Sample records for water quality case

  1. 40 CFR 121.30 - Review and advice.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determinations, definitions and interpretations with respect to the meaning and content of water quality... the application of all applicable water quality standards in particular cases and in specific... by dischargers with the conditions and requirements of applicable water quality standards. In cases...

  2. 40 CFR 121.30 - Review and advice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determinations, definitions and interpretations with respect to the meaning and content of water quality... the application of all applicable water quality standards in particular cases and in specific... by dischargers with the conditions and requirements of applicable water quality standards. In cases...

  3. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    NASA Astrophysics Data System (ADS)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.

  4. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  5. The Role of Reliability, Vulnerability and Resilience in the Management of Water Quality Systems

    NASA Astrophysics Data System (ADS)

    Lence, B. J.; Maier, H. R.

    2001-05-01

    The risk based performance indicators reliability, vulnerability and resilience provide measures of the frequency, magnitude and duration of the failure of water resources systems, respectively. They have been applied primarily to water supply problems, including the assessment of the performance of reservoirs and water distribution systems. Applications to water quality case studies have been limited, although the need to consider the length and magnitude of violations of a particular water quality standard has been recognized for some time. In this research, the role of reliability, vulnerability and resilience in water quality management applications is investigated by examining their significance as performance measures for water quality systems and assessing their potential for assisting in decision making processes. The importance of each performance indicator is discussed and a framework for classifying such systems, based on the relative significance of each of these indicators, is introduced and illustrated qualitatively with various case studies. Quantitative examples drawn from both lake and river water quality modeling exercises are then provided.

  6. Real-time control of combined surface water quantity and quality: polder flushing.

    PubMed

    Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S

    2010-01-01

    In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility.

  7. Potential for water-quality degradation of interconnected aquifers in west-central Florida

    USGS Publications Warehouse

    Metz, P.A.; Brendle, D.L.

    1996-01-01

    Thousands of deep artesian wells were drilled into the Upper Floridan aquifer in west-central Florida prior to well-drilling regulations adopted in the 1970's. The wells were usually completed with a short length of casing through the unconsolidated sediments and were left open to multiple aquifers containing water of varying quality. These open boreholes serve as a potential source of water-quality degradation within the aquifers when vertical internal borehole flow is induced by hydraulic-head differences. Thispotential for water-quality degradation exists in west-central Florida where both the intermediate aquifer system and Upper Floridan aquifer exist. Measurements of caliper, temperature, gamma, fluid conductivity, and flow were obtained in 87 wells throughout west-central Florida to determine the occurrence of interaquifer borehole flow between the intermediate aquifer system and the Upper Floridan aquifer. Flow measurements were made using an impeller flowmeter, a heat-pulse flowmeter, and a video camera with an impeller flowmeter attachment. Of the 87 wells measured with the impeller flowmeter, 17 had internal flow which ranged from 10 to 300 gallons per minute. A heat-pulse flowmeter was used in 19 wells in which flow was not detected using the impeller flowmeter. Of these 19 wells, 18 had internal flow which ranged from 0.3 to 10gallons per minute. Additionally, water-quality samples were collected from specific contributing zones in wells that had internal flow. Analysis of geophysical and water-quality data indicates degradation of water quality has occurred from mineralized ground water flowing upward from the Upper Floridan aquifer into the intermediate aquifer system through both uncased boreholes and corroded black-iron well casings. In areas where there is a downward component of flow, data indicate that potable water from the intermediate aquifer system is artificially recharging the Upper Floridan aquifer through open boreholes. A geographical area was defined where there is a potential for water- quality degradation due to improperly cased wells. This area was delineated based on where there is an upward component of ground-water flow and where there is an occurrence of poor-quality water. The delineated area includes parts of Hillsborough, Manatee, Sarasota, Charlotte, De Soto, and Hardee Counties. To prevent further contamination of the aquifers, the Southwest Florida Water Management District began the Quality of Water Improvement Program in 1974 to restore hydrologic conditions altered by improperly constructed wells or deteriorating casings. As of May 1994, more than 3,000 wells have been inspected and approximately 1,350 have been plugged. To minimize interaquifer contamination, existing wells, especially ones with black-iron casing, should be inspected and, if necessary, repaired with new casing or plugged.

  8. The case for regime-based water quality standards

    Treesearch

    G.C. Poole; J.B. Dunham; D.M. Keenan; S.T. Sauter; D.A. McCullough; C. Mebane; J.C. Lockwood; D.A. Essig; M.P. Hicks; D.J. Sturdevant; E.J. Materna; S.A. Spalding; J. Risley; M. Deppman

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type...

  9. Development of innovative computer software to facilitate the setup and computation of water quality index.

    PubMed

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-04-26

    Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases.

  10. Application of cooperative and non-cooperative games in large-scale water quantity and quality management: a case study.

    PubMed

    Mahjouri, Najmeh; Ardestani, Mojtaba

    2011-01-01

    In this paper, two cooperative and non-cooperative methodologies are developed for a large-scale water allocation problem in Southern Iran. The water shares of the water users and their net benefits are determined using optimization models having economic objectives with respect to the physical and environmental constraints of the system. The results of the two methodologies are compared based on the total obtained economic benefit, and the role of cooperation in utilizing a shared water resource is demonstrated. In both cases, the water quality in rivers satisfies the standards. Comparing the results of the two mentioned approaches shows the importance of acting cooperatively to achieve maximum revenue in utilizing a surface water resource while the river water quantity and quality issues are addressed.

  11. Temporal changes in the vertical distribution of flow and chloride in deep wells.

    PubMed

    Izbicki, John A; Christensen, Allen H; Newhouse, Mark W; Smith, Gregory A; Hanson, Randall T

    2005-01-01

    The combination of flowmeter and depth-dependent water-quality data was used to evaluate the quantity and source of high-chloride water yielded from different depths to eight production wells in the Pleasant Valley area of southern California. The wells were screened from 117 to 437 m below land surface, and in most cases, flow from the aquifer into the wells was not uniformly distributed throughout the well screen. Wells having as little as 6 m of screen in the overlying upper aquifer system yielded as much as 50% of their water from the upper system during drought periods, while the deeper parts of the well screens yielded 15% or less of the total yield of the wells. Mixing of water within wells during pumping degraded higher-quality water with poorer-quality water from deeper depths, and in some cases with poorer-quality water from the overlying upper aquifer system. Changes in the mixture of water within a well, resulting from changes in the distribution of flow into the well, changed the quality of water from the surface discharge of wells over time. The combination of flowmeter and depth-dependent water quality data yielded information about sources of high-chloride water to wells that was not available on the basis of samples collected from nearby observation wells. Changing well design to eliminate small quantities of poor-quality water from deeper parts of the well may improve the quality of water from some wells without greatly reducing well yield.

  12. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  13. Biological Water Quality Criteria

    EPA Pesticide Factsheets

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  14. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    EPA Science Inventory

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  15. Development of innovative computer software to facilitate the setup and computation of water quality index

    PubMed Central

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. Conclusion A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases. PMID:24499556

  16. WETLANDS AND WATER QUALITY TRADING: REVIEW OF CURRENT SCIENCE AND ECONOMIC PRACTICES WITH SELECTED CASE STUDIES

    EPA Science Inventory

    The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...

  17. Evaluating the Economic and Social Benefits of Nutrient ...

    EPA Pesticide Factsheets

    New England’s coastal social-ecological systems are subject to chronic environmental problems, including water quality degradation. Researchers at EPA’s Office of Research and Development (ORD) Atlantic Ecology Division (AED) are piloting an effort to further understand how reduced water quality due to nutrient enrichment is affecting and may affect the economic prosperity, social capacity, and ecological integrity of coastal New England communities. This research is part of task 4.61 of ORD’s Sustainable and Healthy Communities Research Program (Integrated Solutions for Sustainable Communities: Social-Ecological Systems for Resilience and Adaptive Management in Communities - A Cape Cod Case Study). Concurrent with this effort, AED researchers are participating in EPA’s three-office effort (Office of Research and Development, Office of Policy, and Office of Water) to quantify and monetize the benefits of water quality improvements across the Nation. AED’s effort is a case study of changes in recreation demand and values due to changes in nutrients in Northeastern estuaries and freshwater ponds. This work is part of task 3.04A of the Safe and Sustainable Waters Research Program (National Water Quality Benefits: Economic Case Studies of Water Quality Benefits). Because of the complementarity between the two projects, this Supporting Statement describes and requests hours for focus groups and interviews for both of these research efforts. Our initial

  18. Connecting Humans and Water: The Case for Coordinated Data Collection

    NASA Astrophysics Data System (ADS)

    Braden, J. B.; Brown, D. G.; Jolejole-Foreman, C.; Maidment, D. R.; Marquart-Pyatt, S. T.; Schneider, D. W.

    2012-12-01

    "Water problems" are fundamentally human problems -- aligning water quality and quantity with human aspirations. In the U.S., however, the few ongoing efforts to repeatedly observe humans in relation to water at large scale are disjointed both with each other and with observing systems for water quality and quantity. This presentation argues for the systematic, coordinated, and on-going collection of primary data on humans, spanning beliefs, perceptions, behaviors, and institutions, alongside the water environments in which they are embedded. Such an enterprise would advance not only water science and related policy and management decisions, but also generate basic insights into human cognition, decision making, and institutional development as they relate to the science of sustainability. In support of this argument, two types of original analyses are presented. First, two case studies using existing data sets illustrate methodological issues involved in integrating natural system data with social data at large scale: one concerns the influence of water quality conditions on personal efforts to conserve water and contribute financially to environmental protection; the other explores relationships between recreation behavior and water quality. Both case studies show how methodological differences between data programs seriously undercut the potential to draw inference about human responses to water quality while also illustrating the scientific potential that could be realized from linking human and scientific surveys of the water environment. Second, the results of a survey of water scientists concerning important scientific and policy questions around humans and water provide insight into data collection priorities for a coordinated program of observation.

  19. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    EPA Science Inventory

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  20. 40 CFR 436.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Construction Sand and Gravel Subcategory § 436.32 Effluent limitations guidelines representing the degree of... unaltered by man's activities, is or would be less than 6.0 and water quality criteria in water quality... adjusted downward to the pH water quality criterion for the receiving waters. In no case shall a pH...

  1. Temporal changes in the vertical distribution of flow and chloride in deep wells

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Newhouse, Mark W.; Smith, Gregory A.; Hanson, Randall T.

    2005-01-01

    The combination of flowmeter and depth-dependent water-quality data was used to evaluate the quantity and source of high-chloride water yielded from different depths to eight production wells in the Pleasant Valley area of southern California. The wells were screened from 117 to 437 m below land surface, and in most cases, flow from the aquifer into the wells was not uniformly distributed throughout the well screen. Wells having as little as 6 m of screen in the overlying upper aquifer system yielded as much as 50% of their water from the upper system during drought periods, while the deeper parts of the well screens yielded 15% or less of the total yield of the wells. Mixing of water within wells during pumping degraded higher-quality water with poorer-quality water from deeper depths, and in some cases with poorer-quality water from the overlying upper aquifer system. Changes in the mixture of water within a well, resulting from changes in the distribution of flow into the well, changed the quality of water from the surface discharge of wells over time. The combination of flowmeter and depth-dependent water quality data yielded information about sources of high-chloride water to wells that was not available on the basis of samples collected from nearby observation wells. Changing well design to eliminate small quantities of poor-quality water from deeper parts of the well may improve the quality of water from some wells without greatly reducing well yield. Copyright ?? 2005 National Ground Water Association.

  2. Impact of water quality change on corrosion scales in full and partially replaced lead service lines

    EPA Science Inventory

    BackgroundChanges in water qualities have been associated with an increase in lead release from full and partial lead service lines (LSLs), such as the cases of Washington D.C. or more recently of Flint (Mi). Water qualities affect the mineralogy of the scales. Furthermore, follo...

