and geophysical methods, have proven useful for analysis of numerous aspects of subsurface microbial dynamics. Accordingly, this overview paper presents the principal microbial techniques currently being employed (1) to predict and identify sources of faecal contamination in groundwater, (2) to elucidate the dynamics of contaminant migration, and (3) to refine knowledge about the hydrogeological characteristics and behaviours of aquifer systems affected by microbial contamination with an emphasis on carbonate aquifers, which represent an important global water supply. Previous investigations carried out in carbonate aquifers in southern Italy are discussed.

  11. Detectability of exoplanet transits with Athena's WFI instrument: testing for white and correlated noise

    NASA Astrophysics Data System (ADS)

    Carpano, Stefania; Wilms, Jörn; Rau, Arne

    2016-07-01

    One of the science goal of the Athena mission is to detect and characterise, in the X-ray domain, transits of hot Jupiter-like planets orbiting their parent stars. To date, the only candidate for this kind of studies is HD 189733b, a Jupiter-size planet in a 2d orbit, for which a transit depth of 6-8% has been observed accumulating several Chandra and XMM-Newton observations. We simulate in this work realistic light curves of exoplanet transits using the Athena end-to-end simulator, SIXTE, and derive the expected signal-to-noise ratios (SNR) for different instrument configurations and planetary system parameters. We first produce at light curves for the currently existing WFI instrument designs and for different source fluxes to extract the expected (white noise) standard deviation. Next, moderate levels of correlated noise and transits of different depths are added to the light curves. As expected, for pure white noise the SNR is proportional to the square root of the flux, to the light curve bin size and to the number of co-added transits, and by definition proportional to the transit depth. When correlated noise starts to be significant, rebinning the data will only slightly increase the SNR, depending on the noise characteristics. Considering only white noise, a transit observed in a source like HD 189733, that has a flux around 5x10-13 erg s-1 cm-2 and a transit depth of about 5% can be detected with a SNR>3 in a unique transit. With correlated noise, several transits might be necessary. We also simulate trapezoidal shaped transits and try to recover the ingress/egress times after addition of noise. The relative error on the fitted ingress times is below 10% for most of the light curves with SNR>1.

  12. 75 FR 64507 - Taking and Importing Marine Mammals; Military Training Activities Conducted Within the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... the typical ordnance that may be used in a SINKEX, which may include missiles, bombs, 5'' gunfire, and...)--During an air-to-surface BOMBEX, maritime patrol aircraft (MPA) or F/A-18 deliver free-fall bombs against... ft (914 m) while adhering to designated ingress and egress routes. Typical bomb release altitude is...

  13. Preliminary Anthropometric Specification for Land Vehicles

    DTIC Science & Technology

    2012-05-01

    Conducted at 1 BDE Melbourne. Gordon, C. C. (2002). Multivariate anthropometric models for seated workstation design . Contemporary Ergonomics . Gordon...Ideally, the vehicle should safely accommodate (both as operator and passenger ) a large proportion of ADF personnel. Historically, when designing ...key advantage of using human subjects in the ergonomic assessment of a vehicle design is that a full range of tasks, such as vehicle ingress/egress

  14. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensilemore » specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.« less

  15. Human factors in space station architecture 2. EVA access facility: A comparative analysis of 4 concepts for on-orbit space suit servicing

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Bussolari, Steven

    1987-01-01

    Four concepts for on-orbit spacesuit donning, doffing, servicing, check-out, egress and ingress are presented. These are: the Space Transportation System (STS) Type (shuttle system enlarged), the Transit Airlock (Shuttle Airlock with suit servicing removed from the pump-down chamber), the Suitport (a rear-entry suit mates to a port in the airlock wall), and the Crewlock (a small, individual, conformal airlock). Each of these four concepts is compared through a series of seven steps representing a typical Extra Vehicular Activity (EVA) mission: (1) Predonning suit preparation; (2) Portable Life Support System (PLSS) preparation; (3) Suit Donning and Final Check; (4) Egress/Ingress; (5) Mid-EVA rest period; (6) Post-EVA Securing; (7) Non-Routine Maintenance. The different characteristics of each concept are articulated through this step-by-step approach. Recommendations concerning an approach for further evaluations of airlock geometry, anthropometrics, ergonomics, and functional efficiency are made. The key recommendation is that before any particular airlock can be designed, the full range of spacesuit servicing functions must be considered, including timelines that are most supportive of EVA human productivity.

  16. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  17. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE PAGES

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...

    2017-06-08

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  18. Discriminating between auditory and motor cortical responses to speech and non-speech mouth sounds

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Scott, S.K.

    2012-01-01

    Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds, or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and non-speech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: anterior temporal lobe areas are sensitive to the acoustic/phonetic properties while motor responses may show more generalised responses to the acoustic stimuli. PMID:21812557

  19. Z-2 Architecture Description and Requirements Verification Results

    NASA Technical Reports Server (NTRS)

    Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Hewes, Linda; Ross, Amy; Rhodes, Richard

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag, partial pressure relief valve, purge valve, donning stand and ISS Body Restraint Tether (BRT). Examples of manned requirements include verification of anthropometric range, suit self-don/doff, secondary suit exit method, donning stand self-ingress/egress and manned mobility covering eight functional tasks. The eight functional tasks include kneeling with object pick-up, standing toe touch, cross-body reach, walking, reach to the SIP and helmet visor. This paper will provide an overview of the Z-2 design. Z-2 requirements verification testing was performed with NASA at the ILC Houston test facility. This paper will also discuss pre-delivery manned and unmanned test results as well as analysis performed in support of requirements verification.

  20. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  1. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D [Littleton, CO; Thapa, Prem [Lima, OH

    2011-03-08

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  2. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D [Littleton, CO; Thapa, Prem [Lima, OH

    2012-05-22

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  3. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043876 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim (mostly out of frame at right), both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA

  4. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043872 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim, both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. A crew instructor (right) assisted Magnus and Walheim. Photo credit: NASA

  5. The Study of Soil Protection in the System of the Cultivated Lands of Kemerovo Region

    NASA Astrophysics Data System (ADS)

    Yakovchenko, M. A.; Konstantinova, O. B.; Kosolapova, A. A.

    2015-09-01

    The heavy metal content in the surface soils is characterized with their ingress for the given period of time. The sources of heavy metals in the soil are precipitation, seeds, dust, organic and mineral fertilizers, and others. The paper studies the heavy metal content in the soils of the waste dumps of the open-pit coal mines.

  6. Hurley in the FWD FD during docking activities of Space Shuttle Endeavour

    NASA Image and Video Library

    2009-07-17

    S127-E-006573 (17 July 2009) --- Astronaut Doug Hurley is at the pilot station on Endeavour's flight deck during rendezvous and docking activities between space shuttle and the the International Space Station. Later the STS-127 crew docked the shuttle with the orbital outpost and ingressed it, bringing the population of the ISS to a record 13 people for the time being.

  7. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology

    PubMed Central

    Ponnusamy, Thiruselvam; Lawson, Louise B.; Freytag, Lucy C.; Blake, Diane A.; Ayyala, Ramesh S.; John, Vijay T.

    2012-01-01

    Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating “breath figure” technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery. PMID:23507805

  8. Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality.

    PubMed

    Chong, Meng Nan; Sidhu, Jatinder; Aryal, Rupak; Tang, Janet; Gernjak, Wolfgang; Escher, Beate; Toze, Simon

    2013-08-01

    Stormwater is one of the last major untapped urban water resources that can be exploited as an alternative water source in Australia. The information in the current Australian Guidelines for Water Recycling relating to stormwater harvesting and reuse only emphasises on a limited number of stormwater quality parameters. In order to supply stormwater as a source for higher value end-uses, a more comprehensive assessment on the potential public health risks has to be undertaken. Owing to the stochastic variations in rainfall, catchment hydrology and also the types of non-point pollution sources that can provide contaminants relating to different anthropogenic activities and catchment land uses, the characterisation of public health risks in stormwater is complex, tedious and not always possible through the conventional detection and analytical methods. In this study, a holistic approach was undertaken to assess the potential public health risks in urban stormwater samples from a medium-density residential catchment. A combined chemical-toxicological assessment was used to characterise the potential health risks arising from chemical contaminants, while a combination of standard culture methods and quantitative polymerase chain reaction (qPCR) methods was used for detection and quantification of faecal indicator bacteria (FIB) and pathogens in urban stormwater. Results showed that the concentration of chemical contaminants and associated toxicity were relatively low when benchmarked against other alternative water sources such as recycled wastewater. However, the concentrations of heavy metals particularly cadmium and lead have exceeded the Australian guideline values, indicating potential public health risks. Also, high numbers of FIB were detected in urban stormwater samples obtained from wet weather events. In addition, qPCR detection of human-related pathogens suggested there are frequent sewage ingressions into the urban stormwater runoff during wet weather events. Further water quality monitoring study will be conducted at different contrasting urban catchments in order to undertake a more comprehensive public health risk assessment for urban stormwater.

  9. A modernized high-pressure heater protection system for nuclear and thermal power stations

    NASA Astrophysics Data System (ADS)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  10. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043869 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim, both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. A model of a space shuttle is in the foreground. Photo credit: NASA

  11. The Role of IL-17 in the Angiogenesis of Rheumatoid Arthritis

    DTIC Science & Technology

    2012-07-01

    Bendtzen, and P. Holmstrup. 2008. Blood cell gene expression profiling in subjects with ag- gressive periodontitis and chronic arthritis. J. Periodontol. 79...2008. Shift from toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident...inhibit IL-17– induced acute (neutrophil migration) and chronic (monocyte recruitment) inflammation by affecting leu- kocyte ingress, controlled in part

  12. Walker and Wheelock in MRM-1

    NASA Image and Video Library

    2010-11-19

    ISS025-E-017111 (22 Nov. 2010)--- NASA astronauts Shannon Walker, Expedition 25 flight engineer, and Doug Wheelock, Expedition 25 commander; have donned their Sokol (Russian word for 'Falcon') pressure suits and are pictured in the Russian MRM-1 module aboard the Earth-orbiting International Space Station. They, along with Russian cosmonaut Fyodor Yurchikhin, flight engineer, ingressed the docked Soyuz capsule to conduct pressurization and leak checks on their suits.

  13. Walker,Wheelock and Yurchikhin in MRM-1

    NASA Image and Video Library

    2010-11-19

    ISS025-E-017118 (22 Nov. 2010)--- From left, NASA astronaut Shannon Walker, Expedition 25 flight engineer; NASA astronaut Doug Wheelock, Expedition 25 commander; and Russian cosmonaut Fyodor Yurchikhin, flight engineer, are all suited up in their Sokol (Russian word for 'Falcon') pressure suits in the Russian MRM-1 module aboard the Earth-orbiting International Space Station. They ingressed the docked Soyuz capsule to conduct pressurization and leak checks on their suits.

  14. Daniel Barry in Node 1/Unity module with tools

    NASA Image and Video Library

    2017-04-20

    S96-E-5080 (31 May 1999) --- Astronaut Daniel T. Barry, mission specialist, participates in the Flight Day 5 team effort to ready International Space Station (ISS) hardware. After ingressing the Pressurized Mating Adapter (PMA2), Barry and fellow crew members went into the Unity node to perform a variety of chores. The scene was recorded with an electronic still camera (ESC) at 01:54:41 GMT, May 31, 1999.

  15. Vertically Propagating Waves in the Upper Atmosphere of Saturn From Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.

    2005-12-01

    We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. We determine the properties and spectra of these waves, and speculate on their origins and their dynamical effects on the upper atmosphere.

  16. A functional analysis of TOEFAZ1 uncovers protein domains essential for cytokinesis in Trypanosoma brucei.

    PubMed

    Sinclair-Davis, Amy N; McAllaster, Michael R; de Graffenried, Christopher L

    2017-11-15

    The parasite Trypanosoma brucei is highly polarized, including a flagellum that is attached along the cell surface by the flagellum attachment zone (FAZ). During cell division, the new FAZ positions the cleavage furrow, which ingresses from the anterior tip of the cell towards the posterior. We recently identified TOEFAZ1 (for 'Tip of the Extending FAZ protein 1') as an essential protein in trypanosome cytokinesis. Here, we analyzed the localization and function of TOEFAZ1 domains by performing overexpression and RNAi complementation experiments. TOEFAZ1 comprises three domains with separable functions: an N-terminal α-helical domain that may be involved in FAZ recruitment, a central intrinsically disordered domain that keeps the morphogenic kinase TbPLK at the new FAZ tip, and a C-terminal zinc finger domain necessary for TOEFAZ1 oligomerization. Both the N-terminal and C-terminal domains are essential for TOEFAZ1 function, but TbPLK retention at the FAZ is not necessary for cytokinesis. The feasibility of alternative cytokinetic pathways that do not employ TOEFAZ1 are also assessed. Our results show that TOEFAZ1 is a multimeric scaffold for recruiting proteins that control the timing and location of cleavage furrow ingression. © 2017. Published by The Company of Biologists Ltd.

  17. Radio Thermal Emission from Pluto and Charon during the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Bird, Michael; Linscott, Ivan; Hinson, David; Tyler, G. L.; Strobel, Darrell F.; New Horizons Science Team

    2017-10-01

    As part of the New Horizons Radio-Science Experiment REX, radio thermal emission from Pluto and Charon (wavelength: 4.2 cm) was observed during the encounter on 14 July 2015. The primary REX measurement, a determination of the atmospheric height profile from the surface up to about 100 km, was conducted during an uplink radio occultation at both ingress and egress (Hinson et al., Icarus 290, 96-111, 2017). During the interval between ingress and egress, when the Earth and the REX uplink signals were occulted by the Pluto disk, the spacecraft antenna continued to point toward Earth and thus scanned diametrically across the Pluto nightside. The average diameter of the HGA 3 dB beam was ≈1100 km at the surface during this opportunity, thereby providing crudely resolved measurements of the radio brightness temperature across Pluto. The best resolution for the REX radiometry observations occurred shortly after closest approach, when the HGA was scanned twice across Pluto. These observations will be reported elsewhere (Linscott et al., Icarus, submitted, 2017). In addition to the resolved observations, full disk brightness temperature measurements of both bodies were performed during the approach (dayside) and departure (nightside) phases of the encounter. We present the results of these observations and provide a preliminary interpretation of the measured brightness temperatures.

  18. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  19. A TNF-p100 pathway subverts noncanonical NF-κB signaling in inflamed secondary lymphoid organs.

    PubMed

    Mukherjee, Tapas; Chatterjee, Budhaditya; Dhar, Atika; Bais, Sachendra S; Chawla, Meenakshi; Roy, Payel; George, Anna; Bal, Vineeta; Rath, Satyajit; Basak, Soumen

    2017-12-01

    Lymphotoxin-beta receptor (LTβR) present on stromal cells engages the noncanonical NF-κB pathway to mediate RelB-dependent expressions of homeostatic chemokines, which direct steady-state ingress of naïve lymphocytes to secondary lymphoid organs (SLOs). In this pathway, NIK promotes partial proteolysis of p100 into p52 that induces nuclear translocation of the RelB NF-κB heterodimers. Microbial infections often deplete homeostatic chemokines; it is thought that infection-inflicted destruction of stromal cells results in the downregulation of these chemokines. Whether inflammation per se also regulates these processes remains unclear. We show that TNF accumulated upon non-infectious immunization of mice similarly downregulates the expressions of these chemokines and consequently diminishes the ingress of naïve lymphocytes in inflamed SLOs. Mechanistically, TNF inactivated NIK in LTβR-stimulated cells and induced the synthesis of Nfkb2 mRNA encoding p100; these together potently accumulated unprocessed p100, which attenuated the RelB activity as inhibitory IκBδ. Finally, a lack of p100 alleviated these TNF-mediated inhibitions in inflamed SLOs of immunized Nfkb2 -/- mice. In sum, we reveal that an inhibitory TNF-p100 pathway modulates the adaptive compartment during immune responses. © 2017 The Authors.

  20. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2018-06-01

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum on barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica-accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica-accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress and initiate resistance responses, suggesting a role for silica in pathogen establishment. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  2. Stochastic theory of size exclusion chromatography by the characteristic function approach.

    PubMed

    Dondi, Francesco; Cavazzini, Alberto; Remelli, Maurizio; Felinger, Attila; Martin, Michel

    2002-01-18

    A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamental role of the 'ergodic' hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models. Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.

  3. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.

    PubMed

    Sepúlveda-Ramírez, Silvia P; Toledo-Jacobo, Leslie; Henson, John H; Shuster, Charles B

    2018-05-15

    In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The submarine record of a large-scale explosive eruption in the Vanuatu Arc: ˜1 Ma Efaté Pumice Formation

    NASA Astrophysics Data System (ADS)

    Raos, Alison M.; McPhie, Jocelyn

    The Efaté Pumice Formation (EPF) is the record of a major explosive eruption that occurred in the Vanuatu arc, southwestern Pacific, at about 1 Ma. The EPF is the oldest stratigraphic unit of the Efaté Island Group and consists of a succession of non-welded, trachydacitic pumice breccia and shard-rich sand and silt beds with a minimum thickness of ˜500 m and a minimum bulk volume of approximately 85 km3. The lower part (Efaté Pumice Breccias) of the EPF comprises very thick beds composed almost exclusively of glassy, trachydacitic, pumice fragments with ragged terminations. In contrast, the upper part (Rentabau Tuffs) consists of up to 70 m of well-bedded and well-sorted shard-rich sand and silt. The clast population of this upper part comprises >95% glassy or formerly glassy shards, but fossil foraminifera are a ubiquitous and important non-volcanic component. Some glass shards have blocky, equant shapes and arcuate fracture surfaces, features typically associated with the influence of external water during fragmentation, but most are cuspate and platy bubble-wall shards. Pyroclast morphologies indicate that the Efaté Pumice Breccias were largely generated by magmatic-volatile-driven ("dry"), explosive fragmentation processes, and lithofacies characteristics indicate deposition in below-storm-wave-base environments, from eruption-sourced, water-supported density currents of waterlogged pumice. The Rentabau Tuffs are interpreted to represent a change to hydromagmatic activity in response to waning discharge that allowed ingress of water (presumably seawater) to the vent(s).

  5. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants.

    PubMed

    Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel

    2015-10-01

    Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. EFFECTS OF EPISODIC SUBLUXATION EVENTS ON THIRD BODY INGRESS AND EMBEDMENT IN THE THA BEARING SURFACE

    PubMed Central

    Heiner, Anneliese D.; Lundberg, Hannah J.; Baer, Thomas E.; Pedersen, Douglas R.; Callaghan, John J.; Brown, Thomas D.

