Sample records for water level study

  1. Water Levels In Major Artesian Aquifers Of The New Jersey Coastal Plain, 1988

    USGS Publications Warehouse

    Rosman, Robert; Lacombe, Pierre J.; Storck, Donald A.

    1995-01-01

    Water levels in 1,251 wells in the New Jersey Coastal Plain, Philadelphia County, Pennsylvania, and Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Large cones of depression have formed or expanded in the nine major artesian aquifers that underlie the New Jersey Coastal Plain. Water levels are shown on nine potentiometric-surface maps. Hydrographs for observation wells typically show water-level declines for 1983, through 1989. In the confined Cohansey aquifer, the lowest water level, 20 feet below sea level, was measured in a well located at Cape May City Water Department, Cape May County. Water levels in the Atlantic City 800-foot sand declined as much as 21 feet at Ventnor, Atlantic County, over the 6-year period from the 1983 study to this study for 1988. Water levels in the Piney Point aquifer were as low as 56 feet below sea level at Seaside Park, Ocean County; 45 feet below sea level in southern Cumberland County; and 28 feet below sea level at Margate, Atlantic County. Water levels in the Vincentown aquifer did not change over the 6-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 feet and 256 feet below sea level, respectively. Large cones of depression in the Potomac- Raritan-Magothy aquifer system are centered in the Camden County area and the Middlesex and Monmouth County area. Water levels declined as much as 46 feet in these areas over the 6-year period.

  2. Generalized water-level contours, September-October 2000 and March-April 2001, and long-term water-level changes, at the U.S. Air Force Plant 42 and vicinity, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.

    2005-01-01

    Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.

  3. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study.

    PubMed

    Manassaram, Deana M; Backer, Lorraine C; Messing, Rita; Fleming, Lora E; Luke, Barbara; Monteilh, Carolyn P

    2010-10-14

    Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies.

  4. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study

    PubMed Central

    2010-01-01

    Background Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. Methods A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. Results Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). Conclusion Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies. PMID:20946657

  5. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  6. Association between water fluoride and the level of children's intelligence: a dose-response meta-analysis.

    PubMed

    Duan, Q; Jiao, J; Chen, X; Wang, X

    2018-01-01

    Higher fluoride concentrations in water have inconsistently been associated with the levels of intelligence in children. The following study summarizes the available evidence regarding the strength of association between fluoridated water and children's intelligence. Meta-analysis. PubMed, Embase, and Cochrane Library databases were systematically analyzed from November 2016. Observational studies that have reported on intelligence levels in relation to high and low water fluoride contents, with 95% confidence intervals (CIs) were included. Further, the results were pooled using inverse variance methods. The correlation between water fluoride concentration and intelligence level was assessed by a dose-response meta-analysis. Twenty-six studies reporting data on 7258 children were included. The summary results indicated that high water fluoride exposure was associated with lower intelligence levels (standardized mean difference : -0.52; 95% CI: -0.62 to -0.42; P < 0.001). The findings from subgroup analyses were consistent with those from overall analysis. The dose-response meta-analysis suggested a significant association between water fluoride dosage and intelligence (P < 0.001), while increased water fluoride exposure was associated with reduced intelligence levels. Greater exposure to high levels of fluoride in water was significantly associated with reduced levels of intelligence in children. Therefore, water quality and exposure to fluoride in water should be controlled in areas with high fluoride levels in water. Copyright © 2017. Published by Elsevier Ltd.

  7. Review of epidemiological studies on drinking water hardness and cardiovascular diseases.

    PubMed

    Monarca, Silvano; Donato, Francesco; Zerbini, Ilaria; Calderon, Rebecca L; Craun, Gunther F

    2006-08-01

    Major risk factors do not entirely explain the worldwide variability of morbidity and mortality due to cardiovascular disease. Environmental exposures, including drinking water minerals may affect cardiovascular disease risks. We conducted a qualitative review of the epidemiological studies of cardiovascular disease and drinking water hardness and calcium and magnesium levels. Many but not all ecological studies found an inverse (i.e., protective) association between cardiovascular disease mortality and water hardness, calcium, or magnesium levels; but results are not consistent. Some case-control studies and one cohort study found either a reduced cardiovascular disease mortality risk with increased drinking water magnesium levels or an increased risk with low magnesium levels. However, the analytical studies provide little evidence that cardiovascular risks are associated with drinking water hardness or calcium levels. Information from epidemiological and other studies supports the hypothesis that a low intake of magnesium may increase the risk of dying from, and possibly developing, cardiovascular disease or stroke. Thus, not removing magnesium from drinking water, or in certain situations increasing the magnesium intake from water, may be beneficial, especially for populations with an insufficient dietary intake of the mineral.

  8. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  9. Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983

    USGS Publications Warehouse

    Eckel, J.A.; Walker, R.L.

    1986-01-01

    Water levels and changes in water levels in the major aquifers of the New Jersey Coastal Plain are documented. Water levels in 1,071 wells were measured in 1983, and are compared with 827 water level measurements made in the same wells in 1978. Increased groundwater withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones are delineated on detailed potentiometric surface maps based on water level data collected in the fall of 1983. Hydrographs from observation wells show trends of water levels for the 6-year period of 1978 through 1983. The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers form large cones of depression centered in the Camden and Middlesex-Monmouth County areas. Measured water levels declined as much as 23 ft in these areas for the period of study. The lowest levels are 96 ft below sea level in Camden County and 91 ft below sea level in the Middlesex-Monmouth County area. Deep cones of depression in coastal Monmouth and Ocean counties in both the Englishtown aquifer system and Wenonah-Mount Laurel aquifer are similar in location and shape. This is because of an effective hydraulic connection between these aquifers. Measured water levels declined as much as 29 ft in the Englishtown aquifer system and 21 ft in the Wenonah-Mount Laurel aquifer during the period of study. The lowest levels are 249 ft below sea level in the Englishtown aquifer system and 196 ft below sea level in the Wenonah-Mount Laurel aquifer. Water levels in the Piney Point aquifer are as low as 75 ft below sea level at Seaside Park, Ocean County and 35 ft below sea level in southern Cumberland County. Water levels in Cumberland County are affected by large withdrawals of groundwater in Kent County, Delaware. Water levels in the Atlantic City 800 ft sand of the Kirkwood Formation define an extensive elongated cone of depression. Water levels are as low as 76 ft below sea level near Margate and Ventnor, Atlantic County. Measured water levels declined as much as 9 ft in the coastal region between Cape May County and Ocean County for the period of study. (Author 's abstract)

  10. Simulated effects of water-level changes in the Mississippi River and Pokegama Reservoir on ground-water levels, Grand Rapids area, Minnesota

    USGS Publications Warehouse

    Jones, Perry M.

    2005-01-01

    The extent of aquifer water-level changes resulting from these river, wetland, and lake water-level changes varied because of the complex hydrogeology of the study area. A 1.00-foot decline in reservoir/river water levels caused a maximum simulated ground-water-level decline in the middle aquifer near Jay Gould and Little Jay Gould Lakes of 1.09 feet and a maximum simulated ground-water-level decline of 1.00 foot in the lower aquifer near Cut-off and Blackwater Lakes. The amount and extent of ground-water-level changes in the middle and lower aquifers can be explained by the thickness, extent, and connectivity of the aquifers. Surface-water/ground-water interactions near wetlands and lakes with water levels unchanged from the calibrated model resulted in small water-table altitude differences among the simulations. Results of the ground-water modeling indicate that lowering of the reservoir and river water levels by 1.00 foot likely will not substantially affect water levels in the middle and lower aquifers.

  11. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    PubMed

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.

  12. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  13. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water.

    PubMed

    Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M

    2012-06-15

    This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. How reframing a water management issue across scales and levels impacts on perceptions of justice and injustice

    NASA Astrophysics Data System (ADS)

    Patrick, M. J.; Syme, G. J.; Horwitz, P.

    2014-11-01

    Social justice is a key outcome of water allocation, management and governance. It is commonly expressed in water policies and strategies in terms of achieving equitable distribution of water resources. In complex multi-level systems just and unjust outcomes can result from the same water allocation decision. In some cases a just outcome at one level may cause an injustice at another level for the same or a different set of stakeholders. The manner in which a water management issue is framed and reframed across different levels within a system influences stakeholder perceptions of whether a water allocation decision is just or unjust, which in turn influences the successful adoption and implementation of such a decision. This paper utilises a case study from the Murray-Darling Basin in Australia to illustrate how reframing a water management issue across multiple scales and levels can help understand stakeholders' perceptions of justice and injustice. In this case study two scales are explored, an institutional and an organisational scale; each comprising levels at the federal, basin, state and region. The water management issue of domestic and stock dams was tracked through the various scales and levels and illustrated how reframing an issue at different levels can influence the analysis of just or equitable outcomes. The case study highlights the need to treat justice in water allocation as an ever evolving problem of the behaviour of a social system rather than the meeting of static principles of what is 'right'. This points to the importance of being attentive to the dynamic and dialogical nature of justice when dealing with water allocation issues across scales and levels of water governance.

  15. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    NASA Astrophysics Data System (ADS)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  16. Excretion of arsenic (As) in urine of children, 7-11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, México.

    PubMed

    Wyatt, C J; Lopez Quiroga, V; Olivas Acosta, R T; Olivia Méndez, R

    1998-07-01

    Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, México, showed high levels of As (> 0.05 ppm) in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7-11 years of age, that had been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included. As was determined by an atomic absorption-hydride generator, verified with the use of NBS certified standards (SRM 1643a and SRM 2670). None of the water samples exceeded the limit established for drinking water; however, there was a significant difference between the intake of As and the As in drinking water among the three areas of the study. Average As in water was 0.009 +/- 0.002 and 0.030 +/- 0.011 micrograms/ml between the control and high areas. Intake (in micrograms/day) was 15 +/- 3 and 54 +/- 18. In the group consuming water with high levels of As, 65% of the children exceeded the recommended dose of < 1 micrograms/kg/day (EPA, 1988). Several children in this study also had high levels of As in their urine. Even though As levels in the drinking water are within the norms, it appears that children exposed to high levels of As in their drinking water may have a health risk.

  17. Selected hydrologic data for the upper Rio Hondo basin, Lincoln County, New Mexico, 1945-2003

    USGS Publications Warehouse

    Donohoe, Lisa C.

    2004-01-01

    Demands for ground and surface water have increased in the upper Rio Hondo Basin due to increases in development and population. Local governments are responsible for land-use and development decisions and, therefore, the governments need information about water resources in their areas. Hydrologic data were compiled for the upper Rio Hondo Basin and water-level data were collected during two synoptic measurements in March and July 2003. Water-level data from March 2003 were contoured and compared with contours constructed in 1963. The 5,600-, 5,700-, and 5,800-foot March 2003 contours indicate that water levels rose. The 5,500-foot contour for March 2003 indicates a decline in water level. The 5,400-foot contour of March 2003 and the 1963 contour mostly coincide, indicating a static water level. The 5,300- and 5,200-foot contours for March 2003 cross the 1963 contours, indicating a decline in water levels near the Rio Ruidoso but a rise in water levels near the Rio Bonito. In eight hydrographs, 2003 water levels are shown to be higher than water levels from the mid- to late 1950's in five of the eight wells. For the same period of record, water levels in the three remaining wells were lower. Rising and declining water levels were highest in the northern part of the study area; the median rise was 4.01 feet and the median decline was 3.51 feet. In the southern part of the study area, the median water-level rise was 2.21 feet and the median decline was 1.56 feet.

  18. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake

    NASA Astrophysics Data System (ADS)

    Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng

    2018-06-01

    The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of similarly dramatic bathymetric changes in complex floodplain lakes.

  19. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    USGS Publications Warehouse

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as estimates of depth to bedrock and depth to water table, as well as indications of underlying geologic structure, were obtained from geophysical surveys. Site-specific geologic data were collected during the drilling of observation wells and test holes. These data include depth to bedrock or refusal, depth to water table, and lithologic information.

  20. One research from turkey on groundwater- level changes related earthquake

    NASA Astrophysics Data System (ADS)

    Kirmizitas, H.; Göktepe, G.

    2003-04-01

    Groundwater levels are recorded by limnigraphs in drilling wells in order to determine groundwater potential accurately and reliable under hydrogeological studies in Turkey State Haydraulic Works (DSI) set the limnigraphs to estimate mainly groundwater potential. Any well is drilled to determine and to obtain data on water level changes related earthquake up today. The main purpose of these studies are based on groundwater potential and to expose the hydrodynamic structure of an aquifer. In this study, abnormal oscillations, water rising and water drops were observed on graphs which is related with water level changes in groundwater. These observations showed that, some earthquakes has been effective on water level changes. There is a distance ranging to 2000 km between this epicentral and water wells. Water level changes occur in groundwater bearing layers that could be consisting of grained materials such as, alluvium or consolidated rocks such as, limestones. The biggest water level change is ranging to 1,48 m on diagrams and it is recorded as oscillation movement. Water level changes related earthquake are observed in different types of movements below in this research. 1-Rise-drop oscillation changes on same point. 2-Water level drop in certain periods or permanent periods after earthquakes. 3-Water level rise in certain periods or permanent periods after earthquakes. (For example, during Gölcük Earthquake with magnitude of 7.8 on August, 17, 1999 one artesian occured in DSI well ( 49160 numbered ) in Adapazari, Dernekkiri Village. Groundwater level changes might easily be changed because of atmosferic pressure that comes in first range, precipitation, irrigation or water pumping. Owing to relate groundwater level changes with earthquake on any time, such changes should be observed accurately, carefully and at right time. Thus, first of all, the real reason of this water level changes must be determined From 1970 to 2001 many earthquakes occured in Turkey ( Kütahya-Gediz Earthquake on March, 28, 1970, Diyarbakir-Lice Earthquake on September, 6, 1975, Van-Muradiye Earthquake on November, 24, 1976, Erzurum-Kars Earthquake on October, 30, 1983, Gölcük Earthquake on August, 17, 1999 , Afyon-Sultanhisar Earthquake on February, 3, 2002). Furthermore, Iran Earthquake on November, 27, 1979 has been measured and recorded from thousands kilometeres away in drilling wells in Turkey. Altough there are a lot of studies and researches on earthquake prediction and groundwater level changes related earthquake, it is still difficult to say certain results are obtained on this subject. Nowadays, it is well known the importance of these researches on earthquakes. Due to take certain results on earthqauke-water level changes relations, studies must be carried out on this way.

  1. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual-Level Data from Multiple Studies.

    PubMed

    Hodge, James; Chang, Howard H; Boisson, Sophie; Collin, Simon M; Peletz, Rachel; Clasen, Thomas

    2016-10-01

    Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11-100, 101-1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560-1567; http://dx.doi.org/10.1289/EHP156.

  2. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual–Level Data from Multiple Studies

    PubMed Central

    Hodge, James; Chang, Howard H.; Boisson, Sophie; Collin, Simon M.; Peletz, Rachel; Clasen, Thomas

    2016-01-01

    Background: Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. Objectives: We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. Methods: We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. Results: The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11–100, 101–1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Conclusions: Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Citation: Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560–1567; http://dx.doi.org/10.1289/EHP156 PMID:27164618

  3. Assessment of pathogen levels in stream water column and bed sediment of Merced River Watershed in California

    NASA Astrophysics Data System (ADS)

    Vaddella, V. K.; Pandey, P.; Biswas, S.; Lewis, D. J.

    2014-12-01

    Mitigating pathogen levels in surface water is crucial for protecting public health. According to the U.S. Environmental Protection Agency (US EPA), approximately 480,000 km of rivers/streams are contaminated in the U.S., and a major cause of contamination is elevated levels of pathogen/pathogen indicator. Many of past studies showed considerably higher pathogen levels in sediment bed than that of the stream water column in rivers. In order to improve the understanding of pathogen levels in rivers in California, we carried out an extensive pathogen monitoring study in four different watersheds (Bear Creek, Ingalsbe, Maxwell, and Yosemite watersheds) of Merced River. Stream water and streambed sediment samples were collected from 17 locations. Pathogen levels (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were enumerated in streambed sediment and water column. In addition, the impacts of heat stress on pathogen survival were assessed by inoculating pathogens into the water and sediment samples for understanding the pathogen survival in stream water column and streambed sediment. The pathogen enumeration (in water column and sediment bed) results indicated that the E. coli O157:H7, Salmonella spp. and Listeria monocytogenes levels were non-detectable in the water column and streambed sediment. The results of heat stress (50◦ C for 180 minutes) test indicated a pathogen decay at one order of magnitude (108 cfu/ml to 107 cfu/ml). Nonetheless, higher pathogen levels (1.13 × 107 cfu/ml) after the heat stress study showed potential pathogen survival at higher temperature. Preliminary results of this study would help in understanding the impacts of elevated temperature on pathogen in stream environment. Further studies are required to test the long-term heat-stress impacts on pathogen survival.

  4. [THE EFFECT OF 5 DAYS IMMERSION IN DEAD SEA WATER ON BLOOD GLUCOSE LEVELS IN TYPE 2 DIABETES MELLITUS PATIENTS].

    PubMed

    Brzezinski Sinai, Isaac; Lior, Yotam; Brzezinski Sinai, Noa; Harari, Marco; Liberty, Idit F

    2016-02-01

    Body immersion in plain water or mineral water induces significant and unique physiological changes in most body systems. In a previous pilot study, a significant reduction in blood glucose levels among diabetes mellitus (DM) patients was found following a single immersion in Dead Sea water but not after immersion in plain water. To study the immediate and long term effects of immersion in mineral water for five consecutive days on blood glucose in patients with type 2 DM. A total of 34 patients with type 2 DM were divided into 2 groups: The first immersed in a plain water pool and the second immersed in a Dead Sea water pool; both pools were warmed to a temperature of 35°C. Immersions for 20 minutes occurred twice daily: two hours after breakfast and before dinner. Seven samples of capillary blood glucose levels were taken: fasting, before and after every immersion, prior to lunch and before bedtime. Hemoglobin A1C (HbA1c) was taken prior to the study and a re-check was conducted during the 12 weeks following the study. Blood glucose levels significantly decreased immediately after immersion both in Dead Sea water and plain water compared to their values prior to immersion (p<0.001). No significant difference was noted between both types of water. A decrease in fasting glucose levels was observed only in the group immersed in Dead Sea water when compared to plain water (6.83±5.68 mg/dl versus 4.37±1.79 respectively and the difference was close to statistical significance (p=0.071. There were no changes in HbA1c levels. Immersion for 20 minutes in water (Dead Sea or plain water) at a temperature of 35°C induced an immediate reduction in glucose levels in patients with type 2 DM.

  5. Long-term (1930-2010) trends in groundwater levels in Texas: influences of soils, landcover and water use.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-08-15

    Rapid groundwater depletion has raised grave concerns about sustainable development in many parts of Texas, as well as in other parts of the world. Previous hydrologic investigations on groundwater levels in Texas were conducted mostly on aquifer-specific basis, and hence lacked state-wide panoramic view. The aim of this study was to present a qualitative overview of long-term (1930-2010) trends in groundwater levels in Texas and identify spatial patterns by applying different statistical (boxplots, correlation-regression, hierarchical cluster analysis) and geospatial techniques (Moran's I, Local Indicators of Spatial Association) on 136,930 groundwater level observations from Texas Water Development Board's database. State-wide decadal median water-levels declined from about 14 m from land surface in the 1930s to about 36 m in the 2000s. Number of counties with deeper median water-levels (water-level depth>100 m) increased from 2 to 13 between 1930s and 2000s, accompanied by a decrease in number of counties having shallower median water-levels (water-level depth<25 m) from 134 to 113. Water-level declines across Texas, however, mostly followed logarithmic trends marked by leveling-off phenomena in recent times. Assessment of water-levels by Groundwater Management Areas (GMA), management units created to address groundwater depletion issues, indicated hotspots of deep water-levels in Texas Panhandle and GMA 8 since the 1960s. Contrasting patterns in water use, landcover, geology and soil properties distinguished Texas Panhandle from GMA 8. Irrigated agriculture is the major cause of depletion in the Texas Panhandle as compared to increasing urbanization in GMA 8. Overall our study indicated that use of robust spatial and statistical methods can reveal important details about the trends in water-level changes and shed lights on the associated factors. Due to very generic nature, techniques used in this study can also be applied to other areas with similar eco-hydrologic issues to identify regions that warrant future management actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were in 1955. During the time of the water-level survey (November 2000), ground water was being pumped from four locations in the lower aquifer, including three municipalities and one remediation site. Effects of pumping in those four areas were evident from the regional water-level data. Overall, the direction of ground-water flow in the lower aquifer is from northeast to southwest along the primary orientation of the Mill Creek Valley in the study area. Water levels in shallower surficial aquifers were mapped at local scales centered on GEAE. Examination of well logs indicated that these aquifers (called shallow and water-table) are discontinuous and, on a regional scale, few wells were completed in these aquifers. Water levels in the shallow aquifer indicated that flow was from northeast to southwest except in areas where pumping in the lower aquifer or the proximity of Mill Creek may have been affecting water levels in the shallow aquifer. Water levels in the water-table aquifer indicated flow toward Mill Creek from GEAE.

  7. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    USGS Publications Warehouse

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  8. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level.

    PubMed

    Su, Ming; Jia, Dongmin; Yu, Jianwei; Vogt, Rolf D; Wang, Jingshi; An, Wei; Yang, Min

    2017-01-01

    Abatement and control of algae, producing toxins and creating taste & odor (T&O) in drinking water sources, is a major challenge for water supply. In this study we proposed a strategy based on water level regulation for the control of odor-producing cyanobacteria in source water. Miyun Reservoir, the main surface water source for Beijing, has been suffering from 2-methylisoborneol (2-MIB) induced T&O problems caused by deep-living Planktothrix sp. since 2002. The biomass of deep-living Planktothrix in Miyun Reservoir was found to be mainly governed by the water depth above its sediment habitat. An algorithm for water level regulation aiming to minimize the risk for T&O in different types of reservoirs is proposed. The study demonstrates that risk for T&O can be minimized by increasing the water level in Miyun Reservoir. The high-risk area can be reduced by about 2.91% (0.61% to 5.76%) of surface area for each meter increase in the water level, when the water level is lower than 145m. More specifically, the water level needs to be raised to higher than 147.7ma.s.l. from 131.0m in order to obtain an acceptable risk level (ARL) of 10%. This management strategy to abate T&O problems is simpler and cheaper to implement compared to traditional physical, chemical and biological techniques. Moreover, it has no apparent negative impact on water quality and aquatic organisms. Copyright © 2016. Published by Elsevier B.V.

  9. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis.

    PubMed

    Jiang, Lei; He, Pengcheng; Chen, Jiyan; Liu, Yong; Liu, Dehui; Qin, Genggeng; Tan, Ning

    2016-01-02

    Epidemiological studies have demonstrated inconsistent associations between drinking water magnesium levels and risk of mortality from coronary heart disease (CHD); thus, a meta-analysis was performed to assess the association between them. Relevant studies were searched by the databases of Cochrane, EMBASE, PubMed and Web of Knowledge. Pooled relative risks (RR) with their 95% CI were calculated to assess this association using a random-effects model. Finally, nine articles with 10 studies involving 77,821 CHD cases were used in this study. Our results revealed an inverse association between drinking water magnesium level and CHD mortality (RR = 0.89, 95% CI = 0.79-0.99, I² = 70.6). Nine of the 10 studies came from Europe, and the association was significant between drinking water magnesium level and the risk of CHD mortality (RR = 0.83, 95% CI = 0.69-0.98). In conclusion, drinking water magnesium level was significantly inversely associated with CHD mortality.

  10. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis

    PubMed Central

    Jiang, Lei; He, Pengcheng; Chen, Jiyan; Liu, Yong; Liu, Dehui; Qin, Genggeng; Tan, Ning

    2016-01-01

    Epidemiological studies have demonstrated inconsistent associations between drinking water magnesium levels and risk of mortality from coronary heart disease (CHD); thus, a meta-analysis was performed to assess the association between them. Relevant studies were searched by the databases of Cochrane, EMBASE, PubMed and Web of Knowledge. Pooled relative risks (RR) with their 95% CI were calculated to assess this association using a random-effects model. Finally, nine articles with 10 studies involving 77,821 CHD cases were used in this study. Our results revealed an inverse association between drinking water magnesium level and CHD mortality (RR = 0.89, 95% CI = 0.79–0.99, I2 = 70.6). Nine of the 10 studies came from Europe, and the association was significant between drinking water magnesium level and the risk of CHD mortality (RR = 0.83, 95% CI = 0.69–0.98). In conclusion, drinking water magnesium level was significantly inversely associated with CHD mortality. PMID:26729158

  11. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    USGS Publications Warehouse

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  12. A study of water uptake by selected superdisintegrants from the sub-molecular to the particulate level.

    PubMed

    Barmpalexis, P; Syllignaki, P; Kachrimanis, K

    2018-06-01

    Water diffusion through the matrix of three superdisintegrants, namely sodium starch glycolate (SSG), croscarmellose sodium (cCMC-Na) and crospovidone (cPVP), was studied at the sub-molecular level using Attenuated Total Reflectance (ATR)-FTIR spectroscopy and molecular dynamics simulations, and the results were correlated to water uptake studies conducted at the particulate level using Parallel Exponential Kinetics (PEK) modeling in dynamic moisture sorption studies and optical microscopy. ATR-FTIR studies indicated that water diffuses inside cPVP by a single fast acting process, while in SSG and cCMC-Na, a slow and a fast process acting simultaneously, were identified. The same pattern regarding the rate of water uptake for all superdisintegrants was found also at the particulate level by PEK modeling. Moreover, molecular dynamics simulation helped elucidate the hydrogen bonding patterns formed between water-SSG and water-cCMC-Na, mainly via their carboxylic oxygen atoms and secondarily via their hydroxyl groups, while cPVP formed hydrogen bonds only through carbonyl oxygen. Finally, cPVP chains showed significant flexibility during hydration, while cCMC-Na and SSG chains retain their conformation to some extent, explaining the extensive swelling observed also at the particulate level by optical microscopy hydration studies.

  13. Calcium in drinking water: effect on iron stores in Danish blood donors-results from the Danish Blood Donor Study.

    PubMed

    Rigas, Andreas S; Ejsing, Benedikte H; Sørensen, Erik; Pedersen, Ole B; Hjalgrim, Henrik; Erikstrup, Christian; Ullum, Henrik

    2018-06-01

    Studies confirm that calcium inhibits iron absorption. Danish tap water comes from groundwater, which contains varying amounts of calcium depending on the subsoil. We investigated the association of calcium in drinking water with iron levels in Danish blood donors. We used data on Danish blood donors including dietary and lifestyle habits, blood donation history, and physiologic characteristics including measures of ferritin levels along with information on area of residence from The Danish Blood Donor Study. Data on calcium levels in groundwater ("water hardness") were obtained through the Geological Survey of Denmark and Greenland. We performed multiple linear and logistic regression analyses to evaluate the effect of water hardness on ferritin levels and risk of having iron deficiency (defined as ferritin levels <15 ng/mL), stratified by sex. There was a significant negative association between water hardness and ferritin levels in both men and women. Risk of iron deficiency was correspondingly increased in both men (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.14-2.12) and women (OR, 1.20; 95% CI, 1.03-1.40) with increasing water hardness. In analyses restricted to individuals who received supplemental iron tablets no significant association between groundwater hardness and ferritin levels was observed. As measured by ferritin levels, residential drinking water calcium content is associated with blood donors- iron levels and risk of iron deficiency. However, effect sizes are small. © 2018 AABB.

  14. Analysis of Groundwater Anomalies Estimated by GRACE and GLDAS Satellite-based Hydrological Model in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lotfata, A.; Ambinakudige, S.

    2017-12-01

    Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.

  15. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susko, Michele L.; Bloom, Michael S., E-mail: mbloom@albany.edu; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiá¹£ County, Romania. Women (n=94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnairemore » and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1 µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. - Highlights: • We assessed low level drinking water arsenic as a predictor of fecundability. • Arsenic did not affect time to pregnancy among women conceiving quickly. • Arsenic increased time to pregnancy among women taking longer to conceive. • Low level drinking water arsenic may adversely impact women with lower fecundity.« less

  16. Satellite altimetry and hydrologic modeling of poorly-gauged tropical watershed

    NASA Astrophysics Data System (ADS)

    Sulistioadi, Yohanes Budi

    Fresh water resources are critical for daily human consumption. Therefore, a continuous monitoring effort over their quantity and quality is instrumental. One important model for water quantity monitoring is the rainfall-runoff model, which represents the response of a watershed to the variability of precipitation, thus estimating the discharge of a channel (Bedient and Huber, 2002, Beven, 2012). Remote sensing and satellite geodetic observations are capable to provide critical hydrological parameters, which can be used to support hydrologic modeling. For the case of satellite radar altimetry, limited temporal resolutions (e.g., satellite revisit period) prohibit the use of this method for a short (less than weekly) interval monitoring of water level or discharge. On the other hand, the current satellite radar altimeter footprints limit the water level measurement for rivers wider than 1 km (Birkett, 1998, Birkett et al., 2002). Some studies indeed reported successful retrieval of water level for small-size rivers as narrow as 80 m (Kuo and Kao, 2011, Michailovsky et al., 2012); however, the processing of current satellite altimetry signals for small water bodies to retrieve accurate water levels, remains challenging. To address this scientific challenge, this study poses two main objectives: (1) to monitor small (40--200 m width) and medium-sized (200--800 m width) rivers and lakes using satellite altimetry through identification and choice of the over-water radar waveforms corresponding to the appropriately waveform-retracked water level; and (2) to develop a rainfall-runoff hydrological model to represent the response of mesoscale watershed to the variability of precipitation. Both studies address the humid tropics of Southeast Asia, specifically in Indonesia, where similar studies do not yet exist. This study uses the Level 2 radar altimeter measurements generated by European Space Agency's (ESA's) Envisat (Environmental Satellite) mission. The first study proves that satellite altimetry provides a good alternative or the only means in some regions to measure the water level of medium-sized river (200--800 m width) and small lake (extent less than 1000 km 2) in Southeast Asia humid tropic with reasonable accuracy. In addition, the procedure to choose retracked Envisat altimetry water level heights via identification or selection of over water waveform shapes is reliable; therefore this study concluded that the use of waveform shape selection procedure should be a standard measure in determining qualified range measurements especially over small rivers and lakes. This study also found that Ice-1 is not necessarily the best retracker as reported by previous studies, among the four standard waveform retracking algorithms for Envisat altimetry observing hydrologic bodies. The second study modeled the response of the poorly-gauged watershed in the Southeast Asia's humid tropic through the application of Hydrologic Engineering Center -- Hydrologic Modeling System (HEC-HMS). The performance evaluation of HEC-HMS discharge estimation confirms a good match between the simulated discharges with the observed ones. As the result of precipitation data analysis, this study found that Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) is the preferred input forcing for the model, given the thorough evaluation of its relationship with field-measured precipitation data prior to its use as primary climatic forcing. This research also proposes a novel approach to process the TRMM precipitation estimation spatially through Thiessen polygon and area average hybrid method, which model the spatial distribution of TRMM data to match the spatial location of field meteorological stations. Through a simultaneous validation that compares the water level anomaly transformed from HEC-HMS simulated discharge and satellite altimetry measurement, this study found that satellite altimetry measures water level anomaly closer to the true water level anomaly than the water level anomaly converted from HEC-HMS simulated discharge. Some critical recommendations for future studies include the use of waveform shape selection procedure in the satellite altimetry based water level measurement of small and medium-sized rivers and small lakes, as well as the exploration to implement data assimilation between satellite altimetry and the hydrologic model for better discharge and water level estimations.

  17. Excretion of arsenic (As) in urine of children, 7--11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, C.J.; Quiroga, V.L.; Acosta, R.T.O.

    1998-07-01

    Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, Mexico, showed high levels of As in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7--11 years of age, that hadmore » been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included.« less

  18. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation.

    PubMed

    Susko, Michele L; Bloom, Michael S; Neamtiu, Iulia A; Appleton, Allison A; Surdu, Simona; Pop, Cristian; Fitzgerald, Edward F; Anastasiu, Doru; Gurzau, Eugen S

    2017-04-01

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiṣ County, Romania. Women (n=94) with planned pregnancies of 5-20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Low-level arsenic exposure via drinking water consumption and female fecundity - a preliminary investigation

    PubMed Central

    Susko, Michele L.; Bloom, Michael S.; Neamtiu, Iulia A.; Appleton, Allison A.; Surdu, Simona; Pop, Cristian; Fitzgerald, Edward F.; Anastasiu, Doru; Gurzau, Eugen S.

    2017-01-01

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiş County, Romania. Women (n = 94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women For example, 1 μg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P = 0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. PMID:28061371

  20. Trend analysis of ground-water levels and spring discharge in the Yucca Mountain Region, Nevada and California, 1960-2000

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moreo, Michael T.

    2002-01-01

    Ground-water level and discharge data from 1960 to 2000 were analyzed for the Yucca Mountain region of southern Nevada and eastern California. Included were water-level data from 37 wells and a fissure (Devils Hole) and discharge data from five springs and from a flowing well. Data were evaluated for variability and for upward, downward, or cyclic trends with an emphasis on the period 1992-2000. Potential factors causing trends in water levels and discharge include ground-water withdrawal, infiltration of precipitation, earthquakes, evapotranspiration, barometric pressure, and earth tides. Statistically significant trends in ground-water levels or spring discharge from 1992 to 2000 were upward at 12 water-level sites and downward at 14 water-level sites and 1 spring-discharge site. In general, the magnitude of the change in water level from 1992 to 2000 was small (less than 2 feet), except where influenced by pumping or local effects such as possible equilibration from well construction or diversion of nearby surface water. Seasonal trends are superimposed on some of the long-term (1992-2000) trends in water levels and discharge. Factors causing seasonal trends include barometric pressure, evapotranspiration, and pumping. The magnitude of seasonal change in water level can vary from as little as 0.05 foot in regional aquifers to greater than 5 feet in monitoring wells near large supply wells in the Amargosa Farms area. Three major episodes of earthquake activity affected water levels in wells in the Yucca Mountain region between 1992 and 2000: the Landers/Little Skull Mountain, Northridge, and Hector Mine earthquakes. The Landers/Little Skull Mountain earthquakes, in June 1992, had the largest observed effect on water levels and on discharge during the study period. Monthly measurements of wells in the study network show that earthquakes affected water levels from a few tenths of a foot to 3.5 feet. In the Ash Meadows area, water levels remained relatively stable from 1992 to 2000, with some water levels showing small rising trends and some declining slightly. Possible reasons for water-level fluctuations at sites AD-6 (Tracer Well 3), AM-5 (Devils Hole Well), and AM-4 (Devils Hole) from 1960 to 2000 include climate change, local and regional ground-water withdrawals, and tectonic activity. In Jackass Flats, water levels from 1992 to 2000 in six wells adjacent to Fortymile Wash displayed either small upward trends or no upward or downward trend. Comparison of trends in water levels from 1983 to 2000 for these six wells shows good correlations between all wells and suggests a common mechanism controlling water levels in the area. Of the likely controls on the system--precipitation or pumping in Jackass Flats--precipitation appears to be the predominant factor controlling water levels near Fortymile Wash. Water levels in the heavily pumped Amargosa Farms area declined from about 10 to 30 feet from 1964 to 2000. Water-level declines accelerated beginning in the early 1990's as pumping rates increased substantially. Pumping in the Amargosa Farms area may affect water levels in some wells as far away as 5-14 miles. The water level at site DV-3 (Travertine Point 1 Well) and discharge at site DV-2 (Navel Spring), both in the Death Valley hydrographic area, had downward trends from 1992 to 2000. The cause of these downward trends may be linked to earthquakes, pumping in the Amargosa Farms area, or both.

  1. Use of inexpensive pressure transducers for measuring water levels in wells

    USGS Publications Warehouse

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  2. Ground-Water Conditions and Studies in the Albany Area of Dougherty County, Georgia, 2007

    USGS Publications Warehouse

    Gordon, Debbie W.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents an overview of ground-water conditions and studies in the Albany area of Dougherty County, Georgia, during 2007. Historical data are also presented for comparison with 2007 data. Ongoing monitoring activities include continuous water-level recording in 24 wells and monthly water-level measurements in 5 wells. During 2007, water levels in 21 of the continuous-recording wells were below normal, corresponding to lower than average rainfall. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have decreased or remained about the same since 2006. Water samples were collected from the Flint River and wells at the Albany wellfield, and data were plotted on a trilinear diagram to show the percent composition of selected major cations and anions. Ground-water constituents (major cations and anions) of the Upper Floridan aquifer at the Albany wellfield are distinctly different from those in the water of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwestern Albany area of Georgia. The model is being calibrated to simulate periods of dry (October 1999) and relatively wet (March 2001) hydrologic conditions. Preliminary water-level simulations indicate a generally good fit to measured water levels.

  3. Simulation of ground-water flow in the Cedar River alluvium, northwest Black Hawk County and southwest Bremer County, Iowa

    USGS Publications Warehouse

    Schaap, Bryan D.; Savoca, Mark E.; Turco, Michael J.

    2003-01-01

    In general, once high ground-water levels occur, either because of high Cedar River water Abstract levels or above normal local precipitation or both, ground-water in the central part of the study area along Highway 218 flows toward the south rather than following shorter flow paths to the Cedar River. Intermittent streams in the study area discharge substantial amounts of water from the ground-water flow system.

  4. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    NASA Astrophysics Data System (ADS)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  5. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa.

    PubMed

    Roh, Taehyun; Lynch, Charles F; Weyer, Peter; Wang, Kai; Kelly, Kevin M; Ludewig, Gabriele

    2017-11-01

    Inorganic arsenic is a toxic naturally occurring element in soil and water in many regions of the US including the Midwest. Prostate cancer is the second most common type of cancer in men in Iowa, surpassed only by non-melanotic skin cancer. Epidemiology studies have evaluated arsenic exposure from drinking water and prostate cancer, but most have focused on high-level exposures outside the US. As drinking water from groundwater sources is a major source of arsenic exposure, we conducted an ecologic study to evaluate prostate cancer and arsenic in drinking water from public water sources and private wells in Iowa, where exposure levels are low, but duration of exposure can be long. Arsenic data from public water systems were obtained from the Iowa Safe Drinking Water Information System for the years 1994-2003 and for private wells from two Iowa Well Water Studies, the Iowa Community Private Well Study (ICPWS, 2002-2003) and Iowa Statewide Rural Well Water Survey Phase 2 (SWIRL2, 2006-2008) that provided data for 87 Iowa counties. Prostate cancer incidence data from 2009 to 2013 for Iowa were obtained from Surveillance, Epidemiology and End Results' SEER*Stat software. County averages of water arsenic levels varied from 1.08 to 18.6 ppb, with three counties above the current 10 ppb limit. Based on the tertiles of arsenic levels, counties were divided into three groups: low (1.08-2.06 ppb), medium (2.07-2.98 ppb), and high (2.99-18.6 ppb). Spatial Poisson regression modeling was conducted to estimate the risk ratios (RR) of prostate cancer by tertiles of arsenic level at a county level, adjusted for demographic and risk factors. The RR of prostate cancer were 1.23 (95% CI, 1.16-1.30) and 1.28 (95% CI, 1.21-1.35) in the medium and high groups, respectively, compared to the low group after adjusting for risk factors. The RR increased to 1.36 (95% CI, 1.28-1.45) in the high group when analyses were restricted to aggressive prostate cancers (Gleason score ≥ 7). This study shows a significant dose-dependent association between low-level arsenic exposure and prostate cancer, and if this result is replicated in future individual-level studies, may suggest that 10 ppb is not protective for human health. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Limited effectiveness of household sand filters for removal of arsenic from well water in North Vietnam.

    PubMed

    Ilmiawati, Cimi; Thang, Nguyen Dinh; Iida, Machiko; Maeda, Masao; Ohnuma, Shoko; Yajima, Ichiro; Ohgami, Nobutaka; Oshino, Reina; Al Hossain, M M Aeorangajeb; Ninomiya, Hiromasa; Kato, Masashi

    2016-12-01

    Since well water utilized for domestic purposes in the Red River Delta of North Vietnam has been reported to be polluted by arsenic, barium, iron, and manganese, household sand filters consisting of various components are used. Information regarding the effectiveness of various sand filters for removal of the four toxic elements in well water is limited. In this study, arsenic levels in 13/20 of well water samples and 1/7 of tap water samples exceeded World Health Organization (WHO) health-based guideline value for drinking water. Moreover, 2/20, 6/20, and 4/20 of well water samples had levels exceeding the present and previous guideline levels for barium, iron, and manganese, respectively. Levels of iron and manganese, but not arsenic, in well water treated by sand filters were lower than those in untreated water, although previous studies showed that sand filters removed all of those elements from water. A low ratio of iron/arsenic in well water may not be sufficient for efficient removal of arsenic from household sand filters. The levels of barium in well water treated by sand filters, especially a filter composed of sand and charcoal, were significantly lower than those in untreated water. Thus, we demonstrated characteristics of sand filters in North Vietnam.

  7. Water-level fluctuations influence sediment porewater chemistry and methylmercury production in a flood-control reservoir.

    EPA Science Inventory

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluct...

  8. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10 wells contained concentrations equal to or greater than the analytical reporting level of 1 ?g/L for PCE. Samples from one of these wells contained PCE concentrations (12 ?g/L and 11 ?g/L) exceeding the drinking water maximum contaminant level of 5 ?g/L for PCE. The spatial distribution of PCE detections and the relative concentrations of PCE and trichloroethylene suggest that the PCE detections are associated with a small and localized ground-water contamination plume unrelated to AAFB ground-water contamination.

  9. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  10. Public participation in water resources management: Restructuring model of upstream Musi watershed

    NASA Astrophysics Data System (ADS)

    Andriani, Yuli; Zagloel, T. Yuri M.; Koestoer, R. H.; Suparmoko, M.

    2017-11-01

    Water is the source of life needed by living things. Human as one of living most in needs of water. Because the population growth follows the geometrical progression, while the natural resource increases calculates the arithmetic. Humans besides needing water also need land for shelter and for their livelihood needs, such as gardening or rice farmers. If the water absorption area is reduced, water availability will decrease. Therefore it is necessary to conduct an in-depth study of water resources management involving the community. The purpose of this study is to analyze community participation in water resources management, so that its availability can still meet the needs of living and sustainable. The method that used the level of community participation according to Arstein theory. The results obtained that community participation is at the level of partnership and power delegation. This level of participation is at the level of participation that determines the sustainability of water resources for present and future generations.

  11. Monitoring of Sparta Aquifer Recovery in Southern Arkansas and Northern Louisiana, 2003-07

    USGS Publications Warehouse

    Freiwald, David A.; Johnson, Sherrel F.

    2007-01-01

    Prior to 2004, the Sparta aquifer supplied all water for industrial and municipal uses in Union County, Arkansas, and continues to provide the majority of water for industrial and municipal purposes in the surrounding southern Arkansas counties and northern Louisiana parishes. In Union County, the Sparta aquifer has been used increasingly since development began in the early 1920s, resulting in water-level declines of more than 360 feet (ft) near El Dorado, Arkansas. In addition, water quality in some areas of the Sparta aquifer has degraded with increased withdrawals. In 2002 a study began that measures, through monitoring and reporting of water levels in Sparta aquifer wells throughout the study area in southern Arkansas and northern Louisiana, the impact of conservation and alternative water efforts on water level and water quality. This study provides continuous real-time water-level data at eight USGS wells that are part of a network of 29 monitoring wells and periodically reports results of semi-annual water-quality sampling. Water levels have risen in all eight real-time wells since monitoring began in the summer of 2003, and the Ouachita River Alternative Water Supply Project was completed in September 2004. The largest water-level rises occurred between October 2004 and April 2007 in the Monsanto well (49.0 ft rise) just north of El Dorado, and the Welcome Center well (36.1 ft rise) southeast of El Dorado. Twelve wells were sampled semi-annually for specific conductance and chloride concentration. Average specific conductance from individual wells ranges from 216 in the northwest to 1,157 uS/cm in the southeast and average chloride concentration ranges from 3.2 to 214 mg/L.

  12. Lithium levels in tap water and psychotic experiences in a general population of adolescents.

    PubMed

    Shimodera, Shinji; Koike, Shinsuke; Ando, Shuntaro; Yamasaki, Syudo; Fujito, Ryosuke; Endo, Kaori; Iijima, Yudai; Yamamoto, Yu; Morita, Masaya; Sawada, Ken; Ohara, Nobuki; Okazaki, Yuji; Nishida, Atsushi

    2018-06-09

    Recently, several epidemiologic studies have reported that lithium in drinking water may be associated with lower rates of suicide mortality, lower incidence of dementia, and lower levels of adolescents' depression and aggression at the population level. However, to our knowledge, no study has investigated lithium level in tap water in relation to psychotic experiences in a general population of adolescents. This is the first study to investigate this using a large dataset. Information on psychotic experiences, distress associated with these experiences, and depressive symptoms were collected in 24 public junior high schools in Kochi Prefecture in Japan. Samples were collected from sources that supplied drinking water to schools, and lithium levels were measured using atomic absorption spectrophotometry. The association of lithium levels with psychotic experiences, considering distress as a degree of severity, was examined using an ordinal logistic regression model with schools and depressive symptoms as random effects. In total, 3040 students responded to the self-reporting questionnaire (response rate: 91.8%). Lithium levels in tap water were inversely associated with psychotic experiences (p = 0.021). We concluded that lithium level in tap water was inversely associated with psychotic experiences among a general population of adolescents and may have a preventive effect for such experiences and distress. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests

    USGS Publications Warehouse

    Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Detailed analysis of C-band European Remote Sensing 1 and 2 (ERS-1/ERS-2) and Radarsat-1 interferometric synthetic aperture radar (InSAR) imagery was conducted to study water-level changes of coastal wetlands of southeastern Louisiana. Radar backscattering and InSAR coherence suggest that the dominant radar backscattering mechanism for swamp forest and saline marsh is double-bounce backscattering, implying that InSAR images can be used to estimate water-level changes with unprecedented spatial details. On the one hand, InSAR images suggest that water-level changes over the study site can be dynamic and spatially heterogeneous and cannot be represented by readings from sparsely distributed gauge stations. On the other hand, InSAR phase measurements are disconnected by structures and other barriers and require absolute water-level measurements from gauge stations or other sources to convert InSAR phase values to absolute water-level changes. ?? 2006 IEEE.

  14. Potentiometric Surface of the Ozark Aquifer in Northern Arkansas, 2007

    USGS Publications Warehouse

    Pugh, Aaron L.

    2008-01-01

    The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 58 well and 5 spring water-level measurements collected in 2007 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,169 feet in Carroll County and a minimum water-level altitude measurement of 118 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Comparing the 2007 potentiometric-surface map with a predevelopment potentiometric-surface map indicates general agreement between the two surfaces except in the northwestern part of the study area. Potentiometric-surface differences can be attributed to withdrawals related to increasing population, changes in public-supply sources, processes or water withdrawals outside the study area, or differences in data-collection or map-construction methods. The rapidly increasing population within the study area appears to have some effect on ground-water levels. Although, the effect appears to have been minimized by the development and use of surface-water distribution infrastructure, suggesting most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from ground water to surface water may be allowing water levels in wells to recover (rise) or decline at a slower rate, such as in Benton, Carroll, and Washington Counties.

  15. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  16. Estimation of missing water-level data for the Everglades Depth Estimation Network (EDEN), 2013 update

    USGS Publications Warehouse

    Petkewich, Matthew D.; Conrads, Paul

    2013-01-01

    The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.

  17. Description of trihalomethane levels in three UK water suppliers.

    PubMed

    Whitaker, Heather; Nieuwenhuijsen, Mark J; Best, Nicola; Fawell, John; Gowers, Alison; Elliot, Paul

    2003-01-01

    Samples of drinking water are routinely analysed for four trihalomethanes (THMs), which are indicators of by-products of disinfection with chlorine, by UK water suppliers to demonstrate compliance with regulations. The THM data for 1992-1993 to 1997-1998 for three water suppliers in the north and midlands of England were made available for a UK epidemiological study of the association between disinfection by-products and adverse birth outcomes. This paper describes the THM levels in these three supply regions and discusses possible sources of variation. THM levels varied between different suppliers' water, and average THM levels were within the regulatory limits. Chloroform was the predominant THM in all water types apart from the ground water of one supplier. The supplier that distributed more ground and lowland surface water had higher dibromochloromethane (DBCM) and bromoform levels and lower chloroform levels than the other two suppliers. In the water of two suppliers, seasonal fluctuations in bromodichloromethane (BDCM) and DBCM levels were found with levels peaking in the summer and autumn. In the other water supplier, chloroform levels followed a similar seasonal trend whereas BDCM and DBCM levels did not. For all three water suppliers, chloroform levels declined throughout 1995 when there was a drought period. There was a moderate positive correlation between the THMs most similar in their structure (chloroform and BDCM, BDCM and DBCM, and DBCM and bromoform) and a slight negative correlation between chloroform and bromoform levels.

  18. Potentiometric Surfaces in the Springfield Plateau and Ozark Aquifers of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006

    USGS Publications Warehouse

    Gillip, Jonathan A.; Czarnecki, John B.; Mugel, Douglas N.

    2008-01-01

    The Springfield Plateau and Ozark aquifers are important sources of ground water in the Ozark Plateaus aquifer system. Water from these aquifers is used for agricultural, domestic, industrial, and municipal water sources. Changing water use over time in these aquifers presents a need for updated potentiometric-surface maps of the Springfield Plateau and Ozark aquifers. The Springfield Plateau aquifer consists of water-bearing Mississippian-age limestone and chert. The Ozark aquifer consists of Late Cambrian to Middle Devonian age water-bearing rocks consisting of dolostone, limestone, and sandstone. Both aquifers are complex with areally varying lithologies, discrete hydrologic units, varying permeabilities, and secondary permeabilities related to fractures and karst features. During the spring of 2006, ground-water levels were measured in 285 wells. These data, and water levels from selected lakes, rivers, and springs, were used to create potentiometric-surface maps for the Springfield Plateau and Ozark aquifers. Linear kriging was used initially to construct the water-level contours on the maps; the contours were subsequently modified using hydrologic judgment. The potentiometric-surface maps presented in this report represent ground-water conditions during the spring of 2006. During the spring of 2006, the region received less than average rainfall. Dry conditions prior to the spring of 2006 could have contributed to the observed water levels as well. The potentiometric-surface map of the Springfield Plateau aquifer shows a maximum measured water-level altitude within the study area of about 1,450 feet at a spring in Barry County, Missouri, and a minimum measured water-level altitude of 579 feet at a well in Ottawa County, Oklahoma. Cones of depression occur in Dade, Lawrence and Newton Counties in Missouri and Delaware and Ottawa Counties in Oklahoma. These cones of depression are associated with private wells. Ground water in the Springfield Plateau aquifer generally flows to the west in the study area, and to surface features (lakes, rivers, and springs) particularly in the south and east of the study area where the Springfield Plateau aquifer is closest to land surface. The potentiometric-surface map of the Ozark aquifer indicates a maximum measured water-level altitude of 1,303 feet in the study area at a well in Washington County, Arkansas, and a minimum measured water-level altitude of 390 feet in Ottawa County, Oklahoma. The water in the Ozark aquifer generally flows to the northwest in the northern part of the study area and to the west in the remaining study area. Cones of depression occur in Barry, Barton, Cedar, Jasper, Lawrence, McDonald, Newton, and Vernon Counties in Missouri, Cherokee and Crawford Counties in Kansas, and Craig and Ottawa Counties in Oklahoma. These cones of depression are associated with municipal supply wells. The flow directions, based on both potentiometric-surface maps, generally agree with flow directions indicated by previous studies.

  19. Noninvasive Measurement of Steroid Hormones in Zebrafish Holding-Water

    PubMed Central

    Félix, Ana S.; Faustino, Ana I.; Cabral, Eduarda M.

    2013-01-01

    Abstract Zebrafish (Danio rerio) has recently emerged as a new animal model in neuroendocrinology and behavior (e.g., stress physiology and ecotoxicology studies). In these areas, the concentrations of steroid hormones in the blood are often used to study the endocrinological status of individuals. However, due to the small body size of zebrafish, blood sampling is difficult to perform and the amount of plasma obtained per sample for assaying hormones is very small (ca. 1–5 μL), and therefore most studies have been using whole-body hormone concentrations, which implies sacrificing the individuals and hampers sequential sampling of the same individual. Here a noninvasive method to assay steroid hormones from zebrafish holding-water, based on the fact that steroids are released into the fish holding-water through the gills by passive diffusion, is validated. Cortisol and the androgen 11-ketotestosterone (KT) were measured in water samples and compared to plasma levels in the same individuals. Cortisol released to holding-water correlates positively with plasma concentrations, but there was a lack of correlation between KT water and circulating levels. However, KT levels showed a highly significant sex difference that can be used to noninvasively sex individuals. An ACTH challenge test demonstrated that an induced increase in circulating cortisol concentration can be reliably detected in holding-water levels, hence attesting the responsiveness of holding-water levels to fluctuations in circulating levels. PMID:23445429

  20. Geohydrologic and water-quality data in the vicinity of the Rialto-Colton Fault, San Bernardino, California

    USGS Publications Warehouse

    Teague, Nicholas F.; Brown, Anthony A.; Woolfenden, Linda R.

    2014-01-01

    The Rialto-Colton Basin is in western San Bernardino County, about 60 miles east of Los Angeles, California. The basin is bounded by faults on the northeast and southwest sides and contains multiple barriers to groundwater flow. The structural geology of the basin leads to complex hydrology. Between 2001 and 2008, in an effort to better understand the complex hydrologic system of the Rialto-Colton Basin, seven multiple-well monitoring sites were constructed. Two to six observation wells were installed in the borehole at each site; a total of 32 observation wells were installed. This report presents geologic, hydrologic, and water-quality data collected from these seven multiple-well monitoring sites. Descriptions of the collected drill cuttings were compiled into lithologic logs for each monitoring site. The lithologic logs are summarized along with the geophysical logs, including gamma-ray, spontaneous potential, resistivity, and electromagnetic induction tool logs. At selected sites, sonic tool logs also were recorded. Periodic water-level measurements are reported, and water-level data are displayed on hydrographs. Water levels at multiple-well monitoring sites in the northern part of the study area differed between the shallow and deep observation wells; in the remaining multiple-well monitoring sites, water levels differed little with depth. Along the southern trace of the Rialto-Colton Fault, water levels are slightly higher east of the fault than west of the fault. Selected water-quality data for 21 of the observation wells show water from wells in the northern and central parts of the study area is calcium-carbonate water. In the southern part of the study area, water from wells screened above 400 feet below land surface is of mixed type or is calcium-carbonate water. Water from wells screened greater than 400 feet below land surface in the southern part of the study area is sodium-carbonate or sodium-mixed anion water. Water from most wells in the study area plots above the Global Meteoric Water Line along an apparent local meteoric water line, indicating the water has not experienced substantial evaporation before infiltration. A few samples from shallow wells in the study area plot slightly to the right of the Global Meteoric Water Line, possibly indicating the water experienced some evaporation before recharge.

  1. Exposure to High Fluoride Drinking Water and Risk of Dental Fluorosis in Estonia

    PubMed Central

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2009-01-01

    The purpose of this study was to assess exposure to drinking water fluoride and evaluate the risk of dental fluorosis among the Estonian population. The study covered all 15 counties in Estonia and 93.7% of population that has access to public water supplies. In Estonia groundwater is the main source for public water supply systems in most towns and rural settlements. The content of natural fluoride in water ranges from 0.01 to 7.20 mg/L. The exposure to different fluoride levels was assessed by linking data from previous studies on drinking water quality with databases of the Health Protection Inspectorate on water suppliers and the number of water consumers in water supply systems. Exposure assessment showed that 4% of the study population had excessive exposure to fluoride, mainly in small public water supplies in western and central Estonia, where the Silurian-Ordovician aquifer system is the only source of drinking water. There is a strong correlation between natural fluoride levels and the prevalence of dental fluorosis. Risk of dental fluorosis was calculated to different fluoride exposure levels over 1.5 mg/L. PMID:19440411

  2. Real-time flood forecasting by employing artificial neural network based model with zoning matching approach

    NASA Astrophysics Data System (ADS)

    Sulaiman, M.; El-Shafie, A.; Karim, O.; Basri, H.

    2011-10-01

    Flood forecasting models are a necessity, as they help in planning for flood events, and thus help prevent loss of lives and minimize damage. At present, artificial neural networks (ANN) have been successfully applied in river flow and water level forecasting studies. ANN requires historical data to develop a forecasting model. However, long-term historical water level data, such as hourly data, poses two crucial problems in data training. First is that the high volume of data slows the computation process. Second is that data training reaches its optimal performance within a few cycles of data training, due to there being a high volume of normal water level data in the data training, while the forecasting performance for high water level events is still poor. In this study, the zoning matching approach (ZMA) is used in ANN to accurately monitor flood events in real time by focusing the development of the forecasting model on high water level zones. ZMA is a trial and error approach, where several training datasets using high water level data are tested to find the best training dataset for forecasting high water level events. The advantage of ZMA is that relevant knowledge of water level patterns in historical records is used. Importantly, the forecasting model developed based on ZMA successfully achieves high accuracy forecasting results at 1 to 3 h ahead and satisfactory performance results at 6 h. Seven performance measures are adopted in this study to describe the accuracy and reliability of the forecasting model developed.

  3. Potentiometric surface of the Ozark aquifer in northern Arkansas, 2010

    USGS Publications Warehouse

    Czarnecki, John B.; Pugh, Aaron L.; Blackstock, Joshua M.

    2014-01-01

    The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 56 well and 5 spring water-level measurements made in 2010 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,174 feet in Carroll County and a minimum water-level altitude measurement of 120 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Water-level altitudes changed 0.5 feet or less in 31 out of 56 wells measured between 2007 and 2010. Despite rapidly increasing population within the study area, the increase appears to have minimal effect on groundwater levels, although the effect may have been minimized by the development and use of surface-water distribution infrastructure, suggesting that most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from groundwater to surface water may be allowing water levels in some wells to recover (rise) or decline at a slower rate in some areas such as in Benton, Carroll, and Washington Counties.

  4. Lead in drinking water: sampling in primary schools and preschools in south central Kansas.

    PubMed

    Massey, Anne R; Steele, Janet E

    2012-03-01

    Studies in Philadelphia, New York City, Houston, Washington, DC, and Greenville, North Carolina, have revealed high lead levels in drinking water. Unlike urban areas, lead levels in drinking water in suburban and rural areas have not been adequately studied. In the study described in this article, drinking water in primary schools and preschools in five suburban and rural south central Kansas towns was sampled to determine if any exceeded the U.S. Environmental Protection Agency (U.S. EPA) guidance level for schools and child care facilities of 20 parts per billion (ppb). The results showed a total of 32.1% of the samples had detectable lead levels and 3.6% exceeded the U.S. EPA guidance level for schools and child care providers of 20 ppb. These results indicate that about one-third of the drinking water consumed by children age six and under in the five suburban and rural south central Kansas towns studied has some lead contamination, exposing these children to both short-term and long-term health risks. The authors suggest a need for increased surveillance of children's drinking water in these facilities.

  5. Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India.

    PubMed

    Viswanathan, Gopalan; Jaswanth, A; Gopalakrishnan, S; Siva Ilango, S; Aditya, G

    2009-10-01

    Fluoride ion in drinking water is known for both beneficial and detrimental effects on health. The prevalence of fluorosis is mainly due to the intake of large quantities of fluoride through drinking water owing to more than 90% bioavailability. The objective of this study is to predict optimal fluoride level in drinking water for fluoride endemic regions by comprising the levels of fluoride and other water quality parameters in drinking water, prevalence of fluorosis, fluoride intake through water, food and beverages such as tea and coffee and also considering the progressive accumulation of fluoride in animal bones, by comparing with non fluoride endemic areas comprise of the same geological features with the aid of regression analysis. Result of this study shows that increase of fluoride level above 1.33 mg/l in drinking water increases the community fluorosis index (CFI) value more than 0.6, an optimum index value above which fluorosis is considered to be a public health problem. Regression plot between water fluoride and bone fluoride levels indicates that, every increase of 0.5mg/l unit of water fluoride level increases the bone fluoride level of 52 mg/kg unit within 2 to 3 years. Furthermore, the consumption of drinking water containing more than 0.65 mg/l of fluoride can raise the total fluoride intake per day more than 4 mg, which is the optimum fluoride dose level recommended for adults by the Agency for Toxic Substances and Disease Registry. From the result, the people in fluoride endemic areas in South India are advised to consume drinking water with fluoride level within the limit of 0.5 to 0.65 mg/l to avoid further fluorosis risk.