  3. Big Data and Heath Impacts of Drinking Water Quality Violation

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Health impacts of drinking water quality violations are only understood at a coarse level in the United States. This limits identification of threats to water security in communities across the country. Substantial under-reporting is suspected due to requirements at U.S. public health institutes that water borne illnesses be confirmed by health providers. In the era of `big data', emerging information sources could offer insight into waterborne disease trends. In this study, we explore the use of fine-resolution sales data for over-the-counter medicine to estimate the health impacts of drinking water quality violations. We also demonstrate how unreported water quality issues can be detected by observing market behavior. We match a panel of supermarket sales data for the U.S. at the weekly level with geocoded violations data from 2006-2015. We estimate the change in anti-diarrheal medicine sale due to drinking water violations using a fixed effects model. We find that water quality violations have considerable effects on medicine sales. Sales nearly double due to Tier 1 violations, which pose an immediate health risk, and sales increase 15.1 percent due to violations related to microorganisms. Furthermore, our estimate of diarrheal illness cases associated with water quality violations indicates that the Centers for Disease Control and Prevention (CDC) reporting system may only capture about one percent of diarrheal cases due to impaired water. Incorporating medicine sales data could offer national public health institutes a game-changing way to improve monitoring of disease outbreaks. Since many disease cases are not formally diagnosed by health providers, consumption information could provide additional information to remedy under-reporting issues and improve water security in communities across the United States.

  4. Riparian buffer design guidelines for water quality and wildlife habitat functions on agricultural landscapes in the Intermountain West: Case Study

    Treesearch

    Craig W. Johnson; Susan Buffler

    2008-01-01

    This hypothetical case study illustrates how the riparian buffer planning protocol described in the RB handbook is used to plan a buffer for both water quality and wildlife conservation on a specific project site. The case study site includes riparian buffer characteristics typical of the study area-variable topography and soils, flood plain wetlands, seeps, springs,...

  5. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano.

    PubMed

    French, Megan; Alem, Natalie; Edwards, Stephen J; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-10-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.

  6. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-10-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.

  7. The case for regime-based water quality standards

    USGS Publications Warehouse

    Poole, Geoffrey C.; Dunham, J.B.; Keenan, D.M.; Sauter, S.T.; McCullough, D.A.; Mebane, Christopher; Lockwood, Jeffrey C.; Essig, Don A.; Hicks, Mark P.; Sturdevant, Debra J.; Materna, E.J.; Spalding, M.; Risley, John; Deppman, Marianne

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type of water quality standarda??a a??regime standarda??a??would describe desirable distributions of conditions over space and time within a stream network. By mandating the protection and restoration of the aquatic ecosystem dynamics that are required to support beneficial uses in streams, well-designed regime standards would facilitate more effective strategies for management of natural water quality parameters.

  8. [The origin and quality of water for human consumption: the health of the population residing in the Matanza-Riachuelo river basin area in Greater Buenos Aires].

    PubMed

    Monteverde, Malena; Cipponeri, Marcos; Angelaccio, Carlos; Gianuzzi, Leda

    2013-04-01

    The aim of this study is to analyze the origin and quality of water used for consumption in a sample of households in Matanza-Riachuelo river basin area in Greater Buenos Aires, Argentina. The results of drinking water by source indicated that 9% of water samples from the public water system, 45% of bottled water samples and 80% of well water samples were not safe for drinking due to excess content of coliforms, Escherichia coli or nitrates. Individuals living in households where well water is the main source of drinking water have a 55% higher chance of suffering a water-borne disease; in the cases of diarrheas, the probability is 87% higher and in the case of dermatitis, 160% higher. The water for human consumption in this region should be provided by centralized sources that assure control over the quality of the water.

  9. The impact of an inadequate municipal water system on the residents of Chinhoyi town, Zimbabwe.

    PubMed

    Schwartz, U; Siziya, S; Tshimanga, M; Barduagni, P; Chauke, T L

    1999-06-01

    To assess the use and impact of the water reticulation system in Chinhoyi on its residents. Cross sectional and case series studies. Chinhoyi town. 600 Chinhoyi residents. Practices and perceptions of Chinhoyi residents on the water system, and distribution of water-related diseases per area of residence. Out of 600 respondents, 565 (99.3%) had access to piped water and 558 (98.0%) to flush toilets. Breakdowns of water supply and functioning of toilet facility were reported by 308 (77.0%) and 110 (28.0%) respondents in the previous six months, respectively. Main complaints of Chinhoyi residents were about low water quality (36.2%), inadequate sewage system (31.3%) and environmental pollution (26.5%). Cases of water-related diseases were not associated with natural water bodies. Chinhoyi residents have good access to the municipal water and an adequate sanitation system. However, low quality of the water, frequent system breakdowns and the degradation and loss of amenity of the environment impair their quality of life.

  10. Water System Adaptations To Hydrological Changes: Module 4, Water Quality Response to Land-use and Precipitation Changes : Case Study of Ohio River Valley, USA

    EPA Science Inventory

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  11. The role of seasonal water scarcity on water quality: a global analysis with case study in the Magdalena, Colombia

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    Water scarcity is not just a problem of its own right (hydrological drought) but cascades the hydro-economic system to create problems for crop growth and livestock (agricultural drought) and thus for wellbeing and economic productivity (economic drought). One of these cascades is the impact of reduced water quantity on water quality as a result of non-point source pollutant concentration in water bodies such as rivers, lakes and wetlands. This paper investigates the impact of seasonal water shortages on the quality of supplied water to urban centres with a view to better understanding how land use management can reduce dry-season pollutant spikes. We apply a widely used spatial hydrological model (WaterWorld) and its water quality index (the human footprint on water quality, HFWQ) to examine to what extent HFWQ of water flowing into urban water intakes is affected by flow seasonality and by typical "dry year" events. A global analysis shows trends across climatic and land use gradients and is followed by a regional analysis of the Magdalena basin in Colombia: a large basin with 79% of the countries population and a mixture of intensively farmed and protected lands along a seasonality gradient from South to North. The Magdalena is a case study basin of the EartH2Observe project.

  12. Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots.

    PubMed

    Rizo-Decelis, L D; Pardo-Igúzquiza, E; Andreo, B

    2017-12-15

    In order to treat and evaluate the available data of water quality and fully exploit monitoring results (e.g. characterize regional patterns, optimize monitoring networks, infer conditions at unmonitored locations, etc.), it is crucial to develop improved and efficient methodologies. Accordingly, estimation of water quality along fluvial ecosystems is a frequent task in environment studies. In this work, a particular case of this problem is examined, namely, the estimation of water quality along a main stem of a large basin (where most anthropic activity takes place), from observational data measured along this river channel. We adapted topological kriging to this case, where each watershed contains all the watersheds of the upstream observed data ("nested support effect"). Data analysis was additionally extended by taking into account the upstream distance to the closest contamination hotspot as an external drift. We propose choosing the best estimation method by cross-validation. The methodological approach in spatial variability modeling may be used for optimizing the water quality monitoring of a given watercourse. The methodology presented is applied to 28 water quality variables measured along the Santiago River in Western Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assessment of irrigation water quality. A proposal of a quality profile.

    PubMed

    Almeida, César; Quintar, Silvya; González, Patricia; Mallea, Miguel

    2008-07-01

    Water quality indices provide a simple and understandable tool for managers on the quality and possible uses for irrigation water, however an individual quality factor alone is not enough to evaluate the irrigation water quality because it could be restrictive and sometime it could give an unfavorable qualification. The aim of this paper was propose a quality profile of irrigation water using the preexisting water quality indices to be applied to arid and semi-arid regions. As a case studied, the water of the Del Molle River (Nogolí, San Luis, Argentina) was researched. Samples were collected during the period October 2005-May 2006. Conductivity, pH, total hardness, sulphate, nitrate, nitrite, alkalinity, chloride, sodium, potassium, TDS, DO and phosphate were analyzed. The irrigation water quality, according to Riverside Norm, belongs to C(2)-S(1) class, according to Wilcox Norm as excellent to good, according to Scott quality factor it is good and according to SAR < 10 and according to RCS it is recommendable. From the obtained data, it can be concluded that the water quality profile was good, so it is useful for normal irrigation agriculture.

  14. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    NASA Astrophysics Data System (ADS)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  15. Quantifying tap-to-household water quality deterioration in urban communities in Vellore, India: The impact of spatial assumptions.

    PubMed

    Alarcon Falconi, Tania M; Kulinkina, Alexandra V; Mohan, Venkata Raghava; Francis, Mark R; Kattula, Deepthi; Sarkar, Rajiv; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2017-01-01

    Municipal water sources in India have been found to be highly contaminated, with further water quality deterioration occurring during household storage. Quantifying water quality deterioration requires knowledge about the exact source tap and length of water storage at the household, which is not usually known. This study presents a methodology to link source and household stored water, and explores the effects of spatial assumptions on the association between tap-to-household water quality deterioration and enteric infections in two semi-urban slums of Vellore, India. To determine a possible water source for each household sample, we paired household and tap samples collected on the same day using three spatial approaches implemented in GIS: minimum Euclidean distance; minimum network distance; and inverse network-distance weighted average. Logistic and Poisson regression models were used to determine associations between water quality deterioration and household-level characteristics, and between diarrheal cases and water quality deterioration. On average, 60% of households had higher fecal coliform concentrations in household samples than at source taps. Only the weighted average approach detected a higher risk of water quality deterioration for households that do not purify water and that have animals in the home (RR=1.50 [1.03, 2.18], p=0.033); and showed that households with water quality deterioration were more likely to report diarrheal cases (OR=3.08 [1.21, 8.18], p=0.02). Studies to assess contamination between source and household are rare due to methodological challenges and high costs associated with collecting paired samples. Our study demonstrated it is possible to derive useful spatial links between samples post hoc; and that the pairing approach affects the conclusions related to associations between enteric infections and water quality deterioration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Impacts of fertilizer additions on water quality of a drained pine plantation in North Carolina. A worst case scenario.

    Treesearch

    Bray J. Beltran; Devendra M. Amatya; Martin Jones; R. Wayne Skaggs; William Neal P.E. Reynolds; Timothy J. Callahan; Jami E. Nettles

    2008-01-01

    Intensive plantation forestry will be increasingly important in the next 50 years to meet the high demand for domestic wood in the US. However, forestry management practices can substantially influence downstream water quality and ecology. In this study, the effect of fertilization on drainage water quality of a coastal pine plantation located in Carteret County, NC...

  17. Impacts of fertilizer additions on water quality of a drained pine plantation in North Carolina. A worst case scenario.

    Treesearch

    Bray J. Beltran; Devendra M. Amatya; Martin Jones; R. Wayne Skaggs; William Neal Reynolds; Timothy J. Callahan; Jami E. Nettles

    2008-01-01

    Abstract. Intensive plantation forestry will be increasingly important in the next 50 years to meet the high demand for domestic wood in the US. However, forestry management practices can substantially influence downstream water quality and ecology. In this study, the effect of fertilization on drainage water quality of a coastal pine plantation located in Carteret...

  18. Impacts of fertilization on water quality of a drained pine plantation: a worse case scenario

    Treesearch

    Bray J. Beltran; Devendra M. Amatya; Mohamed Youssef; Martin Jones; Timothy J. Skaggs Callahan

    2010-01-01

    Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially infl uence downstream water quality and ecology. Th is study analyses, the eff ect of fertilization on effl uent water quality of a low gradient drained coastal pine...

  19. Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India.

    PubMed

    Mitra, Pubali; Pal, Dilip Kumar; Das, Madhusudan

    2018-05-01

    The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD.

  20. Modelling Parameters Characterizing Selected Water Supply Systems in Lower Silesia Province

    NASA Astrophysics Data System (ADS)

    Nowogoński, Ireneusz; Ogiołda, Ewa

    2017-12-01

    The work presents issues of modelling water supply systems in the context of basic parameters characterizing their operation. In addition to typical parameters, such as water pressure and flow rate, assessing the age of the water is important, as a parameter of assessing the quality of the distributed medium. The analysis was based on two facilities, including one with a diverse spectrum of consumers, including residential housing and industry. The carried out simulations indicate the possibility of the occurrence of water quality degradation as a result of excessively long periods of storage in the water supply network. Also important is the influence of the irregularity of water use, especially in the case of supplying various kinds of consumers (in the analysed case - mining companies).

