Sample records for water pump development

  1. Livestock water pumping with wind and solar power

    USDA-ARS?s Scientific Manuscript database

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  2. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  3. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  4. Sizing and modelling of photovoltaic water pumping system

    NASA Astrophysics Data System (ADS)

    Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.

    2018-05-01

    With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.

  5. Design and analysis of hydraulic ram water pumping system

    NASA Astrophysics Data System (ADS)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  6. Effects of simulated ground-water pumping and recharge on ground-water flow in Cape Cod, Martha's Vineyard, and Nantucket Island basins, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Barlow, Paul M.

    1997-01-01

    Three-dimensional transient ground-water-flow models that simulate both freshwater and saltwater flow were developed for the flow cells of the Cape Cod Basin to determine the effects of long-term pumping and recharge, seasonal fluctuations in pumping and recharge, and prolonged reductions of natural recharge, on the position of the freshwater-saltwater interface, water-table and pond altitudes, and streamflow and discharge to coastal marshes and embayments. Two-dimensional, finite-difference change models were developed for Martha's Vineyard and Nantucket Island basins to determine anticipated drawdowns in response to projected summer season pumping rates for 180 days of no recharge.

  7. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Garrabrant; Roger Stout; Paul Glanville

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs ofmore » 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.« less

  8. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    NASA Astrophysics Data System (ADS)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  9. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  10. 5. Station Unwatering Pumps and Sump Pump for Units 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Station Unwatering Pumps and Sump Pump for Units 1 and 2, view to the west. The unwatering pumps are the two larger items toward the right side of the photograph (one in foreground and one in background. The smaller item toward the left of the photograph is the sump pump. These pumps are used for draining water from the draft chest for maintenance. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  11. Computational Simulation of a Water-Cooled Heat Pump

    NASA Technical Reports Server (NTRS)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  12. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  13. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  14. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    NASA Astrophysics Data System (ADS)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in different specified operational conditions.

  15. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  16. Diesel-fired self-pumping water heater

    NASA Astrophysics Data System (ADS)

    Gertsmann, Joseph

    1994-07-01

    The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.

  17. Renewable Energy Water Pumping Systems Handbook; Period of Performance: April 1--September 1, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argaw, N.

    2004-07-01

    Water is one of the most basic necessities of rural development. This book provides valuable information on how renewable energy technologies can be used for irrigation, livestock watering, and domestic water supplies. This report emphasizes wind and solar energy resources, and hybrid water pumping systems.

  18. An inflight refill unit for replenishing research animal drinking water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. L.; Barnes, R.

    1995-01-01

    This paper presents the design process and development approach for a method of maintaining sufficient quantities of water for research animals during a Shuttle mission of long duration. An inflight refill unit (IRU) consisting of two major subsystems, a fluid pumping unit (FPU) and a collapsible water reservoir (CWR), were developed. The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out into the RAHF drinking water tanks. The CWR is a Kevlar (TM) reinforced storage bladder connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system, allowing for transport of the water back to the Spacelab where it is pumped into each of two research animal holding facilities. Additional components of the IRU system include the inlet and outlet fluid hoses, a power cable for providing 29V direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab.

  19. Energy consumption behavior of submersible pumps using in the Barind area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Haque, M. E.; Islam, M. R.; Masud, M. H.; Ferdous, J.; Haniu, H.

    2017-06-01

    In this work the ground water level and water pumping for irrigation and drinking purposes in Barind area of Bangladesh have been studied. The depth of ground water level remains under 30ft throughout the year that enforcing the use of submersible pumps in most parts of Barind zone. The Barind Multipurpose Development Authority (BMDA) and Rajshahi WASA are the major water supplying authority in the Northern Part of Bangladesh by using 14386 and 87 nos of submersible pumps, respectively. An investigation for the values of life cycle cost elements of submersible pumps has also been carried out. The performance of the pumps running in different sites in Barind area were investigated and compared with the lab test results of new pumps. Energy consumption cost is dominating the life cycle cost of the pumps using in Barind region and improper matching of pump standard running conditions and operation/system requirements are the main causes of lower efficiency. It is found that the efficiency of the running pumps is reduced by 20 - 40% than that of lab test results.

  20. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomquist, R.G.; Wegman, S.

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for materialmore » and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.« less

  1. Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.

  2. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from existing data and estimated when unavailable. Results of predictive simulations indicate that in 50 years, if artificial recharge continues to exceed pumpage in Irwin Basin, water levels could rise as much as 65 feet beneath the pumping depression, and as much as 10 feet in the wastewater-treatment facility and disposal area. Particle-tracking simulations were used to determine the pathlines and the traveltimes of water high in dissolved solids into the main pumping area. The pathlines of particles from two areas with high dissolved-solids concentrations show that in 50 years water from these areas almost reaches the nearest pumped well.

  3. High Efficiency Water Heating Technology Development Final Report, Part II: CO 2 and Absorption-Based Residential Heat Pump Water Heater Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  4. Simulated water sources and effects of pumping on surface and ground water, Sagamore and Monomoy flow lenses, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Whealan, Ann T.

    2005-01-01

    The sandy sediments underlying Cape Cod, Massachusetts, compose an important aquifer that is the sole source of water for a region undergoing rapid development. Population increases and urbanization on Cape Cod lead to two primary environmental effects that relate directly to water supply: (1) adverse effects of land use on the quality of water in the aquifer and (2) increases in pumping that can adversely affect environmentally sensitive surface waters, such as ponds and streams. These considerations are particularly important on the Sagamore and Monomoy flow lenses, which underlie the largest and most populous areas on Cape Cod. Numerical models of the two flow lenses were developed to simulate ground-water-flow conditions in the aquifer and to (1) delineate areas at the water table contributing water to wells and (2) estimate the effects of pumping and natural changes in recharge on surface waters. About 350 million gallons per day (Mgal/d) of water recharges the aquifer at the water table in this area; most water (about 65 percent) discharges at the coast and most of the remaining water (about 28 percent) discharges into streams. A total of about 24.9 Mgal/d, or about 7 percent, of water in the aquifer is withdrawn for water supply; most pumped water is returned to the hydrologic system as return flow creating a state of near mass balance in the aquifer. Areas at the water table that contribute water directly to production wells total about 17 square miles; some water (about 10 percent) pumped from the wells flows through ponds prior to reaching the wells. Current (2003) steady-state pumping reduces simulated ground-water levels in some areas by more than 4 feet; projected (2020) pumping may reduce water levels by an additional 3 feet or more in these same areas. Current (2003) and future (2020) pumping reduces total streamflow by about 4 and 9 cubic feet per second (ft3/s), corresponding to about 5 percent and 9 percent, respectively, of total streamflow. Natural recharge varies with time, over both monthly and multiyear time scales. Monthly changes in recharge cause pond levels to vary between 1 and 2 feet in an average year; annual changes in recharge, which can be much larger than monthly variations, can cause pond levels to vary by more than 10 feet in some areas over a period of years. Streamflow, which also changes in response to changes in recharge, varies by a factor of two over an average year and can vary more over multiyear periods. On average, monthly pumping ranges from 15.8 Mgal/d in March to 45.3 Mgal/d in August. Pumping and the distribution of return flow can seasonally affect the hydrologic system by lowering ground-water and pond levels and by depleting streamflows, particularly in the summer months. Maximum drawdowns in March and August exceed 3 feet and 6 feet, respectively, for current (2003) pumping. Simulated drawdowns from projected (2020) pumping, relative to water levels representing 2003 pumping conditions, exceed 2 feet in March and 5 feet in August. Current (2003) and future (2020) pumping can decrease pond levels in some areas by more than 3 feet; drawdown generally is largest during the month of August of an average year. Over multiyear periods, seasonal pumping can lower pond levels in some areas by more than 4 feet; the effects of seasonal pumping are largest during periods of reduced recharge. Monthly streamflow depletion varies in individual streams but can exceed 2 ft3/s in some streams. The combined effects of seasonal pumping and drought can reduce pond levels by more than 10 feet below average levels. Water levels in Mary Dunn Pond, which is in an area of large current and projected pumping, are predicted (2020) to decline during drought conditions by about 10.6 feet: about 6.9 feet from lower recharge, about 2.3 feet from current (2003) pumping, and about 1.4 feet from additional future (2020) pumping. The results indicate that pumping generally does not cause substantial

  5. 22. DIABLO POWERHOUSE: COOLING WATER PUMPS (WESTINGHOUSE C.S. INDUCTION MOTORS), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DIABLO POWERHOUSE: COOLING WATER PUMPS (WESTINGHOUSE C.S. INDUCTION MOTORS), 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  6. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    USGS Publications Warehouse

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies for accounting for groundwater pumping in the river aquifer connected to the Colorado River in the study area.

  7. Radial flow to a partially penetrating well with storage in an anisotropic confined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Vesselinov, Velimir V.; Neuman, Shlomo P.

    2012-07-01

    SummaryDrawdowns generated by extracting water from large diameter (e.g. water supply) well are affected by wellbore storage. We present an analytical solution in Laplace transformed space for drawdown in a uniform anisotropic aquifer caused by withdrawing water at a constant rate from partially penetrating well with storage. The solution is back transformed into the time domain numerically. When the pumping well is fully penetrating our solution reduces to that of Papadopulos and Cooper (1967); Hantush (1964) when the pumping well has no wellbore storage; Theis (1935) when both conditions are fulfilled and Yang (2006) when the pumping well is partially penetrating, has finite radius but lacks storage. Newly developed solution is then used to explore graphically the effects of partial penetration, wellbore storage and anisotropy on time evolutions of drawdown in the pumping well and in observation wells. We concluded after validating the developed analytical solution using synthetic pumping test.

  8. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.

    2012-01-01

    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.

  9. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is tomore » achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.« less

  10. 12. Sewage Ejector Pumps, view to the southwest. These pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Sewage Ejector Pumps, view to the southwest. These pumps are connected to sewage treatment tanks. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  11. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  12. Simulation of the effects of ground-water withdrawals and recharge on ground-water flow in Cape Cod, Martha's Vineyard, and Nantucket Island basins, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Barlow, Paul M.

    1994-01-01

    The effects of changing patterns of ground-water pumping and aquifer recharge on the surface-water and ground-water hydrologic systems were determined for the Cape Cod, Martha's Vineyard, and Nantucket Island Basins. Three-dimensional, transient, ground-water-flow modelS that simulate both freshwater and saltwater flow were developed for the f1ow cells of Cape Cod which currently have large-capacity public-supply wells. Only the freshwater-flow system was simulated for the Cape Cod flow cells where public-water supply demands are satisfied by small-capacity domestic wells. Two- dimensional, finite-difference, change models were developed for Martha's Vineyard and Nantucket Island to determine the projected drawdowns in response to projected in-season pumping rates for 180 days of no aquifer recharge. Results of the simulations indicate very little change in the position of the freshwater-saltwater interface from predevelopment flow conditions to projected ground-water pumping and recharge rates for Cape Cod in the year 2020. Results of change model simulations for Martha's Vineyard and Nantucket Island indicate that the greatest impact in response to projected in-season ground-water pumping occurs at the pumping centers and the magnitude of the drawdowns are minimal with respect to the total thickness of the aquifers.

  13. Identification of pumping influences in long-term water level fluctuations.

    PubMed

    Harp, Dylan R; Vesselinov, Velimir V

    2011-01-01

    Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross-hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long-term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost-effective alternative to designed and coordinated cross-hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  14. Examples of oil cavitation erosion in positive displacement pumps

    NASA Technical Reports Server (NTRS)

    Halat, J. A.; Ellis, G. O.

    1974-01-01

    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  15. Performance Analysis of a CO2 Heat Pump Water Heating System Under a Daily Change in a Simulated Demand

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ryohei; Kohno, Yasuhiro; Wakui, Tetsuya; Takemura, Kazuhisa

    Air-to-water heat pumps using CO2 as a refrigerant have been developed. In addition, water heating systems each of which combines a CO2 heat pump with a hot water storage tank have been commercialized and widespread. They are expected to contribute to energy saving in residential hot water supply. It has become more and more important to enhance the system performance. In this paper, the performance of a CO2 heat pump water heating system is analyzed under a daily change in a simulated hot water demand by numerical simulation. A static model of a CO2 heat pump and a dynamic model of a storage tank result in a set of differential algebraic equations, and it is solved numerically by a hierarchical combination of Runge-Kutta and Newton-Raphson methods. Daily changes in the temperature distributions in the storage tank and the system performance criteria such as volumes of stored and unused hot water, coefficient of performance, and storage and system efficiencies are clarified under a series of daily hot water demands during a month.

  16. Estimating formation properties from early-time oscillatory water levels in a pumped well

    USGS Publications Warehouse

    Shapiro, A.M.; Oki, D.S.

    2000-01-01

    Hydrologists often attempt to estimate formation properties from aquifer tests for which only the hydraulic responses in a pumped well are available. Borehole storage, turbulent head losses, and borehole skin, however, can mask the hydraulic behavior of the formation inferred from the water level in the pumped well. Also, in highly permeable formations or in formations at significant depth below land surface, where there is a long column of water in the well casing, oscillatory water levels may arise during the onset of pumping to further mask formation responses in the pumped well. Usually borehole phenomena are confined to the early stages of pumping or recovery, and late-time hydraulic data can be used to estimate formation properties. In many instances, however, early-time hydraulic data provide valuable information about the formation, especially if there are interferences in the late-time data. A mathematical model and its Laplace transform solution that account for inertial influences and turbulent head losses during pumping is developed for the coupled response between the pumped borehole and the formation. The formation is assumed to be homogeneous, isotropic, of infinite areal extent, and uniform thickness, with leakage from an overlying aquifer, and the screened or open interval of the pumped well is assumed to fully penetrate the pumped aquifer. Other mathematical models of aquifer flow can also be coupled with the equations describing turbulent head losses and the inertial effects on the water column in the pumped well. The mathematical model developed in this paper is sufficiently general to consider both underdamped conditions for which oscillations arise, and overdamped conditions for which there are no oscillations. Through numerical inversion of the Laplace transform solution, type curves from the mathematical model are developed to estimate formation properties through comparison with the measured hydraulic response in the pumped well. The mathematical model is applied to estimate formation properties from a singlewell test conducted near Waialua, Oahu, Hawaii. At this site, both the drawdown and recovery showed oscillatory water levels in the pumped well, and a step-drawdown test showed that approximately 86% of the drawdown is attributed to turbulent head losses. Analyses at this site using late-time drawdown data were confounded by the noise present in the measured water levels due primarily to nearby irrigation wells and ocean tides. By analyzing the early-time oscillatory recovery data at the Waialua site, upper and lower bounds were placed on the transmissivity, T, storage coefficient, S, and the leakance of the confining unit, K′/B′. The upper and lower bounds on T differ by a factor of 2. Upper and lower bounds on S and K′/B′ are much larger, because drawdown stabilized relatively quickly after the onset of pumping.

  17. Absorption heat pump for space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  18. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    USGS Publications Warehouse

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  19. Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public-supply wells to contamination

    USGS Publications Warehouse

    Yager, Richard M.; Heywood, Charles E.

    2014-01-01

    Public-supply wells with long screens in alluvial aquifers can produce waters of differing quality from different depths. Seasonal changes in quality are linked to seasonal changes in pumping rates that influence the distribution of flow into the well screens under pumping conditions and the magnitude and direction of intraborehole flow within the wells under ambient conditions. Groundwater flow and transport simulations with MODFLOW and MT3DMS were developed to quantify the effects of changes in average seasonal pumping rates on intraborehole flow and water quality at two long-screened, public-supply wells, in Albuquerque, New Mexico and Modesto, California, where widespread pumping has altered groundwater flow patterns. Simulation results indicate that both wells produce water requiring additional treatment to maintain potable quality in winter when groundwater withdrawals are reduced because less water is derived from parts of the aquifer that contain water requiring less treatment. Simulation results indicate that the water quality at both wells could be improved by increasing average winter-pumping rates to induce more lateral flow from parts of the aquifer that contain better quality water. Arsenic-bearing water produced by the Albuquerque well could be reduced from 55% to 45% by doubling average winter-pumping rate, while nitrate- and uranium-bearing water produced by the Modesto well could be reduced from 95% to 65% by nearly tripling the average winter-pumping rate. Higher average winter-pumping rates would also reduce the volume of intraborehole flow within both wells and prevent the exchange of poor quality water between shallow and deep parts of both aquifers.

  20. Hydraulic design of a re-circulating water cooling system of a combined cycle power plant in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, C.K.; Pandit, D.R.; Kwon, S.G.

    The paper describes the hydraulic design and hydraulic transient analysis of the re-circulating water cooling system of the combined cyclo Sipco power cogeneration plant in Thailand. The power plant of 450 MW total capacity is proposed to be built in two stages. Stage one will produce 300 MW of power and will consist of two gas turbine generators (GTG) and one steam turbine generator (STG). Stage two will produce 150 MW of power and will consist of one GTG and one STG. The cooling system will consist of one GTG and one STG. The cooling system will consist of coolingmore » towers, a combined collecting basin and pump intake sump, pumps and motors, and separate conveyance systems and condensers for the generator units in the two stages. In a re-circulating water cooling system, cold water is pumped from the pump intake sump to the condensers through the conveyance system and hot water from the condensers is carried through the returning pipeline system to the cooling towers, whence the water after cooling is drained into the sump at the base of the towers. Total cooling water requirement for the system in stage one is estimated to be 112,000 gallons per minute (GPM), and that in stage two, 56,000 GPM. The sump is designed using the computer program HEC-2, developed by the US Army Corps of Engineers (COE) and the pump intake basin, following the recommendations of the Hydraulic Institute. The pumps were sized by computing the head loss in the system, and, the steady state and transient performances (during pump start-up and shut-down procedures and due to possible power or mechanical failure of one or all pumps) of the system were analyzed by mathematically modeling the system using the computer program WHAMO (Water Hammer nd Mass Oscillations), also developed by the COE.« less

  1. Effect of urbanization on the water resources of Warminster Township, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Davis, D.K.

    1982-01-01

    Rapid suburban development occurred in Warminster Township and the surrounding area after World War II, resulting in a large population dependent on ground water. In 1980, approximately 2.7 billion gallons of ground water was pumped by public water suppliers and government facilities. Pumping wells can cause drawdown as far as 2,500 feet undip, downdip, or along strike even if the wells do not penetrate the same strata. Pumping wells have lowered base flow; a stream-gain-and-loss study showed that water lost from Little Neshaminy Creek was about 60 percent of the water pumped from wells near the stream. Net ground-water infiltration to sewers was about 830 million gallons in 1979, a wet year, and about 250 million gallons in 1980, a dry year. Estimated water budgets for 1979 and 1980 indicate evapotranspiration can range from 20 to 26 inches per year (1.0 to 1.2 million gallons per day per square mile) and recharge can range from 8 to 18 inches per year (0.4 to 0.9 million gallons per day per square mile). In a year with average precipitation (45 inches or 2.1 million gallons per day per square mile), evapotranspiration is about 24 inches (1.1 million gallons per day per square mile). Ground-water development in the area influenced by pumping is at its practical limit for years of average recharge, but as much as 1.1 million gallons per day of additional water may be obtained by drilling and pumping wells in areas of Warminster Township not affected by pumping. The concentration of most dissolved constituents increased in water from seven wells, sampled at the onset of urbanization in 1953 and 1956 and again in 1979. Ground-water contamination by volatile organic compounds, especially trichloroethylene and tetrachloroethylene, has made water from some wells unsuitable for public supply. The concentration of lead in 26 samples of ground water ranged from 0 to 55 micrograms per liter, with a median of 17 micrograms per liter; this is above the reported national median and the median in nearby Chester County. High concentrations of sulfate and dissolved solids in ground water are probably caused by restricted gournd-water circulation and may be reduced by long-term pumping, which flushes the aquifer. Effluent from sewage treatment plants has degraded the quality of low streamflow.

  2. Photovoltaic water pumping applications: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Scudder, L. R.; Poley, W. A.; Cusick, J. P.

    1978-01-01

    Water pumping applications represent a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in the government, commercial/institutional and public sectors. The foreign demand and sources of funding for water pumping systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 240 megawatts and a foreign market of about 6 gigawatts exist.

  3. The optimal operation of cooling tower systems with variable-frequency control

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  4. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  5. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

    NASA Astrophysics Data System (ADS)

    MacCarthy, Michael F.; Carpenter, Jacob D.; Mihelcic, James R.

    2017-08-01

    In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93-111%), but less so at deeper depths (63-85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47-97%). Cost of materials to construct the EMAS Pump were 21-60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in "self-supply" groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

  6. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    USGS Publications Warehouse

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored in a unique WDM dataset identified by an attribute that associates each well with the model reach from which water is withdrawn. Other attributes identify the type and characteristics of the data. The interface allows users to easily add new pumping wells, delete exiting pumping wells, or change properties of the simulated aquifer or well. Development of this application enhanced the ability of the HSPF model to simulate complex water-use conditions in the Ipswich River Basin. The STRMDEPL program and the GenScn extension provide a valuable tool for water managers to evaluate the effects of pumped wells on streamflow and to test alternative water-use scenarios. Copyright ASCE 2004.

  7. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  8. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  9. Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. I.; Barnes, R.

    1994-01-01

    The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on 1 Nov. 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHF's) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR). The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out and into the RAHF drinking water tanks. The CWR is a Kevlar(trademark) reinforced storage bladder, connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system and allows for the transport of the water back to the Spacelab where it is pumped into each of two RAHFs. Additional components of the FPU system include the inlet and outlet fluid hoses, a power cable for providing 28 volt direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab. This paper will present the design process and development approach for the lnflight Refill Unit, define some of the key design issues which had to be addressed, and summarize the inflight operational performance of the unit during the SLS-2 mission.

  10. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  11. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain

    NASA Astrophysics Data System (ADS)

    Sikdar, P. K.; Chakraborty, Surajit

    2017-03-01

    In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and the Garo hills on the east. The proposed concern of this modelling arose from development that has led to large water table declines in the urban area of English Bazar block, Malda district, West Bengal and possible transport of As in the near future from the adjacent As-polluted aquifer. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Modelling indicates that current pumping has significantly changed the groundwater flowpaths from pre-development condition. At the present pumping rate, the pumping wells of the urban area may remain uncontaminated till the next 25 yrs, considering only pure advection of water but some water from the As-polluted zone may enter wells by 50 yrs. But geochemical and other processes such as adsorption, precipitation, redox reaction and microbial activity may significantly retard the predicted rate by advective transport. In the rural areas, majority of the water pumped from the aquifer is for irrigation, which is continuously re-applied on the surface. The near-vertical nature of the flowpaths indicates that, where As is present or released at shallow depths, it will continue to occur in pumping wells. Modelling also indicates that placing all the pumping wells at depths below 100 m may not provide As-free water permanently.

  12. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of the pumped water comes from groundwater storage over a broad geographic area even after two decades. Moreover, because the effects are spread out over a broad area, the impacts to individual features are much smaller than in the case of nearby pumping. Simulations show that the discharge features most affected by pumping in the area of the Bureau of Reclamation's Klamath Irrigation Project are agricultural drains, and impacts to other surface-water features are small in comparison. A groundwater management model was developed that uses techniques of constrained optimization along with the groundwater flow model to identify the optimal strategy to meet water user needs while not violating defined constraints on impacts to groundwater levels and streamflows. The coupled groundwater simulation-optimization models were formulated to help identify strategies to meet water demand in the upper Klamath Basin. The models maximize groundwater pumping while simultaneously keeping the detrimental impacts of pumping on groundwater levels and groundwater discharge within prescribed limits. Total groundwater withdrawals were calculated under alternative constraints for drawdown, reductions in groundwater discharge to surface water, and water demand to understand the potential benefits and limitations for groundwater development in the upper Klamath Basin. The simulation-optimization model for the upper Klamath Basin provides an improved understanding of how the groundwater and surface-water system responds to sustained groundwater pumping within the Bureau of Reclamation's Klamath Project. Optimization model results demonstrate that a certain amount of supplemental groundwater pumping can occur without exceeding defined limits on drawdown and stream capture. The results of the different applications of the model demonstrate the importance of identifying constraint limits in order to better define the amount and distribution of groundwater withdrawal that is sustainable.

  13. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for understanding and finding of water use efficiency at the irrigation system level. The results also revealed that rice production systems are still profitable despite high pumping costs and other associated expenses at all spatial levels in District 1. More than 1500 farmers, from a total of 10,000, use 1154 pumps to draw water from shallow tube wells (or from drains and creeks) for supplementary irrigation at a District level. Reuse of water plays a vital role in growing a profitable rice crop during the dry season.

  14. Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island

    USGS Publications Warehouse

    Masterson, John P.; Granato, Gregory E.

    2013-01-01

    The Rhode Island Water Resources Board is considering use of groundwater resources from the Big River Management Area in central Rhode Island because increasing water demands in Rhode Island may exceed the capacity of current sources. Previous water-resources investigations in this glacially derived, valley-fill aquifer system have focused primarily on the effects of potential groundwater-pumping scenarios on streamflow depletion; however, the effects of groundwater withdrawals on wetlands have not been assessed, and such assessments are a requirement of the State’s permitting process to develop a water supply in this area. A need for an assessment of the potential effects of pumping on wetlands in the Big River Management Area led to a cooperative agreement in 2008 between the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island. This partnership was formed with the goal of developing methods for characterizing wetland vegetation, soil type, and hydrologic conditions, and monitoring and modeling water levels for pre- and post-water-supply development to assess potential effects of groundwater withdrawals on wetlands. This report describes the hydrogeology of the area and the numerical simulations that were used to analyze the interaction between groundwater and surface water in response to simulated groundwater withdrawals. The results of this analysis suggest that, given the hydrogeologic conditions in the Big River Management Area, a standard 5-day aquifer test may not be sufficient to determine the effects of pumping on water levels in nearby wetlands. Model simulations showed water levels beneath Reynolds Swamp declined by about 0.1 foot after 5 days of continuous pumping, but continued to decline by an additional 4 to 6 feet as pumping times were increased from a 5-day simulation period to a simulation period representative of long-term average monthly conditions. This continued decline in water levels with increased pumping time is related to the shift from the primary source of water to the pumped wells being derived from aquifer storage during the early-time (5 days) simulation to being derived more from induced infiltration from the flooded portion of the Big River (southernmost extent of the Flat River Reservoir) during the months of March through October or from captured groundwater discharge to this portion of the Big River when the downstream Flat River Reservoir is drained for weed control during the months of November through February, as was the case for the long-term monthly conditions.

  15. Hydraulic induced instability on a vertical service

    NASA Technical Reports Server (NTRS)

    Bosmans, R. F.

    1985-01-01

    The case history contained provides insight toward the mechanical and hydraulic behavior of a vertical pump. It clearly demonstrates the need for measurements on the rotor at or near the impeller area. The results are reported of an analysis on a service water pump. This pump is typical of the water pumps used throughout the power generation industry. Although little is known of the mechanical behavior of vertical pumps because of difficulty in modeling the rotor system, recent developments in the application of submersible proximity transducers have made possible the measurement of pump dynamics under operating conditions. The purpose of this study was to determine the proper selection and installation of vibration-monitoring transducers as well as to measure the effects of imbalance, misalignment, and hydraulics on the performance and reliability of vertical pumps. In addition, the cause of shaft failures on this pump was to be determined.

  16. A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: The Geneva area (Florida, U.S.A.) case study

    NASA Astrophysics Data System (ADS)

    Panday, Sorab; Huyakorn, Peter S.; Robertson, John B.; McGurk, Brian

    1993-04-01

    The Geneva freshwater lens is an isolated flow system within the upper Floridan aquifer surrounded and underlain by brackish water. The lens is sustained entirely by recharge from a surficial aquifer and sits atop a regional flow system which discharges around the fringes of the lens along the St. Johns River. Continual development of groundwater supply in the Geneva area has raised the concern of how much additional pumping can be allowed from various sites within the lens without adversely impacting water quality by inducing the invasion or upconing of salty water. A numerical modeling study was conducted to address these water management issues. A density-dependent, finite-element flow and transport code, DSTRAM, was used for cross-sectional and three-dimensional (3-D) analyses of the Geneva lens system. The model incorporates an enhanced upstream weighted technique for the transport equation, improved Picard iterations over the nonlinearities, and robust preconditioned conjugate gradient (PCG) and ORTHOMIN techniques for solving the matrix equations. A steady-state model calibration was performed for existing conditions at the site. The cross-sectional (2-D) analysis was inadequate in accurately representing the system, since the 3-D effects were considerable. However, 2-D cross-sectional simulations are useful for preliminary assessments of certain scenarios, and for guidance in developing the 3-D model. A comprehensive sensitivity analysis was performed on a number of key parameters. Natural groundwater discharge rates along the St. Johns River seem to be the most critical unknown and require better estimates for increased confidence in the conceptual model. Transient pumping scenarios were imposed on this system to observe the response of the lens and to determine well breakthrough for chlorides, if any. Pumping rates and distribution of pumping were significant factors in determining the quality of the water. Upconing of saline water contributes to high chloride concentrations in water being pumped from the lens center. A localized pumping at the lens center does not affect the lens significantly till a critical value of withdrawal rate is reached, beyond which upconing of saline water is rapid. Lateral invasion is more prominent for pumping from locations near the edge of the lens. Maximum withdrawals of fresh water from the lens can be attained by evenly distributing the pumping throughout the freshwater zone.

  17. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    NASA Astrophysics Data System (ADS)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time periods net streamflow gains are about half of the gains seen during wet period.

  18. Contributing recharge areas to water-supply wells at Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Sheets, R.A.

    1994-01-01

    Wright-Patterson Air Force Base, in southwestern Ohio, has operated three well fields--Area B, Skeel Road, and the East Well Fields--to supply potable water for consumption and use for base activities. To protect these well fields from contamination and to comply with the Ohio Wellhead Protection Plan, the Base is developing a wellhead-protection program for the well fields. A three-dimensional, steady-state ground-water-flow model was developed in 1993 to simulate heads in (1) the buried-valley aquifer system that is tapped by the two active well fields, and in (2) an upland bedrock aquifer that may supply water to the wells. An advective particle-tracking algorithm that requires estimated porosities and simulated heads was used to estimate ground-water-flow pathlines and traveltimes to the active well fields. Contributing recharge areas (CRA's)--areas on the water table that contribute water to a well or well field--were generated for 1-, 5-, and 10-year traveltimes. Results from the simulation and subsequent particle tracking indicate that the CRA's for the Skeel Road Well Fields are oval and extend north- ward, toward the Mad River, as pumping at the well field increases. The sizes of the 1-, 5-, and 10-year CRA's of Skeel Road Well Field, under maximum pumping conditions, are approximately 0.5, 1.5 and 3.2 square miles, respectively. The CRA's for the Area B Well Field extend to the north, up the Mad River Valley; as pumping increases at the well field, the CRA's extend up the Mad River Valley under Huffman Dam. The sizes of the 1-, 5-, and 10-year CRA's of Area B Well Field, under maximum pumping conditions, are approximately 0.1, 0.5, and 0.9 square miles, respectively. The CRA's for the East Well Field are affected by nearby streams under average pumping conditions. The sizes of the 1-, 5-, and 10-year CRA's of the East Well Field, under maximum pumping conditions, are approximately 0.2, 1.2, and 2.4 square miles, respectively. However, as pumping increases at the East Well Field, the ground-water-flow model develops numerical instabilities which limit the usefulness of the CRA's. Sensitivity analyses show that variation of horizontal hydraulic conductivity and porosity in the upland bedrock does not affect the CRA's of the Skeel Road Well Field but does have a slight affect on the CRA's of the Area B Well Field. Uncertainties in horizontal hydraulic conductivity and porosity of the valley-train deposits have the largest affect on the size and shape of the CRA's of the Skeel Road Well Field. The position and size of the CRA's of Area B are probably also controlled by induced infiltration from the nearby Mad River and by pumping at the Rohrer's Island Well Field. However, uncertainty in riverbed conductance, which affects induced infiltration, does not significantly affect the size and shape of these CRA's. Pumping centers not included in the ground-water-flow model do not appreciably affect the CRA's of the Area B and Skeel Road Well Fields under normal pumping. The pumping centers, located near Huffman Dam, will probably limit the northern extent of teh CRA's of Area B Well Field under greater than normal pumping conditions. The CRA's of the East Well Field will propagate farther to the northeast and southwest as a result of the increased pumping-related stress to the aquifer system.

  19. A water management decision support system contributing to sustainability

    NASA Astrophysics Data System (ADS)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high tide, water should be pumped. The goal of the pilot is to make the operation of the regional water authority more sustainable and cost-efficient. Sustainability can be achieved by minimizing the CO2 production trough minimizing the energy used for pumping. This work is showing the functionalities of the new decision support system, using RTC-Tools 2, through the example of a pilot project.

  20. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  1. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  2. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    NASA Astrophysics Data System (ADS)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative stresses from deeper aquifers migrate upward, resulting in additional depletion of surface water. Eventually such impacts turn some reaches of a gaining river into a losing stream. The research finding provides information needed for future regional water planning and conjunctive management of surface water and groundwater resources.

  3. Differentiating Natural and Anthropogenic Groundwater-Level Changes in Critical Habitats: An Example from Devils Hole, Nevada

    NASA Astrophysics Data System (ADS)

    Halford, K. J.; Jackson, T.; Fenelon, J.

    2017-12-01

    Endangered species such as the Devils Hole pupfish can be affected by decadal groundwater-level changes of less than 1 ft. These relatively minor changes in long-term water levels primarily result from temporal variations in recharge and groundwater development. Natural groundwater-level changes are the summation of episodic rises from infrequent recharge events and steady declines from regional groundwater discharge. Rising water levels have been observed in Devils Hole and across southern Nevada in response to wetter conditions during 1970-2016 relative to the 1900-1970 period. Interpretation of water-level changes in Devils Hole were made tractable by differentiating naturally occurring rises from pumping effects with analytical water-level models. Effects of local and regional pumping on water-level changes in Devils Hole were differentiated easily with a calibrated groundwater-flow model after removing natural rising trends. Annual average water levels declined 2.3 ft from 1968-1972 in response to local pumping within 2 mi of Devils Hole and rose 1.7 ft from 1973-2016 in response to the cumulative effects of recharge, recovery from the cessation of local pumping, and long-term declines of regional pumping.

  4. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    NASA Astrophysics Data System (ADS)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-01-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  5. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    NASA Astrophysics Data System (ADS)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-06-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  6. Bore holes and the vanishing of guinea worm disease in Ghana's upper region.

    PubMed

    Hunter, J M

    1997-07-01

    Ghana's Upper Region provides an excellent example of the beneficial effects of improved water security provided by hand-pump tube wells. Following a Ghana-Canada bilateral development project that installed some 2500 pumps, protection rates against guinea worm disease may be estimated as 88% in the west, and 96% in the east. Survey comparisons between ca 1960 and 1990 show that dracunculiasis declined in 32 of a total of 38 areas. The shadow of guinea worm has been lifted from the land and, in many areas, a true "vanishing" has occurred. The few areas of disease increase are characterized by the lowest population densities, pioneer settlement for cotton farming, and an absence of bore holes. Vagaries of development have inadvertently produced disease transformations or "metamorphoses" from dracunculiasis to elephantiasis (lymphatic filariasis) in one area, and to red water disease (schistosomiasis hematobium) in other areas. Correlative associations between pump densities and guinea worm disease are weakened by the large size of areas for which disease is reported in 1990. One preliminary finding is that geographical distance to the pump is a stronger influence than demographic pressure on pumps, regarding dracunculiasis. Diminishing returns on higher pump densities in many areas support the idea of making fuller, safer use of supplementary non-pump water. Despite crises of fee payment and pump maintenance, the rural bore hole project has struck a mortal blow against guinea worm, and permanently raised the quality of life in the Upper Region.

  7. 13. Greasing Pump and Governor Accumulator Tank Compressors, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Greasing Pump and Governor Accumulator Tank Compressors, view to the west. The greasing pump, visible in left foreground, services all four turbine pits. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  8. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 20. Station Unwatering Pumps and Sump Pump, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Station Unwatering Pumps and Sump Pump, view to the north. The station unwatering pumps are the two large units in the center and right foreground of photograph and are marked with the numbers 1 and 2. The sump pump is the smaller unit in left foreground of photograph. These pumps are used for unwatering the draft chests for maintenance. Note the draft tube unwatering valve visible in background between the two unwatering pumps. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  10. Implementation of local grid refinement (LGR) for the Lake Michigan Basin regional groundwater-flow model

    USGS Publications Warehouse

    Hoard, C.J.

    2010-01-01

    The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.

  11. A new approach for assessing the future of aquifers supporting irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Whittemore, Donald O.; Wilson, Blake B.; Bohling, Geoffrey C.

    2016-03-01

    Aquifers supporting irrigated agriculture are under stress worldwide as a result of large pumping-induced water deficits. To aid in the formulation of more sustainable management plans for such systems, we have developed a water balance approach for assessing the impact of proposed management actions and the prospects for aquifer sustainability. Application to the High Plains aquifer (HPA) in the state of Kansas in the United States reveals that practically achievable reductions in annual pumping (<22%) would have stabilized areally averaged water levels over much of the Kansas HPA from 1996 to 2013. This demonstrates that modest pumping reductions can have a significant impact and highlights the importance of reliable pumping data for determining the net inflow (capture) component of the water balance. The HPA is similar to many aquifers supporting critically needed agricultural production, so the presented approach should prove of value far beyond the area of this initial application.

  12. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  13. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  14. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  15. Making use of renewable energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.C.

    1984-01-01

    This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source,more » small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.« less

  16. Determining the optimum solar water pumping system for domestic use, livestock water, or irrigation

    USDA-ARS?s Scientific Manuscript database

    For several years we have field tested many different types of solar powered water pumping systems. In this paper, several steps are given to select a solar-PV water pumping system. The steps for selection of stand-alone water pumping system were: deciding whether a wind or solar water pumping sys...

  17. A study of water pump efficiency for household water demand at Lubuklinggau

    NASA Astrophysics Data System (ADS)

    Emiliawati, Anna

    2017-11-01

    Water pump is a device to transport liquid from one place to another. This device is used in most of household in Indonesia. Small-scale water pump which is effective to lift more discharge is generally used. The ones that are most preferred are centrifugal types which having low absorbability. Pump performance is limited by pressure level in real electrical power whereas pump efficiency is influenced by head and discharge. The research aims to find out the efficiency of five distinct brands of home water pumps which are broadly distributed in market. Efficiency analysis take by laboratorium and financial analysis using NPV and BCR are done in order to obtained dicharge and pressure from each pump. At the end of the research, one out of 5 home water pump brands will be selected as the optimal working home water pump with low operational expense based on the utilizing age. The result of the research shows that the maximum efficiency value among various brands of water pump is diverse. Each value is arranged as follow from water pump A to E orderly: 12,9%, 13,5%, 12,8%, 14,8%, and 3,4%. From the calculation, water demand of South Lubuklinggau at stage 1 is 1117,7 l/s and stage 2 is 3495,2 l/s.. Moreover, the researcher conducts of investment, operation and maintenance cost with 25 years pump utilizing age towards 2 conditions (1) of maximum efficiency, i.e. pump A Rp16.563.971; pump B Rp12.163.798; pump C Rp11.809.513,2; pump D Rp11.473.928,3; pump E Rp12.648.708,3; (2) of max discharge, i.e. pump A Rp111.993.822,8; pump B Rp26.128.845,1; pump C Rp51.697.208,8; pump D Rp51.098.687,4; pump E Rp22.915.952,7;Financial analysis with interest rate 13% show a positive NPV(+) for all pump except pump A in max efficiency and a negative NPV (-) for all except pump B in max discharge. BCR value for max efficiency are pump A 0,8; pump B 1,6; pump C 1,7; pump D 1,7 and pump E 1,3. And for max discharge are pump A 0,2; pump B 1,1; pump C 0,7; pump D 0,7 and pump E 0,9. Result from that analysis obtained pump B are feasible with low cost and high benefit.

  18. Wind Systems for Pumping Water: A Training Manual. No. T-25.

    ERIC Educational Resources Information Center

    Eschenbach, Willis

    This document was prepared as a training manual for people interested in developing appropriate technological approaches to using wind power to pump water. The training program is divided into two basic formats, one in which a session focuses on the design process and participants are expected to do some design work in groups, and another which…

  19. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the Barstow and Afton Canyon gages. Steady-state particle-tracking was used to estimate travel times for mountain-front and streamflow recharge. The simulated travel times for mountain-front recharge to reach the area west of Victorville were about 5,000 to 6,000 years; this result is in reasonable agreement with published results. Steady-state particle-tracking results for streamflow recharge indicate that in most subareas along the river, the particles quickly leave and reenter the river. The complaint that resulted in the adjudication of the Mojave River ground-water basin alleged that the cumulative water production upstream of the city of Barstow had overdrafted the ground-water basin. In order to ascertain the effect of pumping on ground-water and surface-water relations along the Mojave River, two pumping simulations were compared with the 1931-90 transient-state simulation (base case). The first simulation assumed 1931-90 pumping in the upper region (Este, Oeste, Alto, and Transition zone model subareas) but with no pumping in the remainder of the basin, and the second assumed 1931-90 pumping in the lower region (Centro, Harper Lake, Baja, Coyote Lake, and Afton Canyon model subareas) but with no pumping in remainder of the basin. In the upper region, assuming pumping only in the upper region, there was no change in storage, recharge from the Mojave River, ground-water discharge to the Mojave River, or evapotranspiration when compared with the base case. In the lower region, assuming pumping only in the upper region, there was storage accretion, decreased recharge from the Mojave River, increased ground-water discharge to the Mojave River, and increased evapotranspiration when compared with the base case. In the upper region, assuming pumping only in the lower region, there was storage accretion, decreased recharge from the Mojave River, increased ground-water discharge to the Mojave River, and increased evapotranspiration when compared with the base case. In the

  20. Pumping-Induced Unsaturated Regions Beneath a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Jasperse, J.; Seymour, D.; Constantz, J.; Delaney, C.; Zhou, Q.

    2006-12-01

    The development of an unsaturated region beneath a streambed during groundwater pumping near streams reduces the capacity of the pumping system, changes flow paths, and alters the types of biological transformations in the streambed sediments. To investigate the formation of an unsaturated region beneath the streambed during near-stream groundwater pumping, a three-dimensional, multi-phase flow model was developed using TOUGH2 of the region near two horizontal collector wells operated by the Sonoma County Water Agency along the Russian River near Forestville, California. The simulations focus on the impact of streambed permeability on the development of an unsaturated region since streambed permeability controls the flux of river water entering and recharging the aquifer. The results indicate that as the streambed permeability decreases relative to the aquifer permeability, the size of the unsaturated region beneath the streambed increases. The simulations also demonstrate that the streambed permeabilities over which the aquifer beneath the streambed is unsaturated and able to extract water at the specified rate of 3200 m3/hr occurs over a relatively narrow range of values. Field measurements of streambed flow velocities, volumetric water content, and temperatures near the collector wells are also presented and compared with the simulation results. This work was supported by the Sonoma County Water Agency, through U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  1. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    USGS Publications Warehouse

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with simple lithology and boundary conditions and with few pumping wells. Numerical models are useful in regional areas with complex hydrogeology with many pumping wells and provide detailed water budgets useful for estimating the sources of water in pumping simulations. Numerical models are useful in constructing flow nets. The choice of which type of model to use is also based on the nature and scope of questions to be answered and on the degree of accuracy required. (Author 's abstract)

  2. Simulation of effects of ground-water development on water-levels in glacial-drift aquifers in the Brooten-Belgrade area, west-central Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1991-01-01

    The model was used to simulate the steady-state effects of below-normal precipitation (drought) and hypothetical increases in ground-water development. Model results indicate that reduced recharge and increased pumping during a hypothetical 3-year extended drought would lower regional water levels from 2 to 5 feet in each aquifer and as much as 20 feet in the lowermost aquifer zone; ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers would be reduced by 38 percent. The addition of 10 to 20 hypothetical wells in confined aquifers, pumping 123 to 246 million gallons per year, would result in regional water-level declines of 0.1 to 0.5 feet. Simulated water-level declines in wells completed in the lower part of the system would be as much as 5.0 feet as a result of pumping 246 million gallons per year from 20 hypothetical wells. Water-level declines in overlying and underlying aquifers would range from 0.4 to 2.8 feet. Ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers would be unaffected by the pumpage.