    2008-01-01

    In total joint arthroplasty, third body particle access to the articulating surfaces results in accelerated wear. Hip joint subluxation is an under-recognized means by which third body particles could potentially enter the otherwise closely conforming articular bearing space. The present study was designed to test the hypothesis that, other factors being equal, even occasional events of femoral head subluxation greatly increase the number of third body particles that enter the bearing space and become embedded in the acetabular liner, as compared to level walking cycles alone. Ten metal-on-polyethylene hip joint head-liner pairs were tested in a multi-axis joint motion simulator, with CoCrMo third body particles added to the synovial fluid analog. All component pairs were tested for two hours of level walking; half also were subjected to twenty intermittent subluxation events. The number and location of embedded particles on the acetabular liners were then determined. Subluxation dramatically increased the number of third body particles embedded in the acetabular liners, and it considerably increased the amount of scratch damage on the femoral heads. Since both third body particles and subluxation frequently occur in contemporary total hip arthroplasty, their potent synergy needs to be factored prominently into strategies to minimize wear. PMID:18561936

  7. The Application of Ground-Penetrating Radar to Transportation Engineering: Recent Advances and New Perspectives (GI Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Benedetto, Andrea; Pajewski, Lara; Alani, Amir M.

    2017-04-01

    Ground-penetrating radar (GPR) is one of the most acknowledged and established non-destructive testing (NDT) techniques within the context of the health monitoring and assessment of transportation infrastructures. GPR is being increasingly used for the effective management of infrastructural assets as it weakens the case for using other destructive monitoring methods, such as digging holes, and allows for rapid and reliable detection of many causes of the subsurface damage. Thereby, its usage favours the optimisation of the economical expenditure for the effective maintenance of great infrastructures as well as it improves the public safety by preventing or not raising the risk of accidents. GPR has been used in highway, railway and airfield engineering as well as for the monitoring of critical infrastructures, such as bridges and tunnels. It has found established use in the assessment of the geometric properties of the subsurface, such as in the case of the evaluation of the pavement layer thicknesses, or the size of the rebars in concrete-made structural components. Major physical-based investigations have been focused on the evaluation of the moisture ingress in flexible road pavements and in concrete structures, as well as on the detection of the rebars corrosion caused by the ingress of chloride. The majority of these parameters are evaluated using methods of signal analysis and data processing based on the signal in the time domain. The sophistication of the hardware and software of the GPR systems over the last few years as well as the recent advances achieved in the research have contributed to raise the high potential of this non-destructive technique and paved the way towards new application areas in transportation engineering. In particular, GPR is nowadays finding major application when used with complementary non-destructive testing techniques, although it has still proved to provide reliable results in various self-standing applications. This work aims at presenting the recent advances and the new perspectives in the application of GPR to transportation engineering. This study reports on new experimental-based and theoretical models for the assessment of the physical (i.e., clay and water content in subgrade soils, railway ballast fouling) and the mechanical (i.e., the Young's modulus of elasticity) properties that are critical in maintaining the structural stability and the bearing capacity of the major transport infrastructures, such as highways, railways and airfields. With regard to the physical parameters, the electromagnetic behaviour related to the clay content in the load-bearing layers of flexible pavements as well as in subgrade soils has been analysed and modelled in both dry and wet conditions. Furthermore, it is discussed a new simulation-based methodology for the detection of the fouling content in railway ballast. Concerning the mechanical parameters, experimental based methods are presented for the assessment of the strength and deformation properties of the soils and the top-bounded layers of flexible pavements. Furthermore, unique case studies in terms of the methodology proposed, the survey planning and the site procedures in rather complex operations, are discussed in the case of bridges and tunnels inspections. Acknowledgements The Authors are grateful to the GI Division President Dr. Francesco Soldovieri and the relevant Award Committee in the context of the "GI Division Outstanding Early Career Scientists Award" of the European Geosciences Union. We also acknowledge the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" for providing networking and discussion opportunities throughout its activity and operation as well as facilitating prospect for publishing research outputs.

  8. Byting Back. Regaining Information Superiority Against 21st-Century Insurgents

    DTIC Science & Technology

    2007-01-01

    representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND PDFs to a non-RAND Web site is...thus, denoting safe or unsafe areas for urban combat, ingress/ egress, or convoy operations. It also offers clues as to where insur- gents might plant...on security authorities. Victims may, themselves, be reluctant to come forward if they feel their efforts are futile, or worse, can put them in

  9. Are Security Experts Useful? Bayesian Nash Equilibria for Network Security Games with Limited Information

    DTIC Science & Technology

    2010-04-23

    from the stock market. Journal of Computer Security, 11(3):431–448, 2003. [7] D . Chaum . Untraceable electronic mail, return addresses, and digital...to cross several other administrative boundaries (e.g., ISPs C, D , . . .), causing potential congestion at all of these intermediaries. A very...Quarterly Journal of Economics, 108(1):259–271, February 1993. [9] P. Ferguson and D . Senie. Network ingress filtering: Defeating denial of service

  10. Design of high-reliability low-cost amorphous silicon modules for high energy yield

    NASA Astrophysics Data System (ADS)

    Jansen, Kai W.; Varvar, Anthony; Twesme, Edward; Berens, Troy; Dhere, Neelkanth G.

    2008-08-01

    For PV modules to fulfill their intended purpose, they must generate sufficient economic return over their lifetime to justify their initial cost. Not only must modules be manufactured at a low cost/Wp with a high energy yield (kWh/kWp), they must also be designed to withstand the significant environmental stresses experienced throughout their 25+ year lifetime. Based on field experience, the most common factors affecting the lifetime energy yield of glass-based amorphous silicon (a-Si) modules have been identified; these include: 1) light-induced degradation; 2) moisture ingress and thin film corrosion; 3) transparent conductive oxide (TCO) delamination; and 4) glass breakage. The current approaches to mitigating the effect of these degradation mechanisms are discussed and the accelerated tests designed to simulate some of the field failures are described. In some cases, novel accelerated tests have been created to facilitate the development of improved manufacturing processes, including a unique test to screen for TCO delamination. Modules using the most reliable designs are tested in high voltage arrays at customer and internal test sites, as well as at independent laboratories. Data from tests at the Florida Solar Energy Center has shown that a-Si tandem modules can demonstrate an energy yield exceeding 1200 kWh/kWp/yr in a subtropical climate. In the same study, the test arrays demonstrated low long-term power loss over two years of data collection, after initial stabilization. The absolute power produced by the test arrays varied seasonally by approximately +/-7%, as expected.

  11. Groundwater chemical baseline values to assess the Recovery Plan in the Matanza-Riachuelo River basin, Argentina.

    PubMed

    Zabala, M E; Martínez, S; Manzano, M; Vives, L

    2016-01-15

    The two most exploited aquifers in the Matanza-Riachuelo River basin are being monitored in the framework of the Integrated Environmental Sanitation Plan that implements the Basin Authority, Autoridad de Cuenca Matanza Riachuelo. In this context, this work identifies the groundwater chemical types and the natural processes behind them; determines spatial and temporal changes; establishes ranges of variation for chemical components, and proposes concentration values for the upper limit of the natural chemical background. A total of 1007 samples from three aquifer-layers (Upper Aquifer, top and bottom of Puelche Aquifer) have been studied. As concrete guidelines for practical determination of baseline values are not available in the region, the methodology used follows the proposals of European projects which assessed European water directives. The groundwater composition is very stable in terms of both chemical facies and mineralization degree, and the changes observed in the dry and wet periods analysed are subtle in general. Most of the groundwater is Na-HCO3 type, except a few samples that are Ca-HCO3, Na-ClSO4 and Na-Cl types. The Ca-HCO3 waters are the result of calcium carbonate dissolution, Na-HCO3 waters result from cation exchange and carbonate dissolution, while in the Na-ClSO4 and Na-Cl waters, mixing with connate and with encroached old marine water from the underlying and overlying sediments are the most relevant processes. The proposed values for the upper limit of the natural background consider the influence of geology and Holocene marine ingressions in the baseline of coastal groundwater. This study allowed to know the initial chemical conditions of the groundwater system of the Matanza-Riachuelo River basin and to establish the reference from which Basin Authority can start to evaluate trends and monitor the recovery plan. At the same time, it sets a precedent for future studies in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Moisture diffusion and permeability characteristics of hydroxypropylmethylcellulose and hard gelatin capsules.

    PubMed

    Barham, Ahmad S; Tewes, Frederic; Healy, Anne Marie

    2015-01-30

    The primary objective of this paper is to compare the sorption characteristics of hydroxypropylmethylcellulose (HPMC) and hard gelatin (HG) capsules and their ability to protect capsule contents. Moisture sorption and desorption isotherms for empty HPMC and HG capsules have been investigated using dynamic vapour sorption (DVS) at 25°C. All sorption studies were analysed using the Young-Nelson model equations which distinguishes three moisture sorption types: monolayer adsorption moisture, condensation and absorption. Water vapour diffusion coefficients (D), solubility (S) and permeability (P) parameters of the capsule shells were calculated. ANOVA was performed with the Tukey comparison test to analyse the effect of %RH and capsule type on S, P, and D parameters. The moisture uptake of HG capsules were higher than HPMC capsules at all %RH conditions studied. It was found that values of D and P across HPMC capsules were greater than for HG capsules at 0-40 %RH; whereas over the same %RH range S values were higher for HG than for HPMC capsules. S values decreased gradually as the %RH was increased up to 60% RH. To probe the effect of moisture ingress, spray dried lactose was loaded into capsules. Phase evolution was characterised by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and differential scanning calorimetry (DSC). The capsules under investigation are not capable of protecting spray dried lactose from induced solid state changes as a result of moisture uptake. For somewhat less moisture sensitive formulations, HPMC would appear to be a better choice than HG in terms of protection of moisture induced deterioration. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir

    NASA Astrophysics Data System (ADS)

    Toth, Elena

    2013-04-01

    The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation approach is then applied for modelling the streamflow originated in the fourth, ungauged, diversion watershed. Finally, the potential reservoir water availability is estimated, hypothesising to take from the diversion catchments all the streamflow exceeding the minimum flow requirements. The results indicate that modifying the water intake structures might allow a consistent increase in the storage volumes in the reservoir during the water scarcity periods: the water available to the reservoir would in fact - on average - increase of around the 13% of the abstracted annual volume.

  14. Vertical electrical impedance evaluation of asphalt overlays on concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Baxter, Jared S.; Guthrie, W. Spencer; Waters, Tenli; Barton, Jeffrey D.; Mazzeo, Brian A.

    2018-04-01

    Vertical electrical impedance scanning of concrete bridge decks is a non-destructive method for quantifying the degree of protection provided to steel reinforcement against the ingress of corrosive agents. Four concrete bridge decks with asphalt overlays in northern Utah were evaluated using scanning vertical electrical impedance measurements in this study. At the time of testing, the bridges ranged in age from 21 to 34 years, and asphalt overlays had been in place for 7 to 22 years, depending on the bridge. Electrical impedance measurements were collected using a previously constructed apparatus that consisted of six probes spanning a transverse distance of 12 ft. The impedance measurements were compared to surface cracking observations and cores obtained from the same four bridge decks. The results presented in this paper demonstrate the utility of scanning vertical electrical impedance measurements for detecting cracks in asphalt overlays and quantifying their severity. In addition, the results demonstrate the sensitivity of impedance measurements to the presence of an intact membrane beneath the asphalt overlay.

  15. Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method

    NASA Astrophysics Data System (ADS)

    Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa

    2014-02-01

    Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.

  16. Prevention of the ingress of a known virulent bacterium into the root canal system by intracanal medications.

    PubMed

    Roach, R P; Hatton, J F; Gillespie, M J

    2001-11-01

    Contamination of the root canal system by persistent, enteric bacteria via leakage through interim restorations has been well documented. This in vitro study evaluated the ability of interappointment medications to prevent contamination of the root canal system by Enterococcus faecalis. Coronally unsealed, medicated tooth roots fixed in a closed system were contaminated daily with a standardized, aerobic, broth culture of E. faecalis. Four medications were evaluated (n = 15): group A, calcium hydroxide/methylcellulose paste; group B, camphorated parachlorophenol/calcium hydroxide paste; group C, 1% chlorhexidine/methylcellulose gel; and group D, calcium hydroxide points. The mean number of days to contamination as indicated by turbidity in the closed system was the following: group A, 37; group B, 46; group C, 16; group D, 5; and a positive control (no medication), 3. A one-way analysis of variance with a Scheffe post hoc test (p = 0.05) detected significant differences in effectiveness with A and B superior to C and D, and C superior to D.

  17. Propellant Handler's Ensemble (PHE) Aka Self-Contained Atmospheric Protective Ensemble (SCAPE), Ventilator Improvement Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The overall objective for this project is to evaluate two candidate alternatives for the existing Propellant Handler's Ensemble (PHE) escape ventilator. The new candidate ventilators use newer technology with similar quantities of air at approximately half the weight of the current ventilator. Ventilators are typically used to ingress/egress a hazardous work area when hard line air is provided at the work area but the hose is not long enough to get the operator to and from the staging area to the work area. The intent of this test is to verify that the new ventilators perform as well as or better than the current ventilators in maintaining proper oxygen (O2) and carbon dioxide (CO2) levels in the PHE during a typical use for the rated time period (10 minutes). We will evaluate two new units comparing them to the existing unit. Subjects will wear the Category I version of the Propellant Handler's Ensemble with the rear suit pouch snapped.

  18. Air cleaning performance of a new environmentally controlled primary crusher operator booth.

    PubMed

    Organiscak, J A; Cecala, A B; Zimmer, J A; Holen, B; Baregi, J R

    2016-02-01

    The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company's Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system's effectiveness in controlling airborne dusts and particulates. The booth's dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions.

  19. Calibrating binary lumped parameter models

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Stewart, Mike

    2017-04-01

    Groundwater at its discharge point is a mixture of water from short and long flowlines, and therefore has a distribution of ages rather than a single age. Various transfer functions describe the distribution of ages within the water sample. Lumped parameter models (LPMs), which are mathematical models of water transport based on simplified aquifer geometry and flow configuration can account for such mixing of groundwater of different age, usually representing the age distribution with two parameters, the mean residence time, and the mixing parameter. Simple lumped parameter models can often match well the measured time varying age tracer concentrations, and therefore are a good representation of the groundwater mixing at these sites. Usually a few tracer data (time series and/or multi-tracer) can constrain both parameters. With the building of larger data sets of age tracer data throughout New Zealand, including tritium, SF6, CFCs, and recently Halon-1301, and time series of these tracers, we realised that for a number of wells the groundwater ages using a simple lumped parameter model were inconsistent between the different tracer methods. Contamination or degradation of individual tracers is unlikely because the different tracers show consistent trends over years and decades. This points toward a more complex mixing of groundwaters with different ages for such wells than represented by the simple lumped parameter models. Binary (or compound) mixing models are able to represent a more complex mixing, with mixing of water of two different age distributions. The problem related to these models is that they usually have 5 parameters which makes them data-hungry and therefore difficult to constrain all parameters. Two or more age tracers with different input functions, with multiple measurements over time, can provide the required information to constrain the parameters of the binary mixing model. We obtained excellent results using tritium time series encompassing the passage of the bomb-tritium through the aquifer, and SF6 with its steep gradient currently in the input. We will show age tracer data from drinking water wells that enabled identification of young water ingression into wells, which poses the risk of bacteriological contamination from the surface into the drinking water.

  20. Development of a nondestructive leak testing method utilizing the head space analyzer for ampoule products containing ethanol-based solutions.

    PubMed

    Sudo, Hirotaka; O'driscoll, Michael; Nishiwaki, Kenji; Kawamoto, Yuji; Gammell, Philip; Schramm, Gerhard; Wertli, Toni; Prinz, Heino; Mori, Atsuhide; Sako, Kazuhiro

    2012-01-01

    The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. Studies using ampoules filled with ethanol-based solution and with nitrogen in the headspace demonstrated that the head space analysis (HSA) method showed sufficient sensitivity in detecting an ampoule crack. The proposed method is the use of HSA in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate the oxygen flow through the crack in the ampoule. The method was examined in comparative studies with a conventional dye ingress method, and the results showed that the HSA method exhibits sensitivity superior to the dye method. The results indicate that the HSA method in combination with the bombing treatment provides potential application as a leak test for the detection of container defects not only for ampoule products with ethanol-based solutions, but also for testing lyophilized products in vials with nitrogen in the head space. The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. The proposed method is the use of head space analysis (HSA) in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate oxygen flow through the crack in the ampoule for use in routine production. The result of the comparative study with a conventional dye leak test method indicates that the HSA method in combination with the bombing treatment can be used as a leak test method, enabling detection of container defects.

  1. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Noufi, R.

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. Themore » best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS cell pieces was observed that was not seen on BZO/glass, and a CdS/CIGS sample displayed a small darkening and then flaking feature. Additionally, standard AlNi grid contact was less stable than thin Ni grid contact at T/RH ≥ 70/70. The edge sealant and moisture-blocking films were effective to block moisture ingress, as evidenced by the good stability of most CIGS solar cells and device components at T/RH = 85/70 for 704 h, and by preservation of the initial blue color on the RH indicator strips. The SSADT experiment is ongoing to be completed at T/RH = 85/85.« less

  2. In The Dark: Military Planning for a Catastrophic Critical Infrastructure Event

    DTIC Science & Technology

    2011-05-01

    source), and can be designed very easily. A trailer can carry a larger sized generator and multiple sites could be impacted by a coordinated attack...limited ingress and egress options. This scenario does not address EMP/ EMI , but for starters, this should be enough of a challenge with all normal...election of President Obama, warning that Russia would not tolerate the Bush Administration’s NATO missile shield , and that Russia would take steps to

  3. Sedimentary facies analysis of the Mesozoic clastic rocks in Southern Peru (Tacna, 18°S): Towards a paleoenvironmental Redefinition and stratigraphic Reorganization

    NASA Astrophysics Data System (ADS)

    Alván, Aldo; Jacay, Javier; Caracciolo, Luca; Sánchez, Elvis; Trinidad, Inés

    2018-07-01

    The Mesozoic rocks of southern Peru comprise a Middle Jurassic to Early Cretaceous sedimentary sequence deposited during a time interval of approximately 34 Myr. In Tacna, these rocks are detrital and constitute the Yura Group (Callovian to Tithonian) and the Hualhuani Formation (Berriasian). Basing on robust interpretation of facies and petrographic analysis, we reconstruct the depositional settings of such units and provide a refined stratigraphic framework. Accordingly, nine types of sedimentary facies and six architectural elements are defined. They preserve the record of a progradational fluvial system, in which two styless regulated the dispersion of sediments: (i) a high-to moderate-sinuosity meandering setting (Yura Group), and a later (ii) incipient braided setting (Hualhuani Formation). The Yura Group (Callovian-Tithonian) represents the onset of floodplain deposits and lateral accretion of point-bar deposits sited on a semi-flat topography. Nonetheless, the progradational sequence was affected by at least two rapid marine ingressions occurred during Middle Callovian and Tithonian times. Such marine ingressions reveal the proximity of a shallow marine setting and incipient carbonate deposition. In response to increase in topographic gradient, the Hualhuani Formation (Berriasian) deposited as extensive multistory sandy channels. The mineralogy of the Mesozoic sediments suggests sediment supplies and intense recycling from a craton interior (i.e. Amazon Craton and/or plutonic sources) located eastward of the study area.