  1. Bottom-up perspectives of extreme event and climate change threats to water quality: Drinking water utilities in California

    NASA Astrophysics Data System (ADS)

    Ekstrom, J.; Klasic, M.; Fencl, A.; Lubell, M.; Bedsworth, L. W.; Baker, E.

    2016-12-01

    Extreme events impact water quality, which pose serious challenges for drinking water systems. Such extreme events, including wildfire, storm surge, and other weather-related extremes, are projected to increase under a changing climate. It remains unclear what climate change information can support water managers in preparing for more extreme events. Exploring this topic requires understanding the larger question: What is the role of scientific information in adapting to climate change? We present two parts of a three-year study geared to understand whether, where, why and in what way climate information (or the lack of) is used or needed to support long term water quality planning for extreme events. In 2015 we surveyed California drinking water utilities and found a wide range of extreme event/water quality issues, perspectives on the severity of climate change threats, drought impacts and trusted information sources relating to water quality concerns. Approximately 70% of 259 respondents had recently experienced extreme weather-related events that worsen or trigger water quality. Survey results informed development of a case study analysis to gain a more in-depth understanding of what type of - or when - extreme events information could support climate adaptation. Projections of extreme events are often not in a form that is useable for water quality planning. Relative to supply-related projections, water quality has received much less scientific attention, leaving it an assumed scientific information gap and need for management. The question remains whether filling this gap would help adaptation, whom it would help, and in what way. Based on interviews with water systems in Summer 2016, our case study analyses reinforce that extreme events threaten water quality in many ways; largely as secondary impacts of climate change. Secondary impacts involve disinfection byproducts, increasing salinity in the Delta, and the use of lower quality sources. The most common barriers impeding effective adaptation were not related to information. Instead, respondents frequently expressed the obstacles of external institutions not coordinating with their needs. This demonstrates why climate adaptation must simultaneously occur at multiple levels of governance in order for water systems to successfully advance.

  2. Assessment of domestic water quality: case study, Beirut, Lebanon.

    PubMed

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  3. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  4. Mass imbalances in EPANET water-quality simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less

  5. Water quantity and quality model for the evaluation of water-management strategies in the Netherlands: application to the province of Friesland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, J.J.; Griffioen, P.S.; Groot, S.

    1987-03-01

    The Netherlands have a rather complex water-management system consisting of a number of major rivers, canals, lakes and ditches. Water-quantity management on a regional scale is necessary for an effective water-quality policy. To support water management, a computer model was developed that includes both water quality and water quantity, based on three submodels: ABOPOL for the water movement, DELWAQ for the calculation of water quality variables and BLOOM-II for the phytoplankton growth. The northern province of Friesland was chosen as a test case for the integrated model to be developed, where water quality is highly related to the water distributionmore » and the main trade-off is minimizing the intake of (eutrophicated) alien water in order to minimize external nutrient load and maximizing the intake in order to flush channels and lakes. The results of the application of these models to this and to a number of hypothetical future situations are described.« less

  6. Water quality of Cisadane River based on watershed segmentation

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  7. Elkhorn ruling boosts state authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beecher, H.A.

    1995-03-01

    On 31 May 1994, a landmark U.S. Supreme Court decision expanded state authority to establish conditions to protect water quality and included stream flows, aesthetics, and, potentially, other elements in a broad definition of water quality. Called the {open_quotes}Elkhorn case{close_quotes} the Supreme Court ruled that the state of Washington Department of Ecology has authority to set instream flows for fish (primarily steelhead, chinook, and coho salmon) as a condition of a Water Quality Certification (WQC) issued by the state under Section 401 of the federal Clean Water Act (CWA). The case surrounded the petitioners (applicants) proposed building of the Elkhornmore » Hydroelectric Project on the Dosewallips River, Washington. The project would have consisted of a dam near the boundary of Olympic National Park and a pipeline to carry diverted water around a 1.2-mile bypass reach to a powerhouse at Olympic National Forest`s Elkhorn Campground.« less

  8. Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India

    PubMed Central

    Mitra, Pubali; Pal, Dilip Kumar

    2018-01-01

    Purpose The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Materials and Methods Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. Results We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. Conclusions It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD. PMID:29744472

  9. The effect of land use change on water quality: A case study in Ciliwung Watershed

    NASA Astrophysics Data System (ADS)

    Ayu Permatasari, Prita; Setiawan, Yudi; Nur Khairiah, Rahmi; Effendi, Hefni

    2017-01-01

    Ciliwung is the biggest river in Jakarta. It is 119 km long with a catchment area of 476 km2. It flows from Bogor Regency and crosses Bogor City, Depok City, and Jakarta before finally flowing into Java Sea through Jakarta Bay. The water quality in Ciliwung River has degraded. Many factors affect water quality. Understanding the relationship between land use and surface water quality is necessary for effective water management. It has been widely accepted that there is a close relationship between the land use type and water quality. This study aims to analyze the influence of various land use types on the water quality within the Ciliwung Watershed based on the water quality monitoring data and remote sensing data in 2010 and 2014. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. The result can provide scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource.

  10. Explore the advantage of High-frequency Water Quality Data in Urban Surface Water: A Case Study in Bristol, UK

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Han, D.

    2017-12-01

    Water system is an essential component in a smart city for its sustainability and resilience. The freshness and beauty of the water body would please people as well as benefit the local aquatic ecosystems. Water quality monitoring approach has evolved from the manual lab-based monitoring approach to the manual in-situ monitoring approach, and finally to the latest wireless-sensor-network (WSN) based solutions in recent decades. The development of the in-situ water quality sensors enable humans to collect high-frequency and real-time water quality data. This poster aims to explore the advantages of the high-frequency water quality data over the low-frequency data collected manually. The data is collected by a remote real-time high-frequency water quality monitor system based on the cutting edge smart city infrastructure in Bristol - `Bristol Is Open'. The water quality of Bristol Floating Harbour is monitored which is the focal area of Bristol with new buildings and features redeveloped in the past decades. This poster will first briefly introduce the water quality monitoring system, followed by the analysis of the advantages of the sub-hourly water quality data. Thus, the suggestion on the monitoring frequency will be given.

  11. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    PubMed

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    PubMed

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  13. 40 CFR 35.2020 - Reserves.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projects using innovative processes and techniques. (d) Reserve for water quality management. Each State... water quality management planning under § 35.2023, except that in the case of Guam, the Virgin Islands... State management assistance grants. Each State may request that the Regional Administrator reserve, from...

  14. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  15. Estimating the number of cases of acute gastrointestinal illness (AGI) associated with Canadian municipal drinking water systems.

    PubMed

    Murphy, H M; Thomas, M K; Medeiros, D T; McFADYEN, S; Pintar, K D M

    2016-05-01

    The estimated burden of endemic acute gastrointestinal illness (AGI) annually in Canada is 20·5 million cases. Approximately 4 million of these cases are domestically acquired and foodborne, yet the proportion of waterborne cases is unknown. A number of randomized controlled trials have been completed to estimate the influence of tap water from municipal drinking water plants on the burden of AGI. In Canada, 83% of the population (28 521 761 people) consumes tap water from municipal drinking water plants serving >1000 people. The drinking water-related AGI burden associated with the consumption of water from these systems in Canada is unknown. The objective of this research was to estimate the number of AGI cases attributable to consumption of drinking water from large municipal water supplies in Canada, using data from four household drinking water intervention trials. Canadian municipal water treatment systems were ranked into four categories based on source water type and quality, population size served, and treatment capability and barriers. The water treatment plants studied in the four household drinking water intervention trials were also ranked according to the aforementioned criteria, and the Canadian treatment plants were then scored against these criteria to develop four AGI risk groups. The proportion of illnesses attributed to distribution system events vs. source water quality/treatment failures was also estimated, to inform the focus of future intervention efforts. It is estimated that 334 966 cases (90% probability interval 183 006-501 026) of AGI per year are associated with the consumption of tap water from municipal systems that serve >1000 people in Canada. This study provides a framework for estimating the burden of waterborne illness at a national level and identifying existing knowledge gaps for future research and surveillance efforts, in Canada and abroad.

  16. Detection of Microbial Water Quality Indicators and Fecal Waterborne Pathogens in Environmental Waters: A Review of Methods, Applications, and Limitations

    EPA Science Inventory

    Environmental waters are important reservoirs of pathogenic microorganisms, many of which are of fecal origin. In most cases, the presence of pathogens is determined using surrogate bacterial indicators. In other cases, direct detection of the pathogen in question is required. M...

  17. The European water framework directive: water quality classification and implications to engineering planning.

    PubMed

    Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang

    2005-04-01

    The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.

  18. Agricultural reuse of municipal wastewater through an integral water reclamation management.

    PubMed

    Intriago, Juan Carlo; López-Gálvez, Francisco; Allende, Ana; Vivaldi, Gaetano Alessandro; Camposeo, Salvatore; Nicolás Nicolás, Emilio; Alarcón, Juan José; Pedrero Salcedo, Francisco

    2018-05-01

    The DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines. In contrast, results linked to SW and CW presented certain non-compliance cases of water and crop microbiological quality. These assessments lead to conclude that the DESERT-prototype is an appropriate technology for safe water reclamation oriented to agricultural production, that can be complemented by a proper irrigation method in reaching safety targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Socioeconomic dynamics of water quality in the Egyptian Nile

    NASA Astrophysics Data System (ADS)

    Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios

    2016-04-01

    The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification of economic activities related to these indicators. Keywords: Water quality dynamics, Environmental Kuznets Curve (EKC), Jevons Paradox (JP), economic variables, polynomial regressions, environmental indicators, permissible limit References: (1)Evans, A. (2007). River of Life River Nile. (2)Egypt's Water Crisis - Recipe for Disaster. (2016). [Blog] EcoMENA- Echoing Sustainability. (3)Alstine, J. and Neumayer, E. (2010). The Environmental Kuznets Curve. (4)Garrett, T. (2014). Rebound, Backfire, and the Jevons Paradox. [Blog] (5)Data.worldbank.org

  20. Improving the Accuracy of Extracting Surface Water Quality Levels (SWQLs) Using Remote Sensing and Artificial Neural Network: a Case Study in the Saint John River, Canada

    NASA Astrophysics Data System (ADS)

    Sammartano, G.; Spanò, A.

    2017-09-01

    Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 (Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  1. INCORPORATING WETLANDS IN WATER QUALITY TRADING: ECONOMIC CONSIDERATIONS (Journal Article)

    EPA Science Inventory

    Incorporating the use of wetlands as a technology to enhance water quality trading programs requires consideration of ecological, legal, and economic issues. We explore the case of encouraging the use of wetlands with a focus on the economic considerations. Interestingly, it is...

  2. Application of CCME Water Quality Index to monitor water quality: a case study of the Mackenzie River Basin, Canada.

    PubMed

    Lumb, Ashok; Halliwell, Doug; Sharma, Tribeni

    2006-02-01

    All six ecosystem initiatives evolved from many years of federal, provincial, First Nation, local government and community attention to the stresses on sensitive habitats and species, air and water quality, and the consequent threats to community livability. This paper assesses water quality aspect for the ecosystem initiatives and employs newly developed Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) which provides a convenient mean of summarizing complex water quality data that can be easily understood by the public, water distributors, planners, managers and policy makers. The CCME WQI incorporates three elements: Scope - the number of water quality parameters (variables) not meeting water quality objectives (F(1)); Frequency - the number of times the objectives are not met (F(2)); and Amplitude. the extent to which the objectives are not met (F(3)). The index produces a number between 0 (worst) to 100 (best) to reflect the water quality. This study evaluates water quality of the Mackenzie - Great Bear sub-basin by employing two modes of objective functions (threshold values): one based on the CCME water quality guidelines and the other based on site-specific values that were determined by the statistical analysis of the historical data base. Results suggest that the water quality of the Mackenzie-Great Bear sub-basin is impacted by high turbidity and total (mostly particulate) trace metals due to high suspended sediment loads during the open water season. Comments are also provided on water quality and human health issues in the Mackenzie basin based on the findings and the usefulness of CCME water quality guidelines and site specific values.