  6. Statistical summaries of ground-water level data collected in the Suwannee River Water Management District, 1948 to 1994

    USGS Publications Warehouse

    Collins, J.J.; Freeman, L.D.

    1996-01-01

    Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated using the USGS computer pro gram ADAPS (Automatic Data Processing System) to characterize normal ground-water levels and depar tures from normal. The report has been organized so that the statisti cal analyses of water levels in the wells are presentedfollowing this introductory material, a description ofthe hydrogeology in the study area, and a description of the statistics used to present the water-level data. Specifically, the report presents statistical analyses for each well, as appropriate, in the following manner: Description of the well.Hydrographs of ground-water levels for the period of record, for the last 10 years of record, and for the last 5 years of record. Graphs of maximum, minimum, and mean of monthly mean ground-water levels for wells with 5 or more years of record.Frequency hydrographs (25, 50, and 75 percent) of monthly mean ground-water levels for wells with 5 or more years of record. Water-level data and statistical plots are grouped by county and sorted within the county by ascendingsite identification number. Well locations are plottedon county maps preceding the well descriptions andhydrographs.

  7. Comparison of 1972 and 1996 water levels in the Goleta central ground-water subbasin, Santa Barbara County, California

    USGS Publications Warehouse

    Kaehler, Charles A.; Pratt, David A.; Paybins, Katherine S.

    1997-01-01

    Ground-water levels for 1996 were compared with 1972 water levels to determine if a "drought buffer" currently exists. The drought buffer was defined previously, in a litigated settlement involving the Goleta Water District, as the 1972 water level in the Central ground-water subbasin. To make this deter mination, a network of 15 well sites was selected, water levels were measured monthly from April through December 1996, and the 1996 water-level data were compared with1972 data. The study was done in cooperation with the Goleta Water District. The 1972-1996 water-level-altitude changes for corresponding months of the comparison years were averaged for each network well. These averaged changes ranged from a rise of 9.4 ft for well 2N2 to a decline of 45.0 ft for well 8K8. The results of the comparison indicate a rise in water level at 1 site (well 2N2) and a decline at 14 sites. The mean of the 14 negative average values was a decline of 24.0 ft. The altitude of the bottom of well 2N2 was higher than the bottom altitudes at the other network sites, and this well is located a few feet from a fault that acts as a hydrologic barrier. The results of the water-level comparison for the Central subbasin were influenced to some unknown degree by the areal distribution of the set of wells selected for the network and the vertical dis tribution of the perforated intervals of the wells. For this reason, the mean water-level change--a decline of 21.8 ft--calculated from the averages of the month-to-month changes for the 15 network sites, should be used with caution. In addition, the number of usable individual monthly comparison measurements available for an individual site ranged from one to nine, and averaged six. Therefore, a weighted mean of the monthly averages was calculated on the basis of the number of comparison measurements available for each site. The weighted mean is a decline of 20.9 ft. All Central subbasin wells that were idle (that is, were not being pumped) when measured in 1972 and that were measureable in 1996 were included in the network. Therefore, the network is the most inclusive possible, given the available data. The objective of the study strictly was to compare 1972 and 1996 water levels in the Central sub basin, and the conclusion is that, overall, 1996 water levels are lower than 1972 levels. In general, hydro graphs for selected network wells indicate stable or rising water levels during 1972-83, declining levels during 1984-92, and rising water levels during 1993-96.

  8. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There

  9. Inter-City Virtual Water Transfers Within a Large Metropolitan Area: A Case Study of the Phoenix Metropolitan Area in the United States

    NASA Astrophysics Data System (ADS)

    Rushforth, R.; Ruddell, B. L.

    2014-12-01

    Water footprints have been proposed as potential sustainability indicators, but these analyses have thus far focused at the country-level or regional scale. However, for many countries, especially the United States, the most relevant level of water decision-making is the city. For water footprinting to inform urban sustainability, the boundaries for analysis must match the relevant boundaries for decision-making and economic development. Initial studies into city-level water footprints have provided insight into how large cities across the globe—Delhi, Lagos, Berlin, Beijing, York—create virtual water trade linkages with distant hinterlands. This study hypothesizes that for large cities the most direct and manageable virtual water flows exist at the metropolitan area scale and thus should provide the most policy-relevant information. This study represents an initial attempt at quantifying intra-metropolitan area virtual water flows. A modified commodity-by-industry input-output model was used to determine virtual water flows destined to, occurring within, and emanating from the Phoenix metropolitan area (PMA). Virtual water flows to and from the PMA were calculated for each PMA city using water consumption data as well as economic and industry statistics. Intra-PMA virtual water trade was determined using county-level traffic flow data, water consumption data, and economic and industry statistics. The findings show that there are archetypal cities within metropolitan areas and that each type of city has a distinct water footprint profile that is related to the value added economic processes occuring within their boundaries. These findings can be used to inform local water managers about the resilience of outsourced water supplies.

  10. Carboxyhaemoglobin levels in water-pipe and cigarette smokers.

    PubMed

    Theron, Ansa; Schultz, Cedric; Ker, James A; Falzone, Nadia

    2010-01-29

    Water-pipe smoking is growing in popularity, especially among young people, because of the social nature of the smoking session and the assumption that the effects are less harmful than those of cigarette smoking. It has however been shown that a single water-pipe smoking session produces a 24-hour urinary cotinine level equivalent to smoking 10 cigarettes per day. We aimed to measure carboxyhaemoglogin (COHb) blood levels before and after water-pipe and cigarette smoking sessions. Self-confessed smokers older than 18 years (N=30) volunteered to smoke a water-pipe or a cigarette and have their blood COHb levels measured under controlled conditions. Mean baseline COHb levels were 2.9% for the 15 cigarette smokers and 1.0% for the 15 water-pipe smokers. Levels increased by a mean of 481.7% in water-pipe smokers as opposed to 39.9% in cigarette smokers. The study demonstrated that water-pipe smokers had significantly higher increases in blood COHb levels than cigarette smokers during a single smoking session.

  11. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  12. Arsenic levels in ground water and cancer incidence in Idaho: an ecologic study.

    PubMed

    Han, Yueh-Ying; Weissfeld, Joel L; Davis, Devra L; Talbott, Evelyn O

    2009-07-01

    Long-term exposure to arsenic above 50 microg/L in drinking water has been related to multiple types of cancers. Few epidemiologic studies conducted in the US have detected an association between regional exposures below this level in drinking water and corresponding cancer occurrence rates. This county-level ecologic study evaluates arsenic levels in ground water and its association with targeted cancer incidence in Idaho, where some regions have been found to contain higher arsenic levels. Using cancer incidence data (1991-2005) from the Cancer Data Registry of Idaho and arsenic data (1991-2005) from the Idaho Department of Environmental Quality, we calculated the age-adjusted incidence rate for cancers of the urinary bladder, kidney and renal pelvis, liver and bile duct, lung and bronchus, non-Hodgkin's lymphoma (NHL), and all malignant cancers according to arsenic levels in ground water. Multivariate regression analysis was applied to evaluate the relationship between arsenic levels in ground water and cancer incidence. For males, but not for females, age-adjusted incidence for lung cancer and all malignant cancers was significantly higher in the intermediate arsenic counties (2-9 microg/L, n = 16) and the high arsenic counties (>or=10 microg/L, n = 5) compared to the low arsenic counties (<2.0 microg/L, n = 23). When adjusted for race, gender, population density, smoking and body mass index (BMI), no relationship was found between arsenic levels in ground water and cancer incidence. In this ecological design, exposure to low-level arsenic in ground water is not associated with cancer incidence when adjusting for salient variables. For populations residing in southwestern Idaho, where arsenic has been found to exceed 10 microg/L in ground water, individual risk assessment is required in order to determine whether there is a link between long-term arsenic exposure at these levels and cancer risk.

  13. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  14. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hale, Glenn S.; Trudeau, Douglas A.; Savard, Charles S.

    1995-01-01

    The underground nuclear-testing program of the U.S. Department of Energy takes place at the Nevada Test Site, about 65 miles northwest of Las Vegas, Nev. Water levels in Yucca Flat may be affected by underground nuclear testing. The purpose of this map report is to present water-level data collected from wells and test holes through December 1991, and to present potentiometric contours representing 1991 water-table conditions in Yucca Flat. Water-level data from 91 sites are shown on the map and include information from 54 sites shown on a 1983 map. Water levels ranged from 519.5 to 2,162.9-feet below land surface. Potentiometric contours are drawn from water-level data to represent the altitude of the water table. Water-level altitudes ranged from about 2,377 ft to 2,770 ft above sea level in the central part of Yucca Flat and from about 4,060 ft to 2,503 ft above sea level in the western and northern parts of Yucca Flat. The water-level data were contoured considering the hydrologic setting, including the concept that water levels within the Cenozoic hydrologic units in the central part of the study area are elevated with respect to water levels in the adjacent and underlying Paleozoic hydrologic units. The most notable feature in the central part of the area is the presence of four ground-water mounds not shown on the 1983 map.

  15. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    NASA Astrophysics Data System (ADS)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  16. Ground-water data for Georgia, 1983

    USGS Publications Warehouse

    Clarke, J.S.; Peck, M.F.; Longsworth, S.A.; McFadden, K.W.

    1984-01-01

    Continuous water-level records from 134 wells and more than 700 water-level measurements made in Georgia during 1983 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1983. Monthly means are shown for the 10-year period 1974-83. Mean annual water levels ranged from 9 feet higher to 6 feet lower in 1983 than in 1982. Water-quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional ground-water studies. Along the coast, chloride concentrations in the upper and lower water-bearing zones of the Floridan aquifer system generally remained steady in the Brunswick and Hilton Head Island areas. (USGS)

  17. Hydraulic properties and ground-water flow in the St Peter-Prairie du Chien-Jordan aquifer, Rochester area, southeastern Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    1997-01-01

    Water-level changes in wells from January through February 1988 to February through March 1995 ranged from -6.8 to +15.3 feet. Water-level changes in 12 Rochester municipal wells for the same period ranged from -7.4 to +8.0 feet. Water levels in wells generally rose in the northern and eastern parts of the study area and generally declined in the southwestern and western parts. Near Rochester, water levels in wells generally declined near the city boundaries and showed little change or rose in the central part of the city. Water-level changes from 1988 to 1995 near the ground-water divide generally were less than 2 feet, resulting in no appreciable changes in the location of the divide.

  18. Ground-water resources in the lower Milliken--Sarco--Tulucay Creeks area, southeastern Napa County, California, 2000-2002

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.

    2003-01-01

    Ground water obtained from individual private wells is the sole source of water for about 4,800 residents living in the lower Milliken-Sarco-Tulucay Creeks area of southeastern Napa County. Increases in population and in irrigated vineyards during the past few decades have increased water demand. Estimated ground-water pumpage in 2000 was 5,350 acre-feet per year, an increase of about 80 percent since 1975. Water for agricultural irrigation is the dominant use, accounting for about 45 percent of the total. This increase in ground-water extraction has resulted in the general decline of ground-water levels. The purpose of this report is to present selected hydrologic data collected from 1975 to 2002 and to quantify changes in the ground-water system during the past 25 years. The study area lies in one of several prominent northwest-trending structural valleys in the North Coast Ranges. The area is underlain by alluvial deposits and volcanic rocks that exceed 1,000 feet in thickness in some places. Alluvial deposits and tuff beds in the volcanic sequence are the principal source of water to wells. The ground-water system is recharged by precipitation that infiltrates, in minor amounts, directly on the valley floor but mostly by infiltration in the Howell Mountains. Ground water moves laterally from the Howell Mountains into the study area. Although the area receives abundant winter precipitation in most years, nearly half of the precipitation is lost as surface runoff to the Napa River. Evapotranspiration also is high, accounting for nearly one-half of the total precipitation received. Because of the uncertainties in the estimates of precipitation, runoff, and evapotranspiration, a precise estimate of potential ground-water recharge cannot be made. Large changes in ground-water levels occurred between 1975 and 2001. In much of the western part of the area, water levels increased; but in the central and eastern parts, water levels declined by 25 to 125 feet. Ground-water extraction produced three large pumping depressions in the northern and east-central parts of the area. The general decline in ground-water levels is a result of increases in ground-water pumpage and possibly changes in infiltration capacity caused by changes in land use. Ground-water-level declines during 1960-2002 are evident in the records for 9 of 10 key monitoring wells. In five of these wells, water levels dropped by greater than 20 feet since the 1980s. The largest water-level declines have occurred since the mid 1970s, corresponding with a period of accelerated well construction and ground-water extraction. Analysis of samples from 15 wells indicates that the chemical quality of ground water in the study generally is acceptable. However, arsenic concentrations in samples from five wells exceed the U.S. Environmental Protection Agency primary drinking-water standard of 10 micrograms per liter, and iron concentrations in samples from five wells exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 300 micrograms per liter. Water from 12 of 15 wells sampled contained concentrations of manganese that exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 50 micrograms per liter. Two wells produced water that had boron in excess of the California Department of Health Services action level of 1 milligram per liter. Stable isotope, chlorofluorocarbon, and tritium data indicate that ground water in the area is a mixture of waters that recharged the aquifer system at different times. The presence of chlorofluorocarbons and tritium in water from the study area is evidence that modern recharge (post 1950) does take place. Water-temperature logs indicate that ground-water temperatures throughout the study area exceed 30?C at depths in excess of 600 feet. Further, water at

  19. Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas.

    PubMed

    Archer, Natalie P; Napier, Thomas S; Villanacci, John F

    2016-07-01

    The purpose of this study was to examine the association between fluoride levels in public drinking water and childhood and adolescent osteosarcoma in Texas; to date, studies examining this relationship have been equivocal. Using areas with high and low naturally occurring fluoride, as well as areas with optimal fluoridation, we examined a wide range of fluoride levels in public drinking water. This was a population-based case-control study, with both cases and controls obtained from the Texas Cancer Registry. Eligible cases were Texas children and adolescents <20 years old diagnosed with osteosarcoma between 1996 and 2006. Controls were sampled from children and adolescents diagnosed with either central nervous system (CNS) tumors or leukemia during the same time frame. Using geocoded patient addresses at the time of diagnosis, we estimated patients' drinking water fluoride exposure levels based on the fluoride levels of their residence's public water system (PWS). Unconditional logistic regression models were used to assess the association between osteosarcoma and public drinking water fluoride level, adjusting for several demographic risk factors. Three hundred and eight osteosarcoma cases, 598 leukemia controls, and 604 CNS tumor controls met selection criteria and were assigned a corresponding PWS fluoride level. PWS fluoride level was not associated with osteosarcoma, either in a univariable analysis or after adjusting for age, sex, race, and poverty index. Stratified analyses by sex were conducted; no association between PWS fluoride level and osteosarcoma was observed among either males or females. No relationship was found between fluoride levels in public drinking water and childhood/adolescent osteosarcoma in Texas.

  20. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009)

    PubMed Central

    Liu, Hongxing; Chen, Yaning; Shu, Song; Wu, Qiusheng; Wang, Shujie

    2017-01-01

    This study utilizes ICESat Release 33 GLA14 data to analyse water level variation of Xinjiang’s lakes and reservoirs from 2003 to 2009. By using Landsat images, lakes and reservoirs with area larger than 1 km2 are numerically delineated with a software tool. Based on ICESat observations, we analyse the characteristics of water level variation in different geographic environments, as well as investigate the reasons for the variation. Results indicate that climatic warming contributes to rising water levels in lakes in mountainous areas, especially for lakes that are recharged by snow and glacial melting. For lakes in oases, the water levels are affected jointly by human activity and climate change, while the water levels of reservoirs are mainly affected by human activity. Comparing the annual average rates of water levels, those of lakes are higher than those of reservoirs in oasis areas. The main reasons for the decreasing water levels in desert regions are the reduction of recharged runoff and high evaporation. By analysing the variation of water levels and water volume in different geologic environments, it is found that water level and volume increased in mountainous regions, and decreased in oasis regions and desert regions. Finding also demonstrate that decreasing volume is greater than increasing volume, which results in decreasing total volume of Xinjiang lakes and reservoirs. PMID:28873094

  1. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  2. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  3. A survey of imidacloprid levels in water sources potentially frequented by honey bees (Apis mellifera) in the Eastern U.S.

    USDA-ARS?s Scientific Manuscript database

    This study was undertaken to examine contamination levels of imidacloprid (IMI), a water soluble neonicotinoid insecticide, in still or slow moving water sources of the sort often frequented by honey bees, Apis mellifera. Honey bees frequent open water to transport water into the hive for consumpti...

  4. Effect modification by drinking water hardness of the association between nitrate levels and gastric cancer: evidence from an ecological study.

    PubMed

    Chiu, Hui-Fen; Kuo, Chao-Hung; Tsai, Shang-Shyue; Chen, Chih-Cheng; Wu, Deng-Chuang; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from gastric cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on the risk of gastric cancer development. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to gastric cancer and exposure to nitrate in drinking water in Taiwan. All deaths due to gastric cancer in Taiwan residents from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Deaths from other causes served as controls and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure levels were <0.38 ppm, the adjusted odds ratio (OR) and 95% confidence interval (CI) for gastric cancer occurrence was 1.16 (1.05-1.29) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure ≥ 0.38 ppm. There was apparent evidence of an interaction between drinking water NO(3)-N levels and low Ca and Mg intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of gastric cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effects modification by Ca and Mg intake from drinking water on the relationship between NO(3)-N exposure and risk of gastric cancer occurrence. Increased knowledge of the mechanistic interactions between Ca, Mg, and NO(3)-N in reducing risk of gastric cancer development will aid in public policy decisions and setting threshold standards.

  5. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake.

    PubMed

    Yang, Kun; Yu, Zhenyu; Luo, Yi; Yang, Yang; Zhao, Lei; Zhou, Xiaolu

    2018-05-15

    Global warming and rapid urbanization in China have caused a series of ecological problems. One consequence has involved the degradation of lake water environments. Lake surface water temperatures (LSWTs) significantly shape water ecological environments and are highly correlated with the watershed ecosystem features and biodiversity levels. Analysing and predicting spatiotemporal changes in LSWT and exploring the corresponding impacts on water quality is essential for controlling and improving the ecological water environment of watersheds. In this study, Dianchi Lake was examined through an analysis of 54 water quality indicators from 10 water quality monitoring sites from 2005 to 2016. Support vector regression (SVR), Principal Component Analysis (PCA) and Back Propagation Artificial Neural Network (BPANN) methods were applied to form a hybrid forecasting model. A geospatial analysis was conducted to observe historical LSWTs and water quality changes for Dianchi Lake from 2005 to 2016. Based on the constructed model, LSWTs and changes in water quality were simulated for 2017 to 2020. The relationship between LSWTs and water quality thresholds was studied. The results show limited errors and highly generalized levels of predictive performance. In addition, a spatial visualization analysis shows that from 2005 to 2020, the chlorophyll-a (Chla), chemical oxygen demand (COD) and total nitrogen (TN) diffused from north to south and that ammonia nitrogen (NH 3 -N) and total phosphorus (TP) levels are increases in the northern part of Dianchi Lake, where the LSWT levels exceed 17°C. The LSWT threshold is 17.6-18.53°C, which falls within the threshold for nutritional water quality, but COD and TN levels fall below V class water quality standards. Transparency (Trans), COD, biochemical oxygen demand (BOD) and Chla levels present a close relationship with LSWT, and LSWTs are found to fundamentally affect lake cyanobacterial blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A water availability gradient reveals the deficit level required to affect traits in potted juvenile Eucalyptus globulus

    PubMed Central

    Potts, Brad M.; Hovenden, Mark J.; Brodribb, Timothy J.; Davies, Noel W.; Rodemann, Thomas; McAdam, Scott A. M.; O’Reilly-Wapstra, Julianne M.

    2017-01-01

    Background and aims Drought leading to soil water deficit can have severe impacts on plants. Water deficit may lead to plant water stress and affect growth and chemical traits. Plant secondary metabolite (PSM) responses to water deficit vary between compounds and studies, with inconsistent reports of changes to PSM concentrations even within a single species. This disparity may result from experimental water deficit variation among studies, and so multiple water deficit treatments are used to fully assess PSM responses in a single species. Methods Juvenile Eucalyptus globulus were grown for 8 weeks at one of ten water deficit levels based on evapotranspiration from control plants (100 %). Treatments ranged from 90 % of control evapotranspiration (mild water deficit) to 0 % of control evapotranspiration (severe water deficit) in 10 % steps. Plant biomass, foliar abscisic acid (ABA) levels, Ψleaf, leaf C/N, selected terpenes and phenolics were quantified to assess responses to each level of water deficit relative to a control. Key Results Withholding ≥30 % water resulted in higher foliar ABA levels and withholding ≥40 % water reduced leaf water content. Ψleaf became more negative when ≥60 % water was withheld. Plant biomass was lower when ≥80 % water was withheld, and no water for 8 weeks (0 % water) resulted in plant death. The total oil concentration was lower and C/N was higher in dead and desiccated juvenile E. globulus leaves (0 % water). Concentrations of individual phenolic and terpene compounds, along with condensed tannin and total phenolic concentrations, remained stable regardless of water deficit or plant stress level. Conclusions These juvenile E. globulus became stressed with a moderate reduction in available water, and yet the persistent concentrations of most PSMs in highly stressed or dead plants suggests no PSM re-metabolization and continued ecological roles of foliar PSMs during drought. PMID:28073772

  7. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  8. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  9. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    USGS Publications Warehouse

    Lu, Zhong; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  10. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    PubMed

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  11. Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.

    2017-09-01

    Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.

  12. Lithium levels in the public drinking water supply and risk of suicide: A pilot study.

    PubMed

    Liaugaudaite, Vilma; Mickuviene, Narseta; Raskauskiene, Nijole; Naginiene, Rima; Sher, Leo

    2017-09-01

    Suicide is a major public health concern affecting both the society and family life. There are data indicating that higher level lithium intake with drinking water is associated with lower suicide rate. This pilot study examined the relationship between lithium levels in drinking water and suicide rates in Lithuania. Twenty-two samples from public drinking water systems were taken in 9 cities of Lithuania. The lithium concentration in these samples was determined by inductively coupled plasma mass spectrometry (ICP-MS). The suicide data were obtained from the Lithuania Database of Health Indicators, and comprised all registered suicides across all ages and gender within the 5-year period from 2009 to 2013. The study demonstrated an inverse correlation between levels of lithium (log natural transformed), number of women for 1000 men and standardized mortality rate for suicide among total study population. After adjusting for confounder (the number of women for 1000 men), the lithium level remained statistically significant in men, but not in women. Our study suggested that higher levels of lithium in public drinking water are associated with lower suicide rates in men. It might have a protective effect on the risk of suicide in men. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Ground-water levels in intermontane basins of the northern Rocky Mountains, Montana and Idaho

    USGS Publications Warehouse

    Briar, David W.; Lawlor, S.M.; Stone, M.A.; Parliman, D.J.; Schaefer, J.L.; Kendy, Eloise

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation's water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to (1) describe the groundwater systems as they exist today, (2) analyze the known changes that have led to the systems present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter B of a three-part series and shows the general distribution of ground-water levels in basin-fill deposits in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter C (Clark and Dutton, 1996) describes the quality of ground and surface waters in the study area.Ground-water levels shown in this report were measured primarily during summer 1991 and summer 1992; however, historical water levels were used for areas where more recent data could not be obtained. The information provided allows for the evaluation of general directions of ground-water flow, identification of recharge and discharge areas, and determination of hydraulic gradients within basin-fill deposits.

  14. Surface-water/ground-water interaction along reaches of the Snake River and Henrys Fork, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Vidmar, Peter

    2005-01-01

    Declining water levels in the eastern Snake River Plain aquifer and decreases in spring discharges from the aquifer to the Snake River have spurred studies to improve understanding of the surface-water/ground-water interaction on the plain. This study was done to estimate streamflow gains and losses along specific reaches of the Snake River and Henrys Fork and to compare changes in gain and loss estimates to changes in ground-water levels over time. Data collected during this study will be used to enhance the conceptual model of the hydrologic system and to refine computer models of ground-water flow and surface-water/ground-water interactions. Estimates of streamflow gains and losses along specific subreaches of the Snake River and Henrys Fork, based on the results of five seepage studies completed during 2001?02, varied greatly across the study area, ranging from a loss estimate of 606 ft3/s in a subreach of the upper Snake River near Heise to a gain estimate of 3,450 ft3/s in a subreach of the Snake River that includes Thousand Springs. Some variations over time also were apparent in specific subreaches. Surface spring flow accounted for much of the inflow to subreaches having large gain estimates. Several subreaches alternately gained and lost streamflow during the study. Changes in estimates of streamflow gains and losses along some of the subreaches were compared with changes in water levels, measured at three different times during 2001?02, in adjacent wells. In some instances, a strong relation between changes in estimates of gains or losses and changes in ground-water levels was apparent.

  15. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.

    PubMed

    Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan

    2017-02-01

    Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.

  16. Chicago Lead in Drinking Water Study

    EPA Pesticide Factsheets

    EPA Region 5 and the Chicago Department of Water Management conducted a study on field sampling protocols for lead in drinking water. The purpose of the study was to evaluate the method used by public water systems to monitor lead levels.

  17. Natural fluoride levels in the drinking water, water fluoridation and estimated risk of dental fluorosis in a tropical region of Brazil.

    PubMed

    Sampaio, Fábio Correia; Silva, Fábia Danielle; Silva, Andréa Cristina; Machado, Ana Thereza; de Araújo, Demétrius Antônio; de Sousa, Erik Melo

    2010-01-01

    The aim of the present study was to determine the natural fluoride levels in the drinking water supplies of a tropical area of Brazil to identify the cities at risk of high prevalence of dental fluorosis and to provide data for future water fluoridation projects in the region. The present study was carried out in Paraíba, in the north-eastern region of Brazil. A total of 223 cities were selected, and local health workers were instructed to collect three samples of drinking water: one from the main public water supply and the other two from a public or residential tap with the same water source. Fluoride analyses were carried out in duplicate using a fluoride-specific electrode coupled to an ion analyser. A total of 167 cities (75%) provided water samples for analysis. Fluoride levels ranged from 0.1 to 1.0 ppm (mg/l). Samples from most of the cities (n = 163, 73%) presented low levels of fluoride (< 0.5 mg/l). Samples from three cities (a total estimate of 28,222 inhabitants exposed) presented 'optimum' fluoride levels (0.6 to 0.8 mg/l). Samples from one city (16,724 inhabitants) with 1.0 mg/l of fluoride in the water were above the recommended level (0.7 mg/l) for the local temperature. It can be concluded that the cities in this area of Brazil presented low natural fluoride levels in the drinking water and could implement controlled water fluoridation projects when technical requirements are accomplished. A high or a moderate prevalence of dental fluorosis due to the intake of natural fluoride in the drinking water is likely to take place in one city only.

  18. Correlation between lead levels in drinking water and mothers' breast milk: Dakahlia, Egypt.

    PubMed

    Mandour, Raafat A; Ghanem, Abdel-Aziz; El-Azab, Somaia M

    2013-04-01

    This study was performed on fifty-two drinking tap water samples (surface and groundwater) collected from different districts of Dakahlia Governorate and fifty-two breast milk samples from lactating mothers hosted in Dakahlia Governorate hospitals. All these samples were subjected to lead analysis. Lead level in drinking groundwater showed higher levels than in drinking surface water. Also, an elevation of lead levels in breast milk of mothers drinking groundwater was noticed when compared with that of mothers drinking surface water. The comparison between mean lead levels in drinking water and mothers' breast milk samples showed positive relationship. Lead concentrations in breast milk of the studied samples were elevated by exposure to smoking. We conclude that prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood. Also, we recommend that chemical analyses must be carried out periodically for the surface and groundwater to ensure the water suitability for drinking purposes. Passive exposure to smoking during lactation should be avoided. Capsule: Prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood.

  19. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study.

    PubMed

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene; Pedersen, Carsten B; Sigsgaard, Torben

    2018-07-01

    Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person-years at risk. We used Cox proportional hazards models to estimate hazard ratios (HRs) of nitrate exposure on the risk of CRC, colon and rectal cancer. Persons exposed to the highest level of drinking water nitrate had an HR of 1.16 (95% CI: 1.08-1.25) for CRC compared with persons exposed to the lowest level. We found statistically significant increased risks at drinking water levels above 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Our results add to the existing evidence suggesting increased CRC risk at drinking water nitrate concentrations below the current drinking water standard. A discussion on the adequacy of the drinking water standard in regards to chronic effects is warranted. © 2018 UICC.

  20. Analysis of Ground Water Fluoride Content and its Association with Prevalence of Fluorosis in Zarand/Kerman: (Using GIS).

    PubMed

    T, Malek Mohammadi; R, Derakhshani; M, Tavallaie; M, Raoof; N, Hasheminejad; Aa, Haghdoost

    2017-06-01

    The concentration of fluoride in water is usually higher in areas around the coal mines. Zarand region in the south-east of Iran is known for its coal mines. Some studies have shown the high prevalence of fluorosis and some studies reported high levels of fluoride in the region. This study aimed to use Geographic Information System (GIS) to assess the relationship between water fluoride content and the prevalence of fluorosis and its spatial distribution in Zarand region. This cross-sectional study aimed to recruit 550 people aged 7-40 years in Zarand. Dental examination for fluorosis was conducted based on the Dean's Index. The level of fluoride in the water was determined in samples of water taken from 35 areas. Information on fluorosis and fluoride content was mapped on GIS. Most participants lived in rural areas (87.25%) and had an educational status of high school level (66%). About 23% of the examined people had normal teeth, 10% had severe and 67% had mild to moderate fluorosis. Distribution of severe fluorosis was higher in areas with higher levels of fluoride in the water according to GIS map. GIS map clearly showed a positive relationship between the prevalence and severity of fluorosis with the level of fluoride in water in Zarand. The GIS analysis may be useful in the analysis of other oral conditions.

  1. The Effectivity of Green Coconut Water To Reduce Mercury Level In The Blood And To Improve Blood Profiles And Liver Cells Appearance (Study In Sprague Dawley Rats)

    NASA Astrophysics Data System (ADS)

    Abdulrzag, Ehmeeda M.; Nur Kristina, Tri; Suwondo, Ari; Sunoko, Henna Rya

    2018-02-01

    When people are exposed to mercury chloride, it can produce a variety of health effects in the blood and liver. Coconut water contains Zn, Fe, Vit. C, Vit B11, Vit. B6, and Se to reduce mercury chloride level in the blood and improve blood profile and liver cells. Aim of this study was to analysis the effect of green coconut water supplementation in overcoming the toxic effect of Hg chlorid in the blood and liver of Sprague dawley rats exposed to Hg chloride. Samples were randomly about 36 animals rats exposed to HgCl2 through forced feeding by 20 mg/kgBW sondage per day for 14 days, which divided into control group, and intervention groups were given fresh green coconut water in each by 6, 8, and 10 mL/kgBW for intervention 7 and 17 days. The result of this study showed that there is a significant effect and the decrease in mercury levels in the blood. There is no significant affect on the hemoglobin level, hematocrit level and platelet count with the treatment of green coconut water in the mice with exposure Hg. There is no significant effect between treatments using green coconut water with SGPT levels; there is a decrease in SGPT levels at the increasing number of doses of green coconut water and the length of treatment.

  2. Trihalomethanes in drinking water and the risk of death from esophageal cancer: does hardness in drinking water matter?

    PubMed

    Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level <4.9 ppb, the adjusted odds ratio (OR) with 95% confidence interval (CI) for esophageal cancer was 1.02 (0.84-1.23) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking water.

  3. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    USGS Publications Warehouse

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal

  4. Preliminary analysis of the hydrologic effects of temporary shutdowns of the Rondout-West Branch Water Tunnel on the groundwater-flow system in Wawarsing, New York

    USGS Publications Warehouse

    Stumm, Frederick; Chu, Anthony; Como, Michael D.; Noll, Michael L.

    2012-01-01

    Flooding of streets and residential basements, and bacterial contamination of private-supply wells with Escherichia coli (E. coli) are recurring problems in the Rondout Valley near the Town of Wawarsing, Ulster County, New York. Leakage from the Rondout-West Branch (RWB) Water Tunnel and above-normal precipitation have been suspected of causing elevated groundwater levels and basement flooding. The hydrology of a 12-square-mile study area within the Town of Wawarsing was studied during 2008-10. A network of 41 wells (23 unconsolidated-aquifer and 18 bedrock wells) and 2 surface-water sites was used to monitor the hydrologic effects of four RWB Water Tunnel shutdowns. The study area is underlain by a sequence of northeast-trending sedimentary rocks that include limestone, shale, and sandstone. The bedrock contains dissolution features, fractures, and faults. Inflows that ranged from less than 1 to more than 9,000 gallons per minute from the fractured bedrock were documented during construction of the 13.5-foot-diameter RWB Water Tunnel through the sedimentary-rock sequence 710 feet (ft) beneath the study-area valley. Glacial sediments infill the valley above the bedrock sequence and consist of clay, silt, sand, and gravel. The groundwater-flow system in the valley consists of both fractured-rock and unconsolidated aquifers. Water levels in both the bedrock and unconsolidated aquifers respond to variations in seasonal precipitation. During the past 9 years (2002-10), annual precipitation at Central Park, N.Y., has exceeded the 141-year mean. Potentiometric-surface maps indicate that groundwater in the bedrock flows from the surrounding hills on the east and west sides of the valley toward the center of the valley, and ultimately toward the northeast. On average, water levels in the bedrock aquifer had seasonal differences of 5.3 ft. Analysis of hydrographs of bedrock wells indicates that many of these wells are affected by the RWB Tunnel leakage. Tunnel-leakage influences (water level and temperature changes) in the bedrock aquifer were measured at distances up to 7,000 ft from the RWB Tunnel. Water levels in the bedrock changed as much as 12 ft within 0.5 hour during tunnel shutdowns. Nine of the 10 wells that responded to the shutdowns showed a water-level response of 5 ft or greater. Changes in water levels ranged from 1.5 to 12 ft, with tunnel-leakage influence delay times ranging from 0.5 to 60 hours. Many of the longest tunnel-influence delay times and smallest water-level changes were in wells located closest to the tunnel in shale. Tunnel-influence response of the bedrock aquifer is consistent with its preliminary characterization as an anisotropic aquifer with greater transmissivity along bedding strike than across bedding strike. This tunnel-influence response is also consistent with the likely presence of discrete high-transmissivity networks along fractured limestone beds that have undergone dissolution. A lack of bedrock observation wells in half of the study area hampered a more thorough analysis of the extent of leakage from the RWB Tunnel in the study area. On average, water levels in the unconsolidated aquifer had a seasonal difference of 5.0 ft. Some unconsolidated-aquifer wells indicated water-level changes due to tunnel leakage. The locations of unconsolidated-aquifer wells with measurable water-level changes due to tunnel leakage correlated with those in the bedrock. Water levels in the unconsolidated aquifer changed as much as 2.5 ft within 18 hours of tunnel shutdowns, but water-level changes in some unconsolidated-aquifer wells were smaller or nonexistent.

  5. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    PubMed

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and nearshore runoff and 22 percent from atmospheric deposition. Because Silver Lake is hydraulically mounded above the local groundwater system, little or no input of phosphorus to the lake is from groundwater and septic systems. Silver Lake had previously been incorrectly described as a groundwater flowthrough lake. Phosphorus budgets were constructed for a series of dry years (low water levels) and a series of wet years (high water levels). About 6 times more phosphorus was input to the lake during wet years with high water levels than during the dry years. Phosphorus from erosion represented 13-20 percent of the phosphorus input during years with very high water levels. Results from the Canfield and Bachman eutrophication model and Carlson trophic state index equations demonstrated that water quality in Silver Lake directly responds to changes in external phosphorus input, with the percent change in chlorophyll a being about 80 percent of the percent change in total phosphorus input and the change in Secchi depth and total phosphorus concentrations being about 40 and 50 percent of the percent change in input, respectively. Therefore, changes in phosphorus input should impact water quality. Specific scenarios were simulated with the models to describe the effects of natural (climate-driven) and anthropogenic (human-induced) changes. Results of these scenarios demonstrated that several years of above-normal precipitation cause sustained high water levels and a degradation in water quality, part of which is due to erosion of the shoreline. Results also demonstrated that 1) changes in tributary and nearshore runoff have a dramatic effect on lake-water quality, 2) diverting water into the lake to increase the water level is expected to degrade the water quality, and 3) removal of water to decrease the water level of the lake is expected to have little effect on water quality. Fluctuations in water levels since 1967, when records began for the lake, are representative

  7. Determination of heavy metal levels in water, sediment and tissues of tench (Tinca tinca L., 1758) from Beyşehir Lake (Turkey).

    PubMed

    Tekin-Ozan, Selda

    2008-10-01

    In the present study, some heavy metals (Cu, Fe, Zn and Mn) were seasonally determined in water, sediment and some tissues of fish Tinca tinca from Beyşehir Lake, which is an important bird nesting and visiting area, a water source for irrigation and drinking. In the water, Fe has the highest concentrations among the studied metals. Generally, the metal concentrations increased in the hottest period decreased in warm seasons. Results for levels in water were compared with national and international water quality guidelines, as well as literature data reported for the lakes. Fe was the highest in sediment samples, also Cu and Zn were the highest in spring, while Fe and Mn were in autumn. Among the heavy metals studied, Cu and Mn were below the detection limits in some tissues. Generally, higher concentrations of the tested metals were found in the summer and winter, compared with those during the autumn and spring seasons. High levels of heavy metals were found in liver of T. tinca, while low levels in muscle samples. Metal concentrations in the muscle of examined fish were within the safety permissible levels for human consumption. The present study shows that precautions need to be taken in order to prevent further heavy metal pollution.

  8. Evaluation of the effects of precipitation on ground-water levels from wells in selected alluvial aquifers in Utah and Arizona, 1936-2005

    USGS Publications Warehouse

    Gardner, Philip M.; Heilweil, Victor M.

    2009-01-01

    Increased withdrawals from alluvial aquifers of the southwestern United States during the last half-century have intensified the effects of drought on ground-water levels in valleys where withdrawal for irrigation is greatest. Furthermore, during wet periods, reduced withdrawals coupled with increased natural recharge cause rising ground-water levels. In order to manage water resources more effectively, analysis of ground-water levels under the influence of natural and anthropogenic stresses is useful. This report evaluates the effects of precipitation patterns on ground-water levels in areas of Utah and Arizona that have experienced different amounts of ground-water withdrawal. This includes a comparison of water-level records from basins that are hydrogeologically and climatologically similar but have contrasting levels of ground-water development. Hydrologic data, including records of ground-water levels, basin-wide annual ground-water withdrawals, and precipitation were examined from two basins in Utah (Milford and central Sevier) and three in Arizona (Aravaipa Canyon, Willcox, and Douglas). Most water-level records examined in this study from basins experiencing substantial ground-water development (Milford, Douglas, and Willcox) showed strong trends of declining water levels. Other water-level records, generally from the less-developed basins (central Sevier and Aravaipa Canyon) exhibited trends of increasing water levels. These trends are likely the result of accumulating infiltration of unconsumed irrigation water. Water-level records that had significant trends were detrended by subtraction of a low-order polynomial in an attempt to eliminate the variation in the water-level records that resulted from ground-water withdrawal or the application of water for irrigation. After detrending, water-level residuals were correlated with 2- to 10-year moving averages of annual precipitation from representative stations for the individual basins. The water-level residual time series for each well was matched with the 2- to 10-year moving average of annual precipitation with which it was best correlated and the results were compared across basins and hydrologic settings. Analysis of water-level residuals and moving averages of annual precipitation indicate that ground-water levels in the Utah basins respond more slowly to precipitation patterns than those from the Arizona basins. This is attributed to the dominant mechanism of recharge that most directly influences the respective valley aquifers. Substantial recharge in the Utah basins likely originates as infiltrating snowmelt in the mountain block far from the valley aquifer, whereas mountain-front recharge and streambed infiltration of runoff are the dominant recharge mechanisms operating in the Arizona basins. It was determined that the fraction of water-level variation caused by local precipitation patterns becomes more difficult to resolve with increasing effects of ground-water pumping, especially from incomplete records. As the demand for ground water increases in the southwestern United States, long-term records of ground-water levels have the potential to provide valuable information about the precipitation-driven variation in water levels, which has implications to water management related to water availability.

  9. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  10. Arsenic in Mexican children exposed to contaminated well water.

    PubMed

    Monroy-Torres, Rebeca; Macías, Alejandro E; Gallaga-Solorzano, Juan Carlos; Santiago-García, Enrique Javier; Hernández, Isabel

    2009-01-01

    This cross-sectional study measures the arsenic level in school children exposed to contaminated well water in a rural area in México. Arsenic was measured in hair by hydride generation atomic absorption spectrophotometry. Overall, 110 children were included (average 10 years-old). Among 55 exposed children, mean arsenic level on hair was 1.3 mg/kg (range <0.006-5.9). All unexposed children had undetectable arsenic levels. The high level of arsenic in water was associated to the level in hair. However, exposed children drank less well water at school or at home than unexposed children, suggesting that the use of contaminated water to cook beans, broths or soups may be the source of arsenic exposure.

  11. Low-level arsenic in drinking water and risk of incident myocardial infarction: A cohort study.

    PubMed

    Monrad, Maria; Ersbøll, Annette Kjær; Sørensen, Mette; Baastrup, Rikke; Hansen, Birgitte; Gammelmark, Anders; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2017-04-01

    Epidemiological studies have shown that intake of drinking water with high levels of arsenic (>100μg/L) is associated with risk for cardiovascular diseases, but studies on lower levels of arsenic show inconsistent results. The aim of this study was to investigate the relationship between exposure to low level arsenic in drinking water and risk of myocardial infarction in Denmark. From the Danish Diet, Cancer and Health cohort of 57,053 people aged 50-64 years at enrolment in 1993-1997, we identified 2707 cases of incident myocardial infarction from enrolment to end of follow-up in February 2012. Cohort participants were enrolled in the Copenhagen and Aarhus areas. We geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water supply areas. Arsenic in tap water at each cohort members address from 1973 to 2012 was estimated for all cohort members. Poisson regression was used to estimate incidence rate ratios (IRRs) for myocardial infarction after adjustment for lifestyle factors and educational level. Arsenic levels in drinking water at baseline addresses ranged from 0.03 to 25.34μg/L, with the highest concentrations in the Aarhus area. We found no overall association between 20-years average concentration of arsenic and risk of myocardial infarction. However, in the Aarhus area, fourth arsenic quartile (2.21-25.34μg/L) was associated with an IRR of 1.48 (95% confidence interval (CI): 1.19-1.83) when compared with first quartile (0.05-1.83μg/L). An IRR of 1.26 (95% CI: 0.89-1.79) was found for ever (versus never) having lived at an address with 10μg/L or more arsenic in the drinking water. This study provides some support for an association between low levels of arsenic in drinking water and the risk of myocardial infarction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A leader-follower-interactive method for regional water resources management with considering multiple water demands and eco-environmental constraints

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lu, Hongwei; Li, Jing; Ren, Lixia; He, Li

    2017-05-01

    This study presents the mathematical formulation and implementations of a synergistic optimization framework based on an understanding of water availability and reliability together with the characteristics of multiple water demands. This framework simultaneously integrates a set of leader-followers-interactive objectives established by different decision makers during the synergistic optimization. The upper-level model (leader's one) determines the optimal pollutants discharge to satisfy the environmental target. The lower-level model (follower's one) accepts the dispatch requirement from the upper-level one and dominates the optimal water-allocation strategy to maximize economic benefits representing the regional authority. The complicated bi-level model significantly improves upon the conventional programming methods through the mutual influence and restriction between the upper- and lower-level decision processes, particularly when limited water resources are available for multiple completing users. To solve the problem, a bi-level interactive solution algorithm based on satisfactory degree is introduced into the decision-making process for measuring to what extent the constraints are met and the objective reaches its optima. The capabilities of the proposed model are illustrated through a real-world case study of water resources management system in the district of Fengtai located in Beijing, China. Feasible decisions in association with water resources allocation, wastewater emission and pollutants discharge would be sequentially generated for balancing the objectives subject to the given water-related constraints, which can enable Stakeholders to grasp the inherent conflicts and trade-offs between the environmental and economic interests. The performance of the developed bi-level model is enhanced by comparing with single-level models. Moreover, in consideration of the uncertainty in water demand and availability, sensitivity analysis and policy analysis are employed for identifying their impacts on the final decisions and improving the practical applications.

  13. Fluctuations in groundwater levels related to regional and local withdrawals in the fractured-bedrock groundwater system in northern Wake County, North Carolina, March 2008-February 2009

    USGS Publications Warehouse

    Chapman, Melinda J.; Almanaseer, Naser; McClenney, Bryce; Hinton, Natalie

    2011-01-01

    A study of dewatering of the fractured-bedrock aquifer in a localized area of east-central North Carolina was conducted from March 2008 through February 2009 to gain an understanding of why some privately owned wells and monitoring wells were intermittently dry. Although the study itself was localized in nature, the resulting water-resources data and information produced from the study will help enable resource managers to make sound water-supply and water-use decisions in similar crystalline-rock aquifer setting in parts of the Piedmont and Blue Ridge Physiographic Provinces. In June 2005, homeowners in a subdivision of approximately 11 homes on lots approximately 1 to 2 acres in size in an unincorporated area of Wake County, North Carolina, reported extremely low water pressure and temporarily dry wells during a brief period. This area of the State, which is in the Piedmont Physiographic Province, is undergoing rapid growth and development. Similar well conditions were reported again in July 2007. In an effort to evaluate aquifer conditions in the area of intermittent water loss, a study was begun in March 2008 to measure and monitor water levels and groundwater use. During the study period from March 2008 through February 2009, regular dewatering of the fractured-bedrock aquifer was documented with water levels in many wells ranging between 100 and 200 feet below land surface. Prior to this period, water levels from the 1980s through the late 1990s were reported to range from 15 to 50 feet below land surface. The study area includes three community wells and more than 30 private wells within a 2,000-foot radius of the dewatered private wells. Although groundwater levels were low, recovery was observed during periods of heavy rainfall, most likely a result of decreased withdrawals owing to less demand for irrigation purposes. Similar areal patterns of low groundwater levels were delineated during nine water-level measurement periods from March 2008 through February 2009. Correlation of groundwater-level distribution patterns with orientations of geologic structures obtained from surficial mapping, borehole geophysical measurements, and interpretation of fracture traces suggests two dominant trends striking north-south and N. 65 degrees W. A variation in overall response to groundwater withdrawals was noted in the continuous groundwater-level records for the monitored observation wells and dewatered private wells. The largest overall declines during the study period were observed in an observation well in which the water-level declined as much as 247 feet from mid-July through early August 2008, during a period of heavy usage. A private well had a water-level decline of about 94 feet during the same monitoring period. The large declines recorded in the observation well and the private well indicated a substantial temporary loss of storage in the fractured-bedrock aquifer near the wells, thus reducing the amount of water available to shallow wells in the area (those wells with total depths of about 300 feet), and resulting in temporary well failures until such time as the aquifer recovered.

  14. Proceedings of Symposium on Cost Estimating for Water Supply Planning Studies Held at Tampa, Florida on 14-16 March 1983.

    DTIC Science & Technology

    1983-09-01

    Science, Art, or Witchcraft ?" which summarizes the state of the art and describes some important issues in planning level estimates in water resources...REPORT: AD#: P1o 902 TITLE:Panning Level Cost Estimating--Science, Art, or Witchcraft . P01 903 Planning Water Supply Projects: The Systems Estimate...OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 PLANNING LEVEL COST ESTIMATING--SCIENCE, ART, OR WITCHCRAFT by * PLANNING WATER

  15. Hydrogeologic characteristics and water levels of Wilcox aquifer in southwestern and northeastern Arkansas

    USGS Publications Warehouse

    Pugh, Aaron L.; Schrader, Tony P.

    2009-01-01

    The Wilcox Group of Eocene and Paleocene age is located throughout most of southern and eastern Arkansas. The Wilcox Group in southern Arkansas is undifferentiated, while in northeastern Arkansas, the Wilcox Group is subdivided into three units: Flour Island, Fort Pillow Sand, and Old Breastworks Formation. The Wilcox Group crops out in southwestern Arkansas in discontinuous, 1 to 3 mi wide bands. In northeastern Arkansas, the Wilcox Group crops out along a narrow, discontinuous, band along the western edge of Crowleys Ridge. The Wilcox aquifer provides sources of groundwater in southwestern and northeastern Arkansas. In 2005, reported withdrawals from the Wilcox aquifer in Arkansas totaled 27.0 million gallons per day, most of which came from the northeastern area. Major withdrawals from the aquifer were for public supplies with lesser but locally important withdrawals for commercial, domestic, and industrial uses. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey to determine the water levels associated with the Wilcox aquifer in southwestern and northeastern Arkansas. During February 2009, 58 water-level measurements were made in wells completed in the Wilcox aquifer. The results from this study and previous studies are presented as potentiometric-surface maps, water-level difference maps, and long-term hydrographs. The direction of groundwater flow in the southwestern area is affected by two potentiometric-surface mounds, one in the north and the other in the southwest, and a cone of depression in the center. The direction of water flowing off of the northern mound of water is generally to the south and east with some to the north. The direction of water flowing off of the southwestern mound is generally to the south and east. The direction of water flowing into the cone of depression is generally from the north, west, and south. The direction of groundwater flow in the northeastern area is generally to the south and southeast, except in the northwestern part of the area where the flow is in a westerly direction towards Paragould. Large groundwater withdrawals have altered the natural direction of flow near centers of pumping at Paragould and West Memphis. Water-level difference maps for the Wilcox aquifer in Arkansas were constructed using the differences between water-level measurements made during 2003 and 2009 from 52 wells. The difference in water levels between 2003 and 2009 in the southwestern area ranged from -36.4 to 16.0 ft. Water levels rose in the northern parts of the southwestern area, while the water levels in the southern part of the area declined with the exception of one well. The differences in water levels between 2003 and 2009 in the northeastern area ranged from -21.7 to 1.3 ft. Water levels declined throughout the northeastern area with the exception of two wells. Hydrographs from 42 wells with a minimum of 20 yr of water-level measurements were constructed. Trend lines using linear regression were calculated for the period from 1990 to 2009 to determine the slope in ft/yr for water levels in each well. In the southwestern area, the county mean annual water level rose 0.15 ft/yr in Hot Spring County. County mean annual water levels declined between 0.71 ft/yr and 0.03 ft/yr in Clark, Hempstead, and Nevada counties. In the northeastern area, the county mean annual water level rose 0.46 ft/yr in Greene County. County mean annual water levels declined between 0.03 ft/yr and 2.12 ft/yr in Clay, Craighead, Crittenden, Lee, Mississippi, Poinsett, and St. Francis counties.

  16. Small scale water treatment practice and associated factors at Burie Zuria Woreda Rural Households, Northwest Ethiopia, 2015: cross sectional study.

    PubMed

    Belay, Hailegebriel; Dagnew, Zewdu; Abebe, Nurilign

    2016-08-26

    Consuming unsafe water results in infections that lead to illness or death from water borne diseases. Though there is an increasing effort from Ethiopian government to access safe water still there are households with limited access of safe water as a result, they depend on rain, well and spring water source for domestic use. However, the water treatment practice with the available technology is not studied before in the study area. This study was conducted in rural area where there was no improved water source for domestic consumption. Households' access water from rain, spring, river and well water which need some ways of action to make water safe for the intended utilization termed as treatment. Hence, the aim of this study was to assess magnitude of small scale water treatment practices and associated factors at household level in Burie zuria woreda, North West Ethiopia, 2015. Community based cross-sectional study design with multi-stage sampling technique was used to evaluate water treatment practice and associated factors among rural households in Burie Zuria Woreda. A total of 797 households included in the study. Completeness of questionnaires were checked daily and data were coded and entered into Epi-Data and transported to SPSS version 16 software package for further analysis. Binary and multivariable logistic regression models fit to identify associated factors at 95 % CI and P-value <0.05. A total of 797 out of 846 participants responded to a questionnaire with a response rate of 94.2 %. The mean age of respondents was 44.9(SD ±10.7) years. Among the total study participants, 357(44.8 %) of them were practicing small scale water treatment at household level. Methods of water treatment at household level were; chlorine, boiling and let stand and settle. Associated factors were female headed households practice water treatment than male headed households (AOR = 1.80, 95 % CI = 1.24-2.62), educational status of being literate was associated with water treatment than illiterates (AOR = 2.07, 95 % CI = 1.51-2.83), dipping of water was associated with water treatment practice than pouring from the water collection jar (AOR = 4.11, 95 % CI = 2.89-5.85) and those households more frequently fetch water were practicing water treatment than those fetch less frequently (AOR = 4.90, 95 % CI = 2.92-8.22) and (AOR = 3.76, 95 % CI = 1.97-7.18) respectively were found to be significantly associated with small scale water treatment practice at household level. Small scale water treatment at household level is still low in the study area. Females headed households, educated people, dipping from the jar and those who fetch water more than twice a day were significant factors for water treatment. Therefore females' practice should be maintained and scale up for male headed households. Those with no primary education need special emphasis to educate them on the importance of water treatment. Encourage education through non formal mechanisms for rural people are also recommended.

  17. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    USGS Publications Warehouse

    Westenburg, C.L.; La Camera, R. J.

    1996-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  18. Water-level conditions in the upper Cape Fear aquifer, 1992-94, in parts of Bladen and Robeson counties, North Carolina

    USGS Publications Warehouse

    Strickland, Alfred Gerald

    1995-01-01

    Water-level measurements were made on a periodic basis in 16 wells throughout an area of about 730 square miles in Bladen and Robeson Counties, North Carolina, from September 1992 to October 1994. Water levels from the wells were used to construct a map of the potentiometric surface of the upper Cape Fear aquifer in the fall of 1994. This map can be used to infer the direction of ground-water movement in the aquifer. Withdrawals from wells at pumping centers, such as in the Tar Heel and Elizabethtown areas, has disrupted the natural pattern of ground-water flow. Ground water flows toward pumped wells resulting in cones of depression in the potentiometric surface. Water levels measured in 14 wells in 1992 and 1994 were used to estimate change in ground-water levels for the upper Cape Fear aquifer in the study area. During 1992-94, water-level declines occurred in the aquifer throughout much of the area as a result of pumping. The greatest decline was 90.6 feet in Bladen County.

  19. The identification of sustainable yield for hot spring regarding water level and temperature

    NASA Astrophysics Data System (ADS)

    Ke, Kai-Yuan; Tan, Yih-Chi

    2017-04-01

    In order to sustainably manage and utilize the limited hot spring resource, the cool-hot water exchange model is established by combination of Soil and Water Assessment Tool(SWAT) and SHEMAT. Hot spring in Ziaoxi, Taiwan, is chosen as study area. With data of geography, weather, land use and soil texture, SWAT can simulate precipitation induced infiltration and recharge for SHEMAT. Then SHEMAT is calibrated and verified with in-situ observation data of hot spring temperature and water level. The relation among precipitation, pumping, change of water temperature and water level is thus investigated. The effect of point well pumping, which dramatically lower the water level and temperature, due to prosperous development of hot spring building and industry is also considered for better model calibration. In addition, by employing a modified Hill's method, the sustainable yield is identified. Unlike traditional Hill's method, the modified Hill's method could account for not only the change of water level but also the temperature. As a result, the estimated sustainable yield provide a reasonable availability of hot spring resources without further decline of the water level and temperature.

  20. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  1. Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas, Spring-Summer 2003

    USGS Publications Warehouse

    Schrader, T.P.

    2006-01-01

    During the spring of 2003, water levels were measured in 341 wells in the Sparta-Memphis aquifer in Arkansas. Waterquality samples were collected for temperature and specificconductance measurements during the spring-summer of 2003 from 70 wells in Arkansas in the Sparta-Memphis aquifer. Maps of areal distribution of potentiometric surface, change in waterlevel measurements from 1999 to 2003, and specific-conductance data reveal spatial trends across the study area. The highest water-level altitude measured in Arkansas was 328 feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929) in Craighead County; the lowest water-level altitude was 199 feet below NGVD of 1929 in Union County. Three large cones of depression are shown in the 2003 potentiometric surface map, centered in Columbia, Jefferson, and Union Counties in Arkansas as a result of large withdrawals for industrial and public supplies. A broad depression exists in western Poinsett County in Arkansas. The potentiometric surface indicates that large withdrawals have altered or reversed the natural direction of flow in most areas. In the northern third of the study area the flow is from the east, west, and north towards the broad depression in Poinsett County. In the central third of the study area the flow is dominated by the cone of depression centered in Jefferson County. In the southern third of the study area the flow is dominated by the two cones of depression in Union and Columbia Counties. A map of water-level changes from 1999 to 2003 was constructed using water-level measurements from 281 wells. The largest rise in water level measured was about 57.8 feet in Columbia County. The largest decline in water level measured was about -71.6 feet in Columbia County. Areas with a general rise are shown in Arkansas, Bradley, Calhoun, Cleveland, Columbia, Ouachita, and Union Counties. Areas with a general decline are shown in Craighead, Crittenden, Cross, Desha, Drew, Jefferson, Lonoke, Phillips, Poinsett, Prairie, and Woodruff Counties. Hydrographs were constructed for wells with a minimum of 25 years of water-level measurements. A trend line using a linear regression was calculated for the period of record from spring of 1978 to spring of 2003 to determine the annual decline or rise in feet per year for water levels in each well. The hydrographs were grouped by county. The mean values for county annual water-level decline or rise ranged from -1.42 to 0.27 foot per year. Specific conductance ranged from 82 microsiemens per centimeter at 25 degrees Celsius in Jefferson County to about 1,210 microsiemens per centimeter at 25 degrees Celsius in Lee County. The mean specific conductance was 400 microsiemens per centimeter at 25 degrees Celsius.

  2. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  3. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    USGS Publications Warehouse

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  4. Analysis of the ecological water diversion project in Wenzhou City

    NASA Astrophysics Data System (ADS)

    Xu, Haibo; Fu, Lei; Lin, Tong

    2018-02-01

    As a developed city in China, Wenzhou City has been suffered from bad water quality for years. In order to improve the river network water quality, an ecological water diversion project was designed and executed by the regional government. In this study, an investigation and analysis of the regional ecological water diversion project is made for the purpose of examining the water quality improvements. A numerical model is also established, different water diversion flow rates and sewer interception levels are considered during the simulation. Simulation results reveal that higher flow rate and sewer interception level will greatly improve the river network water quality in Wenzhou City. The importance of the flow rate and interception level has been proved and future work will be focused on increasing the flow rate and upgrading the sewer interception level.

  5. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    USGS Publications Warehouse

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  6. Occurrence of trihalomethanes in the nation's ground water and drinking-water supply wells, 1985-2002

    USGS Publications Warehouse

    Schaap, Bryan D.; Zogorski, John S.

    2006-01-01

    This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples from aquifer studies, 2.2 percent of the samples from shallow ground water in agricultural areas, and 19.5 percent of the samples from shallow ground water in urban areas. In general, detection frequencies and concentrations of the four THMs were greater in shallow ground water in urban areas compared to aquifer studies and to shallow ground water in agricultural areas. For all three of these studies, the most common two-THM mixture at the 0.2-?g/L assessment level was chloroform-bromodichloromethane, and this was the only two-THM mixture found in samples of shallow ground water in agricultural areas. Comparisons of results between studies of domestic wells and public wells were used to describe the occurrence of the four THMs in two different supplies of ground water used for drinking water. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 5.2 percent of the domestic well samples and in 14.7 percent of the public well samples. In general, detection frequencies and THM concentrations were greater in samples from public wells than from domestic wells. At the 0.2-?g/L assessment level, the six possible two-THM mixtures occurred about six times more frequently in samples from public wells than from domestic wells. One of the most common two-THM mixtures in samples from domestic and public wells was bromodichloromethane-dibromochloromethane. Detection frequency is associated with the chlorine content of the THM compound. In general, for each of the five studies, as the chlorine content of the THM compound decreased, the detection frequency at the 0.2-?g/L assessment level also decreased. The exception was the study of public wells in which the detection frequency of the THMs decreased in the following order: chloroform, bromoform, dibromochloromethane, and bromodichloromethane. At the 0.2-?g/L assessment level, the median concentration for one or more of the four THMs ranged from 0.3 ?g/L (shallow ground water in agricultural a

  7. Stable isotope ratios of tap water in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.

    2007-03-01

    Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.