  4. Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development.

    PubMed

    Yajima, Mamiko

    2007-01-01

    Peronella japonica, an intermediate type of direct-developing sand dollar, forms an abbreviated pluteus, followed by metamorphosis within 3 days without feeding. In this species, ingression of mesenchyme cells starts before hatching and continues until gastrulation, but no typical secondary mesenchyme cells (SMCs) migrate from the tip of the archenteron. Here, I investigated the cell lineage of mesenchyme cells through metamorphosis in P. japonica and found that mesenchyme cells migrating before hatching (early mesenchyme cells [EMCs]) were exclusively derived from micromeres and became larval skeletogenic cells, whereas cells migrating after hatching (late mesenchyme cells [LMCs]) appeared to contain several nonskeletogenic cells. Thus, it is likely that EMCs are homologous to primary mesenchyme cells (PMCs) and LMCs are similar to the SMCs of typical indirect developers, suggesting that heterochrony in the timing of mesenchyme cell ingression may have occurred in this species. EMCs disappeared after metamorphosis and LMCs were involved in adult skeletogenesis. Embryos from which micromeres were removed at the 16-cell stage formed armless plutei that went on to form adult skeletons and resulted in juveniles with normal morphology. These results suggest that in P. japonica, LMCs form adult skeletal elements, whereas EMCs are specialized for larval spicule formation. The occurrence of evolutionary modifications in mesenchyme cells in the transition from indirect to direct development of sand dollars is discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resultingmore » in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.« less

  6. Resolving early mesoderm diversification through single-cell expression profiling.

    PubMed

    Scialdone, Antonio; Tanaka, Yosuke; Jawaid, Wajid; Moignard, Victoria; Wilson, Nicola K; Macaulay, Iain C; Marioni, John C; Göttgens, Berthold

    2016-07-14

    In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.

  7. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system.

    PubMed

    Brouwers, Joachim; Anneveld, Bart; Goudappel, Gert-Jan; Duchateau, Guus; Annaert, Pieter; Augustijns, Patrick; Zeijdner, Evelijn

    2011-02-01

    In the present study, we demonstrated the value of two advanced tools, the TNO gastric and small Intestinal Model (TIM-1) and magnetic resonance imaging (MRI), for the in vitro evaluation of food-dependent disintegration of immediate release fosamprenavir tablets. Upon introduction of a tablet with the nutritional drink Scandishake Mix® in the stomach compartment of TIM-1, simulating the fed state, disintegration and fosamprenavir dissolution were significantly postponed compared to the fasted state (lag time 80 ± 23 min). This resulted in a lag in the appearance of bioaccessible fosamprenavir (<5% during the first 2h), even though the nutritional state did not significantly alter the cumulative bioaccessibility after 5h. These results were in agreement with the previously observed postprandial delay in gastric fosamprenavir tablet disintegration and subsequent amprenavir absorption in healthy volunteers. Therefore, TIM-1 can be used in tablet development to identify food-induced disintegration issues causing unexpected clinical behavior. From a mechanistic perspective, we applied MRI to illustrate impaired water ingress in fosamprenavir tablets immersed in the nutritional drink compared to simulated gastric fluid. This effect may be attributed to both competition between nutritional components and the tablet for the available water (indicated by reduced rotational and translational diffusion) as well as the possible formation of a food-dependent precipitation layer on the HPMC-coated tablet. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Brinicles as a case of inverse chemical gardens.

    PubMed

    Cartwright, Julyan H E; Escribano, Bruno; González, Diego L; Sainz-Díaz, C Ignacio; Tuval, Idan

    2013-06-25

    Brinicles are hollow tubes of ice from centimeters to meters in length that form under floating sea ice in the polar oceans when dense, cold brine drains downward from sea ice to seawater close to its freezing point. When this extremely cold brine leaves the ice, it freezes the water it comes into contact with: a hollow tube of ice-a brinicle-growing downward around the plume of descending brine. We show that brinicles can be understood as a form of the self-assembled tubular precipitation structures termed chemical gardens, which are plantlike structures formed on placing together a soluble metal salt, often in the form of a seed crystal, and an aqueous solution of one of many anions, often silicate. On one hand, in the case of classical chemical gardens, an osmotic pressure difference across a semipermeable precipitation membrane that filters solutions by rejecting the solute leads to an inflow of water and to its rupture. The internal solution, generally being lighter than the external solution, flows up through the break, and as it does so, a tube grows upward by precipitation around the jet of internal solution. Such chemical-garden tubes can grow to many centimeters in length. In the case of brinicles, on the other hand, in floating sea ice we have porous ice in a mushy layer that filters out water, by freezing it, and allows concentrated brine through. Again there is an osmotic pressure difference leading to a continuing ingress of seawater in a siphon pump mechanism that is sustained as long as the ice continues to freeze. Because the brine that is pumped out is denser than the seawater and descends rather than rises, a brinicle is a downward-growing tube of ice, an inverse chemical garden.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourham, Mohamed A.; Gilligan, John G.

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less

  10. Crack Monitoring of Operational Wind Turbine Foundations

    PubMed Central

    McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-01-01

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687

  11. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  12. Crack Monitoring of Operational Wind Turbine Foundations.

    PubMed

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  13. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    PubMed

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.

  14. Plastic Deformation of Quartz: Unfinished business?

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2011-12-01

    Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300°C, then with a gas-medium machine for temperatures up to 800°C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked, presumably due to non-hydrostatic stresses generated from the solid medium during raising the pressure, thus evidently promoting the ingress of water. From our gas-medium experiments it would seem that both the solubility and the rate of diffusion of water-related species in dry quartz must be very low, such that at 300 MPa and around 500 - 1000 °C the water penetrates less than a few micrometres in the course of a few hours. Thus the sluggishness of diffusion and the low equilibrium solubility of water-related species in quartz probably explain the failure to achieve hydrolytic weakening in the gas-medium apparatus. However, the documentation of these properties remains inadequate. The initial, and still current, Frank-Griggs hypothesis for the origin of hydrolytic weakening is that the water plays a role in the breaking of the covalent silicon-oxygen bonds as a dislocation is propagated. It is a corollary that the dislocation must be saturated with water or that the water must migrate with the dislocation as it moves. Heggie and Jones have done a number of ab initio calculations on the role of the water in the migration of dislocations in quartz which support the idea that the motion of dislocations is aided by the presence of water-related species in the dislocation core.

  15. New Tools for the Study of Combustion Chemistry and Complex Gas-Surface Interactions from First Principles

    DTIC Science & Technology

    2007-10-06

    Proffen, A. M. Rappe, S. Scott, and R. Seshadri, "BaCel-xPd,O 3-8 (0<xɘ.1): Redox controlled ingress and egress of palladium in a perovskite...methyl and the surface rhodium atoms. Such multi-center bonding leads to C-H bond depletion and is the cause of experimentally observed mode-softening...The Pd 2 - containing perovskite phases extrude elemental face-centered cubic palladium nanoparticles when heated in a reducing atmosphere. This

  16. Integrated Mission Precision Attack Cockpit Technology (IMPACT). Phase 1: Identifying Technologies for Air-to-Ground Fighter Integration.

    DTIC Science & Technology

    1994-10-31

    No comment S4: No comment 63 3. The HMD would my...released (i.e., not hung) without looking down on the PACS page is very good." S4: No comment 6. The HMD would my SITUATIONAL AWARENESS during the INGRESS...Substantially Degrade 0 (Subject 1: NO RATING) HOW? S 1: No comment S2: "Previous reasons, visibility REF # 2, 4" S3: No comment S4: No comment 65 7. The

  17. Suitlock Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip, Jr. (Inventor)

    1997-01-01

    An environmental protective suit used for hazardous clean-up or space applications includes a suitlock docking mechanism that allows for easy egress and ingress of a crew member between a sealed vessel and a possibly contaminated environment. The suitlock docking mechanism comprises a single actuator that controls latches which, in turn, respectfully control rack and pinion assemblies that allow for easy removal and attachment of a life support equipment enclosure shell to the environmental protective suit or to the vehicle from which the operator performs his/her duties.

  18. STS-29 Pilot Blaha displays photograph of crewmembers' wives on flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sitting in forward flight deck pilots seat and wearing t-shirt and shorts, STS-29 Pilot John E. Blaha displays group portrait of crewmembers' wives. The signed photograph was found by crewmembers upon thier ingressing Discovery, Orbiter Vehicle (OV) 103, on launch day. Surrounding Blaha are pilots station controls, forward windows W4, W5, W6, checklists, tethered pencils, and pilots seat back with orange parachute harness. Communications kit assembly freefloats below his left forearm.

  19. Culbertson floats through a hatch into the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-12

    STS-105-E-5118 (12 August 2001) --- Frank L. Culbertson, Expedition Three mission commander, gives a thumbs up as he enters the Zvezda Service Module during the initial ingress into the International Space Station (ISS) for the STS-105 mission. Culbertson, accompanied by cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents on the ISS. This image was taken with a digital still camera.

  20. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High Strength Alloys

    DTIC Science & Technology

    1989-11-17

    been extended to a group of precipitation -hardened nickel-containing alloys (Inconel 718, Incoloy 925, and 18Ni maraging steel ) and titanium (pure and...possibly Ni 3Ti or FeTi, precipitated during age hardening of the maraging steel . 2 1 The energy of hydrogen interaction with the interrmetallic particles...102, Part 1 (1972); Ref 105 in "The Stress Corrosion and Hydrogen Embrittlement Behavior of Maraging Steels ", Proceedings of the Conference on the

  1. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High-Strength Alloys

    DTIC Science & Technology

    1990-11-14

    Potential traps are the intermetallic compounds, Ni3Mo and possibly Ni3 Ti or FeTi, precipitated during age hardening of the maraging steel .23 The energy of...1972); Ref 105 in "The Stress Corrosion and Hydrogen Embrittlement Behavior of Maraging Steels ," Proceedings of the Conference on the Stress Corrosion ...718, 18Ni Maraging Steel Hydrogen Trapping, Incoloy 925, Titanium, Trapping Model 19. ABSTRACT (Continue on reverse if necessary and ientify by block

  2. A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Lokanath, Sumanth; Williams, Paul

    Data indicate that the inverter is the element of the photovoltaic plant that has the highest number of service calls and the greatest operation and maintenance cost burden. This paper describes the projects and relevant background needed in developing design qualification standards that would serve to establish a minimum level of reliability, along with a review of photovoltaic inverter quality and safety standards, most of which are in their infancy. We compare stresses and levels for accelerated testing of inverters proposed in the standard drafts, and those proposed by manufacturers and purchasers of inverters. We also review bases for themore » methods, stress types, and stress levels for durability testing of key inverter components. Many of the test protocols appear to need more comprehensive inclusion of stress factors existing in the natural environment such as wind driven rain, dust, and grid disturbances. Further understanding of how temperature, humidity ingress, and voltage bias affect the inverters and their components is also required. We provide data indicating inconsistent quality of the inverters and the durability of components leading to greater cost for the photovoltaic plant operator. Accordingly, the recommendation for data collection within quality standards for obtaining cost of ownership metrics is made. Design validation testing using realistic operation, environmental, and connection conditions, including under end-use field conditions with feedback for continuous improvement is recommended for inclusion within a quality standard.« less

  3. Evaluation and modeling of the potential effects of a module manufacturing anomaly

    DOE PAGES

    Kempe, Michael D.; Jordan, Dirk C.

    2017-07-13

    Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less

  4. Evaluation and modeling of the potential effects of a module manufacturing anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Jordan, Dirk C.

    Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less

  5. A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols

    DOE PAGES

    Hacke, Peter; Lokanath, Sumanth; Williams, Paul; ...

    2017-10-10

    Data indicate that the inverter is the element of the photovoltaic plant that has the highest number of service calls and the greatest operation and maintenance cost burden. This paper describes the projects and relevant background needed in developing design qualification standards that would serve to establish a minimum level of reliability, along with a review of photovoltaic inverter quality and safety standards, most of which are in their infancy. We compare stresses and levels for accelerated testing of inverters proposed in the standard drafts, and those proposed by manufacturers and purchasers of inverters. We also review bases for themore » methods, stress types, and stress levels for durability testing of key inverter components. Many of the test protocols appear to need more comprehensive inclusion of stress factors existing in the natural environment such as wind driven rain, dust, and grid disturbances. Further understanding of how temperature, humidity ingress, and voltage bias affect the inverters and their components is also required. We provide data indicating inconsistent quality of the inverters and the durability of components leading to greater cost for the photovoltaic plant operator. Accordingly, the recommendation for data collection within quality standards for obtaining cost of ownership metrics is made. Design validation testing using realistic operation, environmental, and connection conditions, including under end-use field conditions with feedback for continuous improvement is recommended for inclusion within a quality standard.« less

  6. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    USGS Publications Warehouse

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (< or = 80 degrees C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.

  7. Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marman Clamp and Pneumatic Flipper Suitport Concepts

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Rodriggs, Liana; Allton, Charles; Jennings, Mallory; Aitchision, Lindsay

    2013-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.

  8. Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marmon Clamp and Pneumatic Flipper Suitport Concepts

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Rodriggs, Liana; Alton, Charles; Jennings, Mallory; Aitchison, Lindsay

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.

  9. Air cleaning performance of a new environmentally controlled primary crusher operator booth

    PubMed Central

    Organiscak, J.A.; Cecala, A.B.; Zimmer, J.A.; Holen, B.; Baregi, J.R.

    2016-01-01

    The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company’s Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system’s effectiveness in controlling airborne dusts and particulates. The booth’s dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions. PMID:26937052

  10. Design, Fabrication, and In Vitro Testing of an Anti-biofouling Glaucoma Micro-shunt.

    PubMed

    Harake, Ryan S; Ding, Yuzhe; Brown, J David; Pan, Tingrui

    2015-10-01

    Glaucoma, one of the leading causes of irreversible blindness, is a progressive neurodegenerative disease. Chronic elevated intraocular pressure (IOP), a prime risk factor for glaucoma, can be treated by aqueous shunts, implantable devices, which reduce IOP in glaucoma patients by providing alternative aqueous outflow pathways. Although initially effective at delaying glaucoma progression, contemporary aqueous shunts often lead to numerous complications and only 50% of implanted devices remain functional after 5 years. In this work, we introduce a novel micro-device which provides an innovative platform for IOP reduction in glaucoma patients. The device design features an array of parallel micro-channels to provide precision aqueous outflow resistance control. Additionally, the device's microfluidic channels are composed of a unique combination of polyethylene glycol materials in order to provide enhanced biocompatibility and resistance to problematic channel clogging from biofouling of aqueous proteins. The microfabrication process employed to produce the devices results in additional advantages such as enhanced device uniformity and increased manufacturing throughput. Surface characterization experimental results show the device's surfaces exhibit significantly less non-specific protein adsorption compared to traditional implant materials. Results of in vitro flow experiments verify the device's ability to provide aqueous resistance control, continuous long-term stability through 10-day protein flow testing, and safety from risk of infection due to bacterial ingression.

  11. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Jefferies, Sharon; Howe, A. Scott; Howard, Robert; Mary, Natalie; Watson, Judith; Lewis, Ruthan

    2016-01-01

    When the first human visitors on Mars prepare to return to Earth, they will have to comply with stringent planetary protection requirements. Apollo Program experience warns that opening an EVA hatch directly to the surface will bring dust into the ascent vehicle. To prevent inadvertent return of potential Martian contaminants to Earth, careful consideration must be given to the way in which crew ingress their Mars Ascent Vehicle (MAV). For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel that eliminates extravehicular activity (EVA) ingress is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications, such as rover to habitat transfer, once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The study team began by identifying the minimum set of functional requirements needed for the tunnel to perform its primary mission, as this would presumably be the simplest design, with the lowest mass and volume. This Minimum Functional Tunnel then becomes a baseline against which various tunnel design concepts and potential alternatives can be traded, and aids in assessing the mass penalty of increased functionality. Preliminary analysis indicates that the mass of a single-mission tunnel is about 237 kg, not including mass growth allowance.

  12. Effective bandwidth guaranteed routing schemes for MPLS traffic engineering

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Jain, Nidhi

    2001-07-01

    In this work, we present online algorithms for dynamic routing bandwidth guaranteed label switched paths (LSPs) where LSP set-up requests (in terms of a pair of ingress and egress routers as well as its bandwidth requirement) arrive one by one and there is no a priori knowledge regarding future LSP set-up requests. In addition, we consider rerouting of LSPs in this work. Rerouting of LSPs has not been well studied in previous work on LSP routing. The need of LSP rerouting arises in a number of ways: occurrence of faults (link and/or node failures), re-optimization of existing LSPs' routes to accommodate traffic fluctuation, requests with higher priorities, and so on. We formulate the bandwidth guaranteed LSP routing with rerouting capability as a multi-commodity flow problem. The solution to this problem is used as the benchmark for comparing other computationally less costly algorithms studied in this paper. Furthermore, to more efficiently utilize the network resources, we propose online routing algorithms which route bandwidth demands over multiple paths at the ingress router to satisfy the customer requests while providing better service survivability. Traffic splitting and distribution over the multiple paths are carefully handled using table-based hashing schemes while the order of packets within a flow is preserved. Preliminary simulations are conducted to show the performance of different design choices and the effectiveness of the rerouting and multi-path routing algorithms in terms of LSP set-up request rejection probability and bandwidth blocking probability.

  13. An Observational Diagnostic for Distinguishing Between Clouds and Haze in Hot Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza; Bean, Jacob; Parmentier, Vivien

    2018-01-01

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We present a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the idea that the two key types of aerosols -- photochemically generated hazes and equilibrium condensate clouds -- are expected to form and persist in different regions of a highly irradiated planet's atmosphere. Haze can only be produced on the permanent daysides of tidally-locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the night side and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress-egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, we find that observations with JWST and potentially with HST should be able to distinguish between clouds and haze for currently known HIHJs.

  14. Statins: novel additions to the dermatologic arsenal?

    PubMed

    Namazi, M R

    2004-06-01

    The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), atorvastatin, cerivastatin, fluvastatin, pravastatin, lovastatin and simvastatin, reduce atherogenesis and cardiovascular morbidity. Besides, there is growing evidence that statins have immunomodulatory activities. Statins downregulate the expression of adhesion molecules, intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MAC-1) and lymphocyte function-associated antigen-1 (LFA-1), on leucocytes and endothelial cells and, through binding to LFA-1, interfere with ICAM-1-LFA-1 interaction, which is crucial for activation of lymphocytes by antigen-presenting cells, ingress of leucocytes into the inflammation sites and immunologic cytotoxicity. Statins inhibit the inducible expression of major histocompatibility complex class II in several cell types including macrophages and downregulate the expression of T-helper-1 (Th1) chemokine receptors on T cells, leading further to inhibition of activation of lymphocytes and their infiltration into the inflammation sites. Statins block the induction of inducible nitric oxide synthase and the expression of several proinflammatory cytokines such as tumour necrosis factor-alpha and interferon-gamma in macrophages and possess antioxidant effects. These agents inhibit the proliferation of immunocytes and the activation of natural killer cells. Regarding the above facts and in view of their safety and inexpensiveness, statins may prove invaluable in the treatment of a multiplicity of dermatologic disorders, especially those characterized by ingress of activated leucocytes into the skin, such as alopecia areata, vitiligo, lichen planus, subacute cutaneous lupus erythematosus, erythema multiforme, psoriasis, bullous pemphigoid, systemic sclerosis, mycosis fungoides, toxic epidermal necrolysis and Behcet's disease.

