Sample records for water management programs

  1. 7 CFR 634.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... best management practices (BMP's) in project areas which have critical water quality problems resulting... approved agricultural portion of a 208 water quality management plan. Participation in RCWP is voluntary. (c) The program is a new USDA program and an extension of existing water-quality management programs...

  2. 7 CFR 634.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... best management practices (BMP's) in project areas which have critical water quality problems resulting... approved agricultural portion of a 208 water quality management plan. Participation in RCWP is voluntary. (c) The program is a new USDA program and an extension of existing water-quality management programs...

  3. Programmatic Perspectives on Using `Rapid Prototyping Capability' for Water Management Applications Using NASA Products

    NASA Astrophysics Data System (ADS)

    Toll, D.; Friedl, L.; Entin, J.; Engman, E.

    2006-12-01

    The NASA Water Management Program addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools (DSTs) for problem solving. The goal of the NASA Rapid Prototyping Capability (RPC) is to speed the evaluation of these NASA products and technologies to improve current and future DSTs by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The NASA Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. Currently, the NASA Water Management Program oversees eight application projects. However, water management is a very broad descriptor of a much larger number of activities that are carried out to insure safe and plentiful water supply for humans, industry and agriculture, promote environmental stewardship, and mitigate disaster such as floods and droughts. The goal of this presentation is to summarize how the RPC may further enhance the effectiveness of using NASA products for water management applications.

  4. 43 CFR 418.32 - Cooperative programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA Water Management... cooperatively to develop a water management and conservation program to promote efficient management of water in..., to improve the District's operations and procedures for greater water delivery conservation. (b) The...

  5. 40 CFR 130.0 - Program summary and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.0 Program summary and purpose. (a) This subpart establishes policies and program requirements for water quality planning, management and implementation under sections 106, 205(j), non-construction management 205(g), 208, 303 and 305 of the Clean Water Act. The Water Quality...

  6. 40 CFR 130.0 - Program summary and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.0 Program summary and purpose. (a) This subpart establishes policies and program requirements for water quality planning, management and implementation under sections 106, 205(j), non-construction management 205(g), 208, 303 and 305 of the Clean Water Act. The Water Quality...

  7. 40 CFR 130.0 - Program summary and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.0 Program summary and purpose. (a) This subpart establishes policies and program requirements for water quality planning, management and implementation under sections 106, 205(j), non-construction management 205(g), 208, 303 and 305 of the Clean Water Act. The Water Quality...

  8. 40 CFR 130.0 - Program summary and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.0 Program summary and purpose. (a) This subpart establishes policies and program requirements for water quality planning, management and implementation under sections 106, 205(j), non-construction management 205(g), 208, 303 and 305 of the Clean Water Act. The Water Quality...

  9. Albert LiVecchi | NREL

    Science.gov Websites

    Albert LiVecchi Photo of Al Livecchi Albert LiVecchi Laboratory Program Manager- Water Power Al.Livecchi@nrel.gov | 303-384-7138 Al has been part of the Wind and Water Power Program Management Team at focuses on marine and hydrokinetic technologies. As Water Power Laboratory Program Manager, Al is

  10. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  11. Legionella (Legionnaires' Disease and Pontiac Fever): Diagnosis

    MedlinePlus

    ... Outbreaks Preventing Healthcare-associated Disease Environmental Resources Communications Resources Request CDC Assistance For Laboratories Prevention with Water Management Programs Overview of Water Management Programs Water ...

  12. Legionella (Legionnaires' Disease and Pontiac Fever): Fast Facts

    MedlinePlus

    ... Outbreaks Preventing Healthcare-associated Disease Environmental Resources Communications Resources Request CDC Assistance For Laboratories Prevention with Water Management Programs Overview of Water Management Programs Water ...

  13. 33 CFR 385.31 - Adaptive management program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Adaptive management program. 385... Incorporating New Information Into the Plan § 385.31 Adaptive management program. (a) General. The Corps of Engineers and the South Florida Water Management District shall, in consultation with the Department of the...

  14. Legionella (Legionnaires' Disease and Pontiac Fever): Signs and Symptoms

    MedlinePlus

    ... Outbreaks Preventing Healthcare-associated Disease Environmental Resources Communications Resources Request CDC Assistance For Laboratories Prevention with Water Management Programs Overview of Water Management Programs Water ...

  15. Setting the Course for Clean Water: A Citizen's Guide to the Section 208 Water Quality Management Program.

    ERIC Educational Resources Information Center

    Donley, Diane L.; Albright, Catherine

    This is a citizen's guide to the section 208 water quality management program. Section 208 refers to that section of the Federal Water Pollution Control Act of 1972 (the Clean Water Act) which calls for public participation in water quality management planning. Included in this guide are chapters on controlling pollution through the Clean Water…

  16. Tribal water utility management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    Contents: primacy program (what is primacy, advantages and disadvantages, treatment as a state, grant applications and funding); safe drinking water act (sampling requirements, coliform standard, public notification, surface water treatment rule impacts, uic and wellhead protection programs, lead/copper rule); water utility management (how is the utility program evaluated, who's responsible, what is the board and tribal council role).

  17. 40 CFR 35.410 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.410 Purpose. (a) Purpose of section. Sections 35.410 through 35.418 govern Water Quality Management Planning... the Act. (b) Purpose of program. EPA awards Water Quality Management Planning Grants to carry out...

  18. 40 CFR 35.410 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.410 Purpose. (a) Purpose of section. Sections 35.410 through 35.418 govern Water Quality Management Planning... the Act. (b) Purpose of program. EPA awards Water Quality Management Planning Grants to carry out...

  19. 40 CFR 35.410 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.410 Purpose. (a) Purpose of section. Sections 35.410 through 35.418 govern Water Quality Management Planning... the Act. (b) Purpose of program. EPA awards Water Quality Management Planning Grants to carry out...

  20. 40 CFR 35.410 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.410 Purpose. (a) Purpose of section. Sections 35.410 through 35.418 govern Water Quality Management Planning... the Act. (b) Purpose of program. EPA awards Water Quality Management Planning Grants to carry out...

  1. 40 CFR 35.410 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.410 Purpose. (a) Purpose of section. Sections 35.410 through 35.418 govern Water Quality Management Planning... the Act. (b) Purpose of program. EPA awards Water Quality Management Planning Grants to carry out...

  2. 18 CFR 740.4 - State water management planning program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...

  3. 18 CFR 740.4 - State water management planning program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...

  4. 18 CFR 740.4 - State water management planning program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...

  5. 18 CFR 740.4 - State water management planning program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true State water management planning program. 740.4 Section 740.4 Conservation of Power and Water Resources WATER RESOURCES COUNCIL...) Describe water and related land resources problems, needs and opportunities, and the priorities proposed...

  6. Residuals Management and Water Pollution Control Planning.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  7. 43 CFR 418.32 - Cooperative programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA Water... cooperatively to develop a water management and conservation program to promote efficient management of water in..., to improve the District's operations and procedures for greater water delivery conservation. (b) The...

  8. 43 CFR 418.32 - Cooperative programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... THE INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA Water... cooperatively to develop a water management and conservation program to promote efficient management of water in..., to improve the District's operations and procedures for greater water delivery conservation. (b) The...

  9. 43 CFR 418.32 - Cooperative programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA Water... cooperatively to develop a water management and conservation program to promote efficient management of water in..., to improve the District's operations and procedures for greater water delivery conservation. (b) The...

  10. 43 CFR 418.32 - Cooperative programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... THE INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA Water... cooperatively to develop a water management and conservation program to promote efficient management of water in..., to improve the District's operations and procedures for greater water delivery conservation. (b) The...

  11. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  12. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  13. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  14. 18 CFR 260.400 - Cash management programs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Cash management programs. 260.400 Section 260.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... or entry into the program. Subsequent changes to the cash management agreement must be filed with the...

  15. 18 CFR 260.400 - Cash management programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Cash management programs. 260.400 Section 260.400 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... or entry into the program. Subsequent changes to the cash management agreement must be filed with the...

  16. Integrated planning for regional development planning and water resources management under uncertainty: A case study of Xining, China

    NASA Astrophysics Data System (ADS)

    Fu, Z. H.; Zhao, H. J.; Wang, H.; Lu, W. T.; Wang, J.; Guo, H. C.

    2017-11-01

    Economic restructuring, water resources management, population planning and environmental protection are subjects to inner uncertainties of a compound system with objectives which are competitive alternatives. Optimization model and water quality model are usually used to solve problems in a certain aspect. To overcome the uncertainty and coupling in reginal planning management, an interval fuzzy program combined with water quality model for regional planning and management has been developed to obtain the absolutely ;optimal; solution in this study. The model is a hybrid methodology of interval parameter programming (IPP), fuzzy programing (FP), and a general one-dimensional water quality model. The method extends on the traditional interval parameter fuzzy programming method by integrating water quality model into the optimization framework. Meanwhile, as an abstract concept, water resources carrying capacity has been transformed into specific and calculable index. Besides, unlike many of the past studies about water resource management, population as a significant factor has been considered. The results suggested that the methodology was applicable for reflecting the complexities of the regional planning and management systems within the planning period. The government policy makers could establish effective industrial structure, water resources utilization patterns and population planning, and to better understand the tradeoffs among economic, water resources, population and environmental objectives.

  17. 18 CFR 740.4 - State water management planning program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...

  18. Draft Guidelines for State and Areawide Water Quality Management Program Development.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This document discusses the draft guidelines formulated by the Environmental Protection Agency (EPA) to assist the states in establishing a management program to integrate water quality and other resource management decisions. These guidelines are pfovided so that the long range goals of the Federal Water Pollution Control Act Amendments of 1972…

  19. Water resources management. World Bank policy paper; Gestion des ressources en eau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    The management framework presented in this study addresses the demand for water in Asia caused by rapid population growth and economic development. It focuses on three key actions to meet the challenge: evaluate how the region manages water resources; identify guidelines for the Bank`s water resource programs; and develop country-specific strategies and promote joint programs. Reforms built into the framework seek to modernize institutions that affect water sources. The authors suggest ways to improve planning and long-term management, streamline economic and financial policy, and upgrade `real-time` management, operation, and maintenance.

  20. The Evolution of Groundwater Management Paradigms in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Sophocleous, M. A.

    2011-12-01

    The purpose of this presentation is to trace the evolution of key water-related laws and management practices in Kansas, from the enactment of the Kansas Water Resources Appropriation Act of 1945 to the present, in order to highlight the state's efforts to create a more sustainable water future and in hopes that others will benefit from Kansas' experience. The 1945 Act provides the basic framework of water law (prior appropriation) in Kansas. Progression of groundwater management in the state encompasses local ground-water management districts (GMDs) and their water-management programs, minimum-streamflow and TMDL standards, water-use reporting and water metering programs, use of modified safe-yield policies in some GMDs, the subbasin water-resources-management program, the integrated resource planning/Aquifer Storage and Recovery project of the City of Wichita, the Central Kansas Water Bank, enhanced aquifer subunits management, and various water conservation programs. While these have all contributed to the slowing down of declines in groundwater levels in the High Plains aquifer and in associated ecosystems, they have not yet succeeded in halting those declines. Based on the assumption that the different management approaches have to operate easily within the prevailing water rights and law framework to succeed, a number of steps are suggested here that may help further halt the declines of the High Plains aquifer. These include eliminating the "use it or lose it" maxim in the prior-appropriation framework, broadening the definition of "beneficial use," regulating domestic and other "exempt" wells, encouraging voluntary "sharing the shortage" agreements, and determining to what extent water rights may be regulated in the public interest without a compensable "taking." Further necessary measures include determining to what extent water-rights holders might be subjected to reasonable dictates without having the security of their rights altered.

  1. 40 CFR 35.160 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... also be eligible for funding under sections 104(b)(3) (Water Quality Cooperative Agreements and Wetlands Development Grants), 205(j)(2) (Water Quality Management Planning), and section 205(g) (State...) Associated program requirements. Program requirements for water quality planning and management activities...

  2. Legionella (Legionnaires' Disease and Pontiac Fever): Prevention

    MedlinePlus

    ... on Facebook Tweet Share Compartir Español: Prevención Water Management Programs There are no vaccines that can prevent ... owners and managers develop and implement a water management program to reduce their building’s risk for growing ...

  3. 40 CFR 130.12 - Coordination with other programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.12 Coordination with other programs. (a) Relationship... 208(e) of the Act, no NPDES permit may be issued which is in conflict with an approved Water Quality Management (WQM) plan. Where a State has assumed responsibility for the administration of the permit program...

  4. 40 CFR 35.917-5 - Public participation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coordination between the appropriate Water Quality Management public participation program under subpart G of... for coordination between the appropriate Water Quality Management agency public participation program... become involved in the following: (1) The assessment of local water quality problems and needs; (2) The...

  5. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., accumulated sediments, floatables, and other debris); and ways to ensure that new flood management projects... management program designed to reduce the discharge of pollutants from your MS4 to the maximum extent... Clean Water Act. Your storm water management program must include the minimum control measures described...

  6. A summary of the U.S. Geological Survey National Water-Quality Assessment program

    USGS Publications Warehouse

    Hirsch, R.M.; Alley, W.M.; Wilber, W.G.

    1988-01-01

    Beginning in 1986, the Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water Quality Assessment Program. At present, the program is in a pilot phase with field studies occurring in seven areas around the Nation. In 1990, a committee of the National Academy of Sciences will complete an evaluation of the design and potential utility of the program. A decision about moving to full-scale implementation will be made upon completion of this evaluation. The program is intended to address a wide range of national water quality issues that include chemical contamination, acidification, eutrophication, salinity, sedimentation, and sanitary quality. The goals of the program are to: (1) provide nationally consistent descriptions of current water quality conditions for a large part of the Nation 's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify and describe the relations of both current conditions and trends in water quality to natural and human factors. This information will be provided to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water quality management programs and for predicting the likely effects of contemplated changes in land- and water-management practices. (USGS)

  7. 30 CFR 401.12 - Program management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...

  8. 30 CFR 401.12 - Program management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...

  9. 30 CFR 401.12 - Program management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...

  10. 30 CFR 401.12 - Program management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...

  11. 30 CFR 401.12 - Program management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...

  12. CDC Vital Signs: Legionnaires' Disease

    MedlinePlus

    ... preventable with more effective water management. Problem Water management problems can lead to Legionnaires’ disease outbreaks. What ... process failures, like not having a Legionella water management program. About 1 in 2 (52%) are due ...

  13. 41 CFR 102-74.100 - What are conservation programs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT... programs are programs that improve energy and water efficiency and promote the use of solar and other...

  14. 41 CFR 102-74.100 - What are conservation programs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT... programs are programs that improve energy and water efficiency and promote the use of solar and other...

  15. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  16. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    PubMed

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  17. 40 CFR 1.49 - Office of Water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... programs, is responsible for management of EPA's water programs. Functions of the Office include program... assistance to the regional activities in both enforcement and permitting programs. (b) Office of Water... for monitoring and evaluating the performance, progress, and fiscal status of the organization in...

  18. 40 CFR 1.49 - Office of Water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... programs, is responsible for management of EPA's water programs. Functions of the Office include program... assistance to the regional activities in both enforcement and permitting programs. (b) Office of Water... for monitoring and evaluating the performance, progress, and fiscal status of the organization in...

  19. Kanawha River Basin Water Quality Modeling

    DTIC Science & Technology

    1986-07-01

    was performed by Mr. R. G. Willey with the technical assistance of Mr. Keith Knight. Mr. Don Smith of Resource Management Associates provided advice...during critical parts of the study. The study was managed under the direcLion of Dr. Richard Punnett of the Huntington District who was also responsible...to provide better system water quality analysis capabilities in support of the Corps’ water control management program. The focus of this program is

  20. 43 CFR 404.4 - What are the goals of the program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.4 What are the goals of the program? The goals of the program are to: (a) Assess and address urgent and compelling rural water supply... perspective to water resources management in planning rural water supply projects; (c) Develop solutions to...

  1. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  2. 40 CFR 130.11 - Program management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Program management. 130.11 Section 130... PLANNING AND MANAGEMENT § 130.11 Program management. (a) State agencies may apply for grants under sections 106, 205(j) and 205(g) to carry out water quality planning and management activities. Interstate...

  3. 40 CFR 130.11 - Program management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Program management. 130.11 Section 130... PLANNING AND MANAGEMENT § 130.11 Program management. (a) State agencies may apply for grants under sections 106, 205(j) and 205(g) to carry out water quality planning and management activities. Interstate...

  4. 40 CFR 130.11 - Program management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Program management. 130.11 Section 130... PLANNING AND MANAGEMENT § 130.11 Program management. (a) State agencies may apply for grants under sections 106, 205(j) and 205(g) to carry out water quality planning and management activities. Interstate...

  5. 40 CFR 130.11 - Program management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Program management. 130.11 Section 130... PLANNING AND MANAGEMENT § 130.11 Program management. (a) State agencies may apply for grants under sections 106, 205(j) and 205(g) to carry out water quality planning and management activities. Interstate...

  6. 76 FR 30010 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... additions of statutes about bond release responsibility periods for water management facilities and other... program to clarify ambiguities and improve operational efficiency. DATES: Effective Date: May 24, 2011... for water management and other support facilities to be exempt from the ten-year revegetation...

  7. Rural Water Quality Database: Educational Program to Collect Information.

    ERIC Educational Resources Information Center

    Lemley, Ann; Wagenet, Linda

    1993-01-01

    A New York State project created a water quality database for private drinking water supplies, using the statewide educational program to collect the data. Another goal was to develop this program so rural residents could increase their knowledge of water supply management. (Author)

  8. Evaluation of the U.S. Geological Survey Ground-Water Data-Collection Program in Hawaii, 1992

    USGS Publications Warehouse

    Anthony, Stephen S.

    1997-01-01

    In 1992, the U.S. Geological Survey ground-water data-collection program in the State of Hawaii consisted of 188 wells distributed among the islands of Oahu, Kauai, Maui, Molokai, and Hawaii. Water-level and water-quality (temperature, specific conductance, and chloride concentration) data were collected from observation wells, deep monitoring wells that penetrate the zone of transition between freshwater and saltwater, free-flowing wells, and pumped wells. The objective of the program was to collect sufficient spatial and temporal data to define seasonal and long-term changes in ground-water levels and chloride concentrations induced by natural and human-made stresses for different climatic and hydrogeologic settings. Wells needed to meet this objective can be divided into two types of networks: (1) a water-management network to determine the response of ground-water flow systems to human-induced stresses, such as pumpage, and (2) a baseline network to determine the response of ground-water flow systems to natural stresses for different climatic and hydrogeologic settings. Maps showing the distribution and magnitude of pumpage and the distribution of proposed pumped wells are presented to identify areas in need of water-management networks. Wells in the 1992 U.S. Geological Survey ground-water data-collection program were classified as either water-management or baseline network wells. In addition, locations where additional water-management network wells are needed for water-level and water-quality data were identified.

  9. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  10. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  11. Water Quality Analysis Simulation Program (WASP)

    EPA Pesticide Factsheets

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  12. 18 CFR 260.400 - Cash management programs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Cash management... Cash management programs. Natural gas companies subject to the provisions of the Commission's Uniform... management programs must file these agreements with the Commission. The documentation establishing the cash...

  13. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  14. Capacity Building in Using NASA Remote Sensing for Water Resources and Disasters Management

    NASA Astrophysics Data System (ADS)

    Mehta, A. V.; Podest, E.; Prados, A. I.

    2017-12-01

    The NASA Applied Remote Sensing Training Program (ARSET), a part of NASA's Applied Sciences Capacity Building program, empowers the global community through online and in-person training. The program focuses on helping policy makers, environmental managers, and other professionals, both domestic and international, use remote sensing in decision making. Since 2011, ARSET has provided more than 20 trainings in water resource and disaster management, including floods and droughts. This presentation will include an overview of the ARSET program, best practices for approaching trainings, feedback from participants, and examples of case studies from the trainings showing the application of GPM, SMAP, Landsat, Terra and Aqua (MODIS), and Sentinel (SAR) data. This presentation will also outline how ARSET can serve as a liaison between remote sensing applications developers and users in the areas of water resource and disaster management.

  15. Program objectives for the National Water Data Exchange (NAWDEX) for fiscal year 1979

    USGS Publications Warehouse

    Edwards, Melvin D.

    1978-01-01

    This report describes the program objectives of the National Water Data Exchange (NAWDEX) for Fiscal Year 1979. These objectives include NAWDEX membership, program administration, management, and coordination, NAWDEX services, identification of sources of water data, indexing of water data, programs and systems documentation, recommended methods for the handling and exchange of water data, training, and technical assistance to NAWDEX members. (Woodard-USGS)

  16. Are Water-Related Leadership Development Programs Designed to Be Effective? An Exploratory Study

    ERIC Educational Resources Information Center

    Burbach, Mark E.; Floress, Kristin; Kaufman, Eric K.

    2015-01-01

    Water resource professionals and others involved in managing water resources face increasingly complex challenges. Effective leadership development programs are needed to produce water leaders who can address these challenges. Leadership programs must be designed not simply to increase participants' environmental and leadership knowledge but to…

  17. 77 FR 36001 - Draft Report Assessing Rural Water Activities and Related Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... describes Federal Programs supporting development and management of water supplies in rural communities in the 17 western states and describes Reclamation's plans to coordinate the Rural Water Supply Program... required by the Rural Water Supply Act of 2006. This section provides background on the reasons for the...

  18. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... management program designed to reduce the discharge of pollutants from your MS4 to the maximum extent... Clean Water Act. Your storm water management program must include the minimum control measures described... (BMPs) are generally the most appropriate form of effluent limitations when designed to satisfy...

  19. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management program designed to reduce the discharge of pollutants from your MS4 to the maximum extent... Clean Water Act. Your storm water management program must include the minimum control measures described... (BMPs) are generally the most appropriate form of effluent limitations when designed to satisfy...

  20. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management program designed to reduce the discharge of pollutants from your MS4 to the maximum extent... Clean Water Act. Your storm water management program must include the minimum control measures described... (BMPs) are generally the most appropriate form of effluent limitations when designed to satisfy...

  1. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... management program designed to reduce the discharge of pollutants from your MS4 to the maximum extent... Clean Water Act. Your storm water management program must include the minimum control measures described... (BMPs) are generally the most appropriate form of effluent limitations when designed to satisfy...

  2. 7 CFR 1700.30 - Water and Environmental Programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... policies for the effective, efficient, and orderly management of Water and Environmental Programs responsibilities; provides leadership to ensure execution of policies and procedures by the Water and Waste...

  3. 18 CFR 141.500 - Cash management programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Cash management... OF 1978 STATEMENTS AND REPORTS (SCHEDULES) § 141.500 Cash management programs. Public utilities and... and § 141.1 or § 141.2 of this title that participate in cash management programs must file these...

  4. 18 CFR 141.500 - Cash management programs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Cash management... OF 1978 STATEMENTS AND REPORTS (SCHEDULES) § 141.500 Cash management programs. Public utilities and... and § 141.1 or § 141.2 of this title that participate in cash management programs must file these...

  5. Region 9 Tribal Clean Water Act Programs and Grants

    EPA Pesticide Factsheets

    EPA's Tribal Water Office in Region 9 manages all grants related to the Clean Water Act for over 100 federally recognized tribes and provides programmatic and technical assistance for water quality standards and CWA grant programs.

  6. Volunteer water monitoring: A guide for state managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    Contents: executive summary; volunteers in water monitoring; planning a volunteer monitoring program; implementing a volunteer monitoring program; providing credible information; costs and funding; and descriptions of five successful programs.

  7. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... water quality management and control. However, protection of the water resources of the basin from... quality program in the comprehensive plan. (c) The Commission's role in water quality management and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7...