  3. A new magnetic coupling pump of residual pressure energy

    NASA Astrophysics Data System (ADS)

    Tong, Junjie; Ma, Xiaoqian; Fang, Yunhui

    2017-10-01

    A new method of magnetic coupling pump based on residual pressure is designed and the theoretical analysis and design calculation are carried out. The magnetic coupling pump device based on residual pressure is developed to achieve zero leakage during the energy conversion of two kinds of fluids. The results show that under the same displacement condition, the pressure head of the feed water is reduced with the increase of the feed water flow rate, the rotation speed of the axial impeller decreases gradually with the increase of the diameter of the drain pipe. In the case of the same water supply flow, the impeller speed increases with the increase of the displacement. When the available drainage increases, the pressure of the feed water supply increases.

  4. Enhancements to the Mississippi Embayment Regional Aquifer Study (MERAS) groundwater-flow model and simulations of sustainable water-level scenarios

    USGS Publications Warehouse

    Clark, Brian R.; Westerman, Drew A.; Fugitt, D. Todd

    2013-01-01

    Arkansas continues to be one of the largest users of groundwater in the Nation. As such, long-term planning and management are essential to ensure continued availability of groundwater and surface water for years to come. The Mississippi Embayment Regional Aquifer Study (MERAS) model was developed previously as a tool to evaluate groundwater availability within the Mississippi embayment, which encompasses much of eastern Arkansas where the majority of groundwater is used. The Arkansas Water Plan is being updated for the first time since 1990 and serves as the State’s primary, comprehensive water-resources planning and guidance document. The MERAS model was selected as the best available tool for evaluation of specific water-use pumping scenarios that are currently being considered by the State of Arkansas. The model, developed as part of the U.S. Geological Survey Groundwater Resources Program’s assessment of the Nation’s groundwater availability, is proving to be invaluable to the State as it works toward development of a sustained yield pumping strategy. One aspect of this investigation was to evaluate multiple methods to improve the match of observed to simulated groundwater levels within the Mississippi River Valley alluvial and middle Claiborne (Sparta) aquifers in the MERAS model. Five primary methods were evaluated: (1) explicit simulation of evapotranspiration (ET), (2) upgrade of the Multi-Node Well (MNW2) Package, (3) geometry improvement within the Streamflow Routing (SFR) Package, (4) parameter estimation of select aquifer properties with pilot points, and (5) modification of water-use estimates. For the planning purposes of the Arkansas Water Plan, three scenarios were developed to evaluate potential future conditions: (1) simulation of previously optimized pumping values within the Mississippi River Valley alluvial and the middle Claiborne aquifers, (2) simulated prolonged effects of pumping at average recent (2000–5) rates, and (3) simulation of drawdown constraints on most pumping wells. The explicit simulation of ET indicated little, if any, improvement of model fit at the expense of much longer simulation time and was not included in further simulations. Numerous attempts to fully utilize the MNW2 Package were unsuccessful in achieving model stability, though modifications made to the water-use dataset remained intact. Final improvements in the residual statistics may be attributed to a single method, or a cumulative effect of all other methods (geometry improvement with the SFR Package, parameter estimation with pilot points, and modification of water-use estimates) attempted. The root mean squared error (RMSE) for all observations in the model is 22.65 feet (ft) over a range in observed hydraulic head of 741.66 ft. The RMSE for water-level observations in the Mississippi River Valley alluvial aquifer is 14.14 ft (an improvement of almost 3 ft) over a range in observed hydraulic head of 297.25 ft. The RMSE for the Sparta aquifer is 32.02 ft (an improvement of approximately 3 ft) over a range in observed hydraulic head of 634.94 ft. Three scenarios were developed to utilize a steady-state version of the MERAS model. Scenario 1 was developed to use pumping values resulting from the optimization of baseline rates (typically 1997 pumping rates) from previous optimization modeling of the alluvial aquifer and the Sparta aquifer. Scenario 2 was developed to evaluate the prolonged effects of pumping from the alluvial aquifer at recent pumping rates. Scenario 3A was designed to evaluate withdrawal limits from the alluvial aquifer by utilizing drawdown constraints equal to an altitude of approximately 50 percent of the predevelopment saturated thickness of the alluvial aquifer or 30 ft above the bottom of the alluvial aquifer, whichever was greater. The results of scenario 1 indicate large water-level declines throughout the area of the alluvial aquifer, regardless of the substitution of the optimized pumping values from earlier model simulations. The results of scenario 2 also indicate large areas of water-level decline, as compared to half of the saturated thickness, throughout the alluvial aquifer. The results of scenario 3A reveal some effects from the inclusion of multiple aquifers in a single simulation. The initial configuration of scenario 3A resulted in water levels well below the defined drawdown constraint, and some areas of depleted aquifer (water levels that are near or below the bottom of the aquifer) in east-central Arkansas. A fourth simulation (scenario 3B) was configured to apply the same drawdown constraints from the alluvial aquifer wells to the Sparta aquifer wells in the depleted area. These drawdown constraints reduce leakage from the alluvial aquifer to the underlying Sparta aquifer. This configuration did not produce depleted areas within the alluvial aquifer. Scenarios 3A and 3B indicate that even when pumping is limited in the alluvial aquifer, water levels in the alluvial aquifer may continue to decline in some areas because of pumping in the underlying Sparta aquifer.

  5. Hydraulic and Thermal Response to Intermittent Pumping in Unconfined Alluvial Aquifers along a Regulated Stream

    NASA Astrophysics Data System (ADS)

    Maharjan, Madan

    Groundwater response to stream stage fluctuations was studied using a year-long time series of stream stage and well heads in Glen Dale and New Martinsville, WV. Stream stage fluctuations exerted primary control over groundwater levels, especially during high flows. The location and operation of river pools created by dams alter groundwater flow paths and velocities. Aquifers are more prone to surface water infiltration in the upper reaches of pools than in lower reaches. Aquifer diffusivity is heterogeneous within and between the two sites. Temperature fluctuations were observed for 2.5 years in 14 wells in three alluvial aquifers. Temperature signals have 2 components corresponding to pump-on and pump-off periods. Both components vary seasonality at different magnitudes. While pump-off temperatures fluctuated up to 3.8o C seasonally, short-term temperature shifts induced by turning the pump on were 0.2 to 2.5o C. Pumping-induced temperature shifts were highest in magnitude in summer and winter. Groundwater temperature lagged behind that of surface water by approximately six months. Pumping induced and seasonal temperature shifts were spatially and temporally complex but indicate stream exfiltration is a major driver for a number of these wells. Numerical simulation of aquifer response to pumping show different conditions before and after well-field development. During pre-development, the stream was losing at high flow and gaining at low flow. During post-development, however, the stream was losing at high flow and spatially variable at low flow. While bank storage gained only during high stage, stream exfiltration occurred year-round. Pumping induced stream exfiltration by creating an extensive cone of depression beneath the stream in both upstream and downstream directions. Spatially and temporally variable groundwater-surface water interaction next to a regulated stream were studied using analytical and numerical models, based on field observations. Seasonality plays an important role in these interactions, but human activity may also alter its intensity.

  6. Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Zhang, Y.; Hubbard, S.

    2008-12-01

    Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.

  7. Analysis of energy requirement in the irrigation sector and its application in groundwater over-pumping control at a local scale - A case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kinzelbach, W.; Yao, H.; Hagmann, A.; Li, N.; Steiner, J. F.

    2017-12-01

    The North China Plain is one of the most important agricultural regions which relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. Stopping groundwater depletion by controlling pumping for irrigation may harm the agricultural production and affect the interests of the electricity utility who is a direct participant in the irrigation management. Water-saving infrastructures such as sprinklers can be effective means for water conservation but are often difficult to implement due to farmers' unwillingness to pay for the additional electricity consumption. Understanding this food-energy-water nexus is fundamental to implement effective and practical strategies for groundwater over-pumping control in the North China Plain. However, this understanding can be obscured by the missing groundwater pumping monitoring and a lack of access to specific energy data for irrigation use as well as the field observations of pump efficiency. Taking the example of a typical agricultural county (Guantao) in the North China Plain with irrigation pumps generally powered by electricity, this study is focused on the analysis of the energy requirement in the irrigation sector and its application in developing strategies for groundwater over-pumping control at the county scale. 1) Field measurements from pumping tests are used to adjust the pumps' theoretical characteristics. A simple empirical equation is derived to estimate the energy use rate for irrigation given the depth of the groundwater table. Field measurements show that pump efficiency is around 30% in the tested region. 2) We hypothesize that the inter-annual variability of rural energy consumption is caused by the randomness in annual precipitation. This assumption is examined and then applied to separate the energy consumption for irrigation from the total rural energy consumption. 3) Based on the groundwater pumping rate reconstructed from the energy use, the interaction of agricultural production, groundwater resources and energy requirement is analysed and will help in developing practical strategies for groundwater over-pumping control in Guantao County.

  8. The water crisis in the gaza strip: prospects for resolution.

    PubMed

    Weinthal, E; Vengosh, A; Marei, A; Kloppmann, W

    2005-01-01

    Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority.

  9. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under average conditions, ground-water withdrawals are equal to 48 to 70 percent of simulated base-flow reductions; under drought conditions, ground-water withdrawals are equal to 35 to 73 percent of simulated base-flow reductions. The hydraulic effects of pumping largely depend on well location. In the Little Lehigh basin, surface-water and ground-water divides do not coincide, and ground-water development, especially near surface-water divides, can cause ground-water divides to shift and induce ground-water underflow from adjacent basins. Large-scale ground-water pumping in a basin may not produce expected reductions of base flow in that basin because of shifts in the ground-water divide; however, such shifts can reduce base flow in adjacent surface-water basins. 

  10. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.

  11. Groundwater levels, trends, and relations to pumping in the Bureau of Reclamation Klamath Project, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Breen, Katherine H.

    2015-07-28

    The use of groundwater to supplement surface-water supplies for the Bureau of Reclamation Klamath Project in the upper Klamath Basin of Oregon and California markedly increased between 2000 and 2014. Pre-2001 groundwater pumping in the area where most of this increase occurred is estimated to have been about 28,600 acre-feet per year. Subsequent supplemental pumping rates have been as high as 128,740 acre-feet per year. During this period of increased pumping, groundwater levels in and around the Bureau of Reclamation Klamath Project have declined by about 20-25 feet. Water-level declines are largely due to the increased supplemental pumping, but other factors include increased pumping adjacent to the Klamath Project and drying climate conditions. This report summarizes the distribution and magnitude of supplemental groundwater pumping and groundwater-level declines, and characterizes the relation between the stress and response in subareas of the Klamath Project to aid decision makers in developing groundwater-management strategies.

  12. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    PubMed

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  13. Effects of groundwater pumping in the lower Apalachicola-Chattahoochee-Flint River basin

    USGS Publications Warehouse

    Jones, L. Elliott

    2012-01-01

    USGS developed a groundwater-flow model of the Upper Floridan aquifer in lower Apalachicola-Chattahoochee-Flint River basin in southwest Georgia and adjacent parts of Alabama and Florida to determine the effect of agricultural groundwater pumping on aquifer/stream flow within the basin. Aquifer/stream flow is the sum of groundwater outflow to and inflow from streams, and is an important consideration for water managers in the development of water-allocation and operating plans. Specifically, the model was used to evaluate how agricultural pumping relates to 7Q10 low streamflow, a statistical low flow indicative of drought conditions that would occur during seven consecutive days, on average, once every 10 years. Argus ONETM, a software package that combines a geographic information system (GIS) and numerical modeling in an Open Numerical Environment, facilitated the design of a detailed finite-element mesh to represent the complex geometry of the stream system in the lower basin as a groundwater-model boundary. To determine the effects on aquifer/stream flow of pumping at different locations within the model area, a pumping rate equivalent to a typical center-pivot irrigation system (50,000 ft3/d) was applied individually at each of the 18,951 model nodes in repeated steady-state simulations that were compared to a base case representing drought conditions during October 1999. Effects of nodal pumping on aquifer/stream flow and other boundary flows, as compared with the base-case simulation, were computed and stored in a response matrix. Queries to the response matrix were designed to determine the sensitivity of targeted stream reaches to agricultural pumping. Argus ONE enabled creation of contour plots of query results to illustrate the spatial variation across the model area of simulated aquifer/streamflow reductions, expressed as a percentage of the long-term 7Q10 low streamflow at key USGS gaging stations in the basin. These results would enable water managers to assess the relative impact of agricultural pumping and drought conditions on streamflow throughout the basin, and to develop mitigation strategies to conserve water resources and preserve aquatic habitat.

  14. Factors governing sustainable groundwater pumping near a river.

    PubMed

    Zhang, Yingqi; Hubbard, Susan; Finsterle, Stefan

    2011-01-01

    The objective of this paper was to provide new insights into processes affecting riverbank filtration (RBF). We consider a system with an inflatable dam installed for enhancing water production from downstream collector wells. Using a numerical model, we investigate the impact of groundwater pumping and dam operation on the hydrodynamics in the aquifer and water production. We focus our study on two processes that potentially limit water production of an RBF system: the development of an unsaturated zone and riverbed clogging. We quantify river clogging by calibrating a time-dependent riverbed permeability function based on knowledge of pumping rate, river stage, and temperature. The dynamics of the estimated riverbed permeability reflects clogging and scouring mechanisms. Our results indicate that (1) riverbed permeability is the dominant factor affecting infiltration needed for sustainable RBF production; (2) dam operation can influence pumping efficiency and prevent the development of an unsaturated zone beneath the riverbed only under conditions of sufficient riverbed permeability; (3) slow river velocity, caused by dam raising during summer months, may lead to sedimentation and deposition of fine-grained material within the riverbed, which may clog the riverbed, limiting recharge to the collector wells and contributing to the development of an unsaturated zone beneath the riverbed; and (4) higher river flow velocities, caused by dam lowering during winter storms, scour the riverbed and thus increase its permeability. These insights can be used as the basis for developing sustainable water management of a RBF system. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  15. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  16. Geohydrology and Numerical Simulation of Alternative Pumping Distributions and the Effects of Drought on the Ground-Water Flow System of Tinian, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2002-01-01

    Ground water in a freshwater lens is the main source of freshwater on Tinian, Commonwealth of the Northern Mariana Islands. Four major geologic units make up the island with high-permeability limestone units overlying low-permeability volcanic rocks. Estimates of limestone hydraulic conductivity range from 21 to 23,000 feet per day. Estimates of water-budget components for Tinian are 82 inches per year of rainfall, about 6 inches per year of runoff, 46 inches per year of evapotranspiration, and 30 inches per year of recharge. From 1990?97, ground-water withdrawal from the Municipal well, the major source of water, averaged about 780 gallons per minute. A two-dimensional, steady-state, ground-water flow model using the computer code SHARP was developed for Tinian, to enhance the understanding of (1) the distribution of aquifer hydraulic properties, (2) the conceptual framework of the ground-water flow system, and (3) the effects of various pumping distributions and drought on water levels and the freshwater/saltwater transition zone. For modeling purposes, Tinian was divided into three horizontal hydraulic-conductivity zones: (1) highly permeable limestone, (2) less-permeable, clay-rich limestone, and (3) low-permeability volcanic rocks. The following horizontal hydraulic conductivities were estimated: (1) 10,500 feet per day for the highly permeable limestone, (2) 800 feet per day for the less-permeable clay-rich limestone, and (3) 0.2 foot per day for the volcanic rocks. To estimate the hydrologic effects of different pumping distributions on the aquifer, three different steady-state pumping scenarios were simulated, (1) a scenario with no ground-water pumping, (2) a 2001-pumping scenario, and (3) a maximum-pumping scenario. The results of the no-pumping scenario showed that the freshwater/saltwater interface beneath the Municipal well would be about 7 feet deeper and ground-water discharge to the coast would be higher along both the east and west coasts of the island when compared with 1990-97 pumping conditions. For the maximum pumping scenario, the model-calculated freshwater/saltwater interface is about 7 feet shallower than the position calculated in the base-case scenario. To estimate the hydrologic effects of drought on the freshwater lens, the 2001- and maximum-pumping scenarios were simulated using three combinations of aquifer porosity values covering a range of possible limestone properties. In all scenarios, recharge was reduced to 10 percent of average estimated recharge and the transient response was simulated for 1 year. These simulations demonstrated that the ground-water resource is adequate to withstand a drought similar to that experienced in 1998 using existing infrastructure.

  17. High-Capacity, Portable Firefighting Pump

    NASA Technical Reports Server (NTRS)

    Burns, Ralph A.

    1988-01-01

    Report describes an evaluation of firefighting module that delivers water at 5,000 gal/min (320 L/s). Is compact, self-contained, portable water pump. Besides firefighting, module used for flood control, pumping water into large vessels, and pump water from sinking ships.

  18. Development Specification for the Portable Life Support System (PLSS) Thermal Loop Pump

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Campbell, Colin

    2017-01-01

    The AEMU Thermal Loop Pump Development Specification establishes the requirements for design, performance, and testing of the Water Pump as part of the Thermal System of the Advanced Portable Life Support System (PLSS). It is envisioned that the Thermal Loop Pump is a positive displacement pump that provides a repeatable volume of flow against a given range of back-pressures provided by the various applications. The intention is to operate the pump at a fixed speed for the given application. The primary system is made up of two identical and redundant pumps of which only one is in operation at given time. The Auxiliary Loop Pump is an identical pump design to the primary pumps but is operated at half the flow rate. Inlet positive pressure to the pumps is provided by the upstream Flexible Supply Assembly (FSA-431 and FSA-531) which are physically located inside the suit volume and pressurized by suit pressure. An integrated relief valve, placed in parallel to the pump's inlet and outlet protects the pump and loop from over-pressurization. An integrated course filter is placed upstream of the pump's inlet to provide filtration and prevent potential debris from damaging the pump.

  19. Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Kahle, Sue C.

    2004-01-01

    Increased use of ground- and surface-water supplies in watersheds of Washington State in recent years has created concern that insufficient instream flows remain for fish and other uses. Issuance of new ground-water rights in the Colville River Watershed was halted by the Washington Department of Ecology due to possible hydraulic continuity of the ground and surface waters. A ground-water-flow model was developed to aid in the understanding of the ground-water system and the regional effects of ground-water development alternatives on the water resources of the Colville River Watershed. The Colville River Watershed is underlain by unconsolidated deposits of glacial and non-glacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Five principal hydrogeologic units are recognized in the study area and form the basis of the ground-water-flow model. A steady-state ground-water-flow model of the Colville River Watershed was developed to simulate September 2001 conditions. The simulation period represented a period of below-average precipitation. The model was calibrated using nonlinear regression to minimize the weighted differences or residuals between simulated and measured hydraulic head and stream discharge. Simulated inflow to the model area was 53,000 acre-feet per year (acre-ft/yr) from precipitation and secondary recharge, and 36,000 acre-ft/yr from stream and lake leakage. Simulated outflow from the model was primarily through discharge to streams and lakes (71,000 acre-ft/yr), ground-water outflow (9,000 acre-ft/yr), and ground-water withdrawals (9,000 acre-ft/yr). Because the period of simulation, September 2001, was extremely dry, all components of the ground-water budget are presumably less than average flow conditions. The calibrated model was used to simulate the possible effects of increased ground-water pumping. Although the steady-state model cannot be used to predict how long it would take for effects to occur, it does simulate the ultimate response to such changes relative to September 2001 (relatively dry) conditions. Steady-state simulations indicated that increased pumping would result in decreased discharge to streams and lakes and decreased ground-water outflow. The location of the simulated increased ground-water pumping determined the primary source of the water withdrawn. Simulated pumping wells in the northern end of the main Colville River valley diverted a large percentage of the pumpage from ground-water outflow. Simulated pumping wells in the southern end of the main Colville River valley diverted a large percentage of the pumpage from flow to rivers and streams. The calibrated steady-state model also was used to simulate predevelopment conditions, during which no ground-water pumping, secondary recharge, or irrigation application occurred. Cumulative streamflow in the Colville River Watershed increased by 1.1 cubic feet per second, or about 36 percent of net ground-water pumping in 2001. The model is intended to simulate the regional ground-water-flow system of the Colville River Watershed and can be used as a tool for water-resource managers to assess the ultimate regional effects of changes in stresses. The regional scale of the model, coupled with relatively sparse data, must be considered when applying the model in areas of poorly understood hydrology, or examining hydrologic conditions at a larger scale than what is appropriate.

  20. Light, Compact Pumper for Harbor Fires

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1983-01-01

    Report describes development of new transportable water-pumping unit for fire-fighting. Compact, self-contained unit provides fire protection at coastal and inland ports and is lighter than standard firetruck pumper of same capacity. Used to fight fires in harbors, cities, forests, refineries, chemical plants, and offshore drilling platforms. Other possible applications include cleaning up oilspills, pumping out ships, and flood control pumping.

  1. Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser

    NASA Astrophysics Data System (ADS)

    Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei

    2018-03-01

    In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.

  2. Not ''just'' pump and treat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angleberger, K; Bainer, R W

    2000-12-12

    The Lawrence Livermore National Laboratory (LLNL) has been consistently improving the site cleanup methods by adopting new philosophies, strategies and technologies to address constrained or declining budgets, lack of useable space due to a highly industrialized site, and significant technical challenges. As identified in the ROD, the preferred remedy at the LLNL Livermore Site is pump and treat, although LLNL has improved this strategy to bring the remediation of the ground water to closure as soon as possible. LLNL took the logical progression from a pump and treat system to the philosophy of ''Smart Pump and Treat'' coupled with themore » concepts of ''Hydrostratigraphic Unit Analysis,'' ''Engineered Plume Collapse,'' and ''Phased Source Remediation,'' which led to the development of new, more cost-effective technologies which have accelerated the attainment of cleanup goals significantly. Modeling is also incorporated to constantly develop new, cost-effective methodologies to accelerate cleanup and communicate the progress of cleanup to stakeholders. In addition, LLNL improved on the efficiency and flexibility of ground water treatment facilities. Ground water cleanup has traditionally relied on costly and obtrusive fixed treatment facilities. LLNL has designed and implemented various portable ground water treatment units to replace the fixed facilities; the application of each type of facility is determined by the amount of ground water flow and contaminant concentrations. These treatment units have allowed for aggressive ground water cleanup, increased cleanup flexibility, and reduced capital and electrical costs. After a treatment unit has completed ground water cleanup at one location, it can easily be moved to another location for additional ground water cleanup.« less

  3. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOEpatents

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  4. Hydrogeology and Simulation of Groundwater Flow in the Plymouth-Carver-Kingston-Duxbury Aquifer System, Southeastern Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Carlson, Carl S.; Walter, Donald A.; Other contributing authors: Bent, Gardner C.; Massey, Andrew J.

    2009-01-01

    The glacial sediments that underlie the Plymouth-Carver-Kingston-Duxbury area of southeastern Massachusetts compose an important aquifer system that is the primary source of water for a region undergoing rapid development. Population increases and land-use changes in this area has led to two primary environmental effects that relate directly to groundwater resources: (1) increases in pumping that can adversely affect environmentally sensitive groundwater-fed surface waters, such as ponds, streams, and wetlands; and (2) adverse effects of land use on the quality of water in the aquifer. In response to these concerns, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, began an investigation in 2005 to improve the understanding of the hydrogeology in the area and to assess the effects of changing pumping and recharge conditions on groundwater flow in the Plymouth-Carver-Kingston-Duxbury aquifer system. A numerical flow model was developed based on the USGS computer program MODFLOW-2000 to assist in the analysis of groundwater flow. Model simulations were used to determine water budgets, flow directions, and the sources of water to pumping wells, ponds, streams, and coastal areas. Model-calculated water budgets indicate that approximately 298 million gallons per day (Mgal/d) of water recharges the Plymouth-Carver-Kingston-Duxbury aquifer system. Most of this water (about 70 percent) moves through the aquifer, discharges to streams, and then reaches the coast as surface-water discharge. Of the remaining 30 percent of flow, about 25 percent of the water that enters the aquifer as recharge discharges directly to coastal areas and 5 percent discharges to pumping wells. Groundwater withdrawals are anticipated to increase from the current (2005) rate of about 14 Mgal/d to about 21 Mgal/d by 2030. Pumping from large-capacity production wells decreases water levels and increases the potential for effects on surface-water bodies, which are affected by pumping and wastewater disposal locations and rates. Pumping wells that are upgradient of surface-water bodies potentially capture water that would otherwise discharge to these surface-water bodies, thereby reducing streamflow and pond levels. The areas most affected by proposed increases in groundwater withdrawals are in the Towns of Plymouth and Wareham where more than half of the proposed increase in pumping will occur. In response to an increase of about 7 Mgal/d of pumping, groundwater discharge to streams is reduced by about 6 cubic feet per second (ft3/s) (about 4 Mgal/d) from a total of about 325 ft3/s. Reduction in streamflow is moderated by an increase of artificial recharge from wastewater returned to the aquifer by onsite domestic septic systems and centralized wastewater treatment facilities. It is anticipated that about 3 Mgal/d of the 7 Mgal/d of increase in pumped water will be returned to the aquifer as wastewater by 2030. Currently (2005) about 3 percent of groundwater discharge to streams is from wastewater return flow to the aquifer during average conditions. During drought conditions, the component of streamflow augmented by wastewater return flow doubles as wastewater recharge remains constant and aquifer recharge rates decrease. Wastewater return flow, whether as direct groundwater discharge to streams or as an additional source of aquifer recharge, increases the height of the water table near streams, thereby moderating the effects of increased groundwater withdrawals on streamflow. An analysis of a simulated drought similar to the 1960s drought of record indicates that the presence of streams moderates the effects on water levels of reduced aquifer recharge. The area where water-table altitudes were least affected by drought was in the Weweantic River watershed in the Town of Carver. Water levels decreased by less than 2 feet from current average conditions compared to decreases of greater than 5

  5. Simulated effects of ground-water management scenarios on the Santa Fe group aquifer system, Middle Rio Grande Basin, New Mexico, 2001-40

    USGS Publications Warehouse

    Bexfield, Laura M.; McAda, Douglas P.

    2003-01-01

    Future conditions in the Santa Fe Group aquifer system through 2040 were simulated using the most recent revision of the U.S. Geological Survey groundwater- flow model for the Middle Rio Grande Basin. Three simulations were performed to investigate the likely effects of different scenarios of future groundwater pumping by the City of Albuquerque on the ground-water system. For simulation I, pumping was held constant at known year-2000 rates. For simulation II, pumping was increased to simulate the use of pumping to meet all projected city water demand through 2040. For simulation III, pumpingwas reduced in accordance with a plan by the City of Albuquerque to use surfacewater to meet most of the projectedwater demand. The simulations indicate that for each of the three pumping scenarios, substantial additional watertable declines would occur in some areas of the basin through 2040. However, the reduced pumping scenario of simulation III also results in water-table rise over a broad area of the city. All three scenarios indicate that the contributions of aquifer storage and river leakage to the ground-water system would change between 2000 and 2040. Comparisons among the results for simulations I, II, and III indicate that the various pumping scenarios have substantially different effects on water-level declines in the Albuquerque area and on the contribution of each water-budget component to the total budget for the ground-water system. Between 2000 and 2040, water-level declines for continued pumping at year-2000 rates are as much as 120 feet greater than for reduced pumping; water-level declines for increased pumping to meet all projected city demand are as much as 160 feet greater. Over the same time period, reduced pumping results in retention in aquifer storage of about 1,536,000 acre-feet of ground water as compared with continued pumping at year- 2000 rates and of about 2,257,000 acre-feet as compared with increased pumping. The quantity of water retained in the Rio Grande as a result of reduced pumping and the associated decrease in induced recharge from the river is about 731,000 acre-feet as compared with continued pumping at year-2000 rates and about 872,000 acre-feet as compared with increased pumping. Reduced pumping results in slight increases in the quantity of water lost from the groundwater system to evapotranspiration and agriculturaldrain flow compared with the other pumping scenarios.

  6. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  7. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  8. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  9. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  10. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  11. Flow in water-intake pump bays: A guide for utility engineers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how themore » vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes.« less

  12. Retrofitting a water-pumping station with adjustable speed drives: Feasibility analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less

  13. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  14. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts containedmore » in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.« less

  15. Design and Operation of a Borehole Straddle Packer for Ground-Water Sampling and Hydraulic Testing of Discrete Intervals at U.S. Air Force Plant 6, Marietta, Georgia

    USGS Publications Warehouse

    Holloway, Owen G.; Waddell, Jonathan P.

    2008-01-01

    A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted to assess differences between three water-sampling methods - collecting samples from the well by pumping a packer-isolated zone using a submersible pump, by using a grab sampler, and by using a passive diffusion sampler. Concentrations of tetrachloroethylene, trichloroethylene and 1,2-dichloropropane were greatest for samples collected using the submersible pump in the packed-isolated interval, suggesting that the straddle packer yielded the least dilute sample.

  16. Annual water resources review, White Sands Missile Range, New Mexico, 1980

    USGS Publications Warehouse

    Cruz, R.R.

    1981-01-01

    Ground-water data were collected in 1980 at White Sands Missile Range in south-central New Mexico. The total water pumped at White Sands Missile Range in 1980 was 725,053,000 gallons, which was 32.5 million gallons more than in 1979. The Post Headquarters well field, which produces more than 98 percent of the water used at White Sands Missile Range, pumped 712,909,000 gallons, which was 31.1 million gallons more in 1980 than in 1979. Data were collected for specific Range areas north of the Post Headquarters area that might have potential for future water-supply development. (USGS)

  17. Assessment of bacteriological quality of drinking water from various sources in Amritsar district of northern India.

    PubMed

    Malhotra, Sita; Sidhu, Shailpreet K; Devi, Pushpa

    2015-08-29

    Safe water is a precondition for health and development and is a basic human right, yet it is still denied to hundreds of millions of people throughout the developing world. Water-related diseases caused by insufficient safe water supplies, coupled with poor sanitation and hygiene, cause 3.4 million deaths a year, mostly in children. The present study was conducted on 1,317 drinking water samples from various water sources in Amritsar district in northern India. All the samples were analyzed to assess bacteriological quality of water for presumptive coliform count by the multiple tube test. A total of 42.9% (565/1,317) samples from various sources were found to be unfit for human consumption. Of the total 565 unsatisfactory samples, 253 were from submersible pumps, 197 were from taps of piped supply (domestic/public), 79 were from hand pumps, and 36 were from various other sources A significantly high level of contamination was observed in samples collected from submersible pumps (47.6%) and water tanks (47.3%), as these sources of water are more exposed and liable to contamination. Despite continuous efforts by the government, civil society, and the international community, over a billion people still do not have access to improved water resources. Bacteriological assessment of all sources of drinking should be planned and conducted on regular basis to prevent waterborne dissemination of diseases.

  18. Hydrology of the Valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1967-01-01

    This is the second appraisal of the water supply of Pahrump Valley, made 15 years after the first cooperative study. In the first report the average recharge was estimated to be 23,000 acre-feet per year, only 1,000 acre-feet more than the estimate made in this report. All this recharge was considered to be available for development. Because of the difficulty in salvaging the subsurface outflow from the deep carbonate-rock reservoir, this report concludes that the perennial yield may be only 25,000 acre-feet. In 1875, Bennetts and Manse Springs reportedly discharged a total of nearly 10,000 acre-feet of water from the valley-fill reservoir. After the construction of several flowing wells in 1910, the spring discharge began to decline. In the mid-1940's many irrigation wells were drilled, and large-capacity pumps were installed. During the 4-year period of this study (1959-62), the net pumping draft averaged about 25,000 acre-feet per year, or about twice the estimated yield. In 1962 Bennetts Spring was dry, and the discharge from Marse Spring was only 1,400 acre-feet. During the period February 1959-February 1962, pumping caused an estimated storage depletion of 45,000 acre-feet, or 15,000 acre-feet per year. If the overdraft is maintained, depletion of stored water will continue and pumping costs will increase. Water levels in the vicinity of the Pahrump, Manse, and Fowler Ranches declined more than ]0 feet in response to the pumping during this period, and they can be expected to continue to decline at ,the projected rate of more than 3 feet per year. The chemical quality of the pumped water has been satisfactory for irrigation and domestic use. Recycling of water pumped or irrigation, however, could result in deterioration of the water quality with time.

  19. Developing Community-Focused Solutions using a Food-Energy-Water Calculator, with Initial Application to Western Kansas

    NASA Astrophysics Data System (ADS)

    Hill, M. C.; Pahwa, A.; Rogers, D.; Roundy, J. K.; Barron, R. W.

    2017-12-01

    Many agricultural areas are facing difficult circumstances. Kansas is one example, with problems that are typical. Past agricultural and hydrologic data document how irrigation in western Kansas has produced a multi-billion-dollar agricultural economy that is now threatened by pumping-induced declines in groundwater levels. Although reduced pumping could mitigate much of the threat and preserve much of Kansas' agricultural economy (albeit at a reduced level) in the long term, a primary disincentive for reducing pumping is the immediate economic impact of diminished irrigation. One alternative to continued unsustainable groundwater use is a water-energy tradeoff program that seeks to reduce pumping from the Ogallala aquifer to sustainable rates while maintaining local income levels. This program would allow development of the region's rich wind and solar energy resources in a way that focuses on local economic benefits, in exchange for water rights concessions from affected stakeholders. In considering this alternative, most citizens are currently unable to address a key question, "What could this mean for me?" Answering this question requires knowledge of agriculture, energy, water, economics, and drought probabilities, knowledge that is available at Kansas universities. This talk presents a joint University of Kansas - Kansas State University effort to address this need through development of the Food-Energy-Water Calculator. This talk will present the idea and discuss how the calculator would work. It is suggested that the framework created provides a powerful way to organize data and analysis results, and thus to seek solutions to difficult problems in many regions of the US and the world.

  20. Cost-benefit comparisons of investments in improved water supply and cholera vaccination programs.

    PubMed

    Jeuland, Marc; Whittington, Dale

    2009-05-18

    This paper presents the first cost-benefit comparison of improved water supply investments and cholera vaccination programs. Specifically, we compare two water supply interventions -- deep wells with public hand pumps and biosand filters (an in-house, point-of-use water treatment technology) -- with two types of cholera immunization programs with new-generation vaccines -- general community-based and targeted and school-based programs. In addition to these four stand-alone investments, we also analyze five combinations of water and vaccine interventions: (1) borehole+hand pump and community-based cholera vaccination, (2) borehole+hand pump and school-based cholera vaccination, (3) biosand filter and community-based cholera vaccination, (4) biosand filter and school-based cholera vaccination, and (5) biosand filter and borehole+hand pump. Using recent data applicable to developing country locations for parameters such as disease incidence, the effectiveness of vaccine and water supply interventions against diarrheal diseases, and the value of a statistical life, we construct cost-benefit models for evaluating these interventions. We then employ probabilistic sensitivity analysis to estimate a frequency distribution of benefit-cost ratios for all four interventions, given a wide variety of possible parameter combinations. Our results demonstrate that there are many plausible conditions in developing countries under which these interventions will be attractive, but that the two improved water supply interventions and the targeted cholera vaccination program are much more likely to yield attractive cost-benefit outcomes than a community-based vaccination program. We show that implementing community-based cholera vaccination programs after borehole+hand pump or biosand filters have already been installed will rarely be justified. This is especially true when the biosand filters are already in place, because these achieve substantial cholera risk reductions on their own. On the other hand, implementing school-based cholera vaccination programs after the installation of boreholes with hand pump is more likely to be economically attractive. Also, if policymakers were to first invest in cholera vaccinations, then subsequently investing in water interventions is still likely to yield positive economic outcomes. This is because point-of-use water treatment delivers health benefits other than reduced cholera, and deep boreholes+hand pumps often yield non-health benefits such as time savings. However, cholera vaccination programs are much cheaper than the water supply interventions on a household basis. Donors and governments with limited budgets may thus determine that cholera vaccination programs are more equitable than water supply interventions because more people can receive benefits with a given budget. Practical considerations may also favor cholera vaccination programs in the densely crowded slums of South Asian and African cities where there may be insufficient space in housing units for some point-of-use technologies, and where non-networked water supply options are limited.

  1. Air source integrated heat pump simulation model for EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; New, Joshua; Baxter, Van

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy savingmore » potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.« less

  2. Osmotic Drug Delivery System as a Part of Modified Release Dosage Form

    PubMed Central

    Keraliya, Rajesh A.; Patel, Chirag; Patel, Pranav; Keraliya, Vipul; Soni, Tejal G.; Patel, Rajnikant C.; Patel, M. M.

    2012-01-01

    Conventional drug delivery systems are known to provide an immediate release of drug, in which one can not control the release of the drug and can not maintain effective concentration at the target site for longer time. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. The historical development of osmotic systems includes development of the Rose-Nelson pump, the Higuchi-Leeper pumps, the Alzet and Osmet systems, the elementary osmotic pump, and the push-pull system. Recent advances include development of the controlled porosity osmotic pump, and systems based on asymmetric membranes. This paper highlights the principle of osmosis, materials used for fabrication of pumps, types of pumps, advantages, disadvantages, and marketed products of this system. PMID:22852100

  3. Development of electric drive for centrifugal mine pumps in Solikamsk Potassium Mine Group Based on Industrial OMRON Controller

    NASA Astrophysics Data System (ADS)

    Kostarev, S. N.; Sereda, T. G.; Tatarnikova, N. A.; Kochetova, O. V.

    2018-03-01

    The electric drive for automation pumping out of filtration waters in the Second Solikamsk Potasssium Mine Group is developed. The emergency situation of flooding of the Mine has been considered in the course of development of the Upper Kama deposits of potash-magnesium salts. The functional scheme of automation of a drive of the pump is developed. The scheme is stipulated with manual and automatic control. To decrease the risk of flooding of mine, it is recommended to establish gauges of both bottom and top level control of a brine and other equipment in the collector of a brine: the gauge of measurementof a level, the gauge of the signal system of a level, the gauge of the pump control, the gauge of the signal system of a level with remote data transmission. For regulation of the charge of sewage, the P-regulator with the executive mechanism is stipulated. The ladder diagram of a pump control is developed to improve the work of centrifugal pumps and to prevent the cases of mines flooding.

  4. PV water pumping: NEOS Corporation recent PV water pumping activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature publishedmore » by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.« less

  5. 19. Heat Pump, view to the southwest. This system provides ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  6. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Astrophysics Data System (ADS)

    Wang, Pao-Lien

    1992-09-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  7. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  8. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Burkina Faso (formerly Upper Volta)

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Roberts, A. F.

    1985-01-01

    A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of about 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.

  9. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Burkina Faso (formerly Upper Volta). Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, J.E.; Roberts, A.F.

    1985-03-01

    A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of aboutmore » 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.« less

  10. Guide to North Dakota's ground-water resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  11. Optimizing wind pumps system for crop irrigation based on wind data processing

    NASA Astrophysics Data System (ADS)

    Ruiz, Fernando; Tarquis, Ana M.; Sanchez, Raúl; Garcia, Jose Luis

    2015-04-01

    Crop irrigation is a major consumer of energy that can be resolved with renewable ones, such as wind, which has experienced recent developments in the area of power generation. Therefore, wind power can play an interesting role in irrigation projects in different areas [1]. A simple methodology has been developed in previous papers for technical evaluation of windmills for irrigation water pumping [2]. This methodology can determine the feasibility of the technology and the levels of daily irrigation demand satisfied by windmills. The present work compared the possibilities of this methodology adjusting the three-hourly wind velocity to the Weibull II distribution function, without considering the time sequence [2], or processing wind data using time series analysis. The study was applied to practical cases of wind pumps for irrigation of crops, both in the outside (corn) and inside greenhouses (tomato). The analysis showed that the use of three hourly time series analysis supplied a more realistic modelling of the situation with a better optimization of the water storage tank of the wind pump facility taking into account the risk of calm periods in which the pumping is null. A factor to consider in this study is available precision of the wind sampling rate. References [1] Díaz-Méndez, R., Adnan Rasheed, M. Peillón, A. Perdigones, R. Sánchez, A.M. Tarquis, José L. García-Fernández. Wind pumps for irrigating greenhouse crops: comparison in different socio-economical frameworks. Biosystems Engineering, 128, 21-28, 2014. [2] Peillón, M., Sánchez, R., Tarquis, A.M., García, J.L. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, 120, 107-114, 2013.

  12. Evaluation of water resources in part of central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, B.; Duffin, G.; Flores, R.

    1990-01-01

    Water resources in the Brazos, Red, Colorado, and Trinity River basins, in central Texas, were evaluated. In 1985 there was a little less than 81,000 acre-ft of groundwater pumped from all aquifers in the study area, with a little less than 77,000 acre-ft of groundwater pumped from the Trinity Group aquifer. Irrigation accounted for about 56% of all groundwater pumped. A serious problem associated with the development of groundwater from the Trinity Group aquifer is the decline of artesian pressure in areas of large groundwater withdrawals. Degradation of groundwater within the Antlers and Travis Peak Formations from oil-field brines andmore » organic material are problems in several counties. The deterioration of water qualify for the City of Blum has occurred over a 26-year period and is associated with water level declines in the Hensell Member of the Travis Peak Formation. The Woodbine Group yields good quality water at or near the outcrop; however, the residual sodium carbonate and percent sodium limits its use for irrigation, while high iron and fluoride content restricts its use for public supply. Existing surface reservoirs in the study area alone can supply 296,400 acre-ft of water under 2010 conditions. Nearly all of this water is either currently owned or under contract to supply current and future needs. An additional 176,000 acre-ft of surface water could become available with the development of the proposed Lake Bosque and Paluxy Reservoir projects and with reallocation of storage in existing Lakes Waco and Whitney. The amount of groundwater currently pumped exceeds the estimated annual effective recharge to the Trinity Group aquifer; the groundwater supply for the area will continue to be drawn from storage within the aquifer. 84 refs., 21 figs., 3 tabs.« less

  13. Tidal controls on riverbed denitrification along a tidal freshwater zone

    NASA Astrophysics Data System (ADS)

    Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel

    2017-01-01

    In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.

  14. An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources

    NASA Astrophysics Data System (ADS)

    Feng, Dapeng; Zheng, Yi; Mao, Yixin; Zhang, Aijing; Wu, Bin; Li, Jinguo; Tian, Yong; Wu, Xin

    2018-02-01

    Water resources in coastal areas can be profoundly influenced by both climate change and human activities. These climatic and human impacts are usually intertwined and difficult to isolate. This study developed an integrated model-based approach for detection and attribution of climatic and human impacts and applied this approach to the Luanhe Plain, a typical coastal area in northern China. An integrated surface water-groundwater model was developed for the study area using GSFLOW (coupled groundwater and surface-water flow). Model calibration and validation were performed for background years between 1975 and 2000. The variation in water resources between the 1980s and 1990s was then quantitatively attributed to climate variability, groundwater pumping and changes in upstream inflow. Climate scenarios for future years (2075-2100) were also developed by downscaling the projections in CMIP5. Potential water resource responses to climate change, as well as their uncertainty, were then investigated through integrated modeling. The study results demonstrated the feasibility and value of the integrated modeling-based analysis for water resource management in areas with complex surface water-groundwater interaction. Specific findings for the Luanhe Plain included the following: (1) During the historical period, upstream inflow had the most significant impact on river outflow to the sea, followed by climate variability, whereas groundwater pumping was the least influential. (2) The increase in groundwater pumping had a dominant influence on the decline in groundwater change, followed by climate variability. (3) Synergetic and counteractive effects among different impacting factors, while identified, were not significant, which implied that the interaction among different factors was not very strong in this case. (4) It is highly probable that future climate change will accelerate groundwater depletion in the study area, implying that strict regulations for groundwater pumping are imperative for adaptation.