  3. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    PubMed Central

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  4. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    PubMed

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  5. Sustainability in Housing: A Curriculum Case Study.

    ERIC Educational Resources Information Center

    Parrott, Kathleen; Emmel, Joann M.

    2001-01-01

    Explores the influence of environmental issues on the field of housing, from the perspective of sustainable housing. Presents a case study of the development of a college course to address these issues by integrating energy management, air quality, water quality, and waste management. (Author)

  6. Quality of water and antibiotic resistance of Escherichia coli from water sources of hilly tribal villages with and without integrated watershed management-a one year prospective study.

    PubMed

    Nerkar, Sandeep S; Tamhankar, Ashok J; Khedkar, Smita U; Lundborg, Cecilia Stålsby

    2014-06-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  7. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    PubMed Central

    Nerkar, Sandeep S.; Tamhankar, Ashok J.; Khedkar, Smita U.; Stålsby Lundborg, Cecilia

    2014-01-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV. PMID:24991664

  8. Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China.

    PubMed

    Zhang, Lei; Zou, Zhihong; Shan, Wei

    2017-06-01

    Water quality forecasting is an essential part of water resource management. Spatiotemporal variations of water quality and their inherent constraints make it very complex. This study explored a data-based method for short-term water quality forecasting. Prediction of water quality indicators including dissolved oxygen, chemical oxygen demand by KMnO 4 and ammonia nitrogen using support vector machine was taken as inputs of the particle swarm algorithm based optimal wavelet neural network to forecast the whole status index of water quality. Gubeikou monitoring section of Miyun reservoir in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP neural network model, wavelet neural network model and Gradient Boosting Decision Tree model. It can be used as an effective approach to perform short-term comprehensive water quality prediction. Copyright © 2016. Published by Elsevier B.V.

  9. Economic and Environmental Analysis for Advancing Sustainable Management of Livestock Waste: A Wisconsin Case Study

    EPA Science Inventory

    Livestock waste may cause air quality degradation from ammonia and methane emissions, soil quality detriment from the in-excess nutrients and acidification, and water pollution issues from nutrient and pathogens runoff to the water bodies, leading to eutrophication, algal blooms,...

  10. Evaluation of the Impacts of Land Use on Water Quality: A Case Study in The Chaohu Lake Basin

    PubMed Central

    Yan, Haiming; Wu, Feng; Deng, Xiangzheng

    2013-01-01

    It has been widely accepted that there is a close relationship between the land use type and water quality. There have been some researches on this relationship from the perspective of the spatial configuration of land use in recent years. This study aims to analyze the influence of various land use types on the water quality within the Chaohu Lake Basin based on the water quality monitoring data and RS data from 2000 to 2008, with the small watershed as the basic unit of analysis. The results indicated that there was significant negative correlation between forest land and grassland and the water pollution, and the built-up area had negative impacts on the water quality, while the influence of the cultivated land on the water quality was very complex. Besides, the impacts of the landscape diversity on the indicators of water quality within the watershed were also analyzed, the result of which indicated there was a significant negative relationship between them. The results can provide important scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource. PMID:23970833

  11. Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study.

    PubMed

    Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man

    2013-01-01

    The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation.

  12. EPA Region 7 and Four States Water Quality Standards Review Process Kaizen Event Case Study

    EPA Pesticide Factsheets

    In June, 2007, participants from EPA headquarters, EPA Region 7, and the four States in EPA Region 7 (IA, KS, MO, and NE) conducted a Lean business kaizen event on the EPA–State process for developing and revising water quality standards (WQS).

  13. SHORT- AND LONG-TERM ENVIRONMENTAL PERCEPTIONS: A CASE STUDY OF LAKE LANIER

    EPA Science Inventory

    This paper investigates stakeholders' different perspectives on the environment over the short- (2-5 yrs) and long-term (25+ yrs). Stakeholders were surveyed to indicate their level of concern for a list of water quality indicators and water quality stressors over both time horiz...

  14. Elucidating public perceptions of environmental behavior: a case study of Lake Lanier

    EPA Science Inventory

    This paper investigates stakeholders' different perspectives on the environment over the short- (2-5 yrs) and long-term (25+ yrs). Stakeholders were surveyed to indicate their level of concern for a list of water quality indicators and water quality stressors over both time horiz...

  15. Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1983-01-01

    Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)

  16. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    USGS Publications Warehouse

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Two surface surveys of terrain electromagnetic conductivity were used to map the horizontal extent of the saltwater plume in areas without monitoring wells. Background values of terrain conductivity were measured in an area where water-quality and borehole geophysical data did not indicate saline or brackish water. Based on a guideline from previous case studies, the boundaries of the saltwater plume were mapped where terrain conductivity was 1.5 times background. The extent of the saltwater plume, based on terrain conductivity, generally was consistent with the available water-quality and borehole electromagnetic-conductivity data and with directions of ground-water flow determined from water-level altitudes.

  17. Watershed modeling and monitoring for assessing nutrient ...

    EPA Pesticide Factsheets

    Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient enrichment problem that is creating harmful algal blooms in a reservoir used for drinking water and recreation. Innovative modeling and monitoring is combined to understand how to best manage this water quality problem and costs associated with this endeavor. The presentation will provide an overview of the water quality trading feasibility research. The research includes the development and evaluation of innovative modeling and monitoring approaches to manage watersheds for nutrient pollution using a whole systems approach.

  18. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    NASA Astrophysics Data System (ADS)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  19. The microbial quality of drinking water in Manonyane community: Maseru District (Lesotho).

    PubMed

    Gwimbi, P

    2011-09-01

    Provision of good quality household drinking water is an important means of improving public health in rural communities especially in Africa; and is the rationale behind protecting drinking water sources and promoting healthy practices at and around such sources. To examine the microbial content of drinking water from different types of drinking water sources in Manonyane community of Lesotho. The community's hygienic practices around the water sources are also assessed to establish their contribution to water quality. Water samples from thirty five water sources comprising 22 springs, 6 open wells, 6 boreholes and 1 open reservoir were assessed. Total coliform and Escherichia coli bacteria were analyzed in water sampled. Results of the tests were compared with the prescribed World Health Organization desirable limits. A household survey and field observations were conducted to assess the hygienic conditions and practices at and around the water sources. Total coliform were detected in 97% and Escherichia coli in 71% of the water samples. The concentration levels of Total coliform and Escherichia coli were above the permissible limits of the World Health Organization drinking water quality guidelines in each case. Protected sources had significantly less number of colony forming units (cfu) per 100 ml of water sample compared to unprotected sources (56% versus 95%, p < 0.05). Similarly in terms of Escherichia coli, protected sources had less counts (7% versus 40%, p < 0.05) compared with those from unprotected sources. Hygiene conditions and practices that seemed to potentially contribute increased total coliform and Escherichia coli counts included non protection of water sources from livestock faeces, laundry practices, and water sources being down slope of pit latrines in some cases. These findings suggest source water protection and good hygiene practices can improve the quality of household drinking water where disinfection is not available. The results also suggest important lines of inquiry and provide support and input for environmental and public health programmes, particularly those related to water and sanitation.

  20. COPPER PITTING CORROSION: A CASE STUDY

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  1. Water Quality Protection from Nutrient Pollution: Case Analysis

    EPA Science Inventory

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...

  2. Automated ground-water monitoring with Robowell: case studies and potential applications

    NASA Astrophysics Data System (ADS)

    Granato, Gregory E.; Smith, Kirk P.

    2002-02-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/

  3. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  4. Management of Water Quantity and Quality Based on Copula for a Tributary to Miyun Reservoir, Beijing

    NASA Astrophysics Data System (ADS)

    Zang, N.; Wang, X.; Liang, P.

    2017-12-01

    Due to the complex mutual influence between water quantity and water quality of river, it is difficult to reflect the actual characters of the tributaries to reservoir. In this study, the acceptable marginal probability distributions for water quantity and quality of reservoir inflow were calculated. A bivariate Archimedean copula was further applied to establish the joint distribution function of them. Then multiple combination scenarios of water quantity and water quality were designed to analyze their coexistence relationship and reservoir management strategies. Taking Bai river, an important tributary into the Miyun Reservoir, as a study case. The results showed that it is feasible to apply Frank copula function to describe the jointed distribution function of water quality and water quantity for Bai river. Furthermore, the monitoring of TP concentration needs to be strengthen in Bai river. This methodology can be extended to larger dimensions and is transferable to other reservoirs via establishment of models with relevant data for a particular area. Our findings help better analyzing the coexistence relationship and influence degree of the water quantity and quality of the tributary to reservoir for the purpose of water resources protection.

  5. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.

    PubMed

    Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E

    2015-04-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.

  6. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  7. Regional baseline geochemistry and environmental effects of gold placer mining operations on the Fortymile River, eastern Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Wanty, Richard B.; Wang, Bronwen; Vohden, Jim; Briggs, Paul H.; Meier, Allen L.

    2000-01-01

    A systematic water-quality study of the Fortymile River and many of its major tributaries in eastern Alaska was conducted in June of 1997 and 1998. Surface-water samples were collected for chemical analyses to establish regional baseline geochemistry values and to evaluate the possible environmental effects of suction-dredge placer gold mining and bulldozer-operated placer gold mining (commonly referred to as “cat mining”). In general, the water quality of the Fortymile River is very good, with low total dissolved solids and only two cases in which the concentration of any element exceeded primary or secondary drinking-water quality standards. In both cases, iron exceeded secondary drinking-water limits. At the time this work was conducted, only a handful of suction dredges were operating on the lower Fortymile River, and cat mining was being conducted along Uhler Creek and Canyon Creek, two major tributaries to the river. Based on the water-quality and turbidity data, the suction dredges have no apparent impact on the Fortymile River system, although possible effects on biota have not been evaluated in this study. In contrast, the cat-mining operations in Canyon Creek appear to have a dramatic impact on water quality and stream-bed morphology, based on the field water-quality and turbidity measurements, on comparisons to adjacent unmined drainages, and on field observations of stream-bed morphology. The cat mining in Uhler Creek appears to have had less impact, perhaps because the main stream channel was not as heavily disrupted by the bulldozers, and the stability of the channel was mostly preserved.

  8. Environmental control on water quality; cases studies from Battle Mountain mining district, north-central Nevada. Chapter A.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Wanty, Richard B.; Berger, Byron R.; Stillings, Lisa L.

    2003-01-01

    The environmental controls on water quality were the focus of our study in a portion of the Battle Mountain mining district, north-central Nevada. Samples representing areas outside known mineralized areas, in undisturbed mineralized areas, and in mined areas were chemically and isotopically analyzed. The results are related to geologic, hydrologic, and climatic data. Streams in background areas outside the mineralized zones reflect normal weathering of volcanically derived rocks. The waters are generally dilute, slightly alkaline in pH, and very low in metals. As these streams flow into mineralized zones, their character changes. In undisturbed mineralized areas, discharge into streams of ground water through hydrologically conductive fractures can be traced with chemistry and, even more effectively, with sulfur isotopic composition of dissolved sulfate. Generally, these tracers are much more subtle than in those areas where mining has produced adits and mine-waste piles. The influence of drainage from these mining relicts on water quality is often dramatic, especially in unusually wet conditions. In one heavily mined area, we were able to show that the unusually wet weather in the winter and spring greatly degraded water quality. Addition of calcite to the acid, metalrich mine drainage raised the stream pH and nearly quantitatively removed the metals through coprecipitation and (or) adsorption onto oxyhydroxides. This paper is divided into four case studies used to demonstrate our results. Each addresses the role of geology, hydrology, mining activity and (or) local climate on water quality. Collectively, they provide a comprehensive look at the important factors affecting water quality in this portion of the Battle Mountain mining district.

  9. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  10. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in Tampa Bay, Florida

    EPA Science Inventory

    The increasing availability of long-term monitoring data can improve resolution of temporal and spatial changes in water quality. In many cases, the fact that changes have occurred is no longer a matter of debate. However, the relatively simple methods that have been used to ev...