  15. Performance analysis of signaling protocols on OBS switches

    NASA Astrophysics Data System (ADS)

    Kirci, Pinar; Zaim, A. Halim

    2005-10-01

    In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.

  16. Pluto occultation on 2015 June 29 UTC with central flash and atmospheric spikes just before the New Horizons flyby

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Person, Michael J.; Sickafoose, Amanda A.; Zuluaga, Carlos A.; Kosiarek, Molly R.; Abe, Fumio; Nagakane, Masayuki; Suzuki, Daisuke; Tristram, Paul J.; Arredondo, Anicia

    2017-11-01

    We observed the occultation by Pluto of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 2015 June 29 UTC. At the Univ. of Canterbury Mt. John Observatory (New Zealand), under clear skies throughout, we used a POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. At the Auckland Observatory, we used a POETS and a PICO on 0.5-m and 0.4-m telescopes, with 0.4 s and 2 s cadences, respectively, obtaining ingress observations before clouds moved in. The Mt. John light curves show a central flash, indicating that we were close to the center of the occultation path. Analysis of our light curves show that Pluto's atmosphere remains robust. The presence of spikes at both sites in the egress and ingress shows atmospheric layering. We coordinated our observations with aircraft observations (Bosh et al., 2017) with the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our chords helped constrain the path across Pluto that SOFIA saw. Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days before the flyby of NASA's New Horizons spacecraft.

  17. Resolving Early Mesoderm Diversification through Single Cell Expression Profiling

    PubMed Central

    Wilson, Nicola K.; Macaulay, Iain C.; Marioni, John C.; Göttgens, Berthold

    2016-01-01

    Summary In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the E6.5 mouse embryo, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition (EMT) and ingress through the primitive streak (PS). Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac (YS), umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast1 but the plasticity of cells within the embryo and the function of key cell type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1+ mesoderm of gastrulating mouse embryos using single cell RNA-sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knock-out mice, we study the function of Tal1, a key hematopoietic transcription factor (TF), and demonstrate, contrary to previous studies performed using retrospective assays2,3, that Tal1 knock out does not immediately bias precursor cells towards a cardiac fate. PMID:27383781

  18. The robustness of using near-UV observations to detect and study exoplanet magnetic fields

    NASA Astrophysics Data System (ADS)

    Turner, J.; Christie, D.; Arras, P.; Johnson, R.

    2015-10-01

    Studying the magnetic fields of exoplanets will allow for the investigation of their formation history, evolution, interior structure, rotation period, atmospheric dynamics, moons, and potential habitability. We previously observed the transits of 16 exoplanets as they crossed the face of their host-star in the near-UV in an attempt to detect their magnetic fields (Turner et al. 2013; Pearson et al. 2014; Turner et al. in press). It was postulated that the magnetic fields of all our targets could be constrained if their near-UV light curves start earlier than in their optical light curves (Vidotto et al. 2011). This effect can be explained by the presence of a bow shock in front of the planet formed by interactions between the stellar coronal material and the planet's magnetosphere. Furthermore, if the shocked material in the magnetosheath is optically thick, it will absorb starlight and cause an early ingress in the near- UV light curve. We do not observe an early ingress in any of our targets (See Figure 1 for an example light curve in our study), but determine upper limits on their magnetic field strengths. All our magnetic field upper limits are well below the predicted magnetic field strengths for hot Jupiters (Reiners & Christensen 2010; Sanchez-Lavega 2004). The upper limits we derived assume that there is an absorbing species in the near-UV. Therefore, our upper limits cannot be trusted if there is no species to cause the absorption. In this study we simulate the atomic physics, chemistry, radiation transport, and dynamics of the plasma characteristics in the vicinity of a hot Jupiter using the widely used radiative transfer code CLOUDY (Ferland et al. 2013). Using CLOUDY we have investigated whether there is an absorption species in the near-UV that can exist to cause an observable early ingress. The number density of hydrogen in the bow shock was varied from 104 - -108 cm-3 and the output spectrum was calculated (Figure 2) and compared to the input spectrum to mimic a transit like event (Figure 3). We find that there isn't a species in the near-UV that can cause an absorption under the conditions (T = 1×106 K, semi-major axis of 0.02 AU, solar input spectrum, solar metallicity) of a transiting hot Jupiter (Figure 3). Therefore, our upper limits can not be trusted. We can eventually use CLOUDY to explore the escaping atmospheres from hot Jupiters. We can still use our data to constrain the atmospheric proprieties of the exoplanets.

  19. Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Brian; Gutowska, Izabela; Chiger, Howard

    Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less

  20. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    PubMed Central

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established. PMID:22291514

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Sterbentz, James W.; Snoj, Luka

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  2. Magnus Configures Raffaello for Ingress

    NASA Image and Video Library

    2011-07-11

    S135-E-007401 (11 July 2011) --- Toting a cargo transfer bag filled with supplies that was carried aboard Raffaello in Atlantis' cargo bay, NASA astronaut Sandy Magnus participates in a very busy move operation on the fourth day in space for the STS-135 crew. She is in Node 2 or Harmony, near the PMA-2 passageway, on the International Space Station. She is sporting the striped socks that she rediscovered on the station which had remained there since her long duration stay on the orbital outpost a few years ago. Photo credit: NASA

  3. Meeting the Challenge: A 1986 History of the Naval Surface Weapons Center

    DTIC Science & Technology

    1987-05-29

    8217GClK JACK lMUITRIUXER DIG Iot I ---, , SUpFt S COMPUTER ’ HEL DE Osi cOeiTROLPRiOCESSO HIGM SPEED ATA BUS OM SWR AU VAGKTtC BIBS11 Closed-Loop...appear. HVAC designers think it can determine if closures need to be installed on ventilation inlets to prevent the ingress of exhaust gases from...and fuze timing errors. If the fuze could be caused to actuate based on target position rather than a predicted time of flight, these errors could be

  4. General view of the mid deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid deck of the Orbiter Discovery during pre-launch preparations. Note the payload and mission specialists seats. The seats are removed packed and stowed during on-orbit activities. Also not the black panels in the right of the image, they are protective panels used for preparation of the orbiter and astronaut ingress while the orbiter is in its vertical launch position. This image was taken at Kenney Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. STS-113 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-113 crew consists of Commander Jim Weatherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. The goal of the STS-113 mission is to deliver the Expedition Six crew to the International Space Station and return the Expedition Five crew to Earth. Also, the P1 Truss will be installed on the International Space Station. The STS-113 crew is shown getting suited for Pre-Launch Ingress and Egress. The Neutral Buoyancy Lab Extravehicular Activity training (NBL) (EVA), CETA Bolt Familiarization, and Photography TV instruction are also presented.

  6. Horowitz and Dezhurov float into Node 1/Unity from U.S. Laboratory/Destiny

    NASA Image and Video Library

    2001-08-12

    STS105-E-5109 (12 August 2001) --- Scott J. Horowitz (left), STS-105 commander, and cosmonaut Vladimir N. Dezhurov, Expedition Three flight engineer, move into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Dezhurov, accompanied by cosmonaut Mikhail Tyurin and astronaut Frank L. Culbertson, Jr., will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.

  7. STS-107 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-107 is a Multidiscipline Microgravity and Earth Science Research Mission to conduct international scientific investigations in orbit. The crew consists of Payload Specialist Ilan Ramon, Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown, Laurel Clark, Michael Anderson, and Kalpana Chawla. The crewmembers are shown getting suited in the Pre-Launch Ingress and Egress training area. The other areas of training include Payload Experiment in Fixed Base/Spacehab, Mist Experiment Combustion Module 2, Phab 4 Experiment in CCT Mid-deck and Payload Experiment Demo-Protein Crystal Growth.

  8. Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; Leland M. Montierth

    2014-06-01

    PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less

  9. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance.

    PubMed

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-03-29

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

  10. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    PubMed Central

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  11. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Described herein is a series of design studies concerning the Assured Crew Return Vehicle (ACRV). Study topics include a braking and landing system for the ACRV, ACRV growth options, and the design impacts of ACRV's role as a medical emergency vehicle. Four alternate designs are presented for the ACRV braking and landing system. Options presented include ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings or both; and an aerial recovery system. Uses of the ACRV or a similarly designed vehicle in several roles for possible future space missions are discussed, along with the required changes to the ACRV to allow it to perform these missions optimally. The impacts on the design of the ACRV due to its role as an emergency vehicle were studied and are presented here. This study included the design of a stretcher-like system to transport an ill or injured crewmember safely within the ACRV; a compilation of necessary medical equipment and decisions on how or where to store it; and recommendations about internal and external vehicle characteristics that will ease the transport of the ill or injured crewmember and allow for swift and easy ingress/egress of the vehicle.

  12. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    How crews get into or out of their ascent vehicle has profound implications for Mars surface architecture. Extravehicular Activity (EVA) hatches and Airlocks have the benefit of relatively low mass and high Technology Readiness Level (TRL), but waste consumables with a volume depressurization for every ingress/egress. Perhaps the biggest drawback to EVA hatches or Airlocks is that they make it difficult to keep Martian dust from being tracked back into the ascent vehicle, in violation of planetary protection protocols. Suit ports offer the promise of dust mitigation by keeping dusty suits outside the cabin, but require significant cabin real estate, are relatively high mass, and current operational concepts still require an EVA hatch to get the suits outside for the first EVA, and back inside after the final EVA. This is primarily because current designs don't provide enough structural support to protect the suits from ascent/descent loads or potential thruster plume impingement. For architectures involving more than one surface element-such as an ascent vehicle and a rover or surface habitat-a retractable tunnel is an attractive option. By pushing spacesuit don/doff and EVA operations to an element that remains on the surface, ascended vehicle mass and dust can be minimized. What's more, retractable tunnels provide operational flexibility by allowing surface assets to be re-configured or built up over time. Retractable tunnel functional requirements and design concepts being developed as part of the National Aeronautics and Space Administration's (NASA) Evolvable Mars Campaign (EMC) work will add a new ingress/egress option to the surface architecture trade space.

  13. Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.

    2017-12-01

    Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.

  14. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis.

    PubMed

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin-based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. © 2015 Zhou et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems.

    PubMed

    Vasavada, Vaishali; Vasavada, Abhay R; Vasavada, Viraj A; Srivastava, Samaresh; Gajjar, Devarshi U; Mehta, Siddharth

    2013-04-01

    To compare incision integrity and clinical outcomes of 2 microcoaxial phacoemulsification systems. Iladevi Cataract & IOL Research Centre, Ahmedabad, India. Prospective randomized clinical trial. Eyes were randomized to have phacoemulsification using a 1.8 mm clear corneal incision (CCI) system (Group 1, Stellaris system) or a 2.2 mm CCI system (Group 2, Intrepid Infiniti system). Incision enlargement at end of surgery was measured. At the conclusion of surgery, trypan blue was applied over the conjunctival surface, anterior chamber aspirate withdrawn, and ingress into anterior chamber measured. Postoperative observations included evaluation of the CCI using anterior segment optical coherence tomography (AS-OCT), change in central corneal thickness (CCT), and anterior segment inflammation at 1 day, 1 week, and 1 month and endothelial cell loss and surgically induced astigmatism (SIA) at 3 months. Incision enlargement (P<.001) and trypan blue ingress in the anterior chamber (mean 1.7 log units ± 0.6 [SD] versus 3.8 ± 0.6 log units, P<.001) was significantly greater in Group 1 (n = 50) than in Group 2 (n = 50). On AS-OCT, endothelial misalignment and gaping were more frequent in Group 1 at 1 day (P=.001) and 1 week (P=.018). There were no significant differences in SIA, change in CCT, endothelial cell loss, or anterior segment inflammation (P>.05). At the end of surgery, it is not the initial incision size alone but also the distortion of the incision during subsequent stages of surgery that determine the integrity of the CCI. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Discovering the nature of the star-planet interaction at WASP-12b

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan

    2013-10-01

    In 2010, COS produced a tantalising hint of a significant discovery: the magnetic field of an exoplanet. The ingress of the transiting 'hot-Jupiter' exoplanet WASP-12b apparently occurred earlier in the NUV than in the optical, and two hypotheses have been put forward as explanations. One is that this manifests dense shocked material in a magnetosheath formed in the supersonic stellar wind upstream of the planet's thus-revealed magnetic field, while the other is that this is caused in the absence of a planetary magnetic field by material overflowing the planet's Roche lobe at the L1 point. However, the previous observation, which was not designed to observe this phenomenon, is beset by scattered, sparse data and we do not yet understand the nature of the star-planet interaction. It is thus crucial that we now observe WASP-12b in a program specifically designed to unambiguously detect the early ingress, significantly improve the NUV lightcurve, and answer the question:* What is the nature of the star-planet interaction at WASP-12?No other observatory is capable of making these observations, and this proposal is highly accordant with the purpose of the Cycle 21 UV initiative. Execution in Cycle 21 is also highly desirable since the results will provide input to the LOFAR exoplanet program, which will focus on planets thought to exhibit star-planet interactions. By following a fortuitously obtained pointer, this proposal presents low risk-high impact observations, since the characterisation of star-exoplanet interactions and possibly the first detection of an exoplanetary magnetic field would be of huge scientific significance.

  17. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.

    PubMed

    Headley, T R; Davison, L; Huett, D O; Müller, R

    2012-02-01

    The balance between evapotranspiration (ET) loss and rainfall ingress in treatment wetlands (TWs) can affect their suitability for certain applications. The aim of this paper was to investigate the water balance and seasonal dynamics in ET of subsurface horizontal flow (HF) TWs in a sub-tropical climate. Monthly water balances were compiled for four pilot-scale HF TWs receiving horticultural runoff over a two year period (Sep. 1999-Aug. 2001) on the sub-tropical east-coast of Australia. The mean annual wetland ET rate increased from 7.0 mm/day in the first year to 10.6 mm/day in the second, in response to the development of the reed (Phragmites australis) population. Consequently, the annual crop coefficients (ratio of wetland ET to pan evaporation) increased from 1.9 in the first year to 2.6 in the second. The mean monthly ET rates were generally greater and more variable than the Class-A pan evaporation rates, indicating that transpiration is an important contributor to ET in HF TWs. Evapotranspiration rates were generally highest in the summer and autumn months, and corresponded with the times of peak standing biomass of P. australis. It is likely that ET from the relatively small 1 m wide by 4 m long HF TWs was enhanced by advection through so-called "clothesline" and "oasis" effects, which contributed to the high crop coefficients. For the second year, when the reed population was well established, the annual net loss to the atmosphere (taking into account rainfall inputs) accounted for 6.1-9.6 % of the influent hydraulic load, which is considered negligible. However, the net loss is likely to be higher in arid regions with lower rainfall. The Water Use Efficiency (WUE) of the wetlands in the second year of operation was 1.3 g of above-ground biomass produced per kilogram of water consumed, which is low compared to agricultural crops. It is proposed that system level WUE provides a useful metric for selecting wetland plant species and TW design alternatives to use in arid regions where excessive water loss from constructed wetlands can be problematic. Further research is needed to accrue long-term HF TW water balance data especially in arid climatic zones. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms

    NASA Astrophysics Data System (ADS)

    Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.

    2017-04-01

    Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration layer (Si, Al), it is assumed that the glass dissolution rate continuously decreases due to the growth of the transport limiting alteration layer, in good agreement with residual rates reported in the literature for this glass. According to our results it can be expected that new kinetic models should emerge from an accurate time dependent budget of water within the nanoporous alteration layer.

  19. Final analysis and design of a thermal protection system for 8-foot HTST combustor

    NASA Technical Reports Server (NTRS)

    Moskowitz, S.

    1973-01-01

    The cylindrical shell combustor with T-bar supports in the 8-foot HTST at the NASA-Langley Research Center encountered vibratory fatigue cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A preliminary design study provided several suitable thermal protection system designs for the combustor, one of which was a two-pass regenerative type air-cooled omega-shaped segment liner. A final design layout of the omega segment liner was prepared and analyzed for steady-state and transient conditions. The design of a support system for the fuel spray bar assembly was also included. Detail drawings suitable for fabrication purposes were also prepared. Liner design problems defined during the preliminary study included (1) the ingress of gas into the attachment bulb section of the omega segment, (2) the large thermal gradient along the leg of the omega bulb attachment section and, (3) the local peak metal temperature at the radius between the liner ID and the leg of the bulb attachment. These were resolved during the final design task. Analyses of the final design of the omega segment liner indicated that all design goals were met and the design provided the capability of operating over the required test envelope with a life expectancy substantially above the goal of 1500 cycles.

  20. Seal Technology for Liquid Oxygen (LOX) Turbopumps

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Hamm, Robert

    1985-01-01

    Two types of advanced seals for liquid oxygen (LOX) turbopumps were investigated. One was a spiral-groove face seal whose function is to seal high-pressure LOX at the impeller end of the turbopump. The other was a floating-ring, Rayleigh-step, helium buffered seal used to prevent LOX ingress to the turbine side of the unit. For each seal type, two sizes were investigated (50 and 20 mm). A turbine-driven test rig was designed and manufactured, and a test program was completed on the 50 mm floating-ring, Rayleigh-step, helium buffered seal. Significant results were: vaporization in the flow path could cause failure by overheating; therefore, the spiral-groove pumping portion of the seal that provides the fluid film must circulate fluid without disruption if vaporization occurs in the sealing dam. This is successfully accomplished by a pressure-balanced spiral-groove concept that is described. The spiral-groove configuration is affected by turbulence in the fluid film and pressure drops due to fluid inertia at sudden contractions. The net results of these effects are deep grooves, large operating films, and high power loss when compared against seals operating with laminar films. Turbulence and inertia are induced by the high-density and low-viscosity characteristics of LOX. The program clearly pointed out the need to consider system environmental factors such as thermal and centrifugal distortions and rotor vibrations in the seal design.

  1. Science Operations for the 2008 NASA Lunar Analog Field Test at Black Point Lava Flow, Arizona

    NASA Technical Reports Server (NTRS)

    Garry W. D.; Horz, F.; Lofgren, G. E.; Kring, D. A.; Chapman, M. G.; Eppler, D. B.; Rice, J. W., Jr.; Nelson, J.; Gernhardt, M. L.; Walheim, R. J.