  15. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less

  16. Pump Operation Workshop. Third Edition (Revised).

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…

  17. Data from pumping and injection tests and chemical sampling in the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.

    1984-01-01

    A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)

  18. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    USGS Publications Warehouse

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  19. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  20. Analysis and interpretation of data obtained in tests of the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Sammel, E.A.

    1984-01-01

    Water with temperatures to 130 C occurs in an extensive, heterogeneous aquifer at depths of a few hundred to nearly 2,000 feet. Chemical and isotopic analyses suggest that 190 C water mixes with cooler recharge water in a ratio of about 2 to 3 in zone within and beneath the aquifer. The water spreads from a fault zone and is tapped for space heating by more than 450 wells over a 2 square-mile area. Data obtained during a 50-day pumping and reinjection test in July and August, 1983, were fitted to theoretical double-porosity type curves. Predictions of water-level changes were made for two hypothetical pumping and reinjection schemes. It was determined that reinjection can generally offset declines due to pumping, although water levels will decline near pumped wells and will rise near injection wells. Tracer tests confirmed the double-porosity behavior of the aquifer. Discharge from thermal wells averages about 540 gallons per minute and heat discharge is about 18 x 10 to the 12th power British Thermal Units per year. Down-hole heat exchangers discharge about 13 x 10 to the 10th power British Thermal Units per year. Additional development probably is feasible. (USGS)

  1. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  2. Optimizing the well pumping rate and its distance from a stream

    NASA Astrophysics Data System (ADS)

    Abdel-Hafez, M. H.; Ogden, F. L.

    2008-12-01

    Both ground water and surface water are very important component of the water resources. Since they are coupled systems in riparian areas, management strategies that neglect interactions between them penalize senior surface water rights to the benefit of junior ground water rights holders in the prior appropriation rights system. Water rights managers face a problem in deciding which wells need to be shut down and when, in the case of depleted stream flow. A simulation model representing a combined hypothetical aquifer and stream has been developed using MODFLOW 2000 to capture parameter sensitivity, test management strategies and guide field data collection campaigns to support modeling. An optimization approach has been applied to optimize both the well distance from the stream and the maximum pumping rate that does not affect the stream discharge downstream the pumping wells. Conjunctive management can be modeled by coupling the numerical simulation model with the optimization techniques using the response matrix technique. The response matrix can be obtained by calculating the response coefficient for each well and stream. The main assumption of the response matrix technique is that the amount of water out of the stream to the aquifer is linearly proportional to the well pumping rate (Barlow et al. 2003). The results are presented in dimensionless form, which can be used by the water managers to solve conflicts between surface water and ground water holders by making the appropriate decision to choose which well need to be shut down first.

  3. Design and Installation of Irrigation System for the Expansion of Sugar cane- Industries in Ahvaz, IRAN.

    NASA Astrophysics Data System (ADS)

    Afshari, E.; Afshari, S.

    2005-12-01

    This paper presents achievements of a twelve years ongoing project expansion of sugar cane- industries as a major agricultural development in Ahvaz, IRAN. The entire project is divided in to seven units and each unit provides irrigation water for 30,000 acres of sugar cane farms in Ahwaz. Absou Inc. is one of the consulting firms that is in charge of design and overseeing installation of irrigation system as well as the development of lands for sugar-cane cultivation at one of the units, called Farabi unit .In general, the mission of project is to Pump fresh water from Karoon River and direct it to the sugar cane farm for irrigation. In particular, the task of design and installation include, (1) build a pumping station at Karoon River with capacity of 1271 ft3/sec, (2) transfer water by main channel from Karoon rive to the farm site 19 miles (3) install a secondary pumping stations which direct water from main channel to drainage pipes and provides water for local farms (4) build a secondary channels which carries water with pipe lines with total length of 42 miles and diameter of 16 to 32 inch. (5) install drainage pump stations and collectors (6) level the ground surface and prepare it for irrigation (7) build railroad for carrying sugar canes (23 miles). Thus far, more than 15,000 acres of farm in Farabi unit is under sugar cane cultivation. The presentation will illustrate more details about different aspects of the project including design, installation and construction phases.

  4. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  5. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    USGS Publications Warehouse

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.

  6. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the communication of pump operation setpoints to the SCADA system. In case of failing communication, backup procedures are programmed in the PLC of the pump stations. In that case the old on/off operation based on local water levels will be used. The system has been operational since January 2016 and has been monitored since then. In addition to monitoring the positive effect on the inflow at the WWTP, an important issue is the possible sedimentation in the sewer systems. This will be monitored too.

  7. 4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket Gate Linkages, view to the north. The jacking pump, located along the wall on the left side of photograph, is used for pumping oil to lift the thrust bearing prior to starting the unit. Note the wicket gate linkages attached to the operating ring and visible in the lower center of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  8. Simulated Ground-Water Withdrawals by Cabot WaterWorks from the Mississippi River Valley Alluvial Aquifer, Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2007-01-01

    Cabot WaterWorks, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from a 2004 rate of approximately 2.24 million gallons per day to between 4.8 and 8 million gallons per day by the end of 2049. The effects of increased pumping from several wells were simulated using a digital model of ground-water flow. The proposed additional withdrawals by Cabot WaterWorks were specified in three 1-square-mile model cells with increased pumping beginning in 2007. Increased pumping was specified at various combined rates for a period of 44 years. In addition, augmented pumping from wells owned by Grand Prairie Water Users Association, located about 2 miles from the nearest Cabot WaterWorks wells, was added to the model beginning in 2007 and continuing through to the end of 2049 in 10 of the 16 scenarios analyzed. Eight of the scenarios included reductions in pumping rates in model cells corresponding to either the Grand Prairie Water Users Association wells or to wells contained within the Grand Prairie Area Demonstration Project. Drawdown at the end of 44 years of pumping at 4.8 million gallons per day from the Cabot WaterWorks wells ranged from 15 to 25 feet in the three model cells; pumping at 8 million gallons per day resulted in water-level drawdown ranging from about 15 to 40 feet. Water levels in those cells showed no indication of leveling out at the end of the simulation period, indicating non-steady-state conditions after 44 years of pumping. From one to four new dry cells occurred in each of the scenarios by the end of 2049 when compared to a baseline scenario in which pumping was maintained at 2004 rates, even in scenarios with reduced pumping in the Grand Prairie Area Demonstration Project; however, reduced pumping produced cells that were no longer dry when compared to the baseline scenario at the end of 2049. Saturated thickness at the end of 2049 in the three Cabot WaterWorks wells ranged from about 52 to 68.5 feet for pumping rates of 4.8 million gallons per day, and from about 38 to 64 feet for pumping rates of 8 million gallons per day, the latter causing water level to fall below half the aquifer thickness in the most heavily pumped of the three cells.

  9. Ground-water hydrology and simulated effects of development in the Milford area, an arid basin in southwestern Utah

    USGS Publications Warehouse

    Mason, James L.

    1998-01-01

    A three-dimensional, finite-difference model was constructed to simulate ground-water flow in the Milford area. The purpose of the study was to evaluate present knowledge and concepts of the groundwater system, to analyze the ability of the model to represent past and current (1984) conditions, and to estimate the effects of various groundwater development alternatives. The alternative patterns of groundwater development might prove effective in capturing natural discharge from the basin-fill aquifer while limiting water-level declines. Water levels measured during this study indicate that ground water in the Milford area flows in a northwesterly direction through consolidated rocks in the northern San Francisco Mountains toward Sevier Lake. The revised potentiometric surface shows a large area for probable basin outflow, indicating that more water leaves the Milford area than the 8 acre-feet per year estimated previously.Simulations made to calibrate the model were able to approximate steady-state conditions for 1927, before ground-water development began, and transient conditions for 1950-82, during which groundwater withdrawal increased. Basin recharge from the consolidated rocks and basin outflow were calculated during the calibration process. Transient simulations using constant and variable recharge from surface water were made to test effects of large flows in the Beaver River.Simulations were made to project water-level declines over a 37- year period (1983-2020) using the present pumping distribution. Ground-water withdrawals were simulated at 1, 1.5, and 2 times the 1979-82 average rate.The concepts of "sustained" yield, ground-water mining, and the capture of natural discharge were tested using several hypothetical pumping distributions over a 600-year simulation period. Simulations using concentrated pumping centers were the least efficient at capturing natural discharge and produced the largest water-level declines. Simulations using strategically placed ground-water withdrawals in the discharge area were the most efficient at eliminating natural discharge with small water-level declines.

  10. Analytical solutions of travel time to a pumping well with variable evapotranspiration.

    PubMed

    Chen, Tian-Fei; Wang, Xu-Sheng; Wan, Li; Li, Hailong

    2014-01-01

    Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction. © 2013, National Ground Water Association.

  11. Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.

    2006-01-01

    As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.

  12. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  13. Hydrologic analysis of Mojave River Basin, California, using electric analog model

    USGS Publications Warehouse

    Hardt, W.F.

    1971-01-01

    The water needs of the Mojave River basin will increase because of population and industrial growth. The Mojave Water Agency is responsible for providing sufficient water of good quality for the full economic development of the area. The U.S. Geological Survey suggested an electric analog model of the basin as a predictive tool to aid management. About 1,375 square miles of the alluvial basin was simulated by a passive resistor-capacitor network. The Mojave River, the main source of recharge, was simulated by subdividing the river into 13 reaches, depending on intermittent or perennial flow and on phreatophytes. The water loss to the aquifer was based on records at five gaging stations. The aquifer system depends on river recharge to maintain the water table as most of the ground-water pumping and development is adjacent to the river. The accuracy and reliability of the model was assessed by comparing the water-level changes computed by the model for the period 1930-63 with the changes determined from field data for the same period. The model was used to predict the effects on the physical system by determining basin-wide water-level changes from 1930-2000 under different pumping rates and extremes in flow of the Mojave River. Future pumping was based on the 1960-63 rate, on an increase of 20 percent from this rate, and on population projections to 2000 in the Barstow area. For future predictions, the Mojave River was modeled as average flow based on 1931-65 records and also as high flow, 1937-46, and low flow, 1947-65. Other model runs included water-level change 1930-63 assuming aquifer depletion only and no recharge, effects of a well field pumping 10,000 acre-feet in 4 months north of Victorville and southeast of Yermo, and effects of importing 10,000, 35,000, and 50,800 acre-feet of water per year from the California Water Project into the Mojave River for conveyance downstream.

  14. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  15. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    NASA Astrophysics Data System (ADS)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  16. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains themore » final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.« less

  17. Effects of Pumping on Ground-Water Flow Near Water-Supply Wells in the Lower Potomac-Raritan-Magothy Aquifer, Pennsauken Township, Camden County, New Jersey

    USGS Publications Warehouse

    Walker, Richard L.

    2001-01-01

    Since the 1970's, hexavalent chromium has been detected in concentrations as great as 1.0 milligram per liter in wells at the Puchack well field operated by the Camden City Department of Utilities, Water Division (Water Department), forcing the Water Department to progressively remove five of its six wells from service between 1975 and 1988. The wells in the Puchack well field range in depth from 140 to 220 feet and are screened in the Lower Potomac-Raritan-Magothy aquifer. The Water Department has continued to pump Puchack Well 1 to maintain a hydraulic gradient toward the well field in an attempt to limit contaminant migration. In late 1997, concerns about treating the water withdrawn from Puchack Well 1 led water managers to consider temporarily discontinuing the pumping. In the spring of 1998, the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection, began a preliminary assessment of the potential effects of temporarily removing Puchack Well 1 from service. Water levels in the Lower Potomac-Raritan-Magothy aquifer were measured during both pumping and nonpumping conditions to determine the direction and velocity of ground-water flow and the results were compared. Data collected in late March and early April 1998 indicate the presence of a ground-water divide between the Puchack well field and the Morris and Delair well fields when Puchack Well 1 was being pumped. A similar divide also was present when the well was not being pumped. The position and persistence of this divide limits the probability that contaminants in the vicinity of the Puchack well field will reach the Delair and Morris well fields during either pumping condition. Another divide southeast of Puchack Well 1 while the well was being pumped was no longer evident when the pumping was stopped and water levels had recovered. Under non-pumping conditions, ground water between Puchack Well 1 and this divide could begin to migrate toward other large pumping centers to the southeast. The average linear ground-water velocity along an arbitrarily selected southeast-trending flow path was estimated to be from 221 to 332 feet per year. This estimate indicates that any contaminated ground water that may be present within the area influenced by pumping at Puchack Well 1 may begin to move toward the pumping centers less than 2 miles to the southeast if Puchack Well 1 is either temporarily or permanently removed from service.

  18. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian

    2010-06-01

    A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.

  19. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  20. Seawater Upconing Under a Pumping Horizontal Well in a Confined Coastal Aquifer

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhan, H.

    2003-12-01

    Coastal margins are one of the nation­_s greatest natural resources and economic assets. Due to increasing concentration of human settlements and economic activities in the coastal margins, it is critical to find better technologies of managing the coastal groundwater resources. Coastal aquifers always have saline water underneath the fresh water. This phenomenon substantially limits the groundwater pumping rates using traditional vertical wells because of the upconing of the fresh/saline water interfaces and the potential of sea water intrusion. With the advancement of horizontal well technology, we propose to use long-screen (kilometers) horizontal wells in coastal aquifers to increase groundwater supply and prevent sea water intrusion into those wells. In this study, we have developed two mathematical models to predict the equilibrium location of upconed sharp interfaces due to pumping horizontal wells based on the linear model of Muskat (1982) and the non-linear model of Dagan and Bear (1968) which described the upcoming due to a partially penetrating vertical pumping well. The horizontal well solution is obtained by integrating the point sink solution along the horizontal well axis. The linear solution based on Muskat­_s model (1982) is acquired by neglecting the pressure field variation caused by the change of the fresh/saline water interface, while the nonlinear solution includes that variation. The computed interface profiles based on these two models are compared with those of vertical wells. The critical pumping rate is calculated and the sensitivity of the interface profile on aquifer anisotropy, horizontal well depth, and horizontal well length is tested. References: G. Dagan and J. Bear, Solving the problem of local interface upcoming in a coastal aquifer by the method of small perturbations, J. Hydraulic Research, 6, 15-44, 1968. Muskat, M, The flow of homogeneous Fluids Through Porous Media, International Human Resources Development Corporation, Boston, 763 PP, 1982.

  1. Dynamic characteristics and mechatronics model for maglev blood pump

    NASA Astrophysics Data System (ADS)

    Sun, Kun; Chen, Chen

    2017-01-01

    Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.

  2. Sump bay fever: inhalational fever associated with a biologically contaminated water aerosol.

    PubMed Central

    Anderson, K; McSharry, C P; Clark, C; Clark, C J; Barclay, G R; Morris, G P

    1996-01-01

    OBJECTIVE: To investigate the clinical, serological, and environmental features of a work related inhalational fever associated with exposure to an aerosol generated from a biologically contaminated 130,000 gallon water pool in a building used for testing scientific equipment. METHOD: Cross sectional survey of all exposed subjects (n = 83) by symptom questionnaire, clinical examination, spirometry, and serology for antibody to Pseudomonads, pool water extract, and endotoxin. In symptomatic patients diffusion capacity was measured, and chest radiology was performed if this was abnormal. Serial peak flow was recorded in those subjects with wheeze. Bacterial and fungal air sampling was performed before and during operation of the water pool pump mechanism. Endotoxin was measured in the trapped waters and in the pumps. Serum cotinine was measured as an objective indicator of smoking. RESULTS: Of the 20 symptomatic subjects, fever was most common in those with the highest exposure (chi 2 42.7, P < 0.001) in the sump bay when the water was (torrentially) recirculated by the water pumps. Symptoms occurred late in the working day only on days when the water pumps were used, and were independent of the serum cotinine. Pulmonary function was normal in most subjects (spirometry was normal in 79/83, diffusion capacity was low in five subjects, chest radiology was normal). Peak flow recording did not suggest a work relation. The bacterial content of the aerosol rose from 6 to > 10,000 colony forming units per cubic metre (cfu/m3) (predominantly environmental Pseudomonads) when the pumps were operating. High endotoxin concentrations were measured in the waters and oil sumps in the pumps. Low concentrations of antibody to the organisms isolated were detected (apart from two subjects with high antibody) but there was no relation to exposure or the presence of symptoms and similar antibody was found in the serum samples from a non-exposed population. The fever symptoms settled completely with the simple expedient of changing the water and cleaning the pumps. CONCLUSION: Given the results of our study, the development of inhalational fever in this unique environment and clearly restricted cohort was closely related to the degree of exposure to contaminated aerosol and mainly occurred in the absence of distinct serological abnormality and independent of cigarette smoking. PMID:8777446

  3. Creating wealth from groundwater for dollar-a-day farmers: Where the silent revolution and the four revolutions to end rural poverty meet

    NASA Astrophysics Data System (ADS)

    Polak, Paul; Yoder, Robert

    2006-03-01

    More than 550 million of the current 1.1 billion people earning less than 1-a-day earn a living from agriculture in developing countries. A revolution in water control is needed to develop and mass-disseminate new, affordable, small-plot irrigation technologies. A revolution in agriculture is required to enable smallholders to produce high-value, marketable, labor-intensive cash crops. A revolution in markets is needed to open access to markets for the crops they produce and the inputs they need to produce them. Finally, a revolution in design, based on the ruthless pursuit of affordability, is needed to harness shallow groundwater. The experiences of suppliers of treadle pumps, low-cost drip irrigation and water storage systems were examined. The wealth these technologies generated, coupled with falling prices for small diesel pumps in countries like India and China, created a suitable environment for the rapid adoption of affordable diesel pump tubewells, which in turn created vigorous water markets and expanded access to affordable irrigation water for smallholders. The combination of smallholder-centered revolutions, along with the ‘silent revolution in groundwater’ described by Llamas and Martinez-Santos (Water Sci Technol 51(8):167-174, 2005) provide new practical options for meeting the UN Millennium Development Goals on poverty and hunger by 2015.

  4. Performance evaluation of SPE electrolyzer for Space Station life support

    NASA Technical Reports Server (NTRS)

    Erickson, A. C.; Puskar, M. C.; Zagaja, J. A.; Miller, P. S.

    1987-01-01

    An static water-vapor feed electrolyzer has been developed as a candidate for Space Station life-support oxygen generation. The five-cell electrolysis module has eliminated the need for phase separation devices, pumps, and deionizers by transporting only water vapor to the solid polymer electrolyte cells. The introduction of an innovative electrochemical hydrogen pump allows the use of low-pressure reclaimed water to generate gas pressures of up to 230 psia. The electrolyzer has been tested in a computer-controlled test stand featuring continuous, cyclic, and standby operation (including automatic shutdown with fault detection).

  5. Effects of Proposed Additional Ground-Water Withdrawals from the Mississippi River Valley Alluvial Aquifer on Water Levels in Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2006-01-01

    The Grand Prairie Water Users Association, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from their current (2005) rate of about 400 gallons per minute to 1,400 gallons per minute (2,016,000 gallons per day). The effect of pumping from a proposed well was simulated using a digital model of ground-water flow. The proposed additional withdrawals were added to an existing pumping cell specified in the model, with increased pumping beginning in 2005, and specified to pump at a total combined rate of 2,016,000 gallons per day for a period of 46 years. In addition, pumping from wells owned by Cabot Water Works, located about 2 miles from the proposed pumping, was added to the model beginning in 2001 and continuing through to the end of 2049. Simulated pumping causes a cone of depression to occur in the alluvial aquifer with a maximum decline in water level of about 8.5 feet in 46 years in the model cell of the proposed well compared to 1998 withdrawals. However, three new dry model cells occur south of the withdrawal well after 46 years. This total water-level decline takes into account the cumulative effect of all wells pumping in the vicinity, although the specified pumping rate from all other model cells in 2005 is less than for actual conditions in 2005. After 46 years with the additional pumping, the water-level altitude in the pumped model cell was about 177.4 feet, which is 41.7 feet higher than 135.7 feet, the altitude corresponding to half of the original saturated thickness of the alluvial aquifer (a metric used to determine if the aquifer should be designated as a Critical Ground-Water Area (Arkansas Natural Resources Commission, 2006)).

  6. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose. The...

  7. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the...

  8. Assessing the vulnerability of public-supply wells to contamination: Rio Grande aquifer system in Albuquerque, New Mexico

    USGS Publications Warehouse

    Jagucki, Martha L.; Bexfield, Laura M.; Heywood, Charles E.; Eberts, Sandra M.

    2012-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Albuquerque, New Mexico (hereafter referred to as “the study well”). The study well produces about 3,000 gallons of water per minute from the Rio Grande aquifer system. Water samples were collected at the study well, at two other nearby public-supply wells, and at monitoring wells installed in or near the simulated zone of contribution to the study well. Untreated water samples from the study well contained arsenic at concentrations exceeding the Maximum Contaminant Level (MCL) of 10 micrograms per liter (µg/L) established by the U.S. Environmental Protection Agency for drinking water. Volatile organic compounds (VOCs) and nitrate also were detected, although at concentrations at least an order of magnitude less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary influences on the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Albuquerque: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) groundwater development (introduction of manmade recharge and discharge sources), (3) natural geochemical conditions of the aquifer, and (4) seasonal pumping stresses. Concentrations of the isotope carbon-14 indicate that groundwater from most sampled wells in the local study area is predominantly water that entered, or recharged, the aquifer more than 6,000 years ago. However, the additional presence of the age tracer tritium in several groundwater samples at concentrations above 0.3 tritium units indicates that young (post-1950) recharge is reaching the aquifer across broad areas beneath Albuquerque. This young recharge is mixing with the thousands-of-years-old water, is migrating to depths as great as 245 feet below the water table, and is traveling to some (but not all) of the public-supply wells sampled. Most groundwater samples containing a fraction of young water also contain manmade VOCs, including chloroform (a byproduct of drinking-water chlorination), which indicates that the source of young recharge is, at least in part, infiltration of chlorinated municipal-supply water from leaking waterlines and sewerlines or from turf watering. Other likely manmade, urban recharge sources are seepage from constructed ponds and unlined portions of a stormwater diversion channel. A regional-scale computer-model simulation of groundwater flow and transport to the public-supply well shows that manmade sources of recharge and discharge that were added after about 1930 have greatly altered directions of groundwater flow near Albuquerque and have caused water levels to decline by as much as 120 feet. Local-scale simulations show that seasonal changes in the pumping schedule of the study well affect the age and quality of water produced by the well. Increased pumping during the summer causes significant volumes of water to flow downward from the shallow to the intermediate zones of the aquifer, causing a higher fraction of young water to be produced by the well in the summer than in the winter months and a corresponding increase in VOC detections in the summer relative to the winter. During the winter when the study-well pump is idle for several hours each day, old, high-arsenic water from the deep zone of the aquifer travels up the wellbore and exits into the intermediate zone of the aquifer. When the pump is activated in the winter (for a relatively short time each day), some of the leaked, high-arsenic water is recaptured by the well. This results in a higher arsenic concentration (commonly more than 12 µg/L) in water produced in the winter than in the summer, and a smaller fraction of young water being produced by the well in the winter than in the summer (6 percent in the winter, compared to 11 percent in the summer). Knowledge of the vertical flow direction (both natural and pumping-enhanced) in the vicinity of a long-screened well, coupled with understanding of variations in contaminant concentrations with depth in the aquifer, can help water managers predict the positive or negative effect that wellbore flow will have on water quality and can lead to development of strategies to mitigate contamination (such as changes in pumping schedules or development of devices to inhibit wellbore flow when the pump is off).

  9. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    USGS Publications Warehouse

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi‐Desert Water District (HDWD), the primary water‐management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic‐tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive‐use strategy. HDWD wishes to identify the least‐cost conjunctive‐use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed‐integer nonlinear programming (MINLP) groundwater‐management problem seeks to minimize water‐delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater‐level constraints, water‐supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid‐optimization algorithm, which couples a genetic algorithm and successive‐linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater‐management problem. The results indicate that the hybrid‐optimization algorithm can identify the global optimum. The hybrid‐optimization algorithm is then applied to solve a complex groundwater‐management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.

  10. GROUND WATER ISSUE - PERFORMANCE EVALUATIONS OF PUMP-AND-TREAT REMEDIATIONS

    EPA Science Inventory

    One of the most commonly used ground-water remediation technologies is to pump contaminated water to the surface for treatment. Evaluating the effectiveness of pump-and-treat remediations at Superfund sites is an issue identified by the Regional Superfund Ground Water Forum as a ...

  11. Method and apparatus for sampling low-yield wells

    DOEpatents

    Last, George V.; Lanigan, David C.

    2003-04-15

    An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

  12. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian M.; Maxwell, Reed M.

    2012-12-01

    Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices.

  13. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  14. Development of ground-water resources in Orange County, Texas, and adjacent areas in Texas and Louisiana, 1971-80

    USGS Publications Warehouse

    Bonnet, C.W.; Gabrysch, R.K.

    1982-01-01

    Although saltwater encroachment is evident in parts of southern Orange County, the encroachment is not expected to be detrimental if the ground-water pumping remains stable and the projected increase in demands for water is met with surface-water supplies.

  15. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank valves...

  16. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  17. Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.

    2006-06-01

    The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.

  18. A digital model for planning water management at Benton Lake National Wildlife Refuge, west-central Montana

    USGS Publications Warehouse

    Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa

    2011-01-01

    Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.

  19. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    NASA Astrophysics Data System (ADS)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  20. Construction, Geologic, and Hydrologic Data from Five Exploratory Wells on Rota, Commonwealth of the Northern Mariana Islands, 1999

    USGS Publications Warehouse

    Carruth, Rob

    2005-01-01

    Rota is the southernmost of the 14 small islands that make up the Commonwealth of the Northern Mariana Islands. Reduced springflow at Matan Hanom and As Onan springs occurred during a drought associated with the 1997-98 El Nino. Water from the two developed springs constituted the only municipal water source for the island at that time. In April 1998, reduced water supplies forced the Commonwealth Utilities Corporation to restrict water service in the principal villages of Songsong and Sinapalu for the duration of the dry season. In 1999, Five exploratory wells, EX-1 through EX-5 (CUC wells SP-MW1, SP-1, -2, -3, and SP-MW2), were drilled in the Sinapalu region of Rota to (1) assess the availability of fresh ground-water resources in an area where no other well information were available, and (2) to provide a new water source to help mitigate the impacts of drought associated with recurring El Nino weather events. The wells penetrated mainly light colored (dirty white to brownish), fragmental limestones containing abundant coral remains. Sustained-rate, recovery, and step-drawdown aquifer tests were attempted at each of the five exploratory wells to estimate aquifer properties in the vicinity of the wells and to assess the potential for new water sources. At wells EX-1 (CUC well SPMW1) and EX-5 (CUC well SP-MW2), attempts to conduct sustained-rate aquifer tests resulted in excessive drawdown to the pump intakes in the vicinity of the wells. At well EX-2 (CUC well SP-1), the maximum drawdown measured in the pumped well was 3.93 ft during 8 days of sustained pumping at an average rate of 187 gal/min. At well EX-3 (CUC well SP-2), the maximum drawdown measured in the pumped well was 2.31 ft during 8 days of sustained pumping at an average rate of 108 gal/min, and at well EX-4 (CUC well SP-3), the maximum drawdown measured in the pumped well was 3.27 ft during 8 days of sustained pumping at an average rate of 139 gal/min. Specific conductance at the end of 8 days of pumping was 403, 358, and 445 ?S/cm at well EX-2, EX-3, and EX-4 (CUC wells SP-1, -2, and -3), respectively.

  1. Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012

    USGS Publications Warehouse

    Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.

    2014-01-01

    During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum Contaminant Level for nitrate. Analysis of isotopes of oxygen and nitrogen in nitrate indicated that the source of nitrate is most likely soil nitrogen and fertilizer, with some denitrification and (or) mixing with some manure and septic waste derived from upstream wastewater-treatment facilities.

  2. Groundwater withdrawal impacts in a karst area

    NASA Astrophysics Data System (ADS)

    Destephen, R. A.; Benson, C. P.

    1993-12-01

    During a 3000-gpm pump test on a groundwater supply well in Augusta County, Virginia, residential properties were impacted. The impacts included lowered farm pond water levels, development of a sinkhole, and water level decrease in residential wells. A study was performed to assess whether a lower design yield was possible with minimal impacts on adjacent property. This study included a 48-h 1500-gpm pump test that evaluated impacts due to: (1) sinkhole development and potential damage to homes, (2) loss of water in residential wells, and (3) water-quality degradation. Spring flows, residential well levels, survey monuments, and water quality were monitored. Groundwater and surface water testing included inorganic water-quality parameters and microbiological parameters. The latter included particulate analyses, Giardia cysts, and coliforms, which were used to evaluate the connection between groundwater and local surface waterbodies. Although results of the study indicated a low potential for structural damage due to future sinkhole activity, it showed that the water quality of some residential wells might be degraded. Because particulate analyses confirmed that groundwater into the supply well is under the direct influence of surface water, it was recommended that certain residents be placed on an alternate water supply prior to production pumping and that filtration be provided for the well in accordance with the Surface Water Treatment Rule. A mitigation plan was implemented. This plan included crack surveys, a long-term settlement station monitoring program, and limitation of the groundwater withdrawal rate to 1.0 million gallons per day (mgd) and maximum production rate to 1500 gpm.

  3. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    PubMed Central

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  4. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  5. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-05-19

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  6. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    NASA Astrophysics Data System (ADS)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  7. Effects of pumping strategies on pesticide concentration of a drinking water well

    NASA Astrophysics Data System (ADS)

    Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.

    2011-12-01

    Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady-state flow and transport simulation. These water ages were then used as the initial conditions for the transient simulations. The results of the simulations showed that the range of water ages contributing to the well increased during pumping and was substantially affected by the pumping rate. High pesticide concentrations were persistent in the well 40 to 100 years after they were banned, due to the high residence times in the aquifer. Large changes in simulated pesticides concentrations at the well occurred during pumping. The pesticide concentration reaching the well was affected by the pumping regime and the pesticide application history and properties. A higher pumping rate induced a higher pesticide concentration peak at the well of shorter duration, while a lower pumping rate induced a lower concentration peak of longer duration. The long term scenarios revealed that at high pumping rates MCPP would disappear 40 years after its application end year, while glyphosate concentrations increase and reach a plateau, which is highly dependent on the pumping rate. The findings of the study help understand the results of groundwater monitoring programmes and can be used for the quantitative evaluation of management and pumping strategies for the long-term supply of safe potable groundwater.

  8. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    1999-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  9. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  10. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  11. Ground-water resources of Kings and Queens Counties, Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Shernoff, Peter K.

    1995-01-01

    The aquifers beneath Kings and Queens Counties supplied an average of more than 120 Mgal/d (million gallons per day) for industrial and public water supply during 1904-47, but this pumping caused saltwater intrusion and a deterioration of water quality that led to the cessation of pumping for public supply in Kings County in 1947 and in western Queens County in 1974. Since the cessation of pumping in Kings and western Queens Counties, ground-water levels have recovered steadily, and the saltwater has partly dispersed and become diluted. In eastern Queens County, where pumpage for public supply averages 60 Mgal/d, all three major aquifers contain a large cone of depression. The saltwater-freshwater interface in the Jameco-Magothy aquifer already extends inland in southeastern Queens County and is moving toward this cone of depression. The pumping centers' proximity to the north shore also warrants monitoring for saltwater intrusion in the Flushing Bay area. Urbanization and development on western Long Island since before the tum of this century have caused significant changes in the ground-water budget (total inflow and outflow) and patterns of movement. Some of the major causes are: ( 1) intensive pumping for industrial and public supply; (2) paving of large land-surface areas; (3) installation of a vast network of combined (stonn and sanitary) sewers; (4) leakage from a water-supply-line network that carries more than 750 Mgal/d; and (5) burial of stream channels and extensive wetland areas near the shore.Elevated nitrate and chloride concentrations throughout the upper glacial (water-table) aquifer indicate widespread contamination from land surface. Localized contamination in the underlying Jameco-Magothy aquifer is attributed to downward migration in areas of hydraulic connection between aquifers where the Gardiners Clay is absent A channel eroded through the Raritan confining unit provides a pathway for migration of surface contaminants to the Lloyd aquifer sooner than anticipated Although ground water in the Lloyd aquifer is still pristine, present pumping rates and potentiometric levels in the Lloyd indicate that this aquifer is much more sensitive to withdrawals than the other aquifers are and contains an extremely limited water supply.

  12. WATER PUMP HOUSE, TRA619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. CAMERA IS ON WATER TOWER AND FACES NORTHWEST. TWO RESERVOIR TANKS ALREADY ARE COMPLETED. NOTE EXCAVATIONS FOR PIPE LINES EXITING FROM BELOW GROUND ON SOUTH SIDE OF PUMP HOUSE. BUILDING AT LOWER RIGHT IS ELECTRICAL CONTROL BUILDING, TRA-623. SWITCHYARD IS IN LOWER RIGHT CORNER OF VIEW. INL NEGATIVE NO. 2753. Unknown Photographer, ca. 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Analog-model studies of ground-water hydrology in the Houston District, Texas

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1974-01-01

    The major water-bearing units in the Houston district are the Chicot and the Evangeline aquifers. The Chicot aquifer overlies the Evangeline aquifer, which is underlain by the Burkeville confining layer. Both aquifers consist of unconsolidated and discontinuous layers of sand and clay that dip toward the Gulf of Mexico. Heavy pumping of fresh water has caused large declines in the altitudes of the potentiometric surfaces in both aquifers and has created large cones of depression around Houston. The declines have caused compaction of clay layers, which has resulted in land surface subsidence and the movement of saline ground water toward the centers of the cones of depression. An electric analog model was used to study the hydrologic system and to simulate the declines in the altitudes of the potentiometric surfaces for several alternative plans of ground-water development. The results indicate that the largest part. of the pumped water comes from storage in the water-table part of the Chicot aquifer. Vertical leakage from the aquifers and water derived from the compaction of clay layers in the aquifers are also large sources of the water being pumped. The response of the system, as observed on the model, indicates that development of additional ground-water supplies from the water-table part of the Chicot aquifer north of Houston would result in a minimum decline of the altitudes of the potentiometric surfaces. Total withdrawals of about 1,000 million gallons (5.8 million cubic meters) per day may be possible without seriously, increasing subsidence or salt-water encroachment. Analyses of the recovery of water levels indicate that both land-surface subsidence and salt-water encroachment could be reduced by artificially recharging the artesian part of the aquifer.

  14. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests

    USGS Publications Warehouse

    Halford, K.J.; Yobbi, D.

    2006-01-01

    A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously. Copyright ?? 2005 National Ground Water Association.

  15. Bedrock aquifers in the Denver basin, Colorado; a quantitative water-resources appraisal

    USGS Publications Warehouse

    Robson, S.G.

    1984-01-01

    The Denver metropolitan area is experiencing a rapid population growth that is requiring increasing supplies of potable water to be pumped from bedrock aquifers in order to meet demand. In an effort to determine the ability of the aquifers to continue to meet this demand, the Colorado Department of Natural Resources, the Denver Board of Water Commissioners, and Adams, Arapahoe, Douglas, Elbert and El Paso Counties joined with the U.S. Geological Survey in undertaking a hydrologic evaluation of the ground-water resources of the basin. This involved mapping of aquifer extent, thickness, structure, hydraulic characteristics, and water-level and water-quality conditions. This enabled ground-water modeling techniques to be used to simulate aquifer response to various pumpage estimates and ground-water development plans.The Laramie-Fox Hills aquifer (the deepest aquifer) underlies the 6,700-square-mile study area and is overlain by the more permeable Arapahoe aquifer, the Denver aquifer, and the Dawson aquifer, which crops out in the southern part of the study area. It is estimated that 260x106 acre-feet of recoverable ground water are in storage in these four bedrock aquifers. However, less than 0.1 percent of this volume of water is stored under confined conditions. The larger volume of water stored under unconfined conditions will be available for use only when the water levels in the confined aquifers decline below the top of the individual aquifer, allowing water-table conditions to develop.Annual precipitation on the Denver basin supplies an average of 6,900 cubic feet per second of water to the area; about 55 cubic feet per second of this recharges the bedrock aquifers, principally through the Dawson Arkose. The direction of ground-water movement is generally from ground-water divides in the southern part of the area northward toward the margins of the aquifers. Pumpage has ranged from about 5 cubic feet per second in 1884 to about 41 cubic feet per second in 1978. Pumpage exceeds recharge in the metropolitan area and has caused water-level declines (1958-78) to exceed 200 feet in a 135-square-mile area of the Arapahoe aquifer southeast of Denver.A quasi-three-dimensional finite-difference model of the aquifer system was constructed and calibrated under steady-state and transient-state conditions. Steady-state calibration indicated that lateral hydraulic conductivity within the aquifers is about 100,000 times larger than the vertical hydraulic conductivity between the aquifers. Transient-state calibration indicated that between 1958 and 1978, 374,000 acre-feet of water was pumped from the aquifers, producing a 90,000-acre-foot net decrease in the volume of water in storage in the aquifers. During this time, pumpage also changed the rates of interaquifer flow, induced additional recharge, and caused capture of natural discharge.Three 1979-2050 pumpage estimates were made for use in simulating the effects of various ground-water development plans. Simulations using each of these pumpage estimates indicate that by the year 2050 large water-level declines could occur, particularly in the deeper aquifers. Maximum water-level declines of 410, 1,700, and 1,830 feet were produced using the small, medium, and large pumping rates.Four plans for supplementing the Denver water supply include pumping a satellite well field, pumping a municipal well field, pumping to irrigate parks, and injecting water during periods of low demand for later use during periods of peak demand. Model simulation of these plans indicates that the satellite well field will yield twice as much water as the municipal well field, but will produce larger and more widespread water-level declines in the four aquifers. The municipal well field would not significantly affect water levels in the Dawson aquifer. Pumping the Arapahoe aquifer to supply irrigation water to selected parks was shown to produce only small water-level declines in the aquifer. Results of simulating injection-pumpage well fields at two locations indicate that simulated injection rates could range from 1.7 to 10 cubic feet per second, depending on the choice of site. The volume of water that could be stored in the bedrock aquifer is, thus, sensitive to the hydrologic characteristics of the chosen site. More study is needed to evaluate water-chemistry compatibility of native and injected water.

  16. A semi-analytical refrigeration cycle modelling approach for a heat pump hot water heater

    NASA Astrophysics Data System (ADS)

    Panaras, G.; Mathioulakis, E.; Belessiotis, V.

    2018-04-01

    The use of heat pump systems in applications like the production of hot water or space heating makes important the modelling of the processes for the evaluation of the performance of existing systems, as well as for design purposes. The proposed semi-analytical model offers the opportunity to estimate the performance of a heat pump system producing hot water, without using detailed geometrical or any performance data. This is important, as for many commercial systems the type and characteristics of the involved subcomponents can hardly be detected, thus not allowing the implementation of more analytical approaches or the exploitation of the manufacturers' catalogue performance data. The analysis copes with the issues related with the development of the models of the subcomponents involved in the studied system. Issues not discussed thoroughly in the existing literature, as the refrigerant mass inventory in the case an accumulator is present, are examined effectively.

  17. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, J.E.; Ratajczak, A.F.; Delombard, R.

    1982-02-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well,more » and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.« less

  18. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.; Delombard, R.

    1982-01-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.

  19. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.

    PubMed

    Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie

    2017-09-01

    Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.

  20. Numerical simulation on the cavitation of waterjet propulsion pump

    NASA Astrophysics Data System (ADS)

    Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.

    2016-05-01

    Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles is about 40% in the suction surface of blade. It means that the critical point of cavitation of pump system is not the accrue point of install cavitation but cavitation has been developed to a certain stage.

  1. Summary appraisals of the Nation's ground-water resources; Lower Colorado region

    USGS Publications Warehouse

    Davidson, E.S.

    1979-01-01

    The potential for greater development of ground water in the southwestern part of the region is constrained by land subsidence, earth cracks, increasing costs of pumping and transportation, and moderate to poor chemical quality of water. More ground water can be developed in the northeastern part of the region, where the major constraint is pumping cost owing to low to moderate well yields and depth to water. Some benefits can be realized everywhere in the region through changes in current use and greater efficiencies of use. Additional supplies may be made available by capture of natural evapotranspiration. Increasing the efficiency of use is possible hydrologically but, in the near term, is more expensive than increasing groundwater development. Decrease of irrigation, change to water-saving methods of irrigation, use of saline water, decrease of per capita public- supply use, and more reuse of water in almost every type of use could help extend the supply and thereby reduce the current rate of ground-water depletion. Financial problems have not yet caused an overall decrease in pumpage, but, locally, operating costs or partial dewatering of the aquifer has eliminated or decreased withdrawal. Current water laws in all States of the region, except Arizona, control or allocate the use of ground water.

  2. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  3. Reconnaissance of ground-water resources of the Squaxin Island Indian Reservation, Washington

    USGS Publications Warehouse

    Lum, W.E.; Walters, Kenneth Lyle

    1976-01-01

    A supply of fresh ground water for the Squaxin Island Indian Reservation, Washington, exists in saturated deposits underlying the 3.09-square-mile island. Four test wells tapped a water-bearing zone of sand and gravel and had yields ranging from 27 to 170 gpm, with drawdowns of about 5 feet to about 65 feet. Except for high concentrations of iron and manganese (which can be treated and reduced for domestic use), the water quality is good. Conditions for drain-field waste disposal from septic tanks are good in at least the northern two-thirds of the island. The danger of inducing seawater encroachment can be minimized by maintaining pumping levels above sea level, using a network of several wells pumped intermittently into a storage facility, and spacing these wells to spread out the effects of pumping. In the northern half of the island, wells 100 to 200 feet deep may yield 25 to 100 gpm with minimum chances of seawater encroachment. The southern half of the island has a smaller apparent potential for ground-water development and an increased possibility of seawater encroachment. (Woodard-USGS)

  4. Preliminary Study of a Piston Pump for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  5. Effects of Water-Management Strategies on Water Resources in the Pawcatuck River Basin, Southwestern Rhode Island and Southeastern Connecticut

    USGS Publications Warehouse

    Breault, Robert F.; Zarriello, Phillip J.; Bent, Gardner C.; Masterson, John P.; Granato, Gregory E.; Scherer, J. Eric; Crawley, Kathleen M.

    2009-01-01

    The Pawcatuck River Basin in southwestern Rhode Island and southeastern Connecticut is an important high-quality water resource for domestic and public supplies, irrigation, recreation, and the aquatic ecosystem. Concerns about the effects of water withdrawals on aquatic habitat in the basin have prompted local, State, and Federal agencies to explore water-management strategies that minimize the effects of withdrawals on the aquatic habitat. As part of this process, the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service and the Rhode Island Water Resources Board completed a study to assess the effects of current (2000-04) and potential water withdrawals on streamflows and groundwater levels using hydrologic simulation models developed for the basin. The major findings of the model simulations are: *Moving highly variable seasonal irrigation withdrawals from streams to groundwater wells away from streams reduces short-term fluctuations in streamflow and increases streamflow in the summer when flows are lowest. This occurs because of the inherent time lag between when water is withdrawn from the aquifer and when it affects streamflow. *A pumped well in the vicinity of small streams indicates that if withdrawals exceed available streamflow, groundwater levels drop substantially as a consequence of water lost from aquifer storage, which may reduce the time wetlands and vernal pools are saturated, affecting the animal and plant life that depend on these habitats. *The effects of pumping on water resources such as ponds, streams, and wetlands can be minimized by relocating pumping wells, implementing seasonal pumping schemes that utilize different wells and pumping rates, or both. *The effects of projected land-use change, mostly from forest to low- and medium density housing, indicate only minor changes in streamflow at the subbasin scale examined; however, at a local scale, high flows could increase, and low flows could decrease as a result of increased impervious area. In some instances, low flows could increase slightly as a result of decreased evapotranspiration from the loss of deeprooted vegetation (forest) associated with development. *In some subbasins where large areas of agricultural lands were converted to low- and medium-density housing, low flows increase because the consumptive domestic water use was projected to be less than consumptive agricultural water use. All agricultural water use was for irrigation purposes and was assumed to be lost from the basin through evapotranspiration.