  11. Case study: Fixture water use and drinking water quality in a new residential green building.

    PubMed

    Salehi, Maryam; Abouali, Mohammad; Wang, Mian; Zhou, Zhi; Nejadhashemi, Amir Pouyan; Mitchell, Jade; Caskey, Stephen; Whelton, Andrew J

    2018-03-01

    Residential plumbing is critical for the health and safety of populations worldwide. A case study was conducted to understand fixture water use, drinking water quality and their possible link, in a newly plumbed residential green building. Water use and water quality were monitored at four in-building locations from September 2015 through December 2015. Once the home was fully inhabited average water stagnation periods were shortest at the 2nd floor hot fixture (90 percentile of 0.6-1.2 h). The maximum water stagnation time was 72.0 h. Bacteria and organic carbon levels increased inside the plumbing system compared to the municipal tap water entering the building. A greater amount of bacteria was detected in hot water samples (6-74,002 gene copy number/mL) compared to cold water (2-597 gene copy number/mL). This suggested that hot water plumbing promoted greater microbial growth. The basement fixture brass needle valve may have caused maximum Zn (5.9 mg/L), Fe (4.1 mg/L), and Pb (23 μg/L) levels compared to other fixture water samples (Zn ≤ 2.1 mg/L, Fe ≤ 0.5 mg/L and Pb ≤ 8 μg/L). At the basement fixture, where the least amount of water use events occurred (cold: 60-105, hot: 21-69 event/month) compared to the other fixtures in the building (cold: 145-856, hot: 326-2230 event/month), greater organic carbon, bacteria, and heavy metal levels were detected. Different fixture use patterns resulted in disparate water quality within a single-family home. The greatest drinking water quality changes were detected at the least frequently used fixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Case Studies on the Impact of Concentrated Animal Feeding Operations (CAFOs) on Ground Water Quality

    EPA Science Inventory

    This report describes a series of case studies involving commercial swine, poultry, dairy, and beef CAFO operations where ground water contamination by nitrate and ammonia has occurred to ascertain whether other stressors in CAFO wastes are also being transported through the vado...

  13. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    PubMed

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  14. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques.

    PubMed

    Xiao, Huaguo; Ji, Wei

    2007-01-01

    Landscape characteristics of a watershed are important variables that influence surface water quality. Understanding the relationship between these variables and surface water quality is critical in predicting pollution potential and developing watershed management practices to eliminate or reduce pollution risk. To understand the impacts of landscape characteristics on water quality in mine waste-located watersheds, we conducted a case study in the Tri-State Mining District which is located in the conjunction of three states (Missouri, Kansas and Oklahoma). Severe heavy metal pollution exists in that area resulting from historical mining activities. We characterized land use/land cover over the last three decades by classifying historical multi-temporal Landsat imagery. Landscape metrics such as proportion, edge density and contagion were calculated based on the classified imagery. In-stream water quality data over three decades were collected, including lead, zinc, iron, cadmium, aluminum and conductivity which were used as key water quality indicators. Statistical analyses were performed to quantify the relationship between landscape metrics and surface water quality. Results showed that landscape characteristics in mine waste-located watersheds could account for as much as 77% of the variation of water quality indicators. A single landscape metric alone, such as proportion of mine waste area, could be used to predict surface water quality; but its predicting power is limited, usually accounting for less than 60% of the variance of water quality indicators.

  15. Assessment of the relationship between bacteriological quality of dug-wells, hygiene behaviour and well characteristics in two cholera endemic localities in Douala, Cameroon

    PubMed Central

    2013-01-01

    Background Access to potable water is grossly inadequate in Douala-Cameroon. The situation is worse in slum areas, compelling inhabitants to obtain water from sources of doubtful quality. This has contributed to frequent outbreaks of water-borne diseases particularly cholera, which results in severe morbidity and mortality. Shallow wells are a major source of water in these areas. We analyzed the influence of some factors on the bacteriological quality of well water in Bepanda and New Bell, cholera endemic localities in Douala to generate data that would serve as basis for strengthening of water and health policies. Methods Questionnaires were administered to inhabitants of study sites to appraise their hygiene and sanitation practices, and level of awareness of waterborne diseases. The bacteriological quality of water was determined by investigating bacterial indicators of water quality. Relationship between well characteristics and bacteriological quality of water was determined using χ2 test. The Kendall tau_b nonparametric correlation was used to measure the strength of association between well characteristics and bacteriological parameters. Statistics were discussed at 95% confidence level. Antibiotic susceptibility of isolates was investigated by the Kirby-Bauer and broth dilution techniques. Multidrug resistant species were tested for extended β-lactamase production potential. Results Inhabitants demonstrated adequate knowledge of waterborne diseases but employed inappropriate method (table salt) for well disinfection. Well construction and location violated guidelines. Indicator bacterial counts greatly exceeded the WHO guidelines. Variation in bacteriologic parameters between sites was not significant (P > 0.05) since well characteristics and hygiene and sanitary practices were similar. Differences in bacteriologic quality with respect to state of well, and presence of molded casing and lid, and height of casing were not significant (P > 0.05). Well distance from sanitary structure negatively correlated with bacteriological characteristics indicating it could be a major contributory factor to poor water quality. Bacteria isolated were predominantly enteric organisms. Ciprofloxacin was the most active agent. Extended β-lactamase producers were detected among Salmonella species, Citrobacter fruendii and E. coli. Conclusion Poor well location, construction, and hygiene and sanitary practices were among the factors affecting water quality. There is an urgent need for education of inhabitants on effective water disinfection strategies and for regular monitoring of wells. PMID:23895357

  16. A novel approach in water quality assessment based on fuzzy logic.

    PubMed

    Gharibi, Hamed; Mahvi, Amir Hossein; Nabizadeh, Ramin; Arabalibeik, Hossein; Yunesian, Masud; Sowlat, Mohammad Hossein

    2012-12-15

    The present work aimed at developing a novel water quality index based on fuzzy logic, that is, a comprehensive artificial intelligence (AI) approach to the development of environmental indices for routine assessment of surface water quality, particularly for human drinking purposes. Twenty parameters were included based on their critical importance for the overall water quality and their potential impact on human health. To assess the performance of the proposed index under actual conditions, a case study was conducted at Mamloo dam, Iran, employing water quality data of four sampling stations in the water basin of the dam from 2006 to 2009. Results of this study indicated that the general quality of water in all the sampling stations over all the years of the study period is fairly low (yearly averages are usually in the range of 45-55). According to the results of ANOVA test, water quality did not significantly change over time in any of the sampling stations (P > 0.05). In addition, comparison of the outputs of the fuzzy-based proposed index proposed with those of the NSF water quality index (the WQI) and Canadian Water Quality Index (CWQI) showed similar results and were sensitive to changes in the level of water quality parameters. However, the index proposed by the present study produced a more stringent outputs compared to the WQI and CWQI. Results of the sensitivity analysis suggested that the index is robust against the changes in the rules. In conclusion, the proposed index seems to produce accurate and reliable results and can therefore be used as a comprehensive tool for water quality assessment, especially for the analysis of human drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. An application of Landsat and computer technology to potential water pollution from soil erosion

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  18. Co-evolution of land use changes, water quality deterioration and social conflicts in arid Northern Chile

    NASA Astrophysics Data System (ADS)

    Zang, Carina; Dame, Juliane

    2017-04-01

    Water scarcity concerns not only the limited availability of water but also water of inadequate quality in terms of its designated purposes. Arid regions, such as found in Northern Chile, are especially vulnerable to water contamination, owing to missing dilution. Additionally, the national government of Chile's goal to make the country a globally important food exporter has led to the widespread expansion of agricultural surfaces over the last 20 years, thereby increasing pressure on limited water resources and water quality. Mining, being one of the most important economic sectors in Chile, threatens both surface and groundwater quality. This scenario increases the potential for water use conflicts, which is further compounded by the demand for potable water provided by rivers and groundwater. In order to better understand the role of both physical and human dimensions of water quality, this research uses a socio-hydrological conceptual framework. This approach is used in order to broaden the scope of hydrology to include the anthropogenic impact on the environment. It therefore focuses on human and natural interactions and two-sided feedback loops, instead of purely hydrological cycles. Using the case study of the Rio Huasco watershed changes in water quality, which originate at the nexus of physical parameters, social conflicts and changing land use regimes in Northern Chile, are discussed. This region was chosen as an exemplary case for the development of Chile's arid regions: the valley is located at the southern edge of the Atacama Desert, where water scarcity is a major problem. At present, the watershed is predominantly used for agriculture. Many small farmers still practise strip cultivation, but are pressured to shift towards an international export-orientated future with monocultures. International companies are planning to mine the Pascua Lama Mine, one of the world's biggest gold reserves located in the headwaters of the Rio Huasco. Meanwhile, the problem of scarce water is complicated by the privatization of water rights in Chile. Within the watershed, the amount of sold water rights already exceeds the real water availability by far. An interdisciplinary set of methods was used, including measurements of the chemical and physical parameters of water quality, as well as semi-structured interviews. Water samples across spatial scales were analysed, with the results compared with local people's perceptions of water quality and how this affects their use decisions. The study showed that perceptions of water quality and fear of contamination were influenced by the social conflicts surrounding the controversial construction of the Pascua Lama Mine. The social conflicts were further aggravated by local mistrust towards the multilayered and so-perceived neoliberal and top-down governance structures of water resources in Chile.

  19. Results of the Level-1 Water-Quality Inventory at the Pinnacles National Monument, June 2006

    USGS Publications Warehouse

    Borchers, James W.; Lyttge, Michael S.

    2007-01-01

    To help define baseline water quality of key water resources at Pinnacles National Monument, California, the U.S. Geological Survey collected and analyzed ground water from seven springs sampled during June 2006. During the dry season, seeps and springs are the primary source of water for wildlife in the monument and provide habitat for plants, amphibians, and aquatic life. Water samples were analyzed for dissolved concentrations of major ions, trace elements, nutrients, stable isotopes of hydrogen and oxygen, and tritium. In most cases, the concentrations of measured water-quality constituents in spring samples were lower than California threshold standards for drinking water and Federal threshold standards for drinking water and aquatic life. The concentrations of dissolved arsenic in three springs were above the Federal Maximum Contaminant Level for drinking water (10 g/L). Water-quality information for samples collected from the springs will provide a reference point for comparison of samples collected from future monitoring networks and hydrologic studies in the Pinnacles National Monument, and will help National Park Service managers assess relations between water chemistry, geology, and land use.

  20. Investigation of the relationship between drinking water quality based on content of inorganic components and landform classes using fuzzy AHP (case study: south of Firozabad, west of Fars province, Iran)

    NASA Astrophysics Data System (ADS)

    Mokarram, Marzieh; Sathyamoorthy, Dinesh

    2016-10-01

    In this study, the fuzzy analytic hierarchy process (AHP) is used to study the relationship between drinking water quality based on content of inorganic components and landform classes in the south of Firozabad, west of Fars province, Iran. For determination of drinking water quality based on content of inorganic components, parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), sodium (Na), electrical conductivity (EC), sulfate (SO4), and total dissolved solids (TDS) were used. It was found that 8.29 % of the study area has low water quality; 64.01 %, moderate; 23.33 %, high; and 4.38 %, very high. Areas with suitable drinking water quality based on content of inorganic components are located in parts of the south-eastern and south-western parts of the study area. The relationship between landform class and drinking water quality based on content of inorganic components shows that drinking water quality based on content of inorganic components is high in the stream, valleys, upland drainages, and local ridge classes, and low in the plain small and midslope classes. In fact we can predict water quality using extraction of landform classes from a digital elevation model (DEM) by the Topographic Position Index (TPI) method, so that streams, valleys, upland drainages, and local ridge classes have more water quality than the other classes. In the study we determined that without measurement of water sample characteristics, we can determine water quality by landform classes.

  1. Testing the extended biotic index in Slovakia: consistency, advantages, and limitations versus the saprobic assessment method of water quality.