  8. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for the Upper Floridan aquifer. Ground-water quality in the Upper Floridan aquifer is monitored in the cities of Albany, Savannah, and Brunswick and in Camden County; and monitored in the Lower Floridan aquifer in the Savannah and Brunswick areas. In the Albany area since 1998, nitrate concentrations in the Upper Floridan aquifer have increased in 4 of the 11 wells monitored, and in 1 well, concentrations were above the U.S. Environmental Protection Agency's (USEPA) 10 milligrams per liter (mg/L) drinking-water standard. In the Savannah area, chloride concentration in water from four wells in the Upper Floridan aquifer showed no appreciable change during 2001, remaining within the USEPA 250 mg/L drinking-water standard; in seven wells completed in the Lower Floridan aquifer and in underlying zones, the chloride concentration remained above the drinking-water standard, with one well showing an increase over previous years. In the Brunswick area, water samples from 66 wells completed in the Upper or Lower Floridan aquifers were collected during June 2001 and analyzed for chloride. A map showing chloride concentrations in the Upper Floridan aquifer during June 2001 indicates that concentrations remained above USEPA drinking-water standards across a 2-square-mile area. In the north Brunswick area, chloride concentrations in the Upper Floridan aquifer continued to increase, whereas in the south Brunswick area, concentrations continued to decrease. In the Camden County area, chloride concentrations in six wells completed in the Upper Floridan aquifer remained within drinking-water standards. With the exception of one well, concentrations remained the same and were below 40 mg/L. In one well, concentrations showed a sharp decline during 2001, but remained above 130 mg/L. Ongoing studies during 2001 include evaluation of agricultural chemicals in shallow ground water in southwestern Georgia; evaluation of saltwater intrusion and water-level and water-quality m

  9. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  10. Louisiana ground-water map no. 11: potentiometric surface, Spring, 1993, and water-level changes, 1987-93, of the Gonzales-New Orleans Aquifer in southeastern Louisiana

    USGS Publications Warehouse

    Walters, David J.

    1995-01-01

    The Gonzales-New Orleans aquifer is an important source of fresh water for southeastern Louisiana. Withdrawals from the Gonzales-New Orleans aquifer in Jefferson and Orleans Parishes totaled about 33 million gallons per day in 1990, most of which was used for power generation and industrial purposes. Ground-water flow in the Gonzales-New Orleans aquifer within the study area is toward the center of a cone of depression in the potentiometric surface located just northeast of downtown New Orleans. The cone of depression has formed due to large withdrawals from the aquifer. During the spring of 1993, the altitude of water levels in the Gonzales-New Orleans aquifer within the study area ranged from about 100 feet below sea level in Orleans Parish, to about 11 feet below sea level in St. John the Baptist Parish. Water-level changes in the aquifer during the period 1987-93 ranged from little or no change in some areas, to a recovery of more than 15 feet in eastern Jefferson and western Orleans Parishes near Lake Pontchartrain. Water-level changes within the Gonzales-New Orleans aquifer are primarily related to changes in pumping.

  11. Comparing the microbial risks associated with household drinking water supplies used in peri-urban communities of Phnom Penh, Cambodia.

    PubMed

    Thomas, K; McBean, E; Shantz, A; Murphy, H M

    2015-03-01

    Most Cambodians lack access to a safe source of drinking water. Piped distribution systems are typically limited to major urban centers in Cambodia, and the remaining population relies on a variety of surface, rain, and groundwater sources. This study examines the household water supplies available to Phnom Penh's resettled peri-urban residents through a case-study approach of two communities. A quantitative microbial risk assessment is performed to assess the level of diarrheal disease risk faced by community members due to microbial contamination of drinking water. Risk levels found in this study exceed those associated with households consuming piped water. Filtered and boiled rain and tank water stored in a kettle, bucket/cooler, bucket with spigot or a 500 mL bottle were found to provide risk levels within one order-of-magnitude to the piped water available in Phnom Penh. Two primary concerns identified are the negation of the risk reductions gained by boiling due to prevailing poor storage practices and the use of highly contaminated source water.

  12. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

    USGS Publications Warehouse

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.

    2011-01-01

    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of groundwater flow is from the Rio Grande towards clusters of production wells in the east, north, and west. Water-level changes from predevelopment to 2008 are variable across the area. Hydrographs from piezometers on the east side of the river generally indicate a trend of decline in the annual highest water level through most of the period of record. Hydrographs from piezometers in the valley near the river and on the west side of the river indicate spatial variability in water-level trends.

  13. Selected hydrologic data, through water year 1994, Black Hills Hydrology Study, South Dakota

    USGS Publications Warehouse

    Driscoll, D.G.; Bradford, W.L.; Neitzert, K.M.

    1996-01-01

    This report presents water-level, water-quality, and spring data that have been collected or compiled, through water year 1994, for the Black Hills Hydrology Study. This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District (which represents various local and county cooperators). This report is the second in a series of biennial project data reports produced for the study. Daily water-level data are presented for 39 observation wells and 2 cave sites in the Black Hills area of western South Dakota. The wells are part of a network of observation wells maintained by the Department of Environment and Natural Resources and are completed in various bedrock formations that are utilized as aquifers in the Black Hills area. Both cave sites are located within outcrops of the Madison Limestone. Data presented include site descriptions, hydrographs, and tables of daily water levels. Annual measurements of water levels collected during water years 1993-94 from a network of 20 additional, miscellaneous wells are presented. These wells are part of a Statewide network of wells completed in bedrock aquifers that was operated from 1959 through 1989 in cooperation with the Department of Environment and Natural Resources. Site descriptions and hydrographs for the entire period of record for each site also are presented. Drawdown and recovery data are presented for five wells that were pumped (or flowed) for collection of water-quality samples. These wells are part of the network of observation wells for which daily water-level records are compiled. Water-quality data are presented for 20 surface-water sites and 22 ground-water sites. Data presented include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics and isotopes, cyanide, phenols, and suspended sediment. Spring data are presented for 94 springs and 21 stream reaches with significant springflow components. Data presented include site information, discharge, and field water-quality parameters including temperature, specific conductance, dissolved oxygen, and pH.

  14. Fast ground-water mixing and basal recharge in an unconfined, alluvial aquifer, Konza LTER Site, Northeastern Kansas

    USGS Publications Warehouse

    Macpherson, G.L.; Sophocleous, M.

    2004-01-01

    Ground-water chemistry and water levels at three levels in a well nest were monitored biweekly for two and a half years in a shallow unconfined floodplain aquifer in order to study the dynamics of such shallow aquifers. The aquifer, in northeastern Kansas, consists of high porosity, low hydraulic conductivity fine-grained sediments dominated by silt and bounded by fractured limestone and shale bedrock. Results show that the aquifer underwent chemical stratification followed by homogenization three times during the study period. The length of time between maximum stratification and complete homogenization was 3-5 months. The chemical parameters most useful for demonstrating the mixing trends were dissolved nitrate and sulfate. Higher nitrate concentrations were typical of unsaturated zone water and were sourced from fertilizer applied to the cultivated fields on the floodplain. Variations in sulfate concentrations are attributed to dissolution of rare gypsum in limestone bedrock and variable evapoconcentration in the unsaturated zone. The mixing of three chemically different waters (entrained, unsaturated-zone water; water entering the base of the floodplain aquifer; and water in residence before each mixing event) was simulated. The resident water component for each mixing event was a fixed composition based on measured water chemistry in the intermediate part of the aquifer. The entrained water composition was calculated using a measured composition of the shallow part of the aquifer and measurements of soil-water content in the unsaturated zone. The incoming basal water composition and the fractions of each mixing component were fitted to match the measured chemistry at the three levels in the aquifer. A conceptual model for this site explains: (1) rapid water-level rises, (2) water-chemistry changes at all levels in the aquifer coincident with the water-level rises, (3) low measured hydraulic conductivity of the valley fill and apparent lack of preferential flow pathways, (4) minuscule amounts of unsaturated-zone recharge, and (5) dissolved oxygen peaks in the saturated zone lagging water-level peaks. We postulate that rainfall enters fractures in bedrock adjacent to the floodplain. This recharge water moves rapidly through the fractured bedrock into the base of the floodplain aquifer. The recharge event through the bedrock causes a rapid rise in water level in the floodplain aquifer, and the chemistry of the deepest water in the floodplain aquifer changes at that time. The rising water also entrains slow-moving, nitrate-rich, unsaturated-zone water, altering the chemistry of water in the shallow part of the aquifer. Vertical chemical stratification in the aquifer is thus created by the change in water chemistry in the upper and lower parts of the saturated zone. As the water level begins to decline, the aquifer undergoes mixing that eventually results in homogeneous water chemistry. The rise in water level from the recharge event also displaces gas from the unsaturated zone that is then replaced as the water level declines following the recharge event. This new, oxygen-rich vadose-zone air equilibrates rapidly with saturated-zone water, resulting in a dissolved oxygen pulse in the ground water that peaks one-half to 2 months after the water-level peak. This oxygen pulse subsequently declines over a period of 2-6 months. ?? 2003 Elsevier B.V. All rights reserved.

  15. Fluoride content of still bottled water in Australia.

    PubMed

    Cochrane, N J; Saranathan, S; Morgan, M V; Dashper, S G

    2006-09-01

    Recently there has been a considerable increase in the consumption of bottled water in Australia. Overseas studies have found the fluoride levels in many bottled waters are well below levels considered optimal for preventing dental caries. This raises the concern that if bottled water is regularly consumed an effective means of preventing dental caries is unavailable. The aim of this study was to determine the fluoride concentration in 10 popular brands of still bottled water currently sold in Australia. The fluoride content of water samples were determined using an ion analyser and compared to a fluoride standard. The fluoride concentration of all bottled waters was less than 0.08 ppm. Only three of the 10 brands indicated the fluoride content on their labels. Melbourne reticulated water was found to be fluoridated at 1.02 ppm. All bottled waters tested contained negligible fluoride which justifies the concern that regular consumption of bottled water may reduce the benefits gained from water fluoridation. It is recommended that all bottled water companies should consider stating their fluoride content on their labels. This will inform consumers and dental care providers of the levels of fluoride in bottled water and allow an informed decision regarding consumption of fluoridated versus non-fluoridated drinking water.

  16. Calcium and magnesium in drinking-water and risk of death from lung cancer in women.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2012-01-01

    The possible association between the risk of lung cancer in women and the levels of calcium (Ca) and magnesium (Mg) in drinking-water from municipal supplies was investigated in a matched, case-control study in Taiwan. All eligible female lung cancer deaths (3,532 cases) of Taiwan residents, from 2000 through to 2008, were compared with deaths from other causes (3,532 controls), and the levels of Ca and Mg in drinking-water of these residents were determined. Data on Ca and Mg levels in drinking-water throughout Taiwan were obtained from the Taiwan Water Supply Corporation (TWSC). The control group consisted of people who died from other causes, and the controls were pair-matched to the cases by sex, year of birth, and year of death. The adjusted odd ratios were not statistically significant for the relationship between Ca levels in drinking-water and lung cancer in women. The adjusted odd ratios for female lung cancer deaths for those with higher Mg levels in their drinking-water, as compared to the lowest tertile, were 0.82 (95% CI = 0.72-0.93) and 0.80 (95% CI = 0.69-0.93), respectively. The results of the present study show that there is a significant trend toward a decreased risk of lung cancer in women with increasing Mg levels in drinking-water.

  17. National Water-Quality Assessment Program; the Allegheny-Monongahela River Basin

    USGS Publications Warehouse

    McAuley, Steven D.

    1995-01-01

    In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The three major objectives of the NAWQA program are to provide a consistent description of current water-quality conditions for a large part of the Nation's water resources, define long-term trends in water quality, and identify, describe, and explain the major factors that affect water-quality conditions and trends. The program produces water-quality information that is useful to policy makers and managers at the National, State, and local levels.The program will be implemented through 60 separate investigations of river basins and aquifer systems called study units. These study-unit investigations will be conducted at the State and local level and will form the foundation on which national- and regional-level assessments are based. The 60 study units are hydrologic systems that include parts of most major river basins and aquifer systems. The study-unit areas range from 1,000 to more than 60,000 square miles and include about 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty studyunit investigations were started in 1991, 20 started in 1994, and 20 more are planned to start in 1997. The Allegheny-Monongahela River Basin was selected to begin assessment activities as a NAWQA study unit in 1994. The study team will work from the office of the USGS in Pittsburgh, Pa.

  18. Projections of extreme water level events for atolls in the western Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  19. The Application of Orthophosphate to Reduce Elevated Copper Levels in a New Building with High DIC Water

    EPA Science Inventory

    Public water utilities in the United States are required to meet the 1991 Lead and Copper Rule action level of 1.3 mg/L for copper I drinking water. The effect of water chemistry on Cu(II) solubility has been studied, and drawing upon conclusions from this research , new copper ...

  20. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  1. Bacterial Contamination on Household Toys and Association with Water, Sanitation and Hygiene Conditions in Honduras

    PubMed Central

    Stauber, Christine E.; Walters, Adam; de Aceituno, Anna M. Fabiszewski; Sobsey, Mark D.

    2013-01-01

    There is growing evidence that household water treatment interventions improve microbiological water quality and reduce diarrheal disease risk. Few studies have examined, however, the impact of water treatment interventions on household-level hygiene and sanitation. This study examined the association of four water and sanitation conditions (access to latrines, improved sanitation, improved water and the plastic biosand filter) on the levels of total coliforms and E. coli on existing and introduced toys during an on-going randomized controlled trial of the plastic biosand filter (plastic BSF). The following conditions were associated with decreased bacterial contamination on children’s toys: access to a latrine, access to improved sanitation and access to the plastic BSF. Overall, compared to existing toys, introduced toys had significantly lower levels of both E. coli and total coliforms. Results suggest that levels of fecal indicator bacteria contamination on children’s toys may be associated with access to improved water and sanitation conditions in the home. In addition, the fecal indicator bacteria levels on toys probably vary with duration in the household. Additional information on how these toys become contaminated is needed to determine the usefulness of toys as indicators or sentinels of water, sanitation and hygiene conditions, behaviors and risks. PMID:23598302

  2. Bacterial contamination on household toys and association with water, sanitation and hygiene conditions in Honduras.

    PubMed

    Stauber, Christine E; Walters, Adam; Fabiszewski de Aceituno, Anna M; Sobsey, Mark D

    2013-04-18

    There is growing evidence that household water treatment interventions improve microbiological water quality and reduce diarrheal disease risk. Few studies have examined, however, the impact of water treatment interventions on household-level hygiene and sanitation. This study examined the association of four water and sanitation conditions (access to latrines, improved sanitation, improved water and the plastic biosand filter) on the levels of total coliforms and E. coli on existing and introduced toys during an on-going randomized controlled trial of the plastic biosand filter (plastic BSF). The following conditions were associated with decreased bacterial contamination on children's toys: access to a latrine, access to improved sanitation and access to the plastic BSF. Overall, compared to existing toys, introduced toys had significantly lower levels of both E. coli and total coliforms. Results suggest that levels of fecal indicator bacteria contamination on children's toys may be associated with access to improved water and sanitation conditions in the home. In addition, the fecal indicator bacteria levels on toys probably vary with duration in the household. Additional information on how these toys become contaminated is needed to determine the usefulness of toys as indicators or sentinels of water, sanitation and hygiene conditions, behaviors and risks.

  3. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Howard, Nicole; Osborne, Todd Z.

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  4. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    NASA Astrophysics Data System (ADS)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  5. Fish mercury and surface water sulfate relationships in the Everglades Protection Area.

    PubMed

    Gabriel, Mark C; Howard, Nicole; Osborne, Todd Z

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  6. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in the model could also affect ground-water levels in the southern Lihue Basin in the future.

  7. Characteristics of water infiltration in layered water repellent soils

    USDA-ARS?s Scientific Manuscript database

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  8. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1999

    USGS Publications Warehouse

    Locke, G.L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.

  9. Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005

    USGS Publications Warehouse

    Schrader, T.P.; Jones, J.S.

    2007-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission, the Arkansas Geological Commission, and the Louisiana Department of Transportation and Development has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group since the 1920's. Ground-water withdrawals have increased while water levels have declined since monitoring was initiated. This report has been produced to describe ground-water levels in the aquifers in the Sparta Sand and Memphis Sand and provide information for the management of this valuable resource. The 2005 potentiometric-surface map of the aquifers in the Sparta Sand and Memphis Sand was constructed using water-level data collected in 333 wells in Arkansas and 120 wells in Louisiana during the spring of 2005. The highest water-level altitude measured in Arkansas was 327 feet above National Geodetic Vertical Datum of 1929 located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 189 feet below National Geodetic Vertical Datum of 1929 in Union County. The highest water-level altitude measured in Louisiana was 246 feet above National Geodetic Vertical Datum of 1929 located in Bossier Parish in the outcrop area near the western boundary of the study area; the lowest water-level altitude was 226 feet below National Geodetic Vertical Datum of 1929 in central Ouachita Parish. Three large depressions centered in Columbia, Jefferson, and Union Counties in Arkansas are the result of large withdrawals for industrial and public supplies. In Louisiana, three major pumping centers are in Ouachita, Jackson, and Lincoln Parishes. Water withdrawals from these major pumping centers primarily is used for industrial and public-supply purposes. Withdrawals from Ouachita and Lincoln Parishes and Union County, Arkansas, primarily for industrial purposes, have caused the resulting cones of depression to coalesce so that the -40 foot potentiometric contour encircles the three pumping centers. Seven smaller depressions are evident on the 2005 Sparta-Memphis potentiometric-surface map located in Webster and Winn Parishes, Louisiana, and Calhoun, Cleveland, western Columbia, Desha, and Lafayette Counties, Arkansas. The depression in Calhoun County initially was shown in the 1996-1997 potentiometric surface. The depression in Desha County initially was shown in the 1999 potentiometric surface. The depressions in Webster and Winn Parishes were shown as early as 1975. The depressions in Cleveland, western Columbia, and Lafayette Counties initially were shown in the 2003 potentiometric surface. A map of differences in water-level measurements between 2001 and 2005 was constructed using the difference between water-level measurements from 294 wells in Arkansas and 29 wells in Louisiana. The difference in water levels between 2001 and 2005 ranged from -30.1 to 44.6 feet. The largest rise of 44.6 feet in water level measured was in Union County in Arkansas. The largest decline of 30.1 feet in water level measured was in Columbia County in Arkansas. Areas with a general rise in water levels in Arkansas are shown in Arkansas, Columbia, Craighead, Jefferson, Prairie, and the western half of Union Counties. The area around west-central Union County had rises as much as 44.6 feet, with seven wells showing a rise of 20 feet or greater, which is an annual rise of 5 feet or greater. Areas in Arkansas with a general decline in water level are shown in western Bradley, eastern Calhoun, Cleveland, Cross, Desha, Drew, Lafayette, Lee, Lincoln, Lonoke, Poinsett, and the eastern half of Union Counties. In Louisiana, the water-level difference map showed a general rise in water levels in northern Claiborne, northern Webster, and northwestern Union Parishes mainly because of a decrease in industrial withdrawals in southern Arkansas, particularly Union County. Another rise in water level was indicated in western

  10. Effect modification of the association between trihalomethanes and pancreatic cancer by drinking water hardness: evidence from an ecological study.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-07-01

    The objective of this study was to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of pancreatic cancer and to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop pancreatic cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to pancreatic cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All pancreatic cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level < 4.9ppb, the adjusted OR (95% CI) for pancreatic cancer was 1.01 (0.85-1.21) for individuals who resided in municipalities served by drinking water with a TTHM exposure > 4.9ppb. There was no evidence of an interaction of drinking water TTHM levels with low Ca intake via drinking water. However, we observed evidence of an interaction between drinking water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of pancreatic cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing pancreatic cancer risk will aid in public policy making and standard setting. 2010 Elsevier Inc. All rights reserved.

  11. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to that of 1979-82 and a more severe drought similar to that of 1963-66, but with current (2002) pumping, were compared to results for average monthly recharge conditions (1949-2002). Simulated mild drought conditions showed a reduction of GSB Pond level of about 1.3 feet and a lower streamflow of about 1.7 percent in the nearby stream. Simulated severe drought conditions reduced the pond level at GSB Pond by almost 7 feet and lowered streamflow by about 37 percent. Varying cranberry-irrigation practices had little effect on simulated GSB Pond water levels, but may be important in other ponds. The model was most sensitive to changes in areal recharge. An increase and decrease of 22 percent in recharge produced changes in the GSB Pond water level of +1.4 feet and -2.4 feet, respectively. The accuracy of simulation results was best in the central portion of the study area in the immediate location of GSB Pond. The model was developed with the study-area boundary far enough away from the GSB Pond area that the boundary would have minimal effect on the water levels in GSB Pond, nearby ponds, and the underlying aquifer system. The model is best suited for use by local and State water managers to assess the effects of different withdrawal scenarios for wells and ponds near GSB Pond and for general delineation of areas contributing recharge to wells and ponds in the vicinity of GSB Pond. The model in its current form may not be well suited to detailed analyses of water budgets and flow patterns for parts of the study area farther from GSB Pond without further investigation, calibration, and data collection.

  12. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the correction applied to published data from a particular streamgage to produce elevation data referenced to a specified vertical datum.Offsets were applied to water-level data from surveyed streamgages to further evaluate the accuracy and utility of updated reference mark elevations presented in this report. Daily mean water levels from active streamgages surveyed in this study were converted to water-surface elevations referenced to the Canadian Geodetic Vertical Datum of 2013. Graphical comparisons of water-surface elevations for streamgages in Namakan Reservoir, Rainy Lake, and selected rivers are presented (referencing the Canadian Geodetic Vertical Datum of 2013). Offsets presented in this report can be used in the evaluation of rule curves and in flood damage curves that fully assess the benefits of one regulation approach over another. In addition, offsets may be used to calibrate hydraulic models developed for four narrows that connect lakes of Namakan Reservoir, refine digital elevation models, and support modeling studies designed to assess the effects of rule curves on aquatic vegetation, benthic invertebrates, northern pike, and walleye.

  13. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    PubMed

    Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  14. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water

    PubMed Central

    Kato, Masashi; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U.; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system. PMID:23805262

  15. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  16. Numerical Simulation of the Effect about Groundwater Level Fluctuation on the Concentration of BTEX Dissolved into Source Zone

    NASA Astrophysics Data System (ADS)

    Sun, Liqun; Chen, Yudao; Jiang, Lingzhi; Cheng, Yaping

    2018-01-01

    The water level fluctuation of groundwater will affect the BTEX dissolution in the fuel leakage source zone. In order to study the effect, a leakage test of gasoline was performed in the sand-tank model in the laboratory, and the concentrations of BTEX along with water level were monitored over a long period. Combined with VISUAL MODFLOW software, RT3D module was used to simulate the concentrations of BTEX, and mass flux method was used to evaluate the effects of water level fluctuation on the BTEX dissolution. The results indicate that water level fluctuation can significantly increase the concentration of BTEX dissolved in the leakage source zone. The dissolved amount of BTEX can reach up to 2.4 times under the water level fluctuation condition. The method of numerical simulation combined with mass flux calculation can be used to evaluate the effect of water level fluctuation on BTEX dissolution.

  17. Assessment of arsenic levels in body samples and chronic exposure in people using water with a high concentration of arsenic: a field study in Kutahya.

    PubMed

    Arikan, Inci; Namdar, Nazli Dizen; Kahraman, Cuneyt; Dagci, Merve; Ece, Ezgi

    2015-01-01

    This study aimed to evaluate the prevalence of skin lesions, which is a health effect of chronic arsenic (As) exposure, and determine the hair/blood arsenic concentrations of people living in Kutahya villages who are using and drinking tap water with a high concentration of arsenic. A total of 303 people were included in the present cross-sectional study. A prepared questionnaire form was used to collect the participants' information and environmental history. Skin examination was performed on all participants. Hair, blood and water samples were analyzed using atomic absorption spectroscopy. The cumulative arsenic index (CAI) was calculated for all participants. Villages were divided into two groups according to the arsenic level (<20 μg/L, Group I; >20 μg/L, Group II) in their water. The prevalence of skin lesions, hair and blood arsenic level, and CAI were found to be higher in the Group II participants. There was a positive association between body arsenic levels and CAI in the participants of each group. The number of skin lesions and arsenic concentrations in body samples were found to increase with the water arsenic level and exposure time. We hope that sharing this study's results with local administrators will help accelerate the rehabilitation of water sources in Kutahya.

  18. Improving the Predictability of Severe Water Levels along the Coasts of Marginal Seas

    NASA Astrophysics Data System (ADS)

    Ridder, N. N.; de Vries, H.; van den Brink, H.; De Vries, H.

    2016-12-01

    Extreme water levels can lead to catastrophic consequences with severe societal and economic repercussions. Particularly vulnerable are countries that are largely situated below sea level. To support and optimize forecast models, as well as future adaptation efforts, this study assesses the modeled contribution of storm surges and astronomical tides to total water levels under different air-sea momentum transfer parameterizations in a numerical surge model (WAQUA/DCSMv5) of the North Sea. It particularly focuses on the implications for the representation of extreme and rapidly recurring severe water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5, which is currently used to forecast coastal water levels in the Netherlands, is forced with ERA Interim reanalysis data. Model results are obtained from two different methodologies to parameterize air-sea momentum transfer. The first calculates the governing wind stress forcing using a drag coefficient derived from the conventional approach of wind speed dependent Charnock constants. The other uses instantaneous wind stress from the parameterization of the quasi-linear theory applied within the ECMWF wave model which is expected to deliver a more realistic forcing. The performance of both methods is tested by validating the model output with observations, paying particular attention to their ability to reproduce rapidly succeeding high water levels and extreme events. In a second step, the common features of and connections between these events are analyzed. The results of this study will allow recommendations for the improvement of water level forecasts within marginal seas and support decisions by policy makers. Furthermore, they will strengthen the general understanding of severe and extreme water levels as a whole and help to extend the currently limited knowledge about clustering events.

  19. Anticaries effect of various concentrations of fluoride in drinking water: evaluation of empirical evidence.

    PubMed

    Eklund, S A; Striffler, D F

    1980-01-01

    The benefits to be expected from the adjustment of fluoride levels in drinking water have been studied in great depth, but for the most part only with respect to changes from negligible concentrations to approximately 1.0 ppm. This study makes use of previously gathered data on fluoride concentration in domestic water supplies, the average decayed, missing, and filled teeth (DMFT) scores of the 12- to 14-year-old children, and temperature data in conjunction with linear mathematical models to estimate the effect on DMFT of changes in fluoride concentrations from levels above 0.1 ppm to ideal levels. The results of the analyses indicate that the endemic levels of fluoride in a community water supply play a major role in determining the relative benefit of adjusting that water supply to an ideal level of fluoride. If a rational policy decision is to be made with respect to fluoridation for a given community, the endemic fluoride levels must be considered in conjunction with such factors as population size and the anticipated cost to initiate and maintain the program.

  20. Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0-49-year-olds in Great Britain, 1980-2005.

    PubMed

    Blakey, Karen; Feltbower, Richard G; Parslow, Roger C; James, Peter W; Gómez Pozo, Basilio; Stiller, Charles; Vincent, Tim J; Norman, Paul; McKinney, Patricia A; Murphy, Michael F; Craft, Alan W; McNally, Richard J Q

    2014-02-01

    Artificial fluoridation of drinking water to improve dental health has long been a topic of controversy. Opponents of this public health measure have cited the possibility of bone cancer induction. The study objective was to examine whether increased risk of primary bone cancer was associated with living in areas with higher concentrations of fluoride in drinking water. Case data on osteosarcoma and Ewing sarcoma, diagnosed at ages 0-49 years in Great Britain (GB) (defined here as England, Scotland and Wales) during the period 1980-2005, were obtained from population-based cancer registries. Data on fluoride levels in drinking water in England and Wales were accessed through regional water companies and the Drinking Water Inspectorate. Scottish Water provided data for Scotland. Negative binomial regression was used to examine the relationship between incidence rates and level of fluoride in drinking water at small area level. The study analysed 2566 osteosarcoma and 1650 Ewing sarcoma cases. There was no evidence of an association between osteosarcoma risk and fluoride in drinking water [relative risk (RR) per one part per million increase in the level of fluoride = 1·001; 90% confidence interval (CI) 0·871, 1·151] and similarly there was no association for Ewing sarcoma (RR = 0·929; 90% CI 0·773, 1·115). The findings from this study provide no evidence that higher levels of fluoride (whether natural or artificial) in drinking water in GB lead to greater risk of either osteosarcoma or Ewing sarcoma.

  1. Quality of water from shallow wells in the rice-growing area in southwestern Louisiana, 1999 through 2001

    USGS Publications Warehouse

    Tollett, Roland W.; Fendick, Robert B.

    2004-01-01

    In 1999-2001, the U.S. Geological Survey installed and sampled 27 shallow wells in the rice-growing area in southwestern Louisiana as part of the Acadian-Pontchartrain Study Unit of the National Water-Quality Assessment Program. The purpose of this report is to describe the waulity of water from shallow wells in the rice-growing area and to relate that water quality to natural and anthropogenic activities, particularly rice agriculture. Ground-water samples were analyzed for general ground-water properties and about 150 water-quality constituents, including major inorganic ions, trace elements, nutrients, dissolved organic carbon (DOC), pesticides, radon, chloroflourocarbons, and selected stable isotopes. Dissolved solids concentrations for 17 wells exceeded the U.S. Environmental Protection Agency secondary minimum containment level of 500 milligrams per liter (mg/L) for drinking water. Concentrations for major pesticides generally were less than the maximum contaminant levels for drinking water. Two major inorganic ions, sulfate and chloride, and two trace elements, iron and manganese, had concentrations that were greater than the secondary maximum containment levels. Three nutrient concentrations were greater than 2 mg/L, a level that might indicate contamination from human activities, and one nutrient concentration (that for nitrite plus nitrite as nitrogen) was greater than the maximum contaminant level of 10 mg/L for drinking water. The median concentration for DOC was 0.5 mg/L, indicating naturally-occurring DOC conditions in the study area. Thirteen pesticides and 7 pesticide degradation products were detected in 14 of the 27 wells sampled. Bentazon, 2, 4-D, and molinate (three rice herbicides) were detected in water from four, one, and one wells, respectively, and malathion (a rice insecticide) was deteced in water fromone well. Low-level concentrations and few detections of nutrients and pesticides indicated that ground-water quality was affected slightly by anthropogenic activities. Quality-control samples, including field blanks, replicates, and spikes, indicated no bias in ground-water data from collection on analysis. Radon concentrations for 22 of the 24 wells sampled wer at or greater than the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter. Chlorofluorocarbon concentrations in selected wells indicated the apparent ages of the ground water varied with depth water level and ranged from about 17 to 49 years. The stable isotopes of hydrogen and oxygen in water molecules indicated the origin of ground water in the study area was rainwater that originated near the study area and that few geochemical or physical processes influenced the stable isotopic composition of the shallow ground water. The Spearman rank correlation was used to detemrine whther significant correlations existed between physical properties, selected chemical constituents, the number of pesticides detected, and the apparent age of water. The depth to ground water was positively correlated to the well depth and inversely correlated to dissolved solids and other constituents, such as radon, indicating the ground water was under unconfined or semiconfined conditions and more dilute with increasing depth. As the depth to ground water increased, the concentrations of dissolved solids and other constituents decreased, possibly because the deeper sands had a greater transmittal of ground water, which, over time, would flush out, or dilute, the concentrations of dissolved solids in the natural sediments. The apparent age of water was correlated inversely with nitrite plus nitrite concentration, indicating that as apparent age increased, the nitrite plus nitrite concentration decreased. No significant correlations existed between the number of pesticides detected and any of the physical or chemica

  2. ELEVATED LEVELS OF SODIUM IN COMMUNITY DRINKING WATER

    EPA Science Inventory

    A comparison study of students from towns with differing levels of sodium in drinking water revealed statistically significantly higher blood pressure distributions among the students from the town with high sodium levels. Differences were found in both systolic and diastolic rea...

  3. Potentiometric surface and specific conductance of the Sparta and Memphis aquifers in eastern Arkansas, 1995

    USGS Publications Warehouse

    Stanton, Gregory P.

    1997-01-01

    The Sparta and Memphis aquifers in eastern and south-central Arkansas are a major source of water for industrial, public supply, and agricultural uses. An estimated 240 million gallons per day was withdrawn from the Sparta and Memphis aquifers in 1995, an increase of about 17 million gallons per day from 1990. During the spring and early summer of 1995, the water level in the Sparta and Memphis aquifers was measured in 145 wells, the specific conductance of 101 ground-water samples collected from those aquifers was measured. Maps of areal distribution of potentiometric surface and specific conductance generated from these data reveal spatial trends in these parameters across the eastern and south-central Arkansas study area. The altitude of the potentiometric surface ranged from about 206 feet below sea level in Union County to about 307 feet above sea level in Saline County. The potentiometric surface of the Sparta and Memphis aquifers contains cones of depression descending below sea level in the central and southern portions of the study area, and a potentiometric high along the western study area boundary. Major recharge areas exhibit potentiometric highs greater than 200 feet above sea level and specific conductance values less than 200 microsiemens per centimeter, and generally are located in the outcrop/subcrop areas on the southern one-third of the western boundary and the northern portion of the study area. The regional direction of ground-water flow is from the north and west to the south and east, away from the outcrop and subcrop and northern regions, except near areas affected by intense ground-water withdrawals; such areas are manifested by large cones of depression centered in Columbia, Jefferson, and Union Counties. The cones of depression in adjoining Columbia and Union Counties are coalescing at or near sea level. The lowest water level measured was about 206 feet below sea level in Union County. Increased specific conductance values were measured in the areas of the cones of depression in Columbia and Union Counties. The cones of depression centered in Jefferson County coincides with an elongate area where ground water in the aquifer has low specific conductance. This area extends eastward from the outcrop/subcrop region of recharge. This extension of ground water with low specific conductance possibly indicates increased ground-water movement to the east-southeast from the outcrop/subcrop area induced by ground- water withdrawals in Jefferson County. Specific conductance increases markedly to the northeast and gradually to the south of this area. Long-term hydrographs of eight wells in the study areas, during the period 1970-1995, reveal water-level declines ranging from less than 0.5 foot per year in Phillips County to more than 2.0 feet per year in Union County. Water-level declines of greater than 1.5 feet per year generally are associated with the cones of depression centered in Columbia, Jefferson, and Union Counties.

  4. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    PubMed

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  5. Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf.

    PubMed

    Dobaradaran, Sina; Soleimani, Farshid; Nabipour, Iraj; Saeedi, Reza; Mohammadi, Mohammad Javad

    2018-01-01

    In this study we report the concentration levels of heavy metals (including Pb, Cd, Hg, Cr, Ni, Fe, Mn, Cu) in ballast water of commercial ships, entering Bushehr port for the first time in the region of the Persian Gulf. The concentration levels of Cu and Fe in all samples of the ballast water were higher compared with the coastal waters of Bushehr port. In the case of Cd, 76.47% of samples had higher concentration level compared with the coastal waters of Bushehr port. Results showed that in a long term the ballast water has the potential to change the chemical quality in marine environments and also may affect the human health and marine ecosystem where ships discharge their ballast water. Therefore, permanent monitoring as well as treatment of ballast water before discharging is crucial to keep the marine environment health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Kansas environmental and resource study: A Great Plains model. Monitoring fresh water resources. [water quality of reservoirs

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Processing and analysis of CCT's for numerous ground truth supported passes over Kansas reservoirs has demonstrated that sun angle and atmospheric conditions are strong influences on water reflectance levels as detected by ERTS-1 and can suppress the contributions of true water quality factors. Band ratios, on the other hand, exhibit very little dependence on sun angle and sky conditions and thus are more directly related to water quality. Band ratio levels can be used to reliably determine suspended load. Other water quality indicators appear to have little or no affect on reflectance levels.

  7. A study of water hardness and the prevalence of hypomagnesaemia and hypocalcaemia in healthy subjects of Surat district (Gujarat).

    PubMed

    Kanadhia, Kirti C; Ramavataram, Divvi Venkata Subrahmanya Shri; Nilakhe, Shreeyas Prasad Dhanpal; Patel, Swati

    2014-01-01

    Various sources of drinking water, with varying levels of total hardness, and calcium and magnesium concentrations, are used by populations in different regions. The use of water purifiers can compound the problem of maintaining the desired levels of hardness. An inverse relationship between various conditions, including cardiovascular disease, and hard water has been reported. Until this study, investigation of the hardness of drinking water from different sources, and serum magnesium and calcium in normal subjects from the Surat district, had not been undertaken. This study was performed to assess the concentrations of calcium and magnesium, and total hardness in filtered and non-filtered water and the relationship with serum magnesium and calcium levels in normal subjects consuming such water. Three water samples were collected, at 15-day intervals, from 12 urban and rural areas of Surat; and also 10 different brands of bottled water. Samples were analyzed for total hardness and calcium by complexometric and EDTA methods respectively. Magnesium concentrations were obtained by subtraction of the calcium concentration from total hardness. Serum samples from healthy individuals were analyzed for magnesium and calcium using calmagite and arsenazo methods respectively. The independent t-test was used to establish significance at a level of 95%. A p-value <0.05 was considered significant. Mean total hardness, and calcium and magnesium concentrations in non-filtered, rural tube-well water were much higher than in filtered water from the same area, and the magnesium concentrations were significantly higher (p = 0.038). Filtered urban municipal had lower hardness and concentrations of calcium and magnesium (p = 0.01) compared to corresponding non-filtered water. Significantly lower levels were observed in bottled water compared to rural and urban sources of water. Serum magnesium was significantly lower in the population who were consuming filtered water compared to those drinking non-filtered water (p<0.05). No such difference was observed for serum calcium. Hypomagnesemia correlates with lower magnesium concentrations in drinking water (both rural tube-well and urban municipal waters), which can be attributed to the use of water purifiers. Assuming that a person consumes two liters of drinking water per day, it is estimated that there is an average loss of 160 mg (79%) of magnesium from total waterborne magnesium levels as a result of the filtration of both rural and urban water supplies. Bottled water is too hardness as in calcium and magnesium concentrations.

  8. Total Fluid and Water Consumption and the Joint Effect of Exposure to Disinfection By-Products on Risk of Bladder Cancer

    PubMed Central

    Michaud, Dominique S.; Kogevinas, Manolis; Cantor, Kenneth P.; Villanueva, Cristina M.; Garcia-Closas, Monteserrat; Rothman, Nathaniel; Malats, Nuria; Real, Francisco X.; Serra, Consol; Garcia-Closas, Reina; Tardon, Adonina; Carrato, Alfredo; Dosemeci, Mustafa; Silverman, Debra T.

    2007-01-01

    Background Findings on water and total fluid intake and bladder cancer are inconsistent; this may, in part, be due to different levels of carcinogens in drinking water. High levels of arsenic and chlorinated by-products in drinking water have been associated with elevated bladder cancer risk in most studies. A pooled analysis based on six case–control studies observed a positive association between tap water and bladder cancer but none for nontap fluid intake, suggesting that contaminants in tap water may be responsible for the excess risk. Objectives We examined the association between total fluid and water consumption and bladder cancer risk, as well as the interaction between water intake and trihalomethane (THM) exposure, in a large case–control study in Spain. Methods A total of 397 bladder cancer cases and 664 matched controls were available for this analysis. Odds ratios (OR) were estimated using unconditional logistic regression, controlling for potential confounders. Results Total fluid intake was associated with a decrease in bladder cancer risk [OR = 0.62; 95% confidence interval (CI), 0.40–0.95 for highest vs. lowest quintile comparison]. A significant inverse association was observed for water intake (for > 1,399 vs. < 400 mL/day, OR = 0.47; 95% CI, 0.33–0.66; p for trend < 0.0001), but not for other individual beverages. The inverse association between water intake and bladder cancer persisted within each level of THM exposure; we found no statistical interaction (p for interaction = 0.13). Conclusion Findings from this study suggest that water intake is inversely associated with bladder cancer risk, regardless of THM exposure level. PMID:18007986

  9. Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water.

    PubMed

    Peckham, S; Lowery, D; Spencer, S

    2015-07-01

    While previous research has suggested that there is an association between fluoride ingestion and the incidence of hypothyroidism, few population level studies have been undertaken. In England, approximately 10% of the population live in areas with community fluoridation schemes and hypothyroidism prevalence can be assessed from general practice data. This observational study examines the association between levels of fluoride in water supplies with practice level hypothyroidism prevalence. We used a cross-sectional study design using secondary data to develop binary logistic regression models of predictive factors for hypothyroidism prevalence at practice level using 2012 data on fluoride levels in drinking water, 2012/2013 Quality and Outcomes Framework (QOF) diagnosed hypothyroidism prevalence data, 2013 General Practitioner registered patient numbers and 2012 practice level Index of Multiple Deprivation scores. We found that higher levels of fluoride in drinking water provide a useful contribution for predicting prevalence of hypothyroidism. We found that practices located in the West Midlands (a wholly fluoridated area) are nearly twice as likely to report high hypothyroidism prevalence in comparison to Greater Manchester (non-fluoridated area). In many areas of the world, hypothyroidism is a major health concern and in addition to other factors-such as iodine deficiency-fluoride exposure should be considered as a contributing factor. The findings of the study raise particular concerns about the validity of community fluoridation as a safe public health measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is characterized by local flow near outcrop areas to the north, changing to intermediate flow and then regional flow downdip (southeastward) as the aquifers become more deeply buried. Water levels in these deeper aquifers show a pronounced response to topography and climate in the vicinity of outcrops, and diminish southeastward where the aquifer is more deeply buried. Stream stage and pumpage affect ground-water levels in these deeper aquifers to varying degrees throughout the study area. The geologic characteristics of the Savannah River alluvial valley substantially control the configuration of potentiometric surfaces, ground-water-flow directions, and stream-aquifer relations. Data from 18 shallow borings indicate incision into each aquifer by the paleo Savannah River channel and subsequent infill of permeable alluvium, allowing for direct hydraulic connection between aquifers and the Savannah River along parts of its reach. This hydraulic connection may be the cause of large ground-water discharge to the river near Jackson, S.C., where the Gordon aquifer is in contact with Savannah River alluvium, and also the cause of lows or depressions formed in the potentiometric surfaces of confined aquifers that are in contact with the alluvium. Ground water in these aquifers flows toward the depressions. The influence of the river is diminished downstream where the aquifers are deeply buried, and upstream and downstream ground-water flow is possibly separated by a water divide or 'saddle'. Water-level data indicate that saddle features probably exist in the Gordon aquifer and Dublin aquifer system, and also might be present in the Midville aquifer system. Ground-water levels respond seasonally or in long term to changes in precipitation, evapotranspiration, pumpage, and river stage. Continuous water-level data and water-levels measured in a network of 271 wells during the Spring (May) and Fall (October) in 1992, indicate that seasonal water-level changes generally are

  11. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

    PubMed Central

    Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2018-01-01

    Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs. PMID:29672560

  12. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau.

    PubMed

    Ma, Miaojun; Ma, Zhen; Du, Guozhen

    2014-01-01

    Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. We examined the effects of water level (0 cm, 5 cm and 10 cm) on seed germination and seedling establishment from soil seed banks at 0-5 cm and 5-10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank.

  13. The US Navy Coastal Surge and Inundation Prediction System (CSIPS): Making Forecasts Easier

    DTIC Science & Technology

    2013-02-14

    produced the best results Peak Water Level Percent Error CD Formulation LAWMA , Amerada Pass Freshwater Canal Locks Calcasieu Pass Sabine Pass...Conclusions Ongoing Work 16 Baseline Simulation Results Peak Water Level Percent Error LAWMA , Amerada Pass Freshwater Canal Locks Calcasieu Pass...Conclusions Ongoing Work 20 Sensitivity Studies Waves Run Water Level – Percent Error of Peak HWM MAPE Lawma , Armeda Pass Freshwater

  14. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2009. The map is based on water-level measurements in 82 wells. The highest measured water level was 48 feet above sea level near the northern boundary and in the outcrop area of the aquifer in the central part of Anne Arundel County. Water levels also were above sea level in Kent County and northern Queen Anne's County. Water levels were below sea level south and east of these areas and in the remainder of the study area. The hydraulic gradient increased southeastward toward a cone of depression around well fields at Lexington Park and Solomons Island. The lowest measured water level was 145 feet below sea level at the center of a cone of depression at Lexington Park. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  15. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    NASA Astrophysics Data System (ADS)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  16. Water-resources data network evaluation for Monterey County, California; Phase 2, northern and coastal areas of Monterey County

    USGS Publications Warehouse

    Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.

    1995-01-01

    This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood Control and Water Conservation District maintained three networks in the study areas to measure ground-water levels: (1) the summer network, (2) the monthly network, and (3) the annual autumn network. The California American Water Company also did some ground-water-level monitoring in these areas. Well coverage for ground-water monitoring was dense in the seawater-intrusion area north of Moss Landing (possibly because of multiple overlying aquifers), but sparse in other parts of the study areas. During the study, 44 sections were identified as not monitored for ground-water levels. In an ideal ground-water-level network, wells would be evenly spaced, except where local conditions or correlations of wells make monitoring unnecessary. A total of 384 wells that monitor ground-water levels and/or ground-water quality were identified during this study. The Monterey County Flood Control and Water Conservation District sampled ground-water quality monthly during the irrigation season to monitor seawater intrusion. Once each year (during the summer), the wells in this network were monitored for chlorides, specific conductance, and nitrates. Additional samples were collected from each well once every 5 years for complete mineral analysis. The California Department of Health Services, the California American Water Company, the U.S. Army Health Service at Ford Ord, and the Monterey Peninsula Water Management District also monitored ground-water quality in wells in the study areas. Well coverage for the ground-water- quality networks was dense in the seawater- intrusion area north of Moss Landing, but sparse in the rest of the study areas. During this study, 54 sections were identified as not monitored for water quality.

  17. Enzymatic activity in the surface microlayer and subsurface water in the harbour channel

    NASA Astrophysics Data System (ADS)

    Perliński, Piotr; Mudryk, Zbigniew J.; Antonowicz, Józef

    2017-09-01

    Hydrolytic activity of eight extracellular enzymes was determined spectrofluorimetric method in the surface microlayer and subsurface water in the harbour channel in Ustka. The ranking order of the potential enzyme activity rates in the studied water layers was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > xylanase > cellulase > chitinase. The level of activity of all studied hydrolases was higher in the surface microlayer than subsurface water. No clear gradients in the level of enzymatic activity were determined along the horizontal profile of the studied channel. Activity of extracellular enzymes was strongly influenced by the season.

  18. An urgent need to reassess the safe levels of copper in the drinking water: lessons from studies on healthy animals harboring no genetic deficits.

    PubMed

    Pal, Amit; Jayamani, Jayagandan; Prasad, Rajendra

    2014-09-01

    Recent seminal studies have established neurodegeneration, cognitive waning and/or β-amyloid deposition due to chronic copper intoxication via drinking water in healthy animals; henceforth, fuelling the debate all again over the safe levels of copper in the drinking water. This review encompasses the contemporary imperative animal studies in which the effect of chronic copper toxicity (especially via drinking water) was evaluated on the central nervous system and memory of uncompromised animals along with discussing the future perspectives. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Colon cancer and content of nitrates and magnesium in drinking water.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-06-01

    The objective of this study was to explore whether magnesium levels (Mg) in drinking water modify the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year-of-birth, and year-of-death. Information on the levels of nitrate-nitrogen (NO3-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO3-N and Mg exposure via drinking water. The results of our study show that there is a significant trend towards an elevated risk of death from colon cancer with increasing nitrate levels in drinking water. Furthermore, we observed evidence of an interaction between drinking water NO3-N and Mg intake via drinking water. This is the first study to report effect modification by Mg intake from drinking water on the association between NO3-N exposure and colon cancer risk.

  20. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of ground water has the potential to decrease discharge to streams and affect both the amount and quality of surface water in the study area. A comparison of the 1995 to 1994 water budgets emphasizes that the hydrologic system in the study area is very dependent upon the amount of annual precipitation. Although precipitation on the study area was much greater in 1995 than in 1994, most of the additional water resulted in additional streamflow and spring discharge that flows out of the study area. Ground-water levels and groundwater discharge are dependent upon annual precipitation and can vary substantially from year to year.Snowmelt runoff was simulated to assist in estimating ground-water recharge to consolidated rock and unconsolidated valley fill. A topographically distributed snowmelt model controlled by independent inputs of net radiation, meteorological parameters, and snowcover properties was used to calculate the energy and mass balance of the snowcover.

  1. Detection and quantification of trihalomethanes in drinking water from Alexandria, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, A.A.M.; Benfenati, E.; Fanelli, R.

    1996-03-01

    Trihalomethanes (THMs) are one group of harmful chlorinated compounds which are known to contaminate drinking water. The total concentration of the four THMs in drinking water may vary up to 1000 {mu}g/l but it should not exceed 100 {mu}g/l. Toxicological studies suggest that chloroform and other THMs may have detrimental effect on human health. Chloroform was reported to cause cancer in experimental animals. Other THMs, based on the structural similarity to chloroform, may be also classified as health hazard compounds. Accordingly, THMs in water supplies should be monitored closely so that measures may be taken to minimize or eliminate theirmore » presence whenever the concentration approach levels of concern. Little is known about the levels of THMs in drinking water of Egypt compared to other countries. Few studies have been reported from Cairo. To our knowledge, no studies concerning the THMs levels in drinking water have been reported from Alexandria. Therefore, the aim of this study is to detect and quantitate the levels of THMs in drinking water from some main districts in Alexandria, Solid Phase Micro Extraction (SPME) is a fast, sensitive, inexpensive, portable and solvent-free method for extracting organic compounds from aqueous samples. It is amenable to automation and can be used with any gas chromatograph (or mass spectrometer). The technique meets detection limits specified by EPA methods and was therefore used in this work.« less

  2. Incidence of heavy metal contamination in water supplies in northern Mexico.

    PubMed

    Wyatt, C J; Fimbres, C; Romo, L; Méndez, R O; Grijalva, M

    1998-02-01

    Contaminants in drinking water present public health risks. The objective of this study was to analyze water samples taken from wells or storage tanks, direct sources for domestic water in Northern Mexico, for the presence of lead (Pb), copper (Cu), cadmium (Cd), arsenic (As), and mercury (Hg). The samples were analyzed by atomic absorption coupled with a hydride generator or a graphite furnace. High levels of Pb (0.05-0.12 ppm) were found in Hermosillo, Guaymas, and Nacozari. Forty-three percent of the samples in Sonora exceeded the action level (0.015 ppm) established by the EPA for Pb. For As, 8.92% exceeded the limit with a range of 0.002-0.305 ppm. Several studies have indicated a possible link between As and fluoride (F) in drinking water. This study showed a positive correlation between F and As (r = 0.53, P = 0.01, and n = 116). One location in Hermosillo had 7.36 ppm of F and 0.117 ppm of As, 3.5 times the recommended F levels in drinking water and 2 times higher than the level permitted for As. Hg contamination was found in 42% of the samples. Based on the results of this study, it appears that As, Hg, and Pb contamination in the drinking water for some areas of the state of Sonora is a major concern.

  3. Status of ground-water levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2000-January 2003

    USGS Publications Warehouse

    Hansen, Cristi V.; Aucott, Walter R.

    2004-01-01

    The Equus Beds aquifer northwest of Wichita, Kansas, was developed to supply water to Wichita residents and for irrigation in south-central Kansas beginning on September 1, 1940. Ground-water pumping for city and agricultural use from the aquifer caused water levels to decline in a large part of the area. Irrigation pumpage in the area increased substantially during the 1970s and 1980s and accelerated water-level declines. A period of water-level rises associated with greater-than-average precipitation and decreased city pumpage from the study area began in 1993. An important factor in the decreased city pumpage was increased use of Cheney Reservoir as a water-supply source by the city of Wichita; as a result, city pumpage from the Equus Beds aquifer during 1993-2002 went from being greater than one-half to slightly less than one-third of Wichita's water usage. Since 1995, the city also has been investigating the use of artificial recharge in the study area to meet future water-supply needs and to protect the aquifer from the intrusion of saltwater from natural and human-related sources to the west. During January 2003, the direction of ground-water flow in the Equus Beds aquifer in the area was generally from west to east similar to predevelopment of the aquifer. The maximum water-level decline since 1940 for the period January 2000 to January 2003 was 29.54 feet in July 2002 at well 3 in the northern part of the area. Cumulative water-level changes from January 2000 to January 2003 typically were less than 4 feet with rises of less than 4 feet common in the central part of the area; however, declines of more than 4 feet occurred in the northwestern and southern parts of the area. The recovery of water levels and aquifer storage volumes from record low levels in October 1992 generally continued to April 2000. The recovery of about 182,000 acre-feet of storage volume in the area from October 1992 to April 2000 represents about a 64-percent recovery of the storage depletion that occurred from August 1940 to October 1992. About 47 percent of this recovery was lost from April 2000 to October 2002 when storage volume in the area decreased by about 86,000 acre-feet. Major contributors to the decreases in water levels and storage volumes were reduced recharge associated with precipitation that was less than in the preceding 5 years and increased irrigation pumpage. The loss of storage probably would have been larger if the continued decrease in city pumpage, which is closely associated with the water-level rises in the central part of the study area, and increased city use of water from Cheney Reservoir had not occurred. The effect of artificial recharge on water levels and storage volume probably was masked by the generally larger decreases in city pumpage in the area.

  4. METHOD DEVELOPMENT FOR THE LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER

    EPA Science Inventory

    Perchlorate anion has been found in numerous drinking water supplies at concentrations that recent studies indicate may adversely affect human health. In order to measure perchlorate at levels of health concern in drinking water, there is a need to be able to quantify perchlorat...

  5. Ground-water levels in alluvium on the South coast of Puerto Rico, February 1978

    USGS Publications Warehouse

    Diaz, Jose R.

    1979-01-01

    Ground-water levels in the alluvial aquifer of the south coast of Puerto Rico in February 1978 were similar to or slightly higher than those of February 1977. Water levels rose about 2 to 3 meters in the northern section near the foothills in the coastal plain area from Salinas to Patillas and in the Guanica-Penuelas area. Pumpage remained unchanged in most of the areas under study. Pumping-water levels were above mean sea level in all industrial well fields. Pumping and static water levels were below mean sea level (1 to 3 meters), in public supply and irrigation wells in the areas of Playa de Ponce, Descalabrado-Punta Petrona, and in the vicinity of the town of Salinas. These levels are considered to be normal for the dry season in these highly irrigated areas. Sixty-four water samples collected from irrigation, industrial and salinity observation wells exhibited similar or lower chloride concentration than in previous years. The average chloride concentration for 1978 was 57 milligrams per liter. (USGS)

  6. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2) closed-basin lake-level changes reflected groundwater-level changes in the Quaternary, Prairie du Chien, and Jordan aquifers; (3) the installation of outlet-control structures, such as culverts and weirs, resulted in smaller multiyear lake-level changes than lakes without outlet-control structures; (4) water levels in lakes primarily overlying Superior Lobe deposits were significantly more variable than lakes primarily overlying Des Moines Lobe deposits; (5) lake-level declines were larger with increasing mean lake-level elevation; and (6) the frequency of some of these characteristics varies by landscape position. Flow-through lakes and lakes with outlet-control structures were more common in watersheds with more than 50 percent urban development compared to watersheds with less than 50 percent urban development. A comparison of two 35-year periods during 1925–2014 revealed that variability of annual mean lake levels in flow-through lakes increased when annual precipitation totals were more variable, whereas variability of annual mean lake levels in closed-basin lakes had the opposite pattern, being more variable when annual precipitation totals were less variable. Oxygen-18/oxygen-16 and hydrogen-2/hydrogen-1 ratios for water samples from 40 wells indicated the well water was a mixture of surface water and groundwater in 31 wells, whereas ratios from water sampled from 9 other wells indicated that water from these wells receive no surface-water contribution. Of the 31 wells with a mixture of surface water and groundwater, 11 were downgradient from White Bear Lake, likely receiving water from deeper parts of the lake. Age dating of water samples from wells indicated that the age of water in the Prairie du Chien and Jordan aquifers can vary widely across the northeast Twin Cities Metropolitan Area. Estimated ages of recharge for 9 of the 40 wells sampled for chlorofluorocarbon concentrations ranged widely from the early 1940s to mid-1970s. The wide range in estimated ages of recharge may have resulted from the wide range in the open-interval lengths and depths for the wells.Results from stable isotope analyses of water samples, lake-sediment coring, continuous seismic-reflection profiling, and water-level and flow monitoring indicated that there is groundwater inflow from nearshore sites and lake-water outflow from deep-water sites in White Bear Lake. Continuous seismic-reflection profiling indicated that deep sections of White Bear, Pleasant, Turtle, and Big Marine Lakes have few trapped gases and little organic material, which indicates where groundwater and lake-water exchanges are more likely. Water-level differences between White Bear Lake and piezometer and seepage measurements in deep waters of the lake indicate that groundwater and lake-water exchange is happening in deep waters, predominantly downgradient from the lake and into the lake sediment. Seepage fluxes measured in the nearshore sites of White Bear Lake generally were higher than seepage fluxes measured in the deep-water sites, which indicates that groundwater-inflow rates at most of the nearshore sites are higher than lake-water outflow from the deep-water sites.

  7. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    PubMed

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Water-Resource Trends and Comparisons Between Partial-Development and October 2006 Hydrologic Conditions, Wood River Valley, South-Central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.

    2007-01-01

    This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly discharge for July through February and April from 1975 to 2005. Comparisons of partial-development (ground-water conditions from 1952 to 1986) and 2006 ground-water resources in the Wood River Valley using a geographic information system indicate that most ground-water levels for the unconfined aquifer in the study area are either stable or declining. Declines are predominant in the southern part of the study area south of Hailey, and some areas exceed what is expected of natural fluctuations in ground-water levels. Some ground-water levels rose in the northern part of the study area; however, these increases are approximated due to a lack of water-level data in the area. Ground-water level declines in the confined aquifer exceed the range of expected natural fluctuations in large areas of the confined aquifer in the southern part of the study area in the Bellevue fan. However, the results in this area are approximated due to limited available water-level data.

  9. Ground-water levels in Huron County, Michigan, January 1996 through December 1996

    USGS Publications Warehouse

    Sweat, M.J.

    1997-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.Precipitation and the altitude of Lake Huron are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean monthly water-level altitude of Lake Huron, averaged from measurements made by U.S. Army Corps of Engineers at two sites, and mean monthly precipitation as recorded in Huron County, for the period October 1988 through December 1996. In general, Lake Huron water levels in 1996 were about the same as they were from 1992-94 (NOAA, 1988-96). Precipitation was generally within the normal range, but was lower than 1993 or 1994. Rainfall during May, June, and July was, cumulatively, about 8.5 inches less in 1995 than in 1994.Hydrographs are presented for each of four wells with water-level recorders. Quarterly water-level measurements and range of water levels during 1996 for the other 22 wells are shown graphically and tabulated.In general, water levels in the glaciofluvial aquifer reflect seasonal variations, with maximum depths to water occurring in late summer and early fall and minimum depths to water occurring in late winter and early spring. In general, wells completed in the lower part of the Marshall aquifer continue to show an increase in water-level altitude from the original project period (1988-90); wells completed in the upper part of the Marshall aquifer showed little variation in water-level altitudes compared to previous years. Wells completed in the Saginaw aquifer continued to show higher water level altitudes in 1995, not only near the lake but also farther inland, while water-level altitudes in wells completed in the Coldwater confining unit showed a small increase from the original project period. Water-level altitudes were higher in the southwest and central parts of the County during 1995 than in the previous year, and water-level altitudes were for the most-part unchanged in the northwest, northeast, and southeast parts of the county during 1995. All wells with recorders had lower water levels in September 1995 than in 1993-94. Lower than average precipitation during May-August is the primary reason for lower levels.

  10. Assessing the influence of water level on schistosomiasis in Dongting Lake region before and after the construction of Three Gorges Dam.