  6. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  7. 1. Credit USAF, ca. 1942. Original housed in the Muroc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit USAF, ca. 1942. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historical view looks west southwest at construction of Building 4317, Deluge Water Pumping Station (then designated Pump House No. 3). This in-ground structure houses fire pumps which draw water from an in-ground reservoir, Building 4316 (See HAER photos CA-170-I). Pumping station was built in-ground to take advantage of gravity, since water flows from reservoir to prime the pumps, and fire system piping is underground. Opening in far wall is to stairs leading up to ground level. Earth mound in background is part of water reservoir construction (Building 4316). - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA

  8. Geology and ground-water resources of Fond du Lac County, Wisconsin

    USGS Publications Warehouse

    Newport, Thomas G.

    1962-01-01

    The principal water-bearing rocks underlying Fond du Lac County, Wis., are sandstones of Cambrian and Ordovician age and dolomite of Silurian age. Other aquifers include dolomite of Ordovician age and sand. and gravel of Quaternary age. Crystalline rocks of Precambrian age, which underlie all the water-bearing formations, form a practically impermeable basement complex and yield little or no water to wells. Ground water is the source of all public and most private and industrial water supplies in the county. The municipalities and industries obtain water chiefly from wells that penetrate the sandstones of Cambrian and Ordorician age. The Platteville formation and Galena dolomite of Ordovician age and the Niagara dolomite of Silurian age supply water to most domestic and stock wells and to a few industrial wells. Several buried valleys in the bedrock surface contain water-bearing deposits of sand and gravel. The source of the ground water in Fond du Lac County is local precipitation. Recharge to the water-bearing beds occurs in most of the county but is greatest where the bedrock formations are near the surface. Ground water is discharged by seeps and springs, by evaporation and transpiration, and by wells. Ground-water levels in wells fluctuate in response to recharge and to natural discharge and pumping. In areas not affected by pumping, water levels generally decline through the summer months because of natural discharge and lack of recharge, recover slightly in the fall after the first killing frost, decline during the winter, and recover in the spring when recharge is greatest. In areas of heavy pumping, the water levels are lowest in late summer and highest in late winter. Water levels in wells in the Fond du Lac area were about 5 to 50 feet above the land surface in 1885, but they had declined to as low as 185 feet below the land surface by 1957. Coefficients of transmissibility and storage of the sandstones of Cambrian and Ordovician age were determined by making controlled aquifer tests at Fond du Lac. The coefficients were verified by comparing computed water-level declines with actual declines. The computed values were within about 30 percent of the actual values, a reasonable agreement for coefficients of this type. Probable declines of water levels by 1966 were computed, using the same coefficients of transmissibility and storage. If the distribution of wells and the rate of pumping remain the same in 1957-66 as they were in 1956, the water levels will decline about 5 feet more by 1966. If, however, the distribution of pumped wells remains the same but the pumping by the city of Fond du Lac increases at a uniform rate from the 3 mgd (million gallons per day) pumped in 1956 to 5 mgd in 1966, the water levels in 1966 will be at least 60 feet below those of 1956. Dispersal of wells to the northwest toward the recharge area would reduce the water-level declines. The results of pumping tests, of test holes tapping the Niagara dolomite indicate that wells producing at least 200 gpm (gallons per minute) could be developed east of the Niagara escarpment. The ground water in Fond do Lac County is, in general, a hard calcium and magnesium bicarbonate water, which contains excessive iron in some areas.

  9. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting... Act (FPA), proposing to study the feasibility of the East Maui Pumped Storage Water Supply Project to.... Bart M. O'Keeffe, East Maui Pumped Storage Water Supply LLC; P.O. Box 1916; Discovery Bay, CA 94505...

  10. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  11. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in § 76.10-5(c...

  12. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  13. A method for evaluating horizontal well pumping tests.

    PubMed

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  14. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. Themore » Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluate the fouling characteristics in field testing, and remove the uncertainty factors included in the estimated payback period for the H2O2 distillation system.« less

  15. Electric analog of three-dimensional flow to wells and its application to unconfined aquifers

    USGS Publications Warehouse

    Stallman, Robert W.

    1963-01-01

    Electric-analog design criteria are established from the differential equations of ground-water flow for analyzing pumping-test data. A convenient analog design was obtained by transforming the cylindrical equation of flow to a rectilinear form. The design criteria were applied in the construction of an electric analog, which was used for studying pumping-test data collected near Grand Island, Nebr. Data analysis indicated (1) vertical flow components near pumping wells in unconfined aquifers may be much more significant in the control of water-table decline than radial flow components for as much as a day of pumping; (2) the specific yield during the first few minutes of pumping appears to be a very small fraction of that observed after pumping for more than 1 day; and (3) estimates of specific yield made from model studies seem much more sensitive to variations in assumed flow conditions than are estimates of permeability. Analysis of pumping-test data where vertical flow components are important requires that the degree of anisotropy be known. A procedure for computing anisotropy directly from drawdowns observed at five points was developed. Results obtained in the analog study emphasize the futility of calculating unconfined aquifer properties from pumping tests of short duration by means of equations based on the assumptions that vertical flow components are negligible and specific yield is constant.

  16. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    DTIC Science & Technology

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  17. Seawater Hydraulics: A Multi-Function Tool System for U.S. Navy Construction Divers.

    DTIC Science & Technology

    1991-05-01

    0.80. Each tool was designed so that it can be repaired in a minimum time. Tool maintenance at the end of the day is satisfied by a fresh- water rinse...oil hydraulic system is used to regulate the speed of the centrifugal pump. The centrifugal pump supplies 200 psi water to a jet eductor pump suspended...in the ocean. The jet eductor pump returns a larger volume of water to fill the 50-gallon reservoir. The seawater output from the jet eductor pump is

  18. Use of environmental tritium to characterize ground water flow systems in regolith and crystalline fractured-rock hydrogeologic settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, L.M.; Rose, S.E.

    1993-03-01

    Environmental tritium concentrations measured in 84 ground-water, surface-water, and precipitation samples collected throughout the Piedmont and Blue Ridge physiographic provinces of northern Georgia were used in conjunction with available geological and hydrochemical data to develop general concepts of ground-water flow within a regolith and crystalline fractured-rock system. Tritium concentrations ranged from 0 tritium units (TU) in water sampled from unpumped wells completed in fractured bedrock to 34 TU in water sampled from pumped wells screened at various intervals within the overlying regolith. Tritium concentrations measured in spring discharge, streamflow, and precipitation also were within this range. The distribution of tritiummore » indicates that tritiated water is retained within the regolith and that pumping is an important mechanism for mixing water of different ages within the flow system. Simulations using an analytical mixing model were performed to estimate the degree of mixing and the residence time of ground water within the flow system. Results of the simulations compared favorably with other geological and hydrochemical data. Simulated residence times for tritiated water indicated that ground-water residence times may be greater than 37 years within the bedrock fractures, but as little as 15 years in pumped bedrock wells and streams. Estimates of ground-water ages were based on environmental tritium concentrations produced by thermonuclear bomb testing conducted during the years of 1961-1962.« less

  19. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs.

    PubMed

    Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san

    2011-05-30

    The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Open-path atmospheric transmission for a diode-pumped cesium laser.

    PubMed

    Rice, Christopher A; Lott, Gordon E; Perram, Glen P

    2012-12-01

    A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.

  1. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  2. Rainwater harvesting potential for farming system development in a hilly watershed of Bangladesh

    NASA Astrophysics Data System (ADS)

    Tariqul Islam, Md.; Mohabbat Ullah, Md.; Mostofa Amin, M. G.; Hossain, Sahadat

    2017-09-01

    Water resources management is an important part in farming system development. Agriculture in Chittagong Hill Tracts of Bangladesh is predominantly rainfed with an average 2210 mm monsoonal rain, but rainfall during dry winter period (December-February) is inadequate for winter crop production. The natural soil water content (as low as 7 %) of hillslope and hilltop during the dry season is not suitable for shallow-rooted crop cultivation. A study was conducted to investigate the potential of monsoonal rainwater harvesting and its impact on local cropping system development. Irrigation facilities provided by the managed rainwater harvesting reservoir increased research site's cropping intensity from 155 to 300 %. Both gravity flow irrigation of valley land and low lift pumping to hillslope and hilltop from rainwater harvesting reservoir were much more economical compared to forced mode pumping of groundwater because of the installation and annual operating cost of groundwater pumping. To abstract 7548 m3 of water, equivalent to the storage capacity of the studied reservoirs, from aquifer required 2174 kWh energy. The improved water supply system enabled triple cropping system for valley land and permanent horticultural intervention at hilltop and hillslope. The perennial vegetation in hilltop and hillslope would also conserve soil moisture. Water productivity and benefit-cost ratio analysis show that vegetables and fruit production were more profitable than rice cultivation under irrigation with harvested rainwater. Moreover, the reservoir showed potentiality of integrated farming in such adverse area by facilitating fish production. The study provides water resource managers and government officials working with similar problems with valuable information for formulation of plan, policy, and strategy.

  3. Hand-pumps as reservoirs for microbial contamination of well water

    PubMed Central

    Ferguson, Andrew S.; Mailloux, Brian J.; Ahmed, Kazi M.; van Geen, Alexander; McKay, Larry D.; Culligan, Patricia J.

    2018-01-01

    The retention and release of total coliforms and Escherichia coli was investigated in hand-pumps removed from tubewells tapping a faecally contaminated aquifer in Matlab, Bangladesh, and from a new hand-pump deliberately spiked with E. coli. All hand-pumps were connected to reservoirs of sterile water and flushed. Faecal coliforms were observed in the discharge from all three of the previously used hand-pumps, at concentrations comparable to levels measured in discharge when they were attached to the tubewells. During daily flushing of one of the previously used hand-pumps, the concentration of total coliforms in the discharge remained relatively constant (≈103 MPN/100 mL). Concentrations of E. coli in the pump discharge declined over time, but E. coli was still detectable up to 29 days after the start of flushing. In the deliberately spiked hand-pump, E. coli was observed in the discharge over 125 days (t50 = 8 days) and found to attach preferentially to elastomeric materials within the hand-pump. Attempts to disinfect both the village and new hand-pumps using shock chlorination were shown to be unsuccessful. These results demonstrate that hand-pumps can act as persistent reservoirs for microbial indicator bacteria. This could potentially influence drinking water quality and bias testing of water quality. PMID:22048430

  4. Well development by jetting using coiled tubing and simultaneous pumping.

    PubMed

    Rosberg, Jan-Erik; Bjelm, Leif

    2009-01-01

    During flow testing of a deep, 1927-m, gravel packed screen completed well, it became apparent that well development was needed to increase productivity. A hydrojetting system using coiled tubing in combination with simultaneous pumping was developed and tested and found to be successful. To verify whether the jetting improved the well, the results of a pumping test conducted before and after the jetting operation are compared. In addition, flowmeter logging and hydraulic properties obtained from pumping tests conducted during the jetting operation were also used to verify the improvements. Hydrojetting in combination with simultaneous pumping proved to be an effective cleaning method. After 100 min of pumping, around 110 m less drawdown and 15 L/s higher average flow rate were obtained compared to the values before the jetting operation. The skin factor was positive before the jetting operation and negative thereafter, thus providing additional evidence of improvements of the well. The flowmeter data also confirmed the improvements and were valuable in optimizing the jetting operation. It was also found, from the short-term pumping tests conducted during the jetting operation, that the Hantush-Jacob method for leaky confined aquifers is a valuable indicator of the well development. The combination of methods used for the well development in this case can easily be applied on other deep well projects to obtain a controlled and time-efficient well development. Copyright © 2009 The Author(s). Journal Compilation © 2009 National Ground Water Association.

  5. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING #5006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows throughmore » the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements.« less

  6. Availability of ground water in the Branch River basin; Providence County, Rhode Island

    USGS Publications Warehouse

    Johnston, H.E.; Dickerman, D.C.

    1974-01-01

    Stratified glacial drift consisting largely of sand and gravel constitutes the only aquifer capable of supporting continuous yields of 100 gpm (6.3 1/s) or more to individual wells. The aquifer covers about a third of the 79 mi 2 (205 km2) study area, occurring mainly in stream valleys that are less than a mi le wide. Its saturated thickness is commonly 40 to 60ft (12 to 18 m); its transmissivity is commonly 5,000 to 8,000 ft 2/day (460 to 740m2 /day). The aquifer is hydraulically connected to streams that cross it and much of the water from heavily pumped wells will consist of infiltration induced from them. Potential sustained yield from most parts of the aquifer is limited chiefly by the rate at which infiltration can be induced from streams or low streamflow, whichever is smaller. Ground-water withdrawals deplete streamflow; and if large-scale development of ground water is not carefully planned and managed, periods of no streamflow may result during dry weather. Potential sustained yield varies with the scheme of well development, and is evaluated for selected areas by mathematically simulating pumping from assumed schemes of well Is in models of the stream-aquifer system. Results indicate that sustained yields of 5.5, 3.4, 1.6, and 1.3 mgd (0.24, 0.15, 0.07, and 0.06 m3 /s) can be obtained from the stratified-drift aquifer near Slatersville, Oakland, Harrisville, and Chepachet, respectively. Pumping at these rates will not cause streams to go dry, if the water is returned to streams near points of withdrawal. A larger ground-water yield can be obtained, if periods of no streamflow along reaches of principal streams are acceptable. Inorganic chemical quality of water in the stream-aquifer system is suitable for most purposes; the water is soft, slightly acidic, and generally contains less than 100 milligrams per litre of dissolved sol ids. Continued good quality ground water depends on maintenance of good quality of water in streams, because much of the water pumped from wells will be infiltrated from streams.

  7. Effect of Pumping on Groundwater Levels: A Case Study

    NASA Astrophysics Data System (ADS)

    Sindhu, G.; Vijayachandran, Lekshmi

    2018-03-01

    Groundwater is a major source for drinking and domestic purposes. Nowadays, extensive pumping has become a major issue of concern since pumping has led to rapid decline in the groundwater table, thus imposing landward gradient, leading to saline water intrusion especially in coastal areas. Groundwater pumping has seen its utmost effect on coastal aquifer systems, where the sea-ward gradient gets disturbed due to anthropogenic influences. Hence, a groundwater flow modelling of an aquifer system is essential for understanding the various hydro-geologic conditions, which can be used to study the responses of the aquifer system with regard to various pumping scenarios. Besides, a model helps to predict the water levels for the future period with respect to changing environment. In this study, a finite element groundwater flow model of a coastal aquifer system at Aakulam, Trivandrum district is developed, calibrated and simulated using the software Finite Element subsurface Flow system (FEFLOW 6.2).This simulated model is then used to predict the groundwater levels for a future 5 year period during pre monsoon and post monsoon season.

  8. Effect of Pumping on Groundwater Levels: A Case Study

    NASA Astrophysics Data System (ADS)

    Sindhu, G.; Vijayachandran, Lekshmi

    2018-06-01

    Groundwater is a major source for drinking and domestic purposes. Nowadays, extensive pumping has become a major issue of concern since pumping has led to rapid decline in the groundwater table, thus imposing landward gradient, leading to saline water intrusion especially in coastal areas. Groundwater pumping has seen its utmost effect on coastal aquifer systems, where the sea-ward gradient gets disturbed due to anthropogenic influences. Hence, a groundwater flow modelling of an aquifer system is essential for understanding the various hydro-geologic conditions, which can be used to study the responses of the aquifer system with regard to various pumping scenarios. Besides, a model helps to predict the water levels for the future period with respect to changing environment. In this study, a finite element groundwater flow model of a coastal aquifer system at Aakulam, Trivandrum district is developed, calibrated and simulated using the software Finite Element subsurface Flow system (FEFLOW 6.2).This simulated model is then used to predict the groundwater levels for a future 5 year period during pre monsoon and post monsoon season.

  9. Variable speed drives for pumps used in intensive pond culture systems

    USDA-ARS?s Scientific Manuscript database

    Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...

  10. Experimental investigation of solar powered diaphragm and helical pumps

    USDA-ARS?s Scientific Manuscript database

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  11. Performance of a small wind powered water pumping system

    USDA-ARS?s Scientific Manuscript database

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  12. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    USGS Publications Warehouse

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in response to decreased pumping. Simulated drawdown exceeded 10 ft in the Upper Floridan aquifer across much of the western half of the model area, with drawdown exceeding 20 ft along parts of the western, northern, and southern boundaries where irrigation pumping increased during this period. From predevelopment to 2000 conditions, the simulated water budget showed an increase in inflow from, and decrease in outflow to, the general-head boundaries, and a reversal from net seaward flow to net landward flow across the coastline. Simulated changes in recharge and discharge distribution from predevelopment to 2000 conditions showed an increase in extent and magnitude of net recharge cells in the northern part of the model area, and a decrease in discharge or change to recharge in cells containing major streams and beneath major pumping centers. The model is relatively sensitive to pumping and the controlling head at the fixed-head boundary and less sensitive to the distribution of aquifer properties in general. Model limitations include: (1) its spatial scale and discretization, (2) the extent to which data are available to physically define the flow system, (3) the type of boundary conditions and controlling parameters used, (4) uncertainty in the distribution of pumping, and (5) uncertainty in field-scale hydraulic properties. The model could be improved with more accurate estimates of ground-water pumpage and better characterization of recharge and discharge.

  13. Institutional Diversity in Collective Action: Investigating Successful Village Level Maintenance of Hand Pumps in Malawi

    NASA Astrophysics Data System (ADS)

    Joubert, Brian Anthony

    Providing clean water to rural communities in sub-Saharan Africa remains a challenge. Unsanitary and distant water sources cause a host of health and humanitarian problems. A common means of remedying this situation has been the donation of improved water sources, fitted with low-cost hand pumps. Due donor capacity and/ or policy most hand pumps are donated under the guise of Village Level Operation and Maintenance (VLOM). This premises the notion that recipient communities will take ownership of the new pump and as such will ensure its maintenance. To assist with this many donors carry out programs of technical repair training and the structuring of in-village leadership and management groups. The reality is that a high proportion of these pumps break down after donation and cease to work thereafter. Measures to redress technical elements of these failures through increased training or adequate distribution of spares has seen some success but failure rates remains high. This has led to a call for more attention to demand side issues, focusing on the communal aspects that may influence a village to act collectively in the maintenance of its hand pump. This thesis researched five Malawian villages where the community had maintained their hand pumps for a period of 10 or more years. These hand pumps were treated as shared resources and the literature on common-pool resources and social institutions was used as a theoretical framework. Applying these theories proved to be appropriate for analyzing the norms, conventions and forms of cooperative conduct. This allowed the research to gain insights into institutional diversity and the relationship between 'formal institutions', most often exogenous in nature, and informal' or customary collective action institutions embedded within the communities. Findings showed the emergence of three predominant themes within these successful case studies: 1) the role of leadership at varying levels and how it is embodied institutionally as a vehicle to drive collective action; 2) the contextual norms around rules, monitoring and punishment and; 3) how it should not be assumed that cases of successful pump maintenance necessarily guarantee gender 'empowerment', as is often touted by water development proposals.

  14. Advanced methods for modeling water-levels and estimating drawdowns with SeriesSEE, an Excel add-in

    USGS Publications Warehouse

    Halford, Keith; Garcia, C. Amanda; Fenelon, Joe; Mirus, Benjamin B.

    2012-12-21

    Water-level modeling is used for multiple-well aquifer tests to reliably differentiate pumping responses from natural water-level changes in wells, or “environmental fluctuations.” Synthetic water levels are created during water-level modeling and represent the summation of multiple component fluctuations, including those caused by environmental forcing and pumping. Pumping signals are modeled by transforming step-wise pumping records into water-level changes by using superimposed Theis functions. Water-levels can be modeled robustly with this Theis-transform approach because environmental fluctuations and pumping signals are simulated simultaneously. Water-level modeling with Theis transforms has been implemented in the program SeriesSEE, which is a Microsoft® Excel add-in. Moving average, Theis, pneumatic-lag, and gamma functions transform time series of measured values into water-level model components in SeriesSEE. Earth tides and step transforms are additional computed water-level model components. Water-level models are calibrated by minimizing a sum-of-squares objective function where singular value decomposition and Tikhonov regularization stabilize results. Drawdown estimates from a water-level model are the summation of all Theis transforms minus residual differences between synthetic and measured water levels. The accuracy of drawdown estimates is limited primarily by noise in the data sets, not the Theis-transform approach. Drawdowns much smaller than environmental fluctuations have been detected across major fault structures, at distances of more than 1 mile from the pumping well, and with limited pre-pumping and recovery data at sites across the United States. In addition to water-level modeling, utilities exist in SeriesSEE for viewing, cleaning, manipulating, and analyzing time-series data.

  15. Microgravity heat pump for space station thermal management.

    PubMed

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.

  16. How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater

    NASA Astrophysics Data System (ADS)

    Müller, Marc F.; Müller-Itten, Michèle C.; Gorelick, Steven M.

    2017-07-01

    Transboundary aquifers are ubiquitous and strategically important to global food and water security. Yet these shared resources are being depleted at an alarming rate. Focusing on the Disi aquifer, a key nonrenewable source of groundwater shared by Jordan and Saudi Arabia, this study develops a two-stage game that evaluates optimal transboundary strategies of common-pool resource exploitation under various assumptions. The analysis relies on estimates of agricultural water use from satellite imagery, which were obtained using three independent remote sensing approaches. Drawdown response to pumping is simulated using a 2-D regional aquifer model. Jordan and Saudi Arabia developed a buffer-zone strategy with a prescribed minimum distance between each country's pumping centers. We show that by limiting the marginal impact of pumping decisions on the other country's pumping costs, this strategy will likely avoid an impeding tragedy of the commons for at least 60 years. Our analysis underscores the role played by distance between wells and disparities in groundwater exploitation costs on common-pool overdraft. In effect, if pumping centers are distant enough, a shared aquifer no longer behaves as a common-pool resource and a tragedy of the commons can be avoided. The 2015 Disi aquifer pumping agreement between Jordan and Saudi Arabia, which in practice relies on a joint technical commission to enforce exclusion zones, is the first agreement of this type between sovereign countries and has a promising potential to avoid conflicts or resolve potential transboundary groundwater disputes over comparable aquifer systems elsewhere.

  17. Evaluation of availability of water from drift aquifers near the Pomme de Terre and Chippewa rivers, western Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1987-01-01

    The model was used to simulate the effects of below-normal precipitation (drought) and hypothetical increases in ground-water development. Model results indicate that reduced recharge and increased pumping during a three-year extended drought probably would lower water levels 2 to 6 feet regionally in the surficial aquifer and in the Appleton and Benson-middle aquifers and as much as 11 feet near aquifer boundaries. Ground-water discharge to the Pomme de Terre and Chippewa Rivers in the modeled area probably would be reduced during the simulated drought by 15.2 and 7.4 cubic feet per second, respectively, compared to 1982 conditions. The addition of 30 hypothetical wells in the Benson-middle aquifer near Benson, pumping a total of 810 million gallons per year, resulted in water-level declines of as much as 1.3 and 2.7 feet in the surficial and Benson-middle aquifers, respectively. The addition of 28 hypothetical wells in the Appleton aquifer east and southeast of Appleton, pumping a total of 756 million gallons per year, lowered water levels in the surficial and Appleton confined aquifers as much as 5 feet.

  18. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  19. The time lapse experiment in Al Wasse water pumping field in Saudi Arabia by an ultra-stable seismic source (ACROSS)

    NASA Astrophysics Data System (ADS)

    AlAnezi, Ghunaim; Kasahara, Junzo; AlDamegh, Khaled S.; Lafouza, Omar; AlYousef, Khaled; Almalki, Fahad; Nishiyama, Eichiro

    2015-04-01

    We have developed the time lapse technology for EOR (enhanced oil recovery) and CCS (Carbon Capture and Storage) using a very stable and continuous seismic source called ACROSS (Accurately Controlled Routinely Operated Signal System) with multi-geophones. Since 2011, we have tested this technology in the context of carbonate rocks in Saudi Arabia. The Al Wasee water pumping site approximately 120 km east of Riyadh city has been selected as a trail-site. The intention is to observe the changes in aquifers induced by pumping operations. One ACROSS source unit was installed at the Al Wasee site in December 2011 and we are continuing the field test. The instrument has been operated from 10 to 50 Hz with 40 tons-f at 50 Hz. Using alternatively clockwise and counter-clockwise rotations we can synthesize vertical and horizontal forces, respectively. 31 3C-geophones in 2 km x 3 km area and four nearby 3Cgeophones have been used to monitor the seismic changes from pumping the water. The one and half month data between December 2012 and February 2013 show continuous and clear change of observed waveforms for all 31 stations while the source signature did not change. The change is closest and fastest at the station #42. The cause of continuous change with time is interpreted as pumping of water by 64 wells located in this field.

  20. 46 CFR 56.50-55 - Bilge pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tankvessels All...

  1. 46 CFR 56.50-55 - Bilge pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tank vessels All...

  2. 46 CFR 56.50-55 - Bilge pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tankvessels All...

  3. 46 CFR 56.50-55 - Bilge pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tankvessels All...

  4. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  5. LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, R. P.; Bellah, W.

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  6. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Ruben P.; Bellah, Wendy

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  7. Geohydrology and simulated ground-water flow, Plymouth-Carver Aquifer, southeastern Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lapham, Wayne W.

    1992-01-01

    The Plymouth-Carver aquifer underlies an area of 140 square miles and is the second largest aquifer in areal extent in Massachusetts. It is composed primarily of saturated glacial sand and gravel. The water-table and bedrock surface were mapped and used to determine saturated thickness of the aquifer, which ranged from less than 20 feet to greater than 200 feet. Ground water is present mainly under unconfined conditions, except in a few local areas such as beneath Plymouth Harbor. Recharge to the aquifer is derived almost entirely from precipitation and averages about 1.15 million gallons per day per square mile. Water discharges from the aquifer by pumping, evapotranspiration, direct evaporation from the water table, and seepage to streams, ponds, wetlands, bogs, and the ocean. In 1985, water use was about 59.6 million gallons per day, of which 82 percent was used for cranberry production. The Plymouth-Carver aquifer was simulated by a three-dimensional, finite difference ground-water-flow model. Most model boundaries represent the natural hydrologic boundaries of the aquifer. The model simulates aquifer recharge, withdrawals by pumped wells, leakage through streambeds, and discharge to the ocean. The model was calibrated for steady-state and transient conditions. Model results were compared with measured values of hydraulic head and ground-water discharge. Results of simulations indicate that the modeled ground-water system closely simulates actual aquifer conditions. Four hypothetical ground-water development alternatives were simulated to demonstrate the use of the model and to examine the effects on the ground-water system. Simulation of a 2-year period of no recharge and average pumping rates that occurred from 1980-85 resulted in water-level declines exceeding 5 feet throughout most of the aquifer and a decrease of 54 percent in average ground-water discharge to streams. In a second simulation, four wells in the northern part of the area were pumped at 10.4 million gallons per day in excess of rates simulated in the steady-state model for the four wells. This resulted in water-level declines of 2 feet or more in an area of 25 square miles and a decline in average ground-water discharge to streams of 6 percent. When this pumpage was simulated as recharge to the aquifer, water levels beneath the recharge area rose more than 40 feet, and ground-water discharge remained equal to average discharge in the calibrated steady-state model. In a third simulation, all 21 existing production wells were pumped at nearly the design capacity of 17.8 million gallons per day; this pumping rate produced water-level declines of less than 2 feet throughout most of the aquifer. When simulated pumpage was increased to 32.8 million gallons per day from existing wells and from 15 additional wells, the area where water-level declines exceeded 2 feet significantly increased. In another set of simulations, a well field close to a stream was pumped at rates of 2, 4, and 6 million gallons per day. At a pumping rate of 6 million gallons per day, ground-water discharge to the stream decreased 34 percent during periods of normal precipitation and 56 percent during drought conditions.

  8. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  9. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained. The optimization framework based on the GA is still computationally feasible and represents a clean and customizable method. The method has been applied to the Ziya River basin, China. The basin is located on the North China Plain and is subject to severe water scarcity, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The coupled optimization framework is used to assess realistic alternative development scenarios for the basin. In particular the potential for using electricity pricing policies to reach sustainable groundwater pumping is investigated.

  10. Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, Massachusetts Executive Office of Environmental Affairs, Cape Cod Commission, and the Towns of Eastham, Provincetown, Truro, and Wellfleet, began an investigation in 2000 to improve the understanding of the hydrogeology of the four freshwater lenses of the Lower Cape Cod aquifer system and to assess the effects of changing ground-water pumping, recharge conditions, and sea level on ground-water flow in Lower Cape Cod, Massachusetts. A numerical flow model was developed with the computer code SEAWAT to assist in the analysis of freshwater and saltwater flow. Model simulations were used to determine water budgets, flow directions, and the position and movement of the freshwater/saltwater interface. Model-calculated water budgets indicate that approximately 68 million gallons per day of freshwater recharge the Lower Cape Cod aquifer system with about 68 percent of this water moving through the aquifer and discharging directly to the coast, 31 percent flowing through the aquifer, discharging to streams, and then reaching the coast as surface-water discharge, and the remaining 1 percent discharging to public-supply wells. The distribution of streamflow varies greatly among flow lenses and streams; in addition, the subsurface geology greatly affects the position and movement of the underlying freshwater/saltwater interface. The depth to the freshwater/saltwater interface varies throughout the study area and is directly proportional to the height of the water table above sea level. Simulated increases in sea level appear to increase water levels and streamflows throughout the Lower Cape Cod aquifer system, and yet decrease the depth to the freshwater/saltwater interface. The resulting change in water levels and in the depth to the freshwater/saltwater interface from sea-level rise varies throughout the aquifer system and is controlled largely by non-tidal freshwater streams. Pumping from large-capacity municipal-supply wells increases the potential for effects on surface-water bodies, which are affected by pumping and wastewater-disposal locations and rates. Pumping wells that are upgradient of surface-water bodies potentially capture water that would otherwise discharge to these surface-water bodies, thereby reducing streamflow and pond levels. Kettle-hole ponds, such as Duck Pond in Wellfleet, that are near the top of a freshwater flow lens, appear to be more susceptible to changing pumping and recharge conditions than kettle-hole ponds closer to the coast or near discharge boundaries, such as the Herring River.

  11. Simulation of the Shallow Ground-Water-Flow System near Grindstone Creek and the Community of New Post, Sawyer County, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Hunt, Randall J.

    2007-01-01

    A two-dimensional, steady-state ground-water-flow model of Grindstone Creek, the New Post community, and the surrounding areas was developed using the analytic element computer code GFLOW. The parameter estimation code UCODE was used to obtain a best fit of the model to measured water levels and streamflows. The calibrated model was then used to simulate the effect of ground-water pumping on base flow in Grindstone Creek. Local refinements to the regional model were subsequently added in the New Post area, and local water-level data were used to evaluate the regional model calibration. The locally refined New Post model was also used to simulate the areal extent of capture for two existing water-supply wells and two possible replacement wells. Calibration of the regional Grindstone Creek simulation resulted in horizontal hydraulic conductivity values of 58.2 feet per day (ft/d) for the regional glacial and sandstone aquifer and 7.9 ft/d for glacial thrust-mass areas. Ground-water recharge in the calibrated regional model was 10.1 inches per year. Simulation of a golf-course irrigation well, located roughly 4,000 feet away from the creek, and pumping at 46 gallons per minute (0.10 cubic feet per second, ft3/s), reduced base flow in Grindstone Creek by 0.05 ft3/s, or 0.6 percent of the median base flow during water year 2003, compared to the calibrated model simulation without pumping. A simulation of peak pumping periods (347 gallons per minute or 0.77 ft3/s) reduced base flow in Grindstone Creek by 0.4 ft3/s (4.9 percent of the median base flow). Capture zones for existing and possible replacement wells delineated by the local New Post simulation extend from the well locations to an area south of the pumping well locations. Shallow crystalline bedrock, generally located south of the community, limits the extent of the aquifer and thus the southerly extent of the capture zones. Simulated steady-state pumping at a rate of 9,600 gallons per day (gal/d) from a possible replacement well near the Chippewa Flowage induced 70 gal/d of water from the flowage to enter the aquifer. Although no water-quality samples were collected from the Chippewa Flowage or the ground-water system, surface-water leakage into the ground-water system could potentially change the local water quality in the aquifer.

  12. Limiting pumping from the Edwards Aquifer: An economic investigation of proposals, water markets, and spring flow guarantees

    NASA Astrophysics Data System (ADS)

    McCarl, Bruce A.; Dillon, Carl R.; Keplinger, Keith O.; Williams, R. Lynn

    1999-04-01

    The Edwards Aquifer, near San Antonio, Texas, is an important water source for both pumping and spring flow, which in turn provides water for recreation and habitat for several endangered species. A management authority is charged with aquifer management and is mandated to reduce pumping, facilitate water markets, protect agricultural rights, and protect the species habitat. This paper examines the economic dimensions of authority duties. A combined hydrologic-economic model is used in the investigation. The results indicate that proposed pumping limits are shown to have large consequences for agricultural usage and to decrease the welfare of current aquifer pumping users. However, the spring flow habitat is found to be protected, and the gains from that protection would have to exceed pumping user losses in order for the protection measures to increase regional economic welfare. Agricultural guarantees are shown to cause use value differences, indicating the opportunity for emergence of an active water market. Fixed quantity pumping limits are found to be an expensive way of insuring adequate spring flow.

  13. Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System

    NASA Astrophysics Data System (ADS)

    KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.

    2017-12-01

    The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  14. STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, R.O.; Steamer, A.G.

    1960-10-01

    Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)

  15. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.

    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of themore » ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.« less

  17. Design optimization and performance characteristics of a photovoltaic microirrigation system for use in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlin, R. W.

    1979-07-10

    Tens of millions of the world's poorest farmers currently subsist on small farms below two hectares in size. The increasing cost of animal irrigation coupled with decreasing farm size and the lack of a utility grid or acceptable alternate power sources is causing interest in the use of solar photovoltaics for these very small (subkilowatt) water pumping systems. The attractive combinations of system components (array, pump, motor, storage and controls) have been identified and their interactions characterized in order to optimize overall system efficiency. Computer simulations as well as component tests were made of systems utilizing flat-plate and low-concentration arrays,more » direct-coupled and electronic-impedance-matching controls, fixed and incremental (once or twice a day) tracking, dc and ac motors, and positive-displacement, centrifugal and vertical turbine pumps. The results of these analyses and tests are presented, including water volume pumped as a function of time of day and year, for the locations of Orissa, India and Cairo, Egypt. Finally, a description and operational data are given for a prototype unit that was developed as a result of the previous analyses and tests.« less

  18. 46 CFR 154.1135 - Pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD...-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1135 Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of...

  19. Sustainable Improvement of Urban River Network Water Quality and Flood Control Capacity by a Hydrodynamic Control Approach-Case Study of Changshu City

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu

    2017-01-01

    Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.

  20. Relation of bedrock aquifer property and geological structure in Mockcheon area, Korea

    NASA Astrophysics Data System (ADS)

    Hamm, S.-Y.; Kang, L. S.; Choi, S. J.; Lee, B. D.

    2003-04-01

    In Korea, 72 companies are producing natural mineral water mostly from bedrock aquifer of different depths (Sung et al., 2002). It is important to insure quantity of natural mineral water. However, when several natural mineral-water companies are gathered in small area, the amount of producing water can be often limited by pumping rate of the companies in the area. In the study area, five natural mineral water producing companies (Siwon Semmul, Daejeong Eumryo, Jain Guanguang, Cheongsu Eumryo and Hanju Sikpum) are located in range of 2 km radius. Consequently, wells for natural mineral water of five companies and other private wells are drilled in Mockchun area. These wells produce groundwater from bedrock with total discharge rate 1,991m3/day. Thus, it is necessary to understand the hydrogeological characteristics of bedrock groundwater to preserve groundwater quantity in the study area. Geology was investigated to understand geological structure controlling aquifer characteristics in the study area. Precambrian metamorphic rocks (metamorphosed limestone, biotite schist, augen gneiss and porphyroblastic gneiss) are intruded by Jurassic porphyritic granite and two-mica granite and by numerous acidic and intermediate dykes. Alluvium overlies older rocks by unconformity (Kang and Lim, 1974; Shin et al., 1975). Two NS-direction thrusts are developed in the study area. Main aquifer is formed between the lower thrust and the upper thrust, and the lower thrust plays role as impermeable layer. It is considered that the main aquifer was developed by brecciation during the thrust faulting. Thus, pumping wells of mineral water are also located along the thrusts. Wells of Siwon Semmul, Daejeong Eumryo and Jain Guanguang mineral water producing companies are drilled in different aquifers. However, the wells of Chungsoo Eumryo and Hanjoo Sikpoom are drilled in the same aquifer, and are influenced each other during pumping. To understand hydrogeological characteristics, field hydraulic tests (slug and pumping tests) were conducted in wells of the five companies. Pumping and slug test data were interpreted using several models to get best solution. For slug test, Cooper-Bredehoeft-Papadopulos, Bouwer &Rice, Hvorslev methods were used. In slug test, the calculated values of transmissivity and storativity by C-B-P method's range from 6.60E-3 to 3.23E-8 m2/sec, from 0.1 to 1E-10, respectively. Hydraulic conductivities by Bouwer &Rice and Hvorslev method range from 1.03E-4 to 7.47E-8 m/sec and from 1.15E-4 to 9.45 E-8 m/sec, respectively. As the models of pumping test, Hantush's "Wedge-shape confined aquifer model" (1962) and Moench-case 1 leaky-aquifer model" (1985) were adequate for the most cases. The pumping test models match well with geological information that indicates wedge-shaped aquifer. From the pumping test, the estimates of transmissivity and storativity by Hantush's and Moench-case 1's methods range from 1.23E-1 to 2.87E-6 m2/sec, from 1.34 E-1 to 2.27E-8 m2/sec, respectively.

  1. Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion

    NASA Astrophysics Data System (ADS)

    Morozova, A.; Eskin, A.

    2017-11-01

    In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.

  2. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The reservoir simulation tool was used to simulate 35 single- and multiple-reservoir systems in Massachusetts over a 44-year period (water years 1961 to 2004) under two water-use scenarios. The no-pumping scenario assumes no water withdrawal pumping, and the pumping scenario incorporates average annual pumping rates from 2000 to 2004. By comparing the results of the two scenarios, the total streamflow alteration can be parsed into the portion of streamflow alteration caused by the presence of a reservoir and the additional streamflow alteration caused by the level of water use of the system.For each reservoir system, the following metrics were computed to characterize the frequency, duration, and magnitude of reservoir outflow volumes compared with unaltered streamflow conditions: (1) the median number of days per year in which the reservoir did not spill, (2) the median duration of the longest consecutive period of no-spill days per year, and (3) the lowest annual flow duration exceedance probability at which the outflows are significantly different from estimated unaltered streamflow at the 95-percent confidence level. Most reservoirs in the study do not spill during the summer months even under no-pumping conditions. The median number of days during which there was no spillage was less than 365 for all reservoirs in the study, indicating that, even under reported pumping conditions, the reservoirs refill to full volume and spill at least once during nondrought years, typically in the spring.Thirteen multiple-reservoir systems consisting of two or three hydrologically connected reservoirs were included in the study. Because operating rules used to manage multiple-reservoir systems are not available, these systems were simulated under two pumping scenarios, one in which water transfers between reservoirs are minimal and one in which reservoirs continually transferred water to intermediate or terminal reservoirs. These two scenarios provided upper and lower estimates of spillage under average pumping conditions from 2000 to 2004.For sites with insufficient data to simulate daily water balances, a proxy method to estimate the three spillage metrics was developed. A series of 4,000 Monte Carlo simulations of the reservoir water balance were run. In each simulation, streamflow, physical reservoir characteristics, and daily climate inputs were randomly varied. Tobit regression equations that quantify the relation between streamflow alteration and physical and operational characteristics of reservoirs were developed from the results of the Monte Carlo simulations and can be used to estimate each of the three spillage metrics using only the withdrawal ratio and the ratio of the surface area to the drainage area, which are available statewide for all reservoirs.A graphical user-interface for the Massachusetts Reservoir Simulation Tool was developed in a Microsoft Access environment. The simulation tool contains information for 70 reservoirs in Massachusetts and allows for simulation of additional scenarios than the ones considered in this report, including controlled releases, dam seepage and leakage, demand management plans, and alternative water withdrawal and transfer rules.

  3. The persistence of the water budget myth and its relationship to sustainability

    USGS Publications Warehouse

    Devlin, J.F.; Sophocleous, M.

    2005-01-01

    Sustainability and sustainable pumping are two different concepts that are often used interchangeably. The latter term refers to a pumping rate that can be maintained indefinitely without mining an aquifer, whereas the former term is broader and concerns such issues as ecology and water quality, among others, in addition to sustainable pumping. Another important difference between the two concepts is that recharge can be very important to consider when assessing sustainability, but is not necessary to estimate sustainable pumping rates. Confusion over this distinction is made worse by the Water Budget Myth, which comprises the mistaken yet persistent ideas that (1) sustainable pumping rates cannot exceed virgin recharge rates in aquifers, and (2) that virgin recharge rates must therefore be known to estimate sustainable pumping rates. Analysis of the water balance equation shows the special circumstances that must apply for the Water Budget Myth to be true. However, due to the effects recharge is likely to have on water quality, ecology, socioeconomic factors, and, under certain circumstances, its requirement for numerical modeling, it remains important in assessments of sustainability. ?? Springer-Verlag 2004.

  4. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  5. Drinking water quality assessment in Southern Sindh (Pakistan).

    PubMed

    Memon, Mehrunisa; Soomro, Mohammed Saleh; Akhtar, Mohammad Saleem; Memon, Kazi Suleman

    2011-06-01

    The southern Sindh province of Pakistan adjoins the Arabian Sea coast where drinking water quality is deteriorating due to dumping of industrial and urban waste and use of agrochemicals and yet has limited fresh water resources. The study assessed the drinking water quality of canal, shallow pumps, dug wells, and water supply schemes from the administrative districts of Thatta, Badin, and Thar by measuring physical, chemical, and biological (total coliform) quality parameters. All four water bodies (dug wells, shallow pumps canal water, and water supply schemes) exceeded WHO MPL for turbidity (24%, 28%, 96%, 69%), coliform (96%, 77%, 92%, 81%), and electrical conductivity (100%, 99%, 44%, 63%), respectively. However, the turbidity was lower in underground water, i.e., 24% and 28% in dug wells and shallow pumps as compared to open water, i.e., 96% and 69% in canal and water supply schemes, respectively. In dug wells and shallow pumps, limits for TDS, alkalinity, hardness, and sodium exceeded, respectively, by 63% and 33%; 59% and 70%, 40% and 27%, and 78% and 26%. Sodium was major problem in dug wells and shallow pumps of district Thar and considerable percent in shallow pumps of Badin. Iron was major problem in all water bodies of district Badin ranging from 50% to 69% and to some extent in open waters of Thatta. Other parameters as pH, copper, manganese, zinc, and phosphorus were within standard permissible limits of World Health Organization. Some common diseases found in the study area were gastroenteritis, diarrhea and vomiting, kidney, and skin problems.

  6. International patent analysis of water source heat pump based on orbit database

    NASA Astrophysics Data System (ADS)

    Li, Na

    2018-02-01

    Using orbit database, this paper analysed the international patents of water source heat pump (WSHP) industry with patent analysis methods such as analysis of publication tendency, geographical distribution, technology leaders and top assignees. It is found that the beginning of the 21st century is a period of rapid growth of the patent application of WSHP. Germany and the United States had done researches and development of WSHP in an early time, but now Japan and China have become important countries of patent applications. China has been developing faster and faster in recent years, but the patents are concentrated in universities and urgent to be transferred. Through an objective analysis, this paper aims to provide appropriate decision references for the development of domestic WSHP industry.