    PubMed

    Pennelli, Bruno; Nagel, Karl-Otto; Crivellaro, Giuseppe; Fabiani, Claudio; Vancova, Alexandra; Mancini, Laura

    2006-04-01

    The European Union Water Framework Directive requires the achievement of environmental objectives for the ecological quality of water bodies. A comparable implementation of the Directive throughout member countries of the European Union is necessary to verify equal protection of surface waters. The Directive specifies that member states determine ecological quality by means of biological indices. To improve comparability of water quality assessment, this research carried out an intercalibration trial between the Slovak Saprobic Index and the Italian protocol of the Extended Biotic Index, as part of a cooperative program between Italy and the Slovak Republic. When assessing streams with no or low pollution, statistics showed similar results for both methods. In contrast, the comparison of indices was not accurate in the case of severely affected waters. Reliable conversion formulas are feasible to transform the Italian Extended Biotic Index into the Slovak Saprobic Index, and not vice versa.

  2. SCIENCE FOR INTEGRATED WATERSHED MANAGEMENT: A MULTI-SCALE EXPERIMENTAL CASE STUDY LINKING LAND USE MANAGEMENT PRACTICES AND WATER QUALITY IN SOUTHERN OHIO

    EPA Science Inventory

    Although it is routine for watershed management programs to coincide the monitoring of land use impacts and water quality at different spatial scales, rarely are the data collected in a manner to elucidate the linkages among ecological systems across a drainage network. There rem...

  3. Linking Changes in Management and Riparian Physical Functionality to Water Quality and Aquatic Habitat: A Case Study of Maggie Creek, NV

    EPA Science Inventory

    The total maximum daily load (TMDL) process is ineffective and inappropriate for improving stream water quality in the rural areas of the northern Great Basin, and likely in many areas throughout the country. Important pollutants (e.g., sediment and nutrients) come from the stre...

  4. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  5. [Usefulness of local health reports to link the incidence rate of diarrhea with the quality of drinking water].

    PubMed

    Rodriguez-Alvarez, María S; Moraña, Liliana B; Salusso, María M; Gil, José; Seghezzo, Lucas

    2018-03-20

    In this study, we analyzed the reports of the health care center located in Vaqueros (Salta, Argentina) over an 8-month period. Moreover, we determined the concentration of Escherichia coli and Giardia spp. cysts in samples from four different drinking water sources. A statistical relationship between water quality and cases of diarrhea could not be found. However, using an odds ratio calculation, it was possible to determine that one of the studied drinking water systems acts as a protection factor in cases of diarrhea. The present work provides useful information for planning preventive measures by the local health system. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  7. Pesticide mitigation strategies for surface water quality

    USDA-ARS?s Scientific Manuscript database

    Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

  8. Using Omics to Study Microbial Water Quality

    EPA Science Inventory

    Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...

  9. Using Omics to Study Microbial Water Quality - abstract

    EPA Science Inventory

    Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...

  10. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    PubMed

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly proposed environmental water quality index (EWQI) lead to better trend in the impact of coal and coal seam gas mining activities on surface water quality when compared to the upstream reference water samples. Metal content limits were based on the impact points assigned by the Agency for Toxic Substances and Disease Registry, USA. For environmental and health impact assessment, the approach used in this study can be applied as a model to provide a basis to assess the anthropogenic contribution from the industrial and mining activities on the environment.

  11. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  12. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  13. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  14. Water Quality Survey of Splash Pads After A Waterborne Salmonellosis Outbreak--Tennessee, 2014.

    PubMed

    Clayton, Joshua L; Manners, Judy; Miller, Susan; Shepherd, Craig; Dunn, John R; Schaffner, William; Jones, Timothy F

    2017-06-01

    Waterborne outbreaks of salmonellosis are uncommon. The Tennessee Department of Health investigated a salmonellosis outbreak of 10 cases with the only common risk factor being exposure to a single splash pad. Risks included water splashed in the face at the splash pad and no free residual chlorine in the water system. We surveyed water quality and patron behaviors at splash pads statewide. Of the 29 splash pads participating in the water quality survey, 24 (83%) used a recirculating water system. Of the 24, 5 (21%) water samples were tested by polymerase chain reaction and found to be positive for E. coli, Giardia, norovirus, or Salmonella. Among 95 patrons observed, we identified common high-risk behaviors of sitting on the fountain or spray head and putting mouth to water. Water venue regulations and improved education of patrons are important to aid prevention efforts.

  15. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current trends and technologies allowing economically feasible desalination at large scales present a sustainable alternative where salts are removed from water prior to irrigation.

  16. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.

  17. When environmental action does not activate concern: the case of impaired water quality in two rural watersheds.

    PubMed

    Stough-Hunter, Anjel; Lekies, Kristi S; Donnermeyer, Joseph F

    2014-12-01

    Little research has considered how residents' perceptions of their local environment may interact with efforts to increase environmental concern, particularly in areas in need of remediation. This study examined the process by which local environmental action may affect environmental concern. A model was presented for exploring the effects of community-based watershed organizations (CWOs) on environmental concern that also incorporates existing perceptions of the local environment. Survey data were collected from area residents in two watersheds in southwestern Pennsylvania, USA, an area affected by abandoned mine drainage. The findings suggest that residents' perceptions of local water quality and importance of improving water quality are important predictors of level of environmental concern and desire for action; however, in this case, having an active or inactive CWO did not influence these perceptions. The implications of these findings raise important questions concerning strategies and policy making around environmental remediation at the local level.

  18. Sector-wise midpoint characterization factors for impact assessment of regional consumptive and degradative water use.

    PubMed

    Lin, Chia-Chun; Lin, Jia-Yu; Lee, Mengshan; Chiueh, Pei-Te

    2017-12-31

    Water availability, resulting from either a lack of water or poor water quality is a key factor contributing to regional water stress. This study proposes a set of sector-wise characterization factors (CFs), namely consumptive and degradative water stresses, to assess the impact of water withdrawals with a life cycle assessment approach. These CFs consider water availability, water quality, and competition for water between domestic, agricultural and industrial sectors and ecosystem at the watershed level. CFs were applied to a case study of regional water management of industrial water withdrawals in Taiwan to show that both regional or seasonal decrease in water availability contributes to a high consumptive water stress, whereas water scarcity due to degraded water quality not meeting sector standards has little influence on increased degradative water stress. Degradative water stress was observed more in the agricultural sector than in the industrial sector, which implies that the agriculture sector may have water quality concerns. Reducing water intensity and alleviating regional scale water stresses of watersheds are suggested as approaches to decrease the impact of both consumptive and degradative water use. The results from this study may enable a more detailed sector-wise analysis of water stress and influence water resource management policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cumulative uncertainty in measured streamflow and water quality data for small watersheds

    USGS Publications Warehouse

    Harmel, R.D.; Cooper, R.J.; Slade, R.M.; Haney, R.L.; Arnold, J.G.

    2006-01-01

    The scientific community has not established an adequate understanding of the uncertainty inherent in measured water quality data, which is introduced by four procedural categories: streamflow measurement, sample collection, sample preservation/storage, and laboratory analysis. Although previous research has produced valuable information on relative differences in procedures within these categories, little information is available that compares the procedural categories or presents the cumulative uncertainty in resulting water quality data. As a result, quality control emphasis is often misdirected, and data uncertainty is typically either ignored or accounted for with an arbitrary margin of safety. Faced with the need for scientifically defensible estimates of data uncertainty to support water resource management, the objectives of this research were to: (1) compile selected published information on uncertainty related to measured streamflow and water quality data for small watersheds, (2) use a root mean square error propagation method to compare the uncertainty introduced by each procedural category, and (3) use the error propagation method to determine the cumulative probable uncertainty in measured streamflow, sediment, and nutrient data. Best case, typical, and worst case "data quality" scenarios were examined. Averaged across all constituents, the calculated cumulative probable uncertainty (??%) contributed under typical scenarios ranged from 6% to 19% for streamflow measurement, from 4% to 48% for sample collection, from 2% to 16% for sample preservation/storage, and from 5% to 21% for laboratory analysis. Under typical conditions, errors in storm loads ranged from 8% to 104% for dissolved nutrients, from 8% to 110% for total N and P, and from 7% to 53% for TSS. Results indicated that uncertainty can increase substantially under poor measurement conditions and limited quality control effort. This research provides introductory scientific estimates of uncertainty in measured water quality data. The results and procedures presented should also assist modelers in quantifying the "quality"of calibration and evaluation data sets, determining model accuracy goals, and evaluating model performance.

  20. Sustainable Improvement of Urban River Network Water Quality and Flood Control Capacity by a Hydrodynamic Control Approach-Case Study of Changshu City

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu

    2017-01-01

    Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.

  1. Involvement of stakeholders in the water quality monitoring and surveillance system: The case of Mzingwane Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nare, Lerato; Love, David; Hoko, Zvikomborero

    Stakeholder participation is viewed as critical in the current water sector reforms taking place in the Southern African region. In Zimbabwe, policies and legislation encourage stakeholder participation. A study was undertaken to determine the extent of stakeholder participation in water quality monitoring and surveillance at the operational level, and also to assess indigenous knowledge and practices in water quality monitoring. Two hundred and forty one questionnaires were administered in Mzingwane Catchment, the portion of the Limpopo Basin that falls within Zimbabwe. The focus was on small users in rural communities, whose experiences were captured using a questionnaire and focus group discussions. Extension workers, farmers and NGOs and relevant sector government ministries and departments were also interviewed and a number of workshops held. Results indicate that there is very limited stakeholder participation despite the presence of adequate supportive structures and organisations. For the Zimbabwe National Water Authority (ZINWA), stakeholders are the paying permit holders to whom feedback is given following analysis of samples. However, the Ministry of Health and Child Welfare generally only releases information to rural communities when it is deemed necessary for their welfare. There are no guidelines on how a dissatisfied member of the public can raise a complaint - although some stakeholders carry such complaints to Catchment Council meetings. With regard to water quality, the study revealed widespread use of indigenous knowledge and practice by communities. Such knowledge is based on smell, taste, colour and odour perceptions. Residents are generally more concerned about the physical parameters than the bacteriological quality of water. They are aware of what causes water pollution and the effects of pollution on human health, crops, animals and aquatic ecology. They have ways of preventing pollution and appropriate interventions to take when a source of water is polluted, such as boiling water for human consumption, laundry and bathing, or abandoning a water source in extreme cases. Stakeholder participation and ownership of resources needs to be encouraged through participatory planning, and integration between the three government departments (water, environment and health). Local knowledge systems could be integrated into the formal water quality monitoring systems, in order to complement the conventional monitoring networks.

  2. "Using Satellite Remote Sensing to Derive Numeric Criteria in Coastal and Inland Waters of the United States"

    NASA Astrophysics Data System (ADS)

    Crawford, T. N.; Schaeffer, B. A.

    2016-12-01

    Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.

  3. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  4. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China

    PubMed Central

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-01-01

    The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283

  5. Demonstration of a Model-Based Technology for Monitoring Water Quality and Corrosion in Water-Distribution systems

    DTIC Science & Technology

    2016-12-01

    Kamojjala, 2014, “Real-Time M0deling of Water Distribution Systems: A Case Study ,” Journal AWWA, Vol. 106, No. 9 (September 2014.) Feinauer, Lynn R...Quality and Corrosion in Water-Distribution Systems Final Report on Project F07-AR05 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to...Final Report on Project F07-AR05 Vicki L. Van Blaricum Construction Engineering Research Laboratory U.S. Army Engineer Research and Development Center

  6. Protecting drinking water: water quality testing and PHAST in South Africa.

    PubMed

    Breslin, E D

    2000-01-01

    The paper presents an innovative field-based programme that uses a simple total coliform test and the approach of PHAST (Participatory Hygiene And Sanitation Transformation) to help communities exploring possible water quality problems and actions that can be taken to address them. The Mvula Trust, a South African water and environmental sanitation NGO, has developed the programme. It is currently being tested throughout South Africa. The paper provides two case studies on its implementation in the field, and suggests ways in which the initiative can be improved in the future.