  8. Evaluating participation in water resource management: A review

    NASA Astrophysics Data System (ADS)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  9. 2017 TRIAD Small Business Advisory Panel

    DTIC Science & Technology

    2017-10-11

    government service in 2007 as the Science & Technology (S&T) Project Manager for the United States Navy’s Unmanned Maritime Systems Program Office...National Renewable Energy Laboratory (NREL) as a Program Manager for over 110 energy and water projects on military installations. He worked... management , project management , program management , donor relation service, contract and subcontract policy development and implementation, data integrity

  10. Laboratory and field studies related to the Hydrologic Resources Management Program. Progress report, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Hawkins, W.L.; Mathews, M.

    This report describes research done at Los Alamos in FY 1993 for the Hydrologic Resources Management Program. The US Department of Energy funds this research through two programs at the Nevada Test Site (NTS): defense and groundwater characterization. Los Alamos personnel have continued to study the high-pressure zone created in the aquifer under Yucca Flat. We analyzed data from a hole in this area (U-7cd) and drilled another hole and installed a water monitoring tube at U-4t. We analyzed water from a number of locations on the NTS where we know there are radionuclides in the groundwater and critiqued themore » effectiveness of this monitoring effort. Our program for analyzing postshot debris continued with material from the last nuclear test in September 1992. We supported both the defense program and the groundwater characterization program by analyzing water samples from their wells and by reviewing documents pertaining to future drilling. We helped develop the analytical methodology to be applied to water samples obtained in the environmental restoration and waste management efforts at the NTS. Los Alamos involvement in the Hydrologic Resources Management Program is reflected in the appended list of documents reviewed, presentations given, papers published, and meetings attended.« less

  11. 40 CFR 123.35 - As the NPDES Permitting Authority for regulated small MS4s, what is my role?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management programs, TMDL programs, and water quality monitoring programs; (v) Where appropriate, you may... storm water discharge results in or has the potential to result in exceedances of water quality standards, including impairment of designated uses, or other significant water quality impacts, including...

  12. 40 CFR 123.35 - As the NPDES Permitting Authority for regulated small MS4s, what is my role?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management programs, TMDL programs, and water quality monitoring programs; (v) Where appropriate, you may... storm water discharge results in or has the potential to result in exceedances of water quality standards, including impairment of designated uses, or other significant water quality impacts, including...

  13. 18 CFR 740.5 - Review and approval of State applications and programs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Review and approval of State applications and programs. 740.5 Section 740.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.5 Review and approval of State applications...

  14. 18 CFR 740.5 - Review and approval of State applications and programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Review and approval of State applications and programs. 740.5 Section 740.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.5 Review and approval of State applications...

  15. 18 CFR 740.5 - Review and approval of State applications and programs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Review and approval of State applications and programs. 740.5 Section 740.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.5 Review and approval of State applications...

  16. 18 CFR 740.5 - Review and approval of State applications and programs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Review and approval of State applications and programs. 740.5 Section 740.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.5 Review and approval of State applications...

  17. 18 CFR 740.5 - Review and approval of State applications and programs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Review and approval of State applications and programs. 740.5 Section 740.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.5 Review and approval of State applications...

  18. Water Resource Adaptation Program

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...

  19. Comparison of SWAT Model Water Balance Calibration Using NEXRAD and Surface Rain Gauge Data

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, water quality models to ecosystem management is increasingly evident as more programs adopt these tools to help assess the effectiveness of different management scenarios on the environment. The USDA-Conservation Effects Assessment Project (CEAP) is one such program whi...

  20. 18 CFR 740.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... authorized by the Act and those related programs of other Federal agencies; (2) Integration of water conservation with State water management planning; (3) Integration of water quantity and water quality planning; (4) Integration of ground and surface water planning; (5) Planning for protection and management of...

  1. 76 FR 709 - Guidelines for Awarding Clean Water Act Section 319 Base Grants to Indian Tribes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... in implementing approved NPS management programs developed pursuant to section 319(b). The primary goal of the NPS management program is to control NPS pollution through implementation of management... may be used for a range of activities that implement the tribe's approved NPS management program...

  2. Integrating Self-Management and Exercise for People Living with Arthritis

    ERIC Educational Resources Information Center

    Mendelson, A. D.; McCullough, C.; Chan, A.

    2011-01-01

    The Program for Arthritis Control through Education and Exercise, PACE-Ex[TM}, is an arthritis self-management program incorporating principles and practice of self-management, goal setting and warm water exercise. The purpose of this program review is to examine the impact of PACE-Ex on participants' self-efficacy for condition management,…

  3. 18 CFR 357.5 - Cash management programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Cash management...: CARRIERS SUBJECT TO PART I OF THE INTERSTATE COMMERCE ACT § 357.5 Cash management programs. Oil pipeline... and § 357.2 of this title that participate in cash management programs must file these agreements with...

  4. 18 CFR 357.5 - Cash management programs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Cash management...: CARRIERS SUBJECT TO PART I OF THE INTERSTATE COMMERCE ACT § 357.5 Cash management programs. Oil pipeline... and § 357.2 of this title that participate in cash management programs must file these agreements with...

  5. 43 CFR 404.6 - Who is eligible to participate in the program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.6 Who is... state law that has water management or water delivery authority, including for example, an irrigation or water district, canal company, water users association, rural water association or district, a joint...

  6. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    USGS Publications Warehouse

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.

  7. The U.S. Geological Survey Federal-State cooperative water-resources program

    USGS Publications Warehouse

    Gilbert, Bruce K.; Buchanan, Thomas J.

    1981-01-01

    The U.S. Geological Survey Federal-State Cooperative Water Resources Program is a partnership between the Geological Survey and State and local agencies for the collection of the hydrologic information needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation 's water resources. The Cooperative Program has served the Nation for more than 80 years, and in 1981 more than 800 State and local agencies have cooperative programs with the Geological Survey with total funding over $80 million. The process of project selection in the Cooperative Water Resources Program is a mutual effort in which Geological Survey represents national interests, including the needs of other Federal agencies, and the cooperator represents State and local interests. The result is a balanced program that involves careful evaluation of needs, priorities, and resources. The cost sharing ratio of 50-50 is examined and determined to be the best ratio to effectively assess the Nation 's water resources. The Cooperative Program is and has been relevant to the problems of the day. Much of the current technology in ground-water management, ground-water quality, and flood-plain management--to name a few--was developed as part of the Cooperative Program. (USGS)

  8. 40 CFR 130.12 - Coordination with other programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....12 Section 130.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.12 Coordination with other programs. (a) Relationship... 208(e) of the Act, no NPDES permit may be issued which is in conflict with an approved Water Quality...

  9. Groundwater Management Innovations in the High Plains Aquifer, USA: A possible path towards sustainability? (Invited)

    NASA Astrophysics Data System (ADS)

    Sophocleous, M. A.

    2009-12-01

    The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins Commissions in the US. Finally, some lessons on groundwater management that other countries can learn from the US experience are outlined.

  10. 7 CFR 612.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.1 Purpose and scope. This... administration of a cooperative snow survey and water supply forecast program. The program provides agricultural water users and other water management groups in the western states area with water supply forecasts to...

  11. 40 CFR 131.35 - Colville Confederated Tribes Indian Reservation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-effective and reasonable best management practices for nonpoint source control. (iii) Where high quality... within areas designated as unique water quality management areas and waters otherwise of exceptional... PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.35 Colville...

  12. MANAGING TROUBLED WATERS: THE EVOLUTION OF THE EMAP COASTAL MONITORING PROGRAM 2001 EMAP SYMPOSIUM, APRIL 24-27, PENSACOLA BEACH, FL

    EPA Science Inventory

    In 1990, Managing Troubled Waters concluded by stating three primary conclusions and then developing specific recommendations regarding their execution. Using the decade of the 90s, we examine the evolution of the U.S. EPA's Environmental Monitoring and Assessment Program's Coast...

  13. A Methodology for the Characterization and Management of Nonpoint Source Water Pollution

    DTIC Science & Technology

    1992-09-01

    Nonpoint Source water pollution management tool. However, the stormwater runoff sampling program conducted at the Air Force Academy for validation proved...17 Nationwide Urban Runoff Program (NUEP) . 19 Urban Runoff Pollutant Characteristics . 20 Annual Urban Runoff Loads . . . . . . . 22...55 Sampling Plan . . . . . . . . . . . . . . . . 55 Samples for Baseline Data. ... . . .... 56 Samples for Runoff Data

  14. USEPA’s Water Resource Adaptation Program (WRAP) — Drinking Water Research and Global Climate Change

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to EPA’s efforts to provide water resource managers and decision makers with the tools they need to adapt water resources (e.g., watersheds and infrastructure) to future climate change and demographic and economic developme...

  15. 78 FR 70225 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Department of Environmental Protection, (WVDEP), Division of Water and Waste Management, 601 57th Street SE...] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... for final authorization of revisions to its hazardous waste program under the Resource Conservation...

  16. 30 CFR 402.13 - Program management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...

  17. 30 CFR 402.13 - Program management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...

  18. 30 CFR 402.13 - Program management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...

  19. 30 CFR 402.13 - Program management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...

  20. 30 CFR 402.13 - Program management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...

  1. Water quality and management of private drinking water wells in Pennsylvania.

    PubMed

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  2. 40 CFR 35.412 - Allotment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.412... State's construction grant allotment as determined by Congress for Water Quality Management Planning...

  3. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    USGS Publications Warehouse

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi‐Desert Water District (HDWD), the primary water‐management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic‐tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive‐use strategy. HDWD wishes to identify the least‐cost conjunctive‐use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed‐integer nonlinear programming (MINLP) groundwater‐management problem seeks to minimize water‐delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater‐level constraints, water‐supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid‐optimization algorithm, which couples a genetic algorithm and successive‐linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater‐management problem. The results indicate that the hybrid‐optimization algorithm can identify the global optimum. The hybrid‐optimization algorithm is then applied to solve a complex groundwater‐management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.

  4. 40 CFR 130.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., interstate, areawide and regional and local CWA water quality planning and management activities undertaken... Quality Management (WQM) plans developed under sections 208 and 303 of the Act. (b) Planning and... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING...

  5. 40 CFR 35.101 - Environmental programs covered by the subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (section 205(g) of the Clean Water Act). (19) Water quality management planning (section 205(j)(2) of the... Drinking Water Act). (6) Hazardous waste management (section 3011(a) of the Solid Waste Disposal Act). (7... Insecticide, Fungicide, and Rodenticide Act). (10) Nonpoint source management (sections 205(j)(5) and 319(h...

  6. Supervisory Management in the Water/Wastewater Field: Self-Study Program. Revised Second Edition. Instructor Manual. Executive Programs of the Graduate School of Business Administration of Michigan State University.

    ERIC Educational Resources Information Center

    Liebrenz, Marilyn L., Ed.

    This document is the instructor's manual for a course on supervisory management as it relates to the water or wastewater treatment field. Each of the seven modules is concerned with a segment of the management/supervision process and corresponds to reading material in an accompanying text. An objective and subjective test portion is included with…

  7. Department of Energy Programmatic Environmental Impact Statement (PEIS) scoping session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    The purpose of this programmatic environmental impact statement (PEIS) scoping meeting was: to present the ground water program so as to build some familiarity and understanding about the issue involved; and to get the Durango community`s input. This report contains the presentations made by the project manager for the uranium mill tailings program, site manager for the Durango UMTRA site, manager of ground water hydrology, and includes comments made by local residents.

  8. 40 CFR 35.400 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pollution Control), 205(j)(2) (Water Quality Management Planning), and 104(b)(3) (Water Quality Cooperative... quality management activities are provided in 40 CFR part 130. ... program. EPA awards these grants for the following two purposes: (1) Construction management grants. A...

  9. 15 CFR 923.11 - Uses subject to management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., dunes, estuaries, and wetlands, on salinization of drinking water supplies, and on properties... constitute permissible land uses and water uses within the coastal zone which have a direct and significant impact on the coastal waters. (2) The management program must identify those land and water uses that...

  10. --No Title--

    Science.gov Websites

    Search Search Home SH Reference Manual E19 Documentation Program Management Training/Drills Other Dataweb National Water Information System Database SH Reference Manual, E-19 Docs, Program Management

  11. Southwestern Division 2012 History Report

    DTIC Science & Technology

    2013-05-01

    maintenance to be performed. Examples of additional maintenance included hydraulic piping replacement, motor control center upgrades, miter gates anchorage...in CEBIS. WATER MANAGEMENT PROGRAM 2012 Hydrology , Hydraulics and Water Management Programs 2012: In March 2012, the Corps’ SWD office...hosted the annual “2012 Reservoir Control Center/Hydrology and Hydraulics annual meeting. The meeting was held in Tulsa, Oklahoma at the Tulsa

  12. The First Hydrology (Geoscience) Degree at a Tribal College or University: Salish Kootenai College

    NASA Astrophysics Data System (ADS)

    Lesser, G.; Berthelote, A. R.

    2010-12-01

    A new Hydrology Degree Program was developed at Salish and Kootenai College in western Montana. This program will begin to address the fact that our nation only awards 20 to 30 Geoscience degrees annually to Native American students. Previously absent from SKC and the other 36 Tribal Colleges or Universities (TCU) Science, Technology, Engineering, and Mathematics (STEM) related programs are specific Geoscience disciplines, particularly those focusing on hydrological and water based sciences. Though 23 TCU’s offer some classes to supplement their environmental science or natural resource programs. This program is timely and essential for addressing the concerns that Native Americans have who maintain sovereignty over approximately 20% of our nation’s fresh water resources which are becoming more stressed each year. The overall objective of this new SKC Hydrology degree program is to produce students who are able to “give voice” to the perspectives of Native peoples on natural resources and particularly water-related issues, including water rights, agriculture, environmental health (related to water), beliefs and spirituality related to water, and sustainability of water resources. It will provide the opportunity for interdisciplinary study in physical, chemical, and biological water resources and their management. Students will gain theoretical, conceptual, computational, and practical knowledge/experiences in quantifying, monitoring, qualifying, and managing today’s water resource challenges with particular emphasis on Tribal lands. Completion of the Associate of Science Degree will provide the student with the necessary skills to work as a hydrology- water quality- or geo-technician within the Reservation area, the U. S. Forest Service, the Environmental Protection Agency, the Bureau of Reclamation, the United States Geological Society, and other earth science disciplines. The Bachelor’s Degree program provides students with a broad-based theoretical and technological understanding of environmental and physical sciences and prepares students to design and direct research and programs related to water resources. Graduates of the Bachelor of Science Degree program are prepared to continue their education in graduate school or obtain employment as managers or directors of programs in industry, consulting, local, state, federal and tribal programs. Graduates will find that due to sovereignty issues, most tribes either have in place or are seeking trained professionals to monitor, manage, and protect their respective water resources. Hydrology and Geoscience job openings are expected to continue to exceed the number of qualified jobseekers through the 2018 projection period. And, nationally, 1 in 4 geoscientist positions are employed as hydrologists (30% engineering related services, 30 % Government, and 20% management and technical consulting). The mission of SKC is to provide quality postsecondary educational opportunities for Native Americans, locally and from throughout the United States, and defines cultural understanding as: "The awareness of your own system of values, beliefs, traditions and history, and knowledge and respect for the systems of others, particularly those of American Indian Tribes, and specifically the Salish, Pend d'Oreille and Kootenai People".

  13. Role of EPA in Asset Management Research – The Aging Water Infrastructure Research Program

    EPA Science Inventory

    This slide presentation provides an overview of the EPA Office of Research and Development’s Aging Water infrastructure Research Program (AWIRP). The research program origins, goals, products, and plans are described. The research program focuses on four areas: condition asses...

  14. Modelling raw water quality: development of a drinking water management tool.

    PubMed

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  15. 75 FR 56133 - Savannah Coastal Refuges' Complex, GA and SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ..., open waters, forested habitats, scrub/shrub habitats, grasslands, and open lands. All ponds, levees... management programs for impoundments, beaches, wetlands, open waters, forested habitats, scrub/shrub habitats... habitat management strategy. Impoundments, beaches, wetlands, open waters, forested habitats, scrub/shrub...

  16. Home | Sonoma County Water Agency

    Science.gov Websites

    Precipitation Information (AQPI) Fluoridation Atmospheric Rivers Urban Water Management Plan Flood Protection Advanced Quantitative Precipitation Information (AQPI) Fluoridation Atmospheric Rivers Urban Water Management Plan Flood Protection Flood Forecast/Emergency Info Stream Maintenance Program Flood Protection

  17. 40 CFR 130.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sections 301(b) and 306 of the Act. (k) Water quality management (WQM) plan. A State or areawide waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.2 Definitions. (a) The Act. The Clean Water Act, as amended, 33 U.S.C. 1251 et...

  18. 40 CFR 130.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sections 301(b) and 306 of the Act. (k) Water quality management (WQM) plan. A State or areawide waste... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.2 Definitions. (a) The Act. The Clean Water Act, as amended, 33 U.S.C. 1251 et...

  19. Newly emerging resource efficiency manager programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.; Howell, C.

    1997-12-31

    Many facilities in the northwest such as K--12 schools, community colleges, and military installations are implementing resource-efficiency awareness programs. These programs are generally referred to as resource efficiency manager (REM) or resource conservation manager (RCM) programs. Resource efficiency management is a systems approach to managing a facility`s energy, water, and solid waste. Its aim is to reduce utility budgets by focusing on behavioral changes, maintenance and operation procedures, resource accounting, education and training, and a comprehensive awareness campaign that involves everyone in the organization.

  20. 76 FR 57100 - Natural Resource Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ..., Water Resource Protection and Improvement, Sustainable Land Use, and Natural Resource Management, are... for the management of biological, cultural, and water resources, recreation, reservoir lands planning... implementation of resource management programs and activities and approaches to planning the use of TVA reservoir...

  1. Modeling and managing urban water demand through smart meters: Benefits and challenges from current research and emerging trends

    NASA Astrophysics Data System (ADS)

    Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.

    2015-12-01

    Urban population growth, climate and land use change are expected to boost residential water demand in urban contexts in the next decades. In such a context, developing suitable demand-side management strategies is essential to meet future water demands, pursue water savings, and reduce the costs for water utilities. Yet, the effectiveness of water demand management strategies (WDMS) relies on our understanding of water consumers' behavior, their consumption habits, and the water use drivers. While low spatial and temporal resolution water consumption data, as traditionally gathered for billing purposes, hardly support this understanding, the advent of high-resolution, smart metering technologies allowed for quasi real-time monitoring water consumption at the single household level. This, in turn, is advancing our ability in characterizing consumers' behavior, modeling, and designing user-oriented residential water demand management strategies. Several water smart metering programs have been rolled-out in the last two decades worldwide, addressing one or more of the following water demand management phases: (i) data gathering, (ii) water end-uses characterization, (iii) user modeling, (iv) design and implementation of personalized WDMS. Moreover, the number of research studies in this domain is quickly increasing and big economic investments are currently being devoted worldwide to smart metering programs. With this work, we contribute the first comprehensive review of more than 100 experiences in the field of residential water demand modeling and management, and we propose a general framework for their classification. We revise consolidated practices, identify emerging trends and highlight the challenges and opportunities for future developments given by the use of smart meters advancing residential water demand management. Our analysis of the status quo of smart urban water demand management research and market constitutes a structured collection of information supporting the development of integrated procedures in the field of urban water management, as well as common actions aiding the collaboration with other sectors, as the nexus with energy demand management.

  2. Water-use analysis program for the Neshaminy Creek basin, Bucks and Montgomery counties, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    A water-use analysis computer program was developed for the Neshaminy Creek Basin to assist in managing and allocating water resources in the basin. The program was developed for IBM-compatible personal computers. Basin analysis and the methodologies developed for the Neshaminy Creek Basin can be transferred to other watersheds. The development and structure of the water-use analysis program is documented in this report. The report also serves as a user's guide. The program uses common relational database-management software that allows for water use-data input, editing, updating and output and can be used to generate a watershed water-use analysis report. The watershed-analysis report lists summations of public-supply well withdrawals; a combination of industrial, commercial, institutional, and ground-water irrigation well withdrawals; spray irrigation systems; a combination of public, industrial, and private surface-water withdrawals; wastewater-tratement-facility dishcarges; estimates of aggregate domestic ground-water withdrawals on an areal basin or subbasin basis; imports and exports of wastewater across basin or subbasin divides; imports and exports of public water supplies across basin or subbasin divides; estimates of evaporative loss and consumptive loss from produce incorporation; industrial septic-system discharges to ground water; and ground-water well-permit allocations.

  3. 77 FR 76034 - National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0943; FRL9716-6] National Water Program 2012... availability. SUMMARY: The Environmental Protection Agency (EPA) is publishing the final ``National Water...-term visions and goals for the management of water resources in light of climate change and charts key...

  4. 18 CFR 740.10 - Program review and assistance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Program review and assistance. 740.10 Section 740.10 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE... the request of the State, specific technical assistance in water resources management; (ii) Determine...

  5. 18 CFR 740.10 - Program review and assistance.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Program review and assistance. 740.10 Section 740.10 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE... the request of the State, specific technical assistance in water resources management; (ii) Determine...

  6. 18 CFR 740.10 - Program review and assistance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Program review and assistance. 740.10 Section 740.10 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE... the request of the State, specific technical assistance in water resources management; (ii) Determine...

  7. 18 CFR 740.10 - Program review and assistance.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Program review and assistance. 740.10 Section 740.10 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE... the request of the State, specific technical assistance in water resources management; (ii) Determine...

  8. 18 CFR 740.10 - Program review and assistance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Program review and assistance. 740.10 Section 740.10 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE... the request of the State, specific technical assistance in water resources management; (ii) Determine...

  9. 7 CFR 634.40 - Financial management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Financial Management § 634.40... comprehensive USDA/EPA joint water quality monitoring, evaluating, and analysis will be funded according to the...

  10. Water-resources activities in Florida, 1988-89

    USGS Publications Warehouse

    Glenn, Mildred E.

    1989-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1988. These activities are part of the Federal program of appraising the Nation 's water resources. Included are brief descriptions of the nature and scope of all active studies, summaries of significant results for 1988 and anticipated accomplishments during 1989. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water-resources investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be used. Water data and information required to implement sound water-management programs in highly urbanized areas relate to the quantity and quality of storm runoff, sources of aquifer contamination, injection of wastes into deep strata, underground storage of freshwater, artificial recharge of aquifers, environmental effects of reuse of water, and effects of land development on changes in ground-and surface-water quality. In some parts of the State broad areas are largely rural. Future growth is anticipated in many of these. This report is intended to inform those agencies vitally interested in the water resources of Florida as to the current status and objectives of the U.S. Geological Survey cooperative program. The mission of this program is to collect, interpret, and publish information on water resources. Almost all of this work is done in cooperation with other public agencies. (USGS)

  11. Making the case for OWTS management: lessons from case studies and research

    NASA Astrophysics Data System (ADS)

    Rahm, B.; Woods, F.; Hwang, S.; Walter, M. T.; Grantham, D. G.; Riha, S. J.