  7. Inhibitors of Proton Pumping

    PubMed Central

    Bisson, Mary A.

    1986-01-01

    Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically. PMID:16664807

  8. Flow pattern and related chemical quality of ground water in the "500-foot" sand in the Memphis area, Tennessee

    USGS Publications Warehouse

    Bell, Edwin Allen; Nyman, Dale J.

    1968-01-01

    The '500-foot' sand is the major source of water supply for the Memphis area. Thick layers of impervious clay above and below the sand confine the water in the aquifer under artesian pressure and also protect the aquifer from contamination. Recharge from rainfall enters the '500-foot' sand in the outcrop, or intake area south and east of Memphis. Recharge from other aquifers enters the sand wherever the confining beds are breached or absent. Some of the recharge that enters the '500-foot' sand in eastern Arkansas moves down the gradients created by pumping in the Memphis area. All discharge from the '500-foot' sand in the Memphis area results from well pumping. Since 1886 continuous withdrawals at gradually increasing rates of pumping have lowered water levels and altered hydraulic gradients in the area. These withdrawals have resulted in changes in direction and velocity of movement of water through the '500-foot' sand. Water in the sand in the southeaster n part of the Memphis area normally moves from the (outcrop area east and south of Memphis northwestward toward points of withdrawal. In the northwestern part of the area, water moves southeastward toward points of withdrawal. A flow-net analysis of the aquifer shows that the rate of water movement through the '500-foot' sand in 1964, toward the major cones of depression in the Memphis area, was about 350 feet per year, or 1 mile in 15 years. A flow-net analysis projected for the year 1975 indicates the rate will increase by about 20 percent in the 12-year period 1964-75. Water in the '500-foot' sand in the Memphis area is generally a calcium magnesium sodium bicarbonate type. It is soft, low in dissolved solids, high in concentrations of iron and carbon dioxide, and slightly to moderately corrosive. The softest and least mineralized water occurs in the southeastern part of the area, and the water becomes slightly harder and more mineralized as it moves downdip toward Memphis. The hardest and most mineralized water occurs in the northwestern part of the area. The variations in chemical quality of water en route through the '500-foot' sand are virtually proportional to increases or decreases of the major chemical constituents. The variations are chiefly attributed to the mixing or blending of water from different directions or sources of recharge as wells are pumped. As water levels are lowered by continuous pumping in the future, increasing rates of recharge from the outcrop areas and from shallow aquifers will probably cause little, if any, change in chemical quality of the water. Certainly, the effects on quality are not expected to be detrimental. Although future changes in chemical quality of water in the '500-foot' sand in the Memphis area will probably be neither intense nor extensive, some changes can be anticipated as a result of man's activities associated with the continued growth and development of the area. Increased pumping at existing pumping centers will deepen existing cones of depression and thereby increase gradients. These increases will not necessarily cause a change in chemical quality unless the increases in pumping are unevenly distributed. If a major well field were developed in the '500-foot' sand in the southwestern part of the Memphis area, little change in quality would result because water would be caused to move toward the well field from both the northwest and southeast. This movement would not affect the blending of updip and downdip water at other well fields If water were impounded in the Wolf River a few miles upstream from Memphis, the impoundment could furnish recharge, at least temporarily, to the '500-foot' sand. It is improbable that any detrimental effects on the chemical quality of the water supply of Memphis would result, because the water in the impoundment would probably be softer ,and less mineralized than the water in the '500-foot' sand in that area.

  9. Defining alternative rules in water and sanitation.

    PubMed

    Robert, J

    1995-11-01

    While the conventional water and sanitation package remains most prominent, alternatives exist to conventional waterworks and sanitation practices. Some alternate courses of action are considered. Promising an unprecedented availability of piped water, water development projects foster a pump-and-dump mentality even before they are completed. Often simply announcing the impending implementation of such projects encourages the intention among future beneficiaries to waste water resources. Alternatives to the domestic waste of water must be sought and implemented. Disestablishing water development, styles of alternative water technologies, decision-making and decision-makers, water policy scale, regenerating community access to sources, and water pricing are discussed.

  10. Design of Nano Screw Pump for Water Transport and its Mechanisms

    PubMed Central

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  11. Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.

  12. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  13. 40 CFR 455.21 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stream and product washes, equipment and floor washes, water used as solvent for raw materials, water used as reaction medium, spent acids, spent bases, contact cooling water, water of reaction, air pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment...

  14. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    USGS Publications Warehouse

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow. Lastly, it describes several categories of limitations and discusses ways of extending the regional model to address issues at the local scale. Results of the simulations portray a regional groundwater-flow system that, over time, has largely maintained its natural predevelopment configuration but that locally has been strongly affected by well withdrawals. The quantity of rainfall in the Lake Michigan Basin and adjacent areas supports a dense surface-water network and recharge rates consistent with generally shallow water tables and predominantly shallow groundwater flow. At the regional scale, pumping has not caused major modifications of the shallow flow system, but it has resulted in decreases in base flow to streams and in direct discharge to Lake Michigan (about 2 percent of the groundwater discharged and about 0.5 cubic foot per second per mile of shoreline). On the other hand, well withdrawals have caused major reversals in regional flow patterns around pumping centers in deep, confined aquifers - most noticeably in the Cambrian-Ordovician aquifer system on the west side of Lake Michigan near the cities of Green Bay and Milwaukee in eastern Wisconsin, and around Chicago in northeastern Illinois, as well as in some shallow bedrock aquifers (for example, in the Marshall aquifer near Lansing, Mich.). The reversals in flow have been accompanied by large drawdowns with consequent local decrease in storage. On the west side of Lake Michigan, groundwater withdrawals have caused appreciable migration of the deep groundwater divides. Before the advent of pumping, the deep Lake Michigan groundwater-basin boundaries extended west of the Lake Michigan surface-water basin boundary, in some places by tens of miles. Over time, the pumping centers have replaced Lake Michigan as the regional sink for the deep flow system. The regional model is intended to support the framework pilot study of water availability and use for the Great Lakes Basin (Reeves, in press).

  15. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  16. Conditions of Fissuring in a Pumped-Faulted Aquifer System

    NASA Astrophysics Data System (ADS)

    Hernandez-Marin, M.; Burbey, T. J.

    2007-12-01

    Earth fissuring associated with subsidence from groundwater pumping is problematic in many arid-zone heavily pumped basins such as Las Vegas Valley. Long-term pumping at rates considerably greater than the natural recharge rate has stressed the heterogeneous aquifer system resulting in a complex stress-strain regime. A rigorous artificial recharge program coupled with increased surface-water importation has allowed water levels to appreciably recover, which has led to surface rebound in some localities. Nonetheless, new fissures continue to appear, particularly near basin-fill faults that behave as barriers to subsidence bowls. The purpose of this research is to develop a series of computational models to better understand the influence that structure (faults), pumping, and hydrostratigraphy has in the generation and propagation of fissures. The hydrostratigraphy of Las Vegas Valley consists of aquifers, aquitards and a relatively dry vadoze zone that may be as thick as 100m in much of the valley. Quaternary faults are typically depicted as scarps resulting from pre- pumping extensional tectonic events and are probably not responsible for the observed strain. The models developed to simulate the stress-strain and deformation processes in a faulted pumped aquifer-aquitard system of Las Vegas use the ABAQUS CAE (Complete ABAQUS Environment) software system. ABAQUS is a sophisticated engineering industry finite-element modeling package capable of simulating the complex fault- fissure system described here. A brittle failure criteria based on the tensile strength of the materials and the acting stresses (from previous models) are being used to understand how and where fissures are likely to form. , Hypothetical simulations include the role that faults and the vadose zone may play in fissure formation

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Uselton, Robert B.; Shen, Bo

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47more » L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.« less

  18. Pumping tests of well Campbell et al. No. 2, Gila Hot Springs, Grant County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, G.E.; Summers, W.K.; Colpitts, R.M. Jr.

    1982-03-01

    Well Campbell et al. No. 2 near Gila Hot Springs in southwestern New Mexico (Section 5, Township 13 South, Range 13 West) was pumped for a five-step test and a 48-hour constant-rate test during October 1981. Measurements included depth to water in the pumping well and two observation wells, and discharge rates at the pumping well and two springs. The water level in the pumping well responded during both tests. However, water-level changes in the observation wells were too small for analytical use and discharge rates from the springs showed no change. Chemical analyses of water samples collected from twomore » springs and the pumping well show very similar water chemistries. Estimates of hydraulic properties show transmissivity from 12,000 to 14,000 gpd/ft and a storativity of 0.05. Combining these parameters with well data gives the first-year optimum discharge rate as 50 gpm with 20 feet of drawdown. Pumping this well at 50 gpm for forty years should produce only small water-level changes in wells a few hundred feet away. It would diminish the flow of the springs, and for planning purposes the combined discharge of the springs and well should be considered constant.« less

  19. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  20. WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Deformation-induced changes in hydraulic head during ground-water withdrawal

    USGS Publications Warehouse

    Hsieh, Paul A.

    1996-01-01

    Ground-water withdrawal from a confined or semiconfined aquifer causes three-dimensional deformation in the pumped aquifer and in adjacent layers (overlying and underlying aquifers and aquitards). In response to the deformation, hydraulic head in the adjacent layers could rise or fall almost immediately after the start of pumping. This deformation-induced effect suggest that an adjacent layer undergoes horizontal compression and vertical extension when pumping begins. Hydraulic head initially drops in a region near the well and close to the pumped aquifer, but rises outside this region. Magnitude of head change varies from a few centimeters to more than 10 centimeters. Factors that influence the development of deformation-induced effects includes matrix rigidity (shear modulus), the arrangement of aquifer and aquitards, their thicknesses, and proximity to land surface. Induced rise in hydraulic head is prominent in an aquitard that extends from land surface to a shallow pumped aquifer. Induced drop in hydraulic head is likely observed close to the well in an aquifer that is separated from the pumped aquifer by a relatively thin aquitard. Induced effects might last for hours in an aquifer, but could persist for many days in an aquitard. Induced effects are eventually dissipated by fluid flow from regions of higher head to regions of lower head, and by propagation of drawdown from the pumped aquifer into adjacent layers.

  2. SUGGESTED OPERATING PROCEDURES FOR AQUIFER PUMPING TESTS

    EPA Science Inventory

    There has been an increased interest in ground water resources throughout the United States. This interest has resulted from a combination of an increase in fund water development for public and domestic use; an increase in mining, agricultural, and industrial activities which mi...

  3. Electrical-analog-model study of water resources of the Columbus area, Bartholomew County, Indiana

    USGS Publications Warehouse

    Watkins, Frank A.; Heisel, J.E.

    1970-01-01

    The Columbus study area is in part of a glacial outwash sand and gravel aquifer that was deposited in a preglacial bedrock valley. The study area extends from the north line of Bartholomew County to the south county line and includes a small part of Jackson County south of Sand Creek and east of the East Fork White River. This report area includes about 100 square miles of the aquifer. In the Columbus area, ground water in the outwash aquifer is unconfined. Results of pumping tests and estimates derived from specific-capacity data indicate that the average horizontal permeability for this aquifer is about 3,500 gallons per day per square foot. An average coefficient of storage of about 0.2 was determined from pumping tests. Transmissibilities range from near zero in some places along the boundary to about 500,000 gallons per day per foot in the thicker parts of the aquifer. About 800,000 acre-feet of water is in storage in the aquifer. This storage is equivalent to an average yield of 34 million gallons per day for about 21 years without recharge. An electrical-analog model was built to analyze the aquifer system and determine the effects of development. Analysis of the model indicates that there is more than enough water to meet the estimated needs of the city of Columbus without seriously depleting the aquifer. Additional withdrawals will affect the flow in the Flatrock River, but if the withdrawals are made south of the city, they will not affect the river any more than present pumping. Future pumping should be confined to the deepest part of the outwash aquifer and (or) to the area adjacent to the streams. On the basis of an hypothesized amount and distribution of pumping, the decline in water levels in the Columbus area as predicted by the model for the period 1970-2015 ranged from about 20 feet in the center of the areas of pumping to 3 feet or less in the areas upstream and downstream from these areas of pumping.

  4. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS... LABELING RULEâ) Pt. 305, App. D5 Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information Capacity...

  5. Simulation of Hydrologic-System Responses to Ground-Water Withdrawals in the Hunt-Annaquatucket-Pettaquamscutt Stream-Aquifer System, Rhode Island

    USGS Publications Warehouse

    Barlow, Paul M.; Ostiguy, Lance J.

    2007-01-01

    A numerical-modeling study was done to better understand hydrologic-system responses to ground-water withdrawals in the Hunt-Annaquatucket-Pettaquamscutt (HAP) stream-aquifer system of Rhode Island. System responses were determined by use of steady-state and transient numerical ground-water-flow models. These models were initially developed in the late 1990s as part of a larger study of the stream-aquifer system. The models were modified to incorporate new data made available since the original study and to meet the objectives of this study. Changes made to the models did not result in substantial changes to simulated ground-water levels, hydrologic budgets, or streamflows compared to those calculated by the original steady-state and transient models. Responses of the hydrologic system are described primarily by changes in simulated streamflows and ground-water levels throughout the basin and by changes to flow conditions in the aquifer in three wetland areas immediately east of the Lafayette State Fish Hatchery, which lies within the Annaquatucket River Basin in the town of North Kingstown. Ground water is withdrawn from the HAP aquifer at 14 large-capacity production wells, at an industrial well, and at 3 wells operated by the Rhode Island Department of Environmental Management at the fish hatchery. A fourth well has been proposed for the hatchery and an additional production well is under development by the town of North Kingstown. The primary streams of interest in the study area are the Hunt, Annaquatucket, and Pettaquamscutt Rivers and Queens Fort Brook. Total model-calculated streamflow depletions in these rivers and brook resulting from withdrawals at the production, industrial, and fish-hatchery wells pumping at average annual 2003 rates are about 4.8 cubic feet per second (ft3/s) for the Hunt River, 3.3 ft3/s for the Annaquatucket River, 0.5 ft3/s for the Pettaquamscutt River, and 0.5 ft3/s for Queens Fort Brook. The actual amount of streamflow reduction in the Annaquatucket River caused by pumping actually is less, 1.1 ft3/s, because ground water that is pumped at the fish-hatchery wells (2.2 ft3/s) is returned to the Annaquatucket River after use at the hatchery. One of the primary goals of the study was to evaluate the response of the hydrologic system to simulated withdrawals at the proposed well at the fish hatchery. Withdrawal rates at the proposed well would range from zero during April through September of each year to a maximum of 260 gallons per minute [about 0.4 million gallons per day (Mgal/d)] in March of each year. The average annual withdrawal rate at the fish hatchery resulting from the addition of the proposed well would increase by only 0.13 ft3/s, or about 5 percent of the 2003 withdrawal rate. The increased pumping rate at the hatchery would further reduce the average annual flow in Queens Fort Brook by less than 0.05 ft3/s and in the Annaquatucket River by about 0.1 ft3/s (which includes some model error). A new production well in the Annaquatucket River Basin is under development by the town of North Kingstown. A simulated pumping rate of 1.0 Mgal/d (1.6 ft3/s) at this new well resulted in additional streamflow depletions, compared to those calculated for the 2003 withdrawal conditions, of 0.8 and 0.2 ft3/s in the Annaquatucket and Pettaquamscutt Rivers, respectively. The source of water for about 30 percent of the well's pumping rate, or about 0.5 ft3/s, is derived from ground-water inflow from the Chipuxet River Basin across a natural ground-water drainage divide that separates the Annaquatucket and Chipuxet River Basins; the remaining 0.1 ft3/s of simulated pumping consists of reduced evapotranspiration from the water table. Model-calculated changes in water levels in the aquifer for the various withdrawal conditions simulated in this study indicate that ground-water-level declines caused by pumping are generally less than 5 feet (ft). However, ground-water-level declines of as

  6. Quantifying the energy required for groundwater pumping across a regional aquifer system

    NASA Astrophysics Data System (ADS)

    Ronayne, M. J.; Shugert, D. T.

    2017-12-01

    Groundwater pumping can be a substantial source of energy expenditure, particularly in semiarid regions with large depths to water. In this study we assessed the energy required for groundwater pumping in the Denver Basin aquifer system, a group of sedimentary rock aquifers used for municipal water supply in Colorado. In recent decades, declining water levels in the Denver Basin aquifers has resulted in increased pumping lifts and higher energy use rates. We quantified the spatially variable energy intensity for groundwater pumping by analyzing spatial variations in the lift requirement. The median energy intensities for two major aquifers were 1.2 and 1.8 kWh m-3. Considering typical municipal well production rates and household water use in the study area, these results indicate that the energy cost associated with groundwater pumping can be a significant fraction (>20%) of the total electricity consumption for all household end uses. Pumping at this scale (hundreds of municipal wells producing from deep aquifers) also generates substantial greenhouse gas emissions. Analytical wellfield modeling conducted as part of this study clearly demonstrates how multiple components of the lift impact the energy requirement. Results provide guidance for water management strategies that reduce energy expenditure.

  7. Water contamination in urban south India: household storage practices and their implications for water safety and enteric infections.

    PubMed

    Brick, Thomas; Primrose, Beryl; Chandrasekhar, R; Roy, Sheela; Muliyil, Jayaprakash; Kang, Gagandeep

    2004-10-01

    Water contamination, at source and during household storage, is a major cause of enterically transmitted infections in developing countries. This study assessed contamination of the municipal water in a south Indian town, which obtains its water intermittently from a surface lake and by pumping subsurface water from a dry river bed, and monitored microbial contamination during household storage. All samples of the 'treated' municipal water were contaminated when freshly pumped, and on household storage, 25/37 (67%) showed increased contamination during storage periods from 1 to 9 days. Household storage in brass, but not in containers of other materials significantly decreased contamination of water (p = 0.04). This was confirmed in the laboratory by testing water seeded with 10(3) to 10(5) Escherichia coli per 100 ml stored in containers of different materials (p < 0.01). Despite the requirements for provision of safe drinking water in municipal areas, in practice the water supplied in Vellore is contaminated and current household storage practices increase the level of contamination in at least two-thirds of households. The implementation of locally appropriate point-of-use disinfection and safe household storage practices in developing countries is an urgent need to ensure a safe, reliable year-round supply in areas where clean water is not available.

  8. Membrane water deaerator investigation. [fluid filter breadboard model

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The purpose of the membrane water deaerator program was to develop data on a breadboard hollow fiber membrane unit that removes both dissolved and evolved gas from a water transfer system in order to: (1) assure a hard fill of the EVLSS expendable water tank; (2) prevent flow blockage by gas bubbles in circulating systems; and (3) prevent pump cavitation.

  9. Potential for advection of volatile organic compounds in ground water to the Cochato River, Baird & McGuire Superfund Site, Holbrook, Massachusetts, March and April 1998

    USGS Publications Warehouse

    Savoie, Jennifer G.; Lyford, Forest P.; Clifford, Scott

    1999-01-01

    In March and April 1998, a network of water-to-vapor diffusion samplers was installed along the Cochato River at the Baird & McGuire Superfund Site in Holbrook, Massachusetts, where a plume of volatile organic compounds (VOCs) is present in ground water. The purpose of installing the sampler network was to determine if VOCs were present in river-bottom sediments while a ground-water extraction system was operating and after the system had been shut down for two weeks. Water-to-water diffusion samplers placed at selected locations provided supplemental information about concentrations of VOCs in pore water in the river-bottom sediments. Water levels in piezometers and river stage were measured concurrently to determine if ground water was discharging to the river. Benzene, toluene, ethylbenzene and xylenes (BTEX compounds) were detected in water-tovapor and water-to-water diffusion samplers located in the area where the plume is known to pass beneath the river for both pumping and nonpumping conditions. Concentrations of total BTEX compounds in water-to-vapor diffusion samplers ranged from non-detect upriver and downriver from the plume area to greater than 200 parts per million by volume in the plume area. Concentrations of total BTEX compounds were not significantly different for pumping than for non-pumping conditions. Concentrations of total BTEX compounds in water-to-water diffusion samplers ranged from non-detect to 680 micrograms per liter. The limited number of water-to-water diffusion samplers did not indicate that concentrations were higher for pumping or non-pumping conditions. Trichloroethylene and tetrachloroethylene also were detected in water-to-vapor diffusion samplers downriver from the area where the BTEX compounds were detected. Water levels in four piezometers were consistently higher than the river stage, indicating an upward hydraulic gradient and ground-water discharge to the river. The concentrations of VOCs in riverbottom sediments and the upward hydraulic gradients observed indicate that contaminants from the Baird & McGuire ground-water plume were discharging to the Cochato River during the study period for both pumping and non-pumping conditions. 

  10. Hydrology of the Jackson, Tennessee, area and delineation of areas contributing ground water to the Jackson well fields

    USGS Publications Warehouse

    Bailey, Z.C.

    1993-01-01

    A comprehensive hydrologic investigation of the Jackson area in Madison County, Tennessee, was conducted to provide information for the development of a wellhead-protection program for two municipal well fields. The136-square-mile study area is between the Middle Fork Forked Deer and South Fork Forked Deer Rivers and includes the city of Jackson. The formations that underlie and crop out in the study area, in descending order, are the Memphis Sand, Fort Pillow Sand, and Porters Creek Clay. The saturated thickness of the Memphis Sand ranges from 0 to 270 feet; the Fort Pillow Sand, from 0 to 180 feet. The Porters Creek Clay, which ranges from 130 to 320 feet thick, separates a deeper formation, the McNairy Sand, from the shallower units. Estimates by other investigators of hydraulic conductivity for the Memphis Sand range from 80 to 202 feet per day. Estimates of transmissivity of the Memphis Sand range from 2,700 to 33,000 feet squared per day. Estimates of hydraulic conductivity for the Fort Pillow Sand range from 68 to 167 feet per day, and estimates of transmissivity of that unit range from 6,700 to 10,050 feet squared per day. A finite-difference, ground-water flow model was calibrated to steady-state hydrologic conditions of April 1989, and was used to simulate hypothetical pumping plans for the North and South Well Fields. The aquifers were represented as three layers in the model to simulate the ground-water flow system. Layer 1 is the saturated part of the Memphis Sand; layer 2 is the upper half of the Fort Pillow Sand; and layer 3 is the lower half of the Fort Pillow Sand. The steady-state water budget of the simulated system showed that more than half of the inflow to the ground-water system is underflow from the model boundaries. Most of this inflow is discharged as seepage to the rivers and to pumping wells. Slightly less than half of the inflow is from areal recharge and recharge from streams. About 75 percent of the discharge from the system is into the streams, lakes, and out of the model area through a small quantity of ground-water underflow. The remaining 25 percent is discharge to pumping wells. The calibrated model was modified to simulate the effects on the ground-water system of three hypothetical pumping plans that increased pumping from the North Well Field to up to 20 million gallons per day, and from the South Well Field, to up to 15 million gallons per day. Maximum drawdown resulting from the 20 million-gallons-per-day rate of simulated pumping was 44.7 feet in a node containing a pumping well, and maximum drawdown over an extended area was about 38 feet. Up to 34 percent of ground-water seepage to streams in the calibrated model was intercepted by pumping in the simulations. A maximum of 9 percent more water was induced through model boundaries. A particle-tracking program, MODPATH, was used to delineate areas contributing water to the North and South Well Fields for the calibrated model and the three pumping simulations, and to estimate distances for different times-of-travel to the wells. The size of the area contributing water to the North Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.8 miles for the calibrated model and pumping plan 1. The size of the area for pumping plan 2 is 1.1 by 2.0 miles and, for pumping plan 3, 1.6 by 2.2 miles. The range of distance for l-year time-of-travel to individual wells is 200 to 800 feet for the calibrated model and plan 1, and 350 to 950 feet for plans 2 and 3. The size of the area contributing water to the South Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.4 miles for the calibrated model. The size of the area for pumping plans 1 and 3 is 1.6 by 2.2 miles and, for pumping plan 2, 1.1 by 1.7 miles. The range of distance for l-year time-of-travel to individual wells is 120 to 530 feet for the calibrated model, 670 to 1,300 feet for pumping plans 1 and 3, and 260 to 850 feet

  11. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  12. The effects of pumpage, irrigation return, and regional ground-water flow on the water quality at Waiawa water tunnel, Oahu, Hawaii

    USGS Publications Warehouse

    Eyre, P.R.

    1983-01-01

    Waiawa shaft is a 1,700-foot long water tunnel which draws water from the top of the Pearl Harbor Ghyben-Herzberg ground-water lens, Oahu, Hawaii. The application of brackish irrigation water to sugarcane fields overlying Waiawa shaft, combined with relatively low pumping rates at the shaft from 1978 to 1980, caused the chloride concentration of water produced by Waiawa shaft to rise to 290 milligrams per liter. Time-series analyses, pumping tests and analyses of water samples show that a zone of degraded water lies at the top of the lens. This zone is mixed in significantly different proportions with the underlying fresher water depending on the pumping rate at Waiawa shaft. The chloride concentration of water in the Waiawa shaft can generally be kept below 250 milligrams per liter for the next few years, if pumping rates of about 15 million gallons per day are maintained. The use of managed pumping to control the chloride problem over the long term is uncertain owing to the possible increase in chloride concentration of the irrigation water. Based on ground-water flow rates and analogy to nearby wells, the chloride concentration of Waiawa shaft 's water will decrease to less than 100 milligrams per liter in 2 to 3 years if the use of brackish irrigation water is discontinued. (USGS)

  13. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  14. Lead (Pb) contamination of self-supply groundwater systems in coastal Madagascar and predictions of blood lead levels in exposed children.

    PubMed

    Akers, D Brad; MacCarthy, Michael F; Cunningham, Jeffrey A; Annis, Jonathan; Mihelcic, James R

    2015-03-03

    Thousands of households in coastal Madagascar rely on locally manufactured pitcher-pump systems to provide water for drinking, cooking, and household use. These pumps typically include components made from lead (Pb). In this study, concentrations of Pb in water were monitored at 18 household pitcher pumps in the city of Tamatave over three sampling campaigns. Concentrations of Pb frequently exceeded the World Health Organization's provisional guideline for drinking water of 10 μg/L. Under first-draw conditions (i.e., after a pump had been inactive for 1 h), 67% of samples analyzed were in excess of 10 μg/L Pb, with a median concentration of 13 μg/L. However, flushing the pump systems before collecting water resulted in a statistically significant (p < 0.0001) decrease in Pb concentrations: 35% of samples collected after flushing exceeded 10 μg/L, with a median concentration of 9 μg/L. Based on measured Pb concentrations, a biokinetic model estimates that anywhere from 15% to 70% of children living in households with pitcher pumps may be at risk for elevated blood lead levels (>5 μg/dL). Measured Pb concentrations in water were not correlated at statistically significant levels with pump-system age, well depth, system manufacturer, or season of sample collection; only the contact time (i.e., flushed or first-draw condition) was observed to correlate significantly with Pb concentrations. In two of the 18 systems, Pb valve weights were replaced with iron, which decreased the observed Pb concentrations in the water by 57-89% in one pump and by 89-96% in the other. Both systems produced samples exclusively below 10 μg/L after substitution. Therefore, relatively straightforward operational changes on the part of the pump-system manufacturers and pump users might reduce Pb exposure, thereby helping to ensure the continued sustainability of pitcher pumps in Madagascar.

  15. Regional evaluation of hydrologic factors and effects of pumping, St Peter-Jordan aquifer, Iowa

    USGS Publications Warehouse

    Burkart, M.R.; Buchmiller, Robert

    1990-01-01

    Pumping has caused changes in the flow system that include regional declines in the potentiometric surface of the aquifer. Simulation indicates that pumping through 1980 increased net vertical leakage into the aquifer to about double the predevelopment rate. Discharge across lateral boundaries has been substantially reduced or reversed by pumping. Aquifer storage provided about one-third of the water required to supply pumping in the 1970's. Simulation of future conditions, assuming no increase in pumping rates, indicates that the rate of decline in water levels will decrease by the year 2020. As equilibrium with pumping is approached in 2020, 75 percent of the pumpage will be balanced by vertical leakage, eight percent by water released from aquifer storage, and 17 percent by increases in boundary recharge or decreases in boundary discharge. Future pumping at an increasing rate of about 10 percent per decade of the average pumping rate in 1975 will require about one and one-half times the vertical leakage of the 1971-1980 period and about fivetimes the net inflow from lateral boundaries; however, the rate of water released from aquifer storage will be about half the 1970's rate. Under these conditions, the head in the aquifer will continue to decline at an almost constant rate until 2020.

  16. Testing the sensitivity of pumpage to increases in surficial aquifer system heads in the Cypress Creek well-field area, West-Central Florida : an optimization technique

    USGS Publications Warehouse

    Yobbi, Dann K.

    2002-01-01

    Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads are maximized in cells located at or near the production wells. Additionally, the ratio of head recovery per unit decrease in pumpage was about three times more for the area where confining-unit leakance is the highest than for other leakance zone areas of the well field. For many head control sites, optimal heads corresponding to optimal pumpage deviated from the desired target recovery heads. Overall, pumping solutions were constrained by the limiting recovery values, initial head conditions, and by upper boundary conditions of the ground-water flow model.

  17. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  18. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  19. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  20. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  1. 7 CFR 1721.104 - Eligible purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...

  2. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Understanding and managing the effects of groundwater pumping on streamflow

    USGS Publications Warehouse

    Leake, Stanley A.; Barlow, Paul M.

    2013-01-01

    Groundwater is a critical resource in the United States because it provides drinking water, irrigates crops, supports industry, and is a source of water for rivers, streams, lakes, and springs. Wells that pump water out of aquifers can reduce the amount of groundwater that flows into rivers and streams, which can have detrimental impacts on aquatic ecosystems and the availability of surface water. Estimation of rates, locations, and timing of streamflow depletion due to groundwater pumping is needed for water-resource managers and users throughout the United States, but the complexity of groundwater and surface-water systems and their interactions presents a major challenge. The understanding of streamflow depletion and evaluation of water-management practices have improved during recent years through the use of computer models that simulate aquifer conditions and the effects of pumping groundwater on streams.

  4. CRBR pump water test experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, M.E.; Huber, K.A.

    1983-01-01

    The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.

  5. The Hydraulic Ram (Or Impulse) Pump

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  6. Design of aquaponics water monitoring system using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  7. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.

  8. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  9. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  10. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  11. Hydrogeologic Assessment of the 4-S Land and Cattle CompanyRanch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Nigel W.T.

    2006-04-10

    Hydrogeological assessment of the 4-S Land and Cattle Company (4-S Ranch) was conducted using a combination of field investigations and a survey of available literature from nearby agricultural water districts and other entities. The 4-S Ranch has been able to meet most of its own water needs providing irrigated pasture for beef cattle by an active program of shallow groundwater pumping in these miconfined aquifer above the Corcoran Clay. Comparison of groundwater pumping on the 4-S Ranch property with groundwater pumping in the adjacent Merquin and Stevinson Water Districts shows great similarity in the well screened depths and the qualitymore » of the groundwater produced by the well fields. The pump yield for the eight active production wells on the 4-S property are comparable to the production and drainage wells in the adjacent water districts. Like these Districts the 4-S Ranch lies close to the Valley trough in a historic discharge area. The 4-S Ranch is unique in that it is bounded and bisected by several major water conveyance facilities including Bear Creek. Although the large number of potential recharge structures would suggest significant groundwater conjunctive use potential the major well field development has occurred along the length of the Eastside Canal. The Eastside Canal is known to be leaky above the ''A'' Clay the Canal passes through sandy areas and experiences significant groundwater seepage. This seepage can be intercepted by adjacent groundwater wells. Pumping adjacent to, and along the alignment of the Canal, may induce higher rates of seepage from the Eastside Canal. Groundwater quality below and adjacent to the Eastside Canal is very good, reflecting the origin of this diverted water from the Merced River. Most of the pumpage occurs in a depth interval between 30 ft and 130 ft. Safe yield estimates made using the available data show that the 4-S Ranch has sufficient resources to meet its own needs. Further exploitation of the groundwater will be limited if the leakage from the Eastside Bypass, Mariposa Bypass and Bear Creek are insufficient to replace the pumped water on an average annual basis. Should any future lining of the Eastside Canal occur, it would have a significant impact on the groundwater resource potential of the 4-S Ranch and impair the overall quality of the available water supply.« less

  12. Appraisal of the surficial aquifers in the Pomme de Terre and Chippewa River Valleys, western Minnesota

    USGS Publications Warehouse

    Soukup, W.G.; Gillies, D.C.; Myette, C.F.

    1984-01-01

    In the Cyrus-Benson area/ model results indicate that tinder 1980 development and average area! recharge/ dynamic equilibrium would be reached in less than 4 years and additional drawdown would be less than 2 feet. A 3-year drought coupled with increased pumping from irrigation wells operated during 1980 would lower water levels as much as 6 feet and reduce flow in the Chippewa River by about 26 cubic feet per second. At maximum hypothetical development in terms of the number of wells and normal area! recharge/ water levels would be lowered as much as 9 feet and streamflow would be reduced about 12 cubic feet per second. At maximum hypothetical development/ drought conditions and increased pumping would lower water levels as much as 12 feet and reduce flow in the Chippewa River by about 30 cubic feet per second/ which equals about 75 percent of available streamflow at the 70-percent flow duration.

  13. Detecting drawdowns masked by environmental stresses with water-level models

    USGS Publications Warehouse

    Garcia, C.A.; Halford, K.J.; Fenelon, J.M.

    2013-01-01

    Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water-level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water-level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water-level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three-dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping-induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.

  14. Responses of the sustainable yield of groundwater to annual rainfall and pumping patterns in the Baotou Plain, North China

    NASA Astrophysics Data System (ADS)

    Liao, Z.; LONG, Y., Sr.; Wei, Y.; Guo, Z.

    2017-12-01

    Serious water deficits and deteriorating environmental quality are threatening the sustainable socio-economic development and the protection of the ecology and the environment in North China, especially in Baotou City. There is a common misconception that groundwater extraction can be sustainable if the pumping rate does not exceed the total natural recharge in a groundwater basin. The truth is that the natural recharge is mainly affected by the rainfall and that groundwater withdrawal determines the sustainable yield of the aquifer flow system. The concept of the sustainable yield is defined as the allowance pumping patterns and rates that avoid adverse impacts on the groundwater system. The sustainable yield introduced in this paper is a useful baseline for groundwater management under all rainfall conditions and given pumping scenarios. A dynamic alternative to the groundwater sustainable yield for a given pumping pattern and rate should consider the responses of the recharge, discharge, and evapotranspiration to the groundwater level fluctuation and to different natural rainfall conditions. In this study, methods for determining the sustainable yield through time series data of groundwater recharge, discharge, extraction, and precipitation in an aquifer are introduced. A numerical simulation tool was used to assess and quantify the dynamic changes in groundwater recharge and discharge under excessive pumping patterns and rates and to estimate the sustainable yield of groundwater flow based on natural rainfall conditions and specific groundwater development scenarios during the period of 2007 to 2014. The results of this study indicate that the multi-year sustainable yield only accounts for about one-half of the average annual recharge. The future sustainable yield for the current pumping scenarios affected by rainfall conditions are evaluated quantitatively to obtain long-term groundwater development strategies. The simulation results show that sufficient rainfall supports excessive pumping patterns, causing a slow and disproportionate groundwater storage recovery and water level rise. In addition, the decrease in the recharge and the increase in the discharge were found to have a notable effect on the dynamic annual sustainable yield, especially in a drought year.

  15. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  16. Hydrology of the Little Plover River basin, Portage County, Wisconsin, and the effects of water resource development

    USGS Publications Warehouse

    Weeks, Edwin P.; Erickson, Donald W.; Holt, Charles Lee Roy

    1965-01-01

    The Little Plover River basin is in the sand-plain area of central Wisconsin. The basin and the surrounding sand-plain area provide a good fish and wildlife habitat and is a popular locale for sport fishing. Good yields may be obtained in the area from irrigated crops, and the irrigated acreage has been increasing rapidly in recent years. Sportsmen and conservationists are concerned about the effects of increased development of the water resources on the streams as trout habitat. In the past, many political and legal conflicts among water users have arisen from erroneous opinions as to the behavior of water. Many of these conflicts would be diminished or eliminated if the participants were cognizant of fundamental hydrologic principles. This study was made to demonstrate the extent and nature of the interrelation of ground water and surface water and the fundamental hydrologic principles governing water movement. The study was also made to determine the hydrologic changes that might occur following development, to provide information that might be used as a basis for planning water development, and for drafting legislation that recognizes the relation between ground water and surface water. Water has been developed in the Little Plover River basin for industry, for domestic and stock supplies, and for irrigation. Irrigated acreage is increasing in the area, and the use of water for irrigation may alter the hydrology of the basin somewhat. About 4,000-4,500 acres of land within the basin, or 50-60 percent of the basin area, is suitable for irrigated farming, but probably no more than 2,500 acres will be under irrigation in any one year, unless present crop-rotation practices are changed. Most of the Little Plover River basin is underlain by from 40 to 100 feet of glacial outwash consisting of highly permeable sand and gravel. The glacial outwash is the main aquifer in the area and is capable of yielding large quantities of water to wells. An aquifer test in the area indicated that the coefficient of transmissibility of the glacial outwash is about 140,000 gallons per day per foot. The specific yield of the outwash is about 20 percent, as determined from water-level and streamfiow data. Morainal deposits occur locally with the glacial outwash. These deposits transmit water readily and do not form barriers to ground water in the outwash. Relatively impermeable crystalline rocks underlie the glacial deposits, and a sandstone ridge of low permeability impedes the movement of ground water from the basin by underflow. The glacial outwash and morainal deposits are recharged by infiltration of 9-10 inches of the 31 inches of precipitation that falls on the area in an average year. If it is not withdrawn by wells for consumptive use or by phreatophytes, water that infiltrates the sand and gravel discharges later into the Little Plover River. This ground-water discharge constitutes 90-95 percent of the total flow of the Little Plover River. Annual evapotranspiration varies considerably, but generally ranges from 2 to 8 inches less than the potential evapotranspiration of 24 inches. Consumptive use of irrigation water averages about 4 inches per year. Most of the watef pumped from wells otherwise would be discharged to the stream, and consump- tive use of irrigation water will deplete streamflow by the amount of evapo- transpiration. Pumping wells have little effect on the water level in the highly permeable sand and gravel. Significant interference between wells would occur only if large capacity wells were within a few tens of feet of each other. Ground water and surface water are closely interrelated in the sand-plain area and ground-water withdrawals near the Little Plover River may cause a measurable streamflow depletion. In a test, a well that was pumping about 1,120 gpm (gallons per minute) and that was 300 feet from the stream derived about 30 percent of its flow from the stream after 3 days of pumping. For this study, the effects of increased ground-water development were evaluated from a hypothetical development schedule, for which it was assumed that 500 acres were irrigated the first year and that an additional 50 acres were irrigated in each succeeding year for 10 years. It also was assumed that the average annual consumptive-use requirement for irrigation water would be one- third of an acre-foot per acre. Calculations indicate that the maximum monthly rate of depletion due to the consumptive use of 4 inches of ground water per year on 500 acres would be about 0.4 cfs (cubic feet per second) the first year and 0.5 cfs after 10 years of pumping. Other computations indicate that the maximum monthly rate of depletion due to irrigating 500 acres the first year and 50 additional acres each year for 10 years would be about 0.8 cfs. Maximum depletion would occur during the summer months, concurrent with the irrigation withdrawals. Because of the close interrelation between ground and surface water, surface- water withdrawals will cause an increased inflow of ground water to the stream and a decline in ground-water levels near the stream. These effects were demon- strated by pumping from the stream. After 29 hours of pumping, a depletion of 1,120 gpm at a site 7,000 feet downstream was about 200 gpm less than the diversion at the pump. Most of the 200 gpm was supplied from the stream- banks, and ground-water levels near the stream declined as much as 0.3 foot. Computations indicated that ground-water inflow, following a streamflow diver- sion that lowered the stage 0.15 foot, would be 0.14 cfs after 5 days and 0.06 cfs after 30 days. The demonstration of the quantitative relation between ground water and surface water, as given by this study, should provide a sound basis for planning water development to minimize conflicts of interest. The demonstrations also should provide a basis for drafting legislation that recognizes the interrelation of ground water and surface water. Because the geology and the hydrology are relatively uniform throughout the sand plains, many of the methods and hydrologic values determined for this detailed study of the Little Plover River basin may be applied to other basins in the sand-plain area.

  17. Theoretical and experimental analysis of a multiphase screw pump, handling gas-liquid mixtures with very high gas volume fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raebiger, K.; Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales; Maksoud, T.M.A.

    In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly intomore » the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)« less

  18. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  19. Subsidence and Rebound in California's Central Valley: Effects of Pumping, Geology, and Precipitation

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Fairbanks, A.

    2017-12-01

    Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources

  20. A miniature, nongassing electroosmotic pump operating at 0.5 V.

    PubMed

    Shin, Woonsup; Lee, Jong Myung; Nagarale, Rajaram Krishna; Shin, Samuel Jaeho; Heller, Adam

    2011-03-02

    Electroosmotic pumps are arguably the simplest of all pumps, consisting merely of two flow-through electrodes separated by a porous membrane. Most use platinum electrodes and operate at high voltages, electrolyzing water. Because evolved gas bubbles adhere and block parts of the electrodes and the membrane, steady pumping rates are difficult to sustain. Here we show that when the platinum electrodes are replaced by consumed Ag/Ag(2)O electrodes, the pumps operate well below 1.23 V, the thermodynamic threshold for electrolysis of water at 25 °C, where neither H(2) nor O(2) is produced. The pumping of water is efficient: 13 000 water molecules are pumped per reacted electron and 4.8 mL of water are pumped per joule at a flow rate of 0.13 mL min(-1) V(-1) cm(-2), and a flow rate per unit of power is 290 mL min(-1) W(-1). The water is driven by protons produced in the anode reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-), traveling through the porous membrane, consumed by hydroxide ions generated in the cathode reaction Ag(2)O(s) + 2 H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). A pump of 2 mm thickness and 0.3 cm(2) cross-sectional area produces flow of 5-30 μL min(-1) when operating at 0.2-0.8 V and 0.04-0.2 mA. Its flow rate can be either voltage or current controlled. The flow rate suffices for the delivery of drugs, such as a meal-associated boli of insulin.

  1. Hydrologic considerations for estimation of storage-capacity requirements of impounding and side-channel reservoirs for water supply in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2001-01-01

    This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.

  2. Destroyer Engineered Operating Cycle (DDEOC), System Maintenance Analysis DDG-37 Class, Salt Water Circulating System SMA 37-106-256, Review of Experience

    DTIC Science & Technology

    1978-07-01

    horizontally mounted, single-end suction, single- stage centrifugal pumps. The rotating elements are mounted on the shaft of the driving motor, and the pump...annual open-and-inspect requirement for MIP E-17/296-21, MRC 21 A14V A. Industrial Facility Improvements -- None IMA Improvements -- None Intergrated ...Circulating Pump, Warren Pumps, Inc., NAVSHIPS 347-3146, January 1959. 4. Technical Manual - Horizontal Close-Co!;pled Pumps Sea (Salt) Water

  3. Hydrology of aquifer systems in the Memphis area, Tennessee

    USGS Publications Warehouse

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand. The average rate of depletion of storage in each aquifer since pumping began is about 1 mgd. Most of the recharge to the '500-foot' and '1,400-foot' sands occurs in outcrop areas about 30-80 miles east of Memphis. Also, water leaks from the terrace deposits to the '500-foot' sand in some places, and there may be some leakage from streams where the confining clay is thin or is breached by faults or streams. The quality of water from both the principal aquifers is very good. Iron, carbon dioxide, and hydrogen sulfide are the only constituents found in undesirable quantities. Water from the terrace deposits is hard but generally contains less iron and carbon dioxide than water from either of the principal aquifers. The hydraulic characteristics of both aquifers were determined by pumping tests and by applying the knowledge of the geology o# the area; these characteristics indicate that the aquifers are capable of producing more water than is currently being pumped from them. The '500-foot' sand will produce more water per unit decline of water level than will the '1,400-foot' sand. There appears to be no reason why the development of water supplies from both aquifers should not continue, but well spacing will remain a factor which could affect future development. Greater well spacing will tend to prolong the useful life of a well and the aquifers.