  7. Drinking Water Quality and the Geospatial Distribution of Notified Gastro-Intestinal Infections

    PubMed Central

    GRILC, Eva; GALE, Ivanka; VERŠIČ, Aleš; ŽAGAR, Tina; SOČAN, Maja

    2015-01-01

    Introduction Even brief episodes of fecal contamination of drinking water can lead directly to illness in the consumers. In water-borne outbreaks, the connection between poor microbial water quality and disease can be quickly identified. The impact of non-compliant drinking water samples due to E. coli taken for regular monitoring on the incidence of notified acute gastrointestinal infections has not yet been studied. Methods The objective of this study was to analyse the geographical distribution of notified acute gastrointestinal infections (AGI) in Slovenia in 2010, with hotspot identification. The second aim of the study was to correlate the fecal contamination of water supply system on the settlement level with the distribution of notified AGI cases. Spatial analysis using geo-information technology and other methods were used. Results Hot spots with the highest proportion of notified AGI cases were mainly identified in areas with small supply zones. The risk for getting AGI was drinking water contaminated with E. coli from supply zones with 50–1000 users: RR was 1.25 and significantly greater than one (p-value less than 0.001). Conclusion This study showed the correlation between the frequency of notified AGI cases and non-compliant results in drinking water monitoring. PMID:27646727

  8. The cumulative effects assessment of a coastal ecological restoration project in China: An integrated perspective.

    PubMed

    Ma, Deqiang; Zhang, Liyu; Fang, Qinhua; Jiang, Yuwu; Elliott, Michael

    2017-05-15

    Large scale coastal land-claim and sea-enclosing (CLASE) activities have caused habitat destruction, biodiversity losses and water deterioration, thus the local governments in China have recently undertaken seabed dredging and dyke opening (SDADO) as typical ecological restoration projects. However, some projects focus on a single impact on hydrodynamic conditions, water quality or marine organisms. In a case study in Xiamen, China, an integrated effects assessment framework centres on ecohydrology, using modeling of hydrodynamic conditions and statistical analysis of water quality, was developed to assess the effects of ecological restoration projects. The benefits of SDADO projects include improving hydrodynamic conditions and water quality, as a precursor to further marine biological improvements. This study highlights the need to comprehensively consider ecological effects of SDADO projects in the planning stage, and an integrative assessment method combining cumulative effects of hydrodynamic conditions, water quality and biological factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. East Fork Watershed Cooperative: Toward better system-scale ...

    EPA Pesticide Factsheets

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir is experience harmful algal blooms. The system including the reservoir has become a significant case study for EPA ORD research and development. The Cooperative includes affiliates from the USACE, the OHIO EPA, the USGS, the USDA, and local Soil and Water Conservation districts as well as utility operators and water quality protection offices. The presentation includes a description of the water quality monitoring and modeling program in the watershed, followed by the results of using the watershed model to estimate the costs associated with nutrient reduction to Harsha Lake, and then ends with an explanation of temporal changes observed for important factors controlling harmful algae in Harsha Lake and how this lake relates to other reservoirs in the Ohio River Basin. This presentation is an invited contribution to the Ohio River Basin Water Quality Workshop sponsored by the US ACE and the US EPA. The presentation describes the activities of the East Fork Watershed Cooperative and the knowledge it has gained to help better manage a case study watershed system over the last few years. The East Fork of the Little Miami River is the focal watershed. It is a significant tributary to the Lit

  10. Benefit transfer protocol for long-term health risk valuation: A case of surface water contamination

    NASA Astrophysics Data System (ADS)

    Kask, Susan B.; Shogren, Jason F.

    1994-10-01

    In response to scarce financial resources, economists have promoted the concept of benefit transfer as a cost-effective alternative to new nonmarket valuation studies. Recent discussion on benefit transfer for improved water quality has focused on recreational benefits. While useful, the discussion must now be expanded to include another key benefit from improved water quality: the reduction in risk to public health. This paper develops a protocol for benefit transfer of long-term health risk reduction and presents a case study for surface water contamination. Challenges such as the multiple sources of risk, the mortality and morbidity effects indicated by a variety of symptoms, the long latency period between cause and effect, and an individual's ability to privately or collectively reduce the probability or severity of the risk are discussed.

  11. Using multivariate techniques to assess the effects of urbanization on surface water quality: a case study in the Liangjiang New Area, China.

    PubMed

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2017-04-01

    Rapid urbanization in China has been causing dramatic deterioration in the water quality of rivers and threatening aquatic ecosystem health. In this paper, multivariate techniques, such as factor analysis (FA) and cluster analysis (CA), were applied to analyze the water quality datasets for 19 rivers in Liangjiang New Area (LJNA), China, collected in April (dry season) and September (wet season) of 2014 and 2015. In most sampling rivers, total phosphorus, total nitrogen, and fecal coliform exceeded the Class V guideline (GB3838-2002), which could thereby threaten the water quality in Yangtze and Jialing Rivers. FA clearly identified the five groups of water quality variables, which explain majority of the experimental data. Nutritious pollution, seasonal changes, and construction activities were three key factors influencing rivers' water quality in LJNA. CA grouped 19 sampling sites into two clusters, which located at sub-catchments with high- and low-level urbanization, respectively. One-way ANOVA showed the nutrients (total phosphorus, soluble reactive phosphorus, total nitrogen, ammonium nitrogen, and nitrite), fecal coliform, and conductivity in cluster 1 were significantly greater than in cluster 2. Thus, catchment urbanization degraded rivers' water quality in Liangjiang New Area. Identifying effective buffer zones at riparian scale to weaken the negative impacts of catchment urbanization was recommended.

  12. Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices.

    PubMed

    Aazami, Jaber; Esmaili-Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J

    2015-01-01

    Nowadays, aquatic organisms are used as bio-indicators to assess ecological water quality in western regions, but have hardly been used in an Iranian context. We, therefore, evaluated the suitability of several indices to assess the water quality for an Iranian case study. Measured data on biotic (fish and macroinvertebrates) and abiotic elements (28 physicochemical and habitat parameters), were used to calculate six indices for assessment of water quality and the impact of human activities in the Tajan river, Iran. GIS, uni- and multivariate statistics were used to assess the correlations between biological and environmental endpoints. The results showed that ecological condition and water quality were reduced from up- to downstream. The reduced water quality was revealed by the biotic indices better than the abiotic ones which were linked to a variety of ecological water quality scales. The fish index showed a strong relationship with long-term database of physicochemical parameters (12 years (94%)), whereas macroinvertebrates index is more correlated with short-term data (76%). Meanwhile, the biotic and abiotic elements in this study were also classified well by PCA. Pulp and wood plants and sand mining are indicated to have the most negative effects on the river ecosystem.

  13. Water System Adaptation To Hydrological Changes: Module 3, Consequences of Prolonged Drought on Urban Water System Resilience: Case Study from Las Vegas, Nevada, USA

    EPA Science Inventory

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  14. Western Mountain Initiative - Background

    Science.gov Websites

    , and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon

  15. LABORATORY CAPACITY NEEDS ASSESSMENT OF DRINKING WATER UTILITIES: A GLOBAL PERSPECTIVE

    EPA Science Inventory

    Fully-functioning analytical laboratories capable of producing quality data are essential components of well-run drinking water utilities. In Europe and the US, drinking water laboratory performance is closely monitored and regulated; this is not always the case in the less indu...

  16. Assessment of water quality: a case study of the Seybouse River (North East of Algeria)

    NASA Astrophysics Data System (ADS)

    Guettaf, M.; Maoui, A.; Ihdene, Z.

    2017-03-01

    The assessment of water quality has been carried out to determine the concentrations of different ions present in the surface waters. The Seybouse River constitutes a dump of industrial and domestic rejections which contribute to the degradation of water quality. A total of 48 surface water samples were collected from different stations. The first objective of this study is the use of water quality index (WQI) to evaluate the state of the water in this river. The second aim is to calculate the parameters of the quality of water destined for irrigation such as sodium adsorption ratio , sodium percentage, and residual sodium carbonate. A high mineralization and high concentration of major chemical elements and nutrients indicate inevitably a high value of WQI index. The mean value of electrical conductivity is about 945.25 µs/cm in the station 2 (Bouhamdane) and exceeds 1,400 µs/cm in station 12 of Nador. The concentration of sulfates is above 250 mg/l in the stations 8 (Zimba) and 11 (Helia). A concentration of orthophosphate over 2 mg/l was observed in the station 11. The comparison of the obtained and the WHO standards indicates a before using it use in agricultural purposes.

  17. Suitability of optical, physical and chemical measurements for detection of changes in bacterial drinking water quality.

    PubMed

    Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T

    2013-10-25

    In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality.

  18. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    PubMed

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  19. Suitability of Optical, Physical and Chemical Measurements for Detection of Changes in Bacterial Drinking Water Quality

    PubMed Central

    Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T.

    2013-01-01

    In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality. PMID:24284353

  20. Provision of safe domestic water for the promotion and protection of public health: a case study of the city of Beirut, Lebanon.

    PubMed

    Korfali, Samira Ibrahim; Jurdi, Mey

    2009-04-01

    Securing adequate safe drinking water and proper sanitation is a major challenge facing the developing world. The "Water for Life Decade" emphasizes the importance of upgrading national water quality and sanitation services. This study assessed the domestic water profile in the city of Beirut. Samples were collected from three types of household water sources (municipality, private wells, and vended water bottles) and assessed for their physiochemical and microbiological profile. At the same time, a cross-sectional survey assessing water consumption patterns and the prevalence of water-borne diseases was conducted. The results showed a deficient water quality profile in all three water sources. The measured physiochemical and bacteriological parameters reflected the high frequency of water-borne diseases. Action to secure a safe domestic water supply is essential. The plan should guarantee the protection of water sources, ensure sufficient treatment of domestic water and upgrade the national program for potable water quality control. Periodic quality monitoring and legislating the chaotic water-vending sector are indispensable. Additionally, the deterioration of private well sources by sea and wastewater infiltration necessitates the enforcement of legislation associated with the use and management of private wells. Consumer awareness and active contributions to promote and protect public health are important.

  1. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia.

    PubMed

    Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce

    2016-08-01

    Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.

  2. BASINs and WEPP Climate Assessment Tools (CAT): Case ...

    EPA Pesticide Factsheets

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & Non-point Sources (BASINS) and the Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT). The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential effects of climate change on streamflow and water quality. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  3. Evaluation of hydrothermal resources of North Dakota. Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, K.L.; Howell, F.L.; Winczewski, L.M.

    1981-06-01

    The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less

  4. Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the Three Gorges Reservoir Area, China.

    PubMed

    Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu

    2016-02-01

    In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).

  5. Effect of Strip Mining on Water Quality in Small Streams in Eastern Kentucky, 1967-1975

    Treesearch

    Kenneth L. Dyer; Willie R. Curtis

    1977-01-01

    Eight years of streamflow data are analyzed to show the effects of strip mining on chemical quality of water in six first-order streams in Breathitt County, Kentucky. All these watersheds were unmined in August, 1967, but five have since been strip mined. The accumulated data from this case history study indicate that strip mining causes large increases in the...

  6. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in the arid to semiarid climate, cultural and economic activities in the Southwest are particularly dependent on supplies of good-quality groundwater. Irrigation and public-supply withdrawals from basin-fill aquifers in the study area account for about one quarter of the total withdrawals from all aquifers in the United States.Many factors influence the quality of groundwater in the 15 case-study basins, but some common factors emerge from the basin summaries presented in this report. These factors include the chemical composition of the recharge water, consolidated rock geology and composition of aquifer materials derived from consolidated rock, and land and water use. The major water-quality issues in many of the developed case-study basins are increased concentrations of dissolved solids, nitrate, and VOCs in groundwater as a result of human activities.The information presented and the citations listed in this report serve as a resource for those interested in the groundwater-flow systems in the NAWQA case-study basins. The summaries of water-development history, hydrogeology, conceptual understanding of the groundwater system under both predevelopment and modern conditions, and effects of natural and human-related factors on groundwater quality presented in the sections on each basin also serve as a foundation for the synthesis and modeling phases of the SWPA regional study.

  7. Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam.

    PubMed

    Hanh, Pham Thi Minh; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Ba, Dang The; Hung, Nguyen Quang

    2010-06-01

    In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann-Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.

  8. Application of a health risk assessment model for cattle exposed to pesticides in contaminated drinking waters: A study case from the Pampas region, Argentina.