    PubMed

    Li, Zhongwu; Nie, Xiaodong; Zhang, Yan; Huang, Jinquan; Huang, Bin; Zeng, Guangming

    2016-01-01

    Schistosomiasis is a severe public health problem in the Dongting Lake region, and its distribution, prevalence, and intensity of infection are particularly sensitive to environmental changes. In this study, the human and bovine schistosomiasis variations in the Dongting Lake region were studied from 1996 to 2010, and the relationships between schistosomiasis and water level were examined. Furthermore, based on these results, the potential effects of the Three Gorges Dam (TGD) on schistosomiasis were investigated. Results showed an increase in human schistosomiasis and in the scope of seriously affected regions, along with a decrease in bovine schistosomiasis. Human schistosomiasis was negatively correlated with water level during wet season (from May to October), particularly the average water level in October. This finding indicated that the decreasing water level may be highly related to the increasing of human schistosomiasis in the Dongting Lake region. Based on this result and the variation of schistosomiasis before and after the construction and operation of TGD, the impoundment of the Three Gorges reservoir is believed to decrease the water level and increase the contact between people and schistosomiasis. Therefore, the TGD, which is operated by regulating water and scheduling water operations, is not good for the control of human schistosomiasis in the Dongting Lake region. Although the extent of the influence of the TGD on schistosomiasis remains unclear, the influence of the TGD on preventing and controlling schistosomiasis should not be ignored.

  11. Nitrates in municipal drinking water and non-Hodgkin lymphoma: an ecological cancer case-control study in Taiwan.

    PubMed

    Chang, Chih-Ching; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-01-01

    The relationship between nitrate levels in drinking water and increased risk of non-Hodgkin lymphoma (NHL) development has been inconclusive. A matched cancer case-control and a nitrate ecology study was used to investigate the association between mortality attributed to NHL and nitrate exposure from Taiwan's drinking water. All deaths due to NHL in Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from the Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios (OR) for NHL death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.02 (0.87-1.2) and 1.05 (0.89-1.24), respectively. The results of the present study show that there was no statistically significant association between nitrates in drinking water at levels in this investigation and increased risk of death attributed to NHL.

  12. Nitrate in drinking water and risk of death from bladder cancer: an ecological case-control study in Taiwan.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Yang, Chun-Yuh

    2007-06-01

    The relationship between nitrate levels in drinking water and bladder cancer development is controversial. A matched cancer case-control with nitrate ecology study was used to investigate the association between bladder cancer mortality occurrence and nitrate exposure from Taiwan drinking water. All bladder cancer deaths of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth,and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for bladder cancer death for those with high nitrate levels in their drinking water were 1.76 (1.28-2.42) and 1.96 (1.41-2.72) as compared to the lowest tertile. The results of the present study show that there was a significant positive relationship between the levels of nitrate in drinking water and risk of death from bladder cancer.

  13. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  14. Does water hardness have preventive effect on cardiovascular disease?

    PubMed

    Momeni, Mitra; Gharedaghi, Zahra; Amin, Mohammad Mehadi; Poursafa, Parinaz; Mansourian, Marjan

    2014-02-01

    The aim of this study is to investigate the association of calcium and magnesium concentration of drinking water with cardiovascular disease (CVDs) in urban and rural areas of a city in Iran. This case-control study was conducted in 2012 in Khansar County in Isfahan province, Iran. We used the official data of the Provincial health center regarding the chemical analysis data of urban and rural areas including the hardness, calcium and magnesium content of drinking water. Data of patients hospitalized for CVD in the only specialty hospital of the city was gathered for the years of 2010 and 2011. In 2010, water calcium content above 72 mg/L was associated with reduced number of CVDs in 1000 population; whereas in 2011 this decrease in CVDs was observed for calcium levels of more than 75 mg/L. In 2010, the level of water Mg content ranged from 23 to 57 mg/L. By increasing Mg hardness level above 31 mg/L in 2010 and above 26 mg/L in 2011 were associated with decreased number of CVDs in 1000 people. decrease. Our study suggests favorable protective effects of water hardness, mainly water magnesium content, on CVDs. Water hardness, as well as calcium and magnesium content of drinking water may have a protective role against CVDs. Further experimental studies are necessary to determine the underlying mechanisms and longitudinal studies are required to study the clinical impacts of the current findings.

  15. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  16. Potentiometric Surfaces and Water-Level Trends in the Cockfield and Wilcox Aquifers of Southern and Northeastern Arkansas, 2006

    USGS Publications Warehouse

    Schrader, T.P.

    2007-01-01

    The Cockfield Formation of Claiborne Group and the Wilcox Group contain aquifers that provide sources of ground water in southern and northeastern Arkansas. In 2000, about 9.9 million gallons per day was withdrawn from the Cockfield Formation of Claiborne Group and about 22.2 million gallons per day was withdrawn from the Wilcox Group. Major withdrawals from the aquifers were for industrial and public water supplies. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey to determine the water level associated with the aquifers in the Cockfield Formation of Claiborne Group and the Wilcox Group in southern and northeastern Arkansas. During February and March 2006, 56 water-level measurements were made in wells completed in the Cockfield aquifer and 59 water-level measurements were made in wells completed in the Wilcox aquifer, 16 in southwestern and 43 in northeastern Arkansas. This report presents the results as potentiometric-surface maps and as long-term water-level hydrographs. The regional direction of ground-water flow in the Cockfield Formation of Claiborne Group generally is towards the east and southeast, away from the outcrop, except in areas of intense ground-water withdrawals, such as western Drew County, southeastern Lincoln County, southwestern Calhoun County, and near Crossett in Ashley County. There are three cones of depression indicated by relatively low water-level altitudes in southeastern Lincoln County, southwestern Calhoun County, and near Crossett in Ashley County. The lowest water-level altitude measured was 44 feet above the National Geodetic Vertical Datum of 1929 in Lincoln County; the highest water-level altitude measured was 346 feet above the National Geodetic Vertical Datum of 1929 in Columbia County at the outcrop area. Hydrographs from 40 wells with historical water levels from 1986 to 2006 were evaluated using linear regression to calculate the annual rise or decline. Calhoun and Cleveland Counties have mean annual rises from 0.01 to 0.07 feet per year. Arkansas, Ashley, Bradley, Chicot, Columbia, Drew, Lincoln, and Union Counties have mean annual declines from 0.4 to 0.55 feet per year. Desha County has a mean annual decline of about 1.35 feet per year. The direction of ground-water flow in the southwestern study area of the Wilcox Group generally is south and east. The lowest water-level altitude measured in southwestern Arkansas was 147 feet above the National Geodetic Vertical Datum of 1929 near the Ouachita River in Clark County; the highest water-level altitude measured was 397 feet above the National Geodetic Vertical Datum of 1929 in the outcrop area of Hempstead County. The direction of ground-water flow in the northeastern study area of the Wilcox Group generally is south and east. The lowest water-level altitude measured in northeastern Arkansas was 120 feet above the National Geodetic Vertical Datum of 1929 near West Memphis in Crittenden County; the highest water-level altitude measured was 368 feet above the National Geodetic Vertical Datum of 1929 on Crowleys Ridge in Clay County. Hydrographs from 28 wells with historical water levels from 1986 to 2006 were evaluated using linear regression to calculate the annual rise or decline. All 28 wells showed an annual decline from 1986 to 2006. Craighead, Greene, Mississippi, and Poinsett Counties have mean annual declines from 0.27 to 1.00 feet per year. Crittenden, Lee, and St. Francis Counties have mean annual declines from 1.39 to 1.64 feet per year.

  17. Effects of human management on black carbon sorption/desorption during a water transfer project: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Hao, Rong; Zhang, Jinliang; Wang, Peichao; Hu, Ronggui; Song, Yantun; Wu, Yupeng; Qiu, Guohong

    2018-05-15

    Water resources management is an important public concern. In this study, we examined the extent of sorption/desorption of trace pollutants to soil black carbon (BC) in the water level fluctuation zone (WLFZ) of the middle route of the South to North Water Transfer Project in China. In addition, we investigated the main management measures affecting these processes during the project. The results showed that the pseudo second-order model adequately describes the sorption/desorption of phenanthrene on the soil BC in the WLFZ. Water level fluctuation may indirectly influenced BC sorption/desorption by altering water chemistry. Water level residence time had negative effects on BC sorption in short-term experiments (days to months), but the impact gradually diminished with increased residence time. The results suggested that long-term field monitoring of water chemistry is urgent. During the initial period of water transfer, delaying the water supplies as drinking water source or directly irrigating crops could mitigate the adverse impacts. Future research should focus on the water-soluble products of BC degradation. The findings of this study should be useful in improving sustainable management of water resources for water transfer projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Coastal Sea Level and Estuary Tide Modeling in Bangladesh Using SAR, Radar and GNSS-R Altimetry

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Shum, C. K.; Sun, J.; Li, D.; Shang, K.; Yi, Y.; Calmant, S.; Ballu, V.; Chu, P.; Johnson, J.; Park, J.; Bao, L.; Kuo, C. Y.; Wickert, J.

    2017-12-01

    Bangladesh, located at the confluence of three large rivers - Ganges, Brahmaputra and Meghna, is a low-lying country. It is prone to monsoonal flooding, potentially aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. Its coastal estuaries, the Sundarbans wetlands, have the largest Mangrove forest in the world, and exhibits complex tidal dynamics. In order to study flood hazards, ecological or climate changes over floodplains, it is fundamentally important to know the water level and water storage capacity in wetlands. Inaccurate or inadequate information about wetland water storage will cause significant errors in hydrological simulation and modeling for understanding ecological and economic implications. However, in most areas, the exact knowledge of water level change and the flow patterns is lacking due to insufficient monitoring of water level gauging stations on private and public lands within wetlands or floodplains, due to the difficulty of physical access to the sites and logistics in data gathering. Usage of satellite all-weather remote sensing products provides an alternative approach for monitoring the water level variation over floodplains or wetlands. In this study, we used a combination of observations from satellite radar altimetry (Envisat/Jason-2/Altika/Sentinel-3), L-band synthetic aperture radar (ALOS-1/-2) backscattering coefficients inferred water level, GNSS-R altimetry from two coastal/river GNSS sites, for measuring coastal and estuary sea-level and conducting estuary ocean tide modeling in the Bangladesh delta including the Sundarbans wetlands.

  19. Lake Erie Water Level Study. Main Report.

    DTIC Science & Technology

    1981-07-01

    of recreational beach activities. Examples include: Rondeau, Long Point and Sandbanks in Canada and Hamlin (New York), Presque Isle ( Pennsylvania ...be most affected by lake level changes. Long Point, Rondeau, Sandusky, and Presque Isle Bays are, due to their shallow nature and sand spit formation...AD-AI14 582 INTERNATIONAL LAKE ERIE REGULATION STUDY BOARD F/9 13/2 LAKE ERIE WATER LEVEL STUDY. MAIN REPORT.(U) UNCLASSIFIED N1.3 iE~hE

  20. [Investigation of the association between arsenic levels in drinking water and suicide rate of Hungarian settlements between 2005 and 2011. A preliminary study].

    PubMed

    Rihmer, Zoltán; Hal, Melinda; Kapitány, Balázs; Gonda, Xénia; Vargha, Márta; Döme, Péter

    2016-01-01

    Both suicidal behaviour and consumption of arsenic-contaminated drinking-water represent major public health problems. Previous epidemiological and animal studies showed that high arsenic intake may also be associated with the elevated risk for depression. Since untreated depression is the most powerful risk factor for suicidal behaviour, we postulated that the consumption of arsenic-contaminated tap drinking-water may also be related to suicide. Based on the level of arsenic in their drinking water Hungarian settlements with more then 500 inhabitants (n=1639) were divided into four groups. Then average age-standardized suicide rates of the four groups were compared. We found that the higher is the arsenic level in the drinking water the higher is the suicide rate of the settlements. In addition to the practical consequences of our preliminary results (e.g. in the suicide prevention) they also suggest that high level of arsenic in drinking water might contribute, at least in part, to the well-known and stable in time regional differences in suicide mortality of Hungary since the highest arsenic levels in drinking water have been found in counties with traditionally high suicide rates, such as Bacs-Kiskun, Csongrad, Bekes and Hajdu- Bihar.

  1. Monitoring lake level changes by altimetry in the arid region of Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.

    2017-07-01

    The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.

  2. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    PubMed Central

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A. G.

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  3. Feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content with changing postures.

    PubMed

    Nazari, Jalil; Pope, Malcolm H; Graveling, Richard A

    2015-05-01

    Opportunities to evaluate spinal loading in vivo are limited and a large majority of studies on the mechanical functions of the spine have been in vitro cadaveric studies and/or models based on many assumptions that are difficult to validate. The purpose of this study was to investigate the feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content measurements with changing postures. MRI studies were conducted on 25 healthy males with no history of low back pain (age 20-38). The L1 to S1 intradiscal levels were imaged in supine, sitting and standing postures using an upright 0.6 Tesla magnet, where a set of H2O: D2O7 phantoms were mounted on the back of the subjects. A calibration curve, provided from these phantoms, was applied to the absolute proton density image, yielding a pixel-by-pixel map of the water content of the NP. The NP at all levels showed a highly significant water loss (p<0.001) in sitting and standing postures compared with the supine posture. A trend towards higher levels of water was observed at all levels in the standing posture relative to sitting postures, however statistically significant differences were found only at L4-L5 and L5-S1 levels. This study demonstrates that variations in water content of the NP in different postures are in agreement with those determined from published invasive disc pressure measurements. The result of study demonstrates the feasibility of using MRI to determine the water content of the NP with changing postures and to use these data to evaluate spinal loading in these postures. This measurement method of water content by quantitative MR imaging could become a powerful tool for both clinical and ergonomic applications. The proposed methodology does not require invasive pressure measurement techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifersmore » underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.« less

  5. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.

    2008-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

  6. Quality of shallow ground water in areas of recent residential and commercial development, Wichita, Kansas, 2000

    USGS Publications Warehouse

    Pope, Larry M.; Bruce, Breton W.; Rasmussen, Patrick P.; Milligan, Chad R.

    2002-01-01

    Water samples from 30 randomly distributed monitoring wells in areas of recent residential and commercial development (1960-96), Wichita, Kansas, were collected in 2000 as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The samples were analyzed for about 170 water-quality constituents that included chlorofluorocarbons, physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticide compounds, and volatile organic compounds. The purpose of this report is to provide an assessment of water quality in recharge to shallow ground water underlying areas of recent residential and commercial development and to determine the relation of ground-water quality to overlying urban land use. Analyses of water from the 30 monitoring wells for chlorofluorocarbons were used to estimate apparent dates of recharge. Water from 18 wells with nondegraded and uncontaminated chlorofluorocarbon concentrations had calculated apparent recharge dates that ranged from 1979 to 1990 with an average date of 1986. Water from 14 monitoring wells (47 percent) exceeded the 500-milligrams-per-liter Secondary Maximum Contaminant Level established by the U.S. Environmental Protection Agency for dissolved solids in drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well. The source of the largest concentrations of dissolved solids and associated ions, such as chloride and sulfate, in shallow ground water in the study area probably is highly mineralized water moving out of the Arkansas River into the adjacent, unconsolidated deposits and mixing with the dominant calcium bicarbonate water in the deposits. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Although water from the sampled wells did not have nitrate concentrations larger than the 10-milligram-per-liter Maximum Contaminant Level for drinking water, water from 50 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter). Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Twenty percent of iron concentrations, 40 percent of manganese concentrations, 3 percent of arsenic concentrations, and 13 percent of uranium concentrations exceeded respective Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. A total of 47 pesticide compounds were analyzed in ground-water samples during this study. Water from 73 percent of the wells sampled had detectable concentrations of one or more of 8 of these 47 compounds. The herbicide atrazine or its degradation product deethylatrazine were detected most frequently (in water from 70 percent of the sampled wells). Metolachlor was detected in water from 10 percent of the wells, and simazine was detected in water from 30 percent of the wells sampled. Other pesticides detected included dieldrin, pendimethalin, prometon, and tebuthiuron (each in water from 3 percent of the wells). All concentrations of these compounds were less than established Maximum Contaminant Levels. A total of 85 volatile organic compounds (VOCs) were analyzed in ground-water samples during this study. Water from 43 percent of the wells had a detectable concentration of one or more VOCs. Chloroform was the most frequently detected VOC (23 percent of the wells sampled).Seven other VOCs were detected in water at frequencies of 13 percent or less in the wells sampled. Concentrations of VOCs were less than respective Maximum Contaminant Levels, except one sample with a concentration of 9.0 micrograms per liter for tetrachloroethylene (Maximum Contaminant Level of 5.0 micrograms per liter). An analysis of hydraulic gradient, flow velocity

  7. Seasonal changes in background levels of deuterium and oxygen-18 prove water drinking by harp seals, which affects the use of the doubly labelled water method.

    PubMed

    Nordøy, Erling S; Lager, Anne R; Schots, Pauke C

    2017-12-01

    The aim of this study was to monitor seasonal changes in stable isotopes of pool freshwater and harp seal ( Phoca groenlandica ) body water, and to study whether these potential seasonal changes might bias results obtained using the doubly labelled water (DLW) method when measuring energy expenditure in animals with access to freshwater. Seasonal changes in the background levels of deuterium and oxygen-18 in the body water of four captive harp seals and in the freshwater pool in which they were kept were measured over a time period of 1 year. The seals were offered daily amounts of capelin and kept under a seasonal photoperiod of 69°N. Large seasonal variations of deuterium and oxygen-18 in the pool water were measured, and the isotope abundance in the body water showed similar seasonal changes to the pool water. This shows that the seals were continuously equilibrating with the surrounding water as a result of significant daily water drinking. Variations in background levels of deuterium and oxygen-18 in freshwater sources may be due to seasonal changes in physical processes such as precipitation and evaporation that cause fractionation of isotopes. Rapid and abrupt changes in the background levels of deuterium and oxygen-18 may complicate calculation of energy expenditure by use of the DLW method. It is therefore strongly recommended that analysis of seasonal changes in background levels of isotopes is performed before the DLW method is applied on (free-ranging) animals, and to use a control group in order to correct for changes in background levels. © 2017. Published by The Company of Biologists Ltd.

  8. Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter?

    PubMed

    Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for kidney cancer was 0.98 (0.77-1.25) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.

  9. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    USGS Publications Warehouse

    Swancar, Amy

    1996-01-01

    Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in ground water on seven of nine golf courses studied and in 52 percent of ground-water samples. Concentrations of pesticides in ground water at golf courses were generally low relative to gegulatory guidelines, with 45 percent of all occurrences at trace levels and 92 percent under the maximum contaminant level or guidance concentration. Two of the nine golf courses had not pesticides detectedc in ground water, and a third had only two occurrences, which were at trace levels. Theere were six occurrences of concentrations of arsenic, bentazon, or acephate in ground water above the maximum contaminant level or guidance concentration. Additionally, the following pesticides were detected in ground water from at least one site; atrazine, bromacil, diazinon, diuron, fenamiphos, metalaxyl, oxydiazon, and simazine. The fenamiphos metabolites, fenamiphos sulfoxide and fenamiphos sulfone, also were detected in ground water. Samples from wastewater treatment plants contained trace levels of atrazine, bromacil, and gamma-BHC (Lindane). Concentrations of pesticides in golf course ponds were generally low, with 60 percent of all occurrences at trace levels. All but one of the pond samples collected during the study contained at least one pesticide. The most commonly occurring pesticides in golf course ponds were: atrazine, fenamiphos and fenamiphos sulfoxide, and diuron.

  10. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1998

    USGS Publications Warehouse

    Locke, Glenn L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.

  11. Analysis of ground-water-quality data of the Upper Colorado River basin, water years 1972-92

    USGS Publications Warehouse

    Apodaca, L.E.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment program, an analysis of the existing ground-water-quality data in the Upper Colorado River Basin study unit is necessary to provide information on the historic water-quality conditions. Analysis of the historical data provides information on the availability or lack of data and water-quality issues. The information gathered from the historical data will be used in the design of ground-water-quality studies in the basin. This report includes an analysis of the ground-water data (well and spring data) available for the Upper Colorado River Basin study unit from water years 1972 to 1992 for major cations and anions, metals and selected trace elements, and nutrients. The data used in the analysis of the ground-water quality in the Upper Colorado River Basin study unit were predominantly from the U.S. Geological Survey National Water Information System and the Colorado Department of Public Health and Environment data bases. A total of 212 sites representing alluvial aquifers and 187 sites representing bedrock aquifers were used in the analysis. The available data were not ideal for conducting a comprehensive basinwide water-quality assessment because of lack of sufficient geographical coverage.Evaluation of the ground-water data in the Upper Colorado River Basin study unit was based on the regional environmental setting, which describes the natural and human factors that can affect the water quality. In this report, the ground-water-quality information is evaluated on the basis of aquifers or potential aquifers (alluvial, Green River Formation, Mesaverde Group, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Leadville Limestone, and Precambrian) and land-use classifications for alluvial aquifers.Most of the ground-water-quality data in the study unit were for major cations and anions and dissolved-solids concentrations. The aquifer with the highest median concentrations of major ions was the Mancos Shale. The U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for dissolved solids in drinking water was exceeded in about 75 percent of the samples from the Mancos Shale aquifer. The guideline by the Food and Agriculture Organization of the United States for irrigation water of 2,000 milligrams per liter was also exceeded by the median concentration from the Mancos Shale aquifer. For sulfate, the U.S. Environmental Protection Agency proposed maximum contaminant level of 500 milligrams per liter for drinking water was exceeded by the median concentration for the Mancos Shale aquifer. A total of 66 percent of the sites in the Mancos Shale aquifer exceeded the proposed maximum contaminant level.Metal and selected trace-element data were available for some sites, but most of these data also were below the detection limit. The median concentrations for iron for the selected aquifers and land-use classifications were below the U.S. Environmental Protection Agency secondary maximum contaminant level of 300 micrograms per liter in drinking water. Median concentration of manganese for the Mancos Shale exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 50 micrograms per liter in drinking water. The highest selenium concentrations were in the alluvial aquifer and were associated with rangeland. However, about 22 percent of the selenium values from the Mancos Shale exceeded the U.S. Environmental Protection Agency maximum contaminant level of 50 micrograms per liter in drinking water.Few nutrient data were available for the study unit. The only nutrient species presented in this report were nitrate-plus-nitrite as nitrogen and orthophosphate. Median concentrations for nitrate-plus-nitrite as nitrogen were below the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter in drinking water except for 0.02 percent of the sites in the al

  12. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    PubMed

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was <0.38 ppm, the adjusted odds ratio (OR) (95% CI) for rectal cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.

  13. Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0–49-year-olds in Great Britain, 1980–2005

    PubMed Central

    Blakey, Karen; Feltbower, Richard G; Parslow, Roger C; James, Peter W; Gómez Pozo, Basilio; Stiller, Charles; Vincent, Tim J; Norman, Paul; McKinney, Patricia A; Murphy, Michael F; Craft, Alan W; McNally, Richard JQ

    2014-01-01

    Background: Artificial fluoridation of drinking water to improve dental health has long been a topic of controversy. Opponents of this public health measure have cited the possibility of bone cancer induction. The study objective was to examine whether increased risk of primary bone cancer was associated with living in areas with higher concentrations of fluoride in drinking water. Methods: Case data on osteosarcoma and Ewing sarcoma, diagnosed at ages 0–49 years in Great Britain (GB) (defined here as England, Scotland and Wales) during the period 1980–2005, were obtained from population-based cancer registries. Data on fluoride levels in drinking water in England and Wales were accessed through regional water companies and the Drinking Water Inspectorate. Scottish Water provided data for Scotland. Negative binomial regression was used to examine the relationship between incidence rates and level of fluoride in drinking water at small area level. Results: The study analysed 2566 osteosarcoma and 1650 Ewing sarcoma cases. There was no evidence of an association between osteosarcoma risk and fluoride in drinking water [relative risk (RR) per one part per million increase in the level of fluoride = 1·001; 90% confidence interval (CI) 0·871, 1·151] and similarly there was no association for Ewing sarcoma (RR = 0·929; 90% CI 0·773, 1·115). Conclusions: The findings from this study provide no evidence that higher levels of fluoride (whether natural or artificial) in drinking water in GB lead to greater risk of either osteosarcoma or Ewing sarcoma. PMID:24425828

  14. Potentiometric surface of the Upper Floridan aquifer, west-central Florida, May 2005

    USGS Publications Warehouse

    Ortiz, A.G.; Blanchard, R.A.

    2006-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is a highly productive aquifer and supplies more than 10 times the amount of water pumped from either the surficial aquifer system or the intermediate aquifer system in most of the study area (Duerr and others, 1988). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2005. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in a tightly cased well that taps a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 67.27 inches for west-central Florida (from June 2004 through May 2005) was 14.20 inches above the historical cumulative average of 53.07 inches (Southwest Florida Water Management District (SWFWMD), 2005). The above average precipitation is attributed to the active hurrican season for Florida in 2004. Historical cumulative averages are calculated from regional rainfall summary reports (1915 to the most recent completed calendar year) and are updated monthly by the SWFWMD. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the SWFWMD, is part of a semiannual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the USGS during May 23-27, 2005. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the SWFWMD boundary by the USGS office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition. Water levels in about 19 percent of the wells measured in May 2005 were lower than the May 2004 water levels (Blanchard and others, 2004). Data from 409 wells indicate that the May 2005 water levels ranged from about 5 feet below to about 18 feet above the May 2004 water levels (fig. 1). The largest water-level declines occurred in southwestern Hernando County, northeastern Hillsborough County, and parts of Hillsborough, Sumter, and Sarasota Counties. The largest water-level rises occurred in southeastern Hillsborough County, eastern Manatee County, and western Hardee County (fig. 1). Water levels in about 95 percent of the wells measured in May 2005 were lower than the September 2004 water levels (Blanchard and Seidenfeld, 2005). Data from 405 wells indicate that the May 2005 water levels ranged from about 22 feet below to 14 feet above the September 2004 water levels. The largest water-level decline was in east-central Manatee County and the largest water-level rise was in central Sarasota County.

  15. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    PubMed

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  16. Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry

    USGS Publications Warehouse

    Lee, H.; Shum, C.K.; Yi, Y.; Ibaraki, M.; Kim, J.-W.; Braun, Andreas; Kuo, C.-Y.; Lu, Z.

    2009-01-01

    Previous studies using satellite radar altimetry to observe inland river and wetland water level changes usually spatially average high-rate (10-Hz for TOPEX, 18-Hz for Envisat) measurements. Here we develop a technique to apply retracking of TOPEX waveforms by optimizing the estimated retracked gate positions using the Offset Center of Gravity retracker. This study, for the first time, utilizes stacking of retracked TOPEX data over Louisiana wetland and concludes that the water level observed by each of 10-Hz data with along-track sampling of ∼660 m exhibit variations, indicating detection of wetland dynamics. After further validations using nearby river gauges, we conclude that TOPEX is capable of measuring accurate water level changes beneath heavy-vegetation canopy region (swamp forest), and that it revealed wetland dynamic flow characteristics along track with spatial scale of 660 m or longer.

  17. Sensitivity Analysis as a Tool to assess Energy-Water Nexus in India

    NASA Astrophysics Data System (ADS)

    Priyanka, P.; Banerjee, R.

    2017-12-01

    Rapid urbanization, population growth and related structural changes with-in the economy of a developing country act as a stressor on energy and water demand, which forms a well-established energy-water nexus. Energy-water nexus is thoroughly studied at various spatial scales viz. city level, river basin level and national level- to guide different stakeholders for sustainable management of energy and water. However, temporal dimensions of energy-water nexus at national level have not been thoroughly investigated because of unavailability of relevant time-series data. In this study we investigated energy-water nexus at national level using environmentally-extended input-output tables for Indian economy (2004-2013) as provided by EORA database. Perturbation based sensitivity analysis is proposed to highlight the critical nodes of interactions among economic sectors which is further linked to detect the synergistic effects of energy and water consumption. Technology changes (interpreted as change in value of nodes) results in modification of interactions among economic sectors and synergy is affected through direct as well as indirect effects. Indirect effects are not easily understood through preliminary examination of data, hence sensitivity analysis within an input-output framework is important to understand the indirect effects. Furthermore, time series data helps in developing the understanding on dynamics of synergistic effects. We identified the key sectors and technology changes for Indian economy which will provide the better decision support for policy makers about sustainable use of energy-water resources in India.

  18. Water footprint scenarios for 2050: a global analysis.

    PubMed

    Ercin, A Ertug; Hoekstra, Arjen Y

    2014-03-01

    This study develops water footprint scenarios for 2050 based on a number of drivers of change: population growth, economic growth, production/trade pattern, consumption pattern (dietary change, bioenergy use) and technological development. The objective the study is to understand the changes in the water footprint (WF) of production and consumption for possible futures by region and to elaborate the main drivers of this change. In addition, we assess virtual water flows between the regions of the world to show dependencies of regions on water resources in other regions under different possible futures. We constructed four scenarios, along two axes, representing two key dimensions of uncertainty: globalization versus regional selfsufficiency, and economy-driven development versus development driven by social and environmental objectives. The study shows how different drivers will change the level of water consumption and pollution globally in 2050. The presented scenarios can form a basis for a further assessment of how humanity can mitigate future freshwater scarcity. We showed with this study that reducing humanity's water footprint to sustainable levels is possible even with increasing populations, provided that consumption patterns change. This study can help to guide corrective policies at both national and international levels, and to set priorities for the years ahead in order to achieve sustainable and equitable use of the world's fresh water resources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Economic Costs of a Shrinking Lake Mead: a Spatial Hedonic Analysis

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saphores, J. D.

    2017-12-01

    Persistent arid conditions and population growth in the Southwest have taken a toll on the Colorado River. This has led to substantial drawdowns of many water reservoirs around the Southwest, and especially of Lake Mead, which is Las Vegas' main source of drinking water. Due to its importance, Lake Mead has received a great deal of media attention about its "bathtub ring" and the exposure of rock that used to be underwater. Drops in water levels have caused some local marinas to close, thereby affecting the aesthetic and recreational value of Lake Mead, which is located in the country's largest National Recreation Area (NRA), and surrounded by protected land. Although a rich literature analyzes how water quality impacts real estate values, relatively few studies have examined how dropping water levels are capitalized in surrounding residential properties. In this context, the goal of this study is to quantify how Lake Mead's water level changes are reflected in changes in local property values, an important source of tax income for any community. Since Lake Mead is the primary attraction within its recreation area, we are also concerned with how this recreation area, which is a few miles southeast of Las Vegas, is capitalized in real estate values of the Las Vegas metropolitan area as few valuation studies have examined how proximity to national parks influences residential property value. We estimate spatial hedonic and geographically weighted regression models of single family residences to delineate the value of proximity to the Lake Mead NRA and to understand how this value changed with Lake Mead's water levels. Our explanatory variables include common structural characteristics, fixed effects to account for unobserved locally constant characteristics, and specific variables such as distance to the Las Vegas strip and to downtown casinos. Because the sharpest declines in Lake Mead water levels happened in 2010 (NASA, 2010) and winter 2016 saw an unexpected increases in water levels, we analyze home sales and variations in water levels from 2010 to the mid 2017.

  20. Biomonitoring of water quality of the Osumi, Devolli, and Shkumbini rivers through benthic macroinvertebrates and chemical parameters.

    PubMed

    Duka, Sonila; Pepa, Bledar; Keci, Erjola; Paparisto, Anila; Lazo, Pranvera

    2017-04-16

    Environmental monitoring of river water quality in Albania, using biological and chemical parameters, is a fast and effective way to assess the quality of water bodies.The aim of this study was to investigate Ephemeroptera, Plecoptera and Trichoptera (EPT), Biotic index-Richness using macroinvertebrates to assess the water quality, with special reference to nutrient (phosphorus and nitrogen) levels in the Devolli, Shkumbini and Osumi rivers. Our objective was to investigate the relationships between the measures of benthic macroinvertebrate communities and nutrient concentrations to assess water quality. The rivers' benthic macroinvertebrates were collected during different seasons in 2012. The biological and chemical parameters used in the current study identified them as quick indicators of water quality assessment. The total number of macroinvertebrate individuals (n = 15,006) (Osumi river: n = 5,546 organisms; Devolli river: n = 3,469 organisms; and Shkumbini river: n = 5,991 organisms), together with the EPT group (Ephemeroptera, Plecoptera, and Trichoptera), showed that the water quality at the river stations during the above-mentioned period belonged to Classes II and III (fair water quality and good water quality, respectively). The classification of the water quality was also based on the nitrogen and total phosphorus contents. The pollution tolerance levels of macroinvertebrate taxa varied from the non-tolerating forms encountered in environments with low pollution levels to the tolerating forms that are typical of environments with considerable pollution levels.

  1. Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China

    NASA Astrophysics Data System (ADS)

    Kang, Fengxin; Jin, Menggui; Qin, Pinrui

    2011-06-01

    Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5 m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.

  2. Pediatric lead exposure and the water crisis in Flint, Michigan.

    PubMed

    DeWitt, Rachel D

    2017-02-01

    Changing the source of the water supply to save money had the unintended consequence of exposing residents of Flint, Mich., to elevated lead levels in their drinking water. A study done at Flint's Hurley Children's Hospital demonstrated that the incidence of elevated blood lead levels of children living in the affected area nearly doubled after the change in the water source. This article reviews the recommendations for lead screening and for reporting, following, and treating children with blood lead levels greater than 5 mcg/dL.

  3. DRINKING WATER ARSENIC EXPOSURE AND BLOOD PRESSURE IN HEALTHY WOMEN OF REPRODUCTIVE AGE IN INNER MONGOLIA, CHINA

    EPA Science Inventory

    The extremely high exposure levels evaluated in prior investigations relating elevated levels of drinking water arsenic and hypertension prevalence make extrapolation to potential vascular effects at lower exposure levels very difficult. A cross-sectional study was conducted on ...

  4. Analysis of the return period and correlation between the reservoir-induced seismic frequency and the water level based on a copula: A case study of the Three Gorges reservoir in China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofei; Zhang, Qiuwen

    2016-11-01

    Studies have considered the many factors involved in the mechanism of reservoir seismicity. Focusing on the correlation between reservoir-induced seismicity and the water level, this study proposes to utilize copula theory to build a correlation model to analyze their relationships and perform the risk analysis. The sequences of reservoir induced seismicity events from 2003 to 2011 in the Three Gorges reservoir in China are used as a case study to test this new methodology. Next, we construct four correlation models based on the Gumbel, Clayton, Frank copula and M-copula functions and employ four methods to test the goodness of fit: Q-Q plots, the Kolmogorov-Smirnov (K-S) test, the minimum distance (MD) test and the Akaike Information Criterion (AIC) test. Through a comparison of the four models, the M-copula model fits the sample better than the other three models. Based on the M-copula model, we find that, for the case of a sudden drawdown of the water level, the possibility of seismic frequency decreasing obviously increases, whereas for the case of a sudden rising of the water level, the possibility of seismic frequency increasing obviously increases, with the former being greater than the latter. The seismic frequency is mainly distributed in the low-frequency region (Y ⩽ 20) for the low water level and in the middle-frequency region (20 < Y ≤ 80) for both the medium and high water levels; the seismic frequency in the high-frequency region (Y > 80) is the least likely. For the conditional return period, it can be seen that the period of the high-frequency seismicity is much longer than those of the normal and medium frequency seismicity, and the high water level shortens the periods.

  5. Ground-water monitoring at Santa Barbara, California; Phase 2, Effects of pumping on water levels and on water quality in the Santa Barbara ground-water basin

    USGS Publications Warehouse

    Martin, Peter

    1984-01-01

    From July 1978 to January 1980, water levels in the southern part of the Santa Barbara ground-water basin declined more than 100 feet. These water-level declines resulted from increases in municipal pumping since July 1978. The increase in municipal pumping was part of a basin-testing program designed to determine the usable quantity of ground water in storage. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines to altitudes below sea level in the main water-bearing zones. As a result, the ground-water basin would be subject to saltwater intrusion if the study-period pumpage were maintained or increased. Data indicate that saltwater intrusion has degraded the quality of the water yielded from six coastal wells. During the study period, the six coastal wells all yielded water with chloride concentrations in excess of 250 milligrams per liter, and four of the wells yielded water with chloride concentrations in excess of 1,000 milligrams per liter. Previous investigators believed that saltwater intrusion was limited to the shallow part of the aquifer, directly adjacent to the coast. The possibility of saltwater intrusion into the deeper water-bearing deposits in the aquifer was thought to be remote because an offshore fault truncates these deeper deposits so that they lie against consolidated rocks on the seaward side of the fault. Results of this study indicate, however, that ocean water has intruded the deeper water-bearing deposits, and to a much greater extent than in the shallow part of the aquifer. Apparently the offshore fault is not an effective barrier to saltwater intrusion. No physical barriers are known to exist between the coast and the municipal well field. Therefore, if the pumping rate maintained during the basin-testing program were continued, the degraded water along the coast could move inland and contaminate the municipal supply wells. The time required for the degraded water to move from the coast to the nearest supply well is estimated, using Darcy's equation, to be about 20 years. Management alternatives for controlling saltwater intrusion in the Santa Barbara area include (1) decreasing municipal pumping, (2) increasing the quantity of water available for recharge by releasing surplus water from surface reservoirs to Mission Creek, (3) artificially recharging the basin using injection wells, and (4) locating municipal supply wells farther from the coast and spacing them farther apart in order to minimize drawdown. Continued monitoring of water levels and water quality would enable assessment of the effectiveness of the control measures employed.

  6. Evaluation of Microbiological and Physicochemical Parameters of Alternative Source of Drinking Water: A Case Study of Nzhelele River, South Africa.

    PubMed

    Edokpayi, Joshua N; Odiyo, John O; Popoola, Elizabeth O; Msagati, Titus A M

    2018-01-01

    Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. High levels of E. coli (1 x 10 2 - 8 x 10 4 cfu/100 mL) and enterococci (1 x 10 2 - 5.7 x 10 3 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water.

  7. Evaluation of Microbiological and Physicochemical Parameters of Alternative Source of Drinking Water: A Case Study of Nzhelele River, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Elizabeth O.; Msagati, Titus A.M.

    2018-01-01

    Background: Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Methods: Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. Results: High levels of E. coli (1 x 102 - 8 x 104 cfu/100 mL) and enterococci (1 x 102 – 5.7 x 103 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. Conclusion: The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water. PMID:29541268

  8. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined from slug-test analysis and transmissivity estimated from specific capacity.Water-level fluctuations were measured in the 30 monitoring wells from 1999 to July 2001. Generally, water-level changes measured in wells on the west side of the valley followed a seasonal trend and wells on the east side showed less fluctuation or a gradual decline during the 2-year period. This may indicate that a larger percentage of recharge to the shallow ground-water system on the west side is from somewhat consistent seasonal sources, such as canals and unconsumed irrigation water, as compared to sources on the east side. Water levels measured in monitoring wells completed in the shallow ground-water system near large-capacity public-supply wells varied in response to ground-water withdrawals from the deeper confined aquifer. Water temperature was monitored in 23 wells. Generally, little or no change in water temperature was measured in monitoring wells with a depth to water greater than about 40 feet. The shallower the water level in the well, the greater the water-temperature change measured during the study.Comparison of water levels measured in the monitoring wells and deeper wells in the same area indicate a downward gradient on the east side of the valley. Water levels in the shallow and deeper aquifers in the secondary recharge area on the west side of the valley were similar to those on the east side. Water levels measured in the monitoring wells and nearby wells completed in the deeper aquifer indicate that the vertical gradient can change with time and stresses on the system.

  9. Ground-water flow and numerical simulation of recharge from streamflow infiltration near Pine Nut Creek, Douglas County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Ground-water flow and recharge from infiltration near Pine Nut Creek, east of Gardnerville, Nevada, were simulated using a single-layer numerical finite-difference model as part of a study made by the U.S. Geological Survey in cooperation with the Carson Water Subconservancy District. The model was calibrated to 190 water-level measurements made in 27 wells in December 2000, and in 9 wells from August 1999 through April 2001. The purpose of this study was to estimate reasonable limits for the approximate volume of water that may be stored by recharge through infiltration basins, and the rate at which recharged water would dissipate or move towards the valley floor. Measured water levels in the study area show that infiltration from the Allerman Canal and reservoir has created a water-table mound beneath them that decreases the hydraulic gradient east of the canal and increases the gradient west of the canal. North of Pine Nut Creek, the mound causes ground water to flow toward the northern end of the reservoir. South of Pine Nut Creek, relatively high water levels probably are maintained by the mound beneath the Allerman Canal and possibly by greater rates of recharge from the southeast. Water-level declines near Pine Nut Creek from August 1999 through April 2001 probably are caused by dissipation of recharge from infiltration of Pine Nut Creek streamflow in the springs of 1998 and 1999. Using the calibrated model, a simulation of recharge through a hypothetical infiltration basin covering 12.4 acres near Pine Nut Creek applied 700 acre-feet per year of recharge over a six-month period, for a total of 3,500 acre-feet after 5 consecutive years. This recharge requires a diversion rate of about 2 cubic feet per second and an infiltration rate of 0.3 foot per day. The simulations showed that recharge of 3,500 acre-feet caused water levels near the basin to rise over 70 feet, approaching land surface, indicating 3,500 acre-feet is the maximum that may be stored in a 5-year period, given the basin location and surface area used in the simulations. Greater amounts probably could be stored if separate infiltration basins were installed at different locations along the Pine Nut Creek alluvial fan, applying the recharge over a larger area. The water-table mound resulting from recharge extended 7,000 feet north, west, and south of the infiltration basin. After recharge ceased, water levels near the center of the mound declined rapidly to within 20 feet of initial levels after 2 years, and within 10 feet of initial levels after 7 years. The recharge mound dissipates laterally across the modeled area at decreasing rates over time. A water-level rise of 1 foot moved westward towards the valley floor 660 feet from peak conditions after 1 year, and averaged 550 feet, 440 feet, and 330 feet per year for the periods 1-4, 4-7, and 7-10 years, respectively, after recharge ceased. Simulations of subsequent pumping from hypothetical wells near the infiltration basin were made by applying pumping near the basin beginning 1 year after recharge of 3,500 acre-feet ceased. Pumping was applied over a 6-month period for 4 years from one well at 400 acre-feet per year, withdrawing 1,600 acre-feet or 45 percent of that recharged, and from two wells totaling 800 acre-feet per year, withdrawing 3,200 acre-feet or 90 percent of that recharged. Pumping of 1,600 acre-feet caused water-levels near the infiltration basin to decline only slightly below initial levels. Pumping of 3,200 acre-feet caused water-levels near the infiltration basin to decline a maximum of 30 feet below initial levels, with smaller declines extending laterally in all directions for 4,000 feet from the pumping wells. Water-level declines are a result of pumping at a rate sufficient to withdraw the majority of the water recharged through the infiltration basin. Although the declines may affect water levels in nearby domestic wells, the simulations show that water levels recover quickly after

  10. Water-quality conditions at selected landfills in Mecklenburg County, North Carolina, 1986-92

    USGS Publications Warehouse

    Ferrell, G.M.; Smith, D.G.

    1995-01-01

    Water-quality conditions at five municipal landfills in Mecklenburg County, North Carolina, were studied during 1986-92. Analytical results of water samples from monitoring wells and streams at and near the landfills were used to evaluate effects of leachate on surface and ground water. Ground-water levels at monitoring wells were used to determine directions of ground-water flow at the landfills. Data from previous studies were used for analysis of temporal trends in selected water-quality properties and chemical constituents. Effects of leachate, such as large biochemical- and chemical-oxygen demands, generally were evident in small streams originating within the landfills, whereas effects of leachate generally were not evident in most of the larger streams. In larger streams, surface-water quality upstream and downstream from most of the landfills was similar. However, the chemical quality of water in Irwin Creek appears to have been affected by the Statesville Road landfill. Concentrations of several constituents indicative of leachate were larger in samples collected from Irwin Creek downstream from the Statesville Road landfill than in samples collected from Irwin Creek upstream from the landfill. The effect of leachate on ground-water quality generally was largest in water from wells adjacent to waste-disposal cells. Concentrations of most constituents considered indicative of leachate generally were smaller with increasing distance from waste-disposal cells. Water samples from offsite wells generally indicated no effect or very small effects of leachate. Action levels designated by the Mecklenburg County Engineering Department and maximum contaminant levels established by the U.S. Environmental Protection Agency were exceeded in some samples from the landfills. Ground-water samples exceeded action levels and maximum contaminant levels more commonly than surface-water samples. Iron and manganese were the constituents that most commonly exceeded action levels in water samples from the landfills. Synthetic organic compounds were detected more commonly and in larger concentrations in ground-water samples than in surface-water samples. Concentrations of synthetic organic compounds detected in water samples from monitoring sites at the landfills generally were much less than maximum contaminant levels. However, concentrations of some chlorinated organic compounds exceeded maximum contaminant levels in samples from several monitoring wells at the Harrisburg Road and York Road landfills. Trend analysis indicated statistically significant temporal changes in concentrations of selected water-quality constituents and properties at some of the monitoring sites. Trends detected for the Holbrooks Road and Statesville Road landfills generally indicated an improvement in water quality and a decrease in effects of leachate at most monitoring sites at these landfills from 1979 to 1992. Water-quality trends detected for monitoring sites at the Harrisburg Road and York Road landfills, the largest landfills in the study, differed in magnitude and direction. Upward trends generally were detected for sites near recently closed waste-disposal cells, whereas downward trends generally were detected for sites near older waste-disposal cells. Temporal trends in water quality generally reflected changes in degradation processes associated with the aging of landfill wastes.

  11. Relationships among gender, cognitive style, academic major, and performance on the Piaget water-level task.

    PubMed

    Hammer, R E; Hoffer, N; King, W L

    1995-06-01

    Many researchers have found that more college-age adults than would be expected fail Piaget's water-level task, with women failing more frequently than men. It has been hypothesized that differences in cognitive style may account for performance differences on the water-level task. In the present study, 27 male and 27 female architectural students and 27 male and 27 female liberal-arts students were assessed for their performance on both Piaget's Water-level Task and Witkin's Group Embedded Figures Test. No difference was found in performance of male and female architectural students on either task, but male liberal-arts students scored significantly higher than female liberal-arts students on both measures. A disembedding cognitive style predicted success on the water-level task for the architectural students but not for the liberal arts students.

  12. A cross-sectional study to assess the intelligence quotient (IQ) of school going children aged 10-12 years in villages of Mysore district, India with different fluoride levels.

    PubMed

    Sebastian, Shibu Thomas; Sunitha, S

    2015-01-01

    Besides dental and skeletal fluorosis, excessive fluoride intake can also affect the central nervous system without first causing the physical deformities associated with skeletal fluorosis. With the existence of widespread endemic fluorosis in India, the possible adverse effect of elevated fluoride in drinking water on the Intelligence Quotient (IQ) level of children is a potentially serious public health problem. This study assessed the Intelligence Quotient (IQ) of school going children aged 10-12 years in villages of Mysore district with different fluoride levels. In this cross-sectional study, 405 school children aged 10-12 years were selected from three villages in Mysore district with normal fluoride (1.20 mg F/l), low fluoride (0.40 mg F/l) and high fluoride (2.20 mg F/l) in their water supplies. A pre designed questionnaire was used to collect the required data for the survey which included socio demographic details, oral hygiene practices, diet history, body mass index and dental fluorosis. Intelligence Quotient was assessed using Raven's colored Progressive Matrices Test. In bivariate analysis, significant relationships were found between water fluoride levels and Intelligence Quotient of school children (P < 0.05). In the high fluoride village, the proportion of children with IQ below 90, i.e. below average IQ was larger compared to normal and low fluoride village. Age, gender, parent education level and family income had no significant association with IQ. School children residing in area with higher than normal water fluoride level demonstrated more impaired development of intelligence when compared to school children residing in areas with normal and low water fluoride levels. Thus, children's intelligence can be affected by high water fluoride levels.

  13. Hydrologic and related data for water-supply planning in an intensive-study area, northeastern Wichita County, Kansas

    USGS Publications Warehouse

    Kume, Jack; Dunlap, L.E.; Gutentag, E.D.; Thomas, J.G.

    1979-01-01

    Data are presented that result from an intensive geohydrologic study for water-supply planning in a 12-square-mile area in northeastern Wichita County, Kansas. These data include records of wells, test drilling, chemical analyses, ground-water levels, rainfall, soilmoisture, well yield, solar radiation, crop yield, and crop acreage. Data indicate that water levels in the unconsolidated aquifer are declining at an average annual rate of about 1 to 2 feet per year (1950-78). This decline is the aquifer's response to pumping by irrigation wells for watering corn, wheat, grain sorghum, and other crops.

  14. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    USGS Publications Warehouse

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated in several biological samples collected throughout the Basin, although concentrations in water and bottom sediment were below analytical reporting limits. Sources of arsenic, boron, and mercury in the Basin are uncertain, but ambient levels reported for a variety of sample matrices collected from western Nevada generally exceed ranges cited as natural background levels. Because these potentially toxic constituents exceeded concern levels in areas that do not directly receive irrigation drainage, concentrations measured in samples collected for this study may not necessarily be attributable to agricultural activities. Diversion of river water for irrigation may have greater effects on beneficial uses of water and on fish and wildlife than does drainage from agricultural areas on the Reservation. In 1994, agricultural water consumption precluded dilution of ground-water seepage to the river channel. This resulted in concentrations of potentially toxic solutes that exceeded levels of concern. Diversion of irrigation water also may have facilitated leaching of potentially toxic solutes from irrigated soil on the Reservation, but during this study all water applied for irrigation on the Reservation was either consumed by evapotranspiration or infiltrated to recharge shallow ground water. No irrigation drainage was found on the Reservation during this study. However, because 1994 samples of ground-water seepage to the Walker River channel exceeded at least six Nevada waterquality standards, water-quality problems may result should ground-water levels rise enough to cause ground-water discharge to the agricultural drain on the Reservation. Nevertheless, the potential for adverse effects from irrigation drainage on the Reservation is believed to be small because surface-water rights for the Walker River Indian Reservation amount to only 2 percent of total surface- water rights in the entire Walker River Basin.

  15. Quantification of umu genotoxicity level of urban river water.

    PubMed

    Kameya, T; Nagato, T; Nakagawa, K; Yamashita, D; Kobayashi, T; Fujie, K

    2011-01-01

    In recent years, the request of environmental safety management for carcinogenic substances, mutagenic substances and/or reproductive toxicity substances (CMR) has increased. This study focused on clarifying the genotoxicity level of environmental water and its release source by using the umu test provided in ISO13829. Although a genotoxicity index "induction ratio (IR)" is used in ISO13829, we normalised it to make it possible to compare various environmental water quantitatively to each other as a new index "genotoxic activity (GA=(IR-1)/Dose)". Sample water was collected and concentrated to 100 times or 1,000 times by a solid phase extraction method. As the test results, it was found that GA level in actual river water varied widely from less than the determination limit of 23 [1/L] to 1,100 [1/L] by quantitative comparison, and the value was also equivalent to more than 50 times the level of tap water. The GA level of household wastewater was not so high, but the levels of treated water from wastewater treatment plant (WTP) were from 220 [1/L] to 3,200 [1/L]. Raw sewage of some WTP shows high level genotoxicity. A part of genotoxicity substances, for example 50%, could be removed by conventional wastewater treatment, but it was not enough to reduce the water environmental load of genotoxicity.

  16. Study on the Water Resource Sustainable Utilization Evaluation Index System in Jiangsu Coast Reclamation Region

    NASA Astrophysics Data System (ADS)

    Ren, L.

    2016-12-01

    As a comprehensive system, there are many subsystems such as water resource subsystem, social subsystem, economic subsystem and ecological subsystem in water resource sustainable utilization system. In this paper, an evaluation system including three levels is set up according to the metric demands of sustainable water resource utilization in Jiangsu coast reclamation region, namely the target level, the rule level, and the index level. Considering the large number of the indexes, the analytic hierarchy process is used to determine the weights of all these subsystems in the total goal of water sustainable utilization. By analyzing these weights, the attributes of water resource itself is found to be the most important aspect for the evaluation of sustainable utilization in Jiangsu coast reclamation region, and the second important aspect is the situation of the eco-environment.

  17. The effect of balneotherapy on C-reactive protein, serum cholesterol, triglyceride, total antioxidant status and HSP-60 levels.

    PubMed

    Oláh, Mihály; Koncz, Agnes; Fehér, Judit; Kálmánczhey, Judit; Oláh, Csaba; Balogh, Sándor; Nagy, György; Bender, Tamás

    2010-05-01

    An increasing body of evidence substantiating the effectiveness of balneotherapy has accumulated during recent decades. In the present study, 42 ambulatory patients (23 males and 19 females, mean age 59.5 years) with degenerative musculoskeletal disease were randomised into one of two groups-bathing in tap water or in mineral water at the same temperature-and subjected to 30-min balneotherapy sessions on 15 occasions. Study parameters comprised serum levels of sensitised C-reactive protein (CRP), plasma lipids, heat shock protein (HSP-60) and total antioxidant status (TAS). In both groups, CRP levels followed a decreasing tendency, which still persisted 3 months later. At 3 months after balneotherapy, serum cholesterol levels were still decreasing in patients who had used medicinal water, but exhibited a trend towards an increase in the control group. Triglyceride levels followed a decreasing trend in both patient groups. TAS showed a declining tendency in both groups. No changes of HSP-60 levels were observed in either group. Balneotherapy with the thermal water from Hajdúszoboszló spa had a more pronounced physiological effect compared to that seen in the control group treated with tap water in a 3 month period.

  18. Identification of Trihalomethanes (THMs) Levels in Water Supply: A Case Study in Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Jalil, Mohd Faizal Ab; Hamidin, Nasrul; Anas Nagoor Gunny, Ahmad; Nihla Kamarudzaman, Ain

    2018-03-01

    In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs). THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP) located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS). The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.

  19. A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes

    PubMed Central

    Manassaram, Deana M.; Backer, Lorraine C.; Moll, Deborah M.

    2006-01-01

    In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered. PMID:16507452

  20. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    NASA Astrophysics Data System (ADS)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  1. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  2. Correlation analysis of Standardized Precipitation Index (SPI) for the water debit and level of the Cisadane River during El Niño and La Niña years

    NASA Astrophysics Data System (ADS)

    Khoir, A. N.; Rohmah, M.; Nuryadi

    2018-03-01

    Hydrometeorological factor causes most disaster in Indonesia, and two of them are drought and flood. This study aims to correlate Standardized Precipitation Index (SPI) 3-monthly to water debit and water level in the Cisadane River. The monthly rainfall data from Serpong and Pasar Baru rain station from 2009 to 2011 when moderate El Niño and moderate La Niña happened. The correlation analysis between debit and water level to SPI 3-monthly used rain post of Serpong to represent the condition of the upstream area and rain post of Pasar Baru to represent the condition of the downstream area. The results showed that during La Niña year, the rainfall on the upstream area of the Cisadane River influenced the increase and the decrease in water debit and water level. Meanwhile, the rainfall on the downstream area of the river has an opposite effect on the increase and the decrease of debit and water level of the Pasar Baru. On the upstream area, the correlation between rainfall and water debit is 0.8, and the correlation between rainfall and water level is also 0.8. During El Niño year, the correlation was less than 0.5.

  3. Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin

    USGS Publications Warehouse

    Arihood, Leslie D.

    2009-01-01

    In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or nonaquifer categories and to calculate equivalent horizontal and vertical hydraulic conductivities (K and KZ, respectively) for each of the glacial layers of the model. The K was based on an assumed value of 100 ft/d (feet per day) for aquifer materials and 1 ft/d for nonaquifer materials, whereas the equivalent KZ was based on an assumed value of 10 ft/d for aquifer materials and 0.001 ft/d for nonaquifer materials. These values were assumed for convenience to determine a relative contrast between aquifer and nonaquifer materials. The point values of K and KZ from wells that penetrate at least 50 percent of a model layer were interpolated into a grid of values. The K distribution was based on an inverse distance weighting equation that used an exponent of 2. The KZ distribution used inverse distance weighting with an exponent of 4 to represent the abrupt change in KZ that commonly occurs between aquifer and nonaquifer materials. The values of equivalent hydraulic conductivity for aquifer sediments needed to be adjusted to actual values in the study area for the ground-water flow modeling. The specific-capacity data (discharge, drawdown, and time data) from the well logs were input to a modified version of the Theis equation to calculate specific capacity based horizontal hydraulic conductivity values (KSC). The KSC values were used as a guide for adjusting the assumed value of 100 ft/d for aquifer deposits to actual values used in the model. Water levels from well logs were processed to improve reliability of water levels for comparison to simulated water levels in a model layer during model calibration. Water levels were interpolated by kriging to determine a composite water-level surface. The difference between the kriged surface and individual water levels was used to identify outlier water levels. Examination of the well-log lithology data in map form revealed that the data were not only useful for model input, but also were useful for understanding th

  4. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    DOE PAGES

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-09-03

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less

  5. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less

  6. Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling.

    PubMed

    Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Hamzeh, Saeid

    2017-10-18

    Preserving aquatic ecosystems and water resources management is crucial in arid and semi-arid regions for anthropogenic reasons and climate change. In recent decades, the water level of the largest lake in Iran, Urmia Lake, has decreased sharply, which has become a major environmental concern in Iran and the region. The efforts to revive the lake concerns the amount of water required for restoration. This study monitored and assessed Urmia Lake status over a period of 30 years (1984 to 2014) using remotely sensed data. A novel method is proposed that generates a lakebed digital elevation model (LBDEM) for Urmia Lake based on time series images from Landsat satellites, water level field measurements, remote sensing techniques, GIS, and 3D modeling. The volume of water required to restore the Lake water level to that of previous years and the ecological water level was calculated based on LBDEM. The results indicate a marked change in the area and volume of the lake from its maximum water level in 1998 to its minimum level in 2014. During this period, 86% of the lake became a salt desert and the volume of the lake water in 2013 was just 0.83% of the 1998 volume. The volume of water required to restore Urmia Lake from benchmark status (in 2014) to ecological water level (1274.10 m) is 12.546 Bm 3 , excluding evaporation. The results and the proposed method can be used by national and international environmental organizations to monitor and assess the status of Urmia Lake and support them in decision-making.

  7. Exposure to fluoridated drinking water and dental caries experience in Australian army recruits, 1996.

    PubMed

    Hopcraft, Matthew Scott; Morgan, Michael Vivian

    2003-02-01

    The purpose of this study was to investigate a group of young Australian adults to determine their caries experience and measure associations between caries experience and age, gender, socioeconomic status, education level and lifetime exposure to fluoridated water. This was achieved through a cross-sectional study involving Australian Army recruits seen for their initial dental examination on enlistment into the Australian Army. A total of 499 recruits had a clinical examination with the aid of bitewing radiographs and an orthopantomograph (OPG). Sociodemographic and fluoride exposure data were obtained via a questionnaire. This study showed that subjects with a lifetime exposure to fluoridated water reported a 23% lower level of caries experience than subjects with no exposure to fluoridated water, with a greater effect on proximal surfaces compared to smooth and occlusal surfaces. Female subjects had a level of caries experience 25% higher than male subjects, while subjects from the lowest socioeconomic background had a level of caries experience 89% times greater than subjects from the highest socioeconomic group. Although it is not possible to directly establish a causal relationship from a cross-sectional study such as this, the results from this study show a dose-response relationship which suggests that there are benefits of lifetime exposure to fluoridated drinking water through young adulthood.

  8. Water-level conditions in the Black Creek and upper Cape Fear aquifers, 1992, in parts of Bladen and Robeson counties, North Carolina

    USGS Publications Warehouse

    Strickland, Alfred Gerald

    1994-01-01

    Water-level measurements were made in 68 wells throughout an area of about 860 square miles in Bladen and Robeson Counties, North Carolina, during September and October 1992. Water levels from 58 wells were used to determine the configuration of the potentiometric surface of the Black Creek aquifer. A map of the potentiometric surface shows the potential for ground water to flow from recharge areas in the local uplands to discharge areas, such as local streams and wells. Pumping from wells at major pumping centers, such as Elizabethtown in Bladen County and Lumberton in Robeson County, where water-level declines of more than 12 feet were recorded from 1988 to 1992, has resulted in cones of depression in the potentiometric surface. The cones were about 4 and 6 miles long across the major axes beneath the Elizabethtown and Lumberton areas, respectively, in 1992. Water levels measured in eight wells in 1988 and 1992, supplemented with water levels in two additional wells from driller's well- construction records, were used to estimate average yearly rates of ground-water change for the upper Cape Fear aquifer for part of the study area. During 1988-92, water-level declines occurred in the aquifer throughout much of the area as a result of pumping. The greatest decline, an average of 4.1 feet per year, was in Bladen County.