  4. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  5. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  6. Exploring Tradeoffs in Demand-side and Supply-side Management of Urban Water Resources using Agent-based Modeling and Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.

    2015-12-01

    Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  7. Appraisal of ground water for irrigation in the Little Falls area, Morrison County, Minnesota

    USGS Publications Warehouse

    Helgesen, John O.

    1973-01-01

    Possible future response to pumping was studied through electric analog analyses by stressing the modeled aquifer system in accordance with areal variations in expected well yields. The model interpretation indicates most of the sustained pumpage would be obtained from intercepted base flow and evapotranspiration. Simulated withdrawals totaling 18,000 acre-feet of water per year for 10 years resulted in little adverse effect on the aquifer system. Simulated larger withdrawals, assumed to represent denser well spacing, caused greater depletion of aquifer storage, streamflow, and lake volumes, excessively so in some areas. Results of model analyses provide a guide for ground-water development by identifying the capability of all parts of the aquifer system to support sustained pumping for irrigation.

  8. PUMP-AND-TREAT GROUND-WATER REMEDIATION: A GUIDE FOR DECISION MAKERS AND PRACTITIONERS

    EPA Science Inventory

    This guide presents decision makers with a foundation for evaluating the appropriateness of conventional or innovative approaches. An introduction to pump-and-treat ground-water remediation, the guide addresses the following questions: When is pump-and-treat an appropriate remedi...

  9. Developing a Tactical Environment Cyber Operations Training Program

    DTIC Science & Technology

    2015-01-31

    coagulation, flocculation, sedimentation, filtration, and disinfection is used for treatment of the water. The treated water is pumped under pres- sure into...Radio Frequency 0 Simplex and duplex 0 Tum-on time 0 Frequencies 0 Path studies and seasonal variations 0 Solar variations 0 Reliability and

  10. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate.

    PubMed

    Balke, Elizabeth C; Healy, William M; Ullah, Tania

    2016-12-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.

  11. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate

    PubMed Central

    Balke, Elizabeth C.; Healy, William M.; Ullah, Tania

    2016-01-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058

  12. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  13. Theory of aquifer tests

    USGS Publications Warehouse

    Ferris, J.G.; Knowles, D.B.; Brown, R.H.; Stallman, R.H.

    1962-01-01

    The development of water supplies from wells was placed on a rational basis with Darcy's development of the law governing the movement of fluids through sands and with Dupuit's application of that law to the problem of radial flow toward a pumped well. As field experience increased, confidence in the applicability of quantitative methods was gained and interest in developing solutions for more complex hydrologic problems was stimulated. An important milestone was Theis' development in 1935 of a solution for the nonsteady flow of ground water, which enabled hydrologists for the first time to predict future changes in ground-water levels resulting from pumping or recharging of wells. In the quarter century since, quantitative ground-water hydrology has been enlarging so rapidly as to discourage the preparation of comprehensive textbooks. This report surveys developments in fluid mechanics that apply to groundwater hydrology. It emphasizes concepts and principles, and the delineation of limits of applicability of mathematical models for analysis of flow systems in the field. It stresses the importance of the geologic variable and its role in governing the flow regimen. The report discusses the origin, occurrence, and motion of underground water in relation to the development of terminology and analytic expressions for selected flow systems. It describes the underlying assumptions necessary for mathematical treatment of these flow systems, with particular reference to the way in which the assumptions limit the validity of the treatment.

  14. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  15. Domestic wash water reclamation

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  16. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  17. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less

  18. Pilot Field Demonstration of Alternative Fuels in Force Projection Petroleum and Water Distribution Equipment

    DTIC Science & Technology

    2014-09-04

    They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per

  19. System-level Analysis of Chilled Water Systems Aboard Naval Ships

    DTIC Science & Technology

    2015-06-24

    developed one-dimensional partial differen- tial equation models that simulate time-dependent hy- drodynamics and heat transport in a piping network...Thermal zone extents. 2) Piping path and diameter. 3) Specifications and locations of chillers, heat ex- changers, pumps and valves. The framework of the... pipes and provides boundary conditions for the end of the connecting pipes . Pumps, valves, bends and heat exchangers are such components. These

  20. Use of Superposition Models to Simulate Possible Depletion of Colorado River Water by Ground-Water Withdrawal

    USGS Publications Warehouse

    Leake, Stanley A.; Greer, William; Watt, Dennis; Weghorst, Paul

    2008-01-01

    According to the 'Law of the River', wells that draw water from the Colorado River by underground pumping need an entitlement for the diversion of water from the Colorado River. Consumptive use can occur through direct diversions of surface water, as well as through withdrawal of water from the river by underground pumping. To develop methods for evaluating the need for entitlements for Colorado River water, an assessment of possible depletion of water in the Colorado River by pumping wells is needed. Possible methods include simple analytical models and complex numerical ground-water flow models. For this study, an intermediate approach was taken that uses numerical superposition models with complex horizontal geometry, simple vertical geometry, and constant aquifer properties. The six areas modeled include larger extents of the previously defined river aquifer from the Lake Mead area to the Yuma area. For the modeled areas, a low estimate of transmissivity and an average estimate of transmissivity were derived from statistical analyses of transmissivity data. Aquifer storage coefficient, or specific yield, was selected on the basis of results of a previous study in the Yuma area. The USGS program MODFLOW-2000 (Harbaugh and others, 2000) was used with uniform 0.25-mile grid spacing along rows and columns. Calculations of depletion of river water by wells were made for a time of 100 years since the onset of pumping. A computer program was set up to run the models repeatedly, each time with a well in a different location. Maps were constructed for at least two transmissivity values for each of the modeled areas. The modeling results, based on the selected transmissivities, indicate that low values of depletion in 100 years occur mainly in parts of side valleys that are more than a few tens of miles from the Colorado River.

  1. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    PubMed Central

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived. PMID:10919860

  2. Water resources of the Raft River basin, Idaho-Utah

    USGS Publications Warehouse

    Nace, Raymond L.; ,

    1961-01-01

    Much arable land in the Raft River basin of Idaho lacks water for irrigation, and the potentially irrigable acreage far exceeds the amount that could be irrigated with the estimated total supply of water. Therefore, the amount of uncommitted water that could be intercepted and used within the basin is the limiting factor in further development of its native water supply. Water for additional irrigation might be obtained by constructing surface-storage works, by pumping ground water, or by importing surface water. Additional groundwater development is feasible. As an aid to orderly development and use of the water supplies, the report summarizes available geologic and hydrologic data and, by analysis and interpretation, derives an estimate of the recoverable water yield of the basin.

  3. SCALE-MODEL STUDIES OF MIXING IN DRINKING WATER STORAGE TANKS

    EPA Science Inventory

    Storage tanks and reservoirs are commonly used in drinking water distribution systems to equalize pumping requirements and operating pressures, and to provide emergency water for fire-fighting and pumping outages. Poor mixing in these structures can create pockets of older water...

  4. Geohydrology and water utilization in the Willcox Basin, Graham and Cochise Counties, Arizona

    USGS Publications Warehouse

    Brown, S.G.; Schumann, Herbert H.

    1969-01-01

    The Willcox basin is an area of interior drainage in the northern part of Sulphur Springs Valley, Cochise and Graham Counties, Ariz. The basin comprises about 1,500 square miles, of which the valley floor occupies about 950 square miles. The basin probably formed during middle and late Tertiary time, when the area was subjected to large-scale faulting accompanied by the uplift of the mountain ranges that presently border it. During and after faulting, large quantities of alluvium were deposited in the closed basin. The rocks in the basin are divided into two broad groups--the rocks of the mountain blocks, of Precambrian through Tertiary age, and the rocks of the basin, of Tertiary and Quaternary age. The mountain blocks consist of igneous, metamorphic, and sedimentary rocks; the water-bearing characteristics of these rocks depend primarily on their degree of weathering and fracturing. Even in areas where these rocks are fractured and jointed, only small amounts of water have been developed. The rocks of the basin consist of moderately consolidated alluvium, poorly consolidated alluvium, and unconsolidated alluvium. The water-bearing characteristics of the moderately and poorly consolidated alluvium are not well known. The unconsolidated alluvium underlies most of the valley floor and consists of two facies, stream deposits and lake beds associated with the old playa. The lenticular sand and gravel layers interbedded in silt- and clay-size material of the unconsolidated alluvium constitute the principal aquifer in the basin. The other aquifers, which yield less water, consist of beds of poorly to moderately consolidated sand- and gravel-size material; these beds occur in both the poorly consolidated and moderately consolidated alluvium. In the Stewart area the median specific capacity of wells per 100 feet of saturated unconsolidated alluvium was 20 gallons per minute, and in the Kansas Settlement area the specific capacity of wells penetrating the poorly and moderately consolidated alluvium, undifferentiated, was only 7.4 gallons per minute per 100 feet of saturated material penetrated. The aquifer in the Kansas Settlement area is much less permeable but more homogeneous than the aquifer in the Stewart area. The coefficient of transmissibility of the aquifers, which was estimated from the specific-capacity data, ranged from 58,000 to 160,000 gal. tons per day per foot. Prior to extensive ground-water pumpage, the ground-water system probably was in equilibrium, with discharge equaling recharge. At that time, ground water moved toward the playa, where it was discharged by transpiration and evaporation. The estimate of the evapotranspiration in the playa area before large-scale development was about 75,000 acre-feet per year. On the basis of estimates of coefficients of transmissibility of the aquifer and on the basis of the water-table configuration, underflow toward the playa was computed to be about 54,000 acre-feet per year. By 1963, large-scale pumping had caused marked changes in the shape of the piezometric surface; large cones of depression had developed, and ground-water movement was toward the centers of pumping. The cones of depression caused by large-scale pumping have since expanded, and water-level declines have been measured in the recharge areas along the mountain fronts. Ground water has been used for irrigation since 1910. In 1928, about 4,000 acre-feet of ground water was pumped, and by 1963 180,000 acre-feet per year was being pumped. An estimated 1,860,000 acre-feet of water has been pumped for irrigation in the Willcox basin through 1963; 680,000 acre-feet from the Stewart area, 990,000 acre-feet from the Kansas Settlement area, and 190,000 acre-feet from the Pearce-Cochise area. In the Sierra Bonita Ranch area and the north playa area, ground-water withdrawal for irrigation through 1963 was small. From the spring of 1952 to the spring of 1964 water-level declines resulting from the

  5. Groundwater-flow model of the Ozark Plateaus aquifer system, northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma

    USGS Publications Warehouse

    Czarnecki, John B.; Gillip, Jonathan A.; Jones, Perry M.; Yeatts, Daniel S.

    2009-01-01

    To assess the effect that increased water use is having on the long-term availability of groundwater within the Ozark Plateaus aquifer system, a groundwater-flow model was developed using MODFLOW 2000 for a model area covering 7,340 square miles for parts of Arkansas, Kansas, Missouri, and Oklahoma. Vertically the model is divided into five units. From top to bottom these units of variable thickness are: the Western Interior Plains confining unit, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, and the St. Francois confining unit. Large mined zones contained within the Springfield Plateau aquifer are represented in the model as extensive voids with orders-of-magnitude larger hydraulic conductivity than the adjacent nonmined zones. Water-use data were compiled for the period 1960 to 2006, with the most complete data sets available for the period 1985 to 2006. In 2006, total water use from the Ozark aquifer for Missouri was 87 percent (8,531,520 cubic feet per day) of the total pumped from the Ozark aquifer, with Kansas at 7 percent (727,452 cubic feet per day), and Oklahoma at 6 percent (551,408 cubic feet per day); water use for Arkansas within the model area was minor. Water use in the model from the Springfield Plateau aquifer in 2005 was specified from reported and estimated values as 569,047 cubic feet per day. Calibration of the model was made against average water-level altitudes in the Ozark aquifer for the period 1980 to 1989 and against waterlevel altitudes obtained in 2006 for the Springfield Plateau and Ozark aquifers. Error in simulating water-level altitudes was largest where water-level altitude gradients were largest, particularly near large cones of depression. Groundwater flow within the model area occurs generally from the highlands of the Springfield Plateau in southwestern Missouri toward the west, with localized flow occurring towards rivers and pumping centers including the five largest pumping centers near Joplin, Missouri; Carthage, Missouri; Noel, Missouri; Pittsburg, Kansas; and Miami, Oklahoma.Hypothetical scenarios involving various increases in groundwater-pumping rates were analyzed with the calibrated groundwater-flow model to assess changes in the flow system from 2007 to the year 2057. Pumping rates were increased between 0 and 4 percent per year starting with the 2006 rates for all wells in the model. Sustained pumping at 2006 rates was feasible at the five pumping centers until 2057; however, increases in pumping resulted in dewatering the aquifer and thus pumpage increases were not sustainable in Carthage and Noel for the 1 percent per year pumpage increase and greater hypothetical scenarios, and in Joplin and Miami for the 4 percent per year pumpage increase hypothetical scenarios.Zone-budget analyses were performed to assess the groundwater flow into and out of three zones specified within the Ozark-aquifer layer of the model. The three zones represented the model part of the Ozark aquifer in Kansas (zone 1), Oklahoma (zone 2), and Missouri and Arkansas (zone 3). Groundwater pumping causes substantial reductions in water in storage and induces flow through the Ozark confining unit for all hypothetical scenarios evaluated. Net simulated flow in 2057 from Kansas (zone 1) to Missouri (zone 3) ranges from 74,044 cubic feet per day for 2006 pumping rates (hypothetical scenario 1) to 625,319 cubic feet per day for a 4 percent increase in pumping per year (hypothetical scenario 5). Pumping from wells completed in the Ozark aquifer is the largest component of flow out of zone 3 in Missouri and Arkansas, and varies between 88 to 91 percent of the total flow out of zone 3 for all of the hypothetical scenarios. The largest component of flow into Oklahoma (zone 2) comes from the overlying Ozark confining unit, which is consistently about 45 percent of the total. Flow from the release of water in storage, from general-head boundaries, and from zones 1 and 3 is considerably smaller values that range from 3 to 22 percent of the total flow into zone 2. The largest flow out of the Oklahoma part of the model occurs from pumping from wells and ranges from 52 to 69 percent of the total.

  6. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP–21 and NP–87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP–21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP–87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP–21 and NP–87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model.Aquifer tests were conducted by pumping NP–21 for about 7 days at 257 gallons per minute in June 2000 and NP–87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP–21 test and 35 observation wells during the NP–87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP–21 test and 0.5 to 12 feet at the end of the NP–87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic section that were not well connected to the units stressed by pumping. The best hydraulic connection to the pumped wells was indicated by large drawdown in observation wells that penetrate the water-bearing unit encountered below 400 feet below land surface in wells NP–21 and NP–87. The hydraulic connection between wells NP–21 (or NP–87) and observation wells in the southern area of ground-water contamination near the BAE Systems facility is good because the observation wells probably penetrate this water-bearing unit.A 3-dimensional, finite-difference, groundwater- flow model was used to simulate flow paths and areas contributing recharge to wells for current (2000) conditions of pumping in the Colmar area and for hypothetical situations of pumping suggested by the U.S. Environmental Protection Agency that might be used for remediation. Simulations indicate that under current conditions, ground water in the northern area of contamination near the former Stabilus facility moves to the northwest and discharges mostly to West Branch Neshaminy Creek; in the southern area of contamination near BAE Systems facility, ground water probably moves west and discharges to a tributary of West Branch Neshaminy Creek near well NP–21. Model simulations indicate that if NP–21 or NP–87 are pumped at 400 gallons per minute, groundwater recharge is likely captured from the southern area of contamination, but ground-water recharge from the northern area of contamination is less likely to be captured by the pumping. Simulations also indicate that pumping of a new recovery well near BAE Systems facility at 8 gallons per minute and two new recovery wells near the former Stabilus facility at a total of about 30 gallons per minute probably would capture most of the ground-water recharge in the areas where contamination is greatest.

  7. Gas-driven pump for ground-water samples

    USGS Publications Warehouse

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  8. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  9. Development of a Residential Ground-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Baxter, Van D; Hern, Shawn

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less

  10. Corrosion protection of steel in ammonia/water heat pumps

    DOEpatents

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  11. Simulation of the shallow groundwater-flow system near Mole Lake, Forest County, Wisconsin

    USGS Publications Warehouse

    Fienen, Michael N.; Juckem, Paul F.; Hunt, Randall J.

    2011-01-01

    The shallow groundwater system near Mole Lake, Forest County, Wis. was simulated using a previously calibrated regional model. The previous model was updated using newly collected water-level measurements and refinements to surface-water features. The updated model was then used to calculate the area contributing recharge for one existing and two proposed pumping locations on lands of the Sokaogon Chippewa Community. Delineated 1-, 5-, and 10-year areas contributing recharge for existing and proposed wells extend from the areas of pumping to the northeast of the pumping locations. Steady-state pumping was simulated for two scenarios: a base pumping scenario using pumping rates that reflect what the Tribe expects to pump and a high pumping scenario, in which the rate was set to the maximum expected from wells installed in this area. In the base pumping scenario, pumping rates of 32 gallons per minute (gal/min; 46,000 gallons per day (gal/d)) from the existing well and 30 gal/min (43,000 gal/d) at each of the two proposed wells were simulated. The high pumping scenario simulated a rate of 70 gal/min (101,000 gal/d) from each of the three pumping wells to estimate of the largest areas contributing recharge that might be expected given what is currently known about the shallow groundwater system. The areas contributing recharge for both the base and high pumping scenarios did not intersect any modeled surface-water bodies; however, the high pumping scenario had a larger areal extent than the base pumping scenario and intersected a septic separator.

  12. Preliminary report on ground water in the Michaud Flats Project, Power County, Idaho

    USGS Publications Warehouse

    Stewart, J.W.; Nace, Raymond L.; Deutsch, Morris

    1952-01-01

    The Michaud Flats Project area, as here described, includes about 65 square miles in central Power County, south of the Snake River in the southeastern Snake River Plain of Idaho. The principal town and commercial center of the area is American Falls. The immediate purpose of work in the area by the U.S. Geological Survey was to investigate the possibility of developing substantial quantities of ground water for irrigating high and outlying lands in the proposed Michaud Flats Project area of the U.S. Bureau of Reclamation. Initial findings are sufficiently favorable to warrant comprehensive further investigation. Advanced study would assist proper utilization of ground-water resources and would aid ultimate evaluation of total water resources available in the area. About 10,000 acres of low-lying lands in the Michaud Flats project could be irrigated with water from the Snake River under a low-line distribution system involving a maximum pumping lift of about 200 feet above the river. An additional larger area of high and outlying lands is suitable for irrigation with water pumped from wells. If sufficient ground water is economically available, the expense of constructing and operating a costly highline distribution system for surface water could be saved. Reconnaissance of the ground-water geology of the area disclosed surface outcrops of late Cenozoic sedimentary, pyroclastic, and volcanic rocks. Well logs and test borings show that similar materials are present beneath the land surface in the zone of saturation. Ground water occurs under perched, unconfined, and confined (artesian) conditions, but the aquifers have not been adequately explored. Existing irrigation wells, 300 feet or less in depth, yield several hundred to 1,400 gallons of water a minute, with pumping drawdowns of 6 to 50 feet, and perhaps more. A few wells have been pumped out at rates of less than 800 gallons a minute. Scientific well-construction and development methods would lead to more efficient well performance. A generalized water-table contour map of the area shows that the principal general direction of ground-water movement is toward the west and northwest. The southwestern part of the American Falls Reservoir, and a segment of the Snake River below the dam, may be perched above the water table. Ground water appears to move beneath this segment of the river to the Snake River Plain on the northwest side. So far as is known, recharge to the ground-water reservoir is chiefly from local sources and from the runoff from the mountain area southeast of the project. Seepage losses from surface water spread for irrigation would contribute a substantial amount of new recharge to the ground water, but the amount of such recharge might be less than the depletion of ground water by pumping. Therefore, with ground-water irrigation a part of the project, return flow to the American Falls Reservoir might be less than it is in the existing regimen. Ground-water pumping where the ground water is not tributary to the reservoir might not deplete the reservoir appreciably, but would reduce the net supply of water available west of Neeley. Evidence indicates that at least moderate supplies of ground water can be obtained in low-lying areas southwest and northeast of American Falls, but the safe perennial yields of the aquifers cannot now be estimated. The ground-water potential in high and outlying lands is not known. It is unlikely that this potential is sufficient to supply all high and outlying lands, but the supply may be adequate for a substantial part of these lands. Thorough investigation appears to be warranted.

  13. Simulation of the ground-water flow system at Naval Submarine Base Bangor and vicinity, Kitsap County, Washington

    USGS Publications Warehouse

    Heeswijk, Marijke van; Smith, Daniel T.

    2002-01-01

    An evaluation of the interaction between ground-water flow on Naval Submarine Base Bangor and the regional-flow system shows that for selected alternatives of future ground-water pumping on and near the base, the risk is low that significant concentrations of on-base ground-water contamination will reach off-base public-supply wells and hypothetical wells southwest of the base. The risk is low even if worst-case conditions are considered ? no containment and remediation of on-base contamination. The evaluation also shows that future saltwater encroachment of aquifers below sea level may be possible, but this determination has considerable uncertainty associated with it. The potential effects on the ground-water flow system resulting from four hypothetical ground-water pumping alternatives were considered, including no change in 1995 pumping rates, doubling the rates, and 2020 rates estimated from population projections with two different pumping distributions. All but a continuation of 1995 pumping rates demonstrate the possibility of future saltwater encroachment in the Sea-level aquifer on Naval Submarine Base Bangor. The amount of time it would take for encroachment to occur is unknown. For all pumping alternatives, future saltwater encroachment in the Sea-level aquifer also may be possible along Puget Sound east and southeast of the base. Future saltwater encroachment in the Deep aquifer also may be possible throughout large parts of the study area. Projections of saltwater encroachment are least certain outside the boundaries of Naval Submarine Base Bangor. The potential effects of the ground-water pumping alternatives were evaluated by simulating the ground-water flow system with a three-dimensional uniform-density ground-water flow model. The model was calibrated by trial-and-error by minimizing differences between simulated and measured or estimated variables. These included water levels from prior to January 17, 1977 (termed 'predevelopment'), water-level drawdowns since predevelopment until April 15, 1995, ground-water discharge to streams in water year 1995, and residence times of ground water in different parts of the flow system that were estimated in a separate but related study. Large amounts of ground water were pumped from 1977 through 1980 from the Sea-level aquifer on Naval Submarine Base Bangor to enable the construction of an off-shore drydock. Records of the flow-system responses to the applied stresses were used to help calibrate the model. Errors in the calibrated model were significant. The poor agreement between simulated and measured values could be improved by making many local changes to hydraulic parameters but these changes were not supported by other data. Model errors may have resulted in errors in the simulated effects of ground-water pumping alternatives.

  14. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  15. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  16. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    NASA Astrophysics Data System (ADS)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.

  17. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.

  18. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  19. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests.

    PubMed

    Halford, Keith J; Yobbi, Dann

    2006-01-01

    A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.

  20. Daily and seasonal trends of electricity and water use on pasture-based automatic milking dairy farms.

    PubMed

    Shortall, J; O'Brien, B; Sleator, R D; Upton, J

    2018-02-01

    The objective of this study was to identify the major electricity and water-consuming components of a pasture-based automatic milking (AM) system and to establish the daily and seasonal consumption trends. Electricity and water meters were installed on 7 seasonal calving pasture-based AM farms across Ireland. Electricity-consuming processes and equipment that were metered for consumption included milk cooling components, air compressors, AM unit(s), auxiliary water heaters, water pumps, lights, sockets, automatic manure scrapers, and so on. On-farm direct water-consuming processes and equipment were metered and included AM unit(s), auxiliary water heaters, tubular coolers, wash-down water pumps, livestock drinking water supply, and miscellaneous water taps. Data were collected and analyzed for the 12-mo period of 2015. The average AM farm examined had 114 cows, milking with 1.85 robots, performing a total of 105 milkings/AM unit per day. Total electricity consumption and costs were 62.6 Wh/L of milk produced and 0.91 cents/L, respectively. Milking (vacuum and milk pumping, within-AM unit water heating) had the largest electrical consumption at 33%, followed by air compressing (26%), milk cooling (18%), auxiliary water heating (8%), water pumping (4%), and other electricity-consuming processes (11%). Electricity costs followed a similar trend to that of consumption, with the milking process and water pumping accounting for the highest and lowest cost, respectively. The pattern of daily electricity consumption was similar across the lactation periods, with peak consumption occurring at 0100, 0800, and between 1300 and 1600 h. The trends in seasonal electricity consumption followed the seasonal milk production curve. Total water consumption was 3.7 L of water/L of milk produced. Water consumption associated with the dairy herd at the milking shed represented 42% of total water consumed on the farm. Daily water consumption trends indicated consumption to be lowest in the early morning period (0300-0600 h), followed by spikes in consumption between 1100 and 1400 h. Seasonal water trends followed the seasonal milk production curve, except for the month of May, when water consumption was reduced due to above-average rainfall. This study provides a useful insight into the consumption of electricity and water on a pasture-based AM farms, while also facilitating the development of future strategies and technologies likely to increase the sustainability of AM systems. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  1. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures andmore » temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.« less

  2. Estimation of the groundwater resources of the bedrock aquifers at the Kettle Moraine Springs State Fish Hatchery, Sheboygan County, Wisconsin

    USGS Publications Warehouse

    Dunning, Charles; Feinstein, Daniel T.; Buchwald, Cheryl A.; Hunt, Randall J.; Haserodt, Megan J.

    2017-10-12

    Groundwater resources information was needed to understand regional aquifer systems and water available to wells and springs for rearing important Lake Michigan fish species at the Kettle Moraine Springs State Fish Hatchery in Sheboygan County, Wisconsin. As a basis for estimating the groundwater resources available, an existing groundwater-flow model was refined, and new groundwater-flow models were developed for the Kettle Moraine Springs State Fish Hatchery area using the U.S. Geological Survey (USGS) finite-difference code MODFLOW. This report describes the origin and construction of these groundwater-flow models and their use in testing conceptual models and simulating the hydrogeologic system.The study area is in the Eastern Ridges and Lowlands geographical province of Wisconsin, and the hatchery property is situated on the southeastern edge of the Kettle Moraine, a north-south trending topographic high of glacial origin. The bedrock units underlying the study area consist of Cambrian, Ordovician, and Silurian units of carbonate and siliciclastic lithology. In the Sheboygan County area, the sedimentary bedrock sequence reaches a thickness of as much as about 1,600 feet (ft).Two aquifer systems are present at the Kettle Moraine Springs State Fish Hatchery. A shallow system is made up of Silurian bedrock, consisting chiefly of dolomite, overlain by unconsolidated Quaternary-age glacial deposits. The glacial deposits of this aquifer system are the typical source of water to local springs, including the springs that have historically supplied the hatchery. The shallow aquifer system, therefore, consists of the unconsolidated glacial aquifer and the underlying bedrock Silurian aquifer. Most residential wells in the area draw from the Silurian aquifer. A deeper confined aquifer system is made up of Cambrian- and Ordovician-age bedrock units including sandstone formations. Because of its depth, very few wells are completed in the Cambrian-Ordovician aquifer system (COAS) near the Kettle Moraine Springs State Fish Hatchery.Three groundwater-flow models were used to estimate the water resources available to the hatchery from bedrock aquifers under selected scenarios of well placement and seasonal water requirements and subject to constraints on the effects of pumping on neighboring wells, local springs, and creeks. Model input data (recharge, water withdrawal, and boundary conditions) for these models were compiled from a number of data and information sources.The first model, named the “KMS model,” (KMS stands for Kettle Moraine Springs) is an inset model derived from a published USGS regional Lake Michigan Basin model and was constructed to simulate groundwater pumping from the semiconfined Silurian aquifer. The second model, named the “Pumping Test model,” was constructed to evaluate an aquifer pumping test conducted in the COAS as part of this project. The Pumping Test model was also used to simulate the local effects of 20 years of groundwater pumping from this deep bedrock aquifer for future hatchery operations. The third model, named the “LMB modified model,” is a version of the published Lake Michigan Basin (LMB) model that was modified with aquifer parameters refined in an area around the hatchery (approximately a 5-mile radius circle, corresponding to the area stressed by the aquifer pumping test). This LMB modified model was applied to evaluate regional effects of pumping from the confined COAS.The available Silurian aquifer groundwater resource was estimated using the KMS model with three scenarios—named “AllConstraints,” “Constraints2,” and “Constraints3”—that specified local water-level and flow constraints such as drawdown at nearby household wells, water levels inside pumping well boreholes, and flow in local streams and springs. Each scenario utilized the MODFLOW Groundwater Management Process (GWM) to select three locations from six candidate locations that provided the greatest combined flow while satisfying the constraints. The three constraint scenarios provided estimates of 430 gallons per minute (gal/min), 480 gal/min, and 520 gal/min pumping from three wells—AllConstraints, Constraints2, and Constraints3, respectively. The same three wells were selected for the scenarios that estimated 480 gal/min and 520 gal/min; the scenario that estimated 430 gal/min shared two of these same wells, but the third selected well was different.The available COAS groundwater resource was estimated by two scenarios with each conducted over a period of 20 years with the Pumping Test model and the LMB modified model. The Pumping Test model was used to simulate local effects of pumping, and the LMB modified model was used to simulate regional effects of pumping. The scenarios simulate a range of total and seasonal pumping rates potentially linked to site activities. Scenario 1 simulates two wells completed in the Cambrian-Ordovician aquifer system, each pumping for 8 months at 300 gal/min, followed by pumping for 4 months at 600 gal/min. The average yearly pumping rate of Scenario 1 is 800 gal/min. Scenario 2 simulates three wells completed in the Cambrian-Ordovician aquifer system pumping for 8 months at 200 gal/min, followed by pumping for 4 months at 500 gal/min. The average yearly pumping rate of Scenario 2 is 900 gal/min. The Pumping Test model simulations confirmed that drawdown in the boreholes of the pumping wells at the selected 2-well or 3-well rates will meet the desired condition that the pumping water level remains at least 100 ft above the highest Cambrian-Ordovician unit open to the well.The LMB modified model was used to evaluate the regional drawdown of the pumping from the confined COAS under the same 2-well and 3-well scenarios. At the nearest known existing COAS well, Campbellsport production well #4, the simulated drawdown for Scenario 1 after 20 years of cyclical pumping with two pumping wells averaging a total of 800 gal/min is 16.9 ft, whereas the simulated drawdown for Scenario 2 after 20 years of pumping with three pumping wells averaging a total of 900 gal/min is 19.0 ft. The total deep aquifer thickness at the Campbellsport location is on the order of 620 ft, meaning that the simulated drawdown for either scenario is about 3 percent of the confined aquifer thickness.The models developed as part of this project are archived in the project data release. The archive includes the model input and output files as well as MODFLOW source code and executables. (Haserodt and others, 2017).

  3. A New Approach for Assessing Aquifer Sustainability and the Impact of Proposed Management Actions

    NASA Astrophysics Data System (ADS)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.

    2015-12-01

    Aquifers are under stress worldwide as a result of large imbalances between inflows and outflows. These imbalances are particularly severe in aquifers in semi-arid regions that are heavily pumped for irrigation, such as the High Plains aquifer (HPA) in the United States. The water resources community has responded by placing an increasing emphasis on more sustainable management plans. To aid in the formulation of such plans, we have developed a simple, water-balance-based approach for rapid assessment of the impact of proposed management actions and the prospects for aquifer sustainability. This theoretically sound approach is particularly well suited for assessing the short- to medium-term (years to a few decades) response to management actions in seasonably pumped aquifers. The net inflow (capture) term of the aquifer water balance can also be directly calculated from water-level and water-use data with this approach. Application to the data-rich portion of the HPA in the state of Kansas reveals that practically achievable reductions in annual pumping would have a large impact. For example, a 22% reduction in average annual water use would have stabilized areally averaged water levels across northwest Kansas from 1996 to 2013 because of larger-than-expected and near-constant net inflows. Whether this is a short-term phenomenon or a path to long-term sustainability, however, has yet to be determined. Water resources managers are often in a quandary about the most effective use of scarce funds for data collection in support of aquifer assessment and management activities. This work demonstrates that a strong emphasis should be placed on collection of reliable water-use data; greater resources devoted to direct measurement of pumping will yield deeper insights into an aquifer's future. The Kansas HPA is similar to many other regional aquifers supporting critically needed agricultural production, so this approach should prove of value far beyond the borders of Kansas.

  4. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  5. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  6. Hydrogeological properties of bank storage area in Changwon city, Korea

    NASA Astrophysics Data System (ADS)

    Hamm, S.-Y.; Kim, H.-S.; Cheong, J.-Y.; Ryu, S. M.; Kim, M. J.

    2003-04-01

    Bank filtrated water has been used in developed countries such as United States, France, Germany, Austria, Nederland and so on. In Korea, most of the drinking water is provided from the surface water. However, drinking water acquisition is becoming difficult due to the degradation of surface water quality. In special, the quality of drinking water source is much lower in downstream area than in upstream area. Thus, the use of bank filtrated water is getting attracted by central and local governments in Korea. The bank filtrated water was surveyed in the areas of Yeongsan river, Nakdong river, Geum river and Han river. Up to present, however, the downstream areas of Nakdong river are most suitable places to apply the bank filtration system. This study investigates hydrogeological characteristics of bank-storage area located in Daesan- Myeon, Changwon city, adjacent the downstream of Nakdong river. Changwon city is the capital city of Gyeongsangnam-Do province. Changwon city uses water derived from Nakdong river as municipal water. However, the quantity and quality of the river water are gradually decreased. Thus, Changwon city developed two sites of bank filtration system in Daesan-myeon and Buk-myeon. Pumping rate is 2,000m3/day at present and will be increased to 60,000m3/day in Daesan-myeon site at the end of the first stage of the project. For the study, we conducted pumping tests four times on seven pumping wells (PW1, PW2, PW3, PW4, PW5, PW6, and PW7) and twelve drill holes (BH-2, OW2-OW12) in the area of 370 m x 100 m. Pumping wells PW1 and PW2 were drilled in 1999 by Samjung Engineering Co. and pumping wells PW3, PW4, PW5, PW6 and PW7 were drilled in 2000 by Donga Construction Co. and Daeduk Gongyeong Co. The pumping wells are located at 45-110 meters from Nakdong riverside. The geology of the study area is composed of volcanic rocks (Palryeongsan tuff and Jusasan andesitic rock) and alluvium. Palryeongsan tuff consists of mostly green tuff with partly tuffaceous sandstone, shale, mudstone and sandstone. Thick alluvium is overlain on Palryeongsan tuff (Samjung Engineering Co., 1999; Donga Construction Co. and Daeduk Gongyeong Co., 2000; Kim and Lee, 1964). The alluvium is composed of sand, sandy gravel and weathered zone from the surface (Table 1, Fig. 3). The aquifer is sandy gravel layer (Samjung Engineering Co., 1999). The gravel layer is thicker near the wells of PW1, PW2, PW3, and PW4 (13.5-17.5m), whereas is thinner near the wells of PW5, PW6, and PW7 (6.3-10.5m). The pumping data obtained were analyzed to determine hydraulic parameters (transmissivity and storativity) using various models of pumping test analysis. The appropriate models for the study area were found from several models. The selected model for observation well is Theis model using corrected drawdown and the selected model for pumped well is Papadopulos-Cooper model using corrected drawdown. As a result, alluvial aquifer in the study area behaviors as confined aquifer rather than phreatic aquifer. Thus, infiltration amount from the river to the aquifer in the study area is lower than that from river to phreatic aquifer for the same water level change. And also storativity of the aquifer is represented by elastic storativity rather than specific yield. Transmissivity obtained by the models ranges from 4.54x10-4 to 1.79x10-1 m2/s with arithmetic mean 2.92x10-2 m2/s. Storativity ranges from 2.59x10-4-5.54x10-1 with arithmetic mean 6.36x10-2. Frequency distribution of hydraulic parameters was determined from statistical analyses. The distribution of transmissivity values does not follow normal distribution showing skewness 2.36 and kurtosis 5.085. Aquifer heterogeneity was found by hydraulic parameters and subsurface geology data in the study area. Furthermore, hydraulic parameters obtained at a well that serves as both pumping well and observation well were compared, and the correlation equation was determined to evaluate hydraulic parameters considering aquifer loss. Transmissivity values obtained by the two cases do not show distinct correlation. However, storativity values obtained by the two cases show distinct negative correlation. ACKNOWLEDGEMENT The authors wish to acknowledge the financial support of the Sustainable Water Resources Research Center under the program of the 21st Century Frontier R&D Program by the Korean government (project no: 3-4-1).

  7. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    USGS Publications Warehouse

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  8. Optimized solar-wind-powered drip irrigation for farming in developing countries

    NASA Astrophysics Data System (ADS)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  9. 40 CFR 455.21 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...

  10. 40 CFR 455.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...

  11. 40 CFR 455.21 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...

  12. Hydrologic effects of ground- and surface-water withdrawals in the Milford area, Elkhart and Kosciusko counties, Indiana

    USGS Publications Warehouse

    Lindgren, H.A.; Peters, J.G.; Cohen, D.A.; Crompton, E.J.

    1985-01-01

    Results of plans 1, 2, 3, and 4 indicate that the outwash system provides adequate water for current (1982) needs and substantial growth for irrigation. However, maximum irrigational development might cause temporary, local competition for water in several parts of the area. Plan 5 indicates .that water use could increase substantially before effects of pumping would prevail year-round.

  13. Corrosion Control of Central Vehicle Wash Facility Pump Components Using Alternative Alloy Coatings

    DTIC Science & Technology

    2016-07-01

    military installations are es- sential for supporting the readiness of tactical vehicles. Steel wash-rack pumps are vulnerable to accelerated...Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF...statement Large steel water pumps are used to pump water into the Central Vehicle Wash Facility (CVWF) for vehicle washing at Fort Polk, LA. The interior

  14. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14 extraction wells at rates ranging from 0.4 to 4.9 gallons per minute.

  15. Ground-water storage depletion in Pahrump Valley, Nevada-California, 1962-75

    USGS Publications Warehouse

    Harrill, James R.

    1982-01-01

    During the 13-year period, February 1962 to February 1975, about 540,000 acre-feet of ground water was pumped from Pahrump Valley. This resulted in significant water-level declines along the base of the Pahrump and Manse fans where pumping was concentrated. Maximum observed net decline was slightly more than 60 feet. Much smaller declines occurred in the central valley, and locally, water levels in some shallow wells rose due to recharge derived from the deep percolation of irrigation water. The pumping resulted in about 219,000 acre-feet of storage depletion. Of this, 155,000 acre-feet was from the draining of unconsolidated material, 46,000 was from compaction of fine-grained sediments, and 18,000 acre-feet was from the elastic response of the aquifer and water. The total storage depletion was equal to about 40 percent of the total pumpage. The remaining pumped water was derived from the capture of natural ground-water discharge and reuse of pumped water that had recirculated back to ground water. Natural recharge to and discharge from the ground-water system is estimated to be 37,000 acre-feet per year. Of this, 18,000 acre-feet per year leaves the area as subsurface outflow through carbonate-rock aquifers which form a multivalley flow system. The extent of this system was not precisely determined by this study. The most probable discharge area for this outflow is along the flood plain of the Amargosa River between the towns of Shoshone and Tecopa. This outflow probably cannot be economically captured by pumping from Pahrump Valley. Consequently, the maximum amount of natural discharge available for capture is 19,000 acre-feet per year. This is larger than the 12,000 acre-feet per year estimated in a previous study; the difference is due to different techniques used in the analysis. As of 1975, pumping was causing an overdraft of 11,000 acre-feet per year on the ground-water system. No new equilibrium is probable in the foreseeable future. Water levels will probably continue to slowly decline until the pumping is reduced. The moderate rates of decline and very large amounts of ground water stored in the valley-fill reservoir suggest that a long time will be required before the valley-wide depletion of ground-water storage becomes critical. Problems involving water quality, land subsidence, and well interference will probably occur first.

  16. Generation of Accurate Lateral Boundary Conditions for a Surface-Water Groundwater Interaction Model

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.; Tsou, M.; Panday, S. M.; Kool, J.; Wei, X.

    2010-12-01

    The 106 mile long Peace River in Florida flows south from Lakeland to Charlotte Harbor and has a drainage basin of approximately 2,350 square miles. A long-term decline in stream flows and groundwater potentiometric levels has been observed in the region. Long-term trends in rainfall, along with effects of land use changes on runoff, surface-water storage, recharge and evapotranspiration patterns, and increased groundwater and surface-water withdrawals have contributed to this decline. The South West Florida Water Management District (SWFWMD) has funded the development of the Peace River Integrated Model (PRIM) to assess the effects of land use, water use, and climatic changes on stream flows and to evaluate the effectiveness of various management alternatives for restoring stream flows. The PRIM was developed using MODHMS, a fully integrated surface-water groundwater flow and transport simulator developed by HydroGeoLogic, Inc. The development of the lateral boundary conditions (groundwater inflow and outflow) for the PRIM in both historical and predictive contexts is discussed in this presentation. Monthly-varying specified heads were used to define the lateral boundary conditions for the PRIM. These head values were derived from the coarser Southern District Groundwater Model (SDM). However, there were discrepancies between the simulated SDM heads and measured heads: the likely causes being spatial (use of a coarser grid) and temporal (monthly average pumping rates and recharge rates) approximations in the regional SDM. Finer re-calibration of the SDM was not feasible, therefore, an innovative approach was adopted to remove the discrepancies. In this approach, point discrepancies/residuals between the observed and simulated heads were kriged with an appropriate variogram to generate a residual surface. This surface was then added to the simulated head surface of the SDM to generate a corrected head surface. This approach preserves the trends associated with groundwater pumping / recharge in the SDM and adds the kriged residual surface as variations back to the trend. The variations could be from the scale effects of grid resolution and from the temporal averaging of stresses (pumping, recharge, etc.,). The validity of the approach is demonstrated by visual and statistical comparison of the observed and simulated heads before and after correction. For predictive simulations, an Artificial Neural Network was trained to predict heads at monitoring wells based on precipitation and pumping. These predicted head values could then be used as surrogate observations for correcting the results of the regional SDM. In summary, an appropriate approach to link a regional groundwater model to a detailed surface-water groundwater interaction model is demonstrated with an example.

  17. The identification of sustainable yield for hot spring regarding water level and temperature

    NASA Astrophysics Data System (ADS)

    Ke, Kai-Yuan; Tan, Yih-Chi

    2017-04-01

    In order to sustainably manage and utilize the limited hot spring resource, the cool-hot water exchange model is established by combination of Soil and Water Assessment Tool(SWAT) and SHEMAT. Hot spring in Ziaoxi, Taiwan, is chosen as study area. With data of geography, weather, land use and soil texture, SWAT can simulate precipitation induced infiltration and recharge for SHEMAT. Then SHEMAT is calibrated and verified with in-situ observation data of hot spring temperature and water level. The relation among precipitation, pumping, change of water temperature and water level is thus investigated. The effect of point well pumping, which dramatically lower the water level and temperature, due to prosperous development of hot spring building and industry is also considered for better model calibration. In addition, by employing a modified Hill's method, the sustainable yield is identified. Unlike traditional Hill's method, the modified Hill's method could account for not only the change of water level but also the temperature. As a result, the estimated sustainable yield provide a reasonable availability of hot spring resources without further decline of the water level and temperature.

  18. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  19. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  20. Geology and ground-water resources of Galveston County, Texas

    USGS Publications Warehouse

    Petitt, Ben McDowell; Winslow, Allen George

    1957-01-01

    Much additional ground water could be obtained from both the "Alta Loma" sand and the upper part of the Beaumont clay, especially in the northern and western parts of the county. Before large developments of supplies are planned, however, these areas should be explored by test drilling. The problems of well spacing and pumping rates should be thoroughly studied in order to determine the maximum development permitted by the ground-water supply. Current observations should be continued with special emphasis on the progress of salt-water encroachment.