    2016-12-01

    On-site wastewater treatment systems (OWTS) are used in 20-25% of homes in the United States and can be an efficient and cost-effective alternative to conventional centralized systems. However, OWTS also represent a source of non-point nutrient, pathogen, and micro-contaminant pollution to surface and groundwater if they are poorly designed, sited and/or maintained. Despite their ubiquity and potential to negatively impact water resources, the contribution of OWTS to local and regional water contamination issues is poorly understood. There are no federal regulations or uniform standards for the operation, maintenance, and management of these systems. The effectiveness of educational programs and best management practices developed by the US Environmental Protection Agency, along with local and regional governments, remains uncertain. Here we describe attempts to increase our knowledge of the state of OWTS in relation to water resources and their management. Specifically, we summarize 1) efforts to modernize a NY State-wide inventory of residential OWTS using GIS-based tools; 2) research aimed at better understanding the impact of OWTS on surface and ground water in 5 upstate NY counties across a gradient of land uses; 3) lessons learned from 13 case studies of municipal OWTS management programs across the US; and 4) observations on the roles of data, education and policy in creating and evaluating successful municipal OWTS management programs. Initial results show that total numbers of OWTS in NY State continue to grow, particularly in areas associated with ex-urban migration. Research into the relationship between OWTS and nutrient and pathogen contamination in ground and surface waters, respectively, suggests location-specific variation. This has implications for management approaches: preventing failure of any individual OWTS may be just as effective as programs attempting to bring all OWTS up to a high level of performance. Case studies of management programs, which we assess using a set of policy-related criteria, suggest that approaches differ according to local regulations, stakeholder values, and other environmental, economic, and social factors.

  12. Nutrient Management Certification for Delaware: Developing a Water Quality Curriculum

    ERIC Educational Resources Information Center

    Hansen, David J.; Binford, Gregory D.

    2004-01-01

    Water quality is a critical environmental, social, and political issue in Delaware. In the late 1990s, a series of events related to water quality issues led to the passage of a state nutrient management law. This new law required nutrient management planning and established a state certification program for nutrient users in the agricultural and…

  13. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  14. TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...

  15. 25 CFR 170.503 - How are IRR Program management systems funded?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How are IRR Program management systems funded? 170.503 Section 170.503 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program Facilities...

  16. Final Guidance on Awards of Grants to Indian Tribes under Section 106 of the Clean Water Act

    EPA Pesticide Factsheets

    Guidance to help tribal water quality program managers, staff, and other tribal environmental decision makers design and implement effective and successful water quality programs. Also assists EPA Regions to award and administer tribal grants.

  17. Financial Management. Working for Clean Water: An Information Program for Advisory Groups. Instructor Guide.

    ERIC Educational Resources Information Center

    Auker, Dennis; And Others

    The implementation of water quality programs in the face of rising costs raises many questions for states and local communities, including: How much can taxpayers afford to pay? Who will pay? How can they pay? Described is an hour-long learning session on financial management that is designed to help citizen advisory groups play an integral role…

  18. First progress report, 1961-1962, cooperative watershed management in the lower conifer zone of California

    Treesearch

    Walt Hopkins; Kenneth L. Boden

    1962-01-01

    The job of watershed management research is to conduct studies which will suggest better methods of management for water and predict the effects of a wide span of land management practices upon streamflow, water yield, and sedimentation. A program for watershed management research was prepared by Henry Anderson in 1960 (Anderson, 1960).

  19. Integrating science and resource management in Tampa Bay, Florida

    USGS Publications Warehouse

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this research and its integration into resource management has not been prepared for Tampa Bay since the mid-1980s. The need for an up-to-date synthesis of Tampa Bay science and management has resulted in the production of this document. The U.S. Geological Survey recently completed a 5-year Tampa Bay Integrated Science Study, and the Tampa Bay Estuary Program updated the Comprehensive Conservation and Management Plan for Tampa Bay in 2006. These efforts build upon results of the many research and management studies and programs summarized here.

  20. Watersheds and Water Policy Funding From USDA-CSREES: Vision, Outlook, and Priorities

    NASA Astrophysics Data System (ADS)

    Cavallaro, N.

    2006-05-01

    The Cooperative State Research, Education and Extension Service (CSREES) of the United States Department of Agriculture funds research, extension, and education grants in all aspects of agriculture, the environment, human health and well-being, and communities. Water is key natural resource for all of these areas and there are several types of funding opportunities available. The primary sources for watersheds and water management funding within CSREES are the Water and Watersheds program of the National Research Initiative, and the National Integrated Research, Education and Extension Program in Water Quality. These two programs have substantially reduced their focus in the last three years in order to meet the federal budget office demands for measurable outcomes. This paper will discuss the current and priorities and likely trends in funding in these areas. In addition, to the above two programs, agricultural water security is a prominent issue related to water management and policy. A recent listening session on agricultural water security and policy resulted in white paper available on the CSREES website. This paper will also describe a recommended strategy for CSREES efforts and current and projected needs and opportunities. Briefly, six themes for research, education, and extension activities were identified: Irrigation Efficiency and Management; Drought Risk Assessment and Preparedness; General Water Conservation and Management; Rural/Urban Water Reuse; Water Marketing, Distribution and Allocation; and Biotechnology. Of these six themes, it was recommended that CSREES should focus on the three: 1.Exploring new technologies and systems for the use of recycled/reuse water in agricultural, rural, and urbanizing watersheds, 2.Probing the human, social, and economic dimensions of agricultural water security (including water markets) with a focus on adoption-outreach and behavioral change, and 3.Discovering biotechnological improvements in water use efficiency of crop and horticultural plants to achieve greater "crop per drop."

  1. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  2. 40 CFR 35.412 - Allotment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants (section 205(j)(2)) § 35.412... State's construction grant allotment as determined by Congress for Water Quality Management Planning...)(4) regarding reserves from State allotments under Title VI of the Clean Water Act for section 205(j...

  3. Water Reuse and Soil Column Studies for Alternative Water Resource Development

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL) of the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has developed a holistic water research program in order to identify engineering and management options for safe and expanded use ...

  4. Program objectives for the National Water Data Exchange (NAWDEX) for fiscal year 1978

    USGS Publications Warehouse

    Edwards, Melvin D.

    1977-01-01

    This report presents the program objectives for the National Water Data Exchange (Nawdex) for Fiscal Year 1978, October 1, 1977 to September 30, 1978. Objectives covered include Nawdex mambership, membership participation, Nawdex services, identification of sources of water data, the indexing of water data, systems development and implementation, training, recommended standards for the handling and exchange of water data, and program management. The report provides advance information on Nawdex activities, thereby, allowing the activities to be better integrated into the planning and operation of programs of member organizations. (Woodard-USGS)

  5. Drinking Water State Revolving Fund National Information Management System Reports

    EPA Pesticide Factsheets

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  6. Stormwater runoff water quality evaluation and management program for hazardous chemical sites: Development issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.F.; Jones-Lee, A.

    1998-12-31

    The deficiencies in the typical stormwater runoff water quality monitoring from hazardous chemical sites and an alternative approach (Evaluation Monitoring) for monitoring that shifts the monitoring program from periodic sampling and analysis of stormwater runoff for a suite of chemical parameters to examining the receiving waters to determine what, if any, water quality use impairments are occurring due to the runoff-associated constituents is presented in this paper. Rather than measuring potentially toxic constituents such as heavy metals in runoff, the monitoring program determines whether there is aquatic life toxicity in the receiving waters associated with the stormwater runoff. If toxicitymore » is found, its cause is determined and the source of the constituents causing the toxicity is identified through forensic analysis. Based on this information, site-specific, technically valid stormwater runoff management programs can be developed that will control real water quality impacts caused by stormwater runoff-associated constituents.« less

  7. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  8. Green campus management based on conservation program in Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Prihanto, Teguh

    2018-03-01

    Universitas Negeri Semarang (UNNES) has a great commitment in the development of higher education programs in line with its vision as a conservation - minded and internationally reputable university. Implementation of conservation programs with respect to the rules or conservation aspects of sustainable use, preservation, provisioning, protection, restoration and conservation of nature. In order to support the implementation of UNNES conservation program more focused, development strategies and development programs for each conservation scope are covered: (1) Biodiversity management; (2) Internal transportation management; (3) energy management; (4) Green building management; (5) Waste and water management; (6) Cultural conservation management. All related to conservation development strategies and programs are managed in the form of green campus management aimed at realizing UNNES as a green campus, characterized and reputable at the regional and global level.

  9. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  10. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  11. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  12. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  13. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  14. USEPA Safe and Sustainable Water Resources Program: Green Infrastructure for Stormwater Management

    EPA Science Inventory

    The water research portfolio of the USEPA Office of Research and Development (ORD) includes a significant focus on stormwater management as a major cause of contaminants in and degradation to surface waters. The importance of maintaining and restoring natural hydrology via green...

  15. Monitoring for a specific management objective: protection of shorebird foraging habitat adjacent to a waste water treatment plant.

    PubMed

    Morris, Liz; Petch, David; May, David; Steele, William K

    2017-05-01

    Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.

  16. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua B.; Ramaswami, Anu

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less

  17. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE PAGES

    Sperling, Joshua B.; Ramaswami, Anu

    2017-11-03

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less

  18. 40 CFR 130.0 - Program summary and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management decisions which are necessary to control specific sources of pollution. The plans recommend..., 205(j), non-construction management 205(g), 208, 303 and 305 of the Clean Water Act. The Water Quality... the chemical, physical and biological data needed to determine the present quality of a State's waters...

  19. Institutional Boundaries and Common-Pool Resource Management: A Comparative Analysis of Water Management Programs in California

    ERIC Educational Resources Information Center

    Heikkila, Tanya

    2004-01-01

    Policymakers and academics often identify institutional boundaries as one of the factors that shape the capacity of jurisdictions to manage natural resources such as water, forests, and scenic lands. This article examines two key bodies of literature--common-pool resource management theory and local public economy theory--to explain how the…

  20. Water Management Plan for Fort Buchanan, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; Sullivan, Gregory P.; Mcmordie, Katherine

    2004-06-01

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Water Management Plan (WMP). The WRMP developed during this task is an amalgam of the templates and guidelines from the Federal Energy Management Program and Army regulations.

  1. Rehabilitation, Replacement and Redesign of the Nation's Water and Wastewater Infrastructure as a Valuable Adaptation Opportunity

    EPA Science Inventory

    In support of the Agency's Sustainable Water Infrastructure Initiative, EPA's Office of Research and Develpment initiated the Aging Water Infrastructure Research Program in 2007. The program, with its core focus on the support of strategic asset management, is designed to facili...

  2. OPTIMIZING WATER TREATMENT PLANT PERFORMANCE USING THE COMPOSITE CORRECTION PROGRAM - 1998 EDISION (EPA/625/6-91/027)

    EPA Science Inventory

    Staff of USEPA's National Risk Management Research Laboratory and Office of Ground Water and Drinking Water collaborated in the development of both the original and revised
    versions of this handbook.

    The Composite Correction Program (CCP) has b...

  3. Give Water a Hand. Leader Guidebook. Youth Action Program. Promoting Good Water Management Practices at Home and in the Community.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Educators of students grades 4-8 can use this guide to lead a community service project using the "Give Water a Hand" youth action program. Youth groups investigate water and water conservation within the home, farm, ranch, school, or community, with the help of local experts. The guide contains six chapters that cover: (1) an…

  4. The Federal Public Works Infrastructure Strategy Program - Federal Works Infrastructure R&D: A New Perspective

    DTIC Science & Technology

    1993-07-01

    Strategy, please contact Robert A. Pietrowsky , Program Manager at: Institute for Water Resources Casey Building 7701 Telegraph Road Fort Belvoir, VA 22060...management responsibility under the direction of Dr. Eugene Z. Stakhiv, Chief, Policy and Special Studies Division and Mr. Robert A. Pietrowsky , Program

  5. Conjunctive management of multi-reservoir network system and groundwater system

    NASA Astrophysics Data System (ADS)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.

  6. 2014 Water Power Program Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  7. Continental United States Military Housing Inspection National Capital Region

    DTIC Science & Technology

    2015-08-13

    that was flaking, peeling, or chalking. JBAB did not have an asbestos management program, plan, or an appointed asbestos program manager...housing partner to ensure inspection and maintenance plan is achieved; and • Implement an asbestos management plan and appoint an asbestos program...select environmental health and safety requirements, such as those for drinking water, radon, asbestos , and lead based paint. We conducted this

  8. Water recovery and management test support modeling for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; Bacskay, Allen S.

    1990-01-01

    The water-recovery and management (WRM) subsystem proposed for the Space Station Freedom program is outlined, and its computerized modeling and simulation based on a Computer Aided System Engineering and Analysis (CASE/A) program are discussed. A WRM test model consisting of a pretreated urine processing (TIMES), hygiene water processing (RO), RO brine processing using TIMES, and hygiene water storage is presented. Attention is drawn to such end-user equipment characteristics as the shower, dishwasher, clotheswasher, urine-collection facility, and handwash. The transient behavior of pretreated-urine, RO waste-hygiene, and RO brine tanks is assessed, as well as the total input/output to or from the system. The model is considered to be beneficial for pretest analytical predictions as a program cost-saving feature.

  9. Testing of best management practices for controlling highway runoff.

    DOT National Transportation Integrated Search

    1993-01-01

    In order to obtain the necessary detailed design guidelines for storm water best management practices (BMPs) included in the Virginia Department of Transportation's storm water manual, a field program was initiated in 1991 for testing the pollutant r...

  10. Water Management Planning: A Case Study at Blue Grass Army Depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.; Mcmordie, Katherine

    2006-04-03

    Executive Order 13123, Greening the Government Through Efficient Energy Management, mandates an aggressive policy for reducing potable water consumption at federal facilities. Implementation guid¬ance from the U.S. Department of Energy (DOE) set a requirement for each federal agency to “reduce potable water usage by implementing life cycle, cost-effective water efficiency programs that include a water management plan, and not less than four Federal Energy Management Program (FEMP) Best Manage¬ment Practices (BMPs).” The objective of this plan is to gain full compliance with Executive Order 13123 and associated DOE implementation guidance on behalf of Blue Grass Army Depot (BGAD), Richmond, Kentucky.more » In accordance with this plan, BGAD must: • Incorporate the plan as a component of the Installation energy conservation plan • Investigate the water savings potential and life-cycle cost effectiveness of the Operations and Maintenance (O&M) and retrofit/replacement options associated with the ten FEMP BMPs • Put into practice all applicable O&M options • Identify retrofit/replacement options appropriate for implementation (based upon calculation of the simple payback periods) • Establish a schedule for implementation of applicable and cost-effective retrofit/replacement options.« less

  11. Characterizing Vineyard Water Status Variability in a Premium Winegrape Vineyard

    NASA Astrophysics Data System (ADS)

    Smart, David; Carvahlo, Angela

    2017-04-01

    One of the biggest challenges in viticulture and winemaking is managing and optimizing yield and quality across vineyard blocks that show high spatial variability. Studies have shown that zonal management of vine water status can contribute significantly to improving overall fruit quality and improving uniformity. Vine water status is a major parameter for vine management because it affects both wine quality and yield. In order to optimize vineyard management and harvesting practices, it is necessary to characterize vineyard variability in terms of water status. Establishing a targeted irrigation program first requires spatially characterizing the variability in vine water status of a vineyard. In California, due to the low or no rainfall during the active growing season, the majority of vineyards implement some type of irrigation management program. As water supplies continue to decrease as a consequence of persistent drought, establishing efficient and targeted water use programs is of growing importance in California. The aim of this work was to characterize the spatial variability of plant-water relations across a non-uniform 4 ha block in Napa Valley with the primary objective of establishing vineyard irrigation management zones. The study plot was divided into three sections, designated the North, Middle and South sections, each at about 1.3 hectares. Stem (Ψstem) and midday (Ψl) leaf water potential and predawn (ΨPD) water potential were measured at 36 locations within the block at 14 (Ψl), 10 (ΨPD) and 2 (Ψstem) points in time throughout the growing season. Of the three techniques utilized to evaluate water status, ΨPD and Ψstem were the most sensitive indicators of water stress conditions. An integrated overview of water use efficiency over the growing season was assessed by measuring the leaf carbon isotope ratio of δ13C. Fully mature leaves were sampled from 280 vines and results show, similarly to ΨPD and Ψstem, that the North section (-28.05%) was significantly different than the South (at -28.31) and Middle (at -28.33) sections. Interblock variability can be reduced by managing water supply to the North section independently of the South and Middle sections. For Napa due to foggy mornings and overcast skies, Ψl provided the least discriminatory water status measurements.

  12. Caspar Creek study

    Treesearch

    Robert R. Ziemer; Eugene Kojan; Robert B. Thomas; Robert A. Muller

    1966-01-01

    In 1961, the cooperative watershed management research program in the Lower Conifer Zone of California was started. Research in the Lower Conifer Zone was designed to obtain information and develop principles to give greater insight into the effect of land management in the Zone upon water quality, floods and sedimentation, water timing, and water yield. The research...

  13. 15 CFR 923.11 - Uses subject to management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Information on the impacts of global warming and resultant sea level rise on natural resources such as beaches... impact on the coastal waters. (2) The management program must identify those land and water uses that... significant impacts on coastal waters or on geographic areas likely to be affected by or vulnerable to sea...

  14. 15 CFR 923.11 - Uses subject to management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Information on the impacts of global warming and resultant sea level rise on natural resources such as beaches... impact on the coastal waters. (2) The management program must identify those land and water uses that... significant impacts on coastal waters or on geographic areas likely to be affected by or vulnerable to sea...

  15. 15 CFR 923.11 - Uses subject to management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Information on the impacts of global warming and resultant sea level rise on natural resources such as beaches... impact on the coastal waters. (2) The management program must identify those land and water uses that... significant impacts on coastal waters or on geographic areas likely to be affected by or vulnerable to sea...

  16. 15 CFR 923.11 - Uses subject to management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Information on the impacts of global warming and resultant sea level rise on natural resources such as beaches... impact on the coastal waters. (2) The management program must identify those land and water uses that... significant impacts on coastal waters or on geographic areas likely to be affected by or vulnerable to sea...

  17. 15 CFR 923.43 - Direct State land and water use planning and regulation-Technique B.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS... subsection 306(d)(11) of the Act for control of land and water uses within the coastal zone. The second such... specific to coastal management and the requirements of this Act. (2) Networking—The utilization of...

  18. Designing cost effective water demand management programs in Australia.

    PubMed

    White, S B; Fane, S A

    2002-01-01

    This paper describes recent experience with integrated resource planning (IRP) and the application of least cost planning (LCP) for the evaluation of demand management strategies in urban water. Two Australian case studies, Sydney and Northern New South Wales (NSW) are used in illustration. LCP can determine the most cost effective means of providing water services or alternatively the cheapest forms of water conservation. LCP contrasts to a traditional approach of evaluation which looks only at means of increasing supply. Detailed investigation of water usage, known as end-use analysis, is required for LCP. End-use analysis allows both rigorous demand forecasting, and the development and evaluation of conservation strategies. Strategies include education campaigns, increasing water use efficiency and promoting wastewater reuse or rainwater tanks. The optimal mix of conservation strategies and conventional capacity expansion is identified based on levelised unit cost. IRP uses LCP in the iterative process, evaluating and assessing options, investing in selected options, measuring the results, and then re-evaluating options. Key to this process is the design of cost effective demand management programs. IRP however includes a range of parameters beyond least economic cost in the planning process and program designs, including uncertainty, benefit partitioning and implementation considerations.

  19. Adaptive management for mitigating Cryptosporidium risk in source water: a case study in an agricultural catchment in South Australia.

    PubMed

    Bryan, Brett A; Kandulu, John; Deere, Daniel A; White, Monique; Frizenschaf, Jacqueline; Crossman, Neville D

    2009-07-01

    Water-borne pathogens such as Cryptosporidium pose a significant human health risk and catchments provide the first critical pollution 'barrier' in mitigating risk in drinking water supply. In this paper we apply an adaptive management framework to mitigating Cryptosporidium risk in source water using a case study of the Myponga catchment in South Australia. Firstly, we evaluated the effectiveness of past water quality management programs in relation to the adoption of practices by landholders using a socio-economic survey of land use and management in the catchment. The impact of past management on the mitigation of Cryptosporidium risk in source water was also evaluated based on analysis of water quality monitoring data. Quantitative risk assessment was used in planning the next round of management in the adaptive cycle. Specifically, a pathogen budget model was used to identify the major remaining sources of Cryptosporidium in the catchment and estimate the mitigation impact of 30 alternative catchment management scenarios. Survey results show that earlier programs have resulted in the comprehensive adoption of best management practices by dairy farmers including exclusion of stock from watercourses and effluent management from 2000 to 2007. Whilst median Cryptosporidium concentrations in source water have decreased since 2004 they remain above target levels and put pressure on other barriers to mitigate risk, particularly the treatment plant. Non-dairy calves were identified as the major remaining source of Cryptosporidium in the Myponga catchment. The restriction of watercourse access of non-dairy calves could achieve a further reduction in Cryptosporidium export to the Myponga reservoir of around 90% from current levels. The adaptive management framework applied in this study was useful in guiding learning from past management, and in analysing, planning and refocusing the next round of catchment management strategies to achieve water quality targets.

  20. State of South Carolina Cooperative Aquatic Plant Control Program.

    DTIC Science & Technology

    1980-11-01

    Carolina Water Resources Commission. Abstract: The proposed program provides for a comprehensive plan to control noxious aquatic plants within the state...public water bodies in South Carolina to a more natural condition by controlling the excessive growth of aquatic vegetation in the interest of...Herbicides Proposed for Use in the Aquatic Plant Management Program D Cost Estimate E EPA Established Tolerances for Selected Herbicides in Potable Water F

  1. Multipurpose Wetlands Phase II/III: final design and ongoing research investigations

    USGS Publications Warehouse

    Babbitt, Bruce; Beard, Daniel P.; Hancock, Lawrence F.

    1994-01-01

    The Eastern Municipal Water District (EMWD), the Bureau of Reclamation (USBR), and the National Biological Survey (NBS), in consultation with other governmental agencies, the academic community, and environmental groups, are involved in a cooperative wetlands research and demonstration effort. This report reflects progress through the first 3 years of a 5-year program. The goal of the Multipurpose Wetlands Research and Demonstration Project is to evaluate and expand the use of reclaimed water and contaminated ground water through the incorporation of multipurpose constructed wetlands into EMWD's total water resources management program. The focus of the wetlands is the development of design, construction, and operation criteria that will provide a cost-effective and innovative alternative for managing water resources and provide other public benefits in arid areas. The program also recognizes the fact that naturally-occurring wetlands, both coastal and inland, have been disappearing at an alarming rate.

  2. 33 CFR 385.31 - Adaptive management program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...

  3. 33 CFR 385.31 - Adaptive management program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...

  4. 33 CFR 385.31 - Adaptive management program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...

  5. 33 CFR 385.31 - Adaptive management program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...

  6. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  7. 40 CFR 403.9 - POTW pretreatment programs and/or authorization to revise pretreatment standards: Submission for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality management plans. (1) In order to be approved the POTW Pretreatment Program shall be consistent with any approved water quality management plan developed in accordance with 40 CFR parts 130, 131, as revised, where such 208 plan includes Management Agency designations and addresses pretreatment in a...

  8. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    NASA Astrophysics Data System (ADS)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  9. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  10. An investment guide for cooperative forest management in Pennsylvania

    Treesearch

    Robert S. Manthy; Robert S. Manthy

    1970-01-01

    Administrators of the Federal-State Cooperative Forest Management (CFM) program need sound investment guides for monitoring the efficiency of their program activities. This study, undertaken by the Northeastern Forest Experiment Station in cooperation with the Pennsylvania Department of Forests and Waters, provides CFM program administrators with a portion of the data...

  11. Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Water Best Management Practice #3 Fact Seet: Outlines how a leak detection and repair program helped Kirtland Air Force Base perform distribution system audits, leak detection, and repair to conserve water site-wide.

  12. 30 CFR 402.14 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...

  13. 30 CFR 402.14 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...

  14. 30 CFR 402.14 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...

  15. 30 CFR 402.14 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...

  16. 30 CFR 402.14 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...

  17. FAA Energy Order 1053.1A - Energy and Water Management Program For FAA Buildings and Facilities

    DOT National Transportation Integrated Search

    1996-12-27

    This order provides Federal Aviation Administration (FAA) policies, procedures, and organizational responsibilities, in a focused and expanded agency energy and water planning and conservation program, for complying with the national mandates for the...