    2009-01-01

    Surface science operations on the Moon will require merging lessons from Apollo with new operation concepts that exploit the Constellation Lunar Architecture. Prototypes of lunar vehicles and robots are already under development and will change the way we conduct science operations compared to Apollo. To prepare for future surface operations on the Moon, NASA, along with several supporting agencies and institutions, conducted a high-fidelity lunar mission simulation with prototypes of the small pressurized rover (SPR) and unpressurized rover (UPR) (Fig. 1) at Black Point lava flow (Fig. 2), 40 km north of Flagstaff, Arizona from Oct. 19-31, 2008. This field test was primarily intended to evaluate and compare the surface mobility afforded by unpressurized and pressurized rovers, the latter critically depending on the innovative suit-port concept for efficient egress and ingress. The UPR vehicle transports two astronauts who remain in their EVA suits at all times, whereas the SPR concept enables astronauts to remain in a pressurized shirt-sleeve environment during long translations and while making contextual observations and enables rapid (less than or equal to 10 minutes) transfer to and from the surface via suit-ports. A team of field geologists provided realistic science scenarios for the simulations and served as crew members, field observers, and operators of a science backroom. Here, we present a description of the science team s operations and lessons learned.

  2. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories.

  3. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    Carlomagno, Giovanni Maria; Di Maio, Rosa; Fedi, Maurizio; Meola, Carosena

    2011-09-01

    This work is focused on the integration of infrared thermography and ground penetrating radar for the inspection of architectonic structures. First, laboratory tests were carried out with both techniques by considering an ad hoc specimen made of concrete and with the insertion of anomalies of a different nature and at different depths. Such tests provided helpful information for ongoing inspections in situ, which were later performed in two important Italian archaeological sites, namely Pompeii (Naples) and Nora (Cagliari). In the first site, the exploration was devoted to the analysis of the wall paintings of Villa Imperiale with the aim of evaluating the state of conservation of frescoes as well of the underneath masonry structure. As main findings, the applied techniques allowed outlining some areas, which were damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials, and also for recognition of previous restoration. In the archaeological area of Nora, instead, the attention was driven towards the evaluation of the state of degradation of the theatre remnants. Our prospections show that the front side of the theatre, being more strongly affected by degradation, needs a massive restoration work. As a general result, we demonstrated that a joint interpretation of infrared thermography and ground penetrating radar data supplies detailed 3D information from near-surface to deep layers, which may assist in restoration planning.

  4. STS-119 Extravehicular Activity (EVA) 1 Translate and Ingress

    NASA Image and Video Library

    2009-03-19

    S119-E-006688 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  5. CEV Seat Attenuation System System Design Tasks

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; McMichael, James H.

    2007-01-01

    The Apollo crew / couch restraint system was designed to support and restrain three crew members during all phases of the mission from launch to landing. The crew couch used supported the crew for launch, landing and in-flight operations, and was foldable and removable for EVA ingress/egress through side hatch access and for in-flight access under the seat and in other areas of the crew compartment. The couch and the seat attenuation system was designed to control the impact loads imposed on the crew during landing and to remain non-functional during all other flight phases.

  6. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. LANDING (CREW ACTIVITIES) - STS-1 - EDWARDS AFB (EAFB), CA

    NASA Image and Video Library

    1981-04-14

    S81-30846 (14 April 1981) --- Astronaut John W. Young (near center of photo), STS-1 commander, egresses the space shuttle Columbia upon the completion of checklist activities following the successful landing of the spacecraft used on STS-1 space mission. George W.S. Abbey, director of flight operations at the Johnson Space Center (JSC), greets him at the bottom of the steps. Astronaut Robert L. Crippen, STS-1 pilot, is still inside Columbia. Dr. Craig L. Fischer, chief of the medical operations branch in the medical sciences division at JSC, ingresses the spacecraft at top of stairs. Photo credit: NASA

  8. Stressed Oxidation Life Prediction for C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    2004-01-01

    The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.

  9. Culbertson leads the way from the U.S. Laboratory into Node 1

    NASA Image and Video Library

    2001-08-12

    STS105-E-5108 (12 August 2001) --- Frank L. Culbertson, Jr., Expedition Three mission commander, leads cosmonaut Vladimir N. Dezhurov (back top), Expedition Three flight engineer, and Scott J. Horowitz, STS-105 commander, into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Culbertson and Dezhurov, accompanied by cosmonaut Mikhail Tyurin, will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.

  10. Ingress observations of the 1980 eclipse of the symbiotic star CI Cyngni

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.; Michalitsianos, A. G.; Kafatos, M.; Boyarchuk, A. A.

    1981-01-01

    One of the major results from the IUE may prove to be the knowledge gained by studies of the ultraviolet spectra of symbiotic stars. Symbiotics combine spectral features of a cool M giant like photosphere with strong high excitation emission lines of nebular origin, superposed. The UV spectra are dominated by intense permitted and semiforbidden emission lines and weak continua indicative of hot compact objects and accretion disks. Two symbiotics, AR Pav and CI Cyg are thought to be eclipsing binaries and IUE observations during the 1980 eclipse of CI Cygni are discussed.

  11. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, L.; Ballester, G. E.

    2013-05-01

    Detecting heavy atoms in the inflated atmospheres of giant exoplanets that orbit close to their parent stars is a key factor for understanding their bulk composition, their evolution, and the processes that drive their expansion and interaction with the impinging stellar wind. Unfortunately, very few detections have been made thus far. Here, we use archive data obtained with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope to report an absorption of ~6.4% ± 1.8% by neutral oxygen during the HD 189733b transit. Using published results from a simple hydrodynamic model of HD 189733b, and assuming a mean temperature of ~(8-12) × 103 K for the upper atmosphere of the exoplanet, a mean vertical integrated O I density column of ~8 × 1015 cm-2 produces only a 3.5% attenuation transit. Much like the case of the hot-Jupiter HD 209458b, super-solar abundances and/or super-thermal broadening of the absorption lines are required to fit the deep transit drop-off observed in most far-ultraviolet lines. We also report evidence of short-time variability in the measured stellar flux, a variability that we analyze using time series derived from the time-tagged exposures, which we then compare to solar flaring activity. In that frame, we find that non-statistical uncertainties in the measured fluxes are not negligible, which calls for caution when reporting transit absorptions. Despite cumulative uncertainties that originate from variability in the stellar and sky background signals and in the instrument response, we also show a possible detection for both a transit and early-ingress absorption in the ion C II 133.5 nm lines. If confirmed, this would be the second exoplanet for which an early ingress absorption is reported. In contrast, such an early ingress signature is not detected for neutral O I. Assuming the HD 189733b magnetosphere to be at the origin of the early absorption, we use the Parker model for the stellar wind and a particle-in-cell code for the magnetosphere to show that its orientation should be deflected ~10-30° from the planet-star line, while its nose's position should be at least ~16.7 Rp upstream of the exoplanet in order to fit the C II transit light curve. The derived stand-off distance is consistent with a surface magnetic field strength of ~5.3 Gauss for the exoplanet, and a supersonic stellar wind impinging at ~250 km s-1, with a temperature of 1.2 × 105 K and a density ~6.3 × 106 cm-3 at the planetary orbit, yet the fit is not unique.

  12. Geological hazards associated with intense rain and flooding in Natal

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; van Schalkwyk, A.

    1993-02-01

    The combination of rugged topography and climate predisposes the province of Natal to severe floods. Information available since 1856 shows that bridge and slope failures have been recorded in twenty out of twenty-five flood episodes. Bridge failures are caused mostly by geological factors. The mechanism of failure can be classified broadly into foundation failures and changes of river course. Scour and debris build-up have led to failures of foundations located in rock and alluvial sediments. In preparing and replacing bridges the aims have been to increase the area of waterway, increase foundation depths to reach more competent strata and lay protection along banks and abutments to counteract scour. Historically, slope failures have not been well documented but following the 1987/88 storms 223 slope failures were recorded. The classification of the failures allowed the mechanisms of failure to be ascertained, and general design considerations to be reviewed. In areas adjacent to the Drakensberg Mountains slope failures are part of a natural erosion cycle which may be accelerated in periods of heavy rain. Throughout Natal, hummocky ground adjacent to dolerite intrusions reveals the on-going history of failure caused by water ingress and the generation of high pore water pressures on the slip planes. Classic flows occurred throughout the Greater Durban area where residual sandy soils of the Natal Group sandstone became supersaturated. Slumping was common on steep terrain underlain by granite-gneiss in the Kwa-Zulu area. Shales of the Pietermaritzburg Formation are notoriously unstable, yet few failures occurred during the summer storms of 1987/88. Inadequate drainage was responsible for many failures, this was particularly so along the railways.

  13. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  14. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  15. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  16. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.

    PubMed

    Shi, Lei; Young, Trevor L; Kim, Jincheol; Sheng, Yun; Wang, Lei; Chen, Yifeng; Feng, Zhiqiang; Keevers, Mark J; Hao, Xiaojing; Verlinden, Pierre J; Green, Martin A; Ho-Baillie, Anita W Y

    2017-08-02

    Metal halide perovskite solar cells (PSCs) have undergone rapid progress. However, unstable performance caused by sensitivity to environmental moisture and high temperature is a major impediment to commercialization of PSCs. In the present work, a low-temperature, glass-glass encapsulation technique using high performance polyisobutylene (PIB) as the moisture barrier is investigated on planar glass/FTO/TiO 2 /FAPbI 3 /PTAA/gold perovskite solar cells. PIB was applied as either an edge seal or blanket layer. Electrical connections to the encapsulated PSCs were provided by either the FTO or Au layers. Results of a "calcium test" demonstrated that a PIB edge-seal effectively prevents moisture ingress. A shelf life test was performed and the PIB-sealed PSC was stable for at least 200 days. Damp heat and thermal cycling tests, in compliance with IEC61215:2016, were used to evaluate different encapsulation methods. Current-voltage measurements were performed regularly under simulated AM1.5G sunlight to monitor changes in PCE. The best results we have achieved to date maintained the initial efficiency after 540 h of damp heat testing and 200 thermal cycles. To the best of the authors' knowledge, these are among the best damp heat and thermal cycle test results for perovskite solar cells published to date. Given the modest performance of the cells (8% averaged from forward and reverse scans) especially with the more challenging FAPbI 3 perovskite material tested in this work, it is envisaged that better stability results can be further achieved when higher performance perovskite solar cells are encapsulated using the PIB packaging techniques developed in this work. We propose that heat rather than moisture was the main cause of our PSC degradation. Furthermore, we propose that preventing the escape of volatile decomposition products from the perovskite solar cell materials is the key for stability. PIB encapsulation is a very promising packaging solution for perovskite solar cells, given its demonstrated effectiveness, ease of application, low application temperature, and low cost.

  17. The origin of mesoderm in phoronids

    NASA Technical Reports Server (NTRS)

    Freeman, Gary; Martindale, Mark Q.

    2002-01-01

    Descriptive studies of phoronid development have concluded that the mesoderm of these animals originates from the endoderm during gastrulation. This interpretation has been tested by labeling one blastomere of 4- through 16-cell embryos and examining the position and germ layers occupied by the labeled clones of cells in the larva. No 2 injections gave rise to identical clones of cells, suggesting that the cleavage program does not generate cells of unique identity and that cell fates are established at later developmental time points. In many cases, a relatively large sector composed of ectodermal cells was labeled. When these labeled cells were adjacent to the mouth or anus of the larva, muscle and mesenchyme cells originated from the labeled clones. Under these circumstances, nerve cells also originated from these labeled sectors. These labeling studies also showed that endodermal cells can give rise to mesodermal and neural cells. These results suggest that nerve and muscle cells are induced to form at ectodermal-endodermal boundaries from both germ layers. These marking experiments also confirmed the observation that nerve cells originate both from the apical organ and the trunk region and show for the first time that the intestine originates by ingression of posterior ectoderm.

  18. Every Cloud has a Silver Lining: Synthesizing Spectra for Exoplanets with Inhomogeneous Aerosol Coverage

    NASA Astrophysics Data System (ADS)

    DiTomasso, Victoria; Kempton, Eliza; Rauscher, Emily; Roman, Michael

    2018-01-01

    In order to learn about exoplanets, we observe the light coming from their host stars. In particular, we can observe a host star while its planet is in transit. During transit, we are able to observe light from the star that has passed through the planet’s atmosphere and isolate that signal in a transmission spectrum. Previous transit observations have suggested that some hot Jupiters have aerosols in their atmospheres. We have calculated the effects that non-uniform aerosol coverage would have on the resulting transmission spectra of hot Jupiters. We used 3D atmospheric models of a planet with varying aerosol coverage to produce synthetic transmission spectra of the planet during full transit. We also produced transmission spectra from the start of transit, ingress, and the end of transit, egress, to determine if we can identify whether atmospheric aerosols are concentrated on the east or west side of the exoplanet. This will help us determine global aerosol structure, as well as indicate whether these planets are dominated by photochemically produced haze or directly condensed clouds. Using these spectra, we will test the feasibility of inferring aerosol coverage on a hot Jupiter using the Hubble Space Telescope.

  19. Non-Intrusive Velocity Measurements with MTV During DCC Event in the HTTF

    NASA Technical Reports Server (NTRS)

    Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.

    2017-01-01

    Velocity profiles are measured using molecular tagging velocimetry (MTV) in the high temperature test facility (HTTF) at Oregon State University during a depressurized conduction cooldown (DCC) event. The HTTF is a quarter scale electrically heated nuclear reactor simulator designed to replicate various accident scenarios. During a DCC, a double ended guillotine break results in the reactor pressure vessel (RPV) depressurizing into the reactor cavity and ultimately leading to air ingress in the reactor core (lock-exchange and gas diffusion). It is critical to understand the resulting buoyancy-driven flow to characterize the reactor self-cooling capacity through natural circulation. During tests conducted at ambient pressure and temperature, the RPV containing helium is opened (via the hot and cold legs) to a large vessel filled with nitrogen to simulate the atmosphere. The velocity profile on the hot leg pipe centerline is recorded at 10 Hz with MTV based on NO tracers. The precision of the velocimetry was measured to be 0.02 m/s in quiescent flow prior to the tests. A helium flow from the RPV is initially observed in the top quarter of the pipe. During the first 20 seconds of the event, helium flows out of the RPV with a maximum velocity below 2 m/s. The velocity profile transitions from parabolic to linear in character and decays slowly over the rest of the recording; peak velocities of 0.2 m/s are observed after 30 min. A counter-flow of nitrogen is also observed intermittently, which occurs at lower velocities (>0.1 m/s).

  20. Transit light curves with finite integration time: Fisher information analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Ellen M.; Rogers, Leslie A.

    2014-10-10

    Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curvemore » photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/∼eprice.« less

  1. Loads Produced During the Ingression and Egression of the Portable Foot Restraint on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Susan; Rajulu, Sudhakar

    2000-01-01

    The Hubble Space Telescope (HST) was deployed from the Space Shuttle Discovery on April 25, 1990. It is capable of performing observations in the visible, near-ultraviolet, and near-infrared (1150 A to 1 mm). The HST weighs 12 tons, and collects light with an 8-ft-diameter mirror. The attitude control and maneuvering is performed by four of six gyroscopes, or reaction wheels. The HST contains fine guidance sensors that lock onto guide stars to reduce the spacecraft drift and increase the pointing accuracy. The HST was designed to last 15 years, with crewed service missions approximately every three years. The first service mission, STS-61, took place in 1993. The second service mission took place in 1997. In 1999, the STS-103 crew performed the third service mission to the HST. This mission's purpose was to replace the right sensor units and make improvements on the fine guidance sensors. To perform these tasks on the HST, the STS-103 crewmembers used a portable foot restraint to anchor themselves to the HST in the zero-gravity environment. The solar arrays currently used on the telescope are second-generation, and therefore susceptible to loads placed on the telescope. The crew and Mission Operations Directorate worried about the damage that the crew could possibly cause during ingress and egress of the PFR and by transferring loads to the solar arrays. The purpose of this study is to inform the crewmembers of the loads they are imparting on the HST, and train them to decrease these loads to a safer level. Minimizing these loads will significantly decrease the chance of crewmembers causing damage to the solar arrays while repairing the HST.

  2. THREE-DIMENSIONAL GAS DYNAMIC SIMULATION OF THE INTERACTION BETWEEN THE EXOPLANET WASP-12b AND ITS HOST STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisikalo, D.; Kaygorodov, P.; Ionov, D.

    2013-02-10

    Hubble Space Telescope transit observations in the near-UV performed in 2009 made WASP-12b one of the most 'mysterious' exoplanets; the system presents an early ingress, which can be explained by the presence of optically thick matter located ahead of the planet at a distance of {approx}4-5 planet radii. This work follows previous attempts to explain this asymmetry with an exospheric outflow or a bow shock, induced by a planetary magnetic field, and provides a numerical solution of the early ingress, though we did not perform any radiative transfer calculation. We performed pure 3D gas dynamic simulations of the plasma interactionmore » between WASP-12b and its host star and describe the flow pattern in the system. In particular, we show that the overfilling of the planet's Roche lobe leads to a noticeable outflow from the upper atmosphere in the direction of the L{sub 1} and L{sub 2} points. Due to the conservation of the angular momentum, the flow to the L{sub 1} point is deflected in the direction of the planet's orbital motion, while the flow toward L{sub 2} is deflected in the opposite direction, resulting in a non-axisymmetric envelope, surrounding the planet. The supersonic motion of the planet inside the stellar wind leads to the formation of a bow shock with a complex shape. The existence of the bow shock slows down the outflow through the L{sub 1} and L{sub 2} points, allowing us to consider a long-living flow structure that is in the steady state.« less

  3. Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila

    PubMed Central

    Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd

    2015-01-01

    Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720

  4. The Structure of Titan's Atmosphere from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.; Flasar, F. Michael; Marouf, Essam A.; French, Richard G.; McGhee, Colleen A.; Kliore, Arvydas J.; Rappaport, Nicole J.; Barbinis, Elias; Fleischman, Don; Anabtawi, Aseel

    2011-01-01

    We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31.34 deg S near the surface, and the fourth at 52.8 deg S. Temperature - altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal et al., 1983), the HASI instrument on the Huygens descent probe (Fulchignoni et al., 2005), and Cassini CIRS results (Flasar et al., 2005; Achterberg et al., 2008b). Sources of error in the retrieved temperature - altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34 deg S are about 93 K, while that at 53 deg S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53 deg S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33 deg S lie along a dry adiabat except within approximately 200m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34 deg S shows a more complex structure in the lowest 2 km, while the egress profile at 53 deg S is more stable.