  9. Estimation of the discharges of the multiple water level stations by multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiro; Miyamoto, Mamoru; Yamakage, Yuzuru; Tsuda, Morimasa; Yanami, Hitoshi; Anai, Hirokazu; Iwami, Yoichi

    2016-04-01

    This presentation shows two aspects of the parameter identification to estimate the discharges of the multiple water level stations by multi-objective optimization. One is how to adjust the parameters to estimate the discharges accurately. The other is which optimization algorithms are suitable for the parameter identification. Regarding the previous studies, there is a study that minimizes the weighted error of the discharges of the multiple water level stations by single-objective optimization. On the other hand, there are some studies that minimize the multiple error assessment functions of the discharge of a single water level station by multi-objective optimization. This presentation features to simultaneously minimize the errors of the discharges of the multiple water level stations by multi-objective optimization. Abe River basin in Japan is targeted. The basin area is 567.0km2. There are thirteen rainfall stations and three water level stations. Nine flood events are investigated. They occurred from 2005 to 2012 and the maximum discharges exceed 1,000m3/s. The discharges are calculated with PWRI distributed hydrological model. The basin is partitioned into the meshes of 500m x 500m. Two-layer tanks are placed on each mesh. Fourteen parameters are adjusted to estimate the discharges accurately. Twelve of them are the hydrological parameters and two of them are the parameters of the initial water levels of the tanks. Three objective functions are the mean squared errors between the observed and calculated discharges at the water level stations. Latin Hypercube sampling is one of the uniformly sampling algorithms. The discharges are calculated with respect to the parameter values sampled by a simplified version of Latin Hypercube sampling. The observed discharge is surrounded by the calculated discharges. It suggests that it might be possible to estimate the discharge accurately by adjusting the parameters. In a sense, it is true that the discharge of a water level station can be accurately estimated by setting the parameter values optimized to the responding water level station. However, there are some cases that the calculated discharge by setting the parameter values optimized to one water level station does not meet the observed discharge at another water level station. It is important to estimate the discharges of all the water level stations in some degree of accuracy. It turns out to be possible to select the parameter values from the pareto optimal solutions by the condition that all the normalized errors by the minimum error of the responding water level station are under 3. The optimization performance of five implementations of the algorithms and a simplified version of Latin Hypercube sampling are compared. Five implementations are NSGA2 and PAES of an optimization software inspyred and MCO_NSGA2R, MOPSOCD and NSGA2R_NSGA2R of a statistical software R. NSGA2, PAES and MOPSOCD are the optimization algorithms of a genetic algorithm, an evolution strategy and a particle swarm optimization respectively. The number of the evaluations of the objective functions is 10,000. Two implementations of NSGA2 of R outperform the others. They are promising to be suitable for the parameter identification of PWRI distributed hydrological model.

  10. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study.

    PubMed

    Tardif, Robert; Rodriguez, Manuel; Catto, Cyril; Charest-Tardif, Ginette; Simard, Sabrina

    2017-08-01

    The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool. Copyright © 2017. Published by Elsevier B.V.

  11. Tidal fluctuations influence E. coli concentrations in urban estuaries.

    PubMed

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David T

    2017-06-15

    This study investigated the influence of water level and velocity on Escherichia coli levels over multiple tidal cycles in an urban microtidal estuary in Melbourne, Australia. Over 3,500 E. coli samples and high resolution water level and velocity measurements from two locations within the estuary were used for the analysis. E. coli negatively correlated with water level in the upper estuary which was proposed to be linked to increased resuspension of estuarine sediments during low tide. No relationship was found in the lower estuary, likely due to wet weather inputs dwarfing subtler tidal-related processes. Removal of wet weather data enabled significant relationships to emerge in the lower estuary: 1) positive with water level (when a 9-h shift applied corresponding to the phase shift between water levels and velocities) and; 2) positive with velocity (no shift applied). This supports a link between increased E. coli levels and tidal-related resuspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aquifer geometry, lithology, and water levels in the Anza–Terwilliger area—2013, Riverside and San Diego Counties, California

    USGS Publications Warehouse

    Landon, Matthew K.; Morita, Andrew Y.; Nawikas, Joseph M.; Christensen, Allen H.; Faunt, Claudia C.; Langenheim, Victoria E.

    2015-11-24

    On the basis of data from 33 wells, water levels mostly declined between the fall of 2006 and the fall of 2013; the median decline was 5.1 feet during this period, for a median rate of decline of about 0.7 feet/year. Based on data from 40 wells, water-level changes between fall 2004 and fall 2013 were variable in magnitude and trend, but had a median decline of 2.4 feet and a median rate of decline of about 0.3 feet/ year. These differences in apparent rates of groundwater-level change highlight the value of ongoing water-level measurements to distinguish decadal, or longer term, trends in groundwater storage often associated with climatic variability and trends. Fifty-four long-term hydrographs indicated the sensitivity of groundwater levels to climatic conditions; they also showed a general decline in water levels across the study area since 1986 and, in some cases, dating back to the 1950s.

  13. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.

    PubMed

    Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P

    2018-06-13

    Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2008-01-01

    The most widely used aquifer for industry and public supply in the Mississippi embayment in Arkansas, Louisiana, Mississippi, and Tennessee is the Sparta-Memphis aquifer. Decades of pumping from the Sparta-Memphis aquifer have affected ground-water levels throughout the Mississippi embayment. Regional assessments of water-level data from the aquifer are important to document regional water-level conditions and to develop a broad view of the effects of ground-water development and management on the sustainability and availability of the region's water supply. This information is useful to identify areas of water-level declines, identify cumulative areal declines that may cross State boundaries, evaluate the effectiveness of ground-water management strategies practiced in different States, and identify areas with substantial data gaps that may preclude effective management of ground-water resources. A ground-water flow model of the northern Mississippi embayment is being developed by the Mississippi Embayment Regional Aquifer Study (MERAS) to aid in answering questions about ground-water availability and sustainability. The MERAS study area covers parts of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee and covers approximately 70,000 square miles. The U.S. Geological Survey (USGS) and the Mississippi Department of Environmental Quality Office of Land and Water Resources measured water levels in wells completed in the Sparta-Memphis aquifer in the spring of 2007 to assist in the MERAS model calibration and to document regional water-level conditions. Measurements by the USGS and the Mississippi Department of Environmental Quality Office of Land and Water Resources were done in cooperation with the Arkansas Natural Resources Commission; the Arkansas Geological Survey; Memphis Light, Gas and Water; Shelby County, Tennessee; and the city of Germantown, Tennessee. In 2005, total water use from the Sparta-Memphis aquifer in the Mississippi embayment was about 540 million gallons per day (Mgal/d). Water use from the Sparta-Memphis aquifer was about 170 Mgal/d in Arkansas, about 68 Mgal/d in Louisiana, about 97 Mgal/d in Mississippi, and about 205 Mgal/d in Tennessee. The author acknowledges, with great appreciation, the efforts of the personnel in the U.S. Geological Survey Water Science Centers of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee, and the Mississippi Department of Environmental Quality Office of Land and Water Resources that participated in the planning, water-level measurement, data evaluation, and review of the potentiometric-surface map. Without the contribution of data and the technical assistance of their staffs, this report would not have been completed.

  15. Bi-Level Decision Making for Supporting Energy and Water Nexus

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Vesselinov, V. V.

    2016-12-01

    The inseparable relationship between energy production and water resources has led to the emerging energy-water nexus concept, which provides a means for integrated management and decision making of these two critical resources. However, the energy-water nexus frequently involves decision makers with different and competing management objectives. Furthermore, there is a challenge that decision makers and stakeholders might be making decisions sequentially from a higher level to a lower level, instead of at the same decision level, whereby the objective of a decision maker at a higher level should be satisfied first. In this study, a bi-level decision model is advanced to handle such decision-making situations for managing the energy-water nexus. The work represents a unique contribution to developing an integrated decision-support framework/tool to quantify and analyze the tradeoffs between the two-level energy-water nexus decision makers. Here, plans for electricity generation, fuel supply, water supply, capacity expansion of the power plants and environmental impacts are optimized to provide effective decision support. The developed decision-support framework is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is a part of the MADS (Model Analyses & Decision Support) framework (http://mads.lanl.gov). To demonstrate the capabilities of the developed methodology, a series of analyses are performed for synthetic problems consistent with actual real-world energy-water nexus management problems.

  16. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2007. The map is based on water-level measurements in 85 wells. The highest measured water level was 50 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A water level measured west of the Cheasapeake Beach area has declined to 57 feet below sea level due to increased withdrawals. The lowest water level measured was 162 feet below sea level at the center of a cone of depression at Lexington Park.

  17. Water-level changes in the high plains regional aquifer, northwestern Oklahoma, predevelopment to 1980

    USGS Publications Warehouse

    Havens, J.S.

    1983-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The predevelopment to 1980 water-level changes in the High Plains regional aquifer in Oklahoma are shown for Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, on the east, and for the Oklahoma Panhandle, consist- ing of Cimarron, Texas, and Beaver Counties, on the west. About 1,470 water-level measurements in the Panhandle were used in compiling the predevelopment water-table map (Havens, 1982c). In the remaining area to the east about 150 water-level measurements from the 1950's to the 1970's are representative of predevelopment water levels. For the 1980 water-table map, about 330 measurements were made in the Panhandle and about 350 measurements in the eastern area by the Oklahoma Water Resources Board (Havens, 1982b).

  18. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.

  19. Run-up parameterization and beach vulnerability assessment on a barrier island: a downscaling approach

    NASA Astrophysics Data System (ADS)

    Medellín, G.; Brinkkemper, J. A.; Torres-Freyermuth, A.; Appendini, C. M.; Mendoza, E. T.; Salles, P.

    2016-01-01

    We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.

  20. Water-level changes in the High Plains aquifer, Republican River Basin in Colorado, Kansas, and Nebraska, 2002 to 2015

    USGS Publications Warehouse

    McGuire, V.L.

    2016-12-29

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. More than 95 percent of the water withdrawn from the High Plains aquifer is used for irrigation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). The Republican River Basin is 15.9 million acres (about 25,000 square miles) and is located in northeast Colorado, northern Kansas, and southwest Nebraska. The Republican River Basin overlies the High Plains aquifer for 87 percent of the basin area. Water-level declines had begun in parts of the High Plains aquifer within the Republican River Basin by 1964. In 2002, management practices were enacted in the Middle Republican Natural Resources District in Nebraska to comply with the Republican River Compact Final Settlement. The U.S. Geological Survey, in cooperation with the Middle Republican Natural Resources District, completed a study of water-level changes in the High Plains aquifer within the Republican River Basin from 2002 to 2015 to enable the Middle Republican Natural Resources District to assess the effect of the management practices, which were specified by the Republican River Compact Final Settlement. Water-level changes determined from this study are presented in this report.Water-level changes from 2002 to 2015 in the High Plains aquifer within the Republican River Basin, by well, ranged from a rise of 9.4 feet to a decline of 43.2 feet. The area-weighted, average water-level change from 2002 to 2015 in this part of the aquifer was a decline of 4.5 feet.

  1. Estimating Water Supply Arsenic Levels in the New England Bladder Cancer Study

    PubMed Central

    Freeman, Laura E. Beane; Lubin, Jay H.; Airola, Matthew S.; Baris, Dalsu; Ayotte, Joseph D.; Taylor, Anne; Paulu, Chris; Karagas, Margaret R.; Colt, Joanne; Ward, Mary H.; Huang, An-Tsun; Bress, William; Cherala, Sai; Silverman, Debra T.; Cantor, Kenneth P.

    2011-01-01

    Background: Ingestion of inorganic arsenic in drinking water is recognized as a cause of bladder cancer when levels are relatively high (≥ 150 µg/L). The epidemiologic evidence is less clear at the low-to-moderate concentrations typically observed in the United States. Accurate retrospective exposure assessment over a long time period is a major challenge in conducting epidemiologic studies of environmental factors and diseases with long latency, such as cancer. Objective: We estimated arsenic concentrations in the water supplies of 2,611 participants in a population-based case–control study in northern New England. Methods: Estimates covered the lifetimes of most study participants and were based on a combination of arsenic measurements at the homes of the participants and statistical modeling of arsenic concentrations in the water supply of both past and current homes. We assigned a residential water supply arsenic concentration for 165,138 (95%) of the total 173,361 lifetime exposure years (EYs) and a workplace water supply arsenic level for 85,195 EYs (86% of reported occupational years). Results: Three methods accounted for 93% of the residential estimates of arsenic concentration: direct measurement of water samples (27%; median, 0.3 µg/L; range, 0.1–11.5), statistical models of water utility measurement data (49%; median, 0.4 µg/L; range, 0.3–3.3), and statistical models of arsenic concentrations in wells using aquifers in New England (17%; median, 1.6 µg/L; range, 0.6–22.4). Conclusions: We used a different validation procedure for each of the three methods, and found our estimated levels to be comparable with available measured concentrations. This methodology allowed us to calculate potential drinking water exposure over long periods. PMID:21421449

  2. Estimating water supply arsenic levels in the New England bladder cancer study

    USGS Publications Warehouse

    Nuckols, J.R.; Beane, Freeman L.E.; Lubin, J.H.; Airola, M.S.; Baris, D.; Ayotte, J.D.; Taylor, A.; Paulu, C.; Karagas, M.R.; Colt, J.; Ward, M.H.; Huang, A.-T.; Bress, W.; Cherala, S.; Silverman, D.T.; Cantor, K.P.

    2011-01-01

    Background: Ingestion of inorganic arsenic in drinking water is recognized as a cause of bladder cancer when levels are relatively high (??? 150 ??g/L). The epidemiologic evidence is less clear at the low-to-moderate concentrations typically observed in the United States. Accurate retrospective exposure assessment over a long time period is a major challenge in conducting epidemiologic studies of environmental factors and diseases with long latency, such as cancer. Objective: We estimated arsenic concentrations in the water supplies of 2,611 participants in a population-based case-control study in northern New England. Methods: Estimates covered the lifetimes of most study participants and were based on a combination of arsenic measurements at the homes of the participants and statistical modeling of arsenic concentrations in the water supply of both past and current homes. We assigned a residential water supply arsenic concentration for 165,138 (95%) of the total 173,361 lifetime exposure years (EYs) and a workplace water supply arsenic level for 85,195 EYs (86% of reported occupational years). Results: Three methods accounted for 93% of the residential estimates of arsenic concentration: direct measurement of water samples (27%; median, 0.3 ??g/L; range, 0.1-11.5), statistical models of water utility measurement data (49%; median, 0.4 ??g/L; range, 0.3-3.3), and statistical models of arsenic concentrations in wells using aquifers in New England (17%; median, 1.6 ??g/L; range, 0.6-22.4). Conclusions: We used a different validation procedure for each of the three methods, and found our estimated levels to be comparable with available measured concentrations. This methodology allowed us to calculate potential drinking water exposure over long periods.

  3. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  4. Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    PubMed

    Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for rectal cancer occurrence was 1.04 (0.88-1.22) for individuals who resided in municipalities served by drinking water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.

  5. Case study approach to modeling historical disinfection by-product exposure in Iowa drinking waters.

    PubMed

    Krasner, Stuart W; Cantor, Kenneth P; Weyer, Peter J; Hildesheim, Mariana; Amy, Gary

    2017-08-01

    In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was 156μg/L compared to 74μg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels (>96μg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure. Copyright © 2017. Published by Elsevier B.V.

  6. [Risk analysis of nitrate contamination in wells supplying drinking water in a rural area of Chile].

    PubMed

    Arumi, José Luis; Núñez, Jorge; Salgado, Luis; Claret, Marcelino

    2006-12-01

    To assess the risk associated with nitrate contamination of wells that supply drinking water in the rural, Parral region of central Chile. The nitrate concentration levels were determined using water samples from 94 wells. An analysis of the distribution of nitrate concentration levels was performed in order to assess possible geographic correlations. For the risk analysis, two exposure situations were identified among the population (for adults and for infants), and the health risks were mapped. Fourteen percent of the wells studied had nitrate concentration levels greater than what the Chilean health standards allow for drinking water. There was no geographic correlation for the nitrate concentration levels. The mean hazard quotient (HQ) for adults in the study area was 0.12, indicating an absence of risk for this population group. For infants, the HQ values had a maximum value of 3.1 in some locations, but the average was 0.69 (still below 1.0), indicating that the well water in the study area was generally not hazardous for infants. In the Parral region of Chile, nitrate contamination of wells is primarily linked to certain factors such as construction practices and the proximity of livestock. These factors affect the quality of drinking water in isolated cases. There was no risk found for the adult population, but there was for infants fed on formula mixed with water coming from the contaminated wells.

  7. Effects of Water Level on Three Wetlands Soil Seed Banks on the Tibetan Plateau

    PubMed Central

    Ma, Miaojun; Ma, Zhen; Du, Guozhen

    2014-01-01

    Background Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. Methodology We examined the effects of water level (0 cm, 5 cm and 10 cm) on seed germination and seedling establishment from soil seed banks at 0–5 cm and 5–10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. Principal Findings Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. Conclusions/Significance Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank. PMID:24984070

  8. Palaeohydrology of the Southwest Yukon Territory, Canada, based on multiproxy analyses of lake sediment cores from a depth transect

    USGS Publications Warehouse

    Anderson, L.; Abbott, M.B.; Finney, B.P.; Edwards, M.E.

    2005-01-01

    Lake-level variations at Marcella Lake, a small, hydrologically closed lake in the southwestern Yukon Territory, document changes in effective moisture since the early Holocene. Former water levels, driven by regional palaeohydrology, were reconstructed by multiproxy analyses of sediment cores from four sites spanning shallow to deep water. Marcella Lake today is thermally stratified, being protected from wind by its position in a depression. It is alkaline and undergoes bio-induced calcification. Relative accumulations of calcium carbonate and organic matter at the sediment-water interface depend on the location of the depositional site relative to the thermocline. We relate lake-level fluctuations to down-core stratigraphic variations in composition, geochemistry, sedimentary structures and to the occurrence of unconformities in four cores based on observations of modern limnology and sedimentation processes. Twenty-four AMS radiocarbon dates on macrofossils and pollen provide the lake-level chronology. Prior to 10 000 cal. BP water levels were low, but then they rose to 3 to 4 m below modern levels. Between 7500 and 5000 cal. BP water levels were 5 to 6 m below modern but rose by 4000 cal. BP. Between 4000 and 2000 cal. BP they were higher than modern. During the last 2000 years, water levels were either near or 1 to 2 m below modern levels. Marcella Lake water-level fluctuations correspond with previously documented palaeoenvironmental and palaeoclimatic changes and provide new, independent effective moisture information. The improved geochronology and quantitative water-level estimates are a framework for more detailed studies in the southwest Yukon. ?? 2005 Edward Arnold (Publishers) Ltd.

  9. Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities

    PubMed Central

    Gordon, Sydney M.; Brinkman, Marielle C.; Ashley, David L.; Blount, Benjamin C.; Lyu, Christopher; Masters, John; Singer, Philip C.

    2006-01-01

    Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities investigated because of their much lower tap-water concentrations. Future studies will address the effects that changes in these common water-use activities may have on exposure. PMID:16581538

  10. A review and rationale for studying the cardiovascular effects of drinking water arsenic in women of reproductive age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Richard K., E-mail: rkwok@rti.org

    2007-08-01

    Drinking water arsenic has been shown to be associated with a host of adverse health outcomes at exposure levels > 300 {mu}g of As/L. However, the results are not consistent at exposures below this level. We have reviewed selected articles that examine the effects of drinking water arsenic on cardiovascular outcomes and present a rationale for studying these effects on women of reproductive age, and also over the course of pregnancy when they would potentially be more susceptible to adverse cardiovascular and reproductive outcomes. It is only recently that reproductive effects have been linked to drinking water arsenic. However, theremore » is a paucity of information about the cardiovascular effects of drinking water arsenic on women of reproductive age. Under the cardiovascular challenge of pregnancy, we hypothesize that women with a slightly elevated exposure to drinking water arsenic may exhibit adverse cardiovascular outcomes at higher rates than in the general population. Studying sensitive clinical and sub-clinical indicators of disease in susceptible sub-populations may yield important information about the potentially enormous burden of disease related to low-level drinking water arsenic exposure.« less

  11. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance model for (i) quantitative assessment of the impact of basin developmental activities on lake levels and for (ii) forecasting lake level changes and their impact on fisheries. From this study, we suggest that globally available satellite altimetry data provide a unique opportunity for calibration and validation of hydrologic models in ungauged basins. ?? Author(s) 2012.

  12. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

  13. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.

    2016-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.

  14. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.

  15. Ground-water levels in Huron County, Michigan, January 1995 through December 1995

    USGS Publications Warehouse

    Sweat, M.J.

    1996-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.

  16. Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003

    USGS Publications Warehouse

    Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.

    2005-01-01

    Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made. Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux. Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even though rainfall was far above average during the study, wetland evaporation volumetrically exceeded rainfall. Ground-water inflow was effective in partially offsetting the negative residual between rainfall and evaporation, thus adding to wetland storage. Ground-water inflow was most common at both wetlands when rainfall continued for days or weeks, or during a week with more than about 2.5 inches of rainfall. Large decreases in wetland storage were associated with large negative fluxes of evaporation and ground-water exchange. The response of wetland water levels to rainfall showed a strong and similar relation at both study sites; however, the greater variability in the relation of wetland water-level change to rainfall at higher rainfall rates indicated that hydrologic processes other than rainfall became more important in the response of the wetland. Changes in wetland water levels seemed to be related more to vertical gradients than to lateral gradients. The largest wetland water-level rises were associated mostly with lower vertical gradients, when vertical head differences were below the 18-month average; however, at the Lyonia large wetland, extremely large lateral gradients toward the wetland during late June 2002 may have contributed to substantial gains in wetland water. During the remainder of the study, wetland water-level rises were associated mostly with decreasing vertical gradients and highly variable lateral gradients. Conversely, wetland water-level decreases were associated mostly with increasing vertical gradients and lateral gradients away from the wetland, particularly during the dry season. The potential for lateral ground-water exchange with the wetlands varied substantially more than that for vertical exchange. Potential for vertical losses of wetland water to ground water was highest during a dry period from December 2001 to June 2002, during the wet season of 2002, and for several months into the following dry season. Lateral he

  17. Exposure to high-fluoride drinking water and risk of dental caries and dental fluorosis in Haryana, India.

    PubMed

    Marya, Charu Mohan; Ashokkumar, B R; Dhingra, Sonal; Dahiya, Vandana; Gupta, Anil

    2014-05-01

    The present study aimed to determine the prevalence of and relationship between dental caries and dental fluorosis at varying levels of fluoride in drinking water. The study was conducted among 3007 school children in the age group of 12 to 16 years in 2 districts of Haryana having varying fluoride levels in drinking water. Type III examination for dental caries according to the WHO index and dental fluorosis estimation according to Dean's index was done. The prevalence of dental caries decreased from 48.02% to 28.07% as fluoride levels increased from 0.5 to 1.13 ppm, but as the fluoride level increased further to 1.51 ppm, there was no further reduction in caries prevalence, but there was a substantial increase in fluorosis prevalence. The optimum level of fluoride in drinking water was found to be 1.13 ppm, at which there was maximum caries reduction with minimum amount of esthetically objectionable fluorosis. © 2012 APJPH.

  18. Ground-water hydrology and simulated effects of development in the Milford area, an arid basin in southwestern Utah

    USGS Publications Warehouse

    Mason, James L.

    1998-01-01

    A three-dimensional, finite-difference model was constructed to simulate ground-water flow in the Milford area. The purpose of the study was to evaluate present knowledge and concepts of the groundwater system, to analyze the ability of the model to represent past and current (1984) conditions, and to estimate the effects of various groundwater development alternatives. The alternative patterns of groundwater development might prove effective in capturing natural discharge from the basin-fill aquifer while limiting water-level declines. Water levels measured during this study indicate that ground water in the Milford area flows in a northwesterly direction through consolidated rocks in the northern San Francisco Mountains toward Sevier Lake. The revised potentiometric surface shows a large area for probable basin outflow, indicating that more water leaves the Milford area than the 8 acre-feet per year estimated previously.Simulations made to calibrate the model were able to approximate steady-state conditions for 1927, before ground-water development began, and transient conditions for 1950-82, during which groundwater withdrawal increased. Basin recharge from the consolidated rocks and basin outflow were calculated during the calibration process. Transient simulations using constant and variable recharge from surface water were made to test effects of large flows in the Beaver River.Simulations were made to project water-level declines over a 37- year period (1983-2020) using the present pumping distribution. Ground-water withdrawals were simulated at 1, 1.5, and 2 times the 1979-82 average rate.The concepts of "sustained" yield, ground-water mining, and the capture of natural discharge were tested using several hypothetical pumping distributions over a 600-year simulation period. Simulations using concentrated pumping centers were the least efficient at capturing natural discharge and produced the largest water-level declines. Simulations using strategically placed ground-water withdrawals in the discharge area were the most efficient at eliminating natural discharge with small water-level declines.

  19. Water quality assessment of Australian ports using water quality evaluation indices

    PubMed Central

    Jahan, Sayka

    2017-01-01

    Australian ports serve diverse and extensive activities, such as shipping, tourism and fisheries, which may all impact the quality of port water. In this work water quality monitoring at different ports using a range of water quality evaluation indices was applied to assess the port water quality. Seawater samples at 30 stations in the year 2016–2017 from six ports in NSW, Australia, namely Port Jackson, Botany, Kembla, Newcastle, Yamba and Eden, were investigated to determine the physicochemical and biological variables that affect the port water quality. The large datasets obtained were designed to determine the Water Quality Index, Heavy metal Evaluation Index, Contamination Index and newly developed Environmental Water Quality Index. The study revealed medium water quality index and high and medium heavy metal evaluation index at three of the study ports and high contamination index in almost all study ports. Low level dissolved oxygen and higher level of total dissolved solids, turbidity, fecal coliforms, copper, iron, lead, zinc, manganese, cadmium and cobalt are mainly responsible for the poor water qualities of the port areas. Good water quality at the background samples indicated that various port activities are the likely cause for poor water quality inside the port area. PMID:29244876

  20. Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation.

    PubMed

    Bondu, Joseph Dian; Selvakumar, R; Fleming, Jude Joseph

    2018-01-01

    A variety of methods, including the Ion Selective Electrode (ISE), have been used for estimation of fluoride levels in drinking water. But as these methods suffer many drawbacks, the newer method of IC has replaced many of these methods. The study aimed at (1) validating IC for estimation of fluoride levels in drinking water and (2) to assess drinking water fluoride levels of villages in and around Vellore district using IC. Forty nine paired drinking water samples were measured using ISE and IC method (Metrohm). Water samples from 165 randomly selected villages in and around Vellore district were collected for fluoride estimation over 1 year. Standardization of IC method showed good within run precision, linearity and coefficient of variance with correlation coefficient R 2  = 0.998. The limit of detection was 0.027 ppm and limit of quantification was 0.083 ppm. Among 165 villages, 46.1% of the villages recorded water fluoride levels >1.00 ppm from which 19.4% had levels ranging from 1 to 1.5 ppm, 10.9% had recorded levels 1.5-2 ppm and about 12.7% had levels of 2.0-3.0 ppm. Three percent of villages had more than 3.0 ppm fluoride in the water tested. Most (44.42%) of these villages belonged to Jolarpet taluk with moderate to high (0.86-3.56 ppm) water fluoride levels. Ion Chromatography method has been validated and is therefore a reliable method in assessment of fluoride levels in the drinking water. While the residents of Jolarpet taluk (Vellore distict) are found to be at a high risk of developing dental and skeletal fluorosis.

  1. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    PubMed

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  2. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  3. Uranium contaminated drinking water linked to leukaemia-Revisiting a case study from South Africa taking alternative exposure pathways into account.

    PubMed

    Winde, Frank; Erasmus, Ewald; Geipel, Gerhard

    2017-01-01

    The paper presents results of a follow-up to an earlier study which established a geospatial link between naturally elevated uranium (U) levels in borehole water and haematological abnormalities in local residents serving as a proxy for leukaemia prevalent in the area. While the original study focussed on drinking water only, this paper also explores alternative exposure pathways including the inhalation of dust and the food chain. U-levels in grass and tissue of sheep generally reflect U-levels in nearby borehole water and exceed background concentrations by 20 to nearly 500 times. U-levels in sheep tissue increase with age of the animal. Wool showed the highest U-concentration followed by other non-consumable tissue such as hooves, teeth and bones. Lower levels occur in edible parts such as meat and inner organs. The U-deposition rate in wool is several orders of magnitudes higher than in bone as a known target organ. Wool is an easy-to-sample non-invasive bioindicator for U-levels in meat. Depending on the original water content, dried samples show up to 5 times higher U-levels than identical fresh material. Contaminated drinking water is the main exposure pathway for farm residents resulting in U-uptake rates exceeding the WHO's tolerable daily intake (TDI) limit by up to 900%. This is somewhat mitigated by the fact that U-speciation is dominated by a neutral calcium-uranyl-carbonate complex of relatively low toxicity. Commercially available household filters are able to significantly reduce U-levels in well water and are thus recommended as a short-term intervention. Based on average consumption rates sheep meat, as local staple food, accounts for 34% of the TDI for U. Indoor levels of radon should be monitored, too, since it is linked to both, U and leukaemia. With elevated U-levels being present in other geological formations across South Africa boreholes in these areas should be surveyed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Occurrence and Spatial and Temporal Variations of Disinfection By-Products in the Water and Air of Two Indoor Swimming Pools

    PubMed Central

    Catto, Cyril; Sabrina, Simard; Ginette, Charest-Tardif; Manuel, Rodriguez; Robert, Tardif

    2012-01-01

    In order to improve disinfection by-product (DBP) exposure assessment, this study was designed to document both water and air levels of these chemical contaminants in two indoor swimming pools and to analyze their within-day and day-to-day variations in both of them. Intensive sampling was carried out during two one-week campaigns to measure trihalomethanes (THMs) and chloramines (CAMs) in water and air, and haloacetic acids (HAAs) in water several times daily. Water samples were systematically collected at three locations in each pool and air samples were collected at various heights around the pool and in other rooms (e.g., changing room) in the buildings. In addition, the ability of various models to predict air concentrations from water was tested using this database. No clear trends, but actual variations of contamination levels, appeared for both water and air according to the sampling locations and times. Likewise, the available models resulted in realistic but imprecise estimates of air contamination levels from water. This study supports the recommendation that suitable minimal air and water sampling should be carried out in swimming pools to assess exposure to DBPs. PMID:23066383

  5. Groundwater level and specific conductance monitoring at Marine Corps Base, Camp Lejeune, Onslow County, North Carolina, 2007-2008

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Marine Corps Base, Camp Lejeune, monitored water-resources conditions in the surficial, Castle Hayne, Peedee, and Black Creek aquifers in Onslow County, North Carolina, from November 2007 through September 2008. To comply with North Carolina Central Coastal Plain Capacity Use Area regulations, large-volume water suppliers in Onslow County must reduce their dependency on the Black Creek aquifer as a water-supply source and have, instead, proposed using the Castle Hayne aquifer as an alternative water-supply source. The Marine Corps Base, Camp Lejeune, uses water obtained from the unregulated surficial and Castle Hayne aquifers for drinking-water supply. Water-level data were collected and field measurements of physical properties were made at 19 wells at 8 locations spanning the Marine Corps Base, Camp Lejeune. These wells were instrumented with near real-time monitoring equipment to collect hourly measurements of water level. Additionally, specific conductance and water temperature were measured hourly in 16 of the 19 wells. Graphs are presented relating altitude of groundwater level to water temperature and specific conductance measurements collected during the study, and the relative vertical gradients between aquifers are discussed. The period-of-record normal (25th to 75th percentile) monthly mean groundwater levels at two well clusters were compared to median monthly mean groundwater levels at these same well clusters for 2008 to determine groundwater-resources conditions. In 2008, water levels were below normal in the 3 wells at one of the well clusters and were normal in 4 wells at the other cluster.

  6. Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize

    USGS Publications Warehouse

    Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy

    2012-01-01

    Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.

  7. Impact analysis of government investment on water projects in the arid Gansu Province of China

    NASA Astrophysics Data System (ADS)

    Wang, Zhan; Deng, Xiangzheng; Li, Xiubin; Zhou, Qing; Yan, Haiming

    In this paper, we introduced three-nested Constant Elasticity of Substitution (CES) production function into a static Computable General Equilibrium (CGE) Model. Through four levels of factor productivity, we constructed three nested production function of land use productivity in the conceptual modeling frameworks. The first level of factor productivity is generated by the basic value-added land. On the second level, factor productivity in each sector is generated by human activities that presents human intervention to the first level of factor productivity. On the third level of factor productivity, water allocation reshapes the non-linear structure of transaction among first and second levels. From the perspective of resource utilization, we examined the economic efficiency of water allocation. The scenario-based empirical analysis results show that the three-nested CES production function within CGE model is well-behaved to present the economy system of the case study area. Firstly, water scarcity harmed economic production. Government investment on water projects in Gansu thereby had impacts on economic outcomes. Secondly, huge governmental financing on water projects bring depreciation of present value of social welfare. Moreover, water use for environment adaptation pressures on water supply. The theoretical water price can be sharply increased due to the increasing costs of factor inputs. Thirdly, water use efficiency can be improved by water projects, typically can be benefited from the expansion of water-saving irrigation areas even in those expanding dry area in Gansu. Therefore, increasing governmental financing on water projects can depreciate present value of social welfare but benefit economic efficiency for future generation.

  8. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    NASA Astrophysics Data System (ADS)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  9. [Bacteriological quality of drinking water in the City of Merida, Mexico].

    PubMed

    Flores-Abuxapqui, J J; Suárez-Hoil, G J; Puc-Franco, M A; Heredia-Navarrete, M R; Vivas-Rosel, M D; Franco-Monsreal, J

    1995-01-01

    With the aim of knowing the microbiological quality of drinking water in Merida, Yucatan, 383 paired samples of drinking water (two per house) were studied. Three hundred sixty four (95%) city water system samples and 283 (73.89%) tap water samples met the microbiological standards for drinking water. It was concluded that microbiological quality of drinking water from the city water system is satisfactory, except for the water system district Merida III, which has a significant aerobic plate count contamination level (21.7% of the samples). Domestic storage systems preserve water quality, with the exception of district Merida I, which has the highest level of contamination (4.8% of the samples) possibly from sewage water and fecal sources.

  10. Contaminated drinking water and rural health perspectives in Rajasthan, India: an overview of recent case studies.

    PubMed

    Suthar, Surindra

    2011-02-01

    Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO3-) contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.

  11. Ground-water quality in Quaternary deposits of the central High Plains aquifer, south-central Kansas, 1999

    USGS Publications Warehouse

    Pope, Larry M.; Bruce, Breton W.; Hansen, Cristi V.

    2001-01-01

    Water samples from 20 randomly selected domestic water-supply wells completed in the Quaternary deposits of south-central Kansas were collected as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment Program. The samples were analyzed for about 170 water-quality constituents that included physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticides, volatile organic compounds, and radon. The purpose of this study was to provide a broad overview of ground-water quality in a major geologic subunit of the High Plains aquifer. Water from five wells (25 percent) exceeded the 500-milligrams-per-liter of dissolved solids Secondary Maximum Contaminant Level for drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well each. The source of these dissolved solids was probably natural processes. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Water from 15 percent of the sampled wells had concentrations of nitrate greater than the 10-milligram-per-liter Maximum Contaminant Level for drinking water. Water from 80 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter), which is more than what might be expected for natural background concentrations. This enrichment may be the result of synthetic fertilizer applications, the addition of soil amendment (manure) on cropland, or livestock production. Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Only arsenic was detected in one well sample at a concentration (240 micrograms per liter) that exceeded its proposed Maximum Contaminant Level (5.0 micrograms per liter). Additionally, one concentration of iron and two concentrations of manganese were larger than the Secondary Maximum Contaminant Levels of 300 and 50 micrograms per liter, respectively. Some occurrences of trace elements may have originated from human-related sources; however, the generally small concentrations that were measured probably reflect mostly natural sources for these constituents. A total of 47 pesticide compounds from several classes of herbicides and insecticides that included triazine, organophosphorus, organochlorine, and carbamate compounds and three pesticide degradation products were analyzed in ground-water samples during this study. Water from 50 percent of the wells sampled had detectable concentrations of one or more of these 47 compounds. The herbicide atrazine and its degradation product deethylatrazine were detected most frequently (in water from eight and nine wells, respectively); other pesticides detected were the insecticides carbofuran (in water from one well) and diazinon (in water from one well), and the herbicide metolachlor (in water from two wells). However, all concentrations of these compounds were small and substantially less than established Maximum Contaminant Levels. The use of pesticides in crop production probably is largely responsible for the occurrence of pesticides in the ground-water samples collected during this study. Although concentrations of detected pesticides were small (relative to established Maximum Contaminant Levels), the synergistic effect of these concentrations and long-term exposure to multiple pesticides on human health are unknown. Water samples from the Quaternary deposits were analyzed for 85 volatile organic compounds. Water from two wells (10 percent) had a detectable concentration of a volatile organic compound. Chloroform was detected at concen-trations of 0.18 and 0.25 microgram per liter, substantially less than the 100-microgram-per-liter Maximum Contaminant Level for total trihalomethanes. In general, the occurrence and detectio

  12. Acute gastrointestinal effects of graded levels of copper in drinking water.

    PubMed Central

    Pizarro, F; Olivares, M; Uauy, R; Contreras, P; Rebelo, A; Gidi, V

    1999-01-01

    The objective of this study was to determine the acute gastrointestinal effects caused by the consumption of drinking water containing graded levels of added copper. Sixty healthy, adult women were randomly assigned to receive copper [Cu(II)] at four concentrations in their drinking water following a Latin-square design. Each group (n = 15) received tap water with no added copper, 1, 3, and 5 mg Cu/l of added copper sulfate for a 2-week study period, followed by 1 week of standard tap water. The subjects recorded their water consumption and gastrointestinal symptoms daily on a special form. The average daily consumption of water was 1.64 liters per subject, regardless of the amount of copper added. Final serum copper, ceruloplasmin, and liver enzymes were measured in all subjects and were not different from baseline concentrations. Twenty-one subjects (35%) recorded gastrointestinal disturbances sometime during the study, 9 had diarrhea, some with abdominal pain and vomiting, and 12 subjects presented abdominal pain, nausea, or vomiting. There was no association between copper levels in drinking water and diarrhea. However, nausea, abdominal pain, or vomiting were significantly related to copper concentrations in water. The recorded incidence rate of these symptoms was 5, 2, 17, and 15% while ingesting water with 0, 1, 3, and 5 mg Cu/l, respectively (overall [chi]2 = 11.3, p<0.01; Cu [less than/equal to]1 mg/l versus Cu [Greater than/equal to]3 mg/l, [chi]2, p<0.01). When subjects interrupted their consumption of drinking water with added copper, most symptoms disappeared. We conclude that under the conditions of the study, there was no association between aggregate copper in drinking water within the range of 0-5 mg/l and diarrhea, but a [Greater than/equal to]3 mg Cu/l level of ionized copper was associated with nausea, abdominal pain, or vomiting. Additional studies with sufficient numbers of subjects are needed to define thresholds for specific gastrointestinal symptoms with precision and to extrapolate these results to the population at large. Images Figure 1 Figure 2 PMID:9924006

  13. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking.

    PubMed

    Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos

    2018-01-16

    The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.

  14. Natural fluoride levels in some springs and streams from the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of south eastern Nigeria.

    PubMed

    Ibe, K K; Adlegbembo, A O; Mafeni, J O; Danfillo, I S

    1999-09-01

    The aim of this study was to provide baseline data on the fluoride levels in waters associated with the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of South Eastern Nigeria. Water samples from 14 artesian, perched springs and eight streams from the formation were collected with plastic containers. Fluoride analysis was carried out with inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipment at the laboratories of the Department of Earth Science, University of Leeds, United Kingdom. The results showed that fluoride occurred in only one of the 14 spring water samples. Fluoride level in the sample was 0.03 ppm. The spring water, which contained some fluoride, was possibly associated with another rock formation: namely, the limestone bearing Nsukka formation, which overlies the Ajali formation. No fluoride was observed in all the stream water samples. This study reported the absence of fluoride in spring and stream waters associated with the late Maastrichtian formations in Nigeria.

  15. Survival of human pathogenic bacteria in different types of natural mineral water.

    PubMed

    Serrano, Concepción; Romero, Margarita; Alou, Luis; Sevillano, David; Corvillo, Iluminada; Armijo, Francisco; Maraver, Francisco

    2012-09-01

    The aim of this study was to determine the survival of human pathogens (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) in five natural mineral waters (NMWs) with different properties and mineralization levels. Five NMWs from four Spanish spas with different dry residue at 110 °C were used: A = 76,935 mg/L; B = 1,827 mg/L; C = 808.4 mg/L; D = 283.8 mg/L; and E = 170.4 mg/L. An initial inoculum of 1 × 10(6) colony forming units (cfu)/mL was used for survival studies. Distilled water, chlorinated tap water and Mueller-Hinton broth were used as controls. Colony counts in all different waters were lower than those achieved with Mueller-Hinton broth over all incubation periods. A direct effect between the bacterial survival and the level of mineralization water was observed. The NMW E with low mineralization level along with the radioactive properties showed the highest antibacterial activity among all NMWs.

  16. Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985

    USGS Publications Warehouse

    ,

    1986-01-01

    In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)

  17. Nitrates in drinking water and the risk of death from brain cancer: does hardness in drinking water matter?

    PubMed

    Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh

    2011-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was <0.38 ppm, the adjusted OR (95% CI) for brain cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.

  18. The effect of water deprivation on the expression of atrial natriuretic peptide and its receptors in the spinifex hopping mouse, Notomys alexis.

    PubMed

    Heimeier, Rachel A; Davis, Belinda J; Donald, John A

    2002-08-01

    This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.

  19. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to be about 3 inches, or 12 percent of the average annual precipitation. Ground water in the outwash aquifer near the landfill is estimated to be between 15 and 43 years old. Some deeper ground waters and ground water near the discharge areas close to the shoreline are older than 43 years. Analysis of water-quality data collected for this study and review of existing data indicate that material in the landfill has had no appreciable impact on the current quality of ground water outside of the landfill. The water quality of samples from seven wells near to and downgradient from the landfill appears to be similar to the ground-water quality throughout the entire study area. The high iron and manganese concentrations found in most of the samples from wells near the landfill are probably within the range of natural concentrations for the study area. Ground-water pumping during the past 20 years has not caused any large changes in ground-water discharge to streams, ground-water levels, or seawater intrusion into the ground-water system. Ground-water discharge into Snee-oosh Creek and Munks Creek had similar magnitudes in the summers of 1976 and 1996; flows in both creeks during those summers ranged from 0.07 t 0.15 cubic feet per second. Ground-water levels changed minimally between 1976 and 1996. The average water-level change for 20 wells with more than 10 years between measurements was -0.7 feet and the two largest waterlevel declines were 6 and 9 feet. No appreciable seawater intrusion was found in the ground water in 1996, and there was no significant increase in the extent of seawater intrusion from 1976 to 1996. Median chloride concentrations of water samples collected from wells were 22 milligrams per liter in 1976 and 18 milligrams per liter in 1996.

  20. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana.

    PubMed

    Cobbina, Samuel J; Duwiejuah, Abudu B; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-08-28

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.

  1. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    PubMed Central

    Cobbina, Samuel J.; Duwiejuah, Abudu B.; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-01-01

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended. PMID:26343702

  2. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for understanding and finding of water use efficiency at the irrigation system level. The results also revealed that rice production systems are still profitable despite high pumping costs and other associated expenses at all spatial levels in District 1. More than 1500 farmers, from a total of 10,000, use 1154 pumps to draw water from shallow tube wells (or from drains and creeks) for supplementary irrigation at a District level. Reuse of water plays a vital role in growing a profitable rice crop during the dry season.

  3. Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss

    PubMed Central

    Aschengrau, Ann; Weinberg, Janice M.; Gallagher, Lisa G.; Winter, Michael R.; Vieira, Veronica M.; Webster, Thomas F.; Ozonoff, David M.

    2010-01-01

    There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies. PMID:20613966

  4. Ground-water levels in Huron County, Michigan, March 1993 through December 1994

    USGS Publications Warehouse

    Sweat, M.J.

    1995-01-01

    In 1990, the U.S. Geological Survey completed a study of the hydrogeology of Huron County, Michigan. In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The program included the operation of continuous water-level recorders installed on four wells, in Bingham, Fairhaven, Grant and Lake townships (figure 1). County personnel make quarterly water-level measurements on 22 other wells (figure 1). Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.Two of the wells with recorders are completed in the Marshall aquifer (H5r and H25Ar), one is completed in the glacio-fluvial aquifer (H2r), and one is completed in the Saginaw aquifer (H9r). Hydrographs are presented for each of the four wells with water level recorders (figures 3, 4, 6, and 8). Hydrographs of quarterly water-level measurements and range of water levels during the period October, 1988 to January, 1990 (the original project period) are shown in figures 5, 7, 9, and 10 and quarterly water levels are presented in tables 1 through 4.Figure 2 shows the monthly-mean water-level elevation of Lake Huron, as measured at Harbor Beach and Essexville, and monthly-mean precipitation as recorded at Bad Axe, for the period October, 1988 through December, 1994. In general, Lake Huron water-level elevation were at or near record lows in late 1989, and near record highs in late 1993. Precipitation throughout the period was generally within the normal range.

  5. The study of Lake Urmia desiccation: morphometry impress

    NASA Astrophysics Data System (ADS)

    Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram

    2017-04-01

    Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.

  6. Hydrologic data and groundwater-flow simulations in the Brown Ditch Watershed, Indiana Dunes National Lakeshore, near Beverly Shores and Town of Pines, Indiana

    USGS Publications Warehouse

    Lampe, David C.

    2016-03-15

    The results of this study can be used by water-resource managers to understand how surrounding ditches affect water levels in Great Marsh and other inland wetlands and residential areas. The groundwater model developed can be applied to answer questions about how alterations to the drainage system in the area affects water levels in the public and residential areas surrounding Great Marsh. The modeling methods developed in this study provide a template for other studies of groundwater flow and groundwater/surface-water interactions within the shallow surficial aquifer in northern Indiana, and in similar hydrologic settings that include surficial sand aquifers in coastal areas.

  7. Microbiological, chemical and physical quality of drinking water for commercial turkeys: a cross-sectional study.

    PubMed

    Di Martino, G; Piccirillo, A; Giacomelli, M; Comin, D; Gallina, A; Capello, K; Buniolo, F; Montesissa, C; Bonfanti, L

    2018-04-17

    Drinking water for poultry is not subject to particular microbiological, chemical and physical requirements, thereby representing a potential transmission route for pathogenic microorganisms and contaminants and/or becoming unsuitable for water-administered medications. This study assessed the microbiological, chemical and physical drinking water quality of 28 turkey farms in North-Eastern Italy: 14 supplied with tap water (TW) and 14 with well water (WW). Water salinity, hardness, pH, ammonia, sulphate, phosphate, nitrate, chromium, copper and iron levels were also assessed. Moreover, total bacterial count at 22°C, presence and enumeration of Enterococcus spp. and E. coli, presence of Salmonella spp. and Campylobacter spp. were quantified. A water sample was collected in winter and in summer at 3 sampling sites: the water source (A), the beginning (B) and the end (C) of the nipple line (168 samples in total). Chemical and physical quality of both TW and WW sources was mostly within the limits of TW for humans. However, high levels of hardness and iron were evidenced in both sources. In WW vs. TW, sulphate and salinity levels were significantly higher, whilst pH and nitrate levels were significantly lower. At site A, microbiological quality of WW and TW was mostly within the limit of TW for humans. However, both sources had a significantly lower microbiological quality at sites B and C. Salmonella enterica subsp. enterica serotype Kentucky was isolated only twice from WW. Campylobacter spp. were rarely isolated (3.6% of farms); however, Campylobacter spp. farm-level prevalence by real-time PCR was up to 43% for both water sources. Winter posed at higher risk than summer for Campylobacter spp. presence in water, whereas no significant associations were found with water source, site, recirculation system, and turkey age. Low salinity and high hardness were significant risk factors for C. coli and C. jejuni presence, respectively. These results show the need of improving sanitization of drinking water pipelines for commercial turkeys.

  8. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, K.; Poeter, E.

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (??18O and ??2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water-table elevation which can affect discharge from the Dinero mine tunnel without physical transfer of water between the two locations.

  9. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water-table elevation which can affect discharge from the Dinero mine tunnel without physical transfer of water between the two locations.

  10. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered in Jefferson and Union Counties, as a result of large withdrawals for industrial and public supplies. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties as a result of large withdrawals for irrigation and public supply. The area enclosed within the 40-foot contour has expanded on the 2007 potentiometric-surface map when compared with the 2005 potentiometric-surface map. In 2003, the depression in Union County was elongated east and west and beginning to coalesce with the depression in Columbia County. The deepest measurement during 2007 in the center of the depression in Union County has risen 38 feet since 2003. The area enclosed by the deepest contour, 160 feet below National Geodetic Vertical Datum of 1929, on the 2007 potentiometric-surface map is less than 10 percent of the area on the 2005 potentiometric-surface map. A broad depression in western Poinsett and Cross Counties was first shown in the 1995 potentiometric-surface map caused by withdrawals for irrigation extending north to the Poinsett-Craighead County line, and south into Cross County. A water-level difference map was constructed using the difference between water-level measurements made during 2003 and 2007 from 283 wells. The difference in water level between 2003 and 2007 ranged from -49.8 to 60.0 feet. Areas with a general rise in water levels are shown in northern Arkansas, Columbia, southern Jefferson, and most of Union Counties. In the area around west-central Union County, water levels rose as much as 60.0 feet with water levels in 15 wells rising 20 feet or more, which is an average annual rise of 5 feet or more. Water levels generally declined throughout most of the rest of Arkansas. Hydrographs from 157 wells were constructed with a minimum of 25 years of water-level measurements. During the period 1983-2007, the county mean annual water level rose in Calhoun, Columbia, Hot Spring, and Lafayette Counties. Mean an

  11. H2S as an Indicator of Water Supply Vulnerability and Health Risk in Low-Resource Settings: A Prospective Cohort Study

    PubMed Central

    Khush, Ranjiv S.; Arnold, Benjamin F.; Srikanth, Padma; Sudharsanam, Suchithra; Ramaswamy, Padmavathi; Durairaj, Natesan; London, Alicia G.; Ramaprabha, Prabhakar; Rajkumar, Paramasivan; Balakrishnan, Kalpana; Colford Jr., John M.

    2013-01-01

    In this large-scale longitudinal study conducted in rural Southern India, we compared a presence/absence hydrogen sulfide (H2S) test with quantitative assays for total coliforms and Escherichia coli as measures of water quality, health risk, and water supply vulnerability to microbial contamination. None of the three indicators showed a significant association with child diarrhea. The presence of H2S in a water sample was associated with higher levels of total coliform species that may have included E. coli but that were not restricted to E. coli. In addition, we observed a strong relationship between the percent positive H2S test results and total coliform levels among water source samples (R2 = 0.87). The consistent relationships between H2S and total coliform levels indicate that presence/absence of H2S tests provide a cost-effective option for assessing both the vulnerability of water supplies to microbial contamination and the results of water quality management and risk mitigation efforts. PMID:23716404

  12. Regression models of monthly water-level change in and near the Closed Basin Division of the San Luis Valley, south-central Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.

    1995-01-01

    The Bureau of Reclamation is developing a water-resource project, the Closed Basin Division, in the San Luis Valley of south-central Colorado that is designed to salvage unconfined ground water that currently is discharged as evapotranspiration. The water table in and near the 130,000-acre Closed Basin Division area will be lowered by an annual withdrawal of as much as 100,000 acre-feet of ground water from the unconfined aquifer. The legislation authorizing the project limits resulting drawdown of the water table in preexisting irrigation and domestic wells outside the Closed Basin Division to a maximum of 2 feet. Water levels in the closed basin in the northern part of the San Luis Valley historically have fluctuated more than 2 feet in response to water-use practices and variation of climatically controlled recharge and discharge. Declines of water levels in nearby wells that are caused by withdrawals in the Closed Basin Division can be quantified if water-level fluctuations that result from other water-use practices and climatic variations can be estimated. This study was done to evaluate water-level change at selected observation wells in and near the Closed Basin Division. Regression models of monthly water-level change were developed to predict monthly water-level change in 46 selected observation wells. Predictions of monthly water-level change are based on one or more of the following: elapsed time, cosine and sine functions with an annual period, streamflow depletion of the Rio Grande, electrical use for agricultural purposes, runoff into the closed basin, precipitation, and mean air temperature. Regression models for five of the wells include only an intercept term and either an elapsed-time term or terms determined by the cosine and sine functions. Regression models for the other 41 wells include 1 to 4 of the 5 other variables, which can vary from month to month and from year to year. Serial correlation of the residuals was detected in 24 of the regression models. These models also include an autoregressive term to account for serial correlation in the residuals. The adjusted coefficient of determination (Ra2) for the 46 regression models range from 0.08 to 0.89, and the standard errors of estimate range from 0.034 to 2.483 feet. The regression models of monthly water- level change can be used to evaluate whether post-1985 monthly water-level change values at the selected observation wells are within the 95-percent confidence limits of predicted monthly water-level change.

  13. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  14. The Standard, Intervention Measures and Health Risk for High Water Iodine Areas

    PubMed Central

    Liu, Peng; Liu, Lixiang; Shen, Hongmei; Jia, Qingzhen; Wang, Jinbiao; Zheng, Heming; Ma, Jing; Zhou, Dan; Liu, Shoujun; Su, Xiaohui

    2014-01-01

    Our study aims to clarify the population nutrient status in locations with different levels of iodine in the water in China; to choose effective measurements of water improvement(finding other drinking water source of iodine not excess) or non-iodised salt supply or combinations thereof; to classify the areas of elevated water iodine levels and the areas with endemic goiter; and to evaluate the risk factors of water iodine excess on pregnant women, lactating women and the overall population of women. From Henan, Hebei, Shandong and Shanxi province of China, for each of 50∼99 µg/L, 100∼149 µg/L, 150∼299 µg/L, and ≥300 µg/L water iodine level, three villages were selected respectively. Students of 6–12 years old and pregnant were sampled from villages of each water-iodine level of each province, excluded iodized salt consumer. Then the children's goiter volume, the children and pregnant's urinary iodine and water iodine were tested. In addition, blood samples were collected from pregnant women, lactating women and other women of reproductive age for each water iodine level in the Shanxi Province for thyroid function tests. These indicators should be matched for each person. When the water iodine exceeds 100 µg/L; the iodine nutrient of children are iodine excessive, and are adequate or more than adequate for the pregnant women. It is reasonable to define elevated water iodine areas as locations where the water iodine levels exceed 100 µg/L. The supply of non-iodised salt alone cannot ensure adequate iodine nutrition of the residents, and water improvement must be adopted, as well. Iodine excess increases the risk of certain thyroid diseases in women from one- to eightfold. PMID:24586909

  15. The standard, intervention measures and health risk for high water iodine areas.

    PubMed

    Liu, Peng; Liu, Lixiang; Shen, Hongmei; Jia, Qingzhen; Wang, Jinbiao; Zheng, Heming; Ma, Jing; Zhou, Dan; Liu, Shoujun; Su, Xiaohui

    2014-01-01

    Our study aims to clarify the population nutrient status in locations with different levels of iodine in the water in China; to choose effective measurements of water improvement(finding other drinking water source of iodine not excess) or non-iodised salt supply or combinations thereof; to classify the areas of elevated water iodine levels and the areas with endemic goiter; and to evaluate the risk factors of water iodine excess on pregnant women, lactating women and the overall population of women. From Henan, Hebei, Shandong and Shanxi province of China, for each of 50 ∼ 99 µg/L, 100 ∼ 149 µg/L, 150 ∼ 299 µg/L, and ≥ 300 µg/L water iodine level, three villages were selected respectively. Students of 6-12 years old and pregnant were sampled from villages of each water-iodine level of each province, excluded iodized salt consumer. Then the children's goiter volume, the children and pregnant's urinary iodine and water iodine were tested. In addition, blood samples were collected from pregnant women, lactating women and other women of reproductive age for each water iodine level in the Shanxi Province for thyroid function tests. These indicators should be matched for each person. When the water iodine exceeds 100 µg/L; the iodine nutrient of children are iodine excessive, and are adequate or more than adequate for the pregnant women. It is reasonable to define elevated water iodine areas as locations where the water iodine levels exceed 100 µg/L. The supply of non-iodised salt alone cannot ensure adequate iodine nutrition of the residents, and water improvement must be adopted, as well. Iodine excess increases the risk of certain thyroid diseases in women from one- to eightfold.

  16. Progress report on the ground-water, surface-water, and quality-of-water monitoring program, Black Mesa Area, northeastern Arizona; 1988-89

    USGS Publications Warehouse

    Hart, R.J.; Sottilare, J.P.

    1989-01-01

    The Black Mesa monitoring program in Arizona is designed to determine long-term effects on the water resources of the area resulting from withdrawals of groundwater from the N aquifer by the strip-mining operation of Peabody Coal Company. Withdrawals by Peabody Coal Company increased from 95 acre-ft in 1968 to 4 ,090 acre-ft in 1988. The N aquifer is an important source of water in the 5,400-sq-mi Black Mesa area on the Navajo and Hopi Indian Reservations. Water levels in the confined area of the aquifer declined as much as 19.7 ft near Low Mountain from 1988 to 1989. Part of the decline in the measured municipal wells may be due to local pumping. During 1965-88, water levels in wells that tap the unconfined area of the aquifer have not declined significantly and have risen in many areas. Chemical analysis indicate no significant changes in the quality of water from wells that tap the N aquifer or from springs that discharge from several stratigraphic units, including the N aquifer, since pumping began at the mine. The groundwater flow model developed for the study area in 1988 was updated using pumpage data for 1985-88. The model simulated a steady decline in water levels in observations wells developed in areas of unconfined groundwater. Measured water levels in these wells did not show this trend but indicated that water levels remained the same or increased. The model accurately simulated water levels in most observation wells developed in areas of confined groundwater. (USGS)

  17. [Fluoride intake through consumption of water from municipal network in the INMA-Gipuzkoa cohort].

    PubMed

    Jiménez-Zabala, Ana; Santa-Marina, Loreto; Otazua, Mónica; Ayerdi, Mikel; Galarza, Ane; Gallastegi, Mara; Ulibarrena, Enrique; Molinuevo, Amaia; Anabitarte, Asier; Ibarluzea, Jesús

    2017-05-22

    To estimate fluoride intake through consumption of water from the municipal network in pregnant women and their children from the INMA-Gipuzkoa cohort and to compare these intakes with recommended levels. In Euskadi (Spain), fluoridation of drinking water is compulsory in water supplies for more than 30,000 inhabitants. 575 pregnant women (recruitment, 2006-2008) and 424 4-year-old children (follow-up, 2010-2012) have been included. Fluoride levels in drinking water were obtained from the water consumption information system of the Basque Country (EKUIS). Water consumption habits and socioeconomic variables were obtained by questionnaire. 74.9% and 87.7% of women and children consumed water from the municipal network. Average fluoride levels in fluoridated water were 0.805 (SD: 0.194) mg/L during baseline recruitment and 0.843 (SD: 0.080) mg/L during follow up, at 4 years old of the children. Average and 95th percentile of fluoride intake were 0.015 and 0.026mg/kg per day in women and 0.033 and 0.059mg/kg per day in children. Considering only fluoride provided by drinking water, 8.71% of children living in fluoridated areas exceeded intake level recommended by the European Food Safety Authority, consisting in 0.05mg/kg per day. The results show that ingested levels of fluoride through consumption of municipal water can exceed the recommended levels in children and encourages further studies that will help in fluoridation policies of drinking water in the future. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Size of age-0 crappies (Pomoxis spp.) relative to reservoir habitats and water levels

    USGS Publications Warehouse

    Kaczka, Levi J.; Miranda, Leandro E.