    PubMed

    Dubny, Sabrina; Peluso, Fabio; Masson, Ignacio; Othax, Natalia; González Castelain, José

    2018-04-01

    Using the USEPA methodology we estimated the probabilistic chronic risks for calves and adult cows due to pesticide exposure through oral intake of contaminated surface and ground waters in Tres Arroyos County (Argentina). Because published data on pesticide toxicity endpoints for cows are scarce, we used threshold levels based on interspecies extrapolation methods. The studied waters showed acceptable quality for cattle production since none of the pesticides were present at high-enough concentrations to potentially affect cow health. Moreover, ground waters had better quality than surface waters, with dieldrin and deltamethrin being the pesticides associated with the highest risk values in the former and the latter water compartments, respectively. Our study presents a novel use of the USEPA risk methodology proving it is useful for water quality evaluation in terms of pesticide toxicity for cattle production. This approach represents an alternative tool for water quality management in the absence of specific cattle pesticide regulatory limits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    NASA Astrophysics Data System (ADS)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  10. Consideration of rainwater quality parameters for drinking purposes: A case study in rural Vietnam.

    PubMed

    Lee, Minju; Kim, Mikyeong; Kim, Yonghwan; Han, Mooyoung

    2017-09-15

    Rainwater, which is used for drinking purposes near Hanoi, Vietnam, was analysed for water quality based on 1.5 years of monitoring data. In total, 23 samples were collected from different points within two rainwater harvesting systems (RWHSs). Most parameters met the standard except micro-organisms. Coliform and Escherichia coli (E. coli) were detected when the rainwater was not treated with ultraviolet (UV) light; however, analysis of rainwater after UV sterilisation showed no trace of micro-organisms. The RWHSs appear to provide drinking water of relatively good quality compared with surface water and groundwater. The superior quality of the rainwater suggests the necessity for new drinking rainwater standards because applying all of the drinking water quality standards to rainwater is highly inefficient. The traditionally implemented standards could cause more difficulties for developing countries using RWHSs installed decentralized as a source of drinking water, particularly in areas not well supplied with testing equipment, because such countries must bear the expense and time for these measures. This paper proposes the necessity of rainwater quality guideline, which could serve as a safe and cost-effective alternative to provide an access to safe drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Authority of States of Use Section 401 Water Quality Certification to Deny or Condition Federal Energy Regulatory Commission Licenses

    DTIC Science & Technology

    1994-09-30

    Oregon, 349 U.S. 435, 75 S.Ct. 832, 99 L.Ed. 1215 (1955)(The Pelton Dam case). 143Id" - 38 - The case that offered the greatest modem support for...Wildlife Federation brought suit against a hydroelectric plant to stop discharge of dead fish remains in turbine generated water. The Sixth Circuit held...behind the dam, spill water over the top during high water or to allow for maintenance on the turbine facility."𔃼 Congress uses the word "discharge

  13. The importance of lake-specific characteristics for water quality across the continental United States.

    PubMed

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using regionalization schemes to guide water quality criteria could be improved by consideration of lake-specific characteristics, which were the most important predictors of water quality at the scale of the continental United States. The spatial extent and high quality of contextual data available for this analysis makes this work an unprecedented application of landscape limnology theory to water quality data. Further, the demonstrated importance of lake morphology over other controls on water quality is relevant to both aquatic scientists and managers.

  14. Socio-economic factors influencing the spread of drinking water diseases in rural Africa: case study of Bondo sub-county, Kenya.

    PubMed

    Rodrigues, Anthony Joachim; Oyoo, Wandiga Shem; Odundo, Francis O; Wambu, Enos W

    2015-06-01

    Socio-economic and medical information on Bondo sub-county community was studied to help establish the relationship between the water quality challenges, community health and water rights conditions. Health challenges have been linked to water quality and household income. A total of 1,510 households/respondents were studied by means of a questionnaire. About 69% of the households have no access to treated water. Although 92% of the respondents appear to be aware that treatment of water prevents waterborne diseases, the lowest income group and children share a high burden of waterborne diseases requiring hospitalization and causing mortality. Open defecation (12.3%) in these study areas contributes to a high incidence of waterborne diseases. The community's constitutional rights to quality water in adequate quantities are greatly infringed. The source of low-quality water is not a significant determinant of waterborne disease. The differences in poverty level in the sub-county are statistically insignificant and contribute less than other factors. Increased investment in water provision across regions, improved sanitation and availability of affordable point-of-use water purification systems will have major positive impacts on the health and economic well-being of the community.

  15. A novel water quality data analysis framework based on time-series data mining.

    PubMed

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Seasonality of selected surface water constituents in the Indian River Lagoon, Florida.

    PubMed

    Qian, Y; Migliaccio, K W; Wan, Y; Li, Y C; Chin, D

    2007-01-01

    Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p < 0.05). Seasonal and annual trends were determined by trend analysis (Seasonal Kendall or Tobit procedure) using the U.S. Geological Survey (USGS) Estimate TREND (ESTREND) program. Major water quality indicators (specific conductivity, turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends.

  17. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake.

    PubMed

    Yang, Kun; Yu, Zhenyu; Luo, Yi; Yang, Yang; Zhao, Lei; Zhou, Xiaolu

    2018-05-15

    Global warming and rapid urbanization in China have caused a series of ecological problems. One consequence has involved the degradation of lake water environments. Lake surface water temperatures (LSWTs) significantly shape water ecological environments and are highly correlated with the watershed ecosystem features and biodiversity levels. Analysing and predicting spatiotemporal changes in LSWT and exploring the corresponding impacts on water quality is essential for controlling and improving the ecological water environment of watersheds. In this study, Dianchi Lake was examined through an analysis of 54 water quality indicators from 10 water quality monitoring sites from 2005 to 2016. Support vector regression (SVR), Principal Component Analysis (PCA) and Back Propagation Artificial Neural Network (BPANN) methods were applied to form a hybrid forecasting model. A geospatial analysis was conducted to observe historical LSWTs and water quality changes for Dianchi Lake from 2005 to 2016. Based on the constructed model, LSWTs and changes in water quality were simulated for 2017 to 2020. The relationship between LSWTs and water quality thresholds was studied. The results show limited errors and highly generalized levels of predictive performance. In addition, a spatial visualization analysis shows that from 2005 to 2020, the chlorophyll-a (Chla), chemical oxygen demand (COD) and total nitrogen (TN) diffused from north to south and that ammonia nitrogen (NH 3 -N) and total phosphorus (TP) levels are increases in the northern part of Dianchi Lake, where the LSWT levels exceed 17°C. The LSWT threshold is 17.6-18.53°C, which falls within the threshold for nutritional water quality, but COD and TN levels fall below V class water quality standards. Transparency (Trans), COD, biochemical oxygen demand (BOD) and Chla levels present a close relationship with LSWT, and LSWTs are found to fundamentally affect lake cyanobacterial blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    PubMed

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  19. WATERBORNE PATHOGEN INVASIONS: A CASE FOR WATER QUALITY PROTECTION IN DISTRIBUTION PROTECTION IN DISTRIBUTION

    EPA Science Inventory

    No degree of treatment will insure the delivery of a safe water supplyto the consumer's tap when the distribution system is subject to cross-connections water pressure losses, frequent line breaks, open reservoirs and infrastructure deterioration. n one recent U.S. outbreak, wate...

  20. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND WATER CONSTITUENT CONCENTRATIONS FROM THE REMOTE-SENSING REFLECTANCE SPECTRA IN THE ALBEMARLE-PAMLICO ESTUARY, USA

    EPA Science Inventory

    The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...

  1. Watershed modeling and monitoring for assessing nutrient trading viability and increasing the adoption of nutrient management practices

    EPA Science Inventory

    Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient ...

  2. Water System Adaptation To Hydrological Changes: Module 5, Water Quality and Infrastructure Response to Rapid Urbanization: Adaptation Case Study in China

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  3. The water supply-water environment nexus in salt Intrusion area under the climate change

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.

  4. Water System Adaptation to Hydrological Changes: Module 2, Stormwater Management and Sewer Performance under Intense Storms: Case Study from Lawrence, Massachusetts, U.S.A.

    EPA Science Inventory

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  5. Why do water quality monitoring programs succeed or fail? A qualitative comparative analysis of regulated testing systems in sub-Saharan Africa.

    PubMed

    Peletz, Rachel; Kisiangani, Joyce; Bonham, Mateyo; Ronoh, Patrick; Delaire, Caroline; Kumpel, Emily; Marks, Sara; Khush, Ranjiv

    2018-05-31

    Water quality testing is critical for guiding water safety management and ensuring public health. In many settings, however, water suppliers and surveillance agencies do not meet regulatory requirements for testing frequencies. This study examines the conditions that promote successful water quality monitoring in Africa, with the goal of providing evidence for strengthening regulated water quality testing programs. We compared monitoring programs among 26 regulated water suppliers and surveillance agencies across six African countries. These institutions submitted monthly water quality testing results over 18 months. We also collected qualitative data on the conditions that influenced testing performance via approximately 821 h of semi-structured interviews and observations. Based on our qualitative data, we developed the Water Capacity Rating Diagnostic (WaterCaRD) to establish a scoring framework for evaluating the effects of the following conditions on testing performance: accountability, staffing, program structure, finances, and equipment & services. We summarized the qualitative data into case studies for each of the 26 institutions and then used the case studies to score the institutions against the conditions captured in WaterCaRD. Subsequently, we applied fuzzy-set Qualitative Comparative Analysis (fsQCA) to compare these scores against performance outcomes for water quality testing. We defined the performance outcomes as the proportion of testing Targets Achieved (outcome 1) and Testing Consistency (outcome 2) based on the monthly number of microbial water quality tests conducted by each institution. Our analysis identified motivation & leadership, knowledge, staff retention, and transport as institutional conditions that were necessary for achieving monitoring targets. In addition, equipment, procurement, infrastructure, and enforcement contributed to the pathways that resulted in strong monitoring performance. Our identification of institutional commitment, comprising motivation & leadership, knowledge, and staff retention, as a key driver of monitoring performance was not surprising: in weak regulatory environments, individuals and their motivations take-on greater importance in determining institutional and programmatic outcomes. Nevertheless, efforts to build data collection capacity in low-resource settings largely focus on supply-side interventions: the provision of infrastructure, equipment, and training sessions. Our results indicate that these interventions will continue to have limited long-term impacts and sustainability without complementary strategies for motivating or incentivizing water supply and surveillance agency managers to achieve testing goals. More broadly, our research demonstrates both an experimental approach for diagnosing the systems that underlie service provision and an analytical strategy for identifying appropriate interventions. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Water resources management strategies and its implications on hydrodynamic and hydrochemical changes of costal groundwater: Case of Grombalia shallow aquifer, NE Tunisia

    NASA Astrophysics Data System (ADS)

    Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar

    2016-12-01

    Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.

  7. Development of water environment information management and water pollution accident response system

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ruan, H.

    2009-12-01

    In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.

  8. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  9. Ballast water as a vector of coral pathogens in the Gulf of Mexico: the case of the Cayo Arcas coral reef.

    PubMed

    Aguirre-Macedo, M Leopoldina; Vidal-Martinez, Victor M; Herrera-Silveira, Jorge A; Valdés-Lozano, David S; Herrera-Rodríguez, Miguel; Olvera-Novoa, Miguel A

    2008-09-01

    The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.

  10. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991-2004: Overview of Major Findings

    USGS Publications Warehouse

    DeSimone, Leslie A.; Hamilton, Pixie A.; Gilliom, Robert J.

    2009-01-01

    More than 43 million people - about 15 percent of the U.S. population - rely on domestic wells as their source of drinking water (Hutson and others, 2004). The quality and safety of water from domestic wells, also known as private wells, are not regulated by the Federal Safe Drinking Water Act or, in most cases, by state laws. Rather, individual homeowners are responsible for maintaining their domestic well systems and for monitoring water quality. The lack of regular monitoring of domestic wells makes periodic assessments at national, regional, and local scales important sources for providing information about this key source of drinking water. This study from the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) assesses water-quality conditions for about 2,100 domestic wells. The sampled wells are located in 48 states and in parts of 30 regionally extensive aquifers used for water supply in the United States. As many as 