  5. Target of Opportunity - Far-UV Observations of Comet ISON with FORTIS

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan

    The goal of this one year program is to acquire spectra and imagery of the sungrazing Oort cloud comet known as ISON in the far-UV bandpass between 800 -- 1950 Angstroms over a 1/2 degree field-of-view (FOV), during its ingress and egress from the sun. This bandpass and FOV provides access to a particularly rich set of spectral diagnostics for determining the volatile production rates of CO, H, C, C+, O and S, and to search for previously undetected atomic and molecular species such as Ar, N, N+, N2, O+ and O5+. We are particularly interested in searching for compositional changes associated with the intense heating episode at the comet's perihelion to address an outstanding question in cometary research; do Oort cloud comets carry a chemical composition similar to the proto-stellar molecular cloud from which the Solar System formed? Sounding rockets are uniquely suited to observing cometary emissions in the far-UV as they can point to within 25 degrees of the sun, whereas HST is limited to observations at angles greater than 50 degrees. The projected ephemeris of this comet shows that on ingress it is expected to reach ~ +4 mag at 25 degrees from the sun on 21 November 2013 and, should it survive its trip to within 2.7 Rsun from the sun, it is expected to reach a similar magnitude during egress at 25 degrees on 08 December 2013. This will be a reflight of the JHU sounding rocket borne spectro-telescope called FORTIS, currently scheduled to fly in May of 2013 on NASA sounding rocket 36.268 UG. The instrumental configuration of FORTIS is uniquely suited to accomplishing the goals of this task.

  6. Role of the Hof1-Cyk3 interaction in cleavage-furrow ingression and primary-septum formation during yeast cytokinesis.

    PubMed

    Wang, Meng; Nishihama, Ryuichi; Onishi, Masayuki; Pringle, John R

    2018-03-01

    In Saccharomyces cerevisiae, it is well established that Hof1, Cyk3, and Inn1 contribute to septum formation and cytokinesis. Because hof1∆ and cyk3∆ single mutants have relatively mild defects but hof1∆ cyk3∆ double mutants are nearly dead, it has been hypothesized that these proteins contribute to parallel pathways. However, there is also evidence that they interact physically. In this study, we examined this interaction and its functional significance in detail. Our data indicate that the interaction 1) is mediated by a direct binding of the Hof1 SH3 domain to a proline-rich motif in Cyk3; 2) occurs specifically at the time of cytokinesis but is independent of the (hyper)phosphorylation of both proteins that occurs at about the same time; 3) is dispensable for the normal localization of both proteins; 4) is essential for normal primary-septum formation and a normal rate of cleavage-furrow ingression; and 5) becomes critical for growth when either Inn1 or the type II myosin Myo1 (a key component of the contractile actomyosin ring) is absent. The similarity in phenotype between cyk3∆ mutants and mutants specifically lacking the Hof1-Cyk3 interaction suggests that the interaction is particularly important for Cyk3 function, but it may be important for Hof1 function as well. © 2018 Wang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Design Considerations for a Crewed Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  8. Paleoenvironmental evolution based on benthic foraminifera biofacies of the Paraíba do Sul Deltaic Complex, eastern Brazil

    NASA Astrophysics Data System (ADS)

    Gasparini, Sarah Pereira; Vilela, Claudia Gutterres

    2017-12-01

    The paleoecology and distribution of benthic foraminiferal assemblages were analyzed in the core 2-MU-1-RJ well, drilled in the Paraíba do Sul Deltaic Complex, Rio de Janeiro (Brazil). An abundant assemblage was found in the upper portion of the well core, inferred to be pleistocenic deposits. The coastal dynamic was recognized from five biofacies based on clusters, the Planktonic/Benthic (P/B) ratios and indicator species distribution in the core. Several biofacies were identified along the core depending on the species dominance. From the bottom to the top of the core, the biofacies succession represents the environmental changes in the coastal area associated to sea-level oscillations. The biofacies ABP dominated by Ammonia parkinsoniana and Bolivina spp. and Pararotalia cananeiaensis represents an inner shelf environment; biofacies QP dominated by shelf miliolids species; biofacies PGH, dominated by P. cananeiaensis, Gavelinopsis praegeri, and Hanzawaia nitidula, represents the estuary complex with middle or outer shelf influence; biofacies QL represents hypersaline waters dominated by lagoonal miliolids; and biofacies HP characterized by Haynesina germanica and P. cananeiaensis is associated with paralic environments. Marine ingressions are recorded and those biofacies show the pleistocenic coastal hydrodinamic in the deltaic complex. The foraminiferal biofacies contribute with detailed information to sedimentary facies previously characterized in the study area by the reconstruction of paleoenvironment succession.

  9. A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues

    USGS Publications Warehouse

    Sangiorgi, F.; Brumsack, H.-J.; Willard, D.A.; Schouten, S.; Stickley, C.E.; O'Regan, M.; Reichart, G.-J.; Sinninghe, Damste J.S.; Brinkhuis, H.

    2008-01-01

    The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene (???44.4 Ma) from lower Miocene sediments (???18.2 Ma). To elucidate the nature of this unconformity, we performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86) and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from ???5 m below to ???7 m above the hiatus. Four main paleoenvironmental. phases (A-D) are recognized in the sediments encompassing the unconformity, two below (A-B) and two above (C-D): (A) Below the hiatus, proxies show relatively warm temperatures, with Sea Surface Temperatures (TEX86-derived SSTs) of about 8??C and high fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86-derived SSTs of ???5??C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling site, located close to or at sea level. (C) The interval directly above the unconformity contains sparse reworked Cretaceous to Oligocene dinoflagellate cysts. Sediments were deposited in a relatively shallow, restricted marine environment. Proxies show the simultaneous influence of both fresh and marine waters, with alternating oxic and anoxic conditions. Pollen indicates a relatively cold climate. Intriguingly, TEX86-derived SSTs are unexpectedly high, ???15-19??C. Such warm surface waters may be partially explained by the ingression of warmer North Atlantic waters after the opening of the Fram Strait during the early Miocene. (D) Sediments of the uppermost interval indicate a phase of extreme oxic conditions, and a well-ventilated environment, which occurred after the complete opening of the Fram Strait. Importantly, and in contrast with classical postrifting thermal subsidence models for passive margins, our data suggest that sediment erosion and/or nondeposition that generated the hiatus was likely due to a progressive shoaling of the Lomonosov Ridge. A shallow water setting both before and after the hiatus suggests that the Lomonosov Ridge remained at or near sea level for the duration of the gap in the sedimentary record. Interacting sea level changes and/ or tectonic activity (possibly uplift) must be invoked as possible causes for such a long hiatus. Copyright 2008 by the American Geophysical Union.

  10. Fourier transform Raman spectroscopic studies of human and animal skins

    NASA Astrophysics Data System (ADS)

    Barry, Brian W.; Edwards, Howell G.; Williams, Adrian C.

    1994-01-01

    The stratum corneum is the outermost layer of the skin and provides the principal barrier for the ingress of chemicals and environmental toxins into human and animal tissues. However, human skin has several advantages for the administration of therapeutic agents (transdermal drug delivery), but problems occur with the supply, storage, and biohazardous nature of human tissue. Hence, alternative animal tissues have been prepared to model drug diffusion across human skin but the molecular basis for comparison is lacking. Here, FT-Raman spectra of mammalian (human and pig) and reptilian (snake) skins have been obtained and the structural dissimilarities are correlated with drug diffusion studies across the tissues.

  11. UBV photometry of the 1982-4 eclipse of Epsilon Aurigae: A discussion of the observed light curves

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.

    1985-01-01

    At least 29 observers in nine countries have contributed photometric measurements of Epsilon Aurigae during the recent observational campaign. The present discussion is limited to data submitted by J. L. Hopkins of the Hopkins Phoenix Observatory and S. I. Ingvarsson of the Tjornisland Astronomical Observatory. Both sources are on the UBV system, with no significant systematic differences. Combined, these two sources cover the entire eclipse, from pre-ingress up to the present (April 1985). It should be noted that this eclipse is the first to have complete photometric coverage in all three broadband filters U, B, and V.

  12. "Product on Stopper" in a Lyophilized Drug Product: Cosmetic Defect or a Product Quality Concern?

    PubMed

    Mehta, Shyam B; Roy, Shouvik; Yang, Han-Chang Cathy

    2018-06-01

    During manufacturing of a lyophilized drug product, operator errors in product handling during loading of product filled vials onto the lyophilizer can lead to a seemingly cosmetic defect which can impact certain critical quality attributes of finished product. In this study, filling of a formulated monoclonal antibody in vials was performed using a peristaltic pump filling unit, and subsequently, the product was lyophilized. After lyophilization, upon visual inspection, around 40% of vials had cosmetic defect with residual product around stopper of the vial and were categorized as "product on stopper" vials, whereas remaining 60% vials with no cosmetic defect were called "acceptable vials." Both groups of vials from 1 single batch were tested for critical quality attributes including protein concentration (ultraviolet absorbance at 280), residual moisture (Karl Fischer), sterility (membrane filtration), and container closure integrity (CCI) (blue dye ingress). Analysis of protein quality attributes such as aggregation, protein concentration, residual moisture showed no significant difference between vials with "product on stopper" and "acceptable vials." However, CCI of the "product on stopper" vials was compromised due to the presence of product around stopper of the vial. The results from this case study demonstrate the following 2 important findings: (1) that a seemingly cosmetic defect may impact product quality, compromising the integrity of the product and (2) that CCI test method can be used as an orthogonal method to sterility testing to evaluate sterility assurance of the product. The corrective action proposed to mitigate this defect is use of a larger sized vial that can potentially minimize this defect that arises because of product handling errors. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2011-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a spacesuit while the spacesuit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a spacesuit prototype using the pressure differentials of the spacecraft. This test will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents design of a human rated second generation suitport, modifications to the JSC human rated chamber B to accept a suitport, and a compatible space suit to support pressurized human donning of the pressurized suit through a suitport. Design challenges and solutions and compromises required to develop the system are presented. Initial human testing results are presented.

  14. Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores

    NASA Astrophysics Data System (ADS)

    Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui

    1999-09-01

    A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in volcanic and hydrothermal areas associated with soil gas emissions.

  15. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years

    NASA Astrophysics Data System (ADS)

    Yan, Dada; Wünnemann, Bernd; Hu, Yanbo; Frenzel, Peter; Zhang, Yongzhan; Chen, Kelong

    2017-04-01

    The Daotanghe riverine wetland in close proximity to the Qinghai Lake was investigated to demonstrate the interrelationships between Qinghai Lake hydrodynamic processes, eolian mobility and ecological conditions during the past 1100 years in response to climate change. We used ostracod assemblages from various sites east of Qinghai Lake and from the sediment core QW15 of Daotanghe Pond and combined them with grain size and geochemical data from the same core. The statistical extraction of grain size endmembers (EM) revealed three different transportation processes responsible for pond-related fluvio-lacustrine, pure fluvial and eolian deposits. Identified seasonal effects (eolian mobility phase) and timing of ice cover are possible tracers for the competing influence between the Asian summer monsoon and the Westerlies in the Daotanghe Wetland and surrounding area. Our results show that ostracod associations and sediment properties are evidence of a fluvio-lacustrine fresh water environment without ingression of Qinghai Lake into the wetland. Hydrodynamic variations coupled with phases of eolian input indicate highly variable water budgets in response to climate-induced effective moisture supply. The Medieval Warm Period (MWP) until about 1270 CE displays generally moist and warm climate conditions with minor fluctuations, likely in response to variations in summer monsoon intensity. The three-partite period of the Little Ice Age (LIA), shows hydrologically unstable conditions between 1350 and 1530 CE with remarkably colder periods, assigned to a prolonged seasonal ice cover. Pond desiccation and replacement by fluvial deposits occurred between 1530 and 1750 CE, superimposed by eolian deposits. The phase 1730-1900 CE is recorded by the re-occurrence of a pond environment with reduced eolian input. Principal Component Analysis (PCA) on ostracod abundances shows similar trends. All three phases of the LIA developed during a weak summer monsoon influence, favoring westerly-derived climate conditions until ca. 1850 CE, in accordance with records from the adjacent regions. Seasonal freezing periods in excess of the average time of frozen water bodies also occurred in periods of the well-known grand solar minima and indicate stronger seasonality, possibly independent from variations in summer monsoon strength but with links to global northern hemispheric climate.

  16. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials.

    PubMed

    Levchenko, I; Xu, S; Teel, G; Mariotti, D; Walker, M L R; Keidar, M

    2018-02-28

    Drastic miniaturization of electronics and ingression of next-generation nanomaterials into space technology have provoked a renaissance in interplanetary flights and near-Earth space exploration using small unmanned satellites and systems. As the next stage, the NASA's 2015 Nanotechnology Roadmap initiative called for new design paradigms that integrate nanotechnology and conceptually new materials to build advanced, deep-space-capable, adaptive spacecraft. This review examines the cutting edge and discusses the opportunities for integration of nanomaterials into the most advanced types of electric propulsion devices that take advantage of their unique features and boost their efficiency and service life. Finally, we propose a concept of an adaptive thruster.

  17. A photometric study of the eclipsing binary RX Hercules

    NASA Technical Reports Server (NTRS)

    Jeffreys, K. W.

    1980-01-01

    A new photoelectric light curve of RX Hercules, a binary system with similar components, has been analyzed using Wood's computer model. RX Her, using Popper's spectroscopic mass ratio of q = 0.8472, turned out to be composed of a dimmer AO component and a larger B9.5 component. This detached system, upon analysis of the residuals in secondary minimum, shows some asymmetry during ingress which then disappears just before secondary minimum. The eccentricity e = 0.022 determined in this study is a little larger than previously published values of e = 0.018. In combination with the spectroscopic analysis of Popper, and ubvy data of Olson and Hill and Hilditch new photometric elements for RX Her were found.

  18. A spectroscopic investigation of the eclipsing binary Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra

    1991-01-01

    The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.

  19. Workplace violence in hospitals: safe havens no more.

    PubMed

    Warren, Bryan

    2011-01-01

    Healthcare presents many security challenges, particularly when it comes to workplace violence prevention. With a staff population that is approximately 80% female, 24-hour operations, numerous points of ingress and egress, and the high tension environment that exists in today's hospitals and urgent care centers, the stage is set for the "perfect storm" of workplace violence, the author points out. He cites statistics that healthcare workers are at a much higher risk of victimization than workers in other industries. The best strategy to prevent workplace violence in the healthcare environment, he says, is to develop a corporate culture that supports respect, open communication, employee involvement and participation and an effective training program.

  20. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de; Gebert, Julia; Groengroeft, Alexander

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation andmore » corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.« less

  1. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  2. Aerodynamic pressure and heating-rate distributions in tile gaps around chine regions with pressure gradients at a Mach number of 6.6

    NASA Technical Reports Server (NTRS)

    Hunt, L. Roane; Notestine, Kristopher K.

    1990-01-01

    Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.

  3. Quantification of the Service Life Extension and Environmental Benefit of Chloride Exposed Self-Healing Concrete.

    PubMed

    Van Belleghem, Bjorn; Van den Heede, Philip; Van Tittelboom, Kim; De Belie, Nele

    2016-12-23

    Formation of cracks impairs the durability of concrete elements. Corrosion inducing substances, such as chlorides, can enter the matrix through these cracks and cause steel reinforcement corrosion and concrete degradation. Self-repair of concrete cracks is an innovative technique which has been studied extensively during the past decade and which may help to increase the sustainability of concrete. However, the experiments conducted until now did not allow for an assessment of the service life extension possible with self-healing concrete in comparison with traditional (cracked) concrete. In this research, a service life prediction of self-healing concrete was done based on input from chloride diffusion tests. Self-healing of cracks with encapsulated polyurethane precursor formed a partial barrier against immediate ingress of chlorides through the cracks. Application of self-healing concrete was able to reduce the chloride concentration in a cracked zone by 75% or more. As a result, service life of steel reinforced self-healing concrete slabs in marine environments could amount to 60-94 years as opposed to only seven years for ordinary (cracked) concrete. Subsequent life cycle assessment calculations indicated important environmental benefits (56%-75%) for the ten CML-IA (Center of Environmental Science of Leiden University-Impact Assessment) baseline impact indicators which are mainly induced by the achievable service life extension.

  4. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  5. Reactive transport modeling in fractured rock: A state-of-the-science review

    NASA Astrophysics Data System (ADS)

    MacQuarrie, Kerry T. B.; Mayer, K. Ulrich

    2005-10-01

    The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.

  6. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    PubMed Central

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl−, Ca2+, aquaporins), antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering. PMID:28572812

  7. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    PubMed

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  8. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presentedmore » in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.« less

  9. Container system for enabling commercial production of cryopreserved cell therapy products.

    PubMed

    Woods, Erik J; Bagchi, Aniruddha; Goebel, W Scott; Vilivalam, Vinod D; Vilivalam, Vinod D

    2010-07-01

    The expansion of cellular therapeutics will require large-scale manufacturing processes to expand and package cell products, which may not be feasible with current blood-banking bag technology. This study investigated the potential for freezing, storing and shipping cell therapy products using novel pharmaceutical-grade Crystal Zenith((R)) (CZ) plastic vials. CZ vials (0.5, 5 and 30 ml volume) with several closure systems were filled with mesenchymal stem cells and stored at either -85 or -196 degrees C for 6 months. Vials were tested for their ability to maintain cell viability, proliferative and differentiation capacity, as well as durability and integrity utilizing a 1-m drop test. As controls, 2 ml polypropylene vials were investigated under the same conditions. Post-thaw viability utilizing a dye exclusion assay was over 95% in all samples. Stored cells exhibited rapid recovery 2 h post-thaw and cultures were approximately 70% confluent within 5-7 days, consistent with nonfrozen controls and indicative of functional recovery. Doubling times were consistent over all vials. The doubling rate for cells from CZ vials were 2.14 + or - 0.83 days (1 week), 1.84 + or - 0.68 days (1 month) and 1.79 + or - 0.71 days (6 months), which were not significantly different compared with frozen and fresh controls. Cells recovered from the vials exhibited trilineage differentiation consistent with controls. As part of vial integrity via drop testing, no evidence of external damage was found on vial surfaces or on closure systems. Furthermore, the filled vials stored for 6 months were tested for container closure integrity. Vials removed from freezer conditions were transported to the test laboratory on dry ice and tested using pharmaceutical packaging tests, including dye ingress and microbial challenge. The results of all stoppered vials indicated container closure integrity with no failures. Pharmaceutical-grade plastic CZ vials, which are commercially used to package pharmaceutical products, are suitable for low-temperature storage and transport of mesenchymal stem cells, and are a scalable container system for commercial manufacturing and fill-finish operation of cell therapy products.

  10. Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth

    NASA Astrophysics Data System (ADS)

    Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.

    2016-12-01

    The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011) Earth Planet Sci Lett 308, 65-76. [3] Peters and Pettke (2016) GGR, DOI: 10.1111/ggr.12125.

  11. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.

    PubMed

    Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J

    2011-11-01

    Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.

  12. Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade

    PubMed Central

    Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai

    2014-01-01

    Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells. PMID:25390893

  13. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.