  18. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information - i.e., the projected reduction in management costs - with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.

  19. Management experiences and trends for water reuse implementation in Northern California.

    PubMed

    Bischel, Heather N; Simon, Gregory L; Frisby, Tammy M; Luthy, Richard G

    2012-01-03

    In 2010, California fell nearly 300,000 acre-ft per year (AFY) short of its goal to recycle 1,000,000 AFY of municipal wastewater. Growth of recycled water in the 48 Northern California counties represented only 20% of the statewide increase in reuse between 2001 and 2009. To evaluate these trends and experiences, major drivers and challenges that influenced the implementation of recycled water programs in Northern California are presented based on a survey of 71 program managers conducted in 2010. Regulatory requirements limiting discharge, cited by 65% of respondents as a driver for program implementation, historically played an important role in motivating many water reuse programs in the region. More recently, pressures from limited water supplies and needs for system reliability are prevalent drivers. Almost half of respondents (49%) cited ecological protection or enhancement goals as drivers for implementation. However, water reuse for direct benefit of natural systems and wildlife habitat represents just 6-7% of total recycling in Northern California and few financial incentives exist for such projects. Economic challenges are the greatest barrier to successful project implementation. In particular, high costs of distribution systems (pipelines) are especially challenging, with $1 to 3 million/mile costs experienced. Negative perceptions of water reuse were cited by only 26% of respondents as major hindrances to implementation of surveyed programs.

  20. Consumer demand for green stormwater management technology in an urban setting: The case of Chicago rain barrels

    NASA Astrophysics Data System (ADS)

    Ando, Amy W.; Freitas, Luiz P. C.

    2011-12-01

    Hydrological disruption and water pollution from urbanization can be reduced if households in urban areas adopt decentralized storm water controls. We study a citywide municipal subsidized rain-barrel program in the third biggest city in the United States, Chicago, to explore what factors influence whether households purchase this sort of green storm water management technology in an urban setting. Specifically, we regress census-tract level data on the number of rain barrels adopted in different parts of the city on socioeconomic variables, data on local flood frequency, and features of the housing stock. We find that rain-barrel purchases are not correlated with local levels of flooding, even though city residents were told by program managers that rain barrels could alleviate local flooding. Instead, rain barrels are heavily concentrated in places with high-income attitudinally green populations. We do find more rain barrels were adopted in places close to rain-barrel distribution points and near sites of hydrological information campaigns; thus, policy makers might increase green-technology adoption in areas where they can do the most good by reducing transaction costs and providing education programs to those areas. Finally, our results indicate that owner occupancy is positively correlated with green-technology adoption. Low-rise rental housing may have inefficiently low levels of adoption, such that city managers might want to develop programs to encourage storm water management investments by landlords who do not live in their own properties.

  1. Effects of climate and socio-economic changes on water availability, use and management at the regional scale - a case study in the dry inner-alpine zone of Switzerland

    NASA Astrophysics Data System (ADS)

    Weingartner, Rolf; Reynard, Emmanuel; Graefe, Olivier; Liniger, Hanspeter; Rist, Stephan; Schaedler, Bruno; Schneider, Flurina

    2014-05-01

    The research program NRP 61 "Sustainable Water Management" of the Swiss National Science Foundation had set the goal to provide a basis for sustainable water management in Switzerland. As part of this research program the effects of climate and socio-economic changes on water availability, water use and water management were investigated in the Crans-Montana-Sierre region, situated in the dry inner-alpine Valais (project MontanAqua). The project followed an inter- and trans-disciplinary approach; stakeholders were involved from the very beginning. We assessed the current water situation with quantitative and qualitative methods: A dense hydro-meteorological network was built-up, tracer experiments were conducted and communal water uses as well as the current water management system were analyzed. These investigations paved the way to develop models to simulate possible changes in the near and far future. For this purpose, we applied existing regional climate change scenarios and developed socio-economic scenarios together with the stakeholders. The findings of MontanAqua can be summarized into five messages, each with a short recommendation: 1 - The socio-economic changes have a greater impact on the water situation in 2050 than climate change: A territorial development that limits water needs is recommended. This requires important changes of current water- and land-management practices. 2 - The water quantities available now and in 2050 are generally sufficient. However, shortages are possible in some areas and seasonally: We recommend establishing a regional water management which goes beyond the development of technical infrastructure such as storage facilities or connections between water supply networks. This measure should be accompanied by a clarification and negotiation of water rights at the regional level. 3 - Water issues are primarily regional management problems: We advocate for better cooperation between the eleven municipalities of the region and the establishment of a demand management strategy which is aimed at coordinating uses and reducing water needs. 4 - Inter-communal measures on infrastructures can help to ensure sustainable water supply, but only if they are integrated into ambitious institutional reforms: A more equitable water management at the regional level requires a new negotiation of management principles and access rights to the water resources. 5 - To achieve a sustainable regional water management, improved data management and transparency is needed: We recommend that the Valais Canton develop a strategy for monitoring water at the regional level and for the collection of homogenized data. We also recommend that the Canton assess the current water management at the regional level in terms of sustainability. Finally, we advocate that a study to clarify the water rights is launched.

  2. An inexact chance-constrained programming model for water quality management in Binhai New Area of Tianjin, China.

    PubMed

    Xie, Y L; Li, Y P; Huang, G H; Li, Y F; Chen, L R

    2011-04-15

    In this study, an inexact-chance-constrained water quality management (ICC-WQM) model is developed for planning regional environmental management under uncertainty. This method is based on an integration of interval linear programming (ILP) and chance-constrained programming (CCP) techniques. ICC-WQM allows uncertainties presented as both probability distributions and interval values to be incorporated within a general optimization framework. Complexities in environmental management systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The developed method is applied to planning chemical-industry development in Binhai New Area of Tianjin, China. Interval solutions associated with different risk levels of constraint violation have been obtained. They can be used for generating decision alternatives and thus help decision makers identify desired policies under various system-reliability constraints of water environmental capacity of pollutant. Tradeoffs between system benefits and constraint-violation risks can also be tackled. They are helpful for supporting (a) decision of wastewater discharge and government investment, (b) formulation of local policies regarding water consumption, economic development and industry structure, and (c) analysis of interactions among economic benefits, system reliability and pollutant discharges. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Improving Forecasts for Water Management

    NASA Astrophysics Data System (ADS)

    Arumugam, Sankar; Wood, Andy; Rajagopalan, Balaji; Schaake, John

    2014-01-01

    Recent advances in seasonal to interannual hydroclimate predictions provide an opportunity for developing a proactive approach toward water management. This motivated a recent AGU Chapman Conference (see program details at http://chapman.agu.org/watermanagement/). Approximately 85 participants from the United States, Oceania, Asia, Europe, and South America presented and discussed the current state of successes, challenges, and opportunities in seasonal to interannual hydroclimate forecasts and water management, and a number of key messages emerged.

  4. Frameworks for amending reservoir water management

    USGS Publications Warehouse

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.

  5. Implications of Modeling Uncertainty for Water Quality Decision Making

    NASA Astrophysics Data System (ADS)

    Shabman, L.

    2002-05-01

    The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications of the adaptive implementation for setting of water quality standards, for design of watershed monitoring programs and for the regulatory rules governing the TMDL program implementation.

  6. Public-Private Partnerships Working Beyond Scale Challenges toward Water Quality Improvements from Private Lands

    NASA Astrophysics Data System (ADS)

    Enloe, Stephanie K.; Schulte, Lisa A.; Tyndall, John C.

    2017-10-01

    In recognition that Iowa agriculture must maintain long-term production of food, fiber, clean water, healthy soil, and robust rural economies, Iowa recently devised a nutrient reduction strategy to set objectives for water quality improvements. To demonstrate how watershed programs and farmers can reduce nutrient and sediment pollution in Iowa waters, the Iowa Water Quality Initiative selected the Boone River Watershed Nutrient Management Initiative as one of eight demonstration projects. For over a decade, diverse public, private, and non-profit partner organizations have worked in the Boone River Watershed to engage farmers in water quality management efforts. To evaluate social dynamics in the Boone River Watershed and provide partners with actionable recommendations, we conducted and analyzed semi-structured interviews with 33 program leaders, farmers, and local agronomists. We triangulated primary interview data with formal analysis of Boone River Watershed documents such as grant applications, progress reports, and outreach materials. Our evaluation suggests that while multi-stakeholder collaboration has enabled partners to overcome many of the traditional barriers to watershed programming, scale mismatches caused by external socio-economic and ecological forces still present substantial obstacles to programmatic resilience. Public funding restrictions and timeframes, for example, often cause interruptions to adaptive management of water quality monitoring and farmer engagement. We present our findings within a resilience framework to demonstrate how multi-stakeholder collaboration can help sustain adaptive watershed programs to improve socio-ecological function in agricultural watersheds such as the Boone River Watershed.

  7. Optimization Strategies for Long-Term Ground Water Remedies (with Particular Emphasis on Pump and Treat Systems)

    EPA Pesticide Factsheets

    This fact sheet has been prepared to assist environmental case managers from Federal and State agencies, environmental program managers from private organizations, and environmental contractors with optimization of operating long-term ground water remedies

  8. Florida's salt-marsh management issues: 1991-98.

    PubMed

    Carlson, D B; O'Bryan, P D; Rey, J R

    1999-06-01

    During the 1990s, Florida has continued to make important strides in managing salt marshes for both mosquito control and natural resource enhancement. The political mechanism for this progress continues to be interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes (SOMM). Continuing management experience and research has helped refine the most environmentally acceptable source reduction methods, which typically are Rotational Impoundment Management or Open Marsh Water Management. The development of regional marsh management plans for salt marshes within the Indian River Lagoon by the SOMM has helped direct the implementation of the best management practices for these marshes. Controversy occasionally occurs concerning what management technique is most appropriate for individual marshes. The most common disagreement is over the benefits of maintaining an impoundment in an "open" vs. "closed" condition, with the "closed" condition, allowing for summer mosquito control flooding or winter waterfowl management. New federal initiatives influencing salt-marsh management have included the Indian River Lagoon-National Estuary Program and the Pesticide Environmental Stewardship Program. A new Florida initiative is the Florida Department of Environmental Protection's Eco-system Management Program with continuing involvement by the Surface Water Improvement and Management program. A developing mitigation banking program has the potential to benefit marsh management but mosquito control interests may suffer if not handled properly. Larvicides remain as an important salt-marsh integrated pest management tool with the greatest acreage being treated with temephos, followed by Bacillus thuringiensis israelensis and methoprene. However, over the past 14 years, use of biorational larvicides has increased greatly.

  9. An inventory-theory-based interval-parameter two-stage stochastic programming model for water resources management

    NASA Astrophysics Data System (ADS)

    Suo, M. Q.; Li, Y. P.; Huang, G. H.

    2011-09-01

    In this study, an inventory-theory-based interval-parameter two-stage stochastic programming (IB-ITSP) model is proposed through integrating inventory theory into an interval-parameter two-stage stochastic optimization framework. This method can not only address system uncertainties with complex presentation but also reflect transferring batch (the transferring quantity at once) and period (the corresponding cycle time) in decision making problems. A case of water allocation problems in water resources management planning is studied to demonstrate the applicability of this method. Under different flow levels, different transferring measures are generated by this method when the promised water cannot be met. Moreover, interval solutions associated with different transferring costs also have been provided. They can be used for generating decision alternatives and thus help water resources managers to identify desired policies. Compared with the ITSP method, the IB-ITSP model can provide a positive measure for solving water shortage problems and afford useful information for decision makers under uncertainty.

  10. National Water-Quality Assessment Program - Red River of the North

    USGS Publications Warehouse

    Stoner, J.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources, and to provide a sound scientific understanding of the primary natural and human factors affecting the quality of these resources. The program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels.

  11. SCIENCE FOR INTEGRATED WATERSHED MANAGEMENT: A MULTI-SCALE EXPERIMENTAL CASE STUDY LINKING LAND USE MANAGEMENT PRACTICES AND WATER QUALITY IN SOUTHERN OHIO

    EPA Science Inventory

    Although it is routine for watershed management programs to coincide the monitoring of land use impacts and water quality at different spatial scales, rarely are the data collected in a manner to elucidate the linkages among ecological systems across a drainage network. There rem...

  12. Department of Energy PEIS scoping session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badar, L

    1992-12-10

    This is the second programmatic environmental impact statement scoping session held in Durango, Colorado. The purpose was: to present the ground water program so as to build some familiarity and understanding about the issue involved; and to get Durango community's input. Scoping is the collection of information and getting everyone involved and really making a team out of coming up with a proposed action. This report contains the presentations made by the project manager for the Uranium Mill Tailings (UMTRA) program, site manager for the Durango UMTRA site, manager of ground water hydrology, and include comments made by local residents.

  13. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.

  14. 40 CFR 122.35 - As an operator of a regulated small MS4, may I share the responsibility to implement the minimum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....35 Section 122.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit... minimum control measure(s) in your storm water management program. (For example, if a State or Tribe is...

  15. 40 CFR 122.35 - As an operator of a regulated small MS4, may I share the responsibility to implement the minimum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....35 Section 122.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit... minimum control measure(s) in your storm water management program. (For example, if a State or Tribe is...

  16. The watershed and river systems management program

    USGS Publications Warehouse

    Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,

    2005-01-01

    The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.

  17. A combined linear optimisation methodology for water resources allocation in Alfeios River Basin (Greece) under uncertain and vague system conditions

    NASA Astrophysics Data System (ADS)

    Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus

    2013-04-01

    In the present study, a combined linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), is employed for optimizing water allocation under uncertain system conditions in the Alfeios River Basin, in Greece. The Alfeios River is a water resources system of great natural, ecological, social and economic importance for Western Greece, since it has the longest and highest flow rate watercourse in the Peloponnisos region. Moreover, the river basin was exposed in the last decades to a plethora of environmental stresses (e.g. hydrogeological alterations, intensively irrigated agriculture, surface and groundwater overexploitation and infrastructure developments), resulting in the degradation of its quantitative and qualitative characteristics. As in most Mediterranean countries, water resource management in Alfeios River Basin has been focused up to now on an essentially supply-driven approach. It is still characterized by a lack of effective operational strategies. Authority responsibility relationships are fragmented, and law enforcement and policy implementation are weak. The present regulated water allocation puzzle entails a mixture of hydropower generation, irrigation, drinking water supply and recreational activities. Under these conditions its water resources management is characterised by high uncertainty and by vague and imprecise data. The considered methodology has been developed in order to deal with uncertainties expressed as either probability distributions, or/and fuzzy boundary intervals, derived by associated α-cut levels. In this framework a set of deterministic submodels is studied through linear programming. The ad hoc water resources management and alternative management patterns in an Alfeios subbasin are analyzed and evaluated under various scenarios, using the above mentioned methodology, aiming to promote a sustainable and equitable water management. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method, Elsevier Ltd, Advances in Water Resources, 33: 1105-1117. doi:10.1016/j.advwatres.2010.06.015 Bekri, E.S., Disse, M. and P.C.,Yannopoulos, (2012), Methodological framework for correction of quick river discharge measurements using quality characteristics, Session of Environmental Hydraulics - Hydrodynamics, 2nd Common Conference of Hellenic Hydrotechnical Association and Greek Committee for Water Resources Management, Volume: 546-557 (in Greek).

  18. CLEAN WATER STATE REVOLVING FUND NATIONAL INFORMATION MANAGEMENT SYSTEM (NIMS)

    EPA Science Inventory

    Resource Purpose:Data collected annually from EPA Regional Offices and States on the 51 Clean Water State Revolving Fund (CWSRF) programs. The data provides the Agency with information on sources and uses of CWSRF funds to finance wastewater management projects, nonpoint ...

  19. Environmental Management

    ScienceCinema

    None

    2018-01-16

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  20. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. The area suffers from the water scarcity problem and therefore the trade-off between the level of deficit and economical profit should be assessed. Based on the results, while the maximum net benefit has been obtained for the stress-avoidance (SA) irrigation policy, the highest water profitability, defined by economical net benefit gained from unit irrigation water volume application, has been resulted when only about 60% of water used in the SA policy is applied.

  1. Notification: Notification of Preliminary Research to Evaluate the Clean Water State Revolving Fund Green Project Reserve Program

    EPA Pesticide Factsheets

    Project #OPE-FY15-0009, November 12, 2014. The EPA OIG plans to begin preliminary research on the EPA’s efforts to effectively manage the Clean Water State Revolving Fund (CWSRF) Green Project Reserve (GPR) Program.

  2. Water Quality Analysis Simulation

    EPA Pesticide Factsheets

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  3. Classifying the health of Connecticut streams using benthic macroinvertebrates with implications for water management.

    PubMed

    Bellucci, Christopher J; Becker, Mary E; Beauchene, Mike; Dunbar, Lee

    2013-06-01

    Bioassessments have formed the foundation of many water quality monitoring programs throughout the United States. Like many state water quality programs, Connecticut has developed a relational database containing information about species richness, species composition, relative abundance, and feeding relationships among macroinvertebrates present in stream and river systems. Geographic Information Systems can provide estimates of landscape condition and watershed characteristics and when combined with measurements of stream biology, provide a useful visual display of information that is useful in a management context. The objective of our study was to estimate the stream health for all wadeable stream kilometers in Connecticut using a combination of macroinvertebrate metrics and landscape variables. We developed and evaluated models using an information theoretic approach to predict stream health as measured by macroinvertebrate multimetric index (MMI) and identified the best fitting model as a three variable model, including percent impervious land cover, a wetlands metric, and catchment slope that best fit the MMI scores (adj-R (2) = 0.56, SE = 11.73). We then provide examples of how modeling can augment existing programs to support water management policies under the Federal Clean Water Act such as stream assessments and anti-degradation.

  4. Sustainable urban stormwater management in the tropics: An evaluation of Singapore's ABC Waters Program

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Lu, X. X.

    2016-07-01

    The Active Beautiful Clean (ABC) Waters Program was implemented in 2006 as part of Singapore's stormwater management strategy and reflects the country's move towards Water Sensitive Urbanism through the adoption of Low-Impact Development (LID) ideology and practices. It is the first holistic and comprehensive LID program in the tropics and holds promise for extension to other tropical cities. This paper presents a comprehensive summary of the goals, LID practices (ABC design features) and design considerations as well as results of several monitored sites, including a constructed wetland, two rain gardens, green roofs and three canal restoration projects. We evaluate the ABC Waters Program based on these initial results and consider the challenges, issues and the research needs for it to meet its hydrological and water quality remediation goals. So far, the ABC design features evaluated perform well in removing particulates. Performance in nutrient removal is poor. With over 60 projects completed within 10 years, post-project monitoring and evaluation is necessary and complements on-going laboratory and modelling research projects conducted by local academic institutions.

  5. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  6. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  7. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  8. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  9. Improving Voluntary Environmental Management Programs: Facilitating Learning and Adaptation

    NASA Astrophysics Data System (ADS)

    Genskow, Kenneth D.; Wood, Danielle M.

    2011-05-01

    Environmental planners and managers face unique challenges understanding and documenting the effectiveness of programs that rely on voluntary actions by private landowners. Programs, such as those aimed at reducing nonpoint source pollution or improving habitat, intend to reach those goals by persuading landowners to adopt behaviors and management practices consistent with environmental restoration and protection. Our purpose with this paper is to identify barriers for improving voluntary environmental management programs and ways to overcome them. We first draw upon insights regarding data, learning, and adaptation from the adaptive management and performance management literatures, describing three key issues: overcoming information constraints, structural limitations, and organizational culture. Although these lessons are applicable to a variety of voluntary environmental management programs, we then present the issues in the context of on-going research for nonpoint source water quality pollution. We end the discussion by highlighting important elements for advancing voluntary program efforts.

  10. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  11. Optimization Tool For Allocation Of Watershed Management Practices For Sediment And Nutrient Control

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein...

  12. 40 CFR 35.638 - Award limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amount authorized under the Clean Water Act section 319 and 518(f) for making grants to Tribes or... the Act; (2) Approved Tribe or Intertribal Consortium management program. EPA has approved the Tribes... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants...

  13. 40 CFR 35.638 - Award limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amount authorized under the Clean Water Act section 319 and 518(f) for making grants to Tribes or... the Act; (2) Approved Tribe or Intertribal Consortium management program. EPA has approved the Tribes... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants...

  14. 40 CFR 35.638 - Award limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amount authorized under the Clean Water Act section 319 and 518(f) for making grants to Tribes or... the Act; (2) Approved Tribe or Intertribal Consortium management program. EPA has approved the Tribes... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants...

  15. 40 CFR 35.638 - Award limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amount authorized under the Clean Water Act section 319 and 518(f) for making grants to Tribes or... the Act; (2) Approved Tribe or Intertribal Consortium management program. EPA has approved the Tribes... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants...

  16. 40 CFR 35.638 - Award limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amount authorized under the Clean Water Act section 319 and 518(f) for making grants to Tribes or... the Act; (2) Approved Tribe or Intertribal Consortium management program. EPA has approved the Tribes... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants...

  17. Building leadership capacity to drive sustainable water management: the evaluation of a customised program.

    PubMed

    Taylor, A C

    2010-01-01

    This paper describes a customised, six-month, leadership development program (LDP) that was designed for emerging leaders in the Australian water industry who were promoting sustainable urban water management (SUWM). It also presents results from an evaluation of the program's benefits, costs and overall 'return on investment' (ROI). The program was designed to help build emergent leadership capacity in the water industry, given strong evidence that this form of leadership plays an important role in advancing SUWM. It involved '360-degree feedback' processes, training, individual leadership development plans, and coaching sessions. Its design was informed by a review of the literature, and its content was informed by local empirical research involving effective SUWM leaders. The evaluation used a seven-tier assessment framework that examined different dimensions of the program's performance using source and methodological triangulation. The results indicate that such LDPs can produce a range of positive outcomes, such as promoting desired leadership behaviours and generating a positive ROI estimate. Specifically, the program's estimated ROI was approximately 190% after only one year. The primary conclusion is that evidence-based LDPs which are highly customised for specific types of leaders in the water industry represent a promising type of intervention to build forms of leadership capacity which are needed to successfully promote SUWM.

  18. Funding Stormwater Management with the Clean Water State Revolving Fund

    EPA Pesticide Factsheets

    This fact sheet demonstrates how the CWSRF provides assistance to eligible recipients for stormwater management projects. It highlights successful stormwater management programs in New Jersey and New Mexico.

  19. Environmental Management and the New Politics of Western Water: The Animas-La Plata Project and Implementation of the Endangered Species Act.

    PubMed

    ELLISON

    1999-05-01

    / This paper explores the new politics of western water policy through an examination of the Animas-La Plata water project and implementation of the Endangered Species Act. It is suggested that the focus of western water programming has shifted from the source of distributed funds, the United States Congress, to the agencies originally created to deliver federal benefits because funding for new project construction has not been forthcoming. Under this new system, members of Congress continue to excite their constituents with promises of money for new project starts, while the administrative agencies perform the myriad duties needed to keep these projects alive. The result is that political objectives have replaced operational/management objectives in administrative processes. In this case, the author demonstrates how resource managers in the Bureau of Reclamation manipulated hydrological analysis to control administrative process, why their manipulation was unfair, and perhaps illegal, and why biologists from the US Fish and Wildlife Service accepted the analysis. While ostensibly protecting all interests, the result is that none of the objectives of federal water programming are achieved. KEY WORDS: Environmental management; Administrative politics; Water policy; Endangered Species Act; Animas-La Plata, Bureau of Reclamation

  20. THE BUREAU OF AERONAUTICS RESEARCH AND DEVELOPMENT PROGRAM FOR WATER-BASED AIRCRAFT,

    DTIC Science & Technology

    WATER BASED AIRCRAFT, BUDGETS), RESEARCH MANAGEMENT, FLIGHT TESTING, WIND TUNNEL MODELS, TABLES(DATA), AIRCRAFT, TEST VEHICLES, HYDRODYNAMICS, PIERS, FLOATING DOCKS, LOADS(FORCES), WATER , STABILITY, SPRAYS, NAVAL AIRCRAFT.