  1. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the currentmore » water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.« less

  2. Hardware and circuit design of a vibrational cleaner

    NASA Astrophysics Data System (ADS)

    Fhong Soon, Chin; Thong, Kok Tung; Sek Tee, Kian; Nayan, Nafarizal; Khairul Ahmad, Mohd; Nurashikin Nordin, Anis

    2016-11-01

    Microtissue can be grown on soft substrates of hydrogel or liquid crystal gel. These gels are adherent to the microtissues and they may interfere fluorescence imaging as background noise due to their absorbance property. A microfluidic vibrational cleaner with polydimethylsiloxane (PDMS) microfluidic chip platform was proposed and developed to remove the residual gel of liquid crystal adhered to the microtissues. The microtissues were placed in a microfluidic chip attaching to a microfluidic vibrational platform. In the system design, two motorised vibrators vibrating attached to a microfluidic platform and generating vibration signals at 148 Hz and 0.89 Grms to clean the microtissues. The acceleration of the vibration increased gradually from 0 to 0.96 Grms when the duty cycle of PWM pulses increased from 50 - 90%. It dropped slightly to 0.89 Grms at 100% duty cycle. Irrigation water valve was designed to control the fluid flow from water pump during cleaning process. Water pumps were included to flush the channels of the microfluidic device. The signals in controlling the pump, motor and valve were linearly proportional to the duty cycles of the pulse width modulation signals generated from a microcontroller.

  3. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heatedmore » culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.« less

  4. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Murphy, Richard W.; Rice, C. Keith

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service aftermore » the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).« less

  5. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  6. Simulation and Particle-Tracking Analysis of Selected Ground-Water Pumping Scenarios at Vogtle Electric Generation Plant, Burke County, Georgia

    USGS Publications Warehouse

    Cherry, Gregory S.; Clarke, John S.

    2007-01-01

    The source of ground water to production wells at Vogtle Electric Generation Plant (VEGP), a nuclear power plant in Burke County, Georgia, was simulated under existing (2002) and potential future pumping conditions using an existing U.S. Geological Survey (USGS) MODFLOW ground-water flow model of a 4,455-square-mile area in the Coastal Plain of Georgia and South Carolina. Simulation results for three steady-state pumping scenarios were compared to each other and to a 2002 Base Case condition. The pumping scenarios focused on pumping increases at VEGP resulting from projected future demands and the addition of two electrical-generating reactor units. Scenarios simulated pumping increases at VEGP ranging from 1.09 to 3.42 million gallons per day (Mgal/d), with one of the scenarios simulating the elimination of 5.3 Mgal/d of pumping at the Savannah River Site (SRS), a U.S. Department of Energy facility located across the Savannah River from VEGP. The largest simulated water-level changes at VEGP were for the scenario whereby pumping at the facility was more than tripled, resulting in drawdown exceeding 4-8 feet (ft) in the aquifers screened in the production wells. For the scenario that eliminated pumping at SRS, water-level rises of as much as 4-8 ft were simulated in the same aquifers at SRS. Results of MODFLOW simulations were analyzed using the USGS particle-tracking code MODPATH to determine the source of water and associated time of travel to VEGP production wells. For each of the scenarios, most of the recharge to VEGP wells originated in an upland area near the county line between Burke and Jefferson Counties, Georgia, with none of the recharge originating on SRS or elsewhere in South Carolina. An exception occurs for the scenario whereby pumping at VEGP was more than tripled. For this scenario, some of the recharge originates in an upland area in eastern Barnwell County, South Carolina. Simulated mean time of travel from recharge areas to VEGP wells for the Base Case and the three other pumping scenarios was between about 2,700 and 3,800 years, with some variation related to changes in head gradients because of pumping changes.

  7. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    PubMed

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-09-03

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet propulsion efficiency or the reduction of wear.

  8. Progress report on the ground-water, surface-water, and quality-of-water monitoring program, Black Mesa Area, northeastern Arizona; 1988-89

    USGS Publications Warehouse

    Hart, R.J.; Sottilare, J.P.

    1989-01-01

    The Black Mesa monitoring program in Arizona is designed to determine long-term effects on the water resources of the area resulting from withdrawals of groundwater from the N aquifer by the strip-mining operation of Peabody Coal Company. Withdrawals by Peabody Coal Company increased from 95 acre-ft in 1968 to 4 ,090 acre-ft in 1988. The N aquifer is an important source of water in the 5,400-sq-mi Black Mesa area on the Navajo and Hopi Indian Reservations. Water levels in the confined area of the aquifer declined as much as 19.7 ft near Low Mountain from 1988 to 1989. Part of the decline in the measured municipal wells may be due to local pumping. During 1965-88, water levels in wells that tap the unconfined area of the aquifer have not declined significantly and have risen in many areas. Chemical analysis indicate no significant changes in the quality of water from wells that tap the N aquifer or from springs that discharge from several stratigraphic units, including the N aquifer, since pumping began at the mine. The groundwater flow model developed for the study area in 1988 was updated using pumpage data for 1985-88. The model simulated a steady decline in water levels in observations wells developed in areas of unconfined groundwater. Measured water levels in these wells did not show this trend but indicated that water levels remained the same or increased. The model accurately simulated water levels in most observation wells developed in areas of confined groundwater. (USGS)

  9. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Shen, Bo; Keinath, Chris

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less

  10. COOLING TOWER PUMP HOUSE, TRA606. THREE OF SIX SECTIONS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. THREE OF SIX SECTIONS OF COOLING TOWER ARE VISIBLE ABOVE RAILING. PUMP HOUSE IN FOREGROUND IS ON SOUTH SIDE OF COOLING TOWER. NOTE THREE PIPES TAKING WATER FROM PUMP HOUSE TO HOT DECK OF COOLING TOWER. EMERGENCY WATER SUPPLY TOWER IS ALSO IN VIEW. INL NEGATIVE NO. 6197. Unknown Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Geothermal Heat Pump Basics | NREL

    Science.gov Websites

    a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly

  12. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    USGS Publications Warehouse

    Lindholm, F.G.

    1970-01-01

    Analyses were made to determine effects of development on ground-water levels under different development schemes both after a single irrigation season and after 5 and 20 successive years of irrigation. Where development is concentrated, some interference between wells can be expected. Although water levels recover rapidly when pumps are shut off, recovery will not be complete prior to the next irrigation season in heavily developed areas. After several years of watertable lowering, yields from wells will decrease because of deceased saturated thickness, unless climatic changes result in abnormally high amounts of recharge.

  13. Development of a Small Thermoelectric Generators Prototype for Energy Harvesting from Low Temperature Waste Heat at Industrial Plant.

    PubMed

    Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano

    2017-03-01

    A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.

  14. Solar-powered pump

    NASA Technical Reports Server (NTRS)

    Kirsten, C. C. (Inventor)

    1976-01-01

    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  15. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to streams is also well simulated throughout the model. Ground-water discharge to streams in the area of the confluence of the Deschutes, Crooked, and Metolius Rivers is closely matched. The model was also calibrated to transient conditions from 1978 to 1997 using traditional trial-and-error methods. Climatic cycles during this period provided an excellent regional hydrologic signal for calibration. Climate-driven water-level fluctuations are simulated with reasonable accuracy over most of the model area. The timing and magnitude of simulated water-level fluctuations caused by annual pulses of recharge from precipitation match those observed reasonably well, given the limitations of the time discretization in the model. Water-level fluctuations caused by annual canal leakage are simulated very well over most of the area where such fluctuations occur. The transient model also simulates the volumetric distribution and temporal variations in ground-water discharge reasonably well. The match between simulated and measured volume of and variations in ground-water discharge is, however, somewhat dependent on geographic scale. The rates of and variations in ground-water discharge are matched best at regional scales. Example simulations were made to demonstrate the utility of the model for evaluating the effects of ground-water pumping or canal lining. Pumping simulations show that pumped water comes largely from aquifer storage when pumping begins, but as the water table stabilizes, the pumping increasingly diminishes the discharge to streams and, hence, streamflow. The time it takes for pumping to affect streamflow varies spatially depending, in general, on the location of pumping relative to the discharge areas. Canal-lining simulations show similar effects.

  16. Evaluation of alternative groundwater-management strategies for the Bureau of Reclamation Klamath Project, Oregon and California

    USGS Publications Warehouse

    Wagner, Brian J.; Gannett, Marshall W.

    2014-01-01

    The water resources of the upper Klamath Basin, in southern Oregon and northern California, are managed to achieve various complex and interconnected purposes. Since 2001, irrigators in the Bureau of Reclamation Klamath Irrigation Project (Project) have been required to limit surface-water diversions to protect habitat for endangered freshwater and anadromous fishes. The reductions in irrigation diversions have led to an increased demand for groundwater by Project irrigators, particularly in drought years. The potential effects of sustained pumping on groundwater and surface-water resources have caused concern among Federal and state agencies, Indian tribes, wildlife groups, and groundwater users. To aid in the development of a viable groundwater-management strategy for the Project, the U.S. Geological Survey, in collaboration with the Klamath Water and Power Agency and the Oregon Water Resources Department, developed a groundwater-management model that links groundwater simulation with techniques of constrained optimization. The overall goal of the groundwater-management model is to determine the patterns of groundwater pumping that, to the extent possible, meet the supplemental groundwater demands of the Project. To ensure that groundwater development does not adversely affect groundwater and surface-water resources, the groundwater-management model includes constraints to (1) limit the effects of groundwater withdrawal on groundwater discharge to streams and lakes that support critical habitat for fish listed under the Endangered Species Act, (2) ensure that drawdowns do not exceed limits allowed by Oregon water law, and (3) ensure that groundwater withdrawal does not adversely affect agricultural drain flows that supply a substantial portion of water for irrigators and wildlife refuges in downslope areas of the Project. Groundwater-management alternatives were tested and designed within the framework of the Klamath Basin Restoration Agreement (currently [2013] awaiting authorizing Federal legislation), which would establish a permanent limit on the amount of surface water that can be diverted annually to the Project. Groundwater-management scenarios were evaluated for the period 1970•2004; supplemental groundwater demand by the Project was estimated as the part of irrigation demand that would not have been satisfied by the surface-water diversion allowed under the Klamath Basin Restoration Agreement. Over the 35-year management period, 22 years have supplemental groundwater demand, which ranges from a few thousand acre-feet (acre-ft) to about 100,000 acre-ft in the driest years. The results of the groundwater-management model indicate that supplemental groundwater pumping by the Project can be managed to avoid adverse effects to groundwater discharge that supports critical aquatic habitat. The existing configuration of wells in the Project would be able to meet groundwater-pumping goals in 14 of the 22 years with supplemental groundwater demand; however, substantial irrigation shortages can be expected during drought periods when the demand for supplemental groundwater is highest. The maximum irrigation-season withdrawal calculated by the groundwater-management model is about 60,000 acre-ft, the average withdrawal in drought years is about 54,000 acre-ft, and the amount of unmet groundwater demand reaches a maximum of about 45,000 acre-ft. A comparison of optimized groundwater withdrawals by geographic region shows that the highest annual withdrawals are associated with wells in the Tule Lake and Klamath Valley regions of the Project. The patterns of groundwater withdrawal also show that a substantial amount of the available pumping capacity is unused due to the restrictions imposed by drawdown constraints. Subsequent model applications were used to evaluate the sensitivity of optimization results to various factors. A sensitivity analysis quantified the changes in optimized groundwater withdrawals that result from changes in drawdown-constraint limits. The analysis showed the potential for substantial increases in withdrawals of groundwater with less restrictive drawdown limits at drawdown-control sites in the California part of the model. Systematic variation of the drains-constraint limit yielded a trade-off curve between optimized groundwater withdrawals and the allowable reduction in groundwater discharge to the Project drain system. Additional model applications were used to assess the value of increasing the pumping capacity of the network of wells serving the Project, and the relation between reduced off-Project groundwater pumping and increased pumping by Project irrigators.

  17. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  18. Lift-Off Performance in Flexure Pivot Pad and Hybrid Bearings

    DTIC Science & Technology

    2008-12-01

    and Dawson, M. P., 1998, "Experience in the Use of Flexure Pivot Tilt Pad Bearings in Boiler Feed Water Pumps ," Proc. of the 15th International...freely. Test Procedure 1) Turn on the pump to buffer water to the test bearing. 2) Turn on air to the air seal that prevents water flowing... Pump Users Symposium, Turbomachinery Laboratory, College Station, Texas, pp. 77-84. [6] Rodriguez, L., 2004, “Experimental Frequency-Dependent

  19. Possible effects of groundwater pumping on surface water in the Verde Valley, Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Haney, Jeanmarie

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy, has applied a groundwater model to simulate effects of groundwater pumping and artificial recharge on surface water in the Verde Valley sub-basin of Arizona. Results are in two sets of maps that show effects of locations of pumping or recharge on streamflow. These maps will help managers make decisions that will meet water needs and minimize environmental impacts.

  20. Summary of ground-water conditions in the Jaffna Peninsula, Republic of Sri Lanka, with a plan for investigating feasibility of ground-water development

    USGS Publications Warehouse

    Meisler, Harold

    1977-01-01

    Ground water in the Jaffna Peninsula of Sri Lanka, Ceylon, occurs within solution openings of the Jaffna Limestone of Miocene age. The freshwater forms a complex of lenses up to 25 meters thick overlying saline water derived from the sea. Salt-water intrusion and upconing of the salt water has occurred at several locations primarily along the coast. Recharge to the aquifer occurs during October-December. Discharge is primarily to wells and to springs along the north coast. Spring discharge is small compared to withdrawal from wells. Pumping from wells in an intensively studied 142-square-kilometer area of the Peninsula was 55.5 million cubic meters in 1976, whereas discharge to visible springs was an estimated 9.3 million cubic meters. Pumping during January-September removes water from storage causing heads to decline and the salt water-freshwater interface to rise. The storage is replenished as heads increase and the interface is depressed during the following October-December. Consequently, most of the recharge goes into storage rather than discharging to the sea. (Woodard-USGS)

  1. Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries

    NASA Astrophysics Data System (ADS)

    Poulain, Angélique; de Dreuzy, Jean-Raynald; Goderniaux, Pascal

    2018-04-01

    Pump storage hydroelectricity is an efficient way to temporarily store energy. This technique requires to store temporarily a large volume of water in an upper reservoir, and to release it through turbines to the lower reservoir, to produce electricity. Recently, the idea of using old flooded quarries as a lower reservoir has been evoked. However, these flooded quarries are generally connected to unconfined aquifers. Consequently, pumping or injecting large volumes of water, within short time intervals, will have an impact on the adjacent aquifers. Conversely, water exchanges between the quarry and the aquifer may also influence the water level fluctuations in the lower reservoir. Using numerical modelling, this study investigates the interactions between generic flooded open pit quarries and adjacent unconfined aquifers, during various pump-storage cyclic stresses. The propagation of sinusoidal stresses in the adjacent porous media and the amplitude of water level fluctuations in the quarry are studied. Homogeneous rock media and the presence of fractures in the vicinity of the quarry are considered. Results show that hydrological quarry - rock interactions must be considered with caution, when implementing pump - storage systems. For rock media characterized by high hydraulic conductivity and porosity values, water volumes exchanges during cycles may affect significantly the amplitude of the water level fluctuations in the quarry, and as a consequence, the instantaneous electricity production. Regarding the impact of the pump - storage cyclic stresses on the surrounding environment, the distance of influence is potentially high under specific conditions, and is enhanced with the occurrence of rock heterogeneities, such as fractures. The impact around the quarry used as a lower reservoir thus appears as an important constraining factor regarding the feasibility of pump - storage systems, to be assessed carefully if groundwater level fluctuations around the quarry are expected to bring up adverse effects. Results highlight opportunities and challenges to be faced, to implement pump - storage hydroelectricity systems in old flooded open pit quarries.

  2. Aquifer geochemistry and effects of pumping on ground-water quality at the Green Belt Parkway Well Field, Holbrook, Long Island, New York

    USGS Publications Warehouse

    Brown, Craig J.; Colabufo, Steven; Coates, John D.

    2002-01-01

    Geochemistry, microbiology, and water quality of the Magothy aquifer at a new supply well in Holbrook were studied to help identify factors that contribute to iron-related biofouling of public-supply wells. The organic carbon content of borehole sediments from the screen zone, and the dominant terminal electron-accepting processes (TEAPs), varied by depth. TEAP assays of core sediments indicated that iron reduction, sulfate reduction, and undetermined (possibly oxic) reactions and microbial activity are correlated with organic carbon (lignite) content. The quality of water from this well, therefore, reflects the wide range of aquifer microenvironments at this site.High concentrations of dissolved iron (3.6 to 6.4 micromoles per liter) in water samples from this well indicate that some water is derived from Fe(III)-reducing sediments within the aquifer, but traces of dissolved oxygen indicate inflow of shallow, oxygenated water from shallow units that overlie the local confining units. Water-quality monitoring before and during a 2-day pumping test indicates that continuous pumping from the Magothy aquifer at this site can induce downward flow of shallow, oxygenated water despite the locally confined conditions. Average concentrations of dissolved oxygen are high (5.2 milligrams per liter, or mg/L) in the overlying upper glacial aquifer and at the top of the Magothy aquifer (4.3 mg/L), and low ( < 0.1 mg/L) in the deeper, anaerobic part of the Magothy; average concentrations of phosphate are high (0.4 mg/L) in the upper glacial aquifer and lower (0.008 mg/L) at the top of the Magothy aquifer and in the deeper part of the Magothy (0.013 mg/L). Concentrations of both constituents increased during the 2 days of pumping. The δ34S of sulfate in shallow ground water from observation wells (3.8 to 6.4 per mil) was much heavier than that in the supplywell water (-0.1 per mil) and was used to help identify sources of water entering the supply well. The δ34S of sulfate in a deep observation well adjacent to the supply well increased from 2.4 per mil before pumping to 3.3 per mil after pumping; this confirms that the pumping induced downward migration of water. The lighter δ34S value in the pumped water than in the adjacent observation well probably indicates FeS2 oxidation (which releases light δ34S in adjacent sediments) by the downward flow of oxygenated water.

  3. Numerical simulation of ground-water flow in lower Satus Creek Basin, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Prych, E.A.

    1983-01-01

    A multilayer numerical model of steady-state ground-water flow in lower Satus Creek basin was constructed, calibrated using time-averaged data, and used to estimate the long-term effects of proposed irrigation-water management plans on ground-water levels in the area. Model computations showed that irrigation of new lands in the Satus uplands would raise ground-water levels in lower Satus Creek basin and thereby increase the size of the waterlogged areas. The model also demonstrated that pumping water from wells, reducing the amount of irrigation water used in the lowlands, and stopping leakage from Satus No. 2 and 3 Pump Canals were all effective methods to alleviate present waterlogging in some parts of the basin and to counteract some of the anticipated ground-water-level rises that would be caused by irrigating the uplands. The proposed changes in water use affected model-computed ground-water levels most in the eastern part of the basin between Satus No. 2 and No. 3 Pump Canals. The effects on ground-water levels in the western part of the basin between Satus Creek and Satus No. 2 Pump Canal were smaller. (USGS)

  4. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  5. Heat pump water heater and method of making the same

    DOEpatents

    Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  6. Ground-water heat pumps: An examination of hydrogeologic, environmental, legal, and economic factors affecting their use. Volume 1: Main text, appendices A, B, and C

    NASA Astrophysics Data System (ADS)

    Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.

    1980-11-01

    Groundwater is attractive as a potential low temperature energy source in residential space conditioning applications. When used in conjunction with a heat pump, ground water can serve as both a heat source and a heat sink. Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground water quality is considered as it affects the performance and life expectancy of the water side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and federal levels. Computer simulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  7. Analysis of Streamflow Trends, Ground-Water and Surface-Water Interactions, and Water Quality in the Upper Carson River Basin, Nevada and California

    USGS Publications Warehouse

    Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin

    2008-01-01

    Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these wells has the potential to affect streamflow of the Carson River. It is not certain, however, if all these wells are used currently. Annual streamflow of the Carson River is extremely variable, ranging from a low of about 26,000 acre-ft in 1977 to slightly more than 800,000 acre-ft in 1983 near Fort Churchill. Graphs of the cumulative annual streamflow and differences in the cumulative annual streamflow at Carson River gaging stations upstream and downstream of Carson and Dayton Valleys show an annual decrease in streamflow. The annual decrease in Carson River streamflow averaged about 47,000 acre-ft through Carson Valley, and about 11,000 acre-ft through Dayton Valley for water years 1940-2006. The decrease in streamflow through Carson and Dayton Valleys is a result of evapotranspiration on irrigated lands and losses to ground-water storage, with greater losses in Carson Valley than in Dayton Valley because of the greater area of irrigated land in Carson Valley.

  8. Delineation of areas contributing recharge to selected public-supply wells in Glacial Valley-Fill and Wetland Settings, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.

    2004-01-01

    Areas contributing recharge and sources of water to one proposed and seven present public-supply wells, screened in sand and gravel deposits and clustered in three study areas, were determined on the basis of calibrated, steady-state ground-water-flow models representing average hydrologic conditions. The area contributing recharge to a well is defined as the surface area where water recharges the ground water and then flows toward and discharges to the well. In Cumberland and Lincoln, public-supply well fields on opposite sides of the Blackstone River are in a narrow valley bordered by steep hillslopes. Ground-water-level and river-stage measurements indicated that river water was infiltrating the aquifer and flowing toward the wells during pumping conditions. Simulated areas contributing recharge to the Cumberland well field operating alone for both average (324 gallons per minute) and maximum (1,000 gallons per minute) pumping rates extend on both sides of the river to the lateral model boundaries, which is the contact between the valley and uplands. The area contributing recharge at the average pumping rate is about 0.05 square mile and the well field derives 72 percent of pumped water from upland runoff. At the maximum pumping rate, the area contributing recharge extends farther up and down the valley to 0.12 square mile and the primary source of water to the well field was infiltrated river water (53 percent). Upland areas draining toward the areas contributing recharge encompass 0.58 and 0.66 square mile for the average and maximum rates, respectively. By incorporating the backup Lincoln well-field withdrawals (2,083 gallons per minute) into the model, the area contributing recharge to the Cumberland well field operating at its maximum rate is reduced to 0.08 square mile; part of the simulated area which contributes recharge to the Cumberland well field when it is operating alone contributes instead to the Lincoln well field when both well fields are pumped. The Cumberland well field compensates by increasing the percentage of water it withdraws from the river by 11 percent. The upland area draining toward the Cumberland contributing area is 0.55 square mile. The area contributing recharge to the Lincoln well field is 0.08 square mile and infiltrated river water contributes 88 percent of the total water; the upland area draining toward the contributing area is 0.34 square mile. In North Smithfield, a public-supply well in a valley-fill setting is close to Trout Brook Pond, which is an extension of the Lower Slatersville Reservoir. A comparison of water levels from the pond and underlying sediments indicates that water is not infiltrated from Trout Brook Pond when the supply well is pumped at its maximum rate of 200 gallons per minute. Simulated areas contributing recharge for the maximum pumping rate and for the estimated maximum yield, 500 gallons per minute, of a proposed replacement well extend to the ground-water divides on both sides of Trout Brook Pond. For the 200 gallons-per-minute rate, the area contributing recharge is 0.23 square mile; the well derives almost all of its water from intercepted ground water that normally discharges to surface-water bodies. For the pumping rate of 500 gallons per minute, the area contributing recharge is 0.45 square mile. The increased pumping rate is balanced by additional intercepted ground water and by inducing 25 percent of the total withdrawn water from surface water. In Westerly, one public-supply well is in a watershed where the primarily hydrologic feature is a wetland. Water levels in piezometers surrounding the well site indicated a downward vertical gradient and the potential for water in the wetland to infiltrate the underlying aquifer. The simulated area contributing recharge for the average pumping rate (240 gallons per minute) and for the maximum pumping rate (700 gallons per minute) extends to the surrounding uplands (surficial materials not covered by t

  9. Hydrogeology, water quality, and ground-water development alternatives in the Beaver-Pasquiset ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Dickerman, D.C.; Ozbilgin, M.M.

    1985-01-01

    In a 23 sq mi study area, the Beaver-Pasquiset groundwater reservoir within the Pawcatuck River basin in southern Rhode Island, stratified drift is the only principal geologic unit capable of producing yields > 350 gal/min. Transmissivity of the aquifer ranges from 7,200 to 24,300 sq ft/day. Water table conditions prevail in the aquifer, which is in good hydraulic connection with perennial streams and ponds. A digital model of two-dimensional groundwater flow was used to simulate the interaction between surface water and groundwater, and to evaluate the impact of alternative schemes of groundwater development on groundwater levels, pond levels, and streamflow in the Beaver-Pasquiset groundwater reservoir. Transient simulations of theoretical pumpage were made for a drought period (1963-66) and a wet period (1976-78). The areas most favorable for development of high-capacity wells (350 gal/min or more) are along the Beaver River and near Pasquiset Pond. The water is soft and generally contains < 100 mg/L dissolved solids. Locally, groundwater contains elevated concentrations of iron and manganese (7.5 and 3.7 mg/L, respectively), southeast of Pasquiset Pond, and will require treatment if used for public supply. The groundwater reservoir was simulated with a two-dimensional finite-difference model using a block-centered grid consisting of 33 rows and 75 columns. Differences between measured and simulated water table altitudes for the final steady state run for 21 selected observation wells averaged +0.07 ft. Combined pumping rates for simulation of groundwater development alternatives at eight sites ranged from 3.25 to 7.00 Mgal/d. Pumping rates for individual wells ranged from 0.25 to 1.50 Mgal/d. Transient simulations suggest that the Beaver-Pasquiset groundwater reservoir is capable of sustaining a pumping rate of 4.25 Mgal/d during years of average groundwater recharge with minimal impact on groundwater levels, pond levels, and streamflow. During extreme drought periods (1965 and 1966) it would be necessary to reduce pumpage below 3.25 Mgal/d to maintain flow in both the Beaver River and Pasquiset Brook. (Author 's abstract)

  10. Implementation of vertical multistage centrifugal pump system for villages at an altitude of ± 1200m above sea level in Sipahutar - North Sumatera area

    NASA Astrophysics Data System (ADS)

    Parde de, Marincan; Simangunsong, Riyanto; Hedwig, Rinda

    2017-12-01

    Clean water supply is rare in most villages at an altitude of ±1200m above the sea level in North Sumatera due to the topography of the village. The idea to help villagers fulfilling their basic needs in the situation makes this research important. Many experiments had been done previously, such as implementing drilled well but none was successful until we developed a vertical multistage centrifugal pump system. The natural water spring in the area targeted was found in 86 meters depth and would be distributed as far as 500m with area of 1.5km2 from the water tank. The main problem happened was the electric supplies which was always lower than it was expected in that area. Therefore, the successful of the system was happily accepted by the villagers and this research is highly expected to be developed and implemented to other villages, not only in Sipahutar area but also in all Tarutung area.

  11. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  12. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, Terry; Slusher, Scott

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  13. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.

  14. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    NASA Astrophysics Data System (ADS)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before surface water data are compiled. We can then develop groundwater pumping and storage predictions in real time, and make them available to water managers. In addition, we are working toward future projections by coupling the regional CVHM to downscaled GCM output to assess future scenarios of water availability in this critical region.

  15. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  16. Historic water-level changes and pumpage from the principal aquifers of the Memphis area, Tennessee: 1886-1975

    USGS Publications Warehouse

    Criner, James H.; Parks, William Scott

    1976-01-01

    Pumpage from the Fort Pillow Sand ("1,400-foot" sand) began in 1924 and increased at a yearly rate of about 0.6 Mgal/d (2.3 Ml/d) until 1942. From 1943 to 1962, pumpage averaged about 11.5 Mgal/d (43.5 Ml/d), then was reduced as MLGW (Memphis Light, Gas and Water Division) discontinued wells that became unserviceable. MLGW ceased pumping from the aquifer in 1974, and pumpage from the remaining industrial wells in Shelby County in 1975 was 4.4 Mgal/d (16.6 Ml/d). Water levels in the Fort Pillow Sand generally have risen since 1963. Water l evels in the aquifers in the Memphis area fluctuate inversely with changes in pumping. Analysis of observation-well and pumpage data indicates that local water levels can be altered by changing the pumping rates or by varying the areal distribution of pumping.

  17. Field testing of two prototype air-source integrated heat pumps for net zero energy home (nZEH) application

    DOE PAGES

    Baxter, Van D.; Munk, Jeffrey D.

    2017-11-08

    By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.

  18. Field testing of two prototype air-source integrated heat pumps for net zero energy home (nZEH) application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Munk, Jeffrey D.

    By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.

  19. Post audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system

    USGS Publications Warehouse

    Stewart, M.; Langevin, C.

    1999-01-01

    A numerical ground water flow model was created in 1978 and revised in 1981 to predict the drawdown effects of a proposed municipal wellfield permitted to withdraw 30 million gallons per day (mgd; 1.1 x 105 m3/day) of water from the semiconfined Floridan Aquifer system. The predictions are based on the assumption that water levels in the semiconfined Floridan Aquifer reach a long-term, steady-state condition within a few days of initiation of pumping. Using this assumption, a 75 day simulation without water table recharge, pumping at the maximum permitted rates, was considered to represent a worst-case condition and the greatest drawdowns that could be experienced during wellfield operation. This method of predicting wellfield effects was accepted by the permitting agency. For this post audit, observed drawdowns were derived by taking the difference between pre-pumping and post-pumping potentiometric surface levels. Comparison of predicted and observed drawdowns suggests that actual drawdown over a 12 year period exceeds predicted drawdown by a factor of two or more. Analysis of the source of error in the 1981 predictions suggests that the values used for transmissivity, storativity, specific yield, and leakance are reasonable at the wellfield scale. Simulation using actual 1980-1992 pumping rates improves the agreement between predicted and observed drawdowns. The principal source of error is the assumption that water levels in a semiconfined aquifer achieve a steady-state condition after a few days or weeks of pumping. Simulations using a version of the 1981 model modified to include recharge and evapotranspiration suggest that it can take hundreds of days or several years for water levels in the linked Surficial and Floridan Aquifers to reach an apparent steady-state condition, and that slow declines in levels continue for years after the initiation of pumping. While the 1981 'impact' model can be used for reasonably predicting short-term, wellfield-scale effects of pumping, using a 75 day long simulation without recharge to predict the long-term behavior of the wellfield was an inappropriate application, resulting in significant underprediction of wellfield effects.A numerical ground water flow model was created in 1978 and revised in 1981 to predict the drawdown effects of a proposed municipal wellfield permitted to withdraw 30 million gallons per day (mgd; 1.1??105 m3/day) of water from the semiconfined Floridan Aquifer system. The predictions are based on the assumption that water levels in the semiconfined Floridan Aquifer reach a long-term, steady-state condition within a few days of initiation of pumping. Using this assumption, a 75 day simulation without water table recharge, pumping at the maximum permitted rates, was considered to represent a worst-case condition and the greatest drawdowns that could be experienced during wellfield operation. This method of predicting wellfield effects was accepted by the permitting agency. For this post audit, observed drawdowns were derived by taking the difference between pre-pumping and post-pumping potentiometric surface levels. Comparison of predicted and observed drawdowns suggests that actual drawdown over a 12 year period exceeds predicted drawdown by a factor of two or more. Analysis of the source of error in the 1981 predictions suggests that the values used for transmissivity, storativity, specific yield, and leakance are reasonable at the wellfield scale. Simulation using actual 1980-1992 pumping rates improves the agreement between predicted and observed drawdowns. The principal source of error is the assumption that water levels in a semiconfined aquifer achieve a steady-state condition after a few days or weeks of pumping. Simulations using a version of the 1981 model modified to include recharge and evapotranspiration suggest that it can take hundreds of days or several years for water levels in the linked Surficial and Floridan Aquifers to reach an apparent stead

  20. Simulated response to pumping stress in the Sparta aquifer of southeastern Arkansas and north-central Louisiana, 1998-2027

    USGS Publications Warehouse

    Hays, Phillip D.; Lovelace, John K.; Reed, Thomas B.

    1998-01-01

    The Sparta aquifer in southeastern Arkansas and north-central Louisiana is a major water resource for municipal, industrial, and agricultural uses. In recent years, the demand for water in some areas has resulted in withdrawals from the Sparta that significantly exceed recharge to the aquifer. Considerable drawdown has occurred in the potentiometric surface, and water users and managers alike have begun to question the ability of the aquifer to supply water for the long term. Large cones of depression are centered beneath the Grand Prairie area and the cities of Pine Bluff and El Dorado in Arkansas, and Monroe in Louisiana. Water levels in the aquifer have declined at rates greater than 1 foot per year for more than a decade in much of southern Arkansas and northern Louisiana and are now below the top of the formation in parts of Union and Columbia Counties, Arkansas, and in several areas of Louisiana. Problems related to over draft in the Sparta could result in increased drilling and pumping costs, loss of yield, salt-water intrusion, and decrease in water quality in areas of large drawdown. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public in the two States. The Sparta model-a regional scale, digital ground-water flow model-was first calibrated in the mid-1980's. The model was updated and reverified using 1995-97 data. Visual inspection of the observed (1996-97) and simulated potentiometric surfaces, statistical analysis of the error for the original calibration and current reverification, and comparison of observed versus simulated hydro graphs indicates that the model is simulating conditions in the aquifer within acceptable error, and the quality of current (1998) model results is similar to the original model calibration results. When stressed with current withdrawal volumes and distributions, the model is able to simulate currently observed heads effectively as heads were simulated in the original calibration period. Five pumping scenarios were simulated over a 30-year period based on (1) current pumping rates, (2) current rates of change in pumping, (3) decreased pumping in selected areas, (4) increased pumping in selected areas, and (5) redistribution and increase of pumping in selected areas. Model results show that although continued pumping at current rates will result in relatively minor declines in water levels (scenario 1 above), continued pumping at currently observed rates of change will result in drastic declines across large areas of focused withdrawals (scenario 2). Under the first scenario-in which current pumping rates are input to the model for the 30-year simulation period-water levels in the middle of the cones of depression centered on El Dorado and Monroe decrease less than 10 feet. In the second scenario-in which the current rate of change in pumpage is applied to the model-substantial declines occur in the proximity of most major pumpage centers. During the 1998-2027 model period, predicted water levels decline from 307 feet below sea level to 438 feet below sea level near El Dorado, from 58 feet below sea level to 277 feet below sea level near Pine Bluff, but only by about 25 feet-from 202 feet below sea level to 225 feet below sea level near Monroe. In the third scenario-in which minimum predicted water use figures supplied by selected facilities in Arkansas and decreased pumping estimates for Louisiana are applied to the model-simulated water levels are substantially higher at cones of depression around the major pumping centers of Monroe and El Dorado as compared to initial (1997) values. During the 1998-2027 model period, predicted water levels near Monroe increase from 202 feet below sea level to 133 feet below sea level; water levels near El Dorado increase from 307 feet below sea level to 123 feet below sea level. For the fourth scenario-in which maxi mum pr

  1. Optimal pumping strategies for managing shallow, poorquality groundwater, western San Joaquin Valley, California

    USGS Publications Warehouse

    Barlow, P.; Wagner, B.; Belitz, K.

    1995-01-01

    Continued agricultural productivity in the western San Joaquin Valley, California, is threatened by the presence of shallow, poor-quality groundwater that can cause soil salinization. We evaluate the management alternative of using groundwater pumping to control the altitude of the water table and provide irrigation water requirements. A transient, three-dimensional, groundwater flow model was linked with nonlinear optimization to simulate management alternatives for the groundwater flow system. Optimal pumping strategies have been determined that substantially reduce the area subject to a shallow water table and bare-soil evaporation (that is, areas with a water table within 2.1 m of land surface) and the rate of drainflow to on-farm drainage systems. Optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  2. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (1) Source, (2) Treatment, (3) Distribution system, (4) Finished water storage, (5) Pumps, pump facilities, and controls, (6) Monitoring, reporting, and data verification, (7) System management and...

  3. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (1) Source, (2) Treatment, (3) Distribution system, (4) Finished water storage, (5) Pumps, pump facilities, and controls, (6) Monitoring, reporting, and data verification, (7) System management and...

  4. Estimation of Distributed Groundwater Pumping Rates in Yolo County,CA—Intercomparison of Two Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Harter, T.

    2015-12-01

    Accurate estimation of groundwater (GW) budgets and effective management of agricultural GW pumping remains a challenge in much of California's Central Valley (CV) due to a lack of irrigation well metering. CVHM and C2VSim are two regional-scale integrated hydrologic models that provide estimates of historical and current CV distributed pumping rates. However, both models estimate GW pumping using conceptually different agricultural water models with uncertainties that have not been adequately investigated. Here, we evaluate differences in distributed agricultural GW pumping and recharge estimates related to important differences in the conceptual framework and model assumptions used to simulate surface water (SW) and GW interaction across the root zone. Differences in the magnitude and timing of GW pumping and recharge were evaluated for a subregion (~1000 mi2) coincident with Yolo County, CA, to provide similar initial and boundary conditions for both models. Synthetic, multi-year datasets of land-use, precipitation, evapotranspiration (ET), and SW deliveries were prescribed for each model to provide realistic end-member scenarios for GW-pumping demand and recharge. Results show differences in the magnitude and timing of GW-pumping demand, deep percolation, and recharge. Discrepancies are related, in large part, to model differences in the estimation of ET requirements and representation of soil-moisture conditions. CVHM partitions ET demand, while C2VSim uses a bulk ET rate, resulting in differences in both crop-water and GW-pumping demand. Additionally, CVHM assumes steady-state soil-moisture conditions, and simulates deep percolation as a function of irrigation inefficiencies, while C2VSim simulates deep percolation as a function of transient soil-moisture storage conditions. These findings show that estimates of GW-pumping demand are sensitive to these important conceptual differences, which can impact conjunctive-use water management decisions in the CV.

  5. Effects of Withdrawals on Ground-Water Levels in Southern Maryland and the Adjacent Eastern Shore, 1980-2005

    USGS Publications Warehouse

    Soeder, Daniel J.; Raffensperger, Jeff P.; Nardi, Mark R.

    2007-01-01

    Ground water is the primary source of water supply in most areas of Maryland?s Atlantic Coastal Plain, including Southern Maryland. The counties in this area are experiencing some of the most rapid growth and development in the State, resulting in an increased demand for ground-water production. The cooperative, basic water-data program of the U.S. Geological Survey and the Maryland Geological Survey has collected long-term observations of ground-water levels in Southern Maryland and parts of the Eastern Shore for many decades. Additional water-level observations were made by both agencies beginning in the 1970s, under the Power Plant Research Program of the Maryland Department of Natural Resources. These long-term water levels commonly show significant declines over several decades, which are attributed to ground-water withdrawals. Ground-water-level trends since 1980 in major Coastal Plain aquifers such as the Piney Point-Nanjemoy, Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent were compared to water use and withdrawal data. Potentiometric surface maps show that most of the declines in ground-water levels can be directly related to effects from major pumping centers. There is also evidence that deep drawdowns in some pumped aquifers may be causing declines in adjacent, unpumped aquifers. Water-level hydrographs of many wells in Southern Maryland show linear declines in levels year after year, instead of the gradual leveling-off that would be expected as the aquifers equilibrate with pumping. A continual increase in the volumes of water being withdrawn from the aquifers is one explanation for why they are not reaching equilibrium. Although reported ground-water production in Southern Maryland has increased somewhat over the past several decades, the reported increases are often not large enough to account for the observed water-level declines. Numerical modeling simulations indicate that a steady, annual increase in the number of small wells could account for the observed aquifer behavior. Such wells, being pumped at rates below the minimum legal reporting threshold of 10,000 gallons per day, might be the source of the additional withdrawals. More detailed water-use data, especially from domestic wells, central-pivot irrigation wells, and other small users not currently reporting withdrawals to the State, may help to determine the cause of the aquifer declines.

  6. Water Budgets and Potential Effects of Land- and Water-Use Changes for Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.

    2006-01-01

    To address concerns over continued growth in Carson Valley, the U.S. Geological Survey, in cooperation with Douglas County, Nevada, began a study in February 2003 to update estimates of water-budget components in Carson Valley. Estimates of water-budget components were updated using annual evapotranspiration (ET) rates, rates of streamflow loss to infiltration and gain from ground-water seepage, and rates of recharge from precipitation determined from data collected in 2003 and 2004 for the study and reported in the literature. Overall water budgets were developed for the area of basin-fill deposits in Carson Valley for water years 1941-70 and 1990-2005. Water years 1941-70 represent conditions prior to increased population growth and ground-water pumping, and the importation of effluent. A ground-water budget was developed for the same area for water years 1990-2005. Estimates of total inflow in the overall water budget ranged from 432,000 to 450,000 acre-feet per year (acre-ft/yr) for water years 1941-70 and from 430,000 to 448,000 for water years 1990-2005. Estimates of total inflow for both periods were fairly similar because variations in streamflow and precipitation were offset by increases in imported effluent. Components of inflow included precipitation on basin-fill deposits of 38,000 acre-ft/yr for both periods, streamflow of the Carson River and tributaries to the valley floor of 372,000 acre-ft/yr for water years 1941-70 and 360,000 acre-ft/yr for water years 1990-2005, ground-water inflow ranging from 22,000 to 40,000 acre-ft/yr for both periods, and imported effluent of 9,800 acre-ft/yr for water years 1990-2005 with none imported for water years 1941-70. Estimates of ground-water inflow from the California portion of Carson Valley averaged about 6,000 acre-ft/yr and ranged from 4,000 to 8,000 acre-ft/yr. These estimates compared well with a previous estimate of ground-water inflow across the State line. Estimates of total outflow in the overall water budget were 446,000 acre-ft/yr for water years 1941-70, and 439,000 to 442,000 acre-ft/yr for water years 1990-2005. Variations in ET and outflow of the Carson River were offset by an increase in net ground-water pumping for water years 1990-2005. Components of outflow include ET of 151,000 acre-ft/yr for water years 1941-70 and 146,000 acre-ft/yr for water years 1990-2005, streamflow of the Carson River of 293,000 acre-ft/yr for water years 1941-70 and 278,000 acre-ft/yr for water years 1990-2005, and net ground-water pumping of 2,000 acre-ft/yr for water years 1941-70, and 15,000 to 18,000 acre-ft/yr for water years 1990-2005. The decreased average flows for water years 1990-2005 compared to water years 1940-71 were likely the result of dry conditions from 1987 to 1990. The large volumes of inflow and outflow of the Carson River dominate the overall water budget. Estimates of ground-water recharge for water years 1990-2005 ranged from 35,000 to 56,000 acre-ft/yr, and total sources of ground-water discharge ranged from 41,000 to 44,000 acre-ft/yr. Components of ground-water recharge included ground-water inflow from the Carson Range and Pine Nut Mountains (22,000 to 40,000 acre-ft/yr), ground-water recharge from streamflow (a minimum value of 10,000 acre-ft/yr), and secondary recharge of pumped ground water that returns to the water table (3,000 to 6,000 acre-ft/yr). Components of total ground-water discharge included ground-water ET from native phreatophytes, riparian vegetation, and non-irrigated pasture grasses (11,000 acre-ft/yr); ground-water discharge to streamflow of the Carson River (15,000 acre-ft/yr), and net ground-water pumping (15,000 to 18,000 acre-ft/yr). Changes in land use between water years 1941-70 and 1990-2005 have decreased ET by about 5,000 acre-ft/yr. Increased application of effluent for irrigation between those years has decreased the use of surface water and ground water for irrigation by about 9,500 acre-ft/yr. The total decrease, about 15,000 acre-ft/yr, was approximately equal to the net ground-water pumping of 15,000 to 18,000 acre-ft/yr. The decrease in ET and in the use of streamflow and ground water for irrigation would tend to increase outflow of the Carson River from Carson Valley, offsetting the decrease in outflow caused by ground-water pumping without changes in land use predicted by previous studies of water budgets for Carson Valley.