    2014-01-01

    Variable year-class strength is common in crappie Pomoxis spp. populations in many reservoirs, yet the mechanisms behind this variability are poorly understood. Size-dependent mortality of age-0 fishes has long been recognized in the population ecology literature; however, investigations about the effects of environmental factors on age-0 crappie size are lacking. The objective of this study was to determine if differences existed in total length of age-0 crappies between embayment and floodplain habitats in reservoirs, while accounting for potential confounding effects of water level and crappie species. To this end, we examined size of age-0 crappies in four flood-control reservoirs in northwest Mississippi over 4years. Age-0 crappies inhabiting uplake floodplain habitats grew to a larger size than fish in downlake embayments, but this trend depended on species, length of time a reservoir was dewatered in the months preceding spawning, and reservoir water level in the months following spawning. The results from our study indicate that water-level management may focus not only on allowing access to quality nursery habitat, but that alternating water levels on a multiyear schedule could increase the quality of degraded littoral habitats.

  19. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    PubMed

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.

  20. Radioactivity in the environment; a case study of the Puerco and Little Colorado River basins, Arizona and New Mexico

    USGS Publications Warehouse

    Wirt, Laurie

    1994-01-01

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.

  1. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    PubMed

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  2. Fluoride Content of Bottled Drinking Waters in Qatar.

    PubMed

    Almulla, Hessa Ibrahim; King, Nigel M; Alnsour, Hamza Mohammad; Sajnani, Anand K

    2016-12-01

    Fluoridation of drinking water has been recognized as one of the most effective ways of achieving community-wide exposure to the caries prevention effects of fluoride (F). A vast majority of people in Qatar use bottled water for drinking. Use of bottled water without knowing the F level may expose children to dental caries risk if the F level is lower than optimal or to dental fluorosis if the F level is too high. The aim of this study was to determine the F concentration of bottled water available in Qatar. A total of 32 brands of bottled water were evaluated. The F concentrations displayed on the labels were recorded. The F ion-selective electrode method was used to measure the F concentration in water samples, and three measurements were taken for every sample to ensure reproducibility. The p value was set at 0.05. The F concentration ranged from 0.06 to 3.0 ppm with a mean value of 0.8 ppm (±0.88). The F levels were provided by the manufacturers on the labels of 60 % of the samples, but this was significantly lower than the measured F levels (p < 0.0001). Moreover, bottled water that was produced in Saudi Arabia had significantly higher levels of F when compared to those produced in other countries (p < 0.05). There was a wide variation in the F levels in the different brands of bottled water. Furthermore, there was a significant disparity between the F levels which were measured and those that were provided on the labels.

  3. Water levels in observation wells in Nebraska during 1955

    USGS Publications Warehouse

    Keech, C.F.

    1956-01-01

    The objective of the dbservation-well program in Nebraska is to provide an evaluation of the status of the ground-water supplies. Many uses for water-.level data are known but not all potential uses can be forseen. Among the important uses are the following:To indicate the status of ground water in storage or in transit and the availability of supplies.To show the trend of ground-water supplies and the outlook for the future.To estimate or forcast the base flow of streams.To indicate areas in which the water level is approaching too close to the land surface (water-logging) or is receding toward economic limits of lift or tow rd impairment by water of poor quality.To provide long-term vidence for evaluating the effectiveness of land-management and water...0 nservation programs in relation to water conservation actually of ected, and for use in basin or "watershed" studies.To provide longterm ontinuous records to serve as a framework to which short-term records collected during intensive investigation may be related.The water level in an observation well functions as a gage to indicate the position of the water table o The water table is defined as the upper surface of the zone of saturation except where that surface is formed by overlying impermeable materials. The water table is also the boundary between the zone of saturation and the zone of aeration. It is not a level surface but is a sloping surface that has many irregularities, and it often conforms in a general way to the land surface. The irregularities are caused by several factors. In places where the recharge to the ground-water reservoir is exceptionally large, the water-table may rise to form a mound from which the water slowly spreads. Depressions or troughs in the water table indicate places where the ground water is discharging, as along streams that are below the normal level of the water table, or indicate places where water is being withdrawn by wells or vegetation.The several factors that influence the water table vary in fact and amount from time to time because of changes in weather and the water requirements of vegetation and man; thus, the water table is nearly always rising or falling.The fluctuations of the water table are shown by the changes in water levels in wells. Thus, the rate and amount of the fluctuation of the water table can be ascertained by observing the water levels in wells, and the magnitude of the several factors effecting the position of the water table can be interpreted by analyzing the water—level data.Water-level measurements are given, in this report, in feet below the land surface at the well site. Water levels that are above land surface are preceded by a plus (+) sign, whereas those below land surface have no sign but are understood to be minus (-). The words "land-surface datum" are abbreviated "lsd" in tables of this report.The altitude above mean sea level (msl) of the land surface at many of the well sites has been determined and is included in the tables of this report.Lower case letters which appear in the table of water level measurements indicate the following: 6', nearby well pumped recently; f, dry; g, measured by outside agency; and j, frozen.Twenty-.six observation wells in Nebraska are equipped with recording gages. Each recording gage produces a continuous graph of water-level fluctuations in the well. Only the lowest water level on the last day of record in each month, as recorded by the gage, is given in this report; the complete record is on file in the office of the U. S. Geological Survey in Lincoln, Nebr.

  4. Ground-water hydrology of the upper Sevier River Basin, south-central Utah, and simulation of ground-water flow in the valley-fill in Panguitch Valley.

    USGS Publications Warehouse

    Thiros, Susan A.; Brothers, William C.

    1993-01-01

    The ground-water hydrology of the upper Sevier River basin, primarily of the unconsolidated valley-fill aquifers, was studied from 1988 to 1989. Recharge to the valley-fill aquifers is mostly by seepage from surface-water sources. Changes in soil-moisture content am water levels were measured in Panguitch Valley both at a flood-irrigated and at a sprinkler-irrigated alfalfa field to quantify seepage from unconsumed irrigation water. Lag time between irrigation and water-level response decreased from 6 to 2 days in the flood-irrigated field as the soil-moisture content increased. Water levels measured in the sprinkler-irrigated field did not respond to irrigation. Discharge from the valley-fill aquifer to the Sevier River in Panguitch Valley is about 53,570 acre-feet per year.Water levels measured in wells from 1951 to 1989 tend to fluctuate with the quantity of precipitation falling at higher elevations. Ground-water discharge to the Sevier River in Panguitch Valley causes a general increase in the specific conductance of the river in a downstream direction.A three-layered ground-water-flow model was used to simulate the effects of changes in irrigation practices am increased ground-water withdrawals in Panguitch Valley. The establishment of initial conditions consisted of comparing simulated water levels and simulated gains and losses from the Sevier River and selected canals with values measured during the 1988 irrigation season. The model was calibrated by comparing water-level changes measured from 1961 to 1963 to simulated changes. A simulated change from flood to sprinkler irrigation resulted in a maximum decline in water level of 0.9 feet after the first year of change. Simulating additional discharge from wells resulted in drawdowns of about 20 feet after the first year of pumping.

  5. Simulation of Water Levels and Salinity in the Rivers and Tidal Marshes in the Vicinity of the Savannah National Wildlife Refuge, Coastal South Carolina and Georgia

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Kitchens, Wiley M.

    2006-01-01

    The Savannah Harbor is one of the busiest ports on the East Coast of the United States and is located downstream from the Savannah National Wildlife Refuge, which is one of the Nation?s largest freshwater tidal marshes. The Georgia Ports Authority and the U.S. Army Corps of Engineers funded hydrodynamic and ecological studies to evaluate the potential effects of a proposed deepening of Savannah Harbor as part of the Environmental Impact Statement. These studies included a three-dimensional (3D) model of the Savannah River estuary system, which was developed to simulate changes in water levels and salinity in the system in response to geometry changes as a result of the deepening of Savannah Harbor, and a marsh-succession model that predicts plant distribution in the tidal marshes in response to changes in the water-level and salinity conditions in the marsh. Beginning in May 2001, the U.S. Geological Survey entered into cooperative agreements with the Georgia Ports Authority to develop empirical models to simulate the water level and salinity of the rivers and tidal marshes in the vicinity of the Savannah National Wildlife Refuge and to link the 3D hydrodynamic river-estuary model and the marsh-succession model. For the development of these models, many different databases were created that describe the complexity and behaviors of the estuary. The U.S. Geological Survey has maintained a network of continuous streamflow, water-level, and specific-conductance (field measurement to compute salinity) river gages in the study area since the 1980s and a network of water-level and salinity marsh gages in the study area since 1999. The Georgia Ports Authority collected water-level and salinity data during summer 1997 and 1999 and collected continuous water-level and salinity data in the marsh and connecting tidal creeks from 1999 to 2002. Most of the databases comprise time series that differ by variable type, periods of record, measurement frequency, location, and reliability. Understanding freshwater inflows, tidal water levels, and specific conductance in the rivers and marshes is critical to enhancing the predictive capabilities of a successful marsh succession model. Data-mining techniques, including artificial neural network (ANN) models, were applied to address various needs of the ecology study and to integrate the riverine predictions from the 3D model to the marsh-succession model. ANN models were developed to simulate riverine water levels and specific conductance in the vicinity of the tidal marshes for the full range of historical conditions using data from the river gaging networks. ANN models were also developed to simulate the marsh water levels and pore-water salinities using data from the marsh gaging networks. Using the marsh ANN models, the continuous marsh network was hindcasted to be concurrent with the long-term riverine network. The hindcasted data allow ecologists to compute hydrologic parameters?such as hydroperiods and exposure frequency?to help analyze historical vegetation data. To integrate the 3D hydrodynamic model, the marsh-succession model, and various time-series databases, a decision support system (DSS) was developed to support the various needs of regulatory and scientific stakeholders. The DSS required the development of a spreadsheet application that integrates the database, 3D hydrodynamic model output, and ANN riverine and marsh models into a single package that is easy to use and can be readily disseminated. The DSS allows users to evaluate water-level and salinity response for different hydrologic conditions. Savannah River streamflows can be controlled by the user as constant flow, a percentage of historical flows, a percentile daily flow hydrograph, or as a user-specified hydrograph. The DSS can also use output from the 3D model at stream gages near the Savannah National Wildlife Refuge to simulate the effects in the tidal marshes. The DSS is distributed with a two-dimensional (

  6. A Uniform Fault Zone Diffusivity Structure in the Simi Valley Based on Water Level Tidal and Barometric Response

    NASA Astrophysics Data System (ADS)

    Xue, L.; Brodsky, E. E.; Allègre, V.; Parker, B. L.; Cherry, J. A.

    2016-12-01

    Water levels inside conventional water wells can tap an artesian aquifer response to pressure head disturbances caused by the Earth tides and surface atmospheric loading. The fluctuation of water levels can measure the hydrogeologic properties of the formation surrounding these wells. Specifically, the amplitude of water level oscillation is determined by formation specific storage, and the phase shift between the water level oscillation and the pressure head disturbance is determined by formation permeability. We utilized 36 wells completed in fractured, interbedded sandstone of turbidite origin in an upland area of southern California to measure the in-situ hydrogeologic properties by combining the water level tidal and barometric responses. This site experiences north-south shortening and it has groups of NE-SW and east-west conjugate faults. The site has been intensively characterized and monitored hydrologically since the 1980's because of the groundwater contamination. Hence, this study provides a good opportunity to measure the in-situ hydrogeologic properties for comparison to other test types and scales. Most of the observed water level tidal responses have a lead phase response, which cannot be interpreted either by the water level response in a confined aquifer or the water level response in an unconfined aquifer. To interpret these observations, we utilized the water level response in a partially confined aquifer, resulting in both positive and negative phase information when fully considering all the observations. Due to the different mechanisms for tidal versus barometric water level responses, the combination can give better constraints on the inverted hydrologic properties. The range of the measured permeability is 10-15-10-13 m2 and the range of the specific storage is 10-7-10-5 1/m. The resulting diffusivity is within 10-2-10-1 m2/s which is relatively uniform. This indicates the fault damages in the site are relatively homogeneous at the scale of measurement and there is no major fault-guided hydrogeological channel at the site. Such homogenous by fault zone damage is possible in a region of multiple strands and copious secondary faulting.

  7. Water in the Middle East, a Secondary and College Level Multi-Media Study.

    ERIC Educational Resources Information Center

    Manneberg, Eliezer

    The secondary and college level guide outlines a course of study on the Middle East, with emphasis on water problems of the area. Among the course objectives are the following: (1) make generalizations about particular Middle Eastern cultures and support them with evidence; (2) interpret environmental and social data from specific Middle Eastern…

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  9. An integrated assessment of energy-water nexus at the state level in the United States: Projections and analyses under different scenarios through 2095

    NASA Astrophysics Data System (ADS)

    Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.

    2013-12-01

    Water withdrawals for thermoelectric power plants account for approximately half of the total water use in the United States. With growing electricity demands in the future and limited water supplies in many water-scarce states in the U.S., grasping the trade-off between energy and water requires an integrated modeling approach that can capture the interactions among energy, water availability, climate, technology, and economic factors at various scales. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, with 14 geopolitical regions that are further dissaggregated into up to 18 agro-ecological zones, was extended to model the electricity and water systems at the state level in the U.S. More specifically, GCAM was employed to estimate future state-level electricity generation and demands, and the associated water withdrawals and consumptions under a set of six scenarios with extensive levels of details on generation fuel portfolio, cooling technology mix, and water use intensities. The state-level estimates were compared against available inventories where good agreement was achieved on national and regional levels. We then explored the electric-sector water use up to 2095, focusing on implications from: 1) socioeconomics and growing demands, 2) the adoption of climate mitigation policy (e.g., RCP4.5 W/m2 vs. a reference scenario), 3) the transition of cooling systems, 4) constraints on electricity trading across states (full trading vs. limited trading), and 5) the adoption of water saving technologies. Overall, the fast retirement of once-through cooling, together with the gradual transition from fossil fuels dominant to a mixture of different fuels, accelerate the decline of water withdrawals and correspondingly compensate consumptive water use. Results reveal that U.S. electricity generation expands significantly as population grows, while U.S. electric-sector water withdrawals are projected to decline by 8.6% - 89% by 2095 and water consumptions are projected to increase by 14% - 101%. Some regional patterns could be observed when analyzing the state-level results spatially. Under the climate mitigation policy (RCP4.5) scenario, nuclear power plants contribute heavily to total electric-sector water withdrawal and consumption in Eastern U.S., while under the reference scenario, coal power plants are the primary water users in Eastern U.S. In the reference scenario, Eastern U.S. is projected to experience substantial drops in water withdrawals, while the Western U.S. will likely endure a moderate increase over the century. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S. Although this study is focused on the U.S., it is performed in the context of the global framework of GCAM where local changes can propagate to influence decisions in other regions outside of the U.S. and vice versa.

  10. Developing a cost effective environmental solution for produced water and creating a ''new'' water resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doran, Glenn; Leong, Lawrence Y.C.

    2000-05-01

    The project goal is to convert a currently usable by-product of oil production, produced water, into a valuable drinking water resource. The project was located at the Placate Oil Field in Santa Clarita, California, approximately 25 miles north of Los Angeles. The project included a literature review of treatment technologies; preliminary bench-scale studies to refine a planning level cost estimate; and a 10-100 gpm pilot study to develop the conceptual design and cost estimate for a 44,000 bpd treatment facility. A reverse osmosis system was constructed, pilot tested, and the data used to develop a conceptual design and operation ofmore » four operational scenarios, two industrial waters levels and two irrigation/potable water.« less

  11. Records of water-level measurements in wells in the Oklahoma panhandle, 1971-72

    USGS Publications Warehouse

    Hart, Donald L.; Hoffman, George L.; Goemaat, Robert L.

    1972-01-01

    Investigations of the ground-water resources of the Oklahoma panhandle by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes collection of water-level records; the systematic collection of these records began in 1937. Records of many shallow wells were compiled in 1937 and periodic measurements were made in a few wells until 1966. Owing to the heavy development of irrigation during the 1960's (fig. 1) an expanded network of observation wells established in Texas County in 1966 and in Beaver and Cimarron Counties in 1967; measurement of water levels have been made on an annual basis since those times.This report contains water-level records for the period 1971-72 and the water-level change for the period 1966-72 in Texas County, and for the period 1967-72 in Beaver and Cimarron Counties. At the present time (1972) the annual observation-well network includes 521 wells, of which 97 are in Beaver County, 203 are in Cimarron County, and 221 are in Texas County. These data provide an index to available ground-water supplies; they will be useful in planning and studying water resources development; and they will serve as a framework of data for the detailed hydrologic investigation now in progress in the panhandle.

  12. Dramatic water-level fluctuations in lakes under intense human impact: modelling the effect of vegetation, climate and hydrogeology

    NASA Astrophysics Data System (ADS)

    Vainu, M.

    2012-04-01

    Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a coniferous forest on the lake catchments, due to which evapotranspiration and subsequently runoff from the catchment decreased. The forest had been destroyed by wildfires during World War II. The water-level rise that the lakes have gone through in the last 20 years has in the case of L. Ahnejärv been caused by changing meteorological conditions (precipitation, air temperature and wind speed). In the case of Lakes Kuradijärv and Martiska the change has been caused by both the raise of groundwater level (caused by the decreasing groundwater abstraction) and the change of meteorological conditions. Therefore the vegetation change on the catchment and changes in meteorological conditions have played as important or, at times, even more important role in the water-level fluctuations than changes in the hydrogeological conditions. Although concentrating on three specific lakes in a specific region, the result of the study indicate the complexity of factors influencing the amount of water stored in a lake at a certain moment. Therefore it manifests a need for improved models in order to improve lake management around the world.

  13. Nitrate in drinking water and risk of death from pancreatic cancer in Taiwan.

    PubMed

    Yang, Chun-Yuh; Tsai, Shang-Shyue; Chiu, Hui-Fen

    2009-01-01

    The relationship between nitrate levels in drinking water and risk of pancreatic cancer development remains inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to pancreatic cancer and nitrate exposure from Taiwan's drinking water. All pancreatic cancer deaths of Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios and confidence limits for pancreatic cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.03 (0.9-1.18) and 1.1 (0.96-1.27), respectively. The results of the present study show that there was no statistically significant association between the levels of nitrate in drinking water and increased risk of death from pancreatic cancer.

  14. Influence of Reservoir Water Level Fluctuations on Sediment ...

    EPA Pesticide Factsheets

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have elevated methylmercury (MeHg) concentrations compared to natural lakes and rivers. This impact is most pronounced in newly created reservoirs where methylation is fueled by the decomposition of flooded organic material, which can release Hg and enhance microbial activity. Much less is known about the longer-term water-level management impacts on Hg cycling in older reservoirs. The objective of our study was to understand the role of on-going water-level fluctuations on sediment MeHg concentrations and sulfur speciation within a reservoir 75 years after initial impoundment. The study was performed at the Cottage Grove Reservoir located 15 km downstream of the historical Black Butte Hg mine. For 8 months each year, the water level is lowered resulting in roughly half of the reservoir’s sediment being exposed to the atmosphere. Water samples from the inflow, water-column, outflow, and sediment were collected seasonally over a year for total-Hg, MeHg, and several ancillary parameters. The results showed that conditions in the reservoir were favorable to methylation with a much higher %MeHg observed in the outflowing water (34%) compared to the inflow (7%) during the late-summer. An

  15. Relationship of drinking water disinfectants to plasma cholesterol and thyroid hormone levels in experimental studies.

    PubMed Central

    Revis, N W; McCauley, P; Bull, R; Holdsworth, G

    1986-01-01

    The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 +/- 172 and 2049 +/- 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract. PMID:3456597

  16. Comparative water law, policies, and administration in Asia: Evidence from 17 countries

    NASA Astrophysics Data System (ADS)

    Araral, Eduardo; Yu, David J.

    2013-09-01

    Conventional wisdom suggests that improving water governance is the key to solving water insecurity in developing countries but there are also many disagreements on operational and methodological issues. In this paper, we build on the work of Saleth and Dinar and surveyed 100 water experts from 17 countries in Asia to compare 19 indicators of water laws, policies, and administration among and within countries from 2001 to 2010. We present the results of our study in a comparative dashboard and report how water governance indicators vary with a country's level of economic development, which ones do not and how and why some indicators change overtime in some countries. We have two main results. First, our initial findings suggest the possibility of water Kuznet's curve, i.e., certain water governance indicators vary with a country's level of economic development. However, more studies are needed given the caveats and limitations of our study. Second, the results have practical value for policy makers and researchers for benchmarking with other countries and tracking changes within their countries overtime. We conclude with implications for a second-generation research agenda on water governance.

  17. Trihalomethane levels in Madras public drinking water supply system and its impact on public health.

    PubMed

    Rajan, S; Azariah, J; Bauer, U

    1990-02-01

    It is known that trihalomethanes (THM) are formed during chlorination of drinking water for disinfection. Heightened concern about these substances is due to the fact that THMs are now characterized as potential mutagen, carcinogen and teratogen. Thus, it is a risk factor in human beings. In the present study, a total number of 13 stations located in different drinking water trunk mains of the city of Madras were analysed for THM using the Gas Liquid Chromatographic method. It is reported that THM are formed after treatment of raw water with chlorine at the levels required for disinfection. The THM level in drinking water increased towards the dead-end of the water trunk mains. A relationship between the distance travelled by the potable water and the level of THM was established. At certain stations, the total trihalomethanes level (TTHM) was found to exceed the EPA's maximum contaminant level. Further, an intermittent addition of the precursors for the formation of THM through the seepage of polluted River Cooum water into the pipe lines has been demonstrated. An experiment on the trihalomethane formation potential (THMFP) clearly revealed the occurrence of higher magnitude of humic substances in source water. Therefore, it is suggested that if suitable steps are not taken, various environmental factors may trigger the THM kinetics. Hence, it is obvious that pretreatment regulations proposed by developed countries are essential if safe drinking water is to be supplied to the people of Madras.

  18. [Effects of graft and nitrogen supply level on water consumption and water use efficiency of solar greenhouse cucumber under traditional irrigation].

    PubMed

    Chen, Xiao-yan; Wang, Lu; Wang, Yong-quan; Sun, Huan-ming; Ren, Hua-zhong

    2008-12-01

    An experiment was conducted in solar greenhouse to study the effects of graft and different nitrogen (N) supply levels (0, 110, and 331 kg k x hm(-2)) on the water consumption and water use efficiency (WUE) of cucumber (Cucumis sativus L.) under traditional irrigation. The results showed that when topdressing 331 kg N x hm(-2), the water consumption of grafted cucumber was the highest, being 3350 m3 x hm(-2) and 2181 m3 x hm(-2) in winter-spring and autumn-winter cropping, so did the WUE, being 27.2 kg x m(-3) and 36.9 kg x m(-3), respectively. Comparing with those of self-rooted cucumber, the water consumption, economic yield, and WUE of grafted cucumber under the same N topdressing levels were increased by 3%-6%, 28%, and 20.9%, respectively, and the water consumption and WUE of grafted cucumber were increased with increasing N supply level. The water consumption of self-rooted cucumber also increased with increasing N supply level, but its WUE was the highest when the N supply was 110 kg graft could markedly promote the water consumption and WUE of cucumber, and the effect was more markedly with increasing N supply level. To increase N supply could also markedly promote the water consumption of self-rooted cucumber, but the WUE would be lower when excessive N was supplied.

  19. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  20. The challenge of integration in the implementation of Zimbabwe’s new water policy: case study of the catchment level institutions surrounding the Pungwe-Mutare water supply project

    NASA Astrophysics Data System (ADS)

    Tapela, Barbara Nompumelelo

    Integrated water resources management (IWRM) is viewed by policy makers and practitioners as facilitating the achievement of a balance between water resource use and resource protection, and the resolution of water-related conflicts. The IWRM approach has found particular use in the new water policies of Southern African countries such as Zimbabwe, where water scarcity, after the land question, is perceived to be a major threat to political, economic, social, military and environmental security. Ultimately, IWRM is seen as providing a framework towards ensuring broader security at the local, national, regional and global levels. However, the pilot phase implementation of the new water policy in the various regional countries has revealed that although the legal and institutional frameworks have been put in place, the implementation of the IWRM approach has tended to be problematic (J. Latham, 2001; GTZ, 2000; Leestemaker, 2000; Savenige and van der Zaag, 2000; Sithole, 2000). This paper adopts a case study approach and empirically examines the institutional challenges of implementing the IWRM approach in the post-pilot phase of Zimbabwe's new water policy. The focus is mainly on the institutional arrangements surrounding the Pungwe-Mutare Water Supply Project located within the Save Catchment Area in Eastern Zimbabwe. The major findings of the study are that, while there persist some problems associated with the traditional management approach, there have also emerged new challenges to IWRM. These mainly relate to the transaction costs of the water sector reforms, institutional resilience, stakeholder participation, and the achievement of the desired outcomes. There have also been problems emanating from unexpected political developments at the local and national levels, particularly with regard to the government's ;fast track; land resettlement programme. The paper concludes that there is a need for a more rigorous effort towards integrating the management of water resources by the catchment level institutions.

  1. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological investigations of the near-surface environment.

  2. Fluoride in drinking water and human urine in Southern Haryana, India.

    PubMed

    Singh, Bhupinder; Gaur, Shalini; Garg, V K

    2007-06-01

    The objective of this study was to determine the fluoride content in drinking water and urine samples of adolescent males aged 11-16 years living in Southern Haryana, India. A total of 30 drinking water sources in the studied habitations were assessed for fluoride contamination. Fluoride was estimated in the urine of 400 male children randomly selected from these habitations. The fluoride concentration in drinking water and urine samples was determined using USEPA fluoride ion selective electrode method. The mean fluoride concentration in drinking water samples of Pataudi, Haily Mandi and Harsaru villages was 1.68+/-0.35, 3.22+/-1.18 and 1.78+/-0.12 mg/l, respectively. The mean urinary fluoride concentration was 2.26+/-0.024 mg/l at Pataudi, 2.48+/-0.77 mg/l at Haily Mandi and 2.43+/-0.84 mg/l at Harsaru village. The higher fluoride levels in the urine of children may be associated to higher fluoride levels in drinking water. The accuracy of measurements was assessed with known addition method in water and urine. Mean fluoride recovery was 98.0 and 99.1% in water and urine. The levels obtained were reproducible with in +/-3% error limit.

  3. Association of blood pressure and metabolic syndrome components with magnesium levels in drinking water in some Serbian municipalities.

    PubMed

    Rasic-Milutinovic, Zorica; Perunicic-Pekovic, Gordana; Jovanovic, Dragana; Gluvic, Zoran; Cankovic-Kadijevic, Milce

    2012-03-01

    Chronic exposure to insufficient levels of magnesium (Mg) in drinking water increases the risk of magnesium deficiency and its association with hypertension, dyslipidemia and type 2 diabetes mellitus. The aim of the study was to assess the potential association of mineral contents in drinking water with blood pressure and other components of metabolic syndrome (MetS) (BMI as measure of obesity, triglycerides, glucose, and insulin resistance, index-HOMA IR), in a healthy population. This study was conducted in three randomly selected municipalities (Pozarevac, Grocka and Banovci), and recruited 90 healthy blood donors, aged 20-50 years. The Pozarevac area had a four times higher mean Mg level in drinking water (42 mg L(-1)) than Grocka (11 mg L(-1)). Diastolic blood pressure was lowest in subjects from Pozarevac. Serum Mg (sMg) was highest, and serum Ca(2+)/Mg (sCa/Mg) lowest in subjects from Pozarevac, and after adjustment for confounders (age, gender, BMI), only total cholesterol and sMg levels were independent predictors of diastolic blood pressure, sMg levels were independent predictors of triglycerides, and sCa/Mg predicted glucose levels. These results suggest that Mg supplementation in areas of lower magnesium levels in drinking water may be an important measure in the prevention of hypertension and MetS in general.

  4. Water resources of the Tulalip Indian Reservation and adjacent area, Snohomish County, Washington, 2001-03

    USGS Publications Warehouse

    Frans, Lonna M.; Kresch, David L.

    2004-01-01

    This study was undertaken to improve the understanding of water resources of the Tulalip Plateau area, with a primary emphasis on the Tulalip Indian Reservation, in order to address concerns of the Tulalip Tribes about the effects of current and future development, both on and off the Reservation, on their water resources. The drinking-water supply for the Reservation comes almost entirely from ground water, so increasing population will continue to put more pressure on this resource. The study evaluated the current state of ground- and surface-water resources and comparing results with those of studies in the 1970s and 1980s. The study included updating descriptions of the hydrologic framework and ground-water system, determining if discharge and base flow in streams and lake stage have changed significantly since the 1970s, and preparing new estimates of the water budget. The hydrogeologic framework was described using data collected from 255 wells, including their location and lithology. Data collected for the Reservation water budget included continuous and periodic streamflow measurements, micrometeorological data including daily precipitation, temperature, and solar radiation, water-use data, and atmospheric chloride deposition collected under both wet- and dry-deposition conditions to estimate ground-water recharge. The Tulalip Plateau is composed of unconsolidated sediments of Quaternary age that are mostly of glacial origin. There are three aquifers and two confining units as well as two smaller units that are only localized in extent. The Vashon recessional outwash (Qvr) is the smallest of the three aquifers and lies in the Marysville Trough on the eastern part of the study area. The primary aquifer in terms of use is the Vashon advance outwash (Qva). The Vashon till (Qvt) and the transitional beds (Qtb) act as confining units. The Vashon till overlies Qva and the transitional beds underlie Qva and separate it from the undifferentiated sediments (Qu), which are also a principal aquifer of the plateau. The undifferentiated-sediments aquifer is present throughout the entire study area, but is not well defined because few wells penetrate it. Ground water flows radially outward from the center of the Plateau in the Vashon advance outwash aquifer. Water levels fluctuate seasonally in all hydrogeologic units in response to changes in precipitation over the course of the year. However, water levels do not appear to have changed significantly over the long term. There was no statistically significant change between water levels measured in 72 wells in the early 1990s and 2001. Additionally, when a rank sum test was used to compare monthly water levels measured in 18 wells for this study with monthly water levels from the 1970s and 1980s, water levels increased in some wells, decreased in some, and did not change significantly in others. Ground water in the study area is recharged from precipitation that percolates down from the land surface. Average annual recharge, estimated using the chloride-mass-balance method, was 10.4 inches per year. Current streamflow conditions on the Reservation were defined by four continuous-record streamflow-gaging stations operated from April 2001 through March 2003 and monthly measurements of discharge at 12 periodic-measurement sites. Two continuous-record gaging stations (12157250 and 12158040) near the mouths of Mission and Tulalip Creeks, respectively, also were operated during water years 1975-77. Correlations of streamflow for Mission and Tulalip Creeks with the long-term record of streamflow at Mercer Creek (station 12120000) indicate no significant change in streamflow between the mid-1970s and 2001?03 in Mission and Tulalip Creeks. However, comparisons between the percentage of change in precipitation at the Everett precipitation station and percentages of change in streamflow at the Mercer, Mission, and Tulalip Creek gaging stations from the mid-1970s through 2001

  5. Revised shallow and deep water-level and storage-volume changes in the Equus Beds Aquifer near Wichita, Kansas, predevelopment to 1993

    USGS Publications Warehouse

    Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2013-01-01

    Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about 6 percent (-202,000 acre-feet) of the overall storage volume within the newly defined study area.

  6. Rising water levels and the future of southeastern Louisiana swamp forests

    USGS Publications Warehouse

    Conner, W.H.; Brody, M.

    1989-01-01

    An important factor contributing to the deterioration of wetland forests in Louisiana is increasing water levels resulting from eustatic sea-level rise and subsidence. Analyses of long-term water level records from the Barataria and Verret watersheds in southeastern Louisiana indicate an apparent sea level rise of about 1-m per century, mainly the result of subsidence. Permanent study plots were established in cypress-tupelo stands in these two watersheds. The tree, water level, and subsidence data collected in these plots were entered into the U.S. Fish and Wildlife Servicea??s FORFLO bottomland hardwood succession model to determine the long-term effects of rising water levels on forest structure. Analyses were made of 50a??100 years for a cypress-tupelo swamp site in each basin and a bottomland hardwood ridge in the Verret watershed. As flooding increased, less flood tolerant species were replaced by cypress-tupelo within 50 years. As flooding continued, the sites start to become nonforested. From the test analyses, the FORFLO model seems to be an excellent tool for predicting long-term changes in the swamp habitat of south Louisiana.

  7. Research on critical groundwater level under the threshold value of land subsidence in the typical region of Beijing

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Liu, J.-R.; Luo, Y.; Yang, Y.; Tian, F.; Lei, K.-C.

    2015-11-01

    Groundwater in Beijing has been excessively exploited in a long time, causing the groundwater level continued to declining and land subsidence areas expanding, which restrained the economic and social sustainable development. Long years of study show good time-space corresponding relationship between groundwater level and land subsidence. To providing scientific basis for the following land subsidence prevention and treatment, quantitative research between groundwater level and settlement is necessary. Multi-linear regression models are set up by long series factual monitoring data about layered water table and settlement in the Tianzhu monitoring station. The results show that: layered settlement is closely related to water table, water level variation and amplitude, especially the water table. Finally, according to the threshold value in the land subsidence prevention and control plan of China (45, 30, 25 mm), the minimum allowable layered water level in this region while settlement achieving the threshold value is calculated between -18.448 and -10.082 m. The results provide a reasonable and operable control target of groundwater level for rational adjustment of groundwater exploited horizon in the future.

  8. [Patterns and characteristics of ecological water demand in west arid zone of China--a case study of green corridor in the lower reaches of Tarim River].

    PubMed

    Wang, Ranghui; Lu, Xinming; Song, Yudong; Fan, Zili; Ma, Yingjie

    2003-04-01

    Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.

  9. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation demonstration site in Fort Worth, Texas, 1996-2003

    USGS Publications Warehouse

    Braun, Christopher L.; Eberts, Sandra M.; Jones, Sonya A.; Harvey, Gregory J.

    2004-01-01

    In 1996, a field-scale phytoremediation demonstration project was initiated and managed by the U.S. Air Force at a site in western Fort Worth, Texas, using a plantation of 1-year-old stems harvested from branches of eastern cottonwoods during the dormant season (whips) and a plantation of 1-year-old eastern cottonwood seedlings (calipers). The primary objective of the demonstration project was to determine the effectiveness of eastern cottonwoods at reducing the mass of dissolved trichloroethene transported within an alluvial aquifer. The U.S. Geological Survey conducted a study, in cooperation with the U.S. Air Force, to determine water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation site. As part of the study, water-level and water-quality data were collected throughout the duration of the project. This report presents water-level variations at periodic sampling events; data from August 1996 to January 2003 are presented in this report. Water levels are affected by aquifer properties, precipitation, drawdown attributable to the trees in the study area, and irrigation. This report also evaluates the effects of ground-water depth on tree growth and mortality rates and on the biogeochemical system including subsurface oxidation-reduction processes. Overall, both whips and calipers showed a substantial increase in height, canopy diameter, and trunk diameter over the first 3 years of the study. By the fifth growing season (September 2000), the height of the calipers varied predictably with height decreasing with increasing depth to ground water. Percent mortality was relatively constant at about 25 percent in the whip plantation in January 2003 where ground-water levels were less than 10 feet below land surface during the drought in September 2000. The mortality rate increased where the ground-water levels were greater than 10 feet below land surface and approached 90 percent where ground-water levels were between 12 and 13 feet. A decrease in molar ratio of trichloroethene to cis-dichloroethene was measured in ground water within and downgradient from the planted area over time. Decreases in these ratios appeared to be related to ground-water depth. The molar ratios of trichloroethene to cis-dichloroethene during the third growing season were relatively constant, between 3.0 and 4.0, in samples collected from wells across the site. By the end of the fifth growing season the lowest ratio was measured in areas where ground-water depth was less than 10 feet below land surface; these same areas had the lowest dissolved oxygen concentrations (0.93 to 1.7 milligrams per liter) and the highest dissolved organic carbon concentrations (1.6 to 1.8 milligrams per liter). This indicates that between the third and fifth growing seasons, a labile fraction of dissolved organic carbon had been introduced into the aquifer by the planted trees that was capable of stimulating reductive dechlorination of trichloroethene.

  11. Design and rationale of a matched cohort study to assess the effectiveness of a combined household-level piped water and sanitation intervention in rural Odisha, India

    PubMed Central

    Reese, Heather; Routray, Parimita; Torondel, Belen; Sclar, Gloria; Delea, Maryann G; Sinharoy, Sheela S; Zambrano, Laura; Caruso, Bethany; Mishra, Samir R; Chang, Howard H; Clasen, Thomas

    2017-01-01

    Introduction Government efforts to address massive shortfalls in rural water and sanitation in India have centred on construction of community water sources and toilets for selected households. However, deficiencies with water quality and quantity at the household level and community coverage and actual use of toilets have led Gram Vikas, a local non-governmental organization in Odisha, India, to develop an approach that provides household-level piped water connections contingent on full community-level toilet coverage. Methods This matched cohort study was designed to assess the effectiveness of a combined piped water and sanitation intervention. Households with children <5 years in 45 randomly selected intervention villages and 45 matched control villages will be followed over 17 months. The primary outcome is prevalence of diarrhoeal diseases; secondary health outcomes include soil-transmitted helminth infection, nutritional status, seroconversion to enteric pathogens, urogenital infections and environmental enteric dysfunction. In addition, intervention effects on sanitation and water coverage, access and use, environmental fecal contamination, women's empowerment, as well as collective efficacy, and intervention cost and cost-effectiveness will be assessed. Ethics and dissemination The study protocol has been reviewed and approved by the ethics boards of the London School of Hygiene and Tropical Medicine, UK and KIIT University, Bhubaneswar, India. Findings will be disseminated via peer-reviewed literature and presentation to stakeholders, government officials, implementers and researchers. Trial registration number NCT02441699. PMID:28363920

  12. Application of Geographic Information System Methods to Identify Areas Yielding Water that will be Replaced by Water from the Colorado River in the Vidal and Chemehuevi Areas, California, and the Mohave Mesa Area, Arizona

    USGS Publications Warehouse

    Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.

    2008-01-01

    Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.

  13. Livestock ownership and microbial contamination of drinking-water: Evidence from nationally representative household surveys in Ghana, Nepal and Bangladesh.

    PubMed

    Wardrop, Nicola A; Hill, Allan G; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Wright, Jim A

    2018-01-01

    Current priorities for diarrhoeal disease prevention include use of sanitation and safe water. There have been few attempts to quantify the importance of animal faeces in drinking-water contamination, despite the presence of potentially water-borne zoonotic pathogens in animal faeces. This study aimed to quantify the relationship between livestock ownership and point-of-consumption drinking-water contamination. Data from nationally representative household surveys in Nepal, Bangladesh, and Ghana, each with associated water quality assessments, were used. Multinomial regression adjusting for confounders was applied to assess the relationship between livestock ownership and the level of drinking-water contamination with E. coli. Ownership of five or more large livestock (e.g. cattle) was significantly associated with drinking-water contamination in Ghana (RRR=7.9, 95% CI=1.6 to 38.9 for medium levels of contamination with 1-31cfu/100ml; RRR=5.2, 95% CI=1.1-24.5 for high levels of contamination with >31cfu/100ml) and Bangladesh (RRR=2.4, 95% CI=1.3-4.5 for medium levels of contamination; non-significant for high levels of contamination). Ownership of eight or more poultry (chickens, guinea fowl, ducks or turkeys) was associated with drinking-water contamination in Bangladesh (RRR=1.5, 95% CI=1.1-2.0 for medium levels of contamination, non-significant for high levels of contamination). These results suggest that livestock ownership is a significant risk factor for the contamination of drinking-water at the point of consumption. This indicates that addressing human sanitation without consideration of faecal contamination from livestock sources will not be sufficient to prevent drinking-water contamination. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Effect of Ditching, Fertilization, and Herbicide Application on Groundwater Levels and Groundwater Quality in a Flatwood Spodosol

    Treesearch

    D.S. Segal; D.G. Neary; G.R. Best; J.L. Michael

    1987-01-01

    Groundwater levels and associated water quality parameters were studied in a young slash pine (Pinus elliottii Engelm.) plantation following ditching, fertilization, and herbicide application. Drainage ditches surrounding each watershed significantly lowered groundwater levels up to 45 m from the ditch for mean and high water table conditions....

  15. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children.

    PubMed

    Xiong, Xianzhi; Liu, Junling; He, Weihong; Xia, Tao; He, Ping; Chen, Xuemin; Yang, Kedi; Wang, Aiguo

    2007-01-01

    Although a dose-effect relationship between water fluoride levels and damage to liver and kidney functions in animals has been reported, it was not demonstrated in humans. To evaluate the effects of drinking water fluoride levels on the liver and kidney functions in children with and without dental fluorosis, we identified 210 children who were divided into seven groups with 30 each based on different drinking water fluoride levels in the same residential area. We found that the fluoride levels in serum and urine of these children increased as the levels of drinking water fluoride increased. There were no significant differences in the levels of total protein (TP), albumin (ALB), aspartate transamine (AST), and alanine transamine (ALT) in serum among these groups. However, the activities of serum lactic dehydrogenase (LDH), urine N-acetyl-beta-glucosaminidase (NAG), and urine gamma-glutamyl transpeptidase (gamma-GT) in children with dental fluorosis and having water fluoride of 2.15-2.96 mg/L and in children having water fluoride of 3.15-5.69 mg/L regardless of dental fluorosis were significantly higher than children exposed to water fluoride of 0.61-0.87 mg/L in a dose-response manner. In contrast to children with dental fluorosis and having water fluoride of 2.15-2.96 and 3.10-5.69 mg/L, serum LDH activity of children without dental fluorosis but exposed to the same levels of water fluoride as those with dental fluorosis were also markedly lower, but the activities of NAG and gamma-GT in their urine were not. Therefore, our results suggest that drinking water fluoride levels over 2.0mg/L can cause damage to liver and kidney functions in children and that the dental fluorosis was independent of damage to the liver but not the kidney. Further studies on the mechanisms and significance underlying damage to the liver without dental fluorosis in the exposed children are warranted.

  16. Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.

    2013-12-01

    Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.

  17. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    NASA Astrophysics Data System (ADS)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  18. Assessing water use and quality through youth participatory research in a rural Andean watershed.

    PubMed

    Roa García, C E; Brown, S

    2009-07-01

    Water availability, use and quality in a rural watershed of the Colombian Andes were investigated through participatory research involving local youth. Research included the quantification of disaggregated water use at the household level; comparison of water use with availability; monitoring water quality of streams, community water intakes and household faucets; and the determination of land use-water quality interactions. Youth were involved in all aspects of the research from design to implementation, dissemination of results and remediation options. Quantification of domestic and on-farm water use, and water availability indicated that water availability was sufficient during the study period, but that only an 8% decrease in dry season supply would result in shortages. Elevated conductivity levels in the headwaters were related to "natural" bank erosion, while downstream high conductivity and coliform levels were associated with discharges from livestock stalls and poorly maintained septic tanks in the stream buffer zone. Through the involvement of youth as co-investigators, the knowledge generated by the research was appropriated at the local level. Community workshops led by local youth promoted water conservation and water quality protection practices based on research, and resulted in broader community participation in water management. The approach involving youth in research stimulated improved management of both land and water resources, and could be applied in small rural watersheds in developed or developing countries.

  19. A Holistic Approach to Water Ecology.

    ERIC Educational Resources Information Center

    Koyama, Keith

    1980-01-01

    Outlined is a water ecology unit included within a one-semester field biology course for upper level high school students. Activities described include a visit to a water treatment plant, an abiotic stream study, a biotic stream study, interactions and questioning topics, and individual projects. (CS)

  20. A population-based case-control study of drinking-water nitrate and congenital anomalies using Geographic Information Systems (GIS) to develop individual-level exposure estimates.

    PubMed

    Holtby, Caitlin E; Guernsey, Judith R; Allen, Alexander C; Vanleeuwen, John A; Allen, Victoria M; Gordon, Robert J

    2014-02-05

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5-5.56 mg/L (2.44; 1.05-5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92-5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration.

  1. A Population-Based Case-Control Study of Drinking-Water Nitrate and Congenital Anomalies Using Geographic Information Systems (GIS) to Develop Individual-Level Exposure Estimates

    PubMed Central

    Holtby, Caitlin E.; Guernsey, Judith R.; Allen, Alexander C.; VanLeeuwen, John A.; Allen, Victoria M.; Gordon, Robert J.

    2014-01-01

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5–5.56 mg/L (2.44; 1.05–5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92–5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration. PMID:24503976

  2. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2002

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2003-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2002. The map is based on water-level measurements in 94 wells. The highest measured water level was 38 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Another cone of depression occurred in northern Calvert County due to pumpage at and near Chesapeake Beach and North Beach. The water level measured in this area has declined to 55 feet below sea level. The lowest water level measured was 169 feet below sea level at the center of a cone of depression at Lexington Park.

  3. Potentiometric surface of the Aquia Aquifer in southern Maryland, September 2003

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreason, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2003. The map is based on water-level measurements in 91 wells. The highest measured water level was 40 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Another cone of depression occurred in northern Calvert County due to pumpage at and near North Beach and Chesapeake Beach. The water level measured in this area has declined to 48 feet below sea level. The lowest water level measured was 156 feet below sea level at the center of a cone of depression at Lexington Park.

  4. Numerical Simulation of Ground-Water Flow and Assessment of the Effects of Artificial Recharge in the Rialto-Colton Basin, San Bernardino County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Koczot, Kathryn M.

    2001-01-01

    The Rialto?Colton Basin, in western San Bernardino County, California, was chosen for storage of imported water because of the good quality of native ground water, the known storage capacity for additional ground-water storage in the basin, and the availability of imported water. To supplement native ground-water resources and offset overdraft conditions in the basin during dry periods, artificial-recharge operations during wet periods in the Rialto?Colton Basin were begun in 1982 to store surplus imported water. Local water purveyors recognized that determining the movement and ultimate disposition of the artificially recharged imported water would require a better understanding of the ground-water flow system. In this study, a finite-difference model was used to simulate ground-water flow in the Rialto?Colton Basin to gain a better understanding of the ground-water flow system and to evaluate the hydraulic effects of artificial recharge of imported water. The ground-water basin was simulated as four horizontal layers representing the river- channel deposits and the upper, middle, and lower water-bearing units. Several flow barriers bordering and internal to the Rialto?Colton Basin influence the direction of ground-water flow. Ground water may flow relatively unrestricted in the shallow parts of the flow system; however, the faults generally become more restrictive at depth. A particle-tracking model was used to simulate advective transport of imported water within the ground-water flow system and to evaluate three artificial-recharge alternatives. The ground-water flow model was calibrated to transient conditions for 1945?96. Initial conditions for the transient-state simulation were established by using 1945 recharge and discharge rates, and assuming no change in storage in the basin. Average hydrologic conditions for 1945?96 were used for the predictive simulations (1997?2027). Ground-water-level measurements made during 1945 were used for comparison with the initial-conditions simulation to determine if there was a reasonable match, and thus reasonable starting heads, for the transient simulation. The comparison between simulated head and measured water levels indicates that, overall, the simulated heads match measured water levels well; the goodness-of-fit value is 0.99. The largest differences between simulated head and measured water level occurred between Barrier H and the Rialto?Colton Fault. Simulated heads near the Santa Ana River and Warm Creek, and simulated heads northwest of Barrier J, generally are within 30 feet of measured water levels and five are within 20 feet. Model-simulated heads were compared with measured long-term changes in hydrographs of composite water levels in selected wells, and with measured short-term changes in hydrographs of water levels in multiple-depth observation wells installed for this project. Simulated hydraulic heads generally matched measured water levels in wells northwest of Barrier J (in the northwestern part of the basin) and in the central part of the basin during 1945?96. In addition, the model adequately simulated water levels in the southeastern part of the basin near the Santa Ana River and Warm Creek and east of an unnamed fault that subparallels the San Jacinto Fault. Simulated heads and measured water levels in the central part of the basin generally are within 10 feet until about 1982?85 when differences become greater. In the northwestern part of the basin southeast of Barrier J, simulated heads were as much as 50 feet higher than measured water levels during 1945?82 but matched measured water levels well after 1982. In the compartment between Barrier H and the Rialto?Colton Fault, simulated heads match well during 1945?82 but are comparatively low during 1982?96. Near the Santa Ana River and Warm Creek, simulated heads generally rose above measured water levels except during 1965?72 when simulated heads compared well with measured water levels. Average

  5. Analytical Versus Numerical Estimates of Water-Level Declines Caused by Pumping, and a Case Study of the Iao Aquifer, Maui, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Meyer, William

    2001-01-01

    Comparisons were made between model-calculated water levels from a one-dimensional analytical model referred to as RAM (Robust Analytical Model) and those from numerical ground-water flow models using a sharp-interface model code. RAM incorporates the horizontal-flow assumption and the Ghyben-Herzberg relation to represent flow in a one-dimensional unconfined aquifer that contains a body of freshwater floating on denser saltwater. RAM does not account for the presence of a low-permeability coastal confining unit (caprock), which impedes the discharge of fresh ground water from the aquifer to the ocean, nor for the spatial distribution of ground-water withdrawals from wells, which is significant because water-level declines are greatest in the vicinity of withdrawal wells. Numerical ground-water flow models can readily account for discharge through a coastal confining unit and for the spatial distribution of ground-water withdrawals from wells. For a given aquifer hydraulic-conductivity value, recharge rate, and withdrawal rate, model-calculated steady-state water-level declines from RAM can be significantly less than those from numerical ground-water flow models. The differences between model-calculated water-level declines from RAM and those from numerical models are partly dependent on the hydraulic properties of the aquifer system and the spatial distribution of ground-water withdrawals from wells. RAM invariably predicts the greatest water-level declines at the inland extent of the aquifer where the freshwater body is thickest and the potential for saltwater intrusion is lowest. For cases in which a low-permeability confining unit overlies the aquifer near the coast, however, water-level declines calculated from numerical models may exceed those from RAM even at the inland extent of the aquifer. Since 1990, RAM has been used by the State of Hawaii Commission on Water Resource Management for establishing sustainable-yield values for the State?s aquifers. Data from the Iao aquifer, which lies on the northeastern flank of the West Maui Volcano and which is confined near the coast by caprock, are now available to evaluate the predictive capability of RAM for this system. In 1995 and 1996, withdrawal from the Iao aquifer reached the 20 million gallon per day sustainable-yield value derived using RAM. However, even before 1996, water levels in the aquifer had declined significantly below those predicted by RAM, and continued to decline in 1997. To halt the decline of water levels and to preclude the intrusion of salt-water into the four major well fields in the aquifer, it was necessary to reduce withdrawal from the aquifer system below the sustainable-yield value derived using RAM. In the Iao aquifer, the decline of measured water levels below those predicted by RAM is consistent with the results of the numerical model analysis. Relative to model-calculated water-level declines from numerical ground-water flow models, (1) RAM underestimates water-level declines in areas where a low-permeability confining unit exists, and (2) RAM underestimates water-level declines in the vicinity of withdrawal wells.

  6. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  7. Full-scale studies of factors related to coliform regrowth in drinking water.

    PubMed

    LeChevallier, M W; Welch, N J; Smith, D B

    1996-07-01

    An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem.

  8. Full-scale studies of factors related to coliform regrowth in drinking water.

    PubMed Central

    LeChevallier, M W; Welch, N J; Smith, D B

    1996-01-01

    An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem. PMID:8779557

  9. Estimating water supply arsenic levels in the New England bladder cancer study

    USGS Publications Warehouse

    Nuckols, John R.; Beane Freeman, Laura E.; Lubin, Jay H.; Airola, Matthew S.; Baris, Dalsu; Ayotte, Joseph D.; Taylor, Anne; Paulu, Chris; Karagas, Margaret R.; Colt, Joanne; Ward, Mary H.; Huang, An-Tsun; Bress, William; Cherala, Sai; Silverman, Debra T.; Cantor, Kenneth P.

    2011-01-01

    Conclusions: We used a different validation procedure for each of the three methods, and found our estimated levels to be comparable with available measured concentrations. This methodology allowed us to calculate potential drinking water exposure over long periods.

  10. Incubation success and habitat selection of shore-spawning kokanee Onchorhynchus nerka: effects of water level regulation and habitat characteristics.

    USGS Publications Warehouse

    Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.

    2014-01-01

    Changes to water-level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water-level regimes on shore-spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore-spawning kokanee do not currently receive a substrate-mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore-spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.

  11. Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.

    PubMed

    Romano, J A; Shih, T M

    1983-07-01

    This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine.

  12. The Occurrence and Toxicity of Disinfection Byproducts in European Drinking Waters in Relation with the HIWATE Epidemiology Study

    PubMed Central

    Jeong, Clara H.; Wagner, Elizabeth D.; Siebert, Vincent R.; Anduri, Sridevi; Richardson, Susan D.; Daiber, Eric J.; McKague, A. Bruce; Kogevinas, Manolis; Villanueva, Cristina M.; Goslan, Emma H.; Luo, Wentai; Isabelle, Lorne M.; Pankow, James F.; Grazuleviciene, Regina; Cordier, Sylvaine; Edwards, Susan C.; Righi, Elena; Nieuwenhuijsen, Mark J.; Plewa, Michael J.

    2012-01-01

    The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from 5 European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs. PMID:22958121

  13. Hydrogeologic data for the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas

    USGS Publications Warehouse

    Runkle, D.L.; Bergman, D.L.; Fabian, R.S.

    1997-01-01

    This report is a compilation of hydrogeologic data collected for an areal ground-water investigation of the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas. The study area includes parts of Greer, Harmon, and Jackson counties in Oklahoma and parts of Childress, Collingsworth, Hall, Hardeman, and Wilbarger counties in Texas. The Blaine aquifer consists of cavernous gypsum and dolomite beds. Water from the Blaine aquifer supports a local agriculture based mainly on irrigated cotton and wheat. The purpose of the study was to determine the availability, quantity, and quality of ground water from the Blaine aquifer and associated units. This report provides a reference for some of the data that was used as input into a computer ground-water flow model that simulates ground-water flow in the Blaine aquifer. The data in this report consists of: (1) Monthly or periodic water-level measurements in 134 wells; (2) daily mean water-level measurements for 11 wells equipped with water-level recorders; (3) daily total precipitation measurements from five precipitation gages; (4) low-flow stream-discharge measurements for 89 stream sites; (5) miscellaneous stream-discharge measurements at seven stream sites; (6) chemical analyses of surface water from 78 stream sites during low-flow periods; (7) chemical analyses of ground water from 41 wells; and (8) chemical analyses of runoff water collected at five sites.

  14. Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up

    PubMed Central

    Knudsen, Nikoline N.; Schullehner, Jörg; Hansen, Birgitte; Jørgensen, Lisbeth F.; Kristiansen, Søren M.; Voutchkova, Denitza D.; Gerds, Thomas A.; Andersen, Per K.; Bihrmann, Kristine; Grønbæk, Morten; Kessing, Lars V.; Ersbøll, Annette K.

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water. PMID:28604590

  15. Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up.

    PubMed

    Knudsen, Nikoline N; Schullehner, Jörg; Hansen, Birgitte; Jørgensen, Lisbeth F; Kristiansen, Søren M; Voutchkova, Denitza D; Gerds, Thomas A; Andersen, Per K; Bihrmann, Kristine; Grønbæk, Morten; Kessing, Lars V; Ersbøll, Annette K

    2017-06-10

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water.

  16. Study on the Variation of Groundwater Level under Time-varying Recharge

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chang; Hsieh, Ping-Cheng

    2017-04-01

    The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.

  17. Inferring time-varying recharge from inverse analysis of long-term water levels

    NASA Astrophysics Data System (ADS)

    Dickinson, Jesse E.; Hanson, R. T.; Ferré, T. P. A.; Leake, S. A.

    2004-07-01

    Water levels in aquifers typically vary in response to time-varying rates of recharge, suggesting the possibility of inferring time-varying recharge rates on the basis of long-term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño-Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one-dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long-term water level records using southwest aquifers as the case study. Time-varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  18. Inferring time‐varying recharge from inverse analysis of long‐term water levels

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, R.T.; Ferré, T.P.A.; Leake, S.A.

    2004-01-01

    Water levels in aquifers typically vary in response to time‐varying rates of recharge, suggesting the possibility of inferring time‐varying recharge rates on the basis of long‐term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño‐Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one‐dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long‐term water level records using southwest aquifers as the case study. Time‐varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  19. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  20. Monitoring of Low-Level Virus in Natural Waters

    PubMed Central

    Sorber, Charles A.; Sagik, Bernard P.; Malina, Joseph F.

    1971-01-01

    The insoluble polyelectrolyte technique for concentrating virus is extended to extremely low virus levels. The effectiveness of this method employing a coliphage T2 model is a constant 20% over a range of virus levels from 103 to 10−4 plaque-forming units/ml. The efficiency of the method is dependent upon pH control during the concentration phase. Although the study was initiated to develop a method for quantitating the effectiveness of water and wastewater treatment methods for the removal of viruses from waters at low concentrations, the potential of the technique for efficient monitoring of natural waters is apparent. PMID:4940873

  1. Questions and Answers About the Effects of Septic Systems on Water Quality in the La Pine Area, Oregon

    USGS Publications Warehouse

    Williams, John S.; Morgan, David S.; Hinkle, Stephen R.

    2007-01-01

    Nitrate levels in the ground-water aquifer underlying the central Oregon city of La Pine and the surrounding area are increasing due to contamination from residential septic systems. This contamination has public health implications because ground water is the sole source of drinking water for area residents. The U.S. Geological Survey, in cooperation with Deschutes County and the Oregon Department of Environmental Quality, studied the movement and chemistry of nitrate in the aquifer and developed computer models that can be used to predict future nitrate levels and to evaluate alternatives for protecting water quality. This fact sheet summarizes the results of that study in the form of questions and answers.

  2. Surveillance of bacteriological quality of drinking water in Chandigarh, northern India.

    PubMed

    Goel, Naveen K; Pathak, Rambha; Gulati, Sangeeta; Balakrishnan, S; Singh, Navpreet; Singh, Hardeep

    2015-09-01

    The study was carried out in Chandigarh, India with the following objectives: (1) to monitor the bacteriological quality of drinking water; (2) to collect data on bacteriological contamination of water collected at point of use; (3) to test both groundwater being supplied through hand pumps and pre-treated water; and (4) to determine the pattern of seasonal variations in quality of water. The community-based longitudinal study was carried out from 2002 to 2007. Water samples from hand pumps and tap water were collected from different areas of Chandigarh following a simple random sampling strategy. The time trends and seasonal variations in contamination of water according to area and season were analysed. It was found that the contamination of water was higher during the pre-monsoon period compared with the rest of the year. The water being used in slums and rural areas for drinking purposes also had higher contamination levels than urban areas, with highest levels in rural areas. This study found that drinking water supply in Chandigarh is susceptible to contamination especially in rural areas and during pre-monsoon. Active intervention from public health and the health department along with raising people's awareness regarding water hygiene are required for improving the quality of drinking water.

  3. Efficiency of irrigation water application in sugarcane cultivation in Pakistan.

    PubMed

    Watto, Muhammad Arif; Mugera, Amin W

    2015-07-01

    Diminishing irrigation water supplies are threatening the sustainability of irrigated agriculture in Pakistan. Within the context of dwindling water resources and low agricultural water productivity, it is imperative to improve efficiency in agricultural production and to make efficient use of available water resources. This study employs a non-parametric approach to estimate the extent of technical and irrigation water efficiency in sugarcane cultivation in Pakistan. The mean technical efficiency score is 0.96 for tube-well owners whereas it is 0.94 for water buyers. The mean irrigation water efficiency score is 0.86 for tube-well owners whereas it is 0.72 for water buyers. We find that across all farms, 59% of the tube-well owners and 45% of the water buyers are fully technically efficient, whereas only 36% of the tube-well owners and 30% of the water buyer are fully efficient in irrigation water use. This study finds that sugarcane growers are operating at fairly high technical efficiency levels. But, there is considerable potential to improve irrigation water efficiency. This study proposes expanding the role of agricultural extension services from merely agronomic grounds to guide farmers to undertake cost benefit analysis of the available production technology, would help achieve higher efficiency levels. © 2014 Society of Chemical Industry.

  4. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    PubMed

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  5. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    PubMed Central

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  6. A Potential Approach for Low Flow Selection in Water Resource Supply and Management

    Treesearch

    Ying Ouyang

    2012-01-01

    Low flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was...