  1. Water Resources Research Grant Program project descriptions, fiscal year 1986

    USGS Publications Warehouse

    ,

    1986-01-01

    Information is presented on the 43 projects funded by the United States Geological Survey 's Water Resources Grant Program in fiscal year 1986. The report gives the grant number; project title; performing organization; principal investigator(s); dates; and a project description which includes (1) identification of the water related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, (4) approach, and (5) result users. The 43 projects include 14 in the area of groundwater management, 6 in surface-water management, 2 in systems-operating/planning, 3 in irrigation management, 8 in desalination/reuse, 6 in economic/institutional studies, and 4 in climate variability. The reports contain tables showing (1) funding according to research topic, (2) projects funded to type of submitting organization, (3) proposals received, research topic, and funding levels, and (4) submitting organization. A comparison is given to fiscal year 1985 in each case. (USGS)

  2. 78 FR 58344 - Information Collection Request Sent to the Office of Management and Budget (OMB) for Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...-0031. Title: Land and Water Conservation Fund State Assistance Program, 36 CFR 59. Service Form Numbers... Water Conservation Fund Act of 1965 (LWCF Act) (16 U.S.C. 460/-4 et seq.) was enacted to help preserve... FR 12349) and the Land and Water Conservation Fund State Assistance Program Federal Financial...

  3. Supervisory Management in the Water/Wastewater Field: Self Study Program. Revised Second Edition. Textbook and Student Manual. Lessons 1-7 and Appendix. Executive Programs of the Graduate School of Business Administration of Michigan State University.

    ERIC Educational Resources Information Center

    Liebrenz, Marilyn L., Ed.

    This document is the student manual for a self-study course on managerial principles as they relate to the water or wastewater treatment field. Each of the seven lessons is concerned with a segment of the management process and corresponds to reading material in the accompanying text. An objective and subjective test portion is included in each…

  4. 40 CFR 130.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING..., interstate, areawide and regional and local CWA water quality planning and management activities undertaken on or after February 11, 1985 including all updates and continuing certifications for approved Water...

  5. Society and Water

    ERIC Educational Resources Information Center

    Qutub, Musa Y.

    1972-01-01

    At a national symposium on Societal Problems of Water Resources at Western Illinois University, scientists discussed dams, canals, water pollution control and management programs, federal-state relations in resource planning, and their effects on how we live. (BL)

  6. Sensitivity, Calibration, and Validation of SWAT in the Choptank River Basin

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, water quality models to ecosystem management is increasingly evident as more programs adopt these tools to help assess the effectiveness of different management scenarios on the environment. The USDA-Conservation Effects Assessment Project (CEAP) is one such program whi...

  7. EVALUATING AN URBAN STREAM RESTORATION PROGRAM FOR IMPROVING WATER QUALITY, IN-STREAM HABITAT, AND BANK STABILITY

    EPA Science Inventory

    To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff, as well as minimize pollutants and other stressors contained in stormwater runoff. It is well known that land use practice...

  8. Water Operations Technical Support Program: Proceedings of the Seminar on Water Quality (9th) Held in San Antonio, Texas on 16-20 March 1992

    DTIC Science & Technology

    1992-10-01

    System Model for Water Quality Control by Jackson K. Brown ...................................... 119 Management Technique for Long-Term Flow... Modeling Activities for the ARCS Program by David C. Cowgill ...................................... 141 Toxicity and Chemistry Testing of Great Lakes...225 Combined Hydrodynamic and Water Quality Modeling of Lower Green Bay by David J. Mark, Barry W. Bunch, and Norman W. Scheffner

  9. Safe drinking water in regional NSW, Australia.

    PubMed

    Byleveld, Paul M; Leask, Sandy D; Jarvis, Leslie A; Wall, Katrina J; Henderson, Wendy N; Tickell, Joshua E

    2016-04-15

    The New South Wales (NSW) Public Health Act 2010 requires water suppliers to implement a drinking water quality assurance program that addresses the 'Framework for management of drinking water quality' in the Australian drinking water guidelines. NSW Health has recognised the importance of a staged implementation of this requirement and the need to support regional water utilities. To date, NSW Health has assisted 74 regional utilities to develop and implement their management systems. The Public Health Act 2010 has increased awareness of drinking water risk management, and offers a systematic process to identify and control risks. This has benefited large utilities, smaller suppliers, and remote and Aboriginal communities. Work is continuing to ensure implementation of the process by private suppliers and water carters.

  10. Rain Barrels: A Catalyst for Change?

    ERIC Educational Resources Information Center

    Bakacs, Michele E.; Haberland, Mike; Mangiafico, Salvatore S.; Winquist, Aileen; Obropta, Christopher C.; Boyajian, Amy; Mellor, Sara

    2013-01-01

    Over the past 4 years, rain barrel programming for residents has been implemented in both Northern Virginia and New Jersey as a method for educating the public about stormwater management and water conservation. Program participants demonstrated a significant increase in knowledge of water resource issues. Follow-up surveys showed 58% of New…

  11. A Potential Approach for Low Flow Selection in Water Resource Supply and Management

    Treesearch

    Ying Ouyang

    2012-01-01

    Low flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was...

  12. Comparison of Flow Calibration Using NEXRAD and Surface Rain Gauge Data in ArcSWAT

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, water quality models to ecosystem management is increasingly evident as more programs adopt these tools to help assess the effectiveness of different management scenarios on the environment. The USDA-Conservation Effects Assessment Project (CEAP) is one such program whi...

  13. Water-use computer programs for Florida

    USGS Publications Warehouse

    Geiger, L.H.

    1984-01-01

    Using U.S. Geological Survey computer programs L149-L153, this report shows how to process water-use data for the functional water-use categories: public supply, rural supply, industrial self-supplied, irrigation, and thermo-electric power generation. The programs are used to selectively retrieve entries and list them in a format suitable for publication. Instructions are given for coding cards to produce tables of water-use data for each of the functional use categories. These cards contain entries that identify a particular water-use data-collection site in Florida. Entries on the cards include location information such as county code, water management district code, hydrologic unit code, and, where applicable, a site name and number. Annual and monthly pumpage is included. These entries are shown with several different headings; for example, surface water or ground water, freshwater or saline pumpages, or consumptive use. All the programs use a similar approach; however, the actual programs differ with each functional water-use category and are discussed separately. Data prepared for these programs can also be processed by the National Water-Use Data System. (USGS)

  14. 7 CFR 634.40 - Financial management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Financial Management § 634.40 Financial management. (a)(1) Finance and accounting will be in conformance with Office of Management... 7 Agriculture 6 2010-01-01 2010-01-01 false Financial management. 634.40 Section 634.40...

  15. 7 CFR 634.40 - Financial management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Financial management. 634.40 Section 634.40..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Financial Management § 634.40 Financial management. (a)(1) Finance and accounting will be in conformance with Office of Management...

  16. 7 CFR 634.40 - Financial management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Financial management. 634.40 Section 634.40..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Financial Management § 634.40 Financial management. (a)(1) Finance and accounting will be in conformance with Office of Management...

  17. 7 CFR 634.40 - Financial management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Financial management. 634.40 Section 634.40..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Financial Management § 634.40 Financial management. (a)(1) Finance and accounting will be in conformance with Office of Management...

  18. Stakeholder involvement in water management: necessity or luxury?

    PubMed

    Morrison, K

    2003-01-01

    Stakeholder involvement in water management is widely recognized as an important component of the design and implementation of sustainable water management initiatives. Despite this, there remains a deep-rooted resistance to the widespread implementation of programs to prioritize such involvement (as witnessed by, for example, the low priority given to the public involvement element of the European Union Water Framework Directive). This paper addresses the issue of stakeholder involvement by first confronting the fact that it is not a water issue, per se. Such diverse fields as economics, agriculture, public health, pollution prevention, business and education have also identified stakeholder involvement as a difficult but necessary component of successful action in their fields. For the water sector, the issue of stakeholder involvement as either a necessity for sustainable water management, or a luxury to be used to complement traditional approaches, is discussed.

  19. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit...

  20. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...

  1. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...

  2. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit...

  3. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...

  4. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit...

  5. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...

  6. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...

  7. Women, water supply and sanitation: INSTRAW's training initiatives.

    PubMed

    Tavares, J

    1997-01-01

    The International Research and Training Institute for the Advancement of Women (INSTRAW) has worked on women, water supply and sanitation since 1986. The program aims to establish the relationship between women, water supply and sanitation and the promotion of the needs of women and their participation in Water Supply and Sanitation projects. Using a multimedia and modular approach, the training package on Women, Water Supply and Sanitation aims to provide an overview for the different government agencies, engineers, trainers and managers involved in water supply and sanitation projects. The six modules contained in this package include: 1) The International Drinking Water Supply and Sanitation Decade and beyond; 2) The Participation of Women in planning, Choice of Technology and Implementation of Sustainable Water Supply and Sanitation Projects; 3) Role of Women in Hygiene Education and Training Activities for Water Supply and Sanitation Projects; 4) Involvement of Women in Management of Water resources, Water Supply and Waste Disposal; 5) Women and Waste Management; and 6) Evaluation and Monitoring of Water Supply and Sanitation Programs, Projects and the Role of Women. In addition, each module comprises five components including objective description, detailed bibliography, feedback tools for each modular unit, lesson plan and guides for trainers and users, and audiovisual aids. In the face of water scarcity, INSTRAW highlights the importance of women¿s participation in the sustainable use of water supply.

  8. Decision Support System for Reservoir Management and Operation in Africa

    NASA Astrophysics Data System (ADS)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  9. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  10. USGS California Water Science Center water programs in California

    USGS Publications Warehouse

    Shulters, Michael V.

    2005-01-01

    California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.

  11. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart) recorders and electronic data recorders that record the water level at 60-minute intervals. For wells having incomplete water-level record, water levels during periods of missing record may have been higher or lower than recorded water levels. Water samples collected from 85 wells during May, June, July, August, September, October, November, and December 1999 were analyzed to determine chloride concentration in the Savannah and Brunswick areas.

  12. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    NASA Astrophysics Data System (ADS)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  13. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality...

  14. 43 CFR 404.16 - What information must I include in my statement of interest?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; (2) Water demand management alternatives (e.g., water conservation and other approaches to reduce... BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404... water supply project, including: (1) Geographical scope; (2) Demographics; and (3) Existing rural water...

  15. 43 CFR 404.16 - What information must I include in my statement of interest?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; (2) Water demand management alternatives (e.g., water conservation and other approaches to reduce... BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404... water supply project, including: (1) Geographical scope; (2) Demographics; and (3) Existing rural water...

  16. 43 CFR 404.16 - What information must I include in my statement of interest?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; (2) Water demand management alternatives (e.g., water conservation and other approaches to reduce... BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404... water supply project, including: (1) Geographical scope; (2) Demographics; and (3) Existing rural water...

  17. AN OVERVIEW OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S DRINKING WATER TREATMENT AND DISTRIBUTION SYSTEM RESEARCH PROGRAM

    EPA Science Inventory

    This presentation will provide an overview of drinking water research being conducted by the National Risk Management Research Laboratory (NRMRL) of the U.S. EPA. The Water Supply and Water Resources Division (WSWRD) is an internationally known water research organization establi...

  18. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to...

  19. 18 CFR 740.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Definitions. 740.2 Section 740.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.2 Definitions. Act means the Water Resources Planning Act (as amended), Pub. L. 89...

  20. 18 CFR 740.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 740.2 Section 740.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.2 Definitions. Act means the Water Resources Planning Act (as amended), Pub. L. 89...

  1. 18 CFR 740.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Definitions. 740.2 Section 740.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.2 Definitions. Act means the Water Resources Planning Act (as amended), Pub. L. 89...

  2. 18 CFR 740.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Definitions. 740.2 Section 740.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.2 Definitions. Act means the Water Resources Planning Act (as amended), Pub. L. 89...

  3. 18 CFR 740.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Definitions. 740.2 Section 740.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.2 Definitions. Act means the Water Resources Planning Act (as amended), Pub. L. 89...

  4. Using NASA Products of the Water Cycle for Improved Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network (FEWSNET) being expanded for famine relief to many developing nations of the world using a NASA Land Data Assimilation System (LDAS); 2) Air Force Weather Agency (AFWA) global hydrology mapping program that extends their global hydrology to much finer resolutions through use of an optimized LDAS; 3) 'SERVIR' a visualization and monitoring center of Earth science information in Central America and East Africa with plans for additional locations in developing countries of the world; 4) installing NASA Water Information System Platforms (WISPs) strategically located throughout the Middle East and North Africa (MENA) in partnerships with USAID and the World Bank; and 5) Latin American capacity building efforts within GEO.

  5. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  6. Utiliizing Vegetative Buffer Strips to Remove Dissolved and Sediment-Bound Herbicides from Surface Water Runoff

    USDA-ARS?s Scientific Manuscript database

    Current federal and state soil and water conservation programs consist primarily of cost-sharing or compensating farmers for implementing a set of pre-defined best management practices which do not consider specific environmental outcomes or cost-effectiveness of the program at the farm or watershed...

  7. Alex Lemke | NREL

    Science.gov Websites

    electric power professionals. Prior to that, Alex spent 15 years with Crain Communications' RCR Wireless @nrel.gov | 303-384-7018 As the Wind and Water Power Program Communications Team Lead, Alex serves as the primary interface to the Wind and Water Power Program management team to develop communication strategies

  8. 1998 federal energy and water management award winners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-28

    Energy is a luxury that no one can afford to waste, and many Federal Government agencies are becoming increasingly aware of the importance of using energy wisely. Thoughtful use of energy resources is important, not only to meet agency goals, but because energy efficiency helps improve air quality. Sound facility management offers huge savings that affect the agency`s bottom line, the environment, and workplace quality. In these fiscally-modest times, pursuing sound energy management programs can present additional challenges for energy and facility managers. The correct path to take is not always the easiest. Hard work, innovation, and vision are characteristicmore » of those who pursue energy efficiency. That is why the Department of energy, Federal Energy Management Program (FEMP) is proud to salute the winners of the 1998 Federal Energy and Water Management Award. The 1998 winners represent the kind of 21st century thinking that will help achieve widespread Federal energy efficiency. In one year, the winners, through a combination of public and private partnerships, saved more than $222 million and 10.5 trillion Btu by actively identifying and implementing energy efficiency, water conservation, and renewable energy projects. Through their dedication, hard work, ingenuity, and success, the award winners have also inspired others to increase their own efforts to save energy and water and to more aggressively pursue the use of renewable energy sources. The Federal Energy and Water Management Awards recognize the winners` contributions and ability to inspire others to take action.« less

  9. Assessment of forestry best management practices, I: stream water chemistry natural variability and fertilization influences

    Treesearch

    Erik Schilling; Daniel McLaughlin; Matt Cohen; Larry Korhnak; Paul Decker; Camille Flinders

    2016-01-01

    Nutrient pollution can be a leading cause of impairment to some U.S. waters. As a result, state and federal agencies are actively engaged in designing management programs and numeric nutrient criteria (NNC) to address nutrient impairments. Following implementation of the Clean Water Act, Florida, like other timber producing states, developed, tested and implemented...

  10. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  11. Oak Ridge Reservation annual site environmental report for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koncinski, W.S.

    1996-09-01

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  12. Identification of water quality management policy of watershed system with multiple uncertain interactions using a multi-level-factorial risk-inference-based possibilistic-probabilistic programming approach.

    PubMed

    Liu, Jing; Li, Yongping; Huang, Guohe; Fu, Haiyan; Zhang, Junlong; Cheng, Guanhui

    2017-06-01

    In this study, a multi-level-factorial risk-inference-based possibilistic-probabilistic programming (MRPP) method is proposed for supporting water quality management under multiple uncertainties. The MRPP method can handle uncertainties expressed as fuzzy-random-boundary intervals, probability distributions, and interval numbers, and analyze the effects of uncertainties as well as their interactions on modeling outputs. It is applied to plan water quality management in the Xiangxihe watershed. Results reveal that a lower probability of satisfying the objective function (θ) as well as a higher probability of violating environmental constraints (q i ) would correspond to a higher system benefit with an increased risk of violating system feasibility. Chemical plants are the major contributors to biological oxygen demand (BOD) and total phosphorus (TP) discharges; total nitrogen (TN) would be mainly discharged by crop farming. It is also discovered that optimistic decision makers should pay more attention to the interactions between chemical plant and water supply, while decision makers who possess a risk-averse attitude would focus on the interactive effect of q i and benefit of water supply. The findings can help enhance the model's applicability and identify a suitable water quality management policy for environmental sustainability according to the practical situations.

  13. Groundwater sampling: Chapter 5

    USGS Publications Warehouse

    Wang, Qingren; Munoz-Carpena, Rafael; Foster, Adam; Migliaccio, Kati W.; Li, Yuncong; Migliaccio, Kati

    2011-01-01

    Discussing an array of water quality topics, from water quality regulations and criteria, to project planning and sampling activities, this book outlines a framework for improving water quality programs. Using this framework, you can easily put the proper training and tools in place for better management of water resources.

  14. Too Much or Too Little

    ERIC Educational Resources Information Center

    Obeng, Letitia E.

    1975-01-01

    All countries require an ample supply of water for agricultural and industrial uses. Most have sufficient water supplies, but availability and accessibility vary. With the development of water irrigation systems, health conditions often deteriorate. The author recommends a water management program to control quality and quantity of available…

  15. 18 CFR 740.13 - Supplemental instructions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Supplemental instructions. 740.13 Section 740.13 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.13 Supplemental instructions. As deemed appropriate, the Council...

  16. 18 CFR 740.13 - Supplemental instructions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Supplemental instructions. 740.13 Section 740.13 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.13 Supplemental instructions. As deemed appropriate, the Council...

  17. 18 CFR 740.13 - Supplemental instructions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Supplemental instructions. 740.13 Section 740.13 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.13 Supplemental instructions. As deemed appropriate, the Council...

  18. 18 CFR 740.13 - Supplemental instructions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Supplemental instructions. 740.13 Section 740.13 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.13 Supplemental instructions. As deemed appropriate, the Council...

  19. 18 CFR 740.13 - Supplemental instructions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Supplemental instructions. 740.13 Section 740.13 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.13 Supplemental instructions. As deemed appropriate, the Council...

  20. Climate Change Impacts on Water Resources and Water Supply Security through Adaptation

    EPA Science Inventory

    This presentation is to describe the water resources adaptation program (WRAP) at the U.S.EPA National Risk Management Research Laboratory, and to highlight initial research results on hydroclimatic periodicity and changes and on adaptation measures including sustainable water in...

  1. 40 CFR 35.418 - Award limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Quality Management Planning Grants... the nature, extent, and causes of water quality problems in various areas of the State and interstate...

  2. Potential Applications for AQUATOX

    EPA Pesticide Factsheets

    AQUATOX has a myriad of potential applications to water management issues and programs, including water quality criteria and standards, TMDLs (Total Maximum Daily Loads), and ecological risk assessments of aquatic systems.

  3. AQUATOX Model Validation Reports

    EPA Pesticide Factsheets

    AQUATOX has a myriad of potential applications to water management issues and programs, including water quality criteria and standards, TMDLs (Total Maximum Daily Loads), and ecological risk assessments of aquatic systems.

  4. Water management by early people in the Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Back, W.

    1995-06-01

    The Yucatan Peninsula is a coastal plain underlain by permeable limestone and receives abundant rainfall. Such hydrogeologic conditions should provide major supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that limits the amount of fresh water available. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed on extensive use of groundwater. The religion was water oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management, primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supply by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution. A historical perspective of a paper such as this provides insight into the attitudes concerning water of early people and perhaps provides insight into current attitudes concerning water. Hydrogeologists possess the expertise to generate relevant information required by water managers to arrive at management programs to achieve sustainable development.

  5. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  6. Water resources planning and management : A stochastic dual dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Pinte, D.; Tilmant, A.

    2008-12-01

    Allocating water between different users and uses, including the environment, is one of the most challenging task facing water resources managers and has always been at the heart of Integrated Water Resources Management (IWRM). As water scarcity is expected to increase over time, allocation decisions among the different uses will have to be found taking into account the complex interactions between water and the economy. Hydro-economic optimization models can capture those interactions while prescribing efficient allocation policies. Many hydro-economic models found in the literature are formulated as large-scale non linear optimization problems (NLP), seeking to maximize net benefits from the system operation while meeting operational and/or institutional constraints, and describing the main hydrological processes. However, those models rarely incorporate the uncertainty inherent to the availability of water, essentially because of the computational difficulties associated stochastic formulations. The purpose of this presentation is to present a stochastic programming model that can identify economically efficient allocation policies in large-scale multipurpose multireservoir systems. The model is based on stochastic dual dynamic programming (SDDP), an extension of traditional SDP that is not affected by the curse of dimensionality. SDDP identify efficient allocation policies while considering the hydrologic uncertainty. The objective function includes the net benefits from the hydropower and irrigation sectors, as well as penalties for not meeting operational and/or institutional constraints. To be able to implement the efficient decomposition scheme that remove the computational burden, the one-stage SDDP problem has to be a linear program. Recent developments improve the representation of the non-linear and mildly non- convex hydropower function through a convex hull approximation of the true hydropower function. This model is illustrated on a cascade of 14 reservoirs on the Nile river basin.

  7. EPA's Safe and Sustainable Water Resources Research Program

    EPA Science Inventory

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an inte...

  8. 33 CFR 274.4 - Pesticide management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pesticide management. 274.4... DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.4 Pesticide management. (a... control management personnel prior to advertisement of the contract and procurement of services. The...

  9. 33 CFR 274.4 - Pesticide management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pesticide management. 274.4... DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.4 Pesticide management. (a... control management personnel prior to advertisement of the contract and procurement of services. The...

  10. 33 CFR 274.4 - Pesticide management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pesticide management. 274.4... DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.4 Pesticide management. (a... control management personnel prior to advertisement of the contract and procurement of services. The...

  11. 33 CFR 274.4 - Pesticide management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pesticide management. 274.4... DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.4 Pesticide management. (a... control management personnel prior to advertisement of the contract and procurement of services. The...

  12. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  13. Integrated Data & Analysis in Support of Informed and Transparent Decision Making

    NASA Astrophysics Data System (ADS)

    Guivetchi, K.

    2012-12-01

    The California Water Plan includes a framework for improving water reliability, environmental stewardship, and economic stability through two initiatives - integrated regional water management to make better use of local water sources by integrating multiple aspects of managing water and related resources; and maintaining and improving statewide water management systems. The Water Plan promotes ways to develop a common approach for data standards and for understanding, evaluating, and improving regional and statewide water management systems, and for common ways to evaluate and select from alternative management strategies and projects. The California Water Plan acknowledges that planning for the future is uncertain and that change will continue to occur. It is not possible to know for certain how population growth, land use decisions, water demand patterns, environmental conditions, the climate, and many other factors that affect water use and supply may change by 2050. To anticipate change, our approach to water management and planning for the future needs to consider and quantify uncertainty, risk, and sustainability. There is a critical need for information sharing and information management to support over-arching and long-term water policy decisions that cross-cut multiple programs across many organizations and provide a common and transparent understanding of water problems and solutions. Achieving integrated water management with multiple benefits requires a transparent description of dynamic linkages between water supply, flood management, water quality, land use, environmental water, and many other factors. Water Plan Update 2013 will include an analytical roadmap for improving data, analytical tools, and decision-support to advance integrated water management at statewide and regional scales. It will include recommendations for linking collaborative processes with technical enhancements, providing effective analytical tools, and improving and sharing data and information. Specifically, this includes achieving better integration and consistency with other planning activities; obtaining consensus on quantitative deliverables; building a common conceptual understanding of the water management system; developing common schematics of the water management system; establishing modeling protocols and standards; and improving transparency and exchange of Water Plan information.