  7. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of subsidence drivers. The model is calibrated to both measured and extrapolated subsidence data. Sensitivity analyses are implemented and several future scenarios evaluated: reduced pumping, 'business as usual' pumping, and increased pumping demand. We show that water level decline, beginning in the 1950s and ending in the early 1970s, is followed closely by subsidence. Also, recent groundwater pumping is shown to drive renewed subsidence. An evaluation of agricultural water use, the main driver of groundwater level decline, shows that deficit irrigation, switching to crops with significantly lower consumptive water use, and active recharge programs are key to addressing long-term groundwater overdraft in light of limited surface water resources.

  8. Pore Water Pumping by Upside-Down Jellyfish

    NASA Astrophysics Data System (ADS)

    Gaddam, Manikantam; Santhanakrishnan, Arvind

    2016-11-01

    Patchy aggregations of Cassiopea medusae, commonly called upside-down jellyfish, are found in sheltered marine environments with low-speed ambient flows. These medusae exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms point towards sunlight. Pulsations of their bells are used to generate currents for suspension feeding. Their pulsations have also been proposed to generate forces that can release sediment locked nutrients into the surrounding water. The goal of this study is to examine pore water pumping by Cassiopea individuals in laboratory aquaria, as a model for understanding pore water pumping in unsteady flows. Planar laser-induced fluorescence (PLIF) measurements were conducted to visualize the release of pore water via bell motion, using fluorescent dye introduced underneath the substrate. 2D particle image velocimetry (PIV) measurements were conducted on the same individuals to correlate PLIF-based concentration profiles with the jets generated by pulsing of medusae. The effects of varying bell diameter on pore water release and pumping currents will be discussed.

  9. Sinkholes Due to Groundwater Withdrawal in Tazerbo Wellfield, SE Libya.

    PubMed

    Alfarrah, Nawal; Berhane, Gebremedhin; Hweesh, Abdelrahim; Walraevens, Kristine

    2017-07-01

    The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man-Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m 3 /d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone-siltstone aquitard and is being heavily pumped. The aquifer and fine-grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells. © 2017, National Ground Water Association.

  10. PUMP SETS NO. 5 AND NO. 4. Each pump set ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  11. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  12. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  13. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  14. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  15. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  16. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  17. Ground-water resources of the Lambayeque Valley, Department of Lambayeque, northern Peru

    USGS Publications Warehouse

    Schoff, Stuart L.; Sayan, M. Juan Luis

    1969-01-01

    Ground water in the Lambayeque Valley has been developed mainly for irrigation of sugarcane and rice. The locality is on the coastal plain of northern Peru, about 650 km (kilometers) northwest of Lima, the national capital. The area considered in this study is about 1,670 sq km (square kilometers) and is mainly on the alluvial fan of Rio Chancay and entirely in the Department of Lambayeque. Chiclayo, the departmental capital and largest city, has a population, of about 46,000. The climate is hot and virtually rainless. Agriculture is dependent on irrigation. The available water, whether in stream s or underground, is introduced from the Andean highlands by Rio Chancay. Rocks in the area range in age from Cretaceous, or possibly Jurassic, to Quaternary and in lithology from dense and hard igneous, sedimentary, and metamorphic rocks to unconsolidated sediments. The bedrock contains and yields water only in small quantities, if at all. The principal water-bearing strata are in the alluvium comprising the fan of Rio Chancay. Where ground water in the alluvium has been most intensively developed, the productive zone is within 20 m (meters) of the land surface and is composed approximately as follows: (1) relatively impermeable soil, clay, and clayey sand, 5 to 10 m thick, (2) permeable sand and gravel, 6 to 10 m thick, at places including one or more layers of clay, so that several water-bearing beds are distinguishable, and (3) relatively impermeable mixtures of clay, sand, and gravel extending below the bottom of wells. Unit 3 in the deepest test continued to 102 m. Unit 2 is the principal source of water tapped by irrigation wells. In the northern part of the area wells locally yield water rather freely from strata as deep as 73 m, but elsewhere in the area the strata deeper than 20 m are not very productive. Wells at and near Chiclayo yield only small amounts, and the deepest well disclosed, in 100 m of material, only 5.5 m of material that can be considered as possibly water bearing. Water in the alluvium of the eastern part of the area occurs under water-table conditions at depths from 1 to 8 m below the land surface. The water table declines during pumping for irrigation and rises when pumping is stopped. Recharge comes mainly from infiltration on irrigated fields and from irrigation ditches and probably varies greatly from year to year at any given place. The ground-water reservoir is replenished when pumps are idle; therefore, it is concluded that the recharge is sufficient to offset withdrawal at a rate comparable to that of 1957, which was about 81 million cum (cubic meters). A study of the effect of protracted pumping on yields of wells suggests that the rate of recharge locally, and for a short period, was more than 76,000 cu m per day. This recharge presumably declined rapidly to zero when irrigation was suspended in the locality. A pumping test showed the transmissivity to be about 950 cu m per day per m and the storage coefficient to be about 0.07. Based on these coefficients, the drawdown caused by one well discharging 10 lps (liters per second) for 6 months would be only 0.066 m at points 4,000 m distant, but 50 wells at the same rate and distance would create 3.3 m of drawdown. As actual distances between wells range from 100 to 300 m where the wells are most numerous and as the average discharge rate is nearer to 20 than to 10 lps, the cumulative effect of the actual pumping is certain to be considerable. If it were not for the recharge resulting from infiltration of irrigation water, the pumping of so many wells probably could not be long sustained. The waters from wells of the Lambayeque Valley compare favorably, in most respects, with the standards established by the U.S. Public Health Service for water for human consumption. Chemical analyses of 10 samples of ground water show that the dissolved solids, silica, bicarbonate, sulfate, and sodium increase in the downstream direction, where

  18. Simulation of ground-water flow and areas contributing recharge to extraction wells at the Drake Chemical Superfund Site, City of Lock Haven and Castanea Township, Clinton County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    2006-01-01

    Extensive remediation of the Drake Chemical Superfund Site has been ongoing since 1983. Contaminated soils were excavated and incinerated on site between 1996 and 1999. After 1999, remedial efforts focused on contaminated ground water. A ground-water remediation system was started in November 2000. The source area of the contaminated ground water was assumed to be the zone 1 area on the Drake Chemical site. The remedial system was designed to capture ground water migrating from zone 1. Also, the remediation system was designed to pump and treat the water in an anoxic environment and re-infiltrate the treated water underground through an infiltration gallery that is hydrologically downgradient of the extraction wells. A numerical ground-water flow model of the surrounding region was constructed to simulate the areas contributing recharge to remedial extraction wells installed on the Drake Chemical site. The three-dimensional numerical flow model was calibrated using the parameter-estimation process in MODFLOW-2000. The model included three layers that represented three poorly sorted alluvial sediment units that were characterized from geologic well and boring logs. Steady-state ground-water flow was simulated to estimate the areas contributing recharge to three extraction wells for three different pumping scenarios--all wells pumping at 2 gallons per minute, at approximately 5 gallons per minute, and at 8 gallons per minute. Simulation results showed the contributing areas to the three extraction wells encompassed 92 percent of zone 1 at a pumping rate of approximately 5 gallons per minute. The contributing areas did not include a very small area in the southwestern part of zone 1 when the three extraction wells were pumped at approximately 5 gallons per minute. Pumping from a fourth extraction well in that area was discontinued early in the operation of the remediation system because the ground water in that area met performance standards. The areas contributing recharge to the three extraction wells did encompass zone 1 at a pumping rate of 8 gallons per minute. At pumping rates of 2 gallons per minute, the contributing areas for the three extraction wells did not encompass zone 1.

  19. Ground water in northeastern Louisville, Kentucky with reference to induced filtration

    USGS Publications Warehouse

    Rorabaugh, M.I.

    1956-01-01

    In cooperation with the city of Louisville, Ky., the U. S. Geological Survey made a detailed investigation during the period February 1945 to March 1947 of the ground-water resources of a 3-square-mile area along the Ohio River north-east of Louisville. Test drilling shows that the principal aquifer consists of about 80 feet of glacial-outwash sands and gravels lying in an old river channel which was cut into rocks of Ordovician, Silurian, and Devonian age. The total ground-water storage in the area is estimated as 7 billion gallons. The ground-water levels are affected by changes in river elevation, by rainfall, and by the effects of pumping in the downtown part of Louisville 3 miles to the southwest. In the northeastern part of the area the flow of ground water, as defined by contour maps, is toward the river, and in the southwestern part of the area it is from the river toward the downtown area of overpumping. Ground water in the area has an average temperature of 56° F. The water, which is moderately hard, is suitable for domestic and industrial uses. Analysis of a pumping test made during the investigation proves that infiltration supplies can be developed. Studies to determine the degree of connection between the river and aquifer were made on the basis of chemical analyses, sections showing temperature distribution in the aquifer during the pumping test, shapes of water-level profiles in the test area, and shapes of time-drawdown curves for a number of observation wells. Quantitative studies to evaluate the hydrologic constants of the aquifer were made by both graphical and mathematical methods. The transmissibility was determined as 121,000 gpd/ft in the test area; the distance to the line source, 400 feet; and the coefficient of storage, 0.0003. A comparison of river-level fluctuations and water-level fluctuations in observation wells shows that conditions along the 6.4-mile reach of river are not greatly different from those at the site of the pumping test. It is estimated that under adverse temperature and river-stage conditions infiltration supplies could be developed to the extent of 280 million gpd in the entire 6.4-mile reach investigated; at average river-water temperature (59° F) about 400 million gpd could be developed. Diagrams were drawn showing the estimated yield of wells of different radii, at various distances from the river, and at various spacings. In making the computations allowance was made for screen losses, dewatering of the aquifer, partial penetration of wells, location wells, eccentricity of large wells, and interference among wells.

  20. A Preliminary Appraisal of the Effect of Pumping on Seawater Intrusion and Upconing in a Small Tropical Island Using 2D Resistivity Technique

    PubMed Central

    Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Aris, Ahmad Zaharin

    2014-01-01

    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1–10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific weight to the theoretical assumptions on the effects of pumping on seawater intrusion and upconing. PMID:25574493

  1. Comparative analysis of DG and solar PV water pumping system

    NASA Astrophysics Data System (ADS)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  2. 46 CFR 131.340 - Recommended placard for emergency instructions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...

  3. 46 CFR 131.340 - Recommended placard for emergency instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...

  4. 46 CFR 131.340 - Recommended placard for emergency instructions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...

  5. 46 CFR 122.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...

  6. 46 CFR 122.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...

  7. 46 CFR 122.512 - Recommended emergency instructions format.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...

  8. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    DTIC Science & Technology

    2015-05-18

    Figure 14: Pump and motor mounting assembly Solenoid valves Water Heater Ball Valves Spray nozzles Compressor Discharge Scroll Pump ...configuration schematic ........................................................................ 31 Figure 14: Pump and motor mounting assembly...Tubes (1 each side) Compressor Discharge Scroll 11 compared to the same engine cycle without the gas generator turbine stage. A temperature

  9. APPARATUS FOR CONTROL OF A BOILING REACTOR RESPONSIVE TO STEAM DEMAND

    DOEpatents

    Treshow, M.

    1963-07-23

    A method of controlling a fuel-rod-in-tube-type boilingwater reactor having nozzles at the point of water entry into the tube is described. Water is pumped into the nozzles by an auxiliary pump operated by steam from an interstage position of the associated turbine, so that the pumping speed is responsive to turbine demand. (AEC)

  10. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  11. Demonstration optimization analyses of pumping from selected Arapahoe aquifer municipal wells in the west-central Denver Basin, Colorado, 2010–2109

    USGS Publications Warehouse

    Banta, Edward R.; Paschke, Suzanne S.

    2012-01-01

    Declining water levels caused by withdrawals of water from wells in the west-central part of the Denver Basin bedrock-aquifer system have raised concerns with respect to the ability of the aquifer system to sustain production. The Arapahoe aquifer in particular is heavily used in this area. Two optimization analyses were conducted to demonstrate approaches that could be used to evaluate possible future pumping scenarios intended to prolong the productivity of the aquifer and to delay excessive loss of saturated thickness. These analyses were designed as demonstrations only, and were not intended as a comprehensive optimization study. Optimization analyses were based on a groundwater-flow model of the Denver Basin developed as part of a recently published U.S. Geological Survey groundwater-availability study. For each analysis an optimization problem was set up to maximize total withdrawal rate, subject to withdrawal-rate and hydraulic-head constraints, for 119 selected municipal water-supply wells located in 96 model cells. The optimization analyses were based on 50- and 100-year simulations of groundwater withdrawals. The optimized total withdrawal rate for all selected wells for a 50-year simulation time was about 58.8 cubic feet per second. For an analysis in which the simulation time and head-constraint time were extended to 100 years, the optimized total withdrawal rate for all selected wells was about 53.0 cubic feet per second, demonstrating that a reduction in withdrawal rate of about 10 percent may extend the time before the hydraulic-head constraints are violated by 50 years, provided that pumping rates are optimally distributed. Analysis of simulation results showed that initially, the pumping produces water primarily by release of water from storage in the Arapahoe aquifer. However, because confining layers between the Denver and Arapahoe aquifers are thin, in less than 5 years, most of the water removed by managed-flows pumping likely would be supplied by depleting overlying hydrogeologic units, substantially increasing the rate of decline of hydraulic heads in parts of the overlying Denver aquifer.

  12. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.

  13. Effects of seasonal operation on the quality of water produced by public-supply wells.

    PubMed

    Bexfield, Laura M; Jurgens, Bryant C

    2014-09-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  14. Development of a new control device for stabilizing blood level in reservoir during extracorporeal circulation.

    PubMed

    Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko

    2010-03-01

    We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.

  15. Effects of past and future groundwater development on the hydrologic system of Verde Valley, Arizona

    USGS Publications Warehouse

    Garner, Bradley D.; Pool, D.R.

    2013-01-01

    Communities in central Arizona’s Verde Valley must manage limited water supplies in the face of rapidly growing populations. Developing groundwater resources to meet human needs has raised questions about the effects of groundwater withdrawals by pumping on the area’s rivers and streams, particularly the Verde River. U.S. Geological Survey hydrologists used a regional groundwater flow model to simulate the effects of groundwater pumping on streamflow in the Verde River. The study found that streamflow in the Verde River between 1910 and 2005 had been reduced as the result of streamflow depletion by groundwater pumping, also known as capture. Additionally, using three hypothetical scenarios for a period from 2005 to 2110, the study’s findings suggest that streamflow reductions will continue and may increase in the future.

  16. Coal-bed methane water effects on dill and essential oils

    USDA-ARS?s Scientific Manuscript database

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  17. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...-acre reservoir; (4) a turnout to supply project effluent water to an existing irrigation system; (5) a...,000 megawatt-hours. Applicant Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P...

  18. Economic impacts on irrigated agriculture of water conservation programs in drought

    NASA Astrophysics Data System (ADS)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  19. Analysis of managed aquifer recharge for retiming streamflow in an alluvial river

    NASA Astrophysics Data System (ADS)

    Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.

    2017-01-01

    Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.

  20. Economic feasibility study of residential and commercial heating using existing water supply systems. Final report June 1, 1979 - August 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Donald R.; Looper, Marshall G.

    1979-08-15

    A study of the use of a low-to-moderate temperature hydrothermal resource for space heating a 140-home residential community has been undertake. The approach centers on use of the existing culinary/potable water supply system to supply heated water to the homes, the culinary water being heated at a single pumping station and then distributed throughout the community through uninsulated, buried water mains. The heated potable water is pumped through individual house water-to-air heat exchangers using sealed, magnetic-drive house pumps and returned to the street distribution lines. These house heat exchangers are either add-on, wall mounted, convective heating units or coils addedmore » to existing forced air heating systems.« less

  1. Surface deformation induced by water pumping for construction of Mass Rapid Transportation in Taipei basin

    NASA Astrophysics Data System (ADS)

    Hu, J. C.; Wu, P. C.; Tung, H.; Tsai, M. C.

    2017-12-01

    In 1968, there were 2,200 wells in the Taipei Basin used for water supply to meet the requirement of high population density. The overuse of ground water lead to the land subsidence rate up to 5 cm/yr. Although the government had already begun to limit groundwater pumping since 1968, the groundwater in the Taipei Basin demonstrated temporary fluctuation induced by pumping water for large deep excavation site or engineering usage. The previous study based on precise leveling suggested that the surface deformation was highly associated with the recovery of water level. In 1989, widespread uplift dominated in Taipei basin due to the recovery of ground water Table. In this study, we use 37 high-resolution X-band COSMO-SkyMed radar images from May 2011 to April 2015 to characterize deformation pattern in the period of construction of Mass Rapid Transportation (MRT). We also use 30 wells and 380 benchmarks of precise leveling in Taipei basin to study the correlation of surface deformation and change of ground water table. The storability is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Moreover, the high water pumping in two major aquifers, Jignme and Wuku Foramtions, before the underground construction for MRT led to inflict surface deformation and no time delay observed for surface deformation during the water pumping. It implies that the poro-elastic effect dominates in major aquifers in Taipei basin.

  2. Hydrologic evaluation of salinity control and reclamation projects in the Indus Plain, Pakistan--A summary

    USGS Publications Warehouse

    Mundorff, Maurice John; Carrigan, P.H.; Steele, T.D.; Randall, A.D.

    1976-01-01

    This report summarizes the observations and findings of a team of four specialists from the U.S. Geological Survey assigned to Pakistan under the auspices of the U.S. Agency for International Development during May to August 1972 for a hydrologic evaluation of Salinity Control and Reclamation Projects in the Indus Plain Individual members of the team undertook comprehensive studies related to climatology, surface-water hydrology, and the canal system; streamflow and sediment yields of the rivers; computer applications to hydrologic data; aquifer characteristics; hydrologic evaluation of Salinity Control and Reclamation Projects (SCARPs); tubewell performance; hydrology of shallow versus deep tubewells; well and well-screen design in the Indus Plain; evaluation of observed and anticipated trends in both private and public tubewell development; evaluation of water-quality programs, data analysis, and records, and computer coding of special water-quality data; and evaluation of water-level data, well discharge and specific-capacity tests and aquifer tests. The reclamation program, by pumping from tubewells, has been notably successful in lowering the water table, in providing supplemental water for irrigation and for leaching of salinized soils, and in improving crop production. Some changes in water quality have been observed in SCARP-I and the Mona Scheme of SCARP-II, but these have not as yet (1972) significantly affected the utility of the water for irrigation. Problems associated with reclamation include control of deterioration in performance of tubewells and their rehabilitation, local brackish or saline-water encroachment, and maintenance of a favorable salt balance in the ground-water system. Rapid and as yet (1972) unregulated growth of shallow private tubewell development in the past decade has introduced complicating factors to the reclamation planning of the early 1960's which had emphasized public tubewell development through the SCARP program. In comparing shallow (0-200 feet) with deep (200-400 feet} tubewell development, it is concluded that long-term response of the water table is the same, whether many shallow wells of small capacity or fewer deeper wells of large capacity pump the same total volume of water in the same area. Moreover, it is concluded that there is no definite advantage for either type of pumping regime with respect to water quality. Utilization of the Punjab aquifer could be greatly enhanced by recharge of high-quality water diverted from the Chenab and Jhelum Rivers to the Ravi and Sutlej Rivers by way of the link and irrigation canals during periods of surplus flow. Recharge to the aquifer could also be improved by diversion of high-quality water from the Chenab and the Jhelum to natural nalas and other surface drainageways during periods of surplus flow. Such recharge would be of much better quality than water leaching downward from irrigated fields. Continued monitoring of the hydrologic system and research on problems engendered by reclamation are essential to the viability of the SCARP program and related water-resources development in the Indus River Basin.

  3. Hydrogeologic Effects of In-Situ Groundwater Treatment Using Biodegradation

    DTIC Science & Technology

    1987-06-15

    development of groundwater divides, 2 * removal of contaminated water through pumping foillowed by above ground treatment, Excavating the contaminant source... water infiltration. During in-situ bioreclama- tion the pol:uted extracted groundwater is often treated, and after addition of nutrients and oxygen...1982, "Degrada- tion of phenolic contaminants in groundwater by aerobic bacteria: St. Louis Park, Minnesota", Ground Water , Vol.20, No.6, pp.703-710

  4. USGS Regional Groundwater Availability Studies: Quantifying Aquifer Response

    NASA Astrophysics Data System (ADS)

    Reeves, H. W.

    2017-12-01

    The U.S. Geological Survey (USGS) identified six challenges in determining groundwater availability: 1) limited direct measurement, 2) varying response times for different systems, 3) varying spatial scales for different availability questions and aquifer systems, 4) varying tolerance to changes in water levels or outflows, 5) redistribution of stresses and potential return-flow of water pumped from the system, and 6) varying chemical quality of groundwater and the role of quality in determining suitability for different uses. USGS Regional groundwater availability studies are designed to address these challenges. USGS regional groundwater availability studies focus on quantifying the groundwater budget for principal aquifers and determining how this budget has changed in response to pumping or variations in climate. This focus requires relating limited measurements to a quantitative understanding of the temporal and spatial response of regional aquifers. For most principal aquifer studies, aquifer response is quantified using regional groundwater flow models, and USGS regional groundwater availability studies have provided test cases for the development and application of advanced modeling techniques and methods. Results from regional studies from the Lake Michigan Basin and Northern Atlantic Coastal Plain illustrate how different parts of these systems respond differently to pumping with some areas showing large drawdowns and others having much less drawdown but greater capture of discharge. The Central Valley and Mississippi Embayment studies show how extensive pumping and transfer of water have resulted in much more groundwater moving through the aquifer system under current conditions compared to pre-development. These and other results from regional studies will be explored to illustrate how regional groundwater availability and related studies address the six challenges to determining groundwater availability.

  5. Analysis of complex pumping interactions during an aquifer test conducted at a well field in the coastal plain near Augusta, Georgia, October 2009

    USGS Publications Warehouse

    Gonthier, Gerald J.

    2009-01-01

    A 24-hour aquifer test was conducted in Well Field 2 near Augusta, Georgia, October 21–22, 2009, to characterize the hydraulic properties of the Midville aquifer system. The selected well was pumped at a rate of 684 gallons per minute. At the initiation of aquifer-test pumping, water levels in each of eight wells monitored for the test were still recovering from the well-field production. Because water levels had not stabilized, data analyses were needed to account for the ongoing recovery. Hydraulic properties of the Midville aquifer system were estimated by an approach based on the Theis model and superposition. The Midville aquifer system was modeled as a Theis aquifer. The principle of superposition was used to sum the effects of multiple pumping and recovery events from a single pumped well and to sum the effects of all pumped wells as the estimated total drawdown at a monitored well. Simulated drawdown at each monitored well was determined by using a spreadsheet (SUMTheis) function of aquifer transmissivity and storativity. Simulated drawdown values were transformed into simulated water levels, accounting for longterm water-level trends. The transmissivity and storativity values that were used to calibrate the simulated water levels to measured water levels (roughly 4,000 square feet per day and 2E-04, respectively) provide estimates of the transmissivity and storativity of the Midville aquifer system in the vicinity of Well Field 2. The approach used in this study can be applied to similar well-field tests in which incomplete drawdown recovery or other known pumping is evident.

  6. Heart Pump Design for Cleveland Clinic Foundation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.

  7. Simulation of ground-water flow in an unconfined sand and gravel aquifer at Marathon, Cortland County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2000-01-01

    The Village of Marathon, in Cortland County, N.Y., has three municipal wells that tap a relatively thin (25 to 40 feet thick) and narrow (less than 0.25 mile wide) unconfined sand and gravel aquifer in the Tioughnioga River valley. Only one of the wells is in use because water from one well has been contaminated by petroleum chemicals from a leaking storage tank, and water from the other well contains high concentrations of manganese. The operating well pumps about 0.1 million gallons per day and supplies about 1,000 people.A three-dimensional, finite-difference ground-water-flow model was used to (1) compute hydraulic heads in the aquifer under steady-state conditions, (2) develop a water budget, and (3) delineate the areas contributing recharge to two simulated wells that represent two of the municipal wells: one 57 feet east of the Tioughnioga River, the other 4,000 feet to the south and 75 feet from a man-made pond. The water budget for simulated long-term average, steady-state conditions with two simulated pumping wells indicates that the principal sources of recharge to the unconfined aquifer are unchanneled runoff and ground-water inflow from the uplands (41 percent of total recharge), precipitation that falls directly on the aquifer (34 percent), and stream leakage (23 percent). Only 2 percent of the recharge to the aquifer is from ground-water underflow into the northern end of the modeled area. Most of the simulated groundwater discharge from the modeled area (78 percent of total discharge) is to the Tioughnioga River; the rest discharges to the two simulated wells (19 percent) and as underflow at the southern end of the modeled area (3 percent).Results of a particle-tracking analysis indicate that the aquifer contributing area of the northern (simulated) well is 0.10 mile wide and 0.15 mile long and encompasses 0.015 square miles; the contributing area of the southern (simulated) well is 0.20 mile wide and 0.11 mile long and encompasses 0.022 square miles. The average traveltime of ground water from the valley wall to either simulated well is about 1.5 years, calculated on the basis of an assumed aquifer porosity of 0.3. The flowpath analysis indicates that both contributing areas contain surface-water sources of recharge; the Tioughnioga River and Hunts Creek contribute water to the northern well, and a pond and a small tributary contribute water to the southern well.Ground-water temperature in an observation well between the Tioughnioga River and the municipal well fluctuated several degrees Fahrenheit in response to pumping of the municipal well. This temperature fluctuation, in conjunction with the pumping well causing a ground-water gradient from the Tioughnioga River to the pumping well (ground-water levels in the pumping well were generally greater than 3 ft lower than that of the Tioughnioga River), indicate that there is a hydraulic connection between the river and aquifer at this site.

  8. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    NASA Astrophysics Data System (ADS)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  9. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    DOE PAGES

    Im, Piljae; Liu, Xiaobing; Henderson, Hugh

    2018-01-16

    The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less

  10. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Liu, Xiaobing; Henderson, Hugh

    The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less

  11. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  12. 88. (Credit CBF) Twelve Mile Bayou Pumping Station and force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. (Credit CBF) Twelve Mile Bayou Pumping Station and force main for pumping water over levee and into the canal (Blind Bayou), March 1913. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  13. Tafilalet OASIS System: Water Resources Management and Investigation by GIS and Groundwater Flow Model

    NASA Astrophysics Data System (ADS)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2014-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.

  14. Water tight.

    PubMed

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use of water-efficient plumbing fixtures. Multilateral development agencies have identified some developing country cities as demonstrated sites for urban water conservation.

  15. Development of a Self-Powered Food Sanitation Center

    DTIC Science & Technology

    2002-11-01

    This pump is capable of priming itself, up to 7 feet of water, and can operate dry without damage. The pump is actuated by a pressure - switch sensing...the pressure of the accumulator. The pressure - switch is set to 45 psi and has a 5 psi differential. 3.8 Mixing Valve The mixing valve...pressure of about 0.8 psi. When the boiler reaches about 0.7 psi, a pressure - switch deactivates the high-fire fuel-control solenoid, bypassing the

  16. U.S. Army Oxygen Generation System Development

    DTIC Science & Technology

    2010-04-01

    engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum

  17. DOE ZERH Case Study: Dwell Development, Reclaimed Modern, Seattle, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 30 without PV, with 2x8 24” on center walls with blown fiberglass and 4” polysio rigid foam; basement with 2” XPS interior, 4” under slab, 4” exterior of foundation wall; vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater.

  18. 46 CFR 56.50-55 - Bilge pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Each self-propelled vessel must be provided with a power-driven pump or pumps connected to the bilge... power-driven pump is required. (See Part 171 of this chapter for determination of criterion numeral.) 5... available, or where a suitable water supply is available from a power-driven pump of adequate pressure and...

  19. Water resources of the Mobile area, Alabama, with a section on salinity of the Mobile River

    USGS Publications Warehouse

    Robinson, W.H.; Powell, William J.; Brown, Eugene; Corps of Engineers, U.S. Army

    1956-01-01

    Water is an abundant resource of the Mobile area. The Mobile River has an estimated average flow of 60, 000 cubic feet per second (cfs), or about 39,000 million gallons per day (mgd). It is the largest single source of water. Water is available in substantial quantities from the many local streams and extensive water-bearing formations almost anywhere in the area. Surface water is low in dissolved mineral matter and is extremely soft. Salt water moving up the Mobile River from Mobile Bay during periods of low river flow, however, limits the use of that stream as a source of supply. The principal water-bearing formations are the alluvium and sediments of Miocene age. The Miocene strata dip toward the southwest, forming an artesian basin in the downtown area of Mobile. Small groundwater supplies can be developed practically everywhere, and supplies for industrial or other large-scale uses are available north of Mobile. The average use of water from all sources in the area during 1954 was about 356 mgd, of which about 20 mgd was used for domestic supplies and 336 mgd was used by industry. An estimated 42 mgd of ground water is used in the Mobile area. The discharge from wells used by industry ranges from 10 to 1,500 gallons per minute (gpm}, and the specific capacity of the large-capacity wells ranges from less than 6 to about 6 3 gpm per foot of drawdown. Concentrated pumping in the downtown area of Mobile between 1941 and 1945 resulted in encroachment of salt water from the Mobile River into the alluvium. Because of a decrease in pumping in that vicinity, the sodium chloride content of the water has decreased substantially since 1945. The quality of ground water is variable. Hardness of waters sampled ranged from 1 to 2, 190 parts per million (ppm}, the dissolved solids from 27 to 13, 000 ppm, and the chloride from 2.2 to 6,760 ppm. The water of best quality occurs between McIntosh and Prichard, and the water of poorest quality occurs in the downtown area of Mobile. The water-supply systems presently developed in the metropolitan area could furnish a moderate increase without taxing their facilities; with some increase in plant and pumping facilities, they could support a substantial increase. Industries outside the metropolitan area must develop their own supplies from local streams or wells.

  20. An analytical study on groundwater flow in drainage basins with horizontal wells

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  1. Study toward high-performance thermally driven air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru

    2017-01-01

    The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.

  2. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  3. Study on Operation Optimization of Pumping Station's 24 Hours Operation under Influences of Tides and Peak-Valley Electricity Prices

    NASA Astrophysics Data System (ADS)

    Yi, Gong; Jilin, Cheng; Lihua, Zhang; Rentian, Zhang

    2010-06-01

    According to different processes of tides and peak-valley electricity prices, this paper determines the optimal start up time in pumping station's 24 hours operation between the rating state and adjusting blade angle state respectively based on the optimization objective function and optimization model for single-unit pump's 24 hours operation taking JiangDu No.4 Pumping Station for example. In the meantime, this paper proposes the following regularities between optimal start up time of pumping station and the process of tides and peak-valley electricity prices each day within a month: (1) In the rating and adjusting blade angle state, the optimal start up time in pumping station's 24 hours operation which depends on the tide generation at the same day varies with the process of tides. There are mainly two kinds of optimal start up time which include the time at tide generation and 12 hours after it. (2) In the rating state, the optimal start up time on each day in a month exhibits a rule of symmetry from 29 to 28 of next month in the lunar calendar. The time of tide generation usually exists in the period of peak electricity price or the valley one. The higher electricity price corresponds to the higher minimum cost of water pumping at unit, which means that the minimum cost of water pumping at unit depends on the peak-valley electricity price at the time of tide generation on the same day. (3) In the adjusting blade angle state, the minimum cost of water pumping at unit in pumping station's 24 hour operation depends on the process of peak-valley electricity prices. And in the adjusting blade angle state, 4.85%˜5.37% of the minimum cost of water pumping at unit will be saved than that of in the rating state.

  4. Factors Affecting Specific-Capacity Tests and their Application--A Study of Six Low-Yielding Wells in Fractured-Bedrock Aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.

    2010-01-01

    This report by the U.S. Geological Survey, prepared in cooperation with the Pennsylvania Department of Environmental Protection, Bureau of Mining and Reclamation, evaluates factors affecting the application of specific-capacity tests in six low-yielding water wells in areas of coal mining or quarrying in Pennsylvania. Factors such as pumping rate, duration of pumping, aquifer properties, wellbore storage, and turbulent flow were assessed by theoretical analysis and by completing multiple well tests, selected to be representative of low-yielding household-supply wells in areas of active coal mining or quarrying. All six wells were completed in fractured-bedrock aquifers--five in coal-bearing shale, siltstone, sandstone, limestone, and coal of Pennsylvanian and Permian age and one in limestone of Cambrian age. The wells were pumped 24 times during 2007-09 at rates from 0.57 to 14 gallons per minute during tests lasting from 22 to 240 minutes. Geophysical logging and video surveys also were completed to determine the depth, casing length, and location of water-yielding zones in each of the test wells, and seasonal water-level changes were measured during 2007-09 by continuous monitoring at each well. The tests indicated that specific-capacity values were reproducible within about ? 20 percent if the tests were completed at the same pumping rate and duration. A change in pumping duration, pumping rate, or saturated aquifer thickness can have a substantial effect on the comparability of repeated tests. The largest effect was caused by a change in aquifer thickness in well YO 1222 causing specific capacity from repeated tests to vary by a factor of about 50. An increase in the duration of pumping from 60 to 180 minutes caused as much as a 62 percent decrease in specific capacity. The effect of differing pumping rates on specific capacity depends on whether or not the larger rate causes the water level in the well to fall below a major water-yielding zone; when this decline happened at well CA 462, specific capacity was reduced by about 63 percent. Estimates of the maximum yield for low-yielding wells that are computed by multiplying the available drawdown by the specific-capacity value may contain large errors if the wells were pumped at low rates that do not cause much water-level drawdown. The estimates of yield are likely to be too large because the effects of lowering the water level in the well below water-yielding zones have not been incorporated. Better yield estimates can be made by the use of step-drawdown tests or by over-pumping at a rate large enough to dewater most of the wellbore. The maximum well yield, after overpumping, can be estimated from the rate of water-level recovery or by subtracting the incremental rate of change of borehole storage at the end of the test from the pumping rate.

  5. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; wheremore » the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells, are developed initially. Second, simulated capture frequency maps are developed, based on transport modelling results. Both interpolated and simulated capture frequency maps are based on operation of the systems over a full year. These two capture maps are then overlaid on the plume distribution maps for inspection of the relative orientation of the contaminant plumes with the capture frequency. To quantify the relative degree of protection of the river from discharges of Cr(VI) (and conversely, the degree of threat) at any particular location, a systematic method of evaluating and mapping the plume/capture relationship was developed. By comparing the spatial relationship between contaminant plumes and hydraulic capture frequency, an index of relative protectiveness is developed and the results posted on the combined plume/capture plan view map. Areas exhibiting lesser degrees of river protection are identified for remedial process optimization actions to control plumes and prevent continuing discharge of Cr(VI) to the river.« less

  6. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  8. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  9. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heatermore » (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.« less

  10. Electricity for groundwater use: constraints and opportunities for adaptive response to climate change

    NASA Astrophysics Data System (ADS)

    Scott, Christopher A.

    2013-09-01

    Globally, groundwater use is intensifying to meet demands for irrigation, urban supply, industrialization, and, in some instances, electrical power generation. In response to hydroclimatic variability, surface water is being substituted with groundwater, which must be viewed as a strategic resource for climate adaptation. In this sense, the supply of electricity for pumping is an adaptation policy tool. Additionally, planning for climate-change mitigation must consider CO2 emissions resulting from pumping. This paper examines the influence of electricity supply and pricing on groundwater irrigation and resulting emissions, with specific reference to Mexico—a climate-water-energy ‘perfect storm’. Night-time power supply at tariffs below the already-subsidized rates for agricultural groundwater use has caused Mexican farmers to increase pumping, reversing important water and electricity conservation gains achieved. Indiscriminate groundwater pumping, including for virtual water exports of agricultural produce, threatens the long-term sustainability of aquifers, non-agricultural water uses, and stream-aquifer interactions that sustain riparian ecosystems. Emissions resulting from agricultural groundwater pumping in Mexico are estimated to be 3.6% of total national emissions and are equivalent to emissions from transporting the same agricultural produce to market. The paper concludes with an assessment of energy, water, and climate trends coupled with policy futures to address these challenges.

  11. Observation of stimulated Mie-Bragg scattering from large-size-gold-nanorod suspension in water

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Yong, Ken-Tye; Zhu, Jing; Prasad, P. N.

    2012-04-01

    Highly directional backward stimulated scattering has been observed from large-size-gold nanorods suspended in water, pumped with ˜816 nm and ˜10 ns laser pulses. In comparison with other known stimulated scattering effects, the newly observed effect exhibits the following features. (i) The scattering centers are impurity particles with a size comparable in order of magnitude to the incident wavelength. (ii) There is no frequency shift between the pump wavelength and the stimulated scattering wavelength. (iii) The pump threshold can be significantly lower than that of stimulated Brillouin scattering in pure water. The nonfrequency shift can be explained by the formation of a standing-wave Bragg grating induced by the interference between the forward pump beam and the backward Mie-scattering beam. The low pump threshold results from stronger initial Mie-scattering (seed) signals and the intensity-dependent refractive-index change of the scattering medium enhanced by metallic nanoparticles.

  12. Computation of water hammer protection of modernized pumping station

    NASA Astrophysics Data System (ADS)

    Himr, Daniel

    2014-03-01

    Pumping station supplies water for irrigation. Maximal capacity 2 × 1.2m3·s-1 became insufficient, thus it was upgraded to 2 × 2m3·s-1. Paper is focused on design of protection against water hammer in case of sudden pumps trip. Numerical simulation of the most dangerous case (when pumps are giving the maximal flow rate) showed that existing air vessels were not able to protect the system and it would be necessary to add new vessels. Special care was paid to influence of their connection to the main pipeline, because the resistance of the connection has a significant impact on the scale of pressure pulsations. Finally, the pump trip was performed to verify if the system worked correctly. The test showed that pressure pulsations are lower (better) than computation predicted. This discrepancy was further analysed.

  13. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  14. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.

    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less

  15. 33 CFR 150.531 - How many fire pumps must be kept ready for use at all times?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How many fire pumps must be kept ready for use at all times? 150.531 Section 150.531 Navigation and Navigable Waters COAST GUARD... Specialty Equipment Miscellaneous Operations § 150.531 How many fire pumps must be kept ready for use at all...

  16. Effects of Pumping and Well Disinfection on Arsenic Release to Well Water

    NASA Astrophysics Data System (ADS)

    Gotkowitz, M.; Shelobolina, E.; Roden, E. E.

    2007-12-01

    In areas of northeastern Wisconsin, arsenic-bearing sulfides and iron oxides are distributed throughout a sandstone aquifer used for domestic water supplies. Aqueous arsenic concentrations exceed 10 μg/L in approximately 20% of wells in this region. These wells are often subjected to in situ chlorine disinfection to control nuisance or pathogenic bacteria. Field-based experiments investigating the effects of pumping and well disinfection showed that under non-pumping conditions, the geochemical environment in a domestic well is strongly reducing. Aqueous arsenic ranged from 10 to 18 μg/L, and the number of all tested groups of microorganisms (As(III)-reducing, Fe(III)-reducing, sulfate-reducing, As(V)-oxidizing, and aerobic microorganisms) increased 0.3 to 2.4 orders of magnitude in the well water under non-pumping conditions. The diverse populations of anaerobic and aerobic microorganisms reflect the complexity of the borehole environment. The number of Fe(III)-reducing bacteria correlates with As(III) concentrations, suggesting that microbially- facilitated reduction of iron (hydr)oxides contributes to the relatively rapid rise in aqueous arsenic observed under non-pumping conditions. Pumping the well introduces up to 1 mg/L of oxygen into the well water. The change in redox imposed by pumping decreased the number of anaerobic As(III)-reducing, Fe(III)-reducing, and sulfate-reducing microorganisms by 1 to 1.7 orders of magnitude. Aqueous arsenic also decreased during pumping (<7 μg/L), indicating that low-arsenic groundwater recharges the well. Chlorine disinfection produced strongly oxidizing conditions in the well for one hour. Treatment reduced the numbers of all microorganisms tested, but the populations recovered within three weeks. This suggests that either fresh formation water re-inoculated the well or that biofilm and scale in the well harbored some microbes from the disinfectant. Post-disinfection arsenic concentrations were similar to those measured prior to treatment. Although arsenic release under non-pumping conditions appears to be microbially mediated, well disinfection did not provide a sustained improvement in well- water quality.

  17. FILTERED WATER RESERVOIR, LOOKING NORTHWEST. A CORNER OF THE NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FILTERED WATER RESERVOIR, LOOKING NORTHWEST. A CORNER OF THE NEW PUMPING STATION IS VISIBLE AT RIGHT. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  18. Ground-Water Availability from the Hawi Aquifer in the Kohala Area, Hawaii

    USGS Publications Warehouse

    Underwood, Mark R.; Meyer, William; Souza, William R.

    1995-01-01

    A ground-water study consisting of test-well drilling, aquifer tests, and numerical simulation was done to investigate ground-water availability in the basal part of the Hawi aquifer between the western drainage divide of Pololu Valley and Upolu Point in Kohala, Hawaii. The test-well drilling provided information on geology, water levels, water quality, vertical extent of the freshwater, and the thickness of the freshwater-saltwater transition zone in that aquifer. A total of 12 test wells were drilled at eight locations. Aquifer tests were done at five locations to estimate the hydraulic conductivity of the aquifer. Using information on the distribution of recharge, vertical extent of freshwater, hydraulic conductivity, and geometry of the basal aquifer, a numerical model was used to simulate the movement of water into, through, and out of the basal aquifer, and the effect of additional pumping on the water levels in the aquifer. Results of the modeling indicate that ground-water withdrawal of 20 million gallons per day above the existing withdrawal of 0.6 million gallons per day from the basal aquifer is hydrologically feasible, but that spacing, depth, and pumping rates of individual wells are important. If pumping is concentrated, the likelihood of saltwater intrusion is increased. The additional withdrawal of 20 million gallons per day would result in a reduction of ground-water discharge to the ocean by an amount equal to pumpage. Although model-calculated declines in water-level outside the area of pumping are small, pumping could cause some reduction of streamflow near the mouth of Pololu Stream.

  19. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required tomore » prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.« less

  20. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical constituent concentrations increased with depth, and water from all permeable zones contained sulfate at concentrations that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter. A 72-hour aquifer test pumped LFA well 33P028 at 740 gallons per minute (gal/min), producing about 39 ft of drawdown in the pumped well and about 0.4 foot in nearby UFA well 33P029. Simulation using the U.S. Geological Survey finite-difference code MODFLOW was used to determine long-term, steady-state flow in the Floridan aquifer system, assuming the LFA well was pumped continuously at a rate of 740 gal/min. Simulated steady-state drawdown in the LFA was identical to that observed in pumped LFA well 33P028 at the end of the 72-hour test, with values larger than 1 ft extending 4.4 square miles symmetrically around the pumped well. Simulated steady-state drawdown in the UFA resulting from pumping in LFA well 33P028 exceeded 1 ft within a 1.4-square-mile circular area, and maximum drawdown in the UFA was 1.1 ft. Leakage from the UFA through the Lower Floridan confining unit contributed about 98 percent of the water to the well; lateral flow from specified-head model boundaries contributed about 2 percent. About 80 percent of the water supplied to LFA well 33P028 originated from within 1 mile of the well, and 49 percent was derived from within 0.5 mile of the well. Vertical hydraulic gradients and vertical leakage are progressively higher near the LFA pumped well which results in a correspondingly higher contribution of water from the UFA to the pumped well at distances closer to the pumped well. Simulated pumping-induced interaquifer leakage from the UFA to the LFA totaled 725 gal/min (1.04 million gallons per day), whereas simulated pumping at 205 gal/min (0.3 million gallons per day) from UFA well 33P029 produced the equivalent maximum drawdown as pumping LFA well 33P028 at 740 gal/min during the aquifer test. This equivalent pumpin

Top