  7. Nitrate-nitrogen levels in rural drinking water: Is there an association with age-related macular degeneration?

    PubMed

    Klein, Barbara E K; McElroy, Jane A; Klein, Ronald; Howard, Kerri P; Lee, Kristine E

    2013-01-01

    We examined the association of nitrate-nitrogen exposure from rural private drinking water and incidence of age-related macular degeneration (AMD). All participants in the Beaver Dam Eye Study (53916 improvement plan code) completed a questionnaire and had an ocular examination including standardized, graded fundus photographs at five examinations. Only information from rural residents in that study are included in this report. Data from an environmental monitoring study with probabilistic-based agro-chemical sampling, including nitrate-nitrogen, of rural private drinking water were available. Incidence of early AMD was associated with elevated nitrate-nitrogen levels in rural private drinking water supply (10.0% for low, 19.2% for medium, and 26.1% for high nitrate-nitrogen level in the right eye). The odds ratios (ORs) were 1.77 (95% confidence interval [CI]: 1.12-2.78) for medium and 2.88 (95% CI: 1.59-5.23) for high nitrate-nitrogen level. Incidence of late AMD was increased for those with medium or high levels of nitrate-nitrogen compared to low levels (2.3% for low and 5.1% for the medium or high nitrate-nitrogen level, for the right eye). The OR for medium or high nitrate-nitrogen groups was 2.80 (95% CI: 1.07-7.31) compared to the low nitrate-nitrogen group.

  8. Blood glucose regulation during living-donor liver transplant surgery.

    PubMed

    Gedik, Ender; İlksen Toprak, Hüseyin; Koca, Erdinç; Şahin, Taylan; Özgül, Ülkü; Ersoy, Mehmet Özcan

    2015-04-01

    The goal of this study was to compare the effects of 2 different regimens on blood glucose levels of living-donor liver transplant. The study participants were randomly allocated to the dextrose in water plus insulin infusion group (group 1, n = 60) or the dextrose in water infusion group (group 2, n = 60) using a sealed envelope technique. Blood glucose levels were measured 3 times during each phase. When the blood glucose level of a patient exceeded the target level, extra insulin was administered via a different intravenous route. The following patient and procedural characteristics were recorded: age, sex, height, weight, body mass index, end-stage liver disease, Model for End-Stage Liver Disease score, total anesthesia time, total surgical time, and number of patients who received an extra bolus of insulin. The following laboratory data were measured pre- and postoperatively: hemoglobin, hematocrit, platelet count, prothrombin time, international normalized ratio, potassium, creatinine, total bilirubin, and albumin. No hypoglycemia was noted. The recipients exhibited statistically significant differences in blood glucose levels during the dissection and neohepatic phases. Blood glucose levels at every time point were significantly different compared with the first dissection time point in group 1. Excluding the first and second anhepatic time points, blood glucose levels were significantly different as compared with the first dissection time point in group 2 (P < .05). We concluded that dextrose with water infusion alone may be more effective and result in safer blood glucose levels as compared with dextrose with water plus insulin infusion for living-donor liver transplant recipients. Exogenous continuous insulin administration may induce hyperglycemic attacks, especially during the neohepatic phase of living-donor liver transplant surgery. Further prospective studies that include homogeneous patient subgroups and diabetic recipients are needed to support the use of dextrose plus water infusion without insulin.

  9. Exposure assessment in epidemiologic studies of adverse pregnancy outcomes and disinfection byproducts.

    PubMed

    King, Will D; Dodds, Linda; Armson, B Anthony; Allen, Alexander C; Fell, Deshayne B; Nimrod, Carl

    2004-11-01

    A major challenge in studies that examine the association between disinfection byproducts in drinking water and pregnancy outcomes is the accurate representation of a subject's exposure. We used household water samples and questionnaire information on water-use behavior to examine several aspects of exposure assessment: (i) the distribution and correlation of specific disinfection byproducts, (ii) spatial distribution system and temporal variation in byproduct levels, and (iii) the contribution of individual water-use behavior. The level of specific trihalomethanes (THMs) and haloacetic acids (HAAs) was determined for 360 household water samples in Eastern Ontario and Nova Scotia. Subjects were interviewed regarding tap water ingestion and showering and bathing practices. In both provinces, total THMs correlated highly with chloroform (correlation coefficient (r) >0.95) and less so with total HAAs (r = 0.74 in Nova Scotia and r = 0.52 in Ontario). The correlation between total THMs and bromodichloromethane was high in Nova Scotia (r = 0.63), but low in Ontario (r = 0.26). The correlation was between THM level in individual household samples, and the mean THM level during the same time period from several distribution system samples was 0.63, while a higher correlation in THM level was observed for samples taken at the same location 1 year apart (r = 0.87). A correlation of 0.73 was found between household THM level and a total exposure measure incorporating ingestion, showering, and bathing behaviors. These results point to the importance of: measurement of different classes of byproducts; household rather than distribution system sampling; and, incorporation of subject behaviors in exposure assessment in epidemiologic studies of disinfection byproducts and adverse pregnancy outcomes.

  10. Groundwater withdrawal impacts in a karst area

    NASA Astrophysics Data System (ADS)

    Destephen, R. A.; Benson, C. P.

    1993-12-01

    During a 3000-gpm pump test on a groundwater supply well in Augusta County, Virginia, residential properties were impacted. The impacts included lowered farm pond water levels, development of a sinkhole, and water level decrease in residential wells. A study was performed to assess whether a lower design yield was possible with minimal impacts on adjacent property. This study included a 48-h 1500-gpm pump test that evaluated impacts due to: (1) sinkhole development and potential damage to homes, (2) loss of water in residential wells, and (3) water-quality degradation. Spring flows, residential well levels, survey monuments, and water quality were monitored. Groundwater and surface water testing included inorganic water-quality parameters and microbiological parameters. The latter included particulate analyses, Giardia cysts, and coliforms, which were used to evaluate the connection between groundwater and local surface waterbodies. Although results of the study indicated a low potential for structural damage due to future sinkhole activity, it showed that the water quality of some residential wells might be degraded. Because particulate analyses confirmed that groundwater into the supply well is under the direct influence of surface water, it was recommended that certain residents be placed on an alternate water supply prior to production pumping and that filtration be provided for the well in accordance with the Surface Water Treatment Rule. A mitigation plan was implemented. This plan included crack surveys, a long-term settlement station monitoring program, and limitation of the groundwater withdrawal rate to 1.0 million gallons per day (mgd) and maximum production rate to 1500 gpm.

  11. Ground-water flow and water quality in northeastern Union County, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1987-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the Village of Richwood, Ohio, to determine directions of ground-water flow, ground-water-level fluctuations, and water quality in the northeastern part of Union County. The topography of the study area generally is featureless, and the land surfaces slopes gently eastward from 985 to 925 feet above sea level. Glacial deposits up to 48 feet thick cover the carbonate-bedrock aquifer. Three municipal wells and an adjoining abandoned landfill are located in an area previously excavated for clay deposits. An agricultural supply company is adjacent to the well field. Ground water flows from west to east with local variation to the northeast and southeast because of the influence of Fulton Creek. Richwood Lake occupies an abandoned sand-and-gravel quarry. Water-level fluctuations indicate that the and gravel deposits beneath the lake may be hydraulically connected to the bedrock aquifer. Water-quality data collected from 14 wells and Richwood Lake indicate that a hard to very hard calcium bicarbonate type water is characteristic of the study area. Dissolved solids ranged from 200 to 720 mg/L (Milligrams per liter) throughout the study area. Potassium ranged from 1.3 to 15 mg/L, with a median concentration of 2.0 mg/L. Concentration of 10 and 15 mg/L at one municipal well were five to eight times greater than the median concentration. Total organic carbon, ammonia, and organic nitrogen were present at every site. Concentrations of ammonia above 1 mg/L as nitrogen were found in water from two municipal wells and one domestic well. Total organic carbon was detected at a municipal well, a landfill well, and a domestic well at concentrations above 5 mg/L. Ground-water quality is similar throughout the study area except in the vicinity of the municipal well field, where water from one well had elevated concentrations of ammonia, dissolved manganese, dissolved chloride, dissolved, sodium, and total organic carbon.

  12. Private Drinking Water Wells as a Source of Exposure to Perfluorooctanoic Acid (PFOA) in Communities Surrounding a Fluoropolymer Production Facility

    PubMed Central

    Hoffman, Kate; Webster, Thomas F.; Bartell, Scott M.; Weisskopf, Marc G.; Fletcher, Tony; Vieira, Verónica M.

    2011-01-01

    Background The C8 Health Project was established in 2005 to collect data on perfluorooctanoic acid (PFOA, or C8) and human health in Ohio and West Virginia communities contaminated by a fluoropolymer production facility. Objective We assessed PFOA exposure via contaminated drinking water in a subset of C8 Health Project participants who drank water from private wells. Methods Participants provided demographic information and residential, occupational, and medical histories. Laboratory analyses were conducted to determine serum-PFOA concentrations. PFOA data were collected from 2001 through 2005 from 62 private drinking water wells. We examined the relationship between drinking water and PFOA levels in serum using robust regression methods. As a comparison with regression models, we used a first-order, single-compartment pharmacokinetic model to estimate the serum:drinking-water concentration ratio at steady state. Results The median serum PFOA concentration in 108 study participants who used private wells was 75.7 μg/L, approximately 20 times greater than the levels in the U.S. general population but similar to those of local residents who drank public water. Each 1 μg/L increase in PFOA levels in drinking water was associated with an increase in serum concentrations of 141.5 μg/L (95% confidence interval, 134.9–148.1). The serum:drinking-water concentration ratio for the steady-state pharmacokinetic model was 114. Conclusions PFOA-contaminated drinking water is a significant contributor to PFOA levels in serum in the study population. Regression methods and pharmacokinetic modeling produced similar estimates of the relationship. PMID:20920951

  13. Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muisa, Norah; Hoko, Zvikomborero; Chifamba, Portia

    Metal pollution of freshwater due to human activities is a major problem confronting most urban centres in developing countries. This study determined the extent to which aluminium in the residues from Morton Jaffray Water Works in Harare were affecting the water quality of Manyame River and Lake Manyame. The study also measured aluminium bioaccumulation in Nile Tilapia ( Oreochromis niloticus) which is of importance to the commercial fisheries industry in Zimbabwe. Depth integrated water, and sediment grab samples and adult fish were collected per site in January and March, 2010. A total of six sites were selected on the Manyame River and in Lake Manyame. The levels of Total Aluminium (Al) were determined in sediments, water and fish tissues (liver, kidney, gill and muscle). Total solids, total dissolved solids, conductivity, pH, dissolved oxygen and temperature were also determined in water and residues. The texture of the sediments was also assessed. Aluminium concentration in water ranged from 2.19 mg/L to 68.93 mg/L during both sampling campaigns surpassing permissible maximum concentration limits of 0.087 to 0.75 mg/L suggested by the Environmental Protection Agency and African Union. The site upstream of the discharge point of the residues always had the lowest levels though it was higher than acceptable levels indicated above, thus suggesting the existence of other sources of aluminium in the catchment besides Morton Jaffray Water Works. However, there was a 10-fold and 100-fold increase in levels of aluminium in water and sediments, respectively, at the site 100 m downstream of the discharge point on the Manyame River. Mean aluminium concentrations in water and sediments at this site averaged 68.93 ± 61.74 mg/L and 38.18 ± 21.54 mg/L in water and 103.79 ± 55.96 mg/L and 131.84 ± 16.48 mg/L in sediments in sampling campaigns 1 and 2, respectively. These levels were significantly higher than levels obtained from all the other sites during both sampling campaigns (ANOVA: p < 0.05). This also indicated that the contribution of aluminium pollution from the water works residues was higher than all the other sources in the catchment. Aluminium levels were generally in the order of; sediments > fish > water. Bioaccumulation occurred in the fish and the order of bioconcentration was; kidney > liver > gill > muscle. The amounts of aluminium in the fish tissues investigated were significantly higher (maximum = 2.92 mg/g) than was reported in other studies reviewed (maximum = 0.18 mg/g). Thus, the water treatment plant residues are greatly increasing the concentrations of aluminium in the water system downstream of the plant thus creating a great risk of aluminium toxicity for fish. Treatment of the residues before discharge, substitution of alum with other coagulants, and re-use of the residues in buffer strips, agricultural lands and in sewage works should be considered.

  14. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    USGS Publications Warehouse

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area. Results are presented in a descending order based on detection frequencies (most frequently detected compound listed first), or alphabetically when a detection frequency could not be calculated. Only certain wells were measured for all constituents and water-quality parameters. The results of all of the analyses were compared with U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) Maximum Contaminant Levels (MCLs), Secondary Maximum Contaminant Levels (SMCLs), USEPA lifetime health advisories (HA-Ls), the risk-specific dose at a cancer risk level equal to 1 in 100,000 or 10E-5 (RSD5), and CADHS notification levels (NLs). When USEPA and CADHS MCLs are the same, detection levels were compared with the USEPA standard; however, in some cases, the CADHS MCL may be lower. In those cases, the data were compared with the CADHS MCL. Constituents listed by CADHS as 'unregulated chemicals for which monitoring is required' were compared with the CADHS 'detection level for the purposes of reporting' (DLR). DLRs unlike MCLs are not health based standards. Instead, they are levels at which current laboratory detection capabilities allow eighty percent of qualified laboratories to achieve measurements within thirty percent of the true concentration. Twenty-three volatile organic compounds (VOCs) and seven gasoline oxygenates were detected in ground-water samples collected in the Northern San Joaquin Basin GAMA study unit. Additionally, 13 tentatively identified compounds were detected. VOCs were most frequently detected in the Eastern San Joaquin Basin study area and least frequently detected in samples collected in the Cosumnes Basin study area. Dichlorodifluoromethane (CFC-12), a CADHS 'unregulated chemical for which monitoring is required,' was detected in two wells at concentrations greater than the DLR. Trihalomethanes were the most frequently detected class of VOC constituents. Chloroform (trichloromethane) was the m

  15. Coconut water vinegar ameliorates recovery of acetaminophen induced liver damage in mice.

    PubMed

    Mohamad, Nurul Elyani; Yeap, Swee Keong; Beh, Boon-Kee; Ky, Huynh; Lim, Kian Lam; Ho, Wan Yong; Sharifuddin, Shaiful Adzni; Long, Kamariah; Alitheen, Noorjahan Banu

    2018-06-25

    Coconut water has been commonly consumed as a beverage for its multiple health benefits while vinegar has been used as common seasoning and a traditional Chinese medicine. The present study investigates the potential of coconut water vinegar in promoting recovery on acetaminophen induced liver damage. Mice were injected with 250 mg/kg body weight acetaminophen for 7 days and were treated with distilled water (untreated), Silybin (positive control) and coconut water vinegar (0.08 mL/kg and 2 mL/kg body weight). Level of oxidation stress and inflammation among treated and untreated mice were compared. Untreated mice oral administrated with acetaminophen were observed with elevation of serum liver profiles, liver histological changes, high level of cytochrome P450 2E1, reduced level of liver antioxidant and increased level of inflammatory related markers indicating liver damage. On the other hand, acetaminophen challenged mice treated with 14 days of coconut water vinegar were recorded with reduction of serum liver profiles, improved liver histology, restored liver antioxidant, reduction of liver inflammation and decreased level of liver cytochrome P450 2E1 in dosage dependent level. Coconut water vinegar has helped to attenuate acetaminophen-induced liver damage by restoring antioxidant activity and suppression of inflammation.

  16. Governance of water resources in the phase of change: a case study of the implementation of the EU Water Framework Directive in Sweden.

    PubMed

    Hammer, Monica; Balfors, Berit; Mörtberg, Ulla; Petersson, Mona; Quin, Andrew

    2011-03-01

    In this article, focusing on the ongoing implementation of the EU Water Framework Directive, we analyze some of the opportunities and challenges for a sustainable governance of water resources from an ecosystem management perspective. In the face of uncertainty and change, the ecosystem approach as a holistic and integrated management framework is increasingly recognized. The ongoing implementation of the Water Framework Directive (WFD) could be viewed as a reorganization phase in the process of change in institutional arrangements and ecosystems. In this case study from the Northern Baltic Sea River Basin District, Sweden, we focus in particular on data and information management from a multi-level governance perspective from the local stakeholder to the River Basin level. We apply a document analysis, hydrological mapping, and GIS models to analyze some of the institutional framework created for the implementation of the WFD. The study underlines the importance of institutional arrangements that can handle variability of local situations and trade-offs between solutions and priorities on different hierarchical levels.

  17. Hydrogeologic reconnaissance of the Swope Oil Superfund site and vicinity, Camden and Burlington counties, New Jersey

    USGS Publications Warehouse

    Barton, G.J.; Krebs, M.M.

    1990-01-01

    Groundwater beneath a former chemical reclamation facility in New Jersey is contaminated with metals and organic compounds. The off-site migration of these compounds has not been studied; however, a nearby public-supply well is contaminated, and a public-supply well 1,400 ft downgradient from the site may be threatened. The study area, in the New Jersey part of the Atlantic Coastal Plain, is underlain by alluvial deposits composed of gravel, sand, silt, and clay. These deposits comprise the water table aquifer, the confining units, and the confined aquifer throughout the study area. The water table beneath the Swope Oil Superfund site is approximately 17 ft below sea level and groundwater levels throughout the study area are below the stage of the Delaware River. The aquifer system is recharged by precipitation, leakage of water through confining units, and the water induced from the Delaware River. Five public supply-well fields, primarily adjacent to the Delaware River, and four waste disposal sites with observation well networks are located in the study area. Both the water table and confined aquifers are contaminated in several locations. The concentration of metals and/or purgeable organic compounds in more than 20 wells exceeds the U.S. Environmental Protection Agency primary drinking-water standard and the New Jersey Department of Environmental Protection recommended drinking water criteria. Selected data from wells and test borings are presented, including well construction details; drillers ', geologists ', and geophysical logs; water levels; specific-capacity and slug test data; and chemical analysis of groundwater samples. (USGS)

  18. Correlation of lithium levels between drinking water obtained from different sources and scalp hair samples of adult male subjects.

    PubMed

    Baloch, Shahnawaz; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Talpur, Farah Naz; Arain, Muhammad Balal

    2017-10-01

    There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25-45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12-22.6, 4.2-16.7 and 0.0-16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292-393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212-268 and 145-208 μg/kg), respectively.

  19. Evaluation of the effect of temperature, pH, and bioproduction on Hg concentration in sediments, water, molluscs and algae of the delta of the Ebro river.

    PubMed

    Schuhmacher, M; Domingo, J L; Llobet, J M; Corbella, J

    1993-01-01

    The effects of temperature, pH, and bioproduction on mercury levels in sediments, water, molluscs and algae from the delta of the Ebro river (NE Spain) were determined in this study. Mercury concentrations were measured in a cold-vapor atomic absorption spectrophotometer. The ranges of mercury concentrations were the following: sediments, 0.014-0.185 microgram g-1; water, 0.001-0.018 microgram g-1; molluscs, 0.118-0.861 microgram g-1; and algae 0.008-0.026 microgram g-1. Although not statistically significant, a decrease in the pH of the water corresponded with a diminution in the content of mercury in sediments and molluscs, while the mercury levels in water and algae were lower in the areas with high levels of bioproduction. The concentrations of mercury in water significantly decreased with temperature. However, the differences with temperature of the mercury concentrations in sediments did not reach the level of significance. Consequently, water would not be an adequate indicator to determine the levels of mercury contamination, although both sediments and molluscs can be used for this purpose.

  20. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm 3 , of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm 3 during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  2. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  3. Long-term trends in field level irrigation water demand in Mahanadi delta districts - a hydrological modeling approach for coping with climate change

    NASA Astrophysics Data System (ADS)

    Raju Pokkuluri, Venkat; Rao, Diwakar Parsi Guru; Hazra, Sugata; Srikant Kulkarni, Sunil

    2017-04-01

    India uses its 85 percent of available water resources for irrigation making it the country with largest net irrigated area in the world. With one of the largest delta plains, sustaining the needs of irrigation supplies is critical for food security and coping with challenges of climate change. The extensive development of upstream river basins/catchments is posing serious challenge and constrains to the water availability to delta regions, which depend on the controlled/regulated flows from the upstream catchments. The irrigation water demands vary due to changes in agricultural practices, cropping pattern and changing climate conditions. Estimation of realistic irrigation water demand and its trend over time is critical for meeting the supplementary water needs of productive agricultural lands in delta plains and there by coping the challenges of extensive upstream river basin development and climate change. The present study carried out in delta districts of Mahanadi river in Odisha State of India, wherein the long-term trends in field level irrigation water requirements were estimated, both on spatial & temporal scales, using hydrological modeling framework. This study attempts to estimate field level irrigation water requirements through simulation of soil water balance during the crop growing season through process based hydrological modeling framework. The soil water balance computations were carried out using FAO-56 framework, by modifying the crop coefficient (Kc) proportional to the water stress coefficient (Ks), which is a function of root zone depletion of water. Daily meteorological data, spatial cropping pattern, terrain are incorporated in the soil water balance simulation in the model. The irrigation water demand is derived considering the exclusion of soil water stress for each model time step. The field level irrigation water requirement at 8 day interval had been estimated for the each Rabi season (post-monsoon) spanning over 1986 to 2015. The results indicate that irrigation water requirements show spatial and temporal changes and tend to deviate from notional/envisaged demands. Validation of estimated irrigation demand is attempted through correlation of gap in supply and demand with the trends in crop water stress and crop production during the study years. Crop water Stress Index (CWSI), which is the ratio of deficit of actual evapotranspiration (AET) from the potential evapotranspiration (PET) and is derived from MODIS Evapotranspiration data. Agricultural production data is used from State/Central government statistics. The attempted methodology provides opportunities to estimate future irrigation water demand under projected climate change scenarios and for planning for basin level water resources development sustaining the delta agriculture, which are projected to be more vulnerable to climate change.

  4. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  5. [Arsenic levels in drinking water supplies from underground sources in the community of Madrid].

    PubMed

    Aragonés Sanz, N; Palacios Diez, M; Avello de Miguel, A; Gómez Rodríguez, P; Martínez Cortés, M; Rodríguez Bernabeu, M J

    2001-01-01

    In 1998, arsenic concentrations of more than 50 micrograms/l were detected in some drinking water supplies from underground sources in the Autonomous Community of Madrid, which is the maximum permissible concentration for drinking water in Spain. These two facts have meant the getting under way of a specific plan for monitoring arsenic in the drinking water in the Autonomous Community of Madrid. The results of the first two sampling processes conducted in the arsenic level monitoring plan set out are presented. In the initial phase, water samples from 353 water supplies comprised within the census of the Public Health Administration of the Autonomous Community of Madrid were analyzed. A water supply risk classification was made based on these initial results. In a second phase, six months later, the analyses were repeated on those 35 water supplies which were considered to possibly pose a risk to public health. Seventy-four percent (74%) of the water supplies studied in the initial phase were revealed to have an arsenic concentration of less than 10 micrograms/l, 22.6% containing levels of 10 micrograms/l-50 micrograms/l, and 3.7% over 50 micrograms/l. Most of the water supplies showing arsenic levels of more than 10 micrograms/l are located in the same geographical area. In the second sampling process (six months later), the 35 water supplies classified as posing a risk were included. Twenty-six (26) of these supplies were revealed to have the same arsenic level ((10-50 micrograms/l), and nine changed category, six of which had less than 10 micrograms/l and three more than 50 micrograms/l. In the Autonomous Community of Madrid, less than 2% of the population drinks water coming from supplies which are from underground sources. The regular water quality monitoring conducted by the Public Health Administration has led to detecting the presence of more than 50 micrograms/l of arsenic in sixteen drinking water supplies from underground sources, which is the maximum permissible level under the laws currently in force in Spain. Measures have been taken to prevent water from being used from these water supplies. Around 20% of the water supplies studies must take measures in the near future to lower the arsenic concentration to below 10 micrograms/l when the water directive which is currently in the process of being written into Spanish law enters into effect.

  6. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Md Yunus, Sabarina, E-mail: sabarina2020@salam.uitm.edu.m; Hamzah, Zaini; Wood, Ab. Khalik

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly,more » in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985). Therefore, it is safe for human consumption. Moreover, the pollution levels of these heavy metals were also compared with other studies. This present study can also be used to evaluate the safety dose uptake level of marine biota as well as to monitor environmental health.« less

  7. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Md Yunus, Sabarina; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad

    2015-04-01

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia's major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985). Therefore, it is safe for human consumption. Moreover, the pollution levels of these heavy metals were also compared with other studies. This present study can also be used to evaluate the safety dose uptake level of marine biota as well as to monitor environmental health.

  8. Ground-water levels in Huron County, Michigan, 2002-03

    USGS Publications Warehouse

    Weaver, T.L.; Blumer, S.P.; Crowley, S.L.

    2008-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to collect water-level altitudes (hereafter referred to as water levels) at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships will have continuous water-level recorders, while the wells in Grant and Bingham Townships will revert to quarterly measurement status. USGS has also provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 23 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 23 quarterly-measured wells is also summarized in the annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville and Harbor Beach, and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration [NOAA], 2002-04; Danny Costello, NOAA hydrologist, written commun., 2003-04). In March 2003, a new low-water level for the period of this study was measured in Lake Huron (National Oceanic and Atmospheric Administration, 2003; 2004). The net decline in the water level of Lake Huron from January 1, 2002 to December 31, 2003 was about 0.3 ft. Annual precipitation in 2002 was about 0.3 inches above normal, with much of it occurring during summer months. The provisional precipitation total for 2003 is about an inch below normal (NOAA, 2003, 2004; Danny Costello, NOAA hydrologist, written commun., 2003, 2004).Four wells equipped with continuous-data recorders are completed in the glacial, Saginaw, and Marshall aquifers. Water levels in three of the four wells equipped with continuous-data recorders experienced a net decline over the period from January 2002 to December 2003, while the level in well H9r, completed in the Saginaw aquifer in Fairhaven Township adjacent to Saginaw Bay (Lake Huron), rose about 1.3 ft over the same period. Interestingly, the water level in Saginaw Bay declined about 0.3 ft over the same period. A period-ofrecord maximum depth to water was recorded in September 2003 in well H25Ar, completed in the Marshall aquifer in Lake Township. Hydrographs showing altitude of the water surface are presented for each of four wells equipped with continuous-data recorders.Twenty three wells were measured on a quarterly basis in 2002-03. These wells are completed in the Saginaw and Marshall aquifers, and Coldwater confining unit. Although each quarterly measurement only provides a “snapshot” water level, the data adequately define the “generalized” water-level trend in the aquifer near the well. The water level in one quarterly-measured well completed in the Saginaw aquifer near Saginaw Bay, had a net rise for the period from January 2002 to December 2003, while levels in the other 22 quarterly-measured wells declined about 0.5 to 2.0 ft during the same period. A period-of-record minimum depth to water (high) was measured in 2002 in two quarterly-measured wells completed in the Saginaw aquifer, although the level in one of those wells had a net decline over the period from January 2002 through December 2003. Conversely, period-of-record maximum depths to water (low) were measured in 2002 in one well completed in the Saginaw aquifer and two wells completed in the Marshall aquifer; and in 2003, in 6 of 16 wells completed in the Marshall aquifer. Near period-ofrecord maximum depths to water were measured in 2003 in two additional wells completed in the Marshall aquifer. No period-of-record minimum or maximum depths to water were measured in 2002-03 in wells completed in the Coldwater confining unit. Hydrographs showing water levels measured in each well are presented for the 23 wells measured on a quarterly basis.Water-level trends measured in 2002-03 in other wells in Lower Michigan have similarities to those measured in Huron County wells. Several external factors appear to influence water-level trends including proximity to nearby production wells, amount and timing of precipitation events, evapotranspiration and type of prevalent ground cover, proximity of aquifer to the surface, and hydraulic characteristics of overlying geologic materials.

  9. Urban permeable pavement system design based on “sponge city” concept

    NASA Astrophysics Data System (ADS)

    Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.

    2017-08-01

    Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.

  10. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  11. Effect of balneotherapy on the antioxidant system--a controlled pilot study.

    PubMed

    Bender, Tamás; Bariska, János; Vághy, Richárd; Gomez, Roberto; Imre Kovács

    2007-01-01

    Balneotherapy is among the most widely used modalities of physical therapy in countries rich in mineral waters. This trial was intended to ascertain whether balneotherapy (i.e., therapeutic bath in mineral water) has any influence on the antioxidant system and whether there are any differences compared to bathing in tap water. The ten subjects in Group I bathed in alkaline thermal water, Group II used alkaline, chlorine-containing mineral water, whereas Group III bathed in tap water. Catalase, superoxide dismutase, malondialdehyde protein and glutathione peroxidase levels were measured at baseline and after concluding the course of balneotherapy. Balneotherapy with either of the two mineral waters reduced the activity of all four enzymes studied. Using tap water, however, had no influence on either catalase or superoxide dismutase activity after one session or glutathione peroxidase levels after a course of ten balneotherapy treatments. Thermal water may have a beneficial effect on the formation of free radicals. The therapeutic efficacy of mineral vs. tap water is different, although bathing in hot water itself reduces enzyme activity.

  12. Water-level conditions in the upper Cape Fear Aquifer, 1994-98, in parts of Bladen and Robeson counties, North Carolina

    USGS Publications Warehouse

    Strickland, A.G.

    1999-01-01

    Water-level measurements were made on a periodic basis from October 1994 through November 1998 in 17 wells that tap the upper Cape Fear aquifer. The approximately 730-square-mile study area in Bladen and Robeson Counties is in the southern Coastal Plain of North Carolina. Water-level declines occurred in the aquifer throughout much of the area as a result of pumping during this period. The greatest decline was about 42 feet in Bladen County. Water levels from the wells in the fall of 1998 were used to construct a map of the potentiometric surface of the upper Cape Fear aquifer. This map can be used to infer the direction of ground-water movement in the aquifer. Withdrawals from wells at pumping centers, such as in the Tar Heel and Elizabethtown areas in Bladen County, have caused ground water to flow toward pumped wells, resulting in cones of depression in the potentiometric surface.

  13. Everglades Depth Estimation Network (EDEN)—A decade of serving hydrologic information to scientists and resource managers

    USGS Publications Warehouse

    Patino, Eduardo; Conrads, Paul; Swain, Eric; Beerens, James M.

    2017-10-30

    IntroductionThe Everglades Depth Estimation Network (EDEN) provides scientists and resource managers with regional maps of daily water levels and depths in the freshwater part of the Greater Everglades landscape. The EDEN domain includes all or parts of five Water Conservation Areas, Big Cypress National Preserve, Pennsuco Wetlands, and Everglades National Park. Daily water-level maps are interpolated from water-level data at monitoring gages, and depth is estimated by using a digital elevation model of the land surface. Online datasets provide time series of daily water levels at gages and rainfall and evapotranspiration data (https://sofia.usgs.gov/eden/). These datasets are used by scientists and resource managers to guide large-scale field operations, describe hydrologic changes, and support biological and ecological assessments that measure ecosystem response to the implementation of the Comprehensive Everglades Restoration Plan. EDEN water-level data have been used in a variety of biological and ecological studies including (1) the health of American alligators as a function of water depth, (2) the variability of post-fire landscape dynamics in relation to water depth, (3) the habitat quality for wading birds with dynamic habitat selection, and (4) an evaluation of the habitat of the Cape Sable seaside sparrow.

  14. The need for a reassessment of the safe upper limit of selenium in drinking water.

    PubMed

    Vinceti, Marco; Crespi, Catherine M; Bonvicini, Francesca; Malagoli, Carlotta; Ferrante, Margherita; Marmiroli, Sandra; Stranges, Saverio

    2013-01-15

    Results of recent epidemiologic studies suggest the need to reassess the safe upper limit in drinking water of selenium, a metalloid with both toxicological and nutritional properties. Observational and experimental human studies on health effects of organic selenium compounds consumed through diet or supplements, and of inorganic selenium consumed through drinking water, have shown that human toxicity may occur at much lower levels than previously surmised. Evidence indicates that the chemical form of selenium strongly influences its toxicity, and that its biological activity may differ in different species, emphasizing the importance of the few human studies on health effects of the specific selenium compounds found in drinking water. Epidemiologic studies that investigated the effects of selenate, an inorganic selenium species commonly found in drinking water, together with evidence of toxicity of inorganic selenium at low levels in from in vitro and animal studies, indicate that health risks may occur at exposures below the current European Union and World Health Organization upper limit and guideline of 10 and 40 μg/l, respectively, and suggest reduction to 1 μg/l in order to adequately protect human health. Although few drinking waters are currently known to have selenium concentrations exceeding this level, the public health importance of this issue should not be overlooked, and further epidemiologic research is critically needed in this area. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Ground Water in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Gingerich, Stephen B.

    1998-01-01

    A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.

  16. Utility of check dams in dilution of fluoride concentration in ground water and the resultant analysis of blood serum and urine of villagers, Anantapur District, Andhra Pradesh, India.

    PubMed

    Bhagavan, S V B K; Raghu, V

    2005-02-01

    High levels of fluoride (beyond 1.5 ppm) in ground water as source of drinking water are common in many parts of Andhra Pradesh, India, causing fluorosis. The study carried out in endemic Nalgonda District, Andhra Pradesh, has indicated that the fluoride-rich ground water present in the wells located down stream and close to the surface water bodies is getting diluted by the low-fluoride surface water. Encouraged by this result, check dams were constructed upstream of the identified marginally high fluoride bearing ground water zones in Anantapur District to reduce fluoride levels as an alternate solution for safe drinking water. In this paper, an attempt is made to study the utility and effect of these check dams in dilution of fluoride concentration in drinking water and its resultant impact on the health aspects of certain villagers of Anantapur District through the analysis of their blood serum and urine. Ground water samples from three fluoride-affected villages, blood and urine of males and females from the same villages were collected and analyzed for fluoride using ion selective electrode method. The results indicated that the fluoride levels in blood serum and urine of males in the age group of 5-11 years are found to be the highest. The concentration of fluoride in ground water is directly proportional to the concentration of fluoride in blood serum and urine. The concentration of fluoride in ground water with depth of the aquifer is a function of lithology, amount and duration of rainfall, rate of infiltration, level of ground water exploitation in the area etc. The construction of check dams upstream of the identified marginally high fluoride waters will not only cause additional recharge of ground water but also reduces the fluoride concentration eventually improving the health of the villagers.

  17. Estimation of hydraulic conductivity in an alluvial system using temperatures.

    PubMed

    Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  18. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, James; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Grace W.; Jasperse, James; Seymour, Donald

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.28C in two wells to {approx}88C in the other four wells from June tomore » October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.« less

  20. Surface deformation induced by water pumping for construction of Mass Rapid Transportation in Taipei basin

    NASA Astrophysics Data System (ADS)

    Hu, J. C.; Wu, P. C.; Tung, H.; Tsai, M. C.

    2017-12-01

    In 1968, there were 2,200 wells in the Taipei Basin used for water supply to meet the requirement of high population density. The overuse of ground water lead to the land subsidence rate up to 5 cm/yr. Although the government had already begun to limit groundwater pumping since 1968, the groundwater in the Taipei Basin demonstrated temporary fluctuation induced by pumping water for large deep excavation site or engineering usage. The previous study based on precise leveling suggested that the surface deformation was highly associated with the recovery of water level. In 1989, widespread uplift dominated in Taipei basin due to the recovery of ground water Table. In this study, we use 37 high-resolution X-band COSMO-SkyMed radar images from May 2011 to April 2015 to characterize deformation pattern in the period of construction of Mass Rapid Transportation (MRT). We also use 30 wells and 380 benchmarks of precise leveling in Taipei basin to study the correlation of surface deformation and change of ground water table. The storability is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Moreover, the high water pumping in two major aquifers, Jignme and Wuku Foramtions, before the underground construction for MRT led to inflict surface deformation and no time delay observed for surface deformation during the water pumping. It implies that the poro-elastic effect dominates in major aquifers in Taipei basin.

  1. Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China.

    PubMed

    Zhu, Cansheng; Bai, Guanglu; Liu, Xiaoli; Li, Yue

    2006-09-01

    The objectives of this study were to screen high-fluoride and high-arsenic drinking waters, to evaluate the effectiveness of fluoride-reducing projects and to assess the present condition of endemic fluorosis and arsenism in Shaanxi province in western China. For screening high-fluoride drinking waters, five water samples were collected from each selected village where dental fluorosis patients were detected in 8-12 year-old children. For evaluating the effectiveness of fluoride-reducing projects, four water samples were collected from each project at end-user level. Fluoride concentrations in water samples were measured by fluoride-selective electrode method or spectrophotometry. Dental fluorosis in children aging 8-12 years was examined according to Horowitz's Tooth Surface Index of Fluorosis. Skeletal fluorosis in adults was detected clinically and radiologically according to Chinese Criteria of Clinical Diagnosis of Skeletal Fluorosis. For screening high-arsenic waters, 20 water samples were collected from each village which was selected from areas characterized by the geographic features to induce high-arsenic underground water, i.e., alluvial plains, ore mining or smelting areas, geothermal artesians, and thermal springs. Arsenic concentrations in water samples were determined by spectrophotometry or arsine generation atomic fluorospectrophotometry. Arsenism in adults aging 40-89 years was examined in villages with arsenic concentrations in drinking water above 0.05 mg/l according to Chinese Criteria for Classification of Endemic Arsenism Areas and Clinical Diagnoses of Endemic Arsenism. The results showed that the fluoride level of 7144 water samples was 1.17 +/- 0.93 mg/l. There were 3396 (47.6%) high-fluoride waters (fluoride level was above 1.0 mg/l) distributing in 786 (45.1%) villages, where about 0.8 million (50.0%) people inhabited. Additionally, the 1315 fluoride-reducing projects were studied. The fluoride level of the projects was 2.79 +/- 1.09 and 0.98 +/- 0.47 mg/l before and after building the projects, which remained at relatively lower level (1.03 +/- 0.47 mg/l). But there were still 58.0% of the projects providing drinking waters with fluoride concentrations beyond 1.0mg/l. The rates of dental fluorosis and skeletal fluorosis were 38.2% and 11.8%, respectively. The arsenic level of 1732 water samples was 0.010 +/- 0.082 mg/l. There were 174 (14.9%) high-arsenic waters (arsenic level was above 0.010 mg/l) being detected, distributing in 41 (38.7%) villages. The arsenic level in 53 (4.5%) water samples was beyond 0.025 mg/l. There were 3 villages with arsenic level in drinking water beyond Chinese National Permissible Limits (0.050 mg/l), and the prevalence rate of arsenism reached 37.0% in these three villages, 3.7%, 22.2%, and 11.1% of subjects suffering from mild, moderate, and severe arsenism, respectively. Conclusively, the wide distribution of high-fluoride drinking waters contributes to the prevalence of dental and skeletal fluorosis in Shaanxi province and the quality of fluoride-reducing projects should be further improved. Ore mining and smelting induces high-arsenic drinking waters, resulting in arsenism prevalence in Shang-luo city. Proper measures should be taken to deal with water pollution in the ore mining and smelting areas in order to solve the high-arsenic water problem in Shaanxi province.

  2. Determination of the water quality index ratings of water in the Mpumalanga and North West provinces, South Africa

    NASA Astrophysics Data System (ADS)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2016-04-01

    This study reports on the water quality index (WQI) of wastewater and drinking water in the Mpumalanga and North West provinces of South Africa. The WQI is one of the most effective tools available to water sustainability researchers, because it provides an easily intelligible ranking of water quality on a rating scale from 0 to 100, based on the ascription of different weightings to several different parameters. In this study the WQI index ratings of wastewater and drinking water samples were computed according to the levels of pH, electrical conductivity (EC), biochemical oxygen demand (BOD), E. coli, temperature, turbidity and nutrients (nitrogen and phosphates) found in water samples collected from the two provinces between June and December, 2014. This study isolated three groups of WQ-rated waters, namely: fair (with a WQI range = 32.87-38.54%), medium (with a WQI range = 56.54-69.77%) and good (with a WQI range = 71.69-81.63%). More specifically, 23%, 23% and 54% of the sampled sites registered waters with fair, medium and good WQ ratings respectively. None of the sites sampled during the entire period of the project registered excellent or very good water quality ratings, which would ordinarily indicate that no treatment is required to make it fit for human consumption. Nevertheless, the results obtained by the Eerstehoek and Schoemansville water treatment plants in Mpumalanga and North West provinces, respectively, suggest that substantial improvement in the quality of water samples is possible, since the WQI values for all of the treated samples were higher than those for raw water. Presence of high levels of BOD, low levels of dissolved oxygen (DO), E. coli, nitrates and phosphates especially in raw water samples greatly affected their overall WQ ratings. It is recommended that a point-of-use system should be introduced to treat water intended for domestic purposes in the clean-water-deprived areas.

  3. Piloting water quality testing coupled with a national socioeconomic survey in Yogyakarta province, Indonesia, towards tracking of Sustainable Development Goal 6.

    PubMed

    Cronin, Aidan A; Odagiri, Mitsunori; Arsyad, Bheta; Nuryetty, Mariet Tetty; Amannullah, Gantjang; Santoso, Hari; Darundiyah, Kristin; Nasution, Nur 'Aisyah

    2017-10-01

    There remains a pressing need for systematic water quality monitoring strategies to assess drinking water safety and to track progress towards the Sustainable Development Goals (SDG). This study incorporated water quality testing into an existing national socioeconomic survey in Yogyakarta province, Indonesia; the first such study in Indonesia in terms of SDG tracking. Multivariate regression analysis assessed the association between faecal and nitrate contamination and drinking water sources household drinking water adjusted for wealth, education level, type of water sources and type of sanitation facilities. The survey observed widespread faecal contamination in both sources for drinking water (89.2%, 95%CI: 86.9-91.5%; n=720) and household drinking water (67.1%, 95%CI: 64.1-70.1%; n=917) as measured by Escherichia coli. This was despite widespread improved drinking water source coverage (85.3%) and commonly self-reported boiling practices (82.2%). E.coli concentration levels in household drinking water were associated with wealth, education levels of a household head, and type of water source (i.e. vender water or local sources). Following the proposed SDG definition for Target 6.1 (water) and 6.2 (sanitation), the estimated proportion of households with access to safely managed drinking water and sanitation was 8.5% and 45.5%, respectively in the study areas, indicating substantial difference from improved drinking water (82.2%) and improved sanitation coverage (70.9%) as per the MDGs targets. The greatest contamination and risk factors were found in the poorest households indicating the urgent need for targeted and effective interventions here. There is suggested evidence that sub-surface leaching from on-site sanitation adversely impacts on drinking water sources, which underscores the need for further technical assistance in promoting latrine construction. Urgent action is still needed to strengthen systematic monitoring efforts towards tracking SDG Goal 6. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.

    PubMed

    Qian, Yiying; Dong, Huijuan; Geng, Yong; Zhong, Shaozhuo; Tian, Xu; Yu, Yanhong; Chen, Yihui; Moss, Dana Avery

    2018-03-30

    Rapid industrialization and urbanization pose pressure on water resources in China. Virtual water trade proves to be an increasingly useful tool in water stress alleviation for water-scarce regions, while bringing opportunities and challenges for less developed water-rich regions. In this study, Yunnan, a typical province in southwest China, was selected as the case study area to explore its potential in socio-economic development in the context of water sustainability. Both input-output analysis and structural decomposition analysis on Yunnan's water footprint for the period of 2002-2012 were performed at not only an aggregated level but also a sectoral level. Results show that although the virtual water content of all economic sectors decreased due to technological progress, Yunnan's total water footprint still increased as a result of economic scale expansion. From the sectoral perspective, sectors with large water footprints include construction sector, agriculture sector, food manufacturing & processing sector, and service sector, while metal products sector and food manufacturing & processing sector were the major virtual water exporters, and textile & clothing sector and construction sector were the major importers. Based on local conditions, policy suggestions were proposed, including economic structure and efficiency optimization, technology promotion and appropriate virtual water trade scheme. This study provides valuable insights for regions facing "resource curse" by exploring potential socio-economic progress while ensuring water security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    PubMed

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  6. Practices and attitudinal behavior about drinking water in an urban slum of district Rohtak, Haryana: A community-based study.

    PubMed

    Verma, Ramesh; Singh, Avneet; Khurana, Abhas; Dixit, Pragya; Singh, Ranvir

    2017-01-01

    Globally, approximately, one billion people lack access to safe drinking water and 1.59 million deaths per year are because of contaminated water, primarily in children age <5 years. WHO reported that more than 90% of diarrhea cases can be prevented by enhancing the availability of clean water and improving hygiene measures. The study was conducted in an urban slum of Rohtak district. Investigator interviewed the mothers at their home having children age less than 5 years using study tools in their vernacular language. The study was a community based epidemiological study with cross-sectional design. 400 mothers having children less than 5 years. Most of subjects (59%) were in the age group of 15-25 years followed by in 25-35 years. One third of subjects belonged to upper caste and 29% of subjects from backward class. The study found that 80% of mother store water in earthen pitcher followed by plastic jug (14%). 78% of mothers said that their source of drinking water was tap while 12% had Hand pump. 83.5% of subjects said that they drink water as such ie without filtering, boiling or chlorination. The study concluded that the prevalence of diarrhea is more among children < 5 years this is because of poor knowledge, poor attitude and inadequate storage water practices of water. The study recommends creating awareness how to diminish contamination of water at household level, creating community groups for women to learn about treatment of water at household level.

  7. Dissolved Concentrations, Sources, and Risk Evaluation of Selected Metals in Surface Water from Mangla Lake, Pakistan

    PubMed Central

    Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.

    2014-01-01

    The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690

  8. A full value-chain Water Footprint Assessment to help informed decision in corporate sustainability strategies

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping; Chico Zamanilo, Daniel; Bai, Xue; Ren, Xiajing; Chen, Rong; Qin, Jun

    2017-04-01

    This study evaluated the water footprint (WF) of five production facilities along Muyuan Foodstuff Co. Ltd's (Muyuan) value chain, and assessed the sustainability and impact of their water footprints at the river catchment level. Muyuan, a large-scale, integrated pig breeder and producer in China, is keen to fulfil its corporate social responsibilities and committed to ensuring food quality and security, promoting environmental protection, and participating in catchment water resources management. Formulating corporate water related sustainability strategies, however, has been challenging. This study carried out a comprehensive Water Footprint Assessment (WFA) for Muyuan's full value chain to assist in formulating such strategies and setting up action plans with water footprint reduction targets. The study showed that that the water footprint of the supply chain, resulting from crops and crop products used in Muyuan's feed production facility is a major contributor to Muyuan's facilities' water footprint. From the perspective of the direct WF at the facilities, addressing the impact on water quality from effluents (i.e. the grey water footprint) at hog farms is a critical component of any water sustainability strategy. From the blue WF perspective, there are opportunities to reduce blue water consumption at hog farms through improved technology and implementation of best practices. The water footprint sustainability assessment in this study indicated that Muyuan operates in a catchment which is already under water stress and is a hotspot in terms of both blue water scarcity and water pollution level. The study helped identify potential water-related risks and opportunities for improving Muyuan's water use efficiency as well as ways Muyuan could contribute to sustainable water resources management in the catchment within which it operates. This is an innovative application of WFA in the livestock sector and supports the development of Muyuan's corporate water sustainability strategy. The results of the study were also used in the development of the national water footprint standard for organisations.

  9. In utero and early childhood exposure to arsenic decreases lung function in children

    PubMed Central

    Recio-Vega, Rogelio; Gonzalez-Cortes, Tania; Olivas-Calderon, Edgar; Lantz, R. Clark; Gandolfi, A. Jay; Gonzalez-De Alba, Cesar

    2016-01-01

    Background The lung is a target organ for adverse health outcomes following exposure to arsenic. Several studies have reported a high prevalence of respiratory symptoms and diseases in subjects highly exposed to arsenic through drinking water, however, most studies to date has been performed in exposed adults, with little information on respiratory effects in children. The objective of the study was to evaluate the association between urinary levels of arsenic and its metabolites with lung function in children exposed in utero and in early childhood to high arsenic levels through drinking water. Methods A total of 358 healthy children were included in our study. Individual exposure was assessed based on urinary concentration of inorganic arsenic. Lung function was assessed by spirometry. Results Participants were exposed since pregnancy until early childhood to an average water As concentration of 152.13 μg/L. The mean urinary arsenic level registered in the studied subjects was 141.2 μg/L and only 16.7% had a urinary concentration below the national concern level. Forced vital capacity was significantly decreased in the studied population and it was negatively associated with the percent of inorganic arsenic. More than 57% of the subjects had a restrictive spirometric pattern. The urinary As level was higher in those children with restrictive lung patterns when compared with the levels registered in subjects with normal spirometric patterns. Conclusion Exposure to arsenic through drinking water during in utero and early life was associated with a decrease in FVC and with a restrictive spirometric pattern in the children evaluated. PMID:25131850

  10. In utero and early childhood exposure to arsenic decreases lung function in children.

    PubMed

    Recio-Vega, Rogelio; Gonzalez-Cortes, Tania; Olivas-Calderon, Edgar; Lantz, R Clark; Gandolfi, A Jay; Gonzalez-De Alba, Cesar

    2015-04-01

    The lung is a target organ for adverse health outcomes following exposure to As. Several studies have reported a high prevalence of respiratory symptoms and diseases in subjects highly exposed to As through drinking water; however, most studies to date has been performed in exposed adults, with little information on respiratory effects in children. The objective of the study was to evaluate the association between urinary levels of As and its metabolites with lung function in children exposed in utero and in early childhood to high As levels through drinking water. A total of 358 healthy children were included in our study. Individual exposure was assessed based on urinary concentration of inorganic As. Lung function was assessed by spirometry. Participants were exposed since pregnancy until early childhood to an average water As concentration of 152.13 µg l⁻¹. The mean urinary As level registered in the studied subjects was 141.2 µg l⁻¹ and only 16.7% had a urinary concentration below the national concern level. Forced vital capacity was significantly decreased in the studied population and it was negatively associated with the percentage of inorganic As. More than 57% of the subjects had a restrictive spirometric pattern. The urinary As level was higher in those children with restrictive lung patterns when compared with the levels registered in subjects with normal spirometric patterns. Exposure to As through drinking water during in utero and early life was associated with a decrease in forced vital capacity and with a restrictive spirometric pattern in the children evaluated. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  12. [The adaptation reactions in hormonal systems to the internal use of mineral waters].

    PubMed

    Polushina, N D

    1991-01-01

    A single intake of mineral water Essentuki 17 by male Wistar rats (n-130, b. w. 180-250 g) leads to stress reactions. It is evident from elevated levels of ACTH, hydrocortisone, leuenkephaline, glucagon and gastrin. Course intake of the water brings about a rise in most of the hormones levels studied. However, single doses of Essentuki 17 inhibit production of hormones in the adrenals, hypophysis, hypothalamus, the system of endogenic opiates. The enhancement of relevant levels are noted in the gastroenteropancreatic system.

  13. Estimated 2012 groundwater potentiometric surface and drawdown from predevelopment to 2012 in the Santa Fe Group aquifer system in the Albuquerque metropolitan area, central New Mexico

    USGS Publications Warehouse

    Powell, Rachel I.; McKean, Sarah E.

    2014-01-01

    Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were collected in small-diameter observation wells screened over short intervals near the middle of the production zone and were considered to best represent the potentiometric head in the production zone. The water-level measurements were collected by various local and Federal agencies. The water year 2012 potentiometric surface map was created in a geographic information system, and the change in water-level altitude from predevelopment to water year 2012 was calculated. The 2012 potentiometric surface indicates that the general direction of groundwater flow is from the Rio Grande towards clusters of supply wells in the east, north, and west. Water-level changes from predevelopment to 2012 were variable across the Albuquerque metropolitan area. Estimated drawdown from 2008 was spatially variable across the Albuquerque metropolitan area. Hydrographs from piezometers on the east side of the river indicate an increase in the annual highest water-level measurement from 2008 to 2012. Hydrographs from piezometers in the northwest part of the study area indicate either steady decline of the water-level altitude over the period of record or recently variable trends in which water-level altitudes increased for a number of years but have declined since water year 2012.

  14. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].

    PubMed

    Deng, Ying; Wei, Jianrong; E, Xueli; Wang, Wuyi; et al

    2008-03-01

    To find the distribution level and geographical variations of disinfection by-products (DBPs) in drinking water. The samples were selected from water utilities in six cities (Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen) of China. The water source and technology of water treatment were investigated and the indices including trihalomethanes (THMs) and haloacetic acids (HAAs) in main DBPs and natural organic materials (NOM), pH, chlorine dosage and temperature were determined. In six cities the highest concentrations of TTHMs and THAAs in the distribution system were 92.8 microg/L and 40.0 microg/L, respectively. The concentration of every compound of THMs and HAAs was under the limit of standards for drinking water quality, but the concentrations of 'TTHMs at some samples were higher than the maximum acceptable level (MAC) defined by standards for drinking water quality. The geographical variations of THMs and HAAs in six cities were Zhengzhou > Tianjin > Daqing > Beijing > Shenzhen > Changsha and Changsha > Tianjin > Shenzhen > Daqing > Zhengzhou > Beijing, respectively. The levels of THMs of drinking water at Tianjin and Zhengzhou were higher than the others and the levels of HAAs of drinking water at Changsha, Tianjin and Shenzhen were higher than the others. The seasonal variations of both groups of THMs and HAAs were high in summer and low in winter. The pollution level of DBPs in drinking water from Chinese six cities were low. The concentration of DBPs related to seasonal. THMs distributed mainly to the North and HAAs distributed mainly to the South.

  15. [Heavy metals distribution characteristics and risk assessment of water below an electroplating factory].

    PubMed

    Hang, Xiao-Shuai; Wang, Huo-Yan; Zhou, Jian-Min

    2008-10-01

    Surface water and shallow groundwater within the flow of an electroplating factory was analyzed in order to study the resulting impact. The analysis method of ICP-AES was used to analyze content of zinc, manganese, chromium, copper and nickel in surface water and groundwater samples. The results indicate acidic pollutants of zinc, manganese, chromium, copper and nickel were discharged from the factory with concentrations of 1.34, 3.77, 28.1, 6.40 and 9.37 mg x L(-1), respectively; and pH was 2.32. They all exceeded permissible levels according to Integrated Wastewater Discharge Standard except zinc. Factory discharge is responsible for the longitudinal distribution characteristics of heavy metals in the stream water downstream from the factory. Heavy metals variations in the well water do not suggest they were affected by heavy metals in the stream, indicating that the migration rates of heavy metals in soils were relatively low. Risk assessment shows surface water quality significantly deteriorated. Nickel and manganese in the stream water exceeded the standard levels seriously, and chromium and copper in some samples were also above Grade III standard levels according to Environmental Quality Standard for Surface Water. Moreover, all studied heavy metals in 14 groundwater samples measured within drinking water standard, except manganese in 4 groundwater samples, which were Grade IV according to Quality Standard for Ground water.

  16. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Socio-hydrological implications of water management in the dry zone of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Upeksha Gamage, Isurun; Arachchige Hemachandra Jayasena, Hetti

    2018-06-01

    Water management plays a vital role in the agricultural economy and living conditions of people in Sri Lanka. Though government and non-government organizations have been readily contributing to water management, it is still inefficient, especially in terms of water allocation, consumption and conservation. To identify factors which could be used to implement integrated water resources management (IWRM), a socio-hydrological study was performed in five areas within the dry zone in Sri Lanka. The study covers a comprehensive analysis of how the household income, demography and education level correlating to water usage, purification and disposal methods. The average household income ranges from LKR 2500 to 15 000 per month. The results show that the average daily usage for drinking, cooking, washing, toiletries and bathing are 3, 5, 10, 7, and 85 L per person, respectively. Majority of the families use dug wells and pipe-borne water as the primary source. Correlation coefficients suggest that higher household income or level of education leads to increased water consumption (R = 0.91, 0.94). There is no linear relationship between the level of education with the good practices of water purification and disposal. Though these results indicate preliminary assessments based on the dry zone practices, efficient water management could be enhanced by strong socio-hydrological implications through educating people on conservation, usage, disposal practices and health concerns.

  18. Relationships Between Sand and Water Quality at Recreational Beaches

    PubMed Central

    Phillips, Matthew C.; Solo-Gabriele, Helena M.; Piggot, Alan M.; Klaus, James S.; Zhang, Yifan

    2011-01-01

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p<0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (rs= 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (rs=0.64) as well as the average water enterococci levels for the month after sand samplings (rs=0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida’s beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. PMID:22071324

  19. Relationships between sand and water quality at recreational beaches.

    PubMed

    Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan

    2011-12-15

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p < 0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)

    NASA Astrophysics Data System (ADS)

    Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.

    2018-04-01

    The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.

  1. Role of rainwater induced subsurface flow in water-level dynamics and thermoerosion of shallow thermokarst ponds on the Northeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pan, X.; Yu, Q.; You, Y.

    2014-12-01

    Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai-Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.

  2. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    USGS Publications Warehouse

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals detected most frequently at concentrations above regulatory levels in both areas. Contaminants in the shallow sand and gravel aquifers and carbonate aquifers appear to have moved with ground water discharging to local lakes, streams, and wetlands. Ground-water flow and possibly contaminant movement is concentrated in the weathered surface zones and in deeper fractures of the carbonate aquifers underlying both areas.

  3. Drinking water studies: a review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia).

    PubMed

    Ab Razak, Nurul Hafiza; Praveena, Sarva Mangala; Aris, Ahmad Zaharin; Hashim, Zailina

    2015-12-01

    Malaysia has abundant sources of drinking water from river and groundwater. However, rapid developments have deteriorated quality of drinking water sources in Malaysia. Heavy metal studies in terms of drinking water, applications of health risk assessment and bio-monitoring in Malaysia were reviewed from 2003 to 2013. Studies on heavy metal in drinking water showed the levels are under the permissible limits as suggested by World Health Organization and Malaysian Ministry of Health. Future studies on the applications of health risk assessment are crucial in order to understand the risk of heavy metal exposure through drinking water to Malaysian population. Among the biomarkers that have been reviewed, toenail is the most useful tool to evaluate body burden of heavy metal. Toenails are easy to collect, store, transport and analysed. This review will give a clear guidance for future studies of Malaysian drinking water. In this way, it will help risk managers to minimize the exposure at optimum level as well as the government to formulate policies in safe guarding the population. Copyright © 2015 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  4. Atrazine in public water supplies and risk of ovarian cancer among postmenopausal women in the Iowa Women’s Health Study

    PubMed Central

    Inoue-Choi, Maki; Weyer, Peter J; Jones, Rena R; Booth, Benjamin J; Cantor, Kenneth P; Robien, Kim; Ward, Mary H

    2016-01-01

    Background Few studies have evaluated environmental chemical exposures in relation to ovarian cancer. We previously found an increased risk of ovarian cancer among postmenopausal women in Iowa associated with higher nitrate levels in public water supplies (PWS). However, elevated nitrate levels may reflect the presence of other agricultural chemicals, such as atrazine, one of the most commonly detected pesticides in Iowa PWS. Methods We evaluated the association between atrazine in drinking water and incident ovarian cancer (N=145, 1986–2010) among 13 041 postmenopausal women in the Iowa Women’s Health Study who used their PWS for ≥11 years as reported in 1989. Average levels of atrazine (1986–1987), nitrate-nitrogen (NO3-N, 1955–1988) and estimated levels of total trihalomethanes (TTHM, 1955–1988) from PWS monitoring data were linked to the participants’ cities of residence. We computed HRs and 95% CIs by categories of the average atrazine level (not detected, ≤ or >0.37 parts per billion=median) using Cox proportional hazards regression adjusting for ovarian cancer risk factors. Results Atrazine was detected in water samples from 69 cities where 4155 women (32%) lived and levels were moderately correlated with NO3-N (ρ=0.35) and TTHM (ρ=0.24). Atrazine levels were not associated with ovarian cancer risk with or without adjusting for NO3-N and TTHM levels ( p-trend=0.50 and 0.81, respectively). Further, there was no evidence for effect modification of the atrazine association by NO3-N or TTHM levels. Conclusions In our study with low atrazine detection rates, we found no association between atrazine in PWS and postmenopausal ovarian cancer risk. PMID:27371663

  5. Assessment of yeast as a dietary additive on haematology and water quality of common carp in a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Goran, Siraj Muhammed Abdulla; Omar, Samad Sofy; Anwer, Ayub Youns

    2017-09-01

    Feeding experiment was accomplished at the Aquaculture unit (Close system), Grdarasha station, Agriculture College, University of Salahaddin, Erbil, Kurdistan Region, to investigate different levels of Aquagrow E (AGEY) brewer's yeast cell Saccharomyces cerevisiae on the haematological and water quality of common carp fingerlings Cyprinus carpio. The basal diet was formulated to contain 34% protein and 10% lipid and the dietary treatments were supplemented with 0.5%, 1% and 1.5% of AGEY diet. A total of 180 Common carp (10.30 ± 0.27 g) fed on experimental diets for 10 weeks. Water quality assessment for well water and pond water for rearing Cyprinus carpio in cage system conducted weekly, while some parameters including pH, EC, water temperature and DO were monitored daily during the entire periods of study. Values of total hardness, alkalinity, ammonia and nitrate for studied water samples were within normal ranges for rearing Cyprinus carpio. Mean concentration of GPT, GOT and Glucose were 104 to 170 U/L, 1371 to 3308 U/L and 34 to 63mg/dl respectively, moreover, highest levels were observed in treatments with higher concentrations of yeast in its food except for blood sugar. Slight variation in lipase enzyme were found between control and treatment groups, while levels of amylase enzyme were increased toward cages with higher levels of yeast until T1 and then decreased toward T3. Total protein levels were increased to toward higher levels of yeast in food of Cyprinus carpio fish. Haematological results showed highest levels of WBC and platelets in treatments cages than control group. Levels of RBCs and hemoglobin were highest in treatment group 1 with 0.5%of yeast than treatments higher yeast concentrations. Significant correlation was found in haematological parameters between control and treatments.