  14. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    PubMed

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  15. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specificmore » aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.« less

  16. 18 CFR 740.11 - Federal/State coordination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Federal/State coordination. 740.11 Section 740.11 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.11 Federal/State coordination. The Council will coordinate the...

  17. 18 CFR 740.11 - Federal/State coordination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Federal/State coordination. 740.11 Section 740.11 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.11 Federal/State coordination. The Council will coordinate the...

  18. 18 CFR 740.11 - Federal/State coordination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Federal/State coordination. 740.11 Section 740.11 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.11 Federal/State coordination. The Council will coordinate the...

  19. 18 CFR 740.12 - Amendments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Amendments. 740.12 Section 740.12 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.12 Amendments. The Council may amend all or portions of these guidelines in...

  20. 18 CFR 740.12 - Amendments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Amendments. 740.12 Section 740.12 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.12 Amendments. The Council may amend all or portions of these guidelines in...

  1. 18 CFR 740.12 - Amendments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Amendments. 740.12 Section 740.12 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.12 Amendments. The Council may amend all or portions of these guidelines in...

  2. 18 CFR 740.11 - Federal/State coordination.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Federal/State coordination. 740.11 Section 740.11 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.11 Federal/State coordination. The Council will coordinate the...

  3. 18 CFR 740.9 - Recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Recordkeeping. 740.9 Section 740.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.9 Recordkeeping. Each State or other entity within a State receiving financial...

  4. 18 CFR 740.9 - Recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Recordkeeping. 740.9 Section 740.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.9 Recordkeeping. Each State or other entity within a State receiving financial...

  5. 18 CFR 740.12 - Amendments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Amendments. 740.12 Section 740.12 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.12 Amendments. The Council may amend all or portions of these guidelines in...

  6. 18 CFR 740.11 - Federal/State coordination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Federal/State coordination. 740.11 Section 740.11 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.11 Federal/State coordination. The Council will coordinate the...

  7. 18 CFR 740.9 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Recordkeeping. 740.9 Section 740.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.9 Recordkeeping. Each State or other entity within a State receiving financial...

  8. 18 CFR 740.12 - Amendments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Amendments. 740.12 Section 740.12 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.12 Amendments. The Council may amend all or portions of these guidelines in...

  9. 18 CFR 740.9 - Recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Recordkeeping. 740.9 Section 740.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.9 Recordkeeping. Each State or other entity within a State receiving financial...

  10. 18 CFR 740.9 - Recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Recordkeeping. 740.9 Section 740.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.9 Recordkeeping. Each State or other entity within a State receiving financial...

  11. Watershed Management Optimization Support Tool (WMOST) ...

    EPA Pesticide Factsheets

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  12. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-2022: Part 1: Framework of Water-Quality Issues and Potential Approaches

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lynch, Dennis D.; Munn, Mark D.; Wolock, David W.

    2010-01-01

    In 1991, the U.S. Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to develop long-term, nationally consistent information on the quality of the Nation's streams and groundwater. Congress recognized the critical need for this information to support scientifically sound management, regulatory, and policy decisions concerning the increasingly stressed water resources of the Nation. The long-term goals of NAWQA are to: (1) assess the status of water-quality conditions in the United States, (2) evaluate long-term trends in water-quality conditions, and (3) link status and trends with an understanding of the natural and human factors that affect water quality. These goals are national in scale, include both surface water and groundwater, and include consideration of water quality in relation to both human uses and aquatic ecosystems. Since 1991, NAWQA assessments and findings have fostered and supported major improvements in the availability and use of unbiased scientific information for decisionmaking, resource management, and planning at all levels of government. These improvements have enabled agencies and stakeholders to cost-effectively address a wide range of water-quality issues related to natural and human influences on the quality of water and potential effects on aquatic ecosystems and human health (http://water.usgs.gov/nawqa/xrel.pdf). NAWQA, like all USGS programs, provides policy relevant information that serves as a scientific basis for decisionmaking related to resource management, protection, and restoration. The information is freely available to all levels of government, nongovernmental organizations, industry, academia, and the public, and is readily accessible on the NAWQA Web site and other diverse formats to serve the needs of the water-resource community at different technical levels. Water-quality conditions in streams and groundwater are described in more than 1,700 publications (available online at http://water.usgs.gov/nawqa/bib/), and are documented by more than 14 million data records representing about 7,600 stream sites, 8,100 wells, and 2,000 water-quality and ecological constituents that are available from the NAWQA data warehouse (http://infotrek.er.usgs.gov/traverse/f?p=NAWQA:HOME:0). The Program promotes collaboration and liaison with government officials, resource managers, industry representatives, and other stakeholders to increase the utility and relevance of NAWQA science to decisionmakers. As part of this effort, NAWQA supports integration of data from other organizations into NAWQA assessments, where appropriate and cost-effective, so that more comprehensive findings are available across geographic and temporal scales.

  13. U.S. Geological Survey water resources activities in Florida, 1985-86

    USGS Publications Warehouse

    Glenn, M. E.

    1986-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1985-86. These activities are part of the Federal program of appraising the Nation 's water resources. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water resource investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be based. (Lantz-PTT)

  14. 7 CFR 625.4 - Program requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... activities that promote the restoration, protection, enhancement, maintenance, and management of forest... of successful restoration, enhancement, and protection of forest ecosystem functions and values when... AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.4 Program requirements. (a) General. Under...

  15. Baseline requirements can hinder trades in water quality trading programs: Evidence from the Conestoga watershed.

    PubMed

    Ghosh, Gaurav; Ribaudo, Marc; Shortle, James

    2011-08-01

    The U.S. Environmental Protection Agency (USEPA) and the U.S. Department of Agriculture (USDA) are promoting point/nonpoint trading as a way of reducing the costs of meeting water quality goals. Farms can create offsets by implementing management practices such as conservation tillage, nutrient management and buffer strips. To be eligible to sell offsets or credits, farmers must first comply with baseline requirements. USEPA guidance recommends that the baseline for nonpoint sources be management practices that are consistent with the water quality goal. A farmer would not be able to create offsets until the minimum practice standards are met. An alternative baseline is those practices being implemented at the time the trading program starts, or when the farmer enters the program. The selection of the baseline affects the efficiency and equity of the trading program. It has major implications for which farmers benefit from trading, the cost of nonpoint source offsets, and ultimately the number of offsets that nonpoint sources can sell to regulated point sources. We use a simple model of the average profit-maximizing dairy farmer operating in the Conestoga watershed in Pennsylvania to evaluate the implications of baseline requirements on the cost and quantity of offsets that can be produced for sale in a water quality trading market, and which farmers benefit most from trading. Published by Elsevier Ltd.

  16. Idaho's surface-water-quality monitoring program: results from five sites sampled during water years 1990-93

    USGS Publications Warehouse

    ,

    1994-01-01

    In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.

  17. Proceedings of the Colorado River Basin Science and Resource Management Symposium, November 18-20, 2008, Scottsdale, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.

    2010-01-01

    Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four restoration programs, water-management actions aimed at restoring native fish habitat, climate change, assessments of the status of native and nonnative fish populations, and Native American perspectives. Intermixed with plenary talks were four concurrent technical sessions that addressed the following important topics: (1) effects of dam and reservoir operations on downstream physical and biological resources; (2) native fish propagation and genetic management and associated challenges in co-managing native and nonnative fish in the Colorado River; (3) monitoring program design, case studies, and links to management; and (4) riparian system restoration, monitoring, and exotic species control efforts.

  18. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 48 CFR 970.2305 - Workplace substance abuse programs-management and operating contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free...

  20. Urban Stormwater Runoff. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Simko, Robert A.

    Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…

  1. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced life support subsystems for long range planning in support of earth orbital programs. Cost analysis are presented for five leading water reclamation systems; (1) RITE waste management-water system;(2) reverse osmosis system;(3) multifiltration system;(4) vapor compression system; and(5) closed air evaporation system with electrolytic pretreatment.

  2. 15 CFR 923.10 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.10 General. This subpart sets..., because of their direct and significant impacts on coastal waters or those geographic areas likely to be...

  3. Managing Watersheds with WMOST (Watershed Management Optimization Support Tool)

    EPA Science Inventory

    EPA’s Green Infrastructure research program and EPA Region 1 recently released a new public-domain software application, WMOST, which supports community applications of Integrated Water Resources Management (IWRM) principles (http://cfpub.epa.gov/si/si_public_record_report....

  4. Integrating scientific knowledge into large-scale restoration programs: the CALFED Bay-Delta Program experience

    USGS Publications Warehouse

    Taylor, Kimberly A.; Short, A.

    2009-01-01

    Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.

  5. 18 CFR 740.7 - Administration of financial assistance.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Administration of financial assistance. 740.7 Section 740.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.7 Administration of financial assistance. (a) Grants under...

  6. 18 CFR 740.7 - Administration of financial assistance.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Administration of financial assistance. 740.7 Section 740.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.7 Administration of financial assistance. (a) Grants under...

  7. 18 CFR 740.7 - Administration of financial assistance.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Administration of financial assistance. 740.7 Section 740.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.7 Administration of financial assistance. (a) Grants under...

  8. 18 CFR 740.7 - Administration of financial assistance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Administration of financial assistance. 740.7 Section 740.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.7 Administration of financial assistance. (a) Grants under...

  9. 18 CFR 740.7 - Administration of financial assistance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Administration of financial assistance. 740.7 Section 740.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL STATE WATER MANAGEMENT PLANNING PROGRAM § 740.7 Administration of financial assistance. (a) Grants under...

  10. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  11. Preliminary assessment of a water-quality monitoring program for total maximum daily loads in Johnson County, Kansas, January 2015 through June 2016

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Paxson, Chelsea R.

    2017-08-25

    Municipalities in Johnson County in northeastern Kansas are required to implement stormwater management programs to reduce pollutant discharges, protect water quality, and comply with applicable water-quality regulations in accordance with National Pollutant Discharge Elimination System permits for stormwater discharge. To this end, municipalities collect grab samples at streams entering and leaving their jurisdiction to determine levels of excessive nutrients, sediment, and fecal bacteria to characterize pollutants and understand the factors affecting them.In 2014, the U.S. Geological Survey and the Johnson County Stormwater Management Program, with input from the Kansas Department of Health and Environment, initiated a 5-year monitoring program to satisfy minimum sampling requirements for each municipality as described by new stormwater permits issued to Johnson County municipalities. The purpose of this report is to provide a preliminary assessment of the monitoring program. The monitoring program is described, a preliminary assessment of the monitoring program design is provided using water-quality data collected during the first 2 years of the program, and the ability of the current monitoring network and sampling plan to provide data sufficient to quantify improvements in water quality resulting from implemented and planned best management practices is evaluated. The information in this initial report may be used to evaluate changes in data collection methods while data collection is still ongoing that may lead to improved data utility.Discrete water-quality samples were collected at 27 sites and analyzed for nutrients, Escherichia coli (E. coli) bacteria, total suspended solids, and suspended-sediment concentration. In addition, continuous water-quality data (water temperature, pH, dissolved oxygen, specific conductance, turbidity, and nitrate plus nitrite) were collected at one site to characterize variability and provide a basis for comparison to discrete data. Base flow samples indicated that point sources are likely affecting nutrient concentrations and E. coli bacteria densities at several sites. Concentrations of all analytes in storm runoff samples were characterized by substantial variability among sites and samples. About one-half of the sites, representing different watersheds, had storm runoff samples with nitrogen concentrations greater than 10 milligrams per liter. About one-third of the sites, representing different watersheds, had storm runoff samples with total phosphorus concentrations greater than 3 milligrams per liter. Six sites had samples with E. coli densities greater than 100,000 colonies per 100 milliliters of water. Total suspended solids concentrations of about 12,000 milligrams per liter or greater occurred in samples from three sites.Data collected for this monitoring program may be useful for some general assessment purposes but may also be limited in potential to fully inform stormwater management activities. Valuable attributes of the monitoring program design included incorporating many sites across the county for comparisons among watersheds and municipalities, using fixed-stage samplers to collect multiple samples during single events, collection of base flow samples in addition to storm samples to isolate possible point sources from stormwater sources, and use of continuous monitors to characterize variability. Limiting attributes of the monitoring program design included location of monitoring sites along municipal boundaries to satisfy permit requirements rather than using watershed-based criteria such as locations of tributaries, potential pollutant sources, and implemented management practices. Additional limiting attributes include having a large number of widespread sampling locations, which presented logistical challenges for predicting localized rainfall and collecting and analyzing samples during short timeframes associated with storms, and collecting storm samples at fixed-stage elevations only during the rising limb of storms, which does not characterize conditions over the storm hydrograph. The small number of samples collected per site resulted in a sample size too small to be representative of site conditions, including seasonal and hydrologic variability, and insufficient for meaningful statistical analysis or site-specific modeling.Several measures could be taken to improve data utility and include redesigning the monitoring network according to watershed characteristics, incorporating a nested design in which data are collected at different scales (watershed, subwatershed, and best management practices), increasing sampling frequency, and combining different methods to allow for flexibility to focus on areas and conditions of particular interest. A monitoring design that would facilitate most of these improvements would be to focus efforts on a limited number of watersheds for several years, then cycle to the next set of watersheds for several years, eventually returning to previously monitored watersheds to document changes.Redesign of the water-quality monitoring program requires considerable effort and commitment from municipalities of Johnson County. However, the long-term benefit likely is a monitoring program that results in improved stream conditions and more effective management practices and efficient expenditure of resources.

  12. Connecting Hydrologic Research and Management in American Samoa through Collaboration and Capacity Building

    NASA Astrophysics Data System (ADS)

    Shuler, C. K.; El-Kadi, A. I.; Dulai, H.; Glenn, C. R.; Mariner, M. K. E.; DeWees, R.; Schmaedick, M.; Gurr, I.; Comeros, M.; Bodell, T.

    2017-12-01

    In small-island developing communities, effective communication and collaboration with local stakeholders is imperative for successful implementation of hydrologic or other socially pertinent research. American Samoa's isolated location highlights the need for water resource sustainability, and effective scientific research is a key component to addressing critical challenges in water storage and management. Currently, aquifer degradation from salt-water-intrusion or surface-water contaminated groundwater adversely affects much of the islands' municipal water supply, necessitating an almost decade long Boil-Water-Advisory. This presentation will share the approach our research group, based at the University of Hawaii Water Resources Research Center, has taken for successfully implementing a collaboration-focused water research program in American Samoa. Instead of viewing research as a one-sided activity, our program seeks opportunities to build local capacity, develop relationships with key on-island stakeholders, and involve local community through forward-looking projects. This presentation will highlight three applications of collaborative research with water policy and management, water supply and sustainability, and science education stakeholders. Projects include: 1) working with the island's water utility to establish a long-term hydrological monitoring network, motivated by a need for data to parameterize numerical groundwater models, 2) collaboration with the American Samoa Environmental Protection Agency to better understand groundwater discharge and watershed scale land-use impacts for management of nearshore coral reef ecosystems, and 3) participation of local community college and high school students as research interns to increase involvement in, and exposure to socially pertinent water focused research. Through these innovative collaborative approaches we have utilized resources more effectively, and focused research efforts on more pertinent locally-driven research questions. Additionally, this approach has enhanced our ability to provide technical support and knowledge transfer for on-island scientific needs, and helped overcome data availability barriers faced by water managers, planners, and future investigators.

  13. STC synthesis of research results for water quality management at construction sites : research project capsule.

    DOT National Transportation Integrated Search

    2012-07-01

    The RAC Region II has initiated a collaborative research program consortium through the : Transportation Pooled Fund (TPF) Program. The research program is called the Southeast : Transportation Consortium (STC) and is intended to encourage coordinati...

  14. Environmental auditing: Capabilities and management utility of recreation impact monitoring programs

    USGS Publications Warehouse

    Marion, J.L.

    1995-01-01

    A recreation impact monitoring system was developed and applied in 1984?1986 and in 1991 to all backcountry river-accessed campsites within Delaware Water Gap National Recreation Area, Pennsylvania and New Jersey. Results suggest that actions implemented by park managers in response to problems identified by the initial survey were highly effective in reducing resource degradation caused by camping. In particular, the elimination of some designated campsites and installation of anchored firegrates reduced the total area of disturbance by 50%. Firegrate installation provided a focal point that increased the concentration of camping activities, allowing peripheral areas to recover. As suggested by predictive models, additional resource degradation caused by increased camping intensities is more than offset by improvements in the condition of areas where use is eliminated. The capabilities and management utility of recreation impact monitoring programs, illustrated by the Delaware Water Gap monitoring program, are also presented and discussed.

  15. 7 CFR 634.13 - Project applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding... State or areawide 208 water quality management plan. (c) Applications shall contain the following... water quality problem (3) Objectives and planned action, (4) Schedule for carrying out the plan, and (5...

  16. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  17. Groundwater conditions and studies in the Brunswick–Glynn County area, Georgia, 2008

    USGS Publications Warehouse

    Cherry, Gregory S.; Peck, Michael F.; Painter, Jaime A.; Stayton, Welby L.

    2010-01-01

    The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited development of the groundwater supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water program with the City of Brunswick to monitor and assess the effect of groundwater development on saltwater contamination of the Floridan aquifer system. During calendar year 2008, the cooperative water program included continuous water-level recording of 12 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 21 wells to map the potentiometric surface of the Upper Floridan aquifer during July 2008; and collecting and analyzing water samples from 26 wells to map chloride concentrations in the Upper Floridan aquifer during July 2008. Equipment was installed on 3 wells for real-time water level and specific conductance monitoring. In addition, work was continued to refine an existing groundwater-flow model for evaluation of water-management scenarios.

  18. Spatial and Temporal Self-Calibration of a Hydroeconomic Model

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.; Hansen, K. M.

    2008-12-01

    Hydroeconomic modeling of water systems where risk and reliability of water supply are of critical importance must address explicitly how to model water supply uncertainty. When large fluctuations in annual precipitation and significant variation in flows by location are present, a model which solves with perfect foresight of future water conditions may be inappropriate for some policy and research questions. We construct a simulation-optimization model with limited foresight of future water conditions using positive mathematical programming and self-calibration techniques. This limited foresight netflow (LFN) model signals the value of storing water for future use and reflects a more accurate economic value of water at key locations, given that future water conditions are unknown. Failure to explicitly model this uncertainty could lead to undervaluation of storage infrastructure and contractual mechanisms for managing water supply risk. A model based on sequentially updated information is more realistic, since water managers make annual storage decisions without knowledge of yet to be realized future water conditions. The LFN model runs historical hydrological conditions through the current configuration of the California water system to determine the economically efficient allocation of water under current economic conditions and infrastructure. The model utilizes current urban and agricultural demands, storage and conveyance infrastructure, and the state's hydrological history to indicate the scarcity value of water at key locations within the state. Further, the temporal calibration penalty functions vary by year type, reflecting agricultural water users' ability to alter cropping patterns in response to water conditions. The model employs techniques from positive mathematical programming (Howitt, 1995; Howitt, 1998; Cai and Wang, 2006) to generate penalty functions that are applied to deviations from observed data. The functions are applied to monthly flows across key nodes on the network and to annual carryover storage at ground and surface water storage facilities. To our knowledge, this is the first hydroeconomic model to perform spatial and temporal calibration simultaneously. The base for the LFN model is CALVIN, a hydroeconomic optimization model of the California water system developed at the University of California, Davis (Draper, et al. 2003). The LFN model, programmed in GAMS, is nonlinear, which permits incorporation of dynamic groundwater pumping costs that reflect head elevation. Hydropower production, also nonlinear in storage levels, could be added in the future. In this paper, we describe model implementation and performance over a sequence of water years drawn from the historical hydrologic record in California. Preliminary findings indicate that calibration occurs within acceptable limits and simulations replicate base case results well. Cai, X., and Wang, D. 2006. "Calibrating Holistic Water Resources-Economic Models." Journal of Water Resources Planning and Management November-December. Draper, A.J., M.W. Jenkins, K.W. Kirby, J.R. Lund, and R.E. Howitt. 2003. "Economic-Engineering Optimization for California Water Management." Journal of Water Resources Planning and Management 129(3):155-164. Howitt, R.E. 1995. "Positive Mathematical Programming." American Journal of Agricultural Economics 77:329-342. Howitt, R.E. 1998. "Self-Calibrating Network Flow Models." Working Paper, Department of Agricultural and Resource Economics, University of California, Davis. October 1998. class="ab'>

  19. U.S. Geological Survey Ground-Water Resources Program, 2001

    USGS Publications Warehouse

    Grannemann, Norman G.

    2001-01-01

    Ground water is among the Nation's most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from over use and contamination. Because ground-water systems typically respond slowly to human actions and climate variability, a long-term perspective is needed to manage this valuable resource. The U.S. Geological Survey Ground-Water Resources Program provides regional evaluations, fundamental data, and predictive tools to help assure the sustainability of our Nation's ground-water resources.

  20. 40 CFR 255.32 - Coordination with other programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... criteria (§ 255.11) specify review of solid waste activities being conducted by water quality management planning agencies, underground injection control agencies, and air quality management agencies. There... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Responsibilities of Identified Agencies and...

  1. North-South Partnership in Water Resource Education and Research - Lessons learnt from U.S.-Ethiopia Partnership

    NASA Astrophysics Data System (ADS)

    Gebremichael, M.

    2015-12-01

    In 2010, Ethiopian and U.S. universities formed partnership to train critical mass of Ethiopians in modern water resources tools, techniques, skills and knowledge, and to strengthen the institutional capacity of Ethiopian universities to establish graduate-level programs in Ethiopia. The partnership established Ethiopia's first water resource research institute, two graduate-level programs (water resource engineering and management, water and health) that are currently training about 100 students at M.S. and Ph.D. levels, summer undergraduate outreach program that provided community-based research experience in water resource for undergraduate students, and short-term trainings to practitioners and policy makers. The design, implementation and impact of these programs have had limitations and successes. In this presentation, I will provide lessons learnt from this partnership, and suggestions of elements required for successful North-South partnership in higher education and research.

  2. Watershed Stewardship Education Program--A Multidisciplinary Extension Education Program for Oregon's Watershed Councils.

    ERIC Educational Resources Information Center

    Conway, Flaxen D. L.; Godwin, Derek; Cloughesy, Mike; Nierenberg, Tara

    2003-01-01

    The Watershed Stewardship Education Program (WSEP) is a multidisciplinary Oregon Extension designed to help watershed councils, landowners, and others work effectively together on water management. Components include practical, easy-to-use educational materials, training in effective collaboration, a Master Watershed Stewards program, and advanced…

  3. Water Operations Technical Support Program. Water Quality Management for Reservoirs and Tailwaters. Report 1. In-Reservoir Water Quality Management Techniques

    DTIC Science & Technology

    1989-01-01

    at rates sufficient to bring about increased production of algae and rooted plants and decreased reservoir volume. Associated with this process are...manganese, hydrogen sulfide, ammonia, and carbon dioxide. Further, the production and death of plants throughout the reservoir, followed by...increase in biological production and a decrease in volume or storage capacity. Figure 4 illustrates these incomes and some of the major in-reservoir

  4. United States Geological Survey, programs in Nevada

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  5. 22 CFR 216.2 - Applicability of procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... river basin development; (ii) Irrigation or water management projects, including dams and impoundments... projects, programs or activities authorized or approved by A.I.D. and to substantive amendments or extensions of ongoing projects, programs, or activities. (b) Exemptions. (1) Projects, programs or activities...