    PubMed

    Rho, Ho Kyung; McClay, David R

    2011-03-01

    Early development requires well-organized temporal and spatial regulation of transcription factors that are assembled into gene regulatory networks (GRNs). In the sea urchin, an endomesoderm GRN model explains much of the specification in the endoderm and mesoderm prior to gastrulation, yet some GRN connections remain incomplete. Here, we characterize FoxN2/3 in the primary mesenchyme cell (PMC) GRN state. Expression of foxN2/3 mRNA begins in micromeres at the hatched blastula stage and then is lost from micromeres at the mesenchyme blastula stage. foxN2/3 expression then shifts to the non-skeletogenic mesoderm and, later, to the endoderm. Here, we show that Pmar1, Ets1 and Tbr are necessary for activation of foxN2/3 in micromeres. The later endomesoderm expression of foxN2/3 is independent of the earlier expression of foxN2/3 in micromeres and is independent of signals from PMCs. FoxN2/3 is necessary for several steps in the formation of the larval skeleton. Early expression of genes for the skeletal matrix is dependent on FoxN2/3, but only until the mesenchyme blastula stage as foxN2/3 mRNA disappears from PMCs at that time and we assume that the protein is not abnormally long-lived. Knockdown of FoxN2/3 inhibits normal PMC ingression and foxN2/3 morphant PMCs do not organize in the blastocoel and fail to join the PMC syncytium. In addition, without FoxN2/3, the PMCs fail to repress the transfating of other mesodermal cells into the skeletogenic lineage. Thus, FoxN2/3 is necessary for normal ingression, for expression of several skeletal matrix genes, for preventing transfating and for fusion of the PMC syncytium.

  14. A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues

    USGS Publications Warehouse

    Sangiorgi, Francesca; Brumsack, Hans-Juergen; Willard, Debra A.; Schouten, Stefan; Stickley, Catherine E.; O'Regan, Matthew; Reichart, Gert-Jan; Damste, Jaap S. Sinninghe; Brinkhuis, Henk

    2008-01-01

    The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene (∼44.4 Ma) from lower Miocene sediments (∼18.2 Ma). To elucidate the nature of this unconformity, we performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86) and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from ∼5 m below to ∼7 m above the hiatus. Four main paleoenvironmental phases (A–D) are recognized in the sediments encompassing the unconformity, two below (A–B) and two above (C–D): (A) Below the hiatus, proxies show relatively warm temperatures, with Sea Surface Temperatures (TEX86‐derived SSTs) of about 8°C and high fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86‐derived SSTs of ∼5°C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling site, located close to or at sea level. (C) The interval directly above the unconformity contains sparse reworked Cretaceous to Oligocene dinoflagellate cysts. Sediments were deposited in a relatively shallow, restricted marine environment. Proxies show the simultaneous influence of both fresh and marine waters, with alternating oxic and anoxic conditions. Pollen indicates a relatively cold climate. Intriguingly, TEX86‐derived SSTs are unexpectedly high, ∼15–19°C. Such warm surface waters may be partially explained by the ingression of warmer North Atlantic waters after the opening of the Fram Strait during the early Miocene. (D) Sediments of the uppermost interval indicate a phase of extreme oxic conditions, and a well‐ventilated environment, which occurred after the complete opening of the Fram Strait. Importantly, and in contrast with classical postrifting thermal subsidence models for passive margins, our data suggest that sediment erosion and/or nondeposition that generated the hiatus was likely due to a progressive shoaling of the Lomonosov Ridge. A shallow water setting both before and after the hiatus suggests that the Lomonosov Ridge remained at or near sea level for the duration of the gap in the sedimentary record. Interacting sea level changes and/or tectonic activity (possibly uplift) must be invoked as possible causes for such a long hiatus.

  15. Seismic evidence for the erosion of subglacial sediments by rapidly draining supraglacial lakes on the West Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Booth, Adam; Hubbard, Alun; Dow, Christine; Doyle, Samuel; Clark, Roger; Gusmeroli, Alessio; Lindbäck, Katrin; Pettersson, Rickard; Jones, Glenn; Murray, Tavi

    2013-04-01

    As part of a multi-disciplinary, multi-national project investigating the ice-dynamic implications of rapidly draining supraglacial lakes on the West Greenland Ice Sheet, we have conducted a series of seismic reflection experiments immediately following the rapid drainage of Lake F in the land-terminating Russell Glacier catchment to [1] isolate the principal mode of basal motion, and [2] identify and characterise the modification of that mode as forced by ingress of surface-derived meltwaters. Lake F had a surface area of ~3.84 km2 and drained entirely in less than two hours at a maximum rate of ~ 3300 m3 s-1, marked by local ice extension and uplift of up to 1 m. Two seismic profiles (A and B) were acquired and optimised for amplitude versus angle (AVA) characterisation of the substrate. All seismic data were recorded with a Geometrics GEODE system, using 48 vertically-orientated 100-Hz geophones installed at 10 m intervals. 250 g pentalite charges were fired in shallow auger holes at 80 m intervals along each line, providing six-fold coverage. Profile A targets the subglacial hydrological basin into which the Lake-F waters drained, and reveals a uniform, flat glacier bed beneath ~1.3 km of ice, characterised by the presence of a very stiff till with an acoustic impedance of 4.17 ± 0.11 x 106 kg m-2 s1 and a Poisson's ratio of 0.06 ± 0.05. In profile B, to the southeast of Lake F in an isolated subglacial hydrological basin, ice thickness is 1.0-1.1 km and a discrete sedimentary basin is evident; within this feature, we interpret a stratified subglacial till deposit, having lodged till (acoustic impedance = 4.26 ± 0.59×106 kgm-2 s-1) underlying a water-saturated dilatant till layer (thickness

  16. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    NASA Astrophysics Data System (ADS)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of elevated sulfide concentrations due to freshwater ingress and enhanced mixing. In all simulations the highest concentrations of total sulfide occur at depths of approximately 150 m, while concentrations at depths greater than 300 m typically remain below 0.03 mmol L-1, comparing well with observational data.

  17. Transient bacterial contamination of the dual-porosity aquifer at Walkerton, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Worthington, Stephen R. H.; Smart, C. Christopher

    2017-06-01

    Contamination of the Paleozoic carbonate aquifer at Walkerton (Ontario, Canada) by pathogenic bacteria following heavy rain in May 2000 resulted in 2,300 illnesses and seven deaths. Subsequent tracer testing showed that there was rapid groundwater flow in the aquifer, and also rapid exchange between the aquifer and the ground surface. Electrical conductivity (EC) profiling during a 3-day pumping test showed that most flow was through bedding-plane fractures spaced about 10 m apart, that there were substantial contrasts in EC in the major fracture flows, and that there were rapid changes over time. Total coliform sampling revealed transient groundwater contamination, particularly after heavy rain and lasting up to a few days. These characteristics can be understood in terms of the dual-porosity nature of the aquifer. Most of the storage is in the matrix, but this can be considered to be static in the short term. Almost all transport is through the fracture network, which has rapid groundwater flow (˜100 m/day) and rapid transmission of pressure pulses due to the high hydraulic diffusivity. Rapid recharge can occur through thin and/or fractured overburden and at spring sites where flow is reversed by pumping during episodes of surface flooding. These characteristics facilitated the ingress of surface-derived bacteria into the aquifer, and their rapid transport within the aquifer to pumping wells. Bacterial presence is common in carbonate aquifers, and this can be explained by the well-connected, large-aperture fracture networks in these dual-porosity aquifers, even though many, such as at Walkerton, lack karst landforms.

  18. Performance characteristics of an ion chromatographic method for the quantitation of citrate and phosphate in pharmaceutical solutions.

    PubMed

    Jenke, Dennis; Sadain, Salma; Nunez, Karen; Byrne, Frances

    2007-01-01

    The performance of an ion chromatographic method for measuring citrate and phosphate in pharmaceutical solutions is evaluated. Performance characteristics examined include accuracy, precision, specificity, response linearity, robustness, and the ability to meet system suitability criteria. In general, the method is found to be robust within reasonable deviations from its specified operating conditions. Analytical accuracy is typically 100 +/- 3%, and short-term precision is not more than 1.5% relative standard deviation. The instrument response is linear over a range of 50% to 150% of the standard preparation target concentrations (12 mg/L for phosphate and 20 mg/L for citrate), and the results obtained using a single-point standard versus a calibration curve are essentially equivalent. A small analytical bias is observed and ascribed to the relative purity of the differing salts, used as raw materials in tested finished products and as reference standards in the analytical method. The assay is specific in that no phosphate or citrate peaks are observed in a variety of method-related solutions and matrix blanks (with and without autoclaving). The assay with manual preparation of the eluents is sensitive to the composition of the eluent in the sense that the eluent must be effectively degassed and protected from CO(2) ingress during use. In order for the assay to perform effectively, extensive system equilibration and conditioning is required. However, a properly conditioned and equilibrated system can be used to test a number of samples via chromatographic runs that include many (> 50) injections.

  19. High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.

    2014-01-01

    The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.

  20. Perfluorocarbon Tracer Experiments on a 2 km Scale in Manchester Showing Ingress of Pollutants into a Building

    NASA Astrophysics Data System (ADS)

    Matthews, James; Wright, Matthew; Bacak, Asan; Silva, Hugo; Priestley, Michael; Martin, Damien; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Cyclic perfluorocarbons (PFCs) have been used to measure the passage of air in urban and rural settings as they are chemically inert, non-toxic and have low background concentrations. The use of pre-concentrators and chemical ionisation gas chromatography enables concentrations of a few parts per quadrillion (ppq) to be measured in bag samples. Three PFC tracers were used in Manchester, UK in the summer of 2015 to map airflow in the city and ingress into buildings: perfluomethylcyclohexane (PMCH), perfluoro-2-4-dimethylcyclohexane (mPDMCH) and perfluoro-2-methyl-3-ethylpentene (PMEP). A known quantity of each PFC was released for 15 minutes from steel canisters using pre-prepared PFC mixtures. Release points were chosen to be upwind of the central sampling location (Simon Building, University of Manchester) and varied in distance up to 2.2 km. Six releases using one or three tracers in different configurations and under different conditions were undertaken in the summer. Three further experiments were conducted in the Autumn, to more closely investigate the rate of ingress and decay of tracer indoors. In each experiment, 10 litre samples were made over 30 minutes into Tedlar bags, starting at the same time the as PFC release. Samples were taken in 11 locations chosen from 15 identified areas including three in public parks, three outside within the University of Manchester area, seven inside and five outside of the Simon building and two outside a building nearby. For building measurements, receptors were placed inside the buildings on different floors; outside measurements were achieved through a sample line out of the window. Three of the sample positions inside the Simon building were paired with samplers outside to allow indoor-outdoor comparisons. PFC concentrations varied depending on location and height. The highest measured concentrations occurred when the tracer was released at sunrise; up to 330 ppq above background (11 ppq) of PMCH was measured at the 6th floor of the Simon Building from a release 1.9 km away. One experiment sampled for an additional two 30 minute periods in four locations inside and one location outside the Simon Building in order to investigate how long it took for air to enter and leave the building. For this measurement, 1.3 g of PMCH was released 1.9 km away and average roof level wind speed was 7.8 m/s. The highest measurement of PMCH outside was 54 ppq above background, and 46 ppq inside. After the first 30 minutes, the PFC concentration returned to background levels outside, but other internal rooms still had elevated PFC concentrations between 10 and 16 ppq above background an hour after release demonstrating that pollutants may persist within buildings having passed outside. In the final experiment, the wind direction changed so the sampling locations were not directly downwind of the release point, but nevertheless a small amount of PFC tracer above background was detected at the highest sampling point on the 6th floor of the Simon Building (14 ppq above background), and a smaller amount at street level.

  1. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not encapsulate the salt or act as a sustainable salt sink due to over time reduction in pore water pH. The leaching behaviours of Ca, Mg, Na+, K+, Se, Cr and Sr are controlled by the pH of the leachant in both fresh and unsaturated weathered ash. Other trace metals like As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. The precipitation of minor quantities of secondary mineral phases in the unsaturated weathered ash has significant effects on the acid susceptibility and leaching patterns of chemical species in comparison with fresh ash. The unsaturated weathered ash had lower buffering capacity at neutral pH (7.94-8.00) compared to fresh (unweathered) ash. This may be due to the initial high leaching/flushing of soluble basic buffering constituents from fly ash after disposal. The overall results of the acid susceptibility tests suggest that both fresh ash and unsaturated weathered ash would release a large percentage of their chemical species when in contact with slightly acidified rain. Proper management of ash dumps is therefore essential to safeguard the environmental risks of water percolation in different fly ashes behaviour. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the design of a human rated second generation suitport, the design of a suit capable of supporting pressurized human donning through a suitport, ambient pressure testing of the suit with the suitport, and modifications to the JSC human rated chamber B to accept a suitport. Design challenges and solutions, as well as compromises required to develop the system, are presented. Initial human testing results are presented.

  3. CONSTRUCTION OF AN OXYGEN CHAMBER FOR THE TREATMENT OF PNEUMONIA

    PubMed Central

    Stadie, William C.

    1922-01-01

    1. The construction of an oxygen chamber is given. This chamber can be quickly filled with oxygen to any concentration up to 65 per cent and maintained at the desired concentration for an indefinite time. 2. The construction of ventilating system, cooling device, carbon dioxide remover, automatic oxygen analyzer, and filling and maintenance devices is given. 3. The chamber is designed so that pneumonia patients with anoxemia may be placed in it and breathe an atmosphere containing 40 to 60 per cent of oxygen. 4. The chamber is easy of ingress and egress, is economical in cost of operation, and comfortably accomodates patient and attendants so that adequate nursing and medical attention can be given at all times. PMID:19868609

  4. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C

    USGS Publications Warehouse

    Shanks, Wayne C.; Bischoff, James L.; Rosenbauer, Robert J.

    1981-01-01

    Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.

  5. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy.

    PubMed

    Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-06-21

    Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries.

  6. Particle penetration into the automotive interior. I. Influence of vehicle speed and ventilatory mode.

    PubMed

    Muilenberg, M L; Skellenger, W S; Burge, H A; Solomon, W R

    1991-02-01

    Penetration of particulate aeroallergens into the interiors of two, new, similar Chrysler Corporation passenger vehicles (having no evidence of intrinsic microbial contamination) was studied on a large circular test track during periods of high pollen and spore prevalence. Impactor collections were obtained at front and rear seat points and at the track center during periods with (1) windows and vents closed and air conditioning on, (2) windows closed, vents open, and no air conditioning, and (3) air conditioner off, front windows open, and vents closed. These conditions were examined sequentially during travel at 40, 50, 60, and 80 kph. Particle recoveries within the two, new, similar Chrysler Corporation passenger vehicles did not vary with the speed of travel, either overall or with regard to each of the three ventilatory modalities. In addition, collections at front and rear seat sampling points were comparable. Highest interior aeroallergen levels were recorded with WO, and yet, these levels averaged only half the concurrent outside concentrations at track center. Recoveries within the cars were well below recoveries obtained outside when windows were closed (both VO and AC modes). These findings suggest window ventilation as an overriding factor determining particle ingress into moving vehicles. Efforts to delineate additional determinants of exposure by direct sampling are feasible and would appear essential in formulating realistic strategies of avoidance.

  7. Experiment on large scale plume interaction with a stratified gas environment resembling the thermal activity of a autocatalytic recombiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignot, G.; Kapulla, R.; Paladino, D.

    Computational Fluid Dynamics codes (CFD) are increasingly being used to simulate containment conditions after various transient accident scenarios. Consequently, the reliability of such codes must be tested against experimental data. Such validation experiments related to gas mixing and hydrogen transport within containment compartments addressing the effect of heat source are presented in this paper. The experiments were conducted in the large-scale thermal-hydraulics PANDA facility located at the Paul-Scherrer-Inst. (PSI) in Switzerland, in the frame of the OECD/SETH-2 project. A 10 kW electric heater simulating the thermal activity of the autocatalytic recombiner was activated at full power in a containment vesselmore » at the top of which a thick helium layer is initially present. The hot plume interacts with the bottom of the helium layer which is slowly eroded until complete break up at 1350 s. After final erosion of the layer a strong temperature and concentration gradient is maintained in the vessel below the heater inlet as well as in the adjacent vessel below the interconnecting pipe. A detailed characterization of the operating heater suggests the presence of cold gas ingress at the outlet that affects the flow in the chimney. This can be of concern if present in a real PAR unit. (authors)« less

  8. Quantification of the Service Life Extension and Environmental Benefit of Chloride Exposed Self-Healing Concrete

    PubMed Central

    Van Belleghem, Bjorn; Van den Heede, Philip; Van Tittelboom, Kim; De Belie, Nele

    2016-01-01

    Formation of cracks impairs the durability of concrete elements. Corrosion inducing substances, such as chlorides, can enter the matrix through these cracks and cause steel reinforcement corrosion and concrete degradation. Self-repair of concrete cracks is an innovative technique which has been studied extensively during the past decade and which may help to increase the sustainability of concrete. However, the experiments conducted until now did not allow for an assessment of the service life extension possible with self-healing concrete in comparison with traditional (cracked) concrete. In this research, a service life prediction of self-healing concrete was done based on input from chloride diffusion tests. Self-healing of cracks with encapsulated polyurethane precursor formed a partial barrier against immediate ingress of chlorides through the cracks. Application of self-healing concrete was able to reduce the chloride concentration in a cracked zone by 75% or more. As a result, service life of steel reinforced self-healing concrete slabs in marine environments could amount to 60–94 years as opposed to only seven years for ordinary (cracked) concrete. Subsequent life cycle assessment calculations indicated important environmental benefits (56%–75%) for the ten CML-IA (Center of Environmental Science of Leiden University–Impact Assessment) baseline impact indicators which are mainly induced by the achievable service life extension. PMID:28772363

  9. A low-cost mesocosm for the study of behaviour and reproductive potential of Afrotropical mosquito (Diptera: Culicidae) vectors of malaria

    PubMed Central

    Jackson, Bryan T.; Stone, Christopher M.; Ebrahimi, Babak; Briët, Olivier J.T.; Foster, Woodbridge A.

    2014-01-01

    A large-scale mesocosm was constructed and tested for its effectiveness for experiments on behaviour, reproduction, and adult survivorship of the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m3) allowed for semi-natural experiments that increased demand on a mosquito’s energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed easy collection of dead bodies so that daily mortality could be assessed accurately, using a method that accounts for a proportion of bodies being lost. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov Chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single-cohort demonstrated successful mating, blood feeding, oviposition, and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes where space and seasonal cold are constraining factors. PMID:25294339

  10. A low-cost mesocosm for the study of behaviour and reproductive potential in Afrotropical mosquito (Diptera: Culicidae) vectors of malaria.

    PubMed

    Jackson, B T; Stone, C M; Ebrahimi, B; Briët, O J T; Foster, W A

    2015-03-01

    A large-scale mesocosm was constructed and tested for its effectiveness for use in experiments on behaviour, reproduction and adult survivorship in the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m(3) ) allowed for semi-natural experiments that increased demand on a mosquito's energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed the easy collection of dead bodies so that daily mortality could be assessed accurately using a method that accounts for the loss of a proportion of bodies. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single cohort demonstrated successful mating, blood feeding, oviposition and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes in which space and seasonal cold are constraining factors. © 2014 The Royal Entomological Society.