  6. Some difficulties and inconsistencies when using habit strength and reasoned action variables in models of metered household water conservation.

    PubMed

    Jorgensen, Bradley S; Martin, John F; Pearce, Meryl; Willis, Eileen

    2013-01-30

    Research employing household water consumption data has sought to test models of water demand and conservation using variables from attitude theory. A significant, albeit unrecognised, challenge has been that attitude models describe individual-level motivations while consumption data is recorded at the household level thereby creating inconsistency between units of theory and measurement. This study employs structural equation modelling and moderated regression techniques to addresses the level of analysis problem, and tests hypotheses by isolating effects on water conservation in single-person households. Furthermore, the results question the explanatory utility of habit strength, perceived behavioural control, and intentions for understanding metered water conservation in single-person households. For example, evidence that intentions predict water conservation or that they interact with habit strength in single-person households was contrary to theoretical expectations. On the other hand, habit strength, self-reports of past water conservation, and perceived behavioural control were good predictors of intentions to conserve water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. MTBE; to what extent will past releases contaminate community water supply wells?(Brief Article)

    USGS Publications Warehouse

    Johnson, Richard; Pankow, James; Bender, David A.; Price, Curtis; Zogorski, John S.

    2000-01-01

    The increasing frequency of detection of the widely used gasoline additive methyl tertbutyl ether (MTBE) in both ground- and surface waters is receiving much attention from the media, environmental scientists, state environmental agencies, and federal agencies. At the national level, the September 15,1999, Report of the Blue Ribbon Panel on Oxygenates in Gasoline (i) )tates that between 5 and 10% of community drinking water supplies in high MTBE use areas show at least detectable concentrations of MTBE, and about 1% of those systems are characterized by levels of this compound that are above 20 pg/L. In Maine, a desire to determine the extent of MTBE contamination led to a 1998 study (2) that revealed that this compound is found at levels above 0.1 pg/L in 16% of 951 randomly selected household wells and in 16% of the 793 community water systems tested in that state (37 wells were not tested). The study also suggested that between 1400 and 5200 household wells may have levels above 35 pg/L, although no community water supplies were found to be above that concentration. For comparison, Maryland, New Hampshire, New York, and California have set MTBE remediation "action levels" at or below 20 pg/L, and EPA has set its advisory level for taste and odor at 20-40 pg/L (3).

  8. Temporal and spatial variations in the relationship between urbanization and water quality.

    PubMed

    Ren, Lijun; Cui, Erqian; Sun, Haoyu

    2014-12-01

    With the development of economy, most of Chinese cities are at the stage of rapid urbanization in recent years, which has caused many environmental problems, especially the serious deterioration of water quality. Therefore, the research of the relationship between urbanization and water quality has important theoretical and practical significance, and it is also the main restriction factor in the urbanization advancement. In this work, we investigated the impact of urbanization on the water quality of the nearby river. We established a comprehensive environmental assessment framework by combining urbanization and water quality, and one model was designed to examine the impact of urbanization on the water quality in Jinan from 2001 to 2010 with factor component analysis. The assessment of urbanization level was accomplished using a comprehensive index system, which was based on four aspects: demographic urbanization, economic urbanization, land urbanization, and social urbanization. In addition, synthetic pollution index method was utilized to assess the water pollution of Xiaoqing River in the study area. Through the analysis of regression curves, we conclude that (1) when the urbanization level is below 25 %, the relationship is low and irregular; (2) if the urbanization level varies between 25 and 40 %, there will be an irreversible degradation of stream water quality; (3) there is a positive correlation between urbanization and pollution levels of urban river after the adjustment period; and (4) land and demographic aspects have the highest independent contribution. This study is a useful reference for policymakers in terms of economic and environmental management.

  9. The effect of solvent polarity on the accumulation of leachables from pharmaceutical product containers.

    PubMed

    Jenke, Dennis; Odufu, Alex; Poss, Mitchell

    2006-02-01

    Material/water equilibrium interaction constants (E(b)) were determined for 12 organic model solutes and a plastic material used in pharmaceutical product containers (non-PVC polyolefin). An excellent correlation was obtained between the measured interaction constants and the organic solute's octanol/water partition coefficient. The effect of solvent polarity on E(b) was assessed by examining the interaction between the plastic and selected model solutes in binary ethanol/water mixtures. In general, logE(b) could be linearily related to the polarity of the ethanol/water mixture. This information, coupled with the interaction model, was used to estimate the levels to which container leachables could accumulate in contacted solutions. Such estimates were made for six known leachables of the polyolefin material and compared to the leachable's measured accumulation levels in binary ethanol/water systems. In general, the accumulation level of the leachables increased with increasing solution polarity. For most of the leachables, the measured accumulation level was less than the calculated levels, suggesting that equilibrium was not achieved in the leaching portion of this study. This lack of equilibrium is attributable to the layered structure of the material studied, as such layering retards the migration of the leachables that are derived from the material's non-solution contact layers.

  10. Ground-water levels, water quality, and potential effects of toxic-substance spills or cessation of quarry dewatering near a municipal ground-water supply, southeastern Franklin County, Ohio

    USGS Publications Warehouse

    Sedam, A.C.; Eberts, S.M.; Bair, E.S.

    1989-01-01

    A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to chemical analysis of water and soil materials reported in earlier studies, no new problem areas were discovered as a result of either the baseline or periodic samplings. Model simulations suggest that, under March 1986 conditions, a toxic-substance spill along the major highways in the northern two-thirds of the study area eventually could discharge into one of the two quarries being dewatered or into the Scioto River. A toxic-substance spill in the southern one-third of the study area ultimately may discharge into the Scioto River, Big Walnut Creek, or possibly into the municipal ground-water supply. Model simulations also indicate that concentrated landfill leachate probably would not reach the municipal ground-water supply under current or well-field pumping conditions if dewatering ceased at either or both of the quarries.

  11. Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2010-01-01

    Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  12. Water Management Strategy in Assessing the Water Scarcity in Northern Western Region of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Mabrouk, Badr; Arafa, Salah; Gemajl, Khaled

    2015-04-01

    Sustainable development in the Nile Delta of Egypt is retarded by serious environmental problems, where land-use and land-cover of the region are subjected to continuous changes; including shoreline changes either by erosion or accretion, subsidence of the delta, as well as by sea level rise due to climate change. The current research attempts to; (1) study the vulnerability of the northern western region of the Nile Delta coastal zone to climate change/sea level rise while setting basic challenges, review adaptation strategies based on adaptation policy framework, and highlight recommended programs for preparedness to climate change, (2) study the scarcity of water resources in the area of study with review of the socioeconomic impacts and the critical need of establishing desalination plants with new standards assessing the environmental situation and population clusters, and (3) monitor of the brine water extracted from the desalination plants and injected to subsurface strata. This monitoring process is divided into 3 main directions: 1) studying the chemical characteristics of water extracted from the water desalinations plants qualitatively and quantitatively. 2) mapping the subsurface of which that brine water will be injected to it and the flow directions and effects using resistivity data, and 3) using GIS and suitable numerical models in order to study the effect, volume, flow of the brine water and its long term environmental impacts on the area. The results indicate that the area is particularly vulnerable to the impact of SLR, salt water intrusion, the deterioration of coastal tourism and the impact of extreme dust storms. This in turn will directly affect the agricultural productivity and human settlements in coastal zones. The paper presents different scenarios for water management and recommends the most suitable scenarios in order to establish a core for water management strategy in the region according to existing socio-economic and environmental situations. Key words: Nile Delta, climate change, socioeconomic, sea level rise, groundwater monitoring, GIS

  13. Water fluoridation for the prevention of dental caries.

    PubMed

    Iheozor-Ejiofor, Zipporah; Worthington, Helen V; Walsh, Tanya; O'Malley, Lucy; Clarkson, Jan E; Macey, Richard; Alam, Rahul; Tugwell, Peter; Welch, Vivian; Glenny, Anne-Marie

    2015-06-18

    Dental caries is a major public health problem in most industrialised countries, affecting 60% to 90% of school children. Community water fluoridation was initiated in the USA in 1945 and is currently practised in about 25 countries around the world; health authorities consider it to be a key strategy for preventing dental caries. Given the continued interest in this topic from health professionals, policy makers and the public, it is important to update and maintain a systematic review that reflects contemporary evidence. To evaluate the effects of water fluoridation (artificial or natural) on the prevention of dental caries.To evaluate the effects of water fluoridation (artificial or natural) on dental fluorosis. We searched the following electronic databases: The Cochrane Oral Health Group's Trials Register (to 19 February 2015); The Cochrane Central Register of Controlled Trials (CENTRAL; Issue 1, 2015); MEDLINE via OVID (1946 to 19 February 2015); EMBASE via OVID (1980 to 19 February 2015); Proquest (to 19 February 2015); Web of Science Conference Proceedings (1990 to 19 February 2015); ZETOC Conference Proceedings (1993 to 19 February 2015). We searched the US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization's WHO International Clinical Trials Registry Platform for ongoing trials. There were no restrictions on language of publication or publication status in the searches of the electronic databases. For caries data, we included only prospective studies with a concurrent control that compared at least two populations - one receiving fluoridated water and the other non-fluoridated water - with outcome(s) evaluated at at least two points in time. For the assessment of fluorosis, we included any type of study design, with concurrent control, that compared populations exposed to different water fluoride concentrations. We included populations of all ages that received fluoridated water (naturally or artificially fluoridated) or non-fluoridated water. We used an adaptation of the Cochrane 'Risk of bias' tool to assess risk of bias in the included studies.We included the following caries indices in the analyses: decayed, missing and filled teeth (dmft (deciduous dentition) and DMFT (permanent dentition)), and proportion caries free in both dentitions. For dmft and DMFT analyses we calculated the difference in mean change scores between the fluoridated and control groups. For the proportion caries free we calculated the difference in the proportion caries free between the fluoridated and control groups.For fluorosis data we calculated the log odds and presented them as probabilities for interpretation. A total of 155 studies met the inclusion criteria; 107 studies provided sufficient data for quantitative synthesis.The results from the caries severity data indicate that the initiation of water fluoridation results in reductions in dmft of 1.81 (95% CI 1.31 to 2.31; 9 studies at high risk of bias, 44,268 participants) and in DMFT of 1.16 (95% CI 0.72 to 1.61; 10 studies at high risk of bias, 78,764 participants). This translates to a 35% reduction in dmft and a 26% reduction in DMFT compared to the median control group mean values. There were also increases in the percentage of caries free children of 15% (95% CI 11% to 19%; 10 studies, 39,966 participants) in deciduous dentition and 14% (95% CI 5% to 23%; 8 studies, 53,538 participants) in permanent dentition. The majority of studies (71%) were conducted prior to 1975 and the widespread introduction of the use of fluoride toothpaste.There is insufficient information to determine whether initiation of a water fluoridation programme results in a change in disparities in caries across socioeconomic status (SES) levels.There is insufficient information to determine the effect of stopping water fluoridation programmes on caries levels.No studies that aimed to determine the effectiveness of water fluoridation for preventing caries in adults met the review's inclusion criteria.With regard to dental fluorosis, we estimated that for a fluoride level of 0.7 ppm the percentage of participants with fluorosis of aesthetic concern was approximately 12% (95% CI 8% to 17%; 40 studies, 59,630 participants). This increases to 40% (95% CI 35% to 44%) when considering fluorosis of any level (detected under highly controlled, clinical conditions; 90 studies, 180,530 participants). Over 97% of the studies were at high risk of bias and there was substantial between-study variation. There is very little contemporary evidence, meeting the review's inclusion criteria, that has evaluated the effectiveness of water fluoridation for the prevention of caries.The available data come predominantly from studies conducted prior to 1975, and indicate that water fluoridation is effective at reducing caries levels in both deciduous and permanent dentition in children. Our confidence in the size of the effect estimates is limited by the observational nature of the study designs, the high risk of bias within the studies and, importantly, the applicability of the evidence to current lifestyles. The decision to implement a water fluoridation programme relies upon an understanding of the population's oral health behaviour (e.g. use of fluoride toothpaste), the availability and uptake of other caries prevention strategies, their diet and consumption of tap water and the movement/migration of the population. There is insufficient evidence to determine whether water fluoridation results in a change in disparities in caries levels across SES. We did not identify any evidence, meeting the review's inclusion criteria, to determine the effectiveness of water fluoridation for preventing caries in adults.There is insufficient information to determine the effect on caries levels of stopping water fluoridation programmes.There is a significant association between dental fluorosis (of aesthetic concern or all levels of dental fluorosis) and fluoride level. The evidence is limited due to high risk of bias within the studies and substantial between-study variation.

  14. SOLVING A COPPER CORROSION PROBLEM WITH ORTHOPHOSPHATE: INDIAN HILL, OHIO CASE STUDY

    EPA Science Inventory

    Many small and medium-sized water systems have troublt complying with the copper Action Level (of the Lead and Copper Rule), sometimes concurrently with meeting the lead Action level. The problem is especially troubling and widespread with ground water supplies having high alkali...

  15. Preliminary Assessment of Water Levels in Bedrock Wells in New Hampshire, 1984 to 2007

    USGS Publications Warehouse

    Ayotte, Joseph D.; Kernen, Brandon M.; Wunsch, David R.; Argue, Denise M.; Bennett, Derek S.; Mack, Thomas J.

    2010-01-01

    These data provided an opportunity to examine groundwater-level conditions across the state; however, the bedrock wells used in this study would not be suitable for rigorous evaluation of trends in SWL across the state because the locations and characteristics of the wells vary with time. Further, these wells cannot substitute for a carefully designed network of wells selected for the sole purpose of monitoring trends in water levels over time. The SWL data may be useful in the design of a monitoring network, and continued collection of water-level data from the bedrock wells could be used to augment data from monitoring wells.

  16. Duration and Frequency Analysis of Lowland Flooding in Western Murfreesboro, Rutherford County, Tennessee, 1998-2000

    USGS Publications Warehouse

    Law, George S.

    2002-01-01

    Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.

  17. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.

    PubMed

    Wang, Ranran; Zimmerman, Julie

    2016-05-17

    As the fifth global water footprint assessment, this study enhanced previous estimates of national blue water consumption (including fresh surface and groundwater) and main economic activities with (1) improved spatial and sectoral resolution and (2) quantified the impacts of virtual water trade on water use and water stress at both the national and basin level. In 2007, 1194 Gm(3) of blue water was consumed globally for human purposes. The consuming (producing) of primary and manufactured goods and services from the sectors of "Primary Crops and Livestock", "Primary Energy and Minerals", "Processed Food and Beverages", "Non-food Manufactured Products", "Electricity", "Commercial and Public Services", and "Households" accounted for 33% (91%), ∼ 0% (1%), 37% (<1%), 13% (1%), 1% (2%), 15% (3%), and 2% (2%) of the world's total blue water consumption, respectively. The considerable differences in sectoral water consumption accounted for by the two perspectives (consumption- vs production-based) highlight the significance of the water consumed indirectly, upstream in the supply chain (i.e., > 70% of total blue water consumption) while offering additional insights into the water implications of critical interconnected economic activities, such as the water-energy nexus. With 145 Gm(3) (12%) of the blue water consumption embedded in the goods and services traded internationally, 89 countries analyzed were net blue water importers at the national level. On the basin level, the impacts of virtual water trade on water stress were statistically significant for basins across the world and within 104 countries; virtual water trade mitigated water stress for the basins within 85 of the 104 countries, including all of those where there are moderate and greater water stress countrywide (except Italy).

  18. Assessment of age-dependent uranium intake due to drinking water in Hyderabad, India.

    PubMed

    Balbudhe, A Y; Srivastava, S K; Vishwaprasad, K; Srivastava, G K; Tripathi, R M; Puranik, V D

    2012-03-01

    A study has been done to assess the uranium intake through drinking water. The area of study is twin cities of Hyderabad and Secunderabad, India. Uranium concentration in water samples was analysed by laser-induced fluorimetry. The associated age-dependent uranium intake was estimated by taking the prescribed water intake values. The concentration of uranium varies from below detectable level (minimum detectable level = 0.20 ± 0.02 μg l(-1)) to 2.50 ± 0.18 μg l(-1), with the geometric mean (GM) of 0.67 μg l(-1) in tap water, whereas in ground water, the range is 0.60 ± 0.05 to 82 ± 7.1 µg l(-1) with GM of 10.07 µg l(-1). The daily intake of uranium by drinking water pathway through tap water for various age groups is found to vary from 0.14 to 9.50 µg d(-1) with mean of 1.55 µg d(-1).

  19. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  20. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  1. Lack of effect of drinking water barium on cardiovascular risk factors.

    PubMed Central

    Wones, R G; Stadler, B L; Frohman, L A

    1990-01-01

    Higher cardiovascular mortality has been associated in a single epidemiological study with higher levels of barium in drinking water. The purpose of this study was to determine whether drinking water barium at levels found in some U.S. communities alters the known risk factors for cardiovascular disease. Eleven healthy men completed a 10-week dose-response protocol in which diet was controlled (600 mg cholesterol; 40% fat, 40% carbohydrate, 20% protein; sodium and potassium controlled at the subject's pre-protocol estimated intake). Other aspects of the subjects' lifestyles known to affect cardiac risk factors were controlled, and the barium content (as barium chloride) of the drinking water (1.5 L/day) was varied from 0 (first 2 weeks), to 5 ppm (next 4 weeks), to 10 ppm (last 4 weeks). Multiple blood and urine samples, morning and evening blood pressure measurements, and 48-hr electrocardiographic monitoring were performed at each dose of barium. There were no changes in morning or evening systolic or diastolic blood pressures, plasma cholesterol or lipoprotein or apolipoprotein levels, serum potassium or glucose levels, or urine catecholamine levels. There were no arrhythmias related to barium exposure detected on continuous electrocardiographic monitoring. A trend was seen toward increased total serum calcium levels with exposure to barium, which was of borderline statistical significance and of doubtful clinical significance. In summary, drinking water barium at levels of 5 and 10 ppm did not appear to affect any of the known modifiable cardiovascular risk factors. PMID:2384067

  2. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample from one well at a concentration of 1.2 micrograms per liter (?g/L). Acetone was detected in a sample from another well at a concentration of 10 ?g/L. Acetone also was detected in a duplicate sample from the same well at an estimated concentration of 7.2 ?g/L, which is less than the reporting limit for acetone. The only contaminant of concern detected was tetrachloroethylene. Tetrachloroethylene was detected in only one sample, and this detection was at an estimated concentration below the reporting limit. None of the VOC concentrations exceeded drinking water maximum contaminant levels for public water systems.

  3. Design and rationale of a matched cohort study to assess the effectiveness of a combined household-level piped water and sanitation intervention in rural Odisha, India.

    PubMed

    Reese, Heather; Routray, Parimita; Torondel, Belen; Sclar, Gloria; Delea, Maryann G; Sinharoy, Sheela S; Zambrano, Laura; Caruso, Bethany; Mishra, Samir R; Chang, Howard H; Clasen, Thomas

    2017-03-31

    Government efforts to address massive shortfalls in rural water and sanitation in India have centred on construction of community water sources and toilets for selected households. However, deficiencies with water quality and quantity at the household level and community coverage and actual use of toilets have led Gram Vikas, a local non-governmental organization in Odisha, India, to develop an approach that provides household-level piped water connections contingent on full community-level toilet coverage. This matched cohort study was designed to assess the effectiveness of a combined piped water and sanitation intervention. Households with children <5 years in 45 randomly selected intervention villages and 45 matched control villages will be followed over 17 months. The primary outcome is prevalence of diarrhoeal diseases; secondary health outcomes include soil-transmitted helminth infection, nutritional status, seroconversion to enteric pathogens, urogenital infections and environmental enteric dysfunction. In addition, intervention effects on sanitation and water coverage, access and use, environmental fecal contamination, women's empowerment, as well as collective efficacy, and intervention cost and cost-effectiveness will be assessed. The study protocol has been reviewed and approved by the ethics boards of the London School of Hygiene and Tropical Medicine, UK and KIIT University, Bhubaneswar, India. Findings will be disseminated via peer-reviewed literature and presentation to stakeholders, government officials, implementers and researchers. NCT02441699. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina.

    PubMed

    Pfeffer, Courtney S; Hite, M Frances; Oliver, James D

    2003-06-01

    While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).

  5. [Field study on the change of urinary iodine levels among family members with iodine content of 5 - 150 microg/L in drinking water before and after non-iodized salt intervention].

    PubMed

    Li, Su-mei; Zhang, Gen-hong; Sun, Fan; Wang, Pei-hua; Zhang, Zhi-zhong; Li, Xiu-wei; Li, Shu-hua

    2008-08-01

    To compare the changes of urinary iodine levels among the family members with iodine content of 5 - 150 microg/L in drinking water, before and after non-iodized salt intervention through a field trail study. Family members who routinely drank water with iodine content 5 - 150 microg/L were chosen to substitute non-iodized salt for their current iodized salt for 2 months, and urine samples of the family members were collected for determination of iodine change before and after intervention was carried out. Median urinary iodine of school children, women with productive age and male adults exceeding 370 microg/L before intervention and the frequency distribution of urinary iodine were all above 70%. Our results revealed that iodine excess exited in three groups of family members. After intervention, all median urinary iodine level seemed to have decreased significantly, and groups with drinking water iodine 5.0 - 99.9 microg/L reduced to adequate or close to adequate while the group that drinking water iodine was 100 - 150 microg/L reached the cut-off point of excessive iodine level (300 microg/L). Results from your study posed the idea that the iodine adequate areas should be defined as the areas with iodine content of 5.0 - 100 microg/L in drinking water, and edible salt not be iodized in these areas. Areas with iodine content of 100 - 150 microg/L in drinking water should be classified as iodine excessive.

  6. PAIRED-CITY STUDY TO DETERMINE THE CONTRIBUTION OF SOURCE WATER TYPE TO THE ENDEMIC LEVEL OF MICROBIAL DISEASE

    EPA Science Inventory

    Paired-City Study to Determine the Contribution of Source Water Type to the Endemic Level of Microbial Disease

    F Frost PhD, T Kunde MPH, L Harter PhD, T Muller MS, GF Craun PE MPH, RL Calderon MPH PhD

    ABSTRACT

    Context: The effectiveness of current drinking...

  7. Characterization of sediment and measurement of groundwater levels and temperatures, Camas National Wildlife Refuge, eastern Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Rattray, Gordon W.

    2016-11-02

    The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, climate change and changes in surrounding land use have altered and reduced natural groundwater and surface water inflows such that the wetlands, ponds, and wet meadows are now maintained through water management and groundwater pumping. These water management activities have proven to be inefficient and costly, prompting the Refuge to develop alternative water management options that are more efficient and less expensive. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, is studying the hydrogeology at the Refuge to provide information for developing alternative water management options.The hydrogeologic studies at the Refuge included characterizing the type, distribution, and hydraulic conductivity of surficial sediments and measuring water levels and temperatures in monitoring wells. Four monitoring wells and seven soil probe coreholes were drilled at the Refuge. Seven water level and temperature data loggers were installed in the wells and water levels and temperatures were continuously recorded from November 2014 to June 2016. Sediment cores were collected from the coreholes and sediment type and distribution were characterized from drillers’ notes, geophysical logs, corehole samples, and particle grain-size analysis. The hydraulic conductivities of sediments were estimated using the measured average grain size and the assumed textural maturity of the sediment, and ranged from about 20 to 290 feet per day.

  8. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness.

    PubMed

    Catling, Louise A; Abubakar, Ibrahim; Lake, Iain R; Swift, Louise; Hunter, Paul R

    2008-12-01

    The aim of this study is to systematically review and critically assess analytical observational epidemiology studies investigating the association between levels of drinking water hardness and cardiovascular disease. We searched electronic databases and used standardised forms to extract data and assess study quality. Of 2,906 papers identified, 14 met the inclusion criteria (nine case control and five cohort studies). Of the nine case control studies, seven examined both drinking water magnesium and calcium and risk of death from cardiovascular disease. A pooled odds ratio showed a statistically significant inverse association between magnesium and cardiovascular mortality (OR 0.75 (95%CI 0.68, 0.82), p < 0.001). Only two studies reported a statistically significant effect for calcium. Substantial heterogeneity between studies made calculation of a summary estimate for drinking water calcium inappropriate. Of three cohort studies reviewed, two were of good quality. A weak suggestion that soft water was harmful in females and possibly associated with a slightly greater risk of sudden death was reported, but there was no association between water hardness and mortality from stroke or cardiovascular disease. This study found significant evidence of an inverse association between magnesium levels in drinking water and cardiovascular mortality following a meta-analysis of case control studies. Evidence for calcium remains unclear. Copyright IWA Publishing 2008.

  9. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia

    NASA Astrophysics Data System (ADS)

    Cheng, Xi; He, Li; Lu, Hongwei; Chen, Yizhong; Ren, Lixia

    2016-09-01

    A major concern associated with current shale-gas extraction is high consumption of water resources. However, decision-making problems regarding water consumption and shale-gas extraction have not yet been solved through systematic approaches. This study develops a new bilevel optimization problem based on goals at two different levels: minimization of water demands at the lower level and maximization of system benefit at the upper level. The model is used to solve a real-world case across Pennsylvania and West Virginia. Results show that surface water would be the largest contributor to gas production (with over 80.00% from 2015 to 2030) and groundwater occupies for the least proportion (with less than 2.00% from 2015 to 2030) in both districts over the planning span. Comparative analysis between the proposed model and conventional single-level models indicates that the bilevel model could provide coordinated schemes to comprehensively attain the goals from both water resources authorities and energy sectors. Sensitivity analysis shows that the change of water use of per unit gas production (WU) has significant effects upon system benefit, gas production and pollutants (i.e., barium, chloride and bromide) discharge, but not significantly changes water demands.

  10. Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley.

    PubMed

    Knobeloch, Lynda M; Zierold, Kristina M; Anderson, Henry A

    2006-06-01

    During July 2000-January 2002, the Wisconsin Division of Public Health conducted a study in 19 rural townships. A high percentage of private drinking-water wells in these townships contained traces of arsenic. Residents were asked to collect well-water samples and complete a questionnaire regarding residential history, consumption of drinking-water, and family health. In total, 2,233 household wells were tested, and 6,669 residents, aged less than one year to 100 years, provided information on water consumption and health. The well-water arsenic levels ranged from less than 1.0 to 3,100 microg/L. The median arsenic level was 2.0 microg/L. The arsenic levels were below the federal drinking-water standard of 10 microg/L in 80% of the wells, while 11% had an arsenic level of above 20 microg/L. Of residents aged over 35 years, those who had consumed arsenic-contaminated water for at least 10 years were significantly more likely to report a history of skin cancer than others. Tobacco use was also associated with higher rates of skin cancer and appeared to synergize the effect of arsenic on the development of skin cancer.

  11. Large-scale hydrological modeling for calculating water stress indices: implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization.

    PubMed

    Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan

    2015-04-21

    Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.

  12. Compounding Impacts of Climate Change and Increased Human Water Withdrawal on Urmia Lake Water Availability

    NASA Astrophysics Data System (ADS)

    Alborzi, A.; Moftakhari, H.; Azaranfar, A.; Mallakpour, I.; Ashraf, B.; AghaKouchak, A.

    2017-12-01

    In recent decades, climate change and increase in human water withdrawal, combined, have caused ecological degradation in several terminal lakes worldwide. Among them, the shallow and hyper-saline Urmia Lake in Iran has experienced about 6 meters drawdown in lake level and 80% reduction in surface area. Here, we assess the imposed stress on Urmia Basin's water availability and Lake's ecological condition in response to coupled climate change and human-induced water withdrawal. A generalized river basin decision support system model consisting network flow is developed to simulate the basin-lake interactions under a wide range of scenarios. This model explicitly includes water management infrastructure, reservoirs, and irrigation and municipal water use. Studied scenarios represent a wide range of historic climate and water use scenarios including a historical baseline, future increase in water demand, and also improved water efficiency. In this presentation, we show the lake's water level, as a measure of lake's ecological health, under the compounding effects of the climate condition (top-down) and water use (bottom-up) scenarios. This method illustrates what combinations lead to failure in meeting the lake's ecological level.

  13. Wastewater application by spray irrigation on a field southeast of Tallahassee, Florida; effects on ground-water quality and quantity, 1980-82

    USGS Publications Warehouse

    Elder, J.F.; Hunn, J.D.; Calhoun, C.W.

    1985-01-01

    A field southeast of Tallahassee, Florida, used for land application of wastewater by spray irrigation was the site of a ground-water monitoring study to determine effects of spray irrigation on water-table elevations and ground-water quality. The study was conducted during 1980-82 in cooperation with the City of Tallahassee. The wastewater has relatively high concentrations of chloride, nitrogen, phosphorus, organic carbon , coliform bacteria, sodium, and potassium. These substances are usually attenuated before they can impact the ground water. However, increases in chloride and nitrate-nitrogen were evident in ground water in some of the monitoring wells during the study. Chloride concentrations increased five-fold or more in some wells directly affected by spray irrigation, and nitrate-nitrogen concentrations increased eight-fold or more. Ground-water levels in the area of the spray field fluctuated over a range of several feet. These fluctuations were affected somewhat by spray irrigation, but the primary control on water levels was rainfall. As of December 1982, constituents introduced to the system by spray irrigation of effluent had not exceeded drinking water standard in the ground water. However, the system had not yet stabilized and more changes in ground-water quality could be expected. (USGS)

  14. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    USGS Publications Warehouse

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  15. Nitrates in drinking water and risk of death from rectal cancer in Taiwan.

    PubMed

    Kuo, Hsin-Wei; Wu, Trong-Neng; Yang, Chun-Yuh

    2007-10-01

    The relationship between nitrate levels in drinking water and rectal cancer development has been inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to rectal cancer and drinking-water nitrate exposure in Taiwan. All deaths due to rectal cancer of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for rectal cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.22 (0.98-1.52) and 1.36 (1.08-1.70), respectively. The findings of this study warrant further investigation of the role of nitrates in drinking water in the etiology of rectal cancer in Taiwan.

  16. Bedrock aquifers in the Denver basin, Colorado; a quantitative water-resources appraisal

    USGS Publications Warehouse

    Robson, S.G.

    1984-01-01

    The Denver metropolitan area is experiencing a rapid population growth that is requiring increasing supplies of potable water to be pumped from bedrock aquifers in order to meet demand. In an effort to determine the ability of the aquifers to continue to meet this demand, the Colorado Department of Natural Resources, the Denver Board of Water Commissioners, and Adams, Arapahoe, Douglas, Elbert and El Paso Counties joined with the U.S. Geological Survey in undertaking a hydrologic evaluation of the ground-water resources of the basin. This involved mapping of aquifer extent, thickness, structure, hydraulic characteristics, and water-level and water-quality conditions. This enabled ground-water modeling techniques to be used to simulate aquifer response to various pumpage estimates and ground-water development plans.The Laramie-Fox Hills aquifer (the deepest aquifer) underlies the 6,700-square-mile study area and is overlain by the more permeable Arapahoe aquifer, the Denver aquifer, and the Dawson aquifer, which crops out in the southern part of the study area. It is estimated that 260x106 acre-feet of recoverable ground water are in storage in these four bedrock aquifers. However, less than 0.1 percent of this volume of water is stored under confined conditions. The larger volume of water stored under unconfined conditions will be available for use only when the water levels in the confined aquifers decline below the top of the individual aquifer, allowing water-table conditions to develop.Annual precipitation on the Denver basin supplies an average of 6,900 cubic feet per second of water to the area; about 55 cubic feet per second of this recharges the bedrock aquifers, principally through the Dawson Arkose. The direction of ground-water movement is generally from ground-water divides in the southern part of the area northward toward the margins of the aquifers. Pumpage has ranged from about 5 cubic feet per second in 1884 to about 41 cubic feet per second in 1978. Pumpage exceeds recharge in the metropolitan area and has caused water-level declines (1958-78) to exceed 200 feet in a 135-square-mile area of the Arapahoe aquifer southeast of Denver.A quasi-three-dimensional finite-difference model of the aquifer system was constructed and calibrated under steady-state and transient-state conditions. Steady-state calibration indicated that lateral hydraulic conductivity within the aquifers is about 100,000 times larger than the vertical hydraulic conductivity between the aquifers. Transient-state calibration indicated that between 1958 and 1978, 374,000 acre-feet of water was pumped from the aquifers, producing a 90,000-acre-foot net decrease in the volume of water in storage in the aquifers. During this time, pumpage also changed the rates of interaquifer flow, induced additional recharge, and caused capture of natural discharge.Three 1979-2050 pumpage estimates were made for use in simulating the effects of various ground-water development plans. Simulations using each of these pumpage estimates indicate that by the year 2050 large water-level declines could occur, particularly in the deeper aquifers. Maximum water-level declines of 410, 1,700, and 1,830 feet were produced using the small, medium, and large pumping rates.Four plans for supplementing the Denver water supply include pumping a satellite well field, pumping a municipal well field, pumping to irrigate parks, and injecting water during periods of low demand for later use during periods of peak demand. Model simulation of these plans indicates that the satellite well field will yield twice as much water as the municipal well field, but will produce larger and more widespread water-level declines in the four aquifers. The municipal well field would not significantly affect water levels in the Dawson aquifer. Pumping the Arapahoe aquifer to supply irrigation water to selected parks was shown to produce only small water-level declines in the aquifer. Results of simulating injection-pumpage well fields at two locations indicate that simulated injection rates could range from 1.7 to 10 cubic feet per second, depending on the choice of site. The volume of water that could be stored in the bedrock aquifer is, thus, sensitive to the hydrologic characteristics of the chosen site. More study is needed to evaluate water-chemistry compatibility of native and injected water.

  17. Association between children's blood lead levels, lead service lines, and water disinfection, Washington, DC, 1998-2006.

    PubMed

    Brown, Mary Jean; Raymond, Jaime; Homa, David; Kennedy, Chinaro; Sinks, Thomas

    2011-01-01

    Evaluate the effect of changes in the water disinfection process, and presence of lead service lines (LSLs), on children's blood lead levels (BLLs) in Washington, DC. Three cross-sectional analyses examined the relationship of LSL and changes in water disinfectant with BLLs in children <6 years of age. The study population was derived from the DC Childhood Lead Poisoning Prevention Program blood lead surveillance system of children who were tested and whose blood lead test results were reported to the DC Health Department. The Washington, DC Water and Sewer Authority (WASA) provided information on LSLs. The final study population consisted of 63,854 children with validated addresses. Controlling for age of housing, LSL was an independent risk factor for BLLs ≥ 10 μg/dL, and ≥ 5 μg/dL even during time periods when water levels met the US Environmental Protection Agency (EPA) action level of 15 parts per billion (ppb). When chloramine alone was used to disinfect water, the risk for BLL in the highest quartile among children in homes with LSL was greater than when either chlorine or chloramine with orthophosphate was used. For children tested after LSLs in their houses were replaced, those with partially replaced LSL were >3 times as likely to have BLLs ≥ 10 μg/dL versus children who never had LSLs. LSLs were a risk factor for elevated BLLs even when WASA met the EPA water action level. Changes in water disinfection can enhance the effect of LSLs and increase lead exposure. Partially replacing LSLs may not decrease the risk of elevated BLLs associated with LSL exposure. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    PubMed

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid < total procyanidins < dihydrochalcones and p-coumaric acid < chlorogenic acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  19. Water Consumption as Source of Arsenic, Chromium, and Mercury in Children Living in Rural Yucatan, Mexico: Blood and Urine Levels.

    PubMed

    Arcega-Cabrera, F; Fargher, L F; Oceguera-Vargas, I; Noreña-Barroso, E; Yánez-Estrada, L; Alvarado, J; González, L; Moo-Puc, R; Pérez-Herrera, N; Quesadas-Rojas, M; Pérez-Medina, S

    2017-10-01

    Studies investigating the correlation between metal content in water and metal levels in children are scarce worldwide, but especially in developing nations. Therefore, this study investigates the correlation between arsenic, chromium, and mercury concentrations in drinking and cooking water and in blood and urine samples collected from healthy and supposedly non-exposed children from a rural area in Yucatan, Mexico. Mercury in water shows concentrations above the recommended World Health Organization (WHO) value for drinking and cooking water. Also, 25% of the children show mercury in urine above the WHO recommended value. Multivariate analyses show a significant role for drinking and cooking water as a vector of exposure in children. Also, the factor analysis shows chronic exposure in the case of arsenic, as well as an ongoing detoxification process through urine in the case of mercury. Further studies should be done in order to determine other potential metal exposure pathways among children.

  20. Hydrogeology and water quality near a solid- and hazardous-waste landfill, Northwood, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Breen, K.J.

    1989-01-01

    Hydrogeology and water quality of ground water and selected streams were evaluated near a landfill in northwestern Ohio. The landfill is used for codisposal of solid and hazardous waste. Water-level and geologic data were collected from 36 wells and 3 surface-water sites during the period November 1983 to November 1985. Water-quality samples were collected from 18 wells and 3 surface-water sites this during this same period. The primary aquifers in the area are the Greenfield Dolomite and underlying Lockport Dolomite of Silurian age. These bedrock carbonates are overlain by two clay tills of Wisconsin age. The tills are capped by a glacial lake clay. The tills generally are saturated, but do not yield sufficient water to be considered an aquifer. Two wells in the study area yield water, in part, from discontinuous deposits of outwash sand and gravel at the lower till-bedrock interface. Regional ground-water flow is from southwest to northeast; local flow is influenced by a ground-water mound centered under the northernmost cells of the landfill. Water levels in wells penetrating refuse within the landfill and the presence of leachate seeps indicate that the refuse is saturated. Head relations among the landfill, till, and dolomite aquifer indicate a vertical component of flow downward from the landfill to the dolomite aquifer. Water levels near the landfill fluctuate as much as 14 feet per year, in contrast to fluctuations of less than 3 feet per year in wells upgradient landfill. Ground waters from wells completed in the dolomite aquifer and glacial till were found to have major-iron concentrations controlled, in large part, by reaction with calcite, dolomite, and other minerals in the aquifer. Only minor departures from equilibrium mineral saturation were noted for ground water, except in wells affected by cement/grout contamination. Molal ratios of calcuim:magnesium in ground water suggest a similar chemical evolution of waters throughout the dolomite aquifer in the study area. Stable-isotope ratios of oxygen and hydrogen indicate the source of water in the till unit and dolomite aquifer is atmospheric precipitation. Elevated levels of total dissolved solids, boron, ammonia, and iron in the leachate and in wells downgradient of the landfill may indicate mixing of ground water with leachate. Oxygen and hydrogen stable-isotope ratios were used to differentiate waters from the glacial till and dolomite aquifer. Isotope ratios also show a shift off the local mixing line for leachate and for a well just downgradient from the landfill. The shift to heavier values of o D in the well water may be indicative of leachate mixing with ground water. The effect of this mixing denoted by hydrologic, isotopic, and chemical-quality data is limited mostly to elevated levels of the common ions. Analysis did not indicate significant levels of toxic metals or organic contaminants except phenol, which was present at concentrations of from 1 to 5 micrograms per liter in six wells. Analysis of water-quality data from nearby streams suggest that surface leaching from the landfill does not significantly affect stream-water quality, but may contribute to higher level of trace metals in the streambed sediments.

  1. Potentiometric surface, 2013, and water-level differences, 1991-2013, of the Carrizo-Wilcox aquifer in northwest Louisiana

    USGS Publications Warehouse

    Fendick, Robert B.; Carter, Kayla

    2015-01-01

    This report presents data and maps that illustrate the potentiometric surface of the Carrizo-Wilcox aquifer during March–May 2013 and water-level differences from 1991 to 2013. The potentiometric surface map can be used for determining the direction of groundwater flow, hydraulic gradients, and effects of withdrawals on the groundwater resource. The rate of groundwater movement also can be estimated from the gradient when the hydraulic conductivity is applied. Water-level data collected for this study are stored in the USGS National Water Information System (NWIS) (http://waterdata.usgs.gov/nwis) and are on file at the USGS office in Baton Rouge, La.

  2. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    NASA Astrophysics Data System (ADS)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable the successful production of irrigated alfalfa with use of saline (up to 8 dS/m ECw) irrigation water, including careful water management during stand establishment, prevention of crusting, and agronomic practices to promote water infiltration. Irrigated regions looking for economically-viable crop species to grow under saline conditions may consider alfalfa grown utilizing appropriate methodologies, including salt-tolerant varieties and agronomic practices to mitigate the secondary effects of soil salinity and sodicity.

  3. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water.

    PubMed

    Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil

    2015-12-07

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.

  4. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water

    PubMed Central

    Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil

    2015-01-01

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190

  5. A Study on the Surface and Subsurface Water Interaction Based on the Groundwater Recession Curve

    NASA Astrophysics Data System (ADS)

    Wang, S. T.; Chen, Y. W.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.

    2017-12-01

    The interaction of surface to subsurface water is an important issue for groundwater resources assessment and management. The influences of surface water to groundwater are mainly through the rainfall recharge, river recharge and discharge and other boundary sources. During a drought period, the interaction of river and groundwater may be one of the main sources of groundwater level recession. Therefore, this study explores the interaction of surface water to groundwater via the groundwater recession. During drought periods, the pumping and river interaction together are the main mechanisms causing the recession of groundwater level. In principle, larger gradient of the recession curve indicates more groundwater discharge and it is an important characteristic of the groundwater system. In this study, to avoid time-consuming manual analysis, the Python programming language is used to develop a statistical analysis model for exploring the groundwater recession information. First, the slopes of the groundwater level hydrograph at every time step were computed for each well. Then, for each well, the represented slope to each groundwater level was defined as the slope with 90% exceedance probability. The relationship between the recession slope and the groundwater level can then be obtained. The developed model is applied to Choushui River Alluvial Fan. In most wells, the results show strong positive correlations between the groundwater levels and the absolute values of the recession slopes.

  6. [Succession of Larix olgensis and Betula platyphlla-marsh ecotone communities in Changbai Mountain].

    PubMed

    Mu, Changcheng

    2003-11-01

    The succession of communities within the ecotone between forest and marsh in Changbai Mountain was studied to identify the interrelation between the succession of ecotone communities and the mesophytization of the ecotone. The succession regime of the ecotone communities was studies by patch size (the volume of each mound) and age class of different tree species, water transmission from soil to atmosphere through the transpiration of different tree species, and regional climate warming and community succession. The results demonstrated that both patch size and water loss through transpiration were increased with age class. The increased volume of mounds and water loss through transpiration of trees were converted to the raised ground surface level and the lowered ground surface water level. Within 60 years, the ground surface level would be raised by 0.405-0.590 m, depending on the distance to the marsh, and the aboveground water level would be lowered by 1.050-1.442 m. Climate had a great effect on the community dynamics. Community succession and regional climate warming intensified the mesophytization process of forest-marsh ecotone, and the ecotone communities would eventually change into forest communities within a relatively short period.

  7. Physical and virtual water transfers for regional water stress alleviation in China

    PubMed Central

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R.; Guan, Dabo; Hubacek, Klaus

    2015-01-01

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management. PMID:25583516

  8. Physical and virtual water transfers for regional water stress alleviation in China.

    PubMed

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  9. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    PubMed Central

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  10. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest points of the major cones of depression will range from 150 to 300 feet, and the average decline in the entire central Arizona area will be about 100 feet.

  11. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol-fed rats.

    PubMed

    Sandhya, V G; Rajamohan, T

    2006-01-01

    The purpose of this study was to determine the effect of coconut water feeding in cholesterol-fed rats. Male albino rats were fed tender coconut water and mature coconut water at a dose level of 4 mL/100 g of body weight. Cholesterol feeding caused a marked increase in total cholesterol, very low-density lipoprotein (VLDL) + low-density lipoprotein (LDL) cholesterol, and triglycerides in serum. Administration of coconut water counteracts the increase in total cholesterol, VLDL + LDL cholesterol, and triglycerides, while high-density lipoprotein cholesterol was higher. Lipid levels in the tissues viz. liver, heart, kidney, and aorta were markedly decreased in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased activities of 3-hydroxy-3-methylglutaryl-CoA reductase in liver, lipoprotein lipase in heart and adipose tissue, and plasma lecithin:cholesterol acyl transferase, while lipogenic enzymes showed decreased activities. An increased rate of cholesterol conversion to bile acid and an increased excretion of bile acids and neutral sterols were observed in rats fed coconut water. Histopathological studies of liver and aorta revealed much less fatty accumulation in these tissues in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased plasma L-arginine content, urinary nitrite level, and nitric oxide synthase activity. These results indicate that both tender and mature coconut water has beneficial effects on serum and tissue lipid parameters in rats fed cholesterol-containing diet.

  12. Multi-scale habitat selection in highly territorial bird species: Exploring the contribution of nest, territory and landscape levels to site choice in breeding rallids (Aves: Rallidae)

    NASA Astrophysics Data System (ADS)

    Jedlikowski, Jan; Chibowski, Piotr; Karasek, Tomasz; Brambilla, Mattia

    2016-05-01

    Habitat selection often involves choices made at different spatial scales, but the underlying mechanisms are still poorly understood, and studies that investigate the relative importance of individual scales are rare. We investigated the effect of three spatial scales (landscape, territory, nest-site) on the occurrence pattern of little crake Zapornia parva and water rail Rallus aquaticus at 74 ponds in the Masurian Lakeland, Poland. Habitat structure, food abundance and water chemical parameters were measured at nests and random points within landscape plots (from 300-m to 50-m radius), territory (14-m) and nest-site plots (3-m). Regression analyses suggested that the most relevant scale was territory level, followed by landscape, and finally by nest-site for both species. Variation partitioning confirmed this pattern for water rail, but also highlighted the importance of nest-site (the level explaining the highest share of unique variation) for little crake. The most important variables determining the occurrence of both species were water body fragmentation (landscape), vegetation density (territory) and water depth (at territory level for little crake, and at nest-site level for water rail). Finally, for both species multi-scale models including factors from different levels were more parsimonious than single-scale ones, i.e. habitat selection was likely a multi-scale process. The importance of particular spatial scales seemed more related to life-history traits than to the extent of the scales considered. In the case of our study species, the territory level was highly important likely because both rallids have to obtain all the resources they need (nest site, food and mates) in relatively small areas, the multi-purpose territories they defend.

  13. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS

    EPA Science Inventory

    This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

  14. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2016

    USGS Publications Warehouse

    Klager, Brian J.

    2016-12-29

    The Equus Beds aquifer in south-central Kansas, which is part of the High Plains aquifer, serves as a source of water for municipal and agricultural users in the area. The city of Wichita has used the Equus Beds aquifer as one of its primary water sources since the 1940s. The aquifer in and around Wichita’s well field reached historically low water levels in 1993, prompting the city to adopt new water-use and conservation strategies to ensure future water supply needs were met. Part of the plan was to initiate a managed aquifer recharge program called the Equus Beds Aquifer Storage and Recovery project. The goal of the managed aquifer recharge program is to artificially recharge the Equus Beds aquifer with treated water from the Little Arkansas River. As part of the Equus Beds Aquifer Storage and Recovery project, the city of Wichita and the U.S. Geological Survey have partnered in a long-term cooperative study to monitor and describe the quantity and quality of the water in the Equus Beds aquifer and the Little Arkansas River.The city of Wichita, the Equus Beds Groundwater Management District No. 2, the Kansas Department of Agriculture–Division of Water Resources, and the U.S. Geological Survey collected groundwater levels in numerous wells screened in the Equus Beds aquifer in the area in and around Wichita’s well field in January 2016. The measurements were used to interpolate potentiometric surfaces for shallow and deep parts of the aquifer in the study area. These potentiometric surfaces were compared with potentiometric surfaces from previous years to estimate changes in water levels and storage volume in the study area.Groundwater levels were generally higher in January 2016 than they were in January 2015. On average, in January 2016, groundwater levels in the shallow part of the aquifer were about 3.4 feet higher and groundwater levels in the deep part of the aquifer were about 3.8 feet higher than in January 2015. The volume of water stored in the study area decreased by about 74,000 acre-feet between predevelopment (the time period before substantial pumpage began in the 1940s) and January 2016; increased by about 121,000 acre-feet between the historic low in 1993 and January 2016; and increased by about 61,000 acre-feet between January 2015 and January 2016. About 62 percent of the storage volume lost between predevelopment and 1993 has been recovered. The increase in storage volume from January 2015 to January 2016 can probably be attributed to less pumping by the city of Wichita and irrigators, more recharge due to higher-than-average precipitation, and higher volumes of artificial recharge in 2015.

  15. Nitrates in drinking water and the risk of death from childhood brain tumors in Taiwan.

    PubMed

    Weng, Hsu-Huei; Tsai, Shang-Shyue; Wu, Trong-Neng; Sung, Fung-Chang; Yang, Chun-Yuh

    2011-01-01

    The objective of this study was to (1) examine the relationship between nitrate (NO₃-N) levels in public water supplies and risk of death from childhood brain tumors (CBT) and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of NO₃-N on development of CBT. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to CBT and exposure to NO₃-N in drinking water in Taiwan. All CBT deaths of Taiwan residents from 1999 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen NO₃-N, Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation. The municipality of residence for CBT cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was ≤ 0.31 ppm, and the adjusted odds ration (OR) (95% confidence interval [CI]) for CBT occurrence was 1.4 (1.07-1.84) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure > 0.31 ppm. No significant effect modification was observed by Ca and Mg intake via drinking water. Data suggest that exposure to NO₃-N in drinking water is associated with a higher risk of CBT development in Taiwan.

  16. Aldosterone changes after consumption of a sodium-bicarbonated mineral water in humans. A four-way randomized controlled trial.

    PubMed

    Toxqui, Laura; Vaquero, M Pilar

    2016-12-01

    Abnormally high aldosterone levels are associated to hypertension and cardiovascular disease. A sodium-rich mineral water was previously shown to reduce several markers of cardiovascular risk and did not increase blood pressure in healthy adults. We aimed to study the effects of consuming the same mineral water compared to a control water on aldosterone levels, and if the effects vary due to the presence of meal in healthy adults. The design was a four-way randomized controlled crossover 120-min-postprandial trial. Twenty-one healthy men and women participated in the study. Exclusion criteria are diabetes, hypertension, and being a usual consumer of carbonic mineral water. Two different mineral waters, high-sodium and bicarbonate mineral water (BW, sodium, 1 g/L; bicarbonate, 2 g/L) and low-mineral content control water (CW), were consumed with or without a standard meal (500 mL per meal). Statistical analysis was performed by repeated measures ANOVA. The results are as follows: serum sodium did not vary, and serum potassium decreased throughout the assay (p = 0.01) without water influence. Consumption of BW significantly decreased aldosterone levels at 30 (p = 0.046), 60 (p = 0.009), and 120 (p = 0.025) min when consumed alone, and at 120 min (p = 0.019) when consumed with meal, compared to CW. Moreover, the effect of BW on aldosterone levels was significant in women but not in men. In conclusion, consumption of a sodium-bicarbonated mineral water, in presence or absence of meal, induces aldosterone inhibition in healthy women, which is suggested to be a physiological response that protects them against hypertension. This trial is registered at clinicaltrial.gov as NCT01334840.

  17. Effect of water level changes in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites

    NASA Astrophysics Data System (ADS)

    Lv, Haibo; Zhang, Hong

    2018-04-01

    The purpose of this study was to investigate the effect of water level changes (WLC) in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites. The rate of CO2 emissions (RCE) from soil was measured in some Phragmites wetlands selected along the Yumenkou-Tongguan section in this river's middle reaches. An artificial recharge experiment was conducted and the data about this section's water levels for the past 15 years was analyzed. This study found that the water level of this river section changed frequently in the last 11 summers. The effect of WLC depended on air temperature. At low temperatures of between 18.0 and 28.0 °C, WLC contributed to a RCE change from 10.19 mmol.m-2.h-1 to 13.43 mmol.m-2.h-1. When the temperature fell within the normal range of 29.0-35.0 °C, the corresponding changes were from 4.07 mmol.m-2.h-1 to 7.35 mmol.m-2.h-1. When the temperature was higher than 35.0 °C, the corresponding changes increased slightly from 6.47 mmol.m-2.h-1 to 12.41 mmol.m-2.h-1. These suggest that WLC had a considerable effect on CO2 emissions at high and low temperatures. As the water level rose, the RCE increased and then decreased in both types of wetlands. At low temperatures, the most favorable water levels for CO2 emissions were -10 cm and 0 cm. At normal temperatures, the RCE from the two types of wetlands decreased with rising water level. At high temperatures, the most favorable water level was -60 cm for Phragmites wetlands. These results demonstrate that frequent WLC can slow CO2 release from Phragmites wetlands along the middle reaches of the Yellow River. Therefore, research on the effect of WLC on CO2 emissions has practical significance.

  18. Evaluation of the Source and Transport of High Nitrate Concentrations in Ground Water, Warren Subbasin, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Densmore, Jill N.; Martin, Peter; Matti, Jonathan

    2003-01-01

    Ground water historically has been the sole source of water supply for the Town of Yucca Valley in the Warren subbasin of the Morongo ground-water basin, California. An imbalance between ground-water recharge and pumpage caused ground-water levels in the subbasin to decline by as much as 300 feet from the late 1940s through 1994. In response, the local water district, Hi-Desert Water District, instituted an artificial recharge program in February 1995 using imported surface water to replenish the ground water. The artificial recharge program resulted in water-level recoveries of as much as 250 feet in the vicinity of the recharge ponds between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 milligrams per liter to more than the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 44 milligrams per liter (10 milligrams per liter as nitrogen). The objectives of this study were to: (1) evaluate the sources of the high-nitrate concentrations that occurred after the start of the artificial-recharge program, (2) develop a ground-water flow and solute-transport model to better understand the source and transport of nitrates in the aquifer system, and (3) utilize the calibrated models to evaluate the possible effect of a proposed conjunctive-use project. These objectives were accomplished by collecting water-level and water-quality data for the subbasin and assessing changes that have occurred since artificial recharge began. Collected data were used to calibrate the ground-water flow and solute-transport models. Data collected for this study indicate that the areal extent of the water-bearing deposits is much smaller (about 5.5 square miles versus 19 square miles) than that of the subbasin. These water-bearing deposits are referred to in this report as the Warren ground-water basin. Faults separate the ground-water basin into five hydrogeologic units: the west, the midwest, the mideast, the east and the northeast hydrogeologic units. Water-quality analyses indicate that septage from septic tanks is the primary source of the high-nitrate concentrations measured in the Warren ground-water basin. Water-quality and stable-isotope data, collected after the start of the artificial recharge program, indicate that mixing occurs between imported water and native ground water, with the highest recorded nitrate concentrations in the midwest and the mideast hydrogeologic units. In general, the timing of the increase in measured nitrate concentrations in the midwest hydrogeologic unit is directly related to the distance of the monitoring well from a recharge site, indicating that the increase in nitrate concentrations is related to the artificial recharge program. Nitrate-to-chloride and nitrogen-isotope data indicate that septage is the source of the measured increase in nitrate concentrations in the midwest and the mideast hydrogeologic units. Samples from four wells in the Warren ground-water basin were analyzed for caffeine and selected human pharmaceutical products; these analyses suggest that septage is reaching the water table. There are two possible conceptual models that explain how high-nitrate septage reaches the water table: (1) the continued downward migration of septage through the unsaturated zone to the water table and (2) rising water levels, a result of the artificial recharge program, entraining septage in the unsaturated zone. The observations that nitrate concentrations increase in ground-water samples from wells soon after the start of the artificial recharge program in 1995 and that the largest increase in nitrate concentrations occur in the midwest and mideast hydrogeologic units where the largest increase in water levels occur indicate the validity of the second conceptual model (rising water levels). The potential nitrate concentration resulting from a water-level rise in the midwest and

  19. A re-evaluation of the taste and odour of methyl tertiary butyl ether (MTBE) in drinking water.

    PubMed

    Suffet, I H

    2007-01-01

    Methyl tertiary butyl ether (MTBE) is a gasoline additive that has been found in groundwater when an underground gasoline storage tank leaks. Although dependent on the clean-up standards that are applied, clean-up costs have been estimated in the US alone to be in the billions of dollars. MTBE is considered primarily a taste and odour concern and not a toxicity issue at concentrations found in drinking water. Thus, the clean-up of MTBE problems is controlled by the MTBE odour threshold concentration (OTC). The level of clean-up and associated differential of millions of dollars is a matter of concern for water purveyors and well owners. A 1993 study of nine OTC studies showed the OTC of MTBE in water to be between 0.04 and 0.06 microg/L, a level over two orders of magnitude less than eight other studies. This 1993 study was repeated at the original laboratory in 2004 and is reported in this paper. The laboratory's quality control programme and ability to repeat one of the eight other studies indicated the laboratory was qualified to repeat its original OTC study. The flavour and odour detection threshold range in the 1993 study, however, could not be confirmed by trained assessors repeating the original study in 2004. The inconsistencies in the data and the high detection on water blanks indicate that the dilution series of the test solutions for the 1993 study were mainly at subthreshold levels. Therefore, the original study of 1993 is not a valid OTC study for MTBE and should not be used to develop drinking water and clean-up standards. The OTC of MTBE is over 15 microg/L for the eight valid studies.

  20. Biogeochemistry of silica in Devils Lake: Implications for diatom preservation

    USGS Publications Warehouse

    Lent, R.M.; Lyons, B.

    2001-01-01

    Diatom-salinity records from sediment cores have been used to construct climate records of saline-lake basins. In many cases, this has been done without thorough understanding of the preservation potential of the diatoms in the sediments through time. The purpose of this study was to determine the biogeochemistry of silica in Devils Lake and evaluate the potential effects of silica cycling on diatom preservation. During the period of record, 1867-1999, lake levels have fluctuated from 427 m above sea level in 1940 to 441.1 m above sea level in 1999. The biogeochemistry of silica in Devils Lake is dominated by internal cycling. During the early 1990s when lake levels were relatively high, about 94% of the biogenic silica (BSi) produced in Devils Lake was recycled in the water column before burial. About 42% of the BSi that was incorporated in bottom sediments was dissolved and diffused back into the lake, and the remaining 58% was buried. Therefore, the BSi accumulation rate was about 3% of the BSi assimilation rate. Generally, the results obtained from this study are similar to those obtained from studies of the biogeochemistry of silica in large oligotrophic lakes and the open ocean where most of the BSi produced is recycled in surface water. During the mid 1960s when lake levels were relatively low, BSi assimilation and water-column dissolution rates were much higher than when lake levels were high. The BSi assimilation rate was as much as three times higher during low lake levels. Even with the much higher BSi assimilation rate, the BSi accumulation rate was about three times lower because the BSi water-column dissolution rate was more than 99% of the BSi assimilation rate compared to 94% during high lake levels. Variations in the biogeochemistry of silica with lake level have important implications for paleolimnologic studies. Increased BSi water-column dissolution during decreasing lake levels may alter the diatom-salinity record by selectively removing the less resistant diatoms. Also, BSi accumulation may be proportional to the amount of silica input from tributary sources. Therefore, BSi accumulation chronologies from sediment cores may be effective records of tributary inflow.

Top