  6. The Sophia-Antipolis Conference: General presentation and basic documents. [remote sensing for agriculture, forestry, water resources, and environment management in France

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.

  7. 15 CFR 923.44 - State review on a case-by-case basis of actions affecting land and water uses subject to the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Authorities and Organization § 923.44 State review on... specified in subsection 306(d)(11) of the Act for control of land and water uses within the coastal zone...

  8. Incidence and Management Costs of Freshwater Aquatic Nuisance Species at Projects Operated by the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2010-07-01

    the occurrence of ANS impacts (Yes or No) from freshwater algae, large aquatic plants, fish, zebra mussels, Asiatic clams, water fleas, crayfish...2005. Freshwater aquatic nuisance species impacts and management costs and benefits at federal water resources projects. ERDC/TN ANSRP-06-3...ER D C/ EL T R- 10 -1 3 Aquatic Nuisance Species Research Program Incidence and Management Costs of Freshwater Aquatic Nuisance Species

  9. National Water-Quality Assessment (NAWQA) Program, Long Island-New Jersey (LINJ) Coastal Drainages Study Unit

    USGS Publications Warehouse

    Stackelberg, Paul E.; Ayers, Mark A.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began its National Water-Quality Assessment (NAWQA ) program to (1) document the quality of a large, representative part of the Nation's water resources; (2) define water-quality trends; and (3) identify major factors that affect water quality. In addressing these goals, the program will produce information that will be useful to water policy makers and managers at National, State, and local levels.Studies of 60 hydrologic systems that include parts of most major river and aquifer systems form the building blocks of the NAWQA program. Study units range in size from about 1,000 mi ² (square miles) to more than 60,000 mi² and represent 60 to 70 percent of the Nation's water use and population served by public water supply. The first 20 studies were begun in 1991; 20 more were begun in 1994, and the remaining 20 are to begin in 1997.

  10. Water management by early people in the Yucatan, Mexico

    USGS Publications Warehouse

    Back, W.

    1995-01-01

    The Yucatan Peninsula is a coastal plain underlain by permeable limestone and receives abundant rainfall. Such hydrogeologic conditions should provide major supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that limits the amount of fresh water available. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed on extensive use of groundwater. The religion was water oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management, primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supply by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution. A historical perspective of a paper such as this provides insight into the attitudes concerning water of early people and perhaps provides insight into current attitudes concerning water. Hydrogeologists possess the expertise to generate relevant information required by water managers to arrive at management programs to achieve sustainable development. ?? 1995 Springer-Verlag.

  11. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma - Analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of water-quality conditions in the Central Oklahoma aquifer study unit. No attempt was made in this report to determine the causes for regional variations in major-ion chemistry or to examine the reasons that some chemical constituents exceed water-quality standards.

  12. Developing decision-relevant data and information systems for California water through listening and collaboration

    NASA Astrophysics Data System (ADS)

    Bales, R. C.; Bernacchi, L.; Conklin, M. H.; Viers, J. H.; Fogg, G. E.; Fisher, A. T.; Kiparsky, M.

    2017-12-01

    California's historic drought of 2011-2015 provided excellent conditions for researchers to listen to water-management challenges from decision makers, particularly with regard to data and information needs for improved decision making. Through the UC Water Security and Sustainability Research Initiative (http://ucwater.org/) we began a multi-year dialog with water-resources decision makers and state agencies that provide data and technical support for water management. Near-term products of that collaboration will be both a vision for a 21st-century water data and information system, and near-term steps to meet immediate legislative deadlines in a way that is consistent with the longer-term vision. While many university-based water researchers engage with state and local agencies on both science and policy challenges, UC Water's focus was on: i) integrated system management, from headwaters through groundwater and agriculture, and on ii) improved decision making through better water information systems. This focus aligned with the recognition by water leaders that fundamental changes in the way the state manages water were overdue. UC Water is focused on three "I"s: improved water information, empowering Institutions to use and to create new information, and enabling decision makers to make smart investments in both green and grey Infrastructure. Effective communication with water decision makers has led to engagement on high-priority programs where large knowledge gaps remain, including more-widespread groundwater recharge of storm flows, restoration of mountain forests in important source-water areas, governance structures for groundwater sustainability, and filling information gaps by bringing new technology to bear on measurement and data programs. Continuing engagement of UC Water researchers in public dialog around water resources, through opinion pieces, feature articles, blogs, white papers, social media, video clips and a feature documentary film have also been key to our continuing engagement. These novel partnerships are leading to decision-relevant tools and an improved integrated praxis in on-the-ground water-resources management. Our research is becoming more embedded in policies and our network remains interconnected with decision makers at multiple levels.

  13. A Novel Approach for Evaluation of Water Quality Trends in Gulf Coast Estuaries

    EPA Science Inventory

    Water quality data form the backbone of management programs aimed at protecting environmental resources. The increasing availability of long-term monitoring data for estuaries can improve detection of temporal and spatial changes in water quality. However, the relatively simple...

  14. Why is Improving Water Quality in the Gulf of Mexico so Critical?

    EPA Pesticide Factsheets

    The EPA regional offices and the Gulf of Mexico Program work with Gulf States to continue to maximize the efficiency and utility of water quality monitoring efforts for local managers by coordinating and standardizing state and federal water quality data

  15. Comparative Evaluation of Alternative Disinfectants for Drinking Water and Wastewater Treatment

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) of the U.S. Environmental Protection Agency’s (EPA) National Risk Management Research Laboratory (NRMRL) initiated a research program to evaluate the performance of various disinfectants that could potentially be used in drink...

  16. Water Resources Research Grant Program Project Descriptions: Fiscal Year 1988

    USGS Publications Warehouse

    Lew, Melvin; McCoy, Beverly M.

    1989-01-01

    This report contains information on the 38 new projects funded by the U.S. Geological Survey's Water Resources Research Grant Program in fiscal year 1988 and on 11 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), project duration, and a project description that includes: (1) identification of water-related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, and (4) approach. The 38 projects include 14 in the area of ground-water quality problems, 10 in the science and technology of water-quality management, 4 in climate variability and the hydrologic cycle, 7 in institutional change in water-resources management, and 3 in miscellaneous water-resources management problems. For the 11 completed projects, the report gives the grant number, project title, performing organization, principal investigator(s), starting date, date of receipt of final report, and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report also contains tables showing (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization.

  17. 7 CFR 1400.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) conservation programs of this title including Agricultural Management Assistance (AMA), Agricultural Water...), Cooperative Conservation Partnership Initiative (CCPI), Environmental Quality Incentives Program (EQIP), Farm... Total payments received under Supplemental Agricultural Disaster Assistance through SURE, LIP, LFP, and...

  18. Success of riparian restoration projects in the mountains, piedmont, and coastal plain of Virginia

    Treesearch

    Benjamin N. Bradburn; W. Michael Aust; Matthew B. Carroll; Dean Cumbia; Jerre Creighton

    2010-01-01

    Forested riparian buffers are a Best Management Practice (BMP) for protection of water quality and for habitat. Since the 1990s, conservation agencies in Virginia have been involved in establishment of riparian buffers under the auspices of programs such as the Conservation Reserve Enhancement Program (CREP). Although CREP was established for protection of water...

  19. Simulation of Streamflow and Selected Water-Quality Constituents through a Model of the Onondaga Lake Basin, Onondaga County, New York - A Guide to Model Application

    USGS Publications Warehouse

    Coon, William F.

    2008-01-01

    A computer model of hydrologic and water-quality processes of the Onondaga Lake basin in Onondaga County, N.Y., was developed during 2003-07 to assist water-resources managers in making basin-wide management decisions that could affect peak flows and the water quality of tributaries to Onondaga Lake. The model was developed with the Hydrological Simulation Program-Fortran (HSPF) and was designed to allow simulation of proposed or hypothetical land-use changes, best-management practices (BMPs), and instream stormwater-detention basins such that their effects on flows and loads of suspended sediment, orthophosphate, total phosphorus, ammonia, organic nitrogen, and nitrate could be analyzed. Extreme weather conditions, such as intense storms and prolonged droughts, can be simulated through manipulation of the precipitation record. Model results obtained from different scenarios can then be compared and analyzed through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). Background information on HSPF and GenScn is presented to familiarize the user with these two programs. Step-by-step examples are provided on (1) the creation of land-use, BMP, and stormflow-detention scenarios for simulation by the HSPF model, and (2) the analysis of simulation results through GenScn.

  20. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    USGS Publications Warehouse

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored in a unique WDM dataset identified by an attribute that associates each well with the model reach from which water is withdrawn. Other attributes identify the type and characteristics of the data. The interface allows users to easily add new pumping wells, delete exiting pumping wells, or change properties of the simulated aquifer or well. Development of this application enhanced the ability of the HSPF model to simulate complex water-use conditions in the Ipswich River Basin. The STRMDEPL program and the GenScn extension provide a valuable tool for water managers to evaluate the effects of pumped wells on streamflow and to test alternative water-use scenarios. Copyright ASCE 2004.

  1. Collaborative Potential between National Estuary Programs ...

    EPA Pesticide Factsheets

    Estuaries are among the most productive ecosystems in the world, providing unique habitat for freshwater and marine species as well as valuable social and economic benefits. The wealth of ecosystem goods and services from estuaries has led to growth and development of human communities in adjacent areas and an increase in human activities that can adversely affect water quality and critical habitat. Managing for sustainable estuaries requires a balance of environmental concerns with community social and economic values. This has created an opportunity to leverage Environmental Protection Agency (EPA) scientific knowledge and tools with National Estuary Program (NEP) planning and management expertise to address environmental challenges in important estuarine ecosystems. The non-regulatory National Estuary Program (NEP) was outlined in the Clean Water Act to provide stakeholders an opportunity to monitor and manage ‘nationally significant’ estuaries. Currently there are 28 estuaries in the NEP, broadly distributed across the Atlantic, Pacific and Gulf Coasts, and in Puerto Rico. The local NEP management conferences must address a variety of environmental issues, from water quality and natural resources to coastal and watershed development. While the underlying objectives of each NEP are quite similar, each has unique landscapes, land uses, waterbodies, habitats, biological resources, economies and social culture. Consequently, the effects and severity of anthr

  2. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quality management plan. Such BMP's must reduce the amount of pollutants that enter a stream or lake by... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality...

  3. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  4. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  5. Documentation of programs used to determine a wetlands hydroperiod from model-simulated water-surface elevations

    USGS Publications Warehouse

    Sonenshein, R.S.

    1996-01-01

    A technique has been developed to determine a wetlands hydroperiod by comparing simulated water levels from a ground-water flow model and land- surface elevation data through a geographic information system. The simulated water levels are compared with the land-surface elevation data to determine the height of the water surface above or below land surface for the area of interest. Finally, the hydroperiod is determined for established time periods using criteria specified by the user. The program application requires the use of geographic information system software (ARC/INFO), including the TIN and GRID subsystems of the software. The application consists of an ANSI compatible C program to translate ground- water data output from the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model (MODFLOW) into a format that can be used as input for the geographic information system programs (AML's). The application uses ARC/INFO AML programs and ARC/INFO menu interface programs to create digital spatial data layers of the land surface and water surface and to determine the hydroperiod. The technique can be used to evaluate and manage wetlands hydrology.

  6. 15 CFR 923.12 - Uses of regional benefit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.12 Uses of regional... regulations within the coastal zone do not unreasonably restrict or exclude land uses and water uses of...

  7. Explanation for Anomalous Readings during Monitoring of a Best Management Practice

    EPA Science Inventory

    The USEPA's Urban Watershed Management Branch (UWMB) has monitored storm-water drainage and best management practices (BMPs) as part of its overall research program. As part of this effort, continuous monitoring equipment was deployed to measure both storm events and periods bet...

  8. Hayward Youth-Based Trash Capture, Reduction, and Watershed Education Project

    EPA Pesticide Factsheets

    Information about the SFBWQP City of Hayward, CA Trash Managment Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  9. 25 CFR 170.500 - What program reviews do the Secretaries conduct?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 170.500 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program Facilities... planning; (3) Design; (4) Contract administration; (5) Construction; (6) Financial management; and (7...

  10. 76 FR 31390 - Public Hearing and Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... of two docket approvals; (3) action on certain water resources projects; (4) action on seven projects... Comprehensive Plan for Management of the Water Resources of the Susquehanna River Basin. Details concerning the... on the following items: (1) The proposed Water Resources Program and an accompanying presentation on...

  11. Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices

    NASA Astrophysics Data System (ADS)

    Haris, H.; Chow, M. F.; Usman, F.; Sidek, L. M.; Roseli, Z. A.; Norlida, M. D.

    2016-03-01

    Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.

  12. Coastal Zone Act Reauthorization Amendments (CZARA) Section 6217

    EPA Pesticide Factsheets

    The Coastal Nonpoint Pollution Control Program (Section 6217) addresses nonpoint pollution problems in coastal waters.In its program, a state or territory describes how it will implement nonpoint source pollution controls, known as management measures.

  13. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... local watersheds through collaborative conservation. We plan to publish a final announcement as soon as... watershed needs. Through this program, we provide Federal leadership and assistance on; Efficient use of...

  14. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    PubMed

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  15. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    PubMed Central

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-01-01

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety. PMID:26950135

  16. Sustainable water use and management options in a water-stressed river basin in Kenya

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert

    2017-04-01

    Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction

  17. 75 FR 31775 - Draft National Pollutant Discharge Elimination System (NPDES) Pesticide General Permit for Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Faulk, EPA Headquarters, Office of Water, Office of Wastewater Management at tel.: 202-564-0768 or e... activities. Resource management parties 924110 Government (includes State departments Administration of... Solid in the regulation, State Waste Management administration, environmental agencies, and Programs...

  18. 15 CFR 923.41 - Identification of authorities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Authorities and Organization § 923.41 Identification... exert control over the permissible land uses and water uses within the coastal zone which have a direct... have the authority for the management of the coastal zone. Such authority includes the following powers...

  19. Comprehensive Flood Plain Studies Using Spatial Data Management Techniques.

    DTIC Science & Technology

    1978-06-01

    Hydrologic Engineer- ing Center computer programs that forecast urban storm water quality and dynamic in- stream water quality response to waste...determination. Water Quality The water quality analysis planned for the pilot study includes urban storm water quality forecasting and in-streamn...analysis is performed under the direction of Tony Thomas. Chief, Research Branch, by Jess Abbott for storm water quality analysis, R. G. Willey for

  20. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    USGS Publications Warehouse

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  1. 40 CFR 255.32 - Coordination with other programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... criteria (§ 255.11) specify review of solid waste activities being conducted by water quality management... the National Pollutant Discharge Elimination System of the Federal Water Pollution Control Act will be consulted concerning disposal of residual sludges. ...

  2. Applying Dust-on-Snow Research to Colorado Water Management

    NASA Astrophysics Data System (ADS)

    Landry, C. C.; Painter, T. H.; Barrett, A. P.

    2008-12-01

    Snowmelt runoff from seasonal snowpacks in Western mountains provides a high proportion of regional water supplies and represents a critical resource subject to complex management imperatives at all levels of local, state, and federal government. Recent research performed in the San Juan Mountains of Southwest Colorado has revealed that deposition of desert dust from the Colorado Plateau onto Colorado mountain snowpacks is playing a hitherto underestimated forcing role in snowmelt timing and intensity. In spring 2006, embedded dust layers forced a 4-5 week advance in complete snowpack ablation at the Senator Beck Basin Study Area, near Red Mountain Pass, and professional water managers throughout Colorado were surprised by an early and compressed snowmelt runoff. Presentations of our preliminary findings during the summer of 2006 at local water district meetings and at a statewide forum resonated with Colorado water managers and resulted in direct stakeholder engagement in the ongoing research program during the subsequent winter. In spring 2007 the research team issued periodic Dust Alerts describing dust-on-snow conditions extant within the study area, as well as anecdotal reports of conditions elsewhere in the state, and discussed the snowmelt ramifications of those dust conditions in the coming 7-15 days, given mid-range NWS weather forecasts. Another round of presentations at district and state-wide stakeholder meetings in summer 2007 resulted in additional districts and agencies engaging in the program and expanding the dust-on-snow monitoring and Dust Alert analysis efforts in spring 2008 to additional sites distributed throughout the state. The original research project is ongoing and the team is now developing a Colorado Dust-on-Snow Program, CODOS, designed to serve all stakeholders in Colorado snowmelt with increasingly intensive monitoring and analysis of snowmelt forcing by dust, and with ongoing research regarding dust-driven mountain snowmelt processes. In this instance, basic science preceded stakeholder engagement and, through active outreach, a consequential, stakeholder-supported program implementing operational application of the research is emerging.

  3. Proceedings of the Annual Meeting, Aquatic Plant Control Research Program (18th) Held at Raleigh, North Carolina on 14-17 November 1983.

    DTIC Science & Technology

    1984-06-01

    Aquatic Plant Management Program: Water Quality Monitoring, by John H. Rodgers, Jr., Kevin H. Reinert, and Mark L. Hinman...Rodgers, Jr.,* Kevin H. Reinert,* and Mark L. Hinman* Din INTRODUCTION 0 A water quality monitoring program was conducted on Pat Mayse Lake during...Mississippi. 117 Herbicide Sprayer Plant Bed Translucen- Rof -SupplementalLighting_ Waer Supply _ W i Sampling Stations Figure 1. Flume system set up to

  4. Evaluation of Stakeholder-Driven Groundwater Management through Integrated Modeling and Remote Sensing in the US High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Deines, J. M.; Kendall, A. D.; Butler, J. J., Jr.; Hyndman, D. W.

    2017-12-01

    Irrigation greatly enhances agricultural yields and stabilizes farmer incomes, but overexploitation of water resources has depleted groundwater aquifers around the globe. In much of the High Plains Aquifer (HPA) in the United States, water-level declines threaten the continued viability of agricultural operations reliant on irrigation. Policy and management institutions to address this sustainability challenge differ widely across the HPA and the world. In Kansas, grassroots-driven legislation in 2012 allowed local stakeholder groups to establish Local Enhanced Management Areas (LEMAs) and work with state officials to generate enforceable and monitored water use reduction programs. The pioneering LEMA was formed in 2013, following a popular vote by farmers within a 256 km2 region in northwestern Kansas. The group sought to reduce groundwater pumping by 20% through 2017 in order to stabilize water levels while minimally reducing crop productivity. Initial statistical estimates indicate the LEMA has been successful; planning is underway to extend it for five years (2018-2022) and to implement additional LEMAs in the wider groundwater management district. Here, we assess the efficacy of this first LEMA with coupled crop-hydrology models to quantify water budget impacts and any associated trade-offs in crop productivity. We drive these models with a novel data fusion of water use data and our recent remotely sensed Annual Irrigation Maps (AIM) dataset, allowing detailed tracking of irrigation water in space and time. Results from these process-based models provide detailed insights into changes in the physical system resulting from the LEMA program that can inform future stakeholder-driven management in Kansas and in stressed aquifers around the world.

  5. Army Energy and Water Reporting System Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. Inmore » this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.« less

  6. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projection totals and disaggregations in approved water quality management (WQM) plans. (See paragraph 8a(3... the most economical means of meeting established effluent and water quality goals while recognizing... WQM work program, or that award of the grant is necessary to achieve water quality goals of the Act...

  7. Link Climate Effects to Surface Water Quality and Drinking Water Plant Adaptation - A Update on Hydroclimatic Province and WTP-ccam Model

    EPA Science Inventory

    Key points in this presentation are: (1) How and why hydroclimatic province can help precipitation projection for water program engineering and management, (2) Implications of initial research results and planned further monitoring / research activities, (3) Five adaptation t...

  8. 77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...

  9. Enhancing extension recommendations to maximize efficacy of spray programs for the Georgia DOT : final report.

    DOT National Transportation Integrated Search

    2015-12-23

    Research was conducted to evaluate equipment, adjuvants, and water quality used by the : Georgia DOT on herbicide efficacy for roadside management. From 19 DOT stations, 68% had alkaline : (7.1 to 7.9) water, 32% had hard water (>120 ppm), and 10% ha...

  10. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projection totals and disaggregations in approved water quality management (WQM) plans. (See paragraph 8a(3... the most economical means of meeting established effluent and water quality goals while recognizing... WQM work program, or that award of the grant is necessary to achieve water quality goals of the Act...

  11. 76 FR 22724 - Draft Program Environmental Impact Statement/Environmental Impact Report (PEIS/R) and Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... (Restoration Goal); and (2) to reduce or avoid adverse water supply impacts to all of the Friant Division long... populations of salmon and other fish. Water Management Goal--To reduce or avoid adverse water supply impacts... Bureau of Reclamation and the California Department of Water Resources (DWR) have prepared a joint Draft...

  12. Water Resources Research Grant Program project descriptions, fiscal year 1987

    USGS Publications Warehouse

    ,

    1987-01-01

    This report contains information on the 34 new projects funded by the United States Geological Survey 's Water Resources Research Grant Program in fiscal year 1987 and on 3 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), and a project description that includes: (1) identification of water related problems and problem-solution approach (2) contribution to problem solution, (3) objectives, and (4) approach. The 34 projects include 12 in the area of groundwater quality problems, 12 in the science and technology of water quality management, 1 in climate variability and the hydrologic cycle, 4 in institutional change in water resources management, and 5 in surface water management. For the three completed projects, the report furnishes the grant number; project title; performing organization; principal investor(s); starting data; data of receipt of final report; and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report contains tables showing: (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization. (Author 's abstract)

  13. Water-quality and hydrogeologic data used to evaluate the effects of farming systems on ground-water quality at the Management Systems Evaluation Area near Princeton,Minnesota, 1991-95

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.

    1997-01-01

    The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.

  14. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.103 Sustainable acquisitions. (a... the products are— (1) Energy-efficient (ENERGY STAR® or Federal Energy Management Program (FEMP...

  15. 48 CFR 23.103 - Sustainable acquisitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.103 Sustainable acquisitions. (a... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...

  16. 7 CFR 1400.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...), Cooperative Conservation Partnership Initiative (CCPI), Environmental Quality Incentives Program (EQIP), Farm..., Honey Bees and Farm-raised Fish (ELAP), part 760 of this title; (6) The Tree Assistance Program (TAP... of this title including Agricultural Management Assistance (AMA), Agricultural Water Enhancement...

  17. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities Maintenance...

  18. U.S. EPA'S URBAN WATERSHED RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY MANAGEMENT

    EPA Science Inventory

    The U.S. EPA's Urban Watershed Management Branch is responsible for developing and demonstrating technologies and methods required managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed...

  19. A National Strategic Plan for Natural Resources and Environmental Management Education.

    ERIC Educational Resources Information Center

    Fridgen, Cynthia

    1995-01-01

    The Natural Resources and Environmental Management Program is designed to help people understand their relationship to the environment, practice stewardship, make informed decisions, and appreciate biodiversity. Areas of emphasis include air, land, and water quality; citizen responsibility; conflict management; approaches to land use and species…

  20. A farm-level precision land management framework based on integer programming

    PubMed Central

    Li, Qi; Hu, Guiping; Jubery, Talukder Zaki; Ganapathysubramanian, Baskar

    2017-01-01

    Farmland management involves several planning and decision making tasks including seed selection and irrigation management. A farm-level precision farmland management model based on mixed integer linear programming is proposed in this study. Optimal decisions are designed for pre-season planning of crops and irrigation water allocation. The model captures the effect of size and shape of decision scale as well as special irrigation patterns. The authors illustrate the model with a case study on a farm in the state of California in the U.S. and show the model can capture the impact of precision farm management on profitability. The results show that threefold increase of annual net profit for farmers could be achieved by carefully choosing irrigation and seed selection. Although farmers could increase profits by applying precision management to seed or irrigation alone, profit increase is more significant if farmers apply precision management on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to explore the impact of precision agriculture. PMID:28346499

  1. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  2. Environmental Education as a social mobilization strategy to face water scarcity.