  11. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    PubMed Central

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  12. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    PubMed

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  13. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    PubMed

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  14. 210Pb, 137Cs and 7Be in the sediments of coastal lakes on the polish coast: Implications for sedimentary processes.

    PubMed

    Woszczyk, Michał; Poręba, Grzegorz; Malinowski, Łukasz

    2017-04-01

    In this study we combined radioisotopes ( 210 Pb, 137 Cs and 7 Be) and hydrodynamic modeling to investigate sedimentary processes in three coastal lakes on the Polish Baltic coast. The research aimed at establishing the depth of sediment mixing and its effects on sediment geochemistry as well as showing the relationship between lake water salinity and radionuclide distribution in the sediment cores. We established that the intensity of mixing displayed appreciable variability throughout the lakes and the thickness of sediment mixing layer was between <2 and 22 cm. The mixing was primarily due to wind-induced waves. The vertical mixing was shown to shift sulfidation of the sediments towards deeper layers. We found that the distributions of radioisotopes, 137 Cs in particular, in the sediment cores from coastal lakes were strongly affected by the early diagenetic processes, which caused diffusive migration of radionuclides. The inventories of 210 Pb ex and 137 Cs in the lakes were positively related to salinity. The high inventories of both isotopes (3.2-10.9 kBq ·m -2 for 210 Pb ex and 3.0-6.0 kBq·m -2 for 137 Cs) in coastal lakes were explained by enhanced sedimentation within estuarine mixing zone and delivery of "additional" 210 Pb and 137 Cs to the lakes during saltwater ingressions. The results of this study have implications for the paleolimnology, sedimentology and biogeochemistry of coastal lakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chemostratigraphy and Fe Mineralogy of the Victoria Crater Duck Bay Section: Opportunity APXS and Moessbauer Results

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Schroeder, C.; Gellert, R.; Klingelhoefer, G.; Jolliff, B. L.; Morris, R. V.

    2008-01-01

    Meridiani Planum is a vast plain of approximately horizontally bedded sedimentary rocks composed of mixed and reworked basaltic and evaporitic sands containing secondary, diagenetic minerals [e.g., 1-5]. Because bedding planes are subparallel to topography, investigation of contiguous stratigraphy requires examining exposures in impact craters. Early in the mission (sols 130-317), Opportunity was commanded to do detailed study of exposed outcrops in Endurance crater, including the contiguous Karatepe section at the point of ingress. Just over 1000 sols later and roughly 7 km to the south, the rover is being commanded to do a similar study of the Duck Bay section of Victoria crater. Here we report on the preliminary results from the Alpha Particle X-ray Spectrometer (APXS) and Moessbauer instruments.

  16. The impact behaviour of silk cocoons.

    PubMed

    Chen, Fujia; Hesselberg, Thomas; Porter, David; Vollrath, Fritz

    2013-07-15

    Silk cocoons, constructed by silkmoths (Lepidoptera), are protective structural composites. Some cocoons appear to have evolved towards structural and material optimisation in order to sustain impact strikes from predators and hinder parasite ingress. This study investigates the protective properties of silk cocoons with different morphologies by evaluating their impact resistance and damage tolerance. Finite element analysis was used to analyse empirical observations of the quasi-static impact response of the silk cocoons, and to evaluate the separate benefits of the structures and materials through the deformation and damage mechanism. We use design principles from composite engineering in order to understand the structure-property-function relationship of silkworm cocoons. Understanding the highly evolved survival strategies of the organisms building natural cocoons will hopefully lead to inspiration that in turn could lead to improved composite design.

  17. STS-37 Breakfast / Ingress / Launch & ISO Camera Views

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The primary objective of the STS-37 mission was to deploy the Gamma Ray Observatory. The mission was launched at 9:22:44 am on April 5, 1991, onboard the space shuttle Atlantis. The mission was led by Commander Steven Nagel. The crew was Pilot Kenneth Cameron and Mission Specialists Jerry Ross, Jay Apt, and Linda Godwing. This videotape shows the crew having breakfast on the launch day, with the narrator introducing them. It then shows the crew's final preparations and the entry into the shuttle, while the narrator gives information about each of the crew members. The countdown and launch is shown including the shuttle separation from the solid rocket boosters. The launch is reshown from 17 different camera views. Some of the other camera views were in black and white.

  18. Chemical warfare protection for the cockpit of future aircraft

    NASA Technical Reports Server (NTRS)

    Pickl, William C.

    1988-01-01

    Currently systems are being developed which will filter chemical and biological contaminants from crew station air. In order to maximize the benefits of these systems, a method of keeping the cockpit contaminant free during pilot ingress and egress is needed. One solution is to use a rectangular plastic curtain to seal the four edges of the canopy frame to the canopy sill. The curtain is stored in a tray which is recessed into the canopy sill and unfolds in accordion fashion as the canopy is raised. A two way zipper developed by Calspan could be used as an airlock between the pilot's oversuit and the cockpit. This system eliminates the pilot's need for heavy and restrictive CB gear because he would never be exposed to the chemical warfare environment.

  19. Secondary barrier construction for low temperature liquefied gas storage tank carrying vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-12-05

    A new LNG-cargo-tank secondary barrier developed by Japan's Hitachi Shipbuilding and Engineering Co., Ltd., offers ease of fabrication, simple construction, improved efficiency of installation, and protection against seawater ingress as well as LNG leakage. The secondary barrier, intended for use below spherical LNG tanks, consists of unit heat-insulating block plates adhesively secured to the bottom plate of the ship's hold, heat-insulating filling members stuffed into the joints between the block plates, and a protective layer formed on the entire surface of the block plates and the filling members. These unit block plates are in the form of heat-insulating members ofmore » the required thickness, preformed into a square or trapezoidal shape, particularly in the form of rigid-foam synthetic-resin plates.« less

  20. Internet of Things technology-based management methods for environmental specimen banks.

    PubMed

    Peng, Lihong; Wang, Qian; Yu, Ang

    2015-02-01

    The establishment and management of environmental specimen banks (ESBs) has long been a problem worldwide. The complexity of specimen environment has made the management of ESB likewise complex. Through an analysis of the development and management of ESBs worldwide and in light of the sophisticated Internet of Things (IOT) technology, this paper presents IOT technology-based ESB management methods. An IOT technology-based ESB management system can significantly facilitate ESB ingress and egress management as well as long-term storage management under quality control. This paper elaborates on the design of IOT technology-based modules, which can be used in ESB management to achieve standardized, smart, information-based ESB management. ESB management has far-reaching implications for environmental management and for research in environmental science.

  1. Combining multi-layered bitmap files using network specific hardware

    DOEpatents

    DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM

    2012-02-28

    Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.

  2. Revised Toxicological Assessment of ISS Air Quality: May 2012 - August 2012

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2012-01-01

    A summary of the analytical results from 12 grab sample containers (GSCs) collected on ISS and returned aboard 30S is shown in Table 1. The average recoveries of the 3 surrogate standards from the GSCs were as follows: 12C-acetone, 115 +/-- 11%; fluorobenzene, 108 +/- 8%; and chlorobenzene, 102 +/- 16%. Shaded rows indicate data that re limited due to low sample pressures. For completeness, previously reported data from the US Lab collected in May 2012 are included here as well. The revised report provides results from one returned sample that was unlabeled and originally assumed to be unused. The sample was prepared and analyzed for the purpose of measuring the surrogate compounds. It was later determined, based on serial number, that this was the HTB3 first ingress sample.

  3. Separation anxiety: Stress, tension and cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu

    Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less

  4. Dynamically reconfigurable optical packet switch (DROPS)

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ

    2006-12-01

    A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.

  5. Asymmetric mass accretion in the magnetic cataclysmic variable RE 1149 + 28

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.; Sirk, Martin M.; Malina, Roger F.; Mittaz, J. P. D.; Mason, K. O.

    1995-01-01

    We present the first detailed extreme photometric observations of a magnetic cataclysmic variable. Our two Extreme Ultraviolet Explorer (EUVE) observations of the AM Her star RE 1149 + 28 were obtained about 1 yr apart and show light-curve variations on orbital to yearly timescales, as well as long-term mean flux level changes of a factor of 2. The photometric data show a persistent ingress EUV enhancement which lasts approximately 0.04 in phase. We attribute this to a region of approximately 10(exp 3) km in extent at the accretion impact site, on or very near the surface of the white dwarf primary. Our observations of RE 1149 are consistent with a relatively low system inclination and provide a best-fit orbital period of 90.14 +/- 0.015 minutes.

  6. Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars

    USGS Publications Warehouse

    Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.

    2004-01-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest. ?? 2004 Elsevier Inc. All rights reserved.

  7. Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro

    2004-09-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest.

  8. Feasibility of Using Fluorescence Spectrophotometry to Develop a Sensitive Dye Immersion Method for Container Closure Integrity Testing of Prefilled Syringes.

    PubMed

    Lu, Xujin; Lloyd, David K; Klohr, Steven E

    2016-01-01

    A feasibility study was conducted for a sensitive and robust dye immersion method for the measurement of container closure integrity of unopened prefilled syringes using fluorescence spectrophotometry as the detection method. A Varian Cary Eclipse spectrofluorometer was used with a custom-made sample holder to position the intact syringe in the sample compartment for fluorescence measurements. Methylene blue solution was initially evaluated as the fluorophore in a syringe with excitation at 607 nm and emission at 682 nm, which generated a limit of detection of 0.05 μg/mL. Further studies were conducted using rhodamine 123, a dye with stronger fluorescence. Using 480 nm excitation and 525 nm emission, the dye in the syringe could be easily detected at levels as low as 0.001 μg/mL. The relative standard deviation for 10 measurements of a sample of 0.005 μg/mL (with repositioning of the syringe after each measurement) was less than 1.1%. A number of operational parameters were optimized, including the photomultiplier tube voltage, excitation, and emission slit widths. The specificity of the testing was challenged by using marketed drug products and a protein sample, which showed no interference to the rhodamine detection. Results obtained from this study demonstrated that using rhodamine 123 for container closure integrity testing with in-situ (in-syringe) fluorescence measurements significantly enhanced the sensitivity and robustness of the testing and effectively overcame limitations of the traditional methylene blue method with visual or UV-visible absorption detection. Ensuring container closure integrity of injectable pharmaceutical products is necessary to maintain quality throughout the shelf life of a sterile drug product. Container closure integrity testing has routinely been used to evaluate closure integrity during product development and production line qualification of prefilled syringes, vials, and devices. However, container closure integrity testing has recently gained industry attention due to increased regulatory agency scrutiny regarding the analytical rigor of container closure integrity testing methods and expectations to use container closure integrity testing in lieu of sterility tests in stability programs. Methylene blue dye is often used for dye ingress testing of container closure integrity, but we found it unsuitable for reliable detection of small breaches in prefilled syringes of drug product. This work describes the suitability and advantages of using a fluorescent dye and spectroscopic detection for a robust, sensitive, and quality control-friendly container closure integrity testing method for prefilled syringes. © PDA, Inc. 2016.

  9. Submarine harbor navigation using image data

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2017-01-01

    The process of ingress and egress of a United States Navy submarine is a human-intensive process that takes numerous individuals to monitor locations and for hazards. Sailors pass vocal information to bridge where it is processed manually. There is interest in using video imaging of the periscope view to more automatically provide navigation within harbors and other points of ingress and egress. In this paper, video-based navigation is examined as a target-tracking problem. While some image-processing methods claim to provide range information, the moving platform problem and weather concerns, such as fog, reduce the effectiveness of these range estimates. The video-navigation problem then becomes an angle-only tracking problem. Angle-only tracking is known to be fraught with difficulties, due to the fact that the unobservable space is not the null space. When using a Kalman filter estimator to perform the tracking, significant errors arise which could endanger the submarine. This work analyzes the performance of the Kalman filter when angle-only measurements are used to provide the target tracks. This paper addresses estimation unobservability and the minimal set of requirements that are needed to address it in this complex but real-world problem. Three major issues are addressed: the knowledge of navigation beacons/landmarks' locations, the minimal number of these beacons needed to maintain the course, and update rates of the angles of the landmarks as the periscope rotates and landmarks become obscured due to blockage and weather. The goal is to address the problem of navigation to and from the docks, while maintaining the traversing of the harbor channel based on maritime rules relying solely on the image-based data. The minimal number of beacons will be considered. For this effort, the image correlation from frame to frame is assumed to be achieved perfectly. Variation in the update rates and the dropping of data due to rotation and obscuration is considered. The analysis will be based on a simple straight-line channel harbor entry to the dock, similar to a submarine entering the submarine port in San Diego.

  10. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Dane F.

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity],more » a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O 2 cannot be ignored, especially for the FHR, in which environment the product, SiO 2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.« less

  11. Atmospheres

    NASA Astrophysics Data System (ADS)

    Bott, June; Yin, Hongbin; Sridhar, Seetharaman

    2014-12-01

    When high Al containing Fe alloys such as TRIP steels are exposed to atmospheres that contain N2 during re-heating, sub-surface nitrides form and these can be detrimental to mechanical properties. Nitride precipitation can be controlled by minimizing the access of the gaseous atmosphere to the metal surface, which can be achieved by a rapid growth of a continuous and adherent surface scale. This investigation utilizes a Au-image furnace attached to a confocal scanning microscope to simulate the annealing temperature vs time while Fe-Al alloys (with Al contents varying from 1 to 8 wt pct) are exposed to a O2-N2 atm with 10-6 atm O2. The heating times of 1, 10, and 100 minutes to the isothermal temperature of 1558 K (1285 °C) were used. It was found that fewer sub-surface nitride precipitates formed when the heating time was lowered and when Al content in the samples was increased. In the 8 wt pct samples, no internal nitride precipitates were present regardless of heating time. In the 3 and 5 wt pct samples, internal nitride precipitates were nearly more or less absent at heating times less than 10 minutes. The decrease in internal precipitates was governed by the evolving structure of the external oxide-scale. At low heating rates and/or low Al contents, significant Fe-oxide patches formed and these appeared to allow for ingress of gaseous N2. For the slow heating rates, ingress could have happened during the longer time spent in lower temperatures where non-protective alumina was present. As Al content in the alloy was increased, the external scale was Al2O3 and/or FeAl2O4 and more continuous and consequently hindered the N2 from accessing the metal surface. Increasing the Al content in the alloy had the effect of promoting the outward diffusion of Al in the alloy and thereby assisting the formation of the continuous external layer of Al2O3 and/or FeAl2O4.

  12. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008

  13. A precision isotonic measuring system for isolated tissues.

    PubMed

    Mellor, P M

    1984-12-01

    An isotonic measuring system is described which utilizes an angular position transducer of the linear differential voltage transformer type. Resistance to corrosion, protection against the ingress of solutions, and ease of mounting and setting up were the mechanical objectives. Accuracy, linearity, and freedom from drift were essential requirements of the electrical specification. A special housing was designed to accommodate the transducer to overcome these problems. A control unit incorporating a power supply and electronic filtering components was made to serve up to four such transducers. The transducer output voltage is sufficiently high to drive directly even low sensitivity chart recorders. Constructional details and a circuit diagram are included. Fifty such transducers have been in use for up to four years in these laboratories. Examples of some of the published work done using this transducer system are referenced.

  14. The X-ray Variability of Eta Car, 1996-2010

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Hamaguchi, K.; Gull, T.; Owocki, S.; Pittard, J.

    2010-01-01

    X-ray photometry in the 2-10 keY band of the the supermassive binary star Eta Car has been measured with the Rossi X-ray Timing Explorer from 1996-2010. The ingress to X-ray minimum is consistent with a period of 2024 days. The 2009 X-ray minimum began on January 162009 and showed an unexpectedly abrupt recovery starting after 12 Feb 2009. The X-ray colors become harder about half-way through all three minima and continue until flux recovery. The behavior of the fluxes and X-ray colors for the most recent X-ray minimum, along with Chandra high resolution grating spectra at key phases suggests a significant change in the inner wind of Eta Car, a possible indicator that the star is entering a new unstable phase of mass loss.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groot, Paul J., E-mail: pgroot@astro.ru.nl

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less

  16. Closeup view of the Pilot's Seat on the Flight Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Pilot's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the pilot's ingress. Control panels R1 and R2 are prominent in this view. Panel R1 has switches for control and maintenance of on-board cryogenics for the fuel cells among other functions and panel R2 has switches and controls for the Auxiliary Power Units, ET umbilical doors as well as other operational controls. Note the portable fire extinguisher in the lower right corner of the image. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Traffic shaping and scheduling for OBS-based IP/WDM backbones

    NASA Astrophysics Data System (ADS)

    Elhaddad, Mahmoud S.; Melhem, Rami G.; Znati, Taieb; Basak, Debashis

    2003-10-01

    We introduce Proactive Reservation-based Switching (PRS) -- a switching architecture for IP/WDM networks based on Labeled Optical Burst Switching. PRS achieves packet delay and loss performance comparable to that of packet-switched networks, without requiring large buffering capacity, or burst scheduling across a large number of wavelengths at the core routers. PRS combines proactive channel reservation with periodic shaping of ingress-egress traffic aggregates to hide the offset latency and approximate the utilization/buffering characteristics of discrete-time queues with periodic arrival streams. A channel scheduling algorithm imposes constraints on burst departure times to ensure efficient utilization of wavelength channels and to maintain the distance between consecutive bursts through the network. Results obtained from simulation using TCP traffic over carefully designed topologies indicate that PRS consistently achieves channel utilization above 90% with modest buffering requirements.

  18. Skylab

    NASA Image and Video Library

    1972-01-01

    This photograph depicts the flight article of the Airlock Module (AM) Flight Article being mated to the Fixed Airlock Shroud and aligned in a clean room of the McDornell Douglas Plant in St. Louis, Missouri. The AM enabled crew members to conduct extravehicular activities outside Skylab as required for experiment support. Separated from the Workshop and the Multiple Docking Adapter by doors, the AM could be evacuated for egress or ingress of a space-suited astronaut through a side hatch. Oxygen and nitrogen storage tanks needed for Skylab's life support system were mounted on the external truss work of the AM. Major components in the AM included Skylab's electric power control and distribution station, environmental control system, communication system, and data handling and recording systems. The Marshall Space Flight Center was responsible for the design and development of the Skylab hardware and experiment management.

  19. Deposition of RuO 4 on various surfaces in a nuclear reactor containment

    NASA Astrophysics Data System (ADS)

    Holm, Joachim; Glänneskog, Henrik; Ekberg, Christian

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  20. Field Test Report: NETL Portable Raman Gas Composition Monitor - Initial Industrial tests at NETL and General Electric (GE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Buric; Jessica, Mullen; Steven, Woodruff

    2012-02-24

    NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented formore » spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise background. The difficulties with liquid contaminants will be overcome through the use of prodigious sample-cell heating and additional line filtration including liquid ingress-protection. The communication problem was resolved through site-specific troubleshooting of the MODBUS data tags.« less

Top