    PubMed

    Piccoli, Andrezza de Souza; Kligerman, Débora Cynamon; Cohen, Simone Cynamon; Assumpção, Rafaela Facchetti

    2016-03-01

    Article 225 of the Brazilian Constitution establishes that all citizens have the right to an ecologically balanced environment, as a common good that is essential for a healthy life, and that the government and society have the duty to protect and preserve the environment for present and future generations. This article outlines a methodology for promoting social mobilization to address water scarcity developed under the National Environmental Education and Social Mobilization for Sanitation Program (PEAMSS, acronym in Portuguese). The main aim of this article is to show the importance of education as a driving force for empowerment for water resources management. It outlines the main concepts of emancipatory environmental education and then goes on to describe the elaboration of a PEAMMS action plan. It concludes that the universalization of the right to safe and clean drinking water and access to sanitation is only possible through democratic and participatory water resources management. Actions are necessary to evaluate the reach of the PEAMSS and define the way ahead for the program.

  3. Wastewater reclamation and recharge: A water management strategy for Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorder, P.J.; Brunswick, R.J.; Bockemeier, S.W.

    1995-12-31

    Approximately 61,000 acre-feet of the pumped water is annually discharged to the Rio Grande as treated wastewater. Albuquerque`s Southside Water Reclamation Plant (SWRP) is the primary wastewater treatment facility for most of the Albuquerque area. Its current design capacity is 76 million gallons per day (mgd), which is expected to be adequate until about 2004. A master plan currently is being prepared (discussed here in Wastewater Master Planning and the Zero Discharge Concept section) to provide guidelines for future expansions of the plant and wastewater infrastructure. Construction documents presently are being prepared to add ammonia and nitrogen removal capability tomore » the plant, as required by its new discharge permit. The paper discusses water management strategies, indirect potable reuse for Albuquerque, water quality considerations for indirect potable reuse, treatment for potable reuse, geohydrological aspects of a recharge program, layout and estimated costs for a conceptual reclamation and recharge system, and work to be accomplished under phase 2 of the reclamation and recharge program.« less

  4. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  5. Environmental equity as a criterion for water management

    NASA Astrophysics Data System (ADS)

    Grande, M.; Galvão, C.; Miranda, L.; Rufino, I.

    2014-09-01

    Environmental equity is a concept derived from the (un)equal exposure to environmental degradation by different social groups, usually minorities and low-income people exposed to major environmental risks, also known as environmental justice. It is assumed that no group of people, independent of race, ethnicity or socio-economic class, should support, either in concentrated or unevenly distributed form, the negative environmental impacts resulting from industrial, agricultural, commercial and infrastructure activities or government programs and policies. In this paper the concept of environmental equity is explored as a criterion for water management through the analysis of a typical coupled human-natural system: the Epitácio Pessoa Reservoir, located in the semi-arid region of Brazil. Inefficient water resource management has caused unequal access to water by the population, particularly during drought periods. However, census data indicate that population have practically the same access to water, which actually is not able to reflect the actual picture. This study argues that environmental equity can be an additional criterion to improve water management.

  6. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information content of water cycle predictions in a way that allows for model improvement. The final challenge is to establish clear pathways to inform water managers, practitioners and decision makers about newly developed tools, observations and research results.

  7. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  8. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  9. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  10. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  11. 48 CFR 1323.204 - Procurement exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...

  12. EAWAG: An Environmental Science and Engineering Resource.

    ERIC Educational Resources Information Center

    Miller, Stanton

    1980-01-01

    Interviewed is the director of a Swiss research and teaching institute in the field of water resources, water pollution control, and waste management. Topics include lake studies, research programs and priorities, advisory services, and the organizational structure of EAWAG. (BT)

  13. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  14. Field trip guidebook to the hydrogeology of the Rock-Fox River basin of Southeastern Wisconsin

    USGS Publications Warehouse

    Holt, C. L. R.; Cotter, R.D.; Green, J.H.; Olcott, P.G.

    1970-01-01

    On this trip we will examine some hydrogeologic characteristics of glacial features and emphasize ground-water management within the Rock-Fox River basin. Field stops will include the hydrogeology of a classical glacial terrane--the Kettle moraine--and the management of ground-water resources for industrial, municipal, agricultural, and fish-culture purposes. Descriptions of the geology, soils, water availability and characteristics, water quality, water use, and water problems within the basin are given in the accompanying U.S. Geological Survey Hydrologic Atlas (HA-360). This atlas is a product of the cooperative program of University Extension--the University of Wisconsin Geological and Natural History Survey.

  15. From safe yield to sustainable development of water resources - The Kansas experience

    USGS Publications Warehouse

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better understood and overly simplistic solutions avoided. (C) 2000 Elsevier Science B.V.This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involv

  16. Risk-informed Management of Water Infrastructure in the United States: History, Development, and Best Practices

    NASA Astrophysics Data System (ADS)

    Wolfhope, J.

    2017-12-01

    This presentation will focus on the history, development, and best practices for evaluating the risks associated with the portfolio of water infrastructure in the United States. These practices have evolved from the early development of the Federal Guidelines for Dam Safety and the establishment of the National Dam Safety Program, to the most recent update of the Best Practices for Dam and Levee Risk Analysis jointly published by the U.S. Department of Interior Bureau of Reclamation and the U.S. Army Corps of Engineers. Since President Obama signed the Water Infrastructure Improvements for the Nation Act (WIIN) Act, on December 16, 2016, adding a new grant program under FEMA's National Dam Safety Program, the focus has been on establishing a risk-based priority system for use in identifying eligible high hazard potential dams for which grants may be made. Finally, the presentation provides thoughts on the future direction and priorities for managing the risk of dams and levees in the United States.

  17. 46 CFR 162.060-5 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-5 Incorporation by...), Environmental Technology Verification Program, National Risk Management Research Laboratory Office of Research...

  18. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    EPA Science Inventory

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  19. EPA'S WATERSHED MANAGEMENT AND MODELING RESEARCH PROGRAM

    EPA Science Inventory

    Watershed management presumes that community groups can best solve many water quality and ecosystem problems at the watershed level rather than at the individual site, receiving waterbody, or discharger level. After assessing and ranking watershed problems, and setting environ...

  20. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  1. Guidance for the Development of Air Force Storm Water Sampling Programs

    DTIC Science & Technology

    1993-09-01

    38 Storm Water Quality Monitoring ................. 39 Determining Flow Rate ....................... 42 Weirs and Flumes... water quality monitoring it is not possible to analyze the entire nmoff from a drainage basin. The objective of water quality sampling is to collect a...development of storm water pollution prevention plans. Best management practices can also be developed to control the pollution sources identified. In storm

  2. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for sustaining and improving groundwater resources. Technical, economic, and institutional uncertainties remain, and ongoing research is addressing the potential for ReNeM in the Pajaro Valley and elsewhere.

  3. A problem analysis and program for watershed-management research in the White Mountains of New Hampshire

    Treesearch

    George R., Jr. Trimble

    1959-01-01

    The U. S. Forest Service was authorized by Congress in late summer of 1954 to conduct watershed management research in New Hampshire. The purpose of this work is to determine the effect of forest cover on streamflow: the influence of forest cover type, forest condition, and forest treatment practices on water yield, rate of delivery, and on water quality. This is the...

  4. REGIONAL ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM

    EPA Science Inventory

    The U.S. EPA Environmental Monitoring and Assessment Program (EMAP) supports the development and utilization of ecological monitoring as a critical component of environmental management and protection. Its authorization is provided under the Clean Water Act, as amended, Public L...

  5. Remote sensing inputs to National Model Implementation Program for water resources quality improvement

    NASA Technical Reports Server (NTRS)

    Eidenshink, J. C.; Schmer, F. A.

    1979-01-01

    The Lake Herman watershed in southeastern South Dakota has been selected as one of seven water resources systems in the United States for involvement in the National Model Implementation Program (MIP). MIP is a pilot program initiated to illustrate the effectiveness of existing water resources quality improvement programs. The Remote Sensing Institute (RSI) at South Dakota State University has produced a computerized geographic information system for the Lake Herman watershed. All components necessary for the monitoring and evaluation process were included in the data base. The computerized data were used to produce thematic maps and tabular data for the land cover and soil classes within the watershed. These data are being utilized operationally by SCS resource personnel for planning and management purposes.

  6. USGS investigations of water produced during hydrocarbon reservoir development

    USGS Publications Warehouse

    Engle, Mark A.; Cozzarelli, Isabelle M.; Smith, Bruce D.

    2014-01-01

    Significant quantities of water are present in hydrocarbon reservoirs. When brought to the land surface during oil, gas, and coalbed methane production, the water—either naturally occurring or injected as a method to enhance production—is termed produced water. Produced water is currently managed through processes such as recycling, treatment and discharge, spreading on roads, evaporation or infiltration, and deep well injection. U.S. Geological Survey (USGS) scientists conduct research and publish data related to produced water, thus providing information and insight to scientists, decisionmakers, the energy industry, and the public. The information advances scientific knowledge, informs resource management decisions, and facilitates environmental protection. This fact sheet discusses integrated research being conducted by USGS scientists supported by programs in the Energy and Minerals and Environmental Health Mission Areas. The research products help inform decisions pertaining to understanding the nature and management of produced water in the United States.

  7. Opportunities for Intervention Strategies for Weight Management: Global Actions on Fluid Intake Patterns

    PubMed Central

    Lafontan, Max; Visscher, Tommy L.S.; Farpour-Lambert, Nathalie; Yumuk, Volkan

    2015-01-01

    Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity), water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols. PMID:25765164

  8. NATIONAL CONFERENCE ON URBAN STORM WATER: ENHANCING PROGRAMS AT THE LOCAL LEVEL - PROCEEDINGS CHICAGO, IL FEBRUARY 17-20, 2003

    EPA Science Inventory

    A wide array of effective storm water management and resource protection tools have been developed for urban environments, but their implementation continues to be hampered by a lack of technology transfer opportunities. At the national conference Urban Storm Water: Enhancing Pro...

  9. Water Distribution System Operation and Maintenance. A Field Study Training Program. Second Edition.

    ERIC Educational Resources Information Center

    Kerri, Kenneth D.; And Others

    Proper installation, inspection, operation, maintenance, repair and management of water distribution systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide water distribution system operators with the knowledge and skills required to operate and maintain…

  10. 40 CFR 35.1620-2 - Contents of applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification that the project is consistent with State Water Quality Management work program (see § 35.1513 of... past trends and current water quality of the lake. (E) A description of the type and amount of public... due to degraded water quality. Indicate the cause of the impairment, such as algae, vascular aquatic...

  11. 40 CFR 35.1620-2 - Contents of applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification that the project is consistent with State Water Quality Management work program (see § 35.1513 of... past trends and current water quality of the lake. (E) A description of the type and amount of public... due to degraded water quality. Indicate the cause of the impairment, such as algae, vascular aquatic...

  12. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  13. Operational ET remote sensing (RS) program for irrigation scheduling and management: challenges and opportunities

    Treesearch

    Prasanna Gowda

    2016-01-01

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. Any attempt to improve water use efficiency must be based on reliable estimates of ET for irrigation scheduling purposes.

  14. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data. (a...

  15. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data. (a...

  16. 10 CFR 436.17 - Establishing energy or water cost data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data. (a...

  17. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... related facilities required for the rural water supply project; (f) Equipment and management tools for... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  18. The Public Discourse about Land Use and Water Quality: Themes in Newspapers in the Upper Mississippi River Basin

    ERIC Educational Resources Information Center

    Schmid, Andrea N.; Thompson, Jan R.; Bengston, David N.

    2007-01-01

    Effective educational and management programs to improve water quality will require an improved understanding of public perceptions of the relationship between land use and water quality. We analyzed a large database of newspaper articles in the Upper Mississippi River Basin to assess the public discourse about water quality and land use, and…

  19. Twenty-five years of ecological recovery of East Fork Poplar Creek: review of environmental problems and remedial actions.

    PubMed

    Loar, James M; Stewart, Arthur J; Smith, John G

    2011-06-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  20. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    NASA Astrophysics Data System (ADS)

    Loar, James M.; Stewart, Arthur J.; Smith, John G.

    2011-06-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  1. Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier.

    PubMed

    Bell, Andrew Reid; Lemos, Maria Carmen; Scavia, Donald

    2010-11-15

    In the Amazonian agricultural frontier, pasture for cattle ranching is an important and potentially hazardous form of land use because of sediment erosion as pastures degrade. This relationship between ranching, sediment load, and water quality is likely to further exacerbate environmental impacts, particularly in the context of climate change. We examine the role that river basin councils (RBCs) - a water governance option of Brazil's 1997 National Water Act - might play in managing this nonpoint-source pollution in the Amazônian state of Rondônia. We implement a simple coupled rancher-water system model to compare two potential governance options: a bulk water cleanup charge (BWC) implemented by RBCs and a land-use fine (LUF) for failing to maintain riparian buffers. We find no significant advantage of BWC over LUF in reducing sediment loading while keeping ranching profitable, under a changing climate. We also fail to find in Rondônia the important stake in water issues that has driven water reform elsewhere in Brazil. Moreover, the comparative success of reforestation programs suggests these programs may, in fact, have the potential to manage nonpoint-source agricultural pollution in the region.

  2. Management of ground water and evolving hydrogeologic studies in New Jersey : a heavily urbanized and industrialized state in the northeastern United States

    USGS Publications Warehouse

    Leahy, P. Patrick

    1985-01-01

    New Jersey is the most densely populated and one of the most industrialized states in the United States. An abundance of freshwater and proximity to major northeastern metropolitan centers has facilitated this development. Pumpage of freshwater from all aquifers in the State in 1980 was 730 million gallons per day (2.76 million cubic meters per day).Management and efficient development of the ground-water resources of the State are the responsibility of the New Jersey Department of Environmental Protection. Laws have been enacted and updated by the State legislature to manage water allocation and to control the disposal of hazardous wastes. Present resource management is guided by the New Jersey Water-Supply Master Plan of 1981. Funding for management activities is partially derived from the sale of state-approved bonds.Effective planning and regional management require accurate and up-to-date hydrologic information and analyses. The U.S. Geological Survey, in cooperation with the New Jersey Geological Survey, is conducting three intensive ground-water studies involving the collection and interpretation of hydrologic data to meet the urgent water-management needs of New Jersey. These studies are part of a long-term cooperative program and are funded through the Water-Supply Bond Act of 1981. They began in 1983 and are scheduled to be completed in 1988.The project areas are situated in the New Jersey part of the Atlantic Coastal Plain in and near Atlantic City, Camden, and South River. They range in size from 400 to 1,200 mil (1,040 to 3,120 km2). The studies are designed to define the geology, hydrology, and geochemistry of the local ground-water systems. The results of these studies will enable the State to address more effectively major problems in these areas such as declining water levels, overpumping, saltwater intrusion, and ground-water contamination resulting from the improper disposal of hazardous wastes.Specific objectives of these studies by the U.S. Geological Survey are to (1) develop an accurate and up-to-date hydrogeologic data base, (2) design and implement a data-collection program and establish a computerized information management system, (3) refine the conceptualization of the ground-water flow system, and (4) define the geochemistry of the aquifer system by conducting a water-quality appraisal. The objectives are accomplished by standard hydrogeologic methods. Information concerning hydrogeologic framework, ground-water levels, water use, hydraulic characteristics, and water quality in the study areas is compiled from all available sources. Additional data needed are collected through well inventories, surface geophysical surveys, water-quality samplings, water-level measurements, and a well-drilling program.Interpretation of the flow system is based on the use of standard analytical techniques and digital flow modeling. Calibrated flow models will provide ground-water managers with a mechanism to develop and test regional water-supply strategies.Definition of the geochemistry of the aquifer system is accomplished through a variety of methods which depend on the problems and available data in the particular study area. The approach includes statistical analysis of water-quality data, reaction-path modeling, and determination of the movement of chemical constituents using analytical and numerical modeling techniques.A combined staff of 25 to 30 professionals and technicians from the New Jersey District office of the U.S. Geological Survey is committed to the three studies. The staff has specialists in geohydrology, numerical modeling, geochemistry, geophysics, and computer science. The findings of these studies will be published in data reports, interpretive reports, instructional manuals and journal articles.

  3. 36 CFR 59.3 - Conversion requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE... not been dedicated or managed for recreation/conservation use may be used as replacement land even if... proposed conversion and substitution constitute significant changes to the original Land and Water...

  4. 36 CFR 59.3 - Conversion requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE... not been dedicated or managed for recreation/conservation use may be used as replacement land even if... proposed conversion and substitution constitute significant changes to the original Land and Water...

  5. 36 CFR 59.3 - Conversion requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE... not been dedicated or managed for recreation/conservation use may be used as replacement land even if... proposed conversion and substitution constitute significant changes to the original Land and Water...

  6. 43 CFR 404.23 - How will Reclamation determine whether you or your contractor is qualified to conduct an...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.23 How will Reclamation... expertise needed may include, but are not limited to, water management planning, engineering, hydrology...

  7. 30 CFR 401.11 - Applications for grants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM... support competitively selected research projects under the terms of section 104(g) of the Act. Selection... effort and encouraging regional cooperation in research areas of water management, development, and...

  8. 30 CFR 401.11 - Applications for grants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM... support competitively selected research projects under the terms of section 104(g) of the Act. Selection... effort and encouraging regional cooperation in research areas of water management, development, and...

  9. 30 CFR 401.11 - Applications for grants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM... support competitively selected research projects under the terms of section 104(g) of the Act. Selection... effort and encouraging regional cooperation in research areas of water management, development, and...

  10. 30 CFR 401.11 - Applications for grants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM... support competitively selected research projects under the terms of section 104(g) of the Act. Selection... effort and encouraging regional cooperation in research areas of water management, development, and...

  11. 30 CFR 401.11 - Applications for grants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM... support competitively selected research projects under the terms of section 104(g) of the Act. Selection... effort and encouraging regional cooperation in research areas of water management, development, and...

  12. White Paper on Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The Office of Research and Development’s National Risk Management Research Laboratory has published this report in support of the Aging Water Infrastructure (AWI) Research Program, which directly supports the Office of Water’s Sustainable Water Infrastructure Initiative. Scienti...

  13. Directory of Federal Contacts on Environmental Protection,

    DTIC Science & Technology

    1979-11-01

    White 4727 Regional Administrator John A. Little 4727 Deputy Regional Administrator WATER DIVISION Paul J. Traina 4450 Director Howell Lucius 4450...Quality Program Assistant VACANT 104.9 3761 Environmental Engineering Mr. John laconis 112.2 3765 BTU Program Manager Mr. Dennis Perham 24 3586 Natural...PHONE TITLE/ NAME SYMBOL EXT AREA OF COGNIZANCE NAVY ENVIRONMENTAL SUPPORT OFFICE (NESO) Management LCDR John P. Collins 25 5751 Director Earl H. Moser

  14. National Water-Quality Assessment program: The Trinity River Basin

    USGS Publications Warehouse

    Land, Larry F.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels. A major design feature of the NAWQA program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which comprise the principal building blocks of the program on which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Trinity River basin study was among the first 20 NAWQA study units selected for study under the full-scale implementation plan.

  15. Water Awareness Strategy for Sinaloa State, Mexico, as a Tool to Mitigate the Imbalance of Nature

    NASA Astrophysics Data System (ADS)

    Torrecillas Nunez, C.; Miguel-Rodriguez, A.

    2013-05-01

    Agriculture is extremely important to Sinaloa contributing 32.31% of the value of all national agricultural production, while the state occupies only 2.9% of the Mexico's area. However it has caused an imbalance in nature due to the low efficiency of irrigation being 49% and using 93% of the surface waters of the region, hence the importance of promoting water awareness. The Water Awareness Strategy for Sinaloa (PLECASIN) 2013- 2015 is a product of the workshop held with water advisers representing 14 utilities, and sponsored by CEAPAS and CONAGUA to address water resources issues in the state, low dam levels and the high level of non-payment, through involving society in the management of water resources. The workshop established strategies to achieve the objective of the National Water Awareness Program (PCA): "Contribute to strengthening the participation of users, organized society and citizens in water management and promote the culture of its good use, through consultation and promotion of cultural and educational activities in coordination with the states, to promote the importance of water resources in social welfare, economic development and the preservation of the ecological wealth, to achieve development sustainable of the nation". PLECASIN was developed using the methodology of strategic planning, beginning with a diagnosis of PCA and the development of strategies pertinent to the current environment in Sinaloa. Activities in the workshop included: defining the vision, mission and objectives, stakeholder analysis, SWOT Matrix, and finally the development of the Logical Framework Analysis Matrix. In addition, the workshop applied the PEEAES tools, using primarily the book of the 5 Waters and application of innovative technologies. The Universidad Autónoma de Sinaloa designed and implemented an Environmental Education Strategy (PEEAES) to foster an environmental awareness through non-formal educational process and includes: a mobile environmental education unit; developing and distributing educational materials; creation of a State Government webpage and establishing a network of trainers and promoters. The following items were agreed at the workshop: Mission - To be promoters of good water management, through interdisciplinary programs and innovation to provide knowledge about the proper use and care of water, ensuring a sustainable future for Sinaloa; Vision- To be the most committed and recognized state for the actions taken in water conservation and efficient use through the use of technology, knowledge and participatory processes; Objective- in three years reach at least 20% of the population, generating positive changes in customs, habits and behaviors in consumption and water management; and Specific objectives - helping to reduce total water consumption by 15% over three years and minimize the actual cost of providing water; report timely and effectively to the public about water scarcity, the cost of providing it, the need for payment, responsible use and its economic, health, social and environmental; education and communication programs to promote water culture; foster teamwork of the agencies involved in water management; and optimize the resources available to deliver the PCA.

  16. Information Management System for the California State Water Resources Control Board (SWRCB)

    NASA Technical Reports Server (NTRS)

    Heald, T. C.; Redmann, G. H.

    1973-01-01

    A study was made to establish the requirements for an integrated state-wide information management system for water quality control and water quality rights for the State of California. The data sources and end requirements were analyzed for the data collected and used by the numerous agencies, both State and Federal, as well as the nine Regional Boards under the jurisdiction of the State Board. The report details the data interfaces and outlines the system design. A program plan and statement of work for implementation of the project is included.

  17. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  18. 25 CFR 170.807 - What must BIA include when it develops an IRR Transportation Facilities Maintenance Management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transportation Facilities Maintenance Management System? 170.807 Section 170.807 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.807 What must BIA include when it develops an IRR Transportation Facilities Maintenance Management System...

  19. EVERGLADES ECOSYSTEM ASSESSMENT: WATER MANAGEMENT AND QUALITY, EUTROPHICATION, MERCURY CONTAMINATION, SOILS AND HABITAT: MONITORING FOR ADAPTIVE MANAGEMENT: A R-EMAP STATUS REPORT

    EPA Science Inventory

    The United States Environmental Protection Agency’s Everglades Ecosystem Assessment Program is a long-term research, monitoring and assessment effort. Its goal is to provide critical, timely, scientific information needed for management decisions on the Everglades ecosystem and i...

  20. NOAA Photo Library - Meet the Photographers/Richard B. "Ben" Mieremet

    Science.gov Websites

    resource management at the University of Maryland. After obtaining an M.S. in water resources management from the University of Michigan in 1974, Ben came to work for the Office of Coastal Zone Management (now the Office of Ocean and Coastal Resource Management) through a two-year exchange program from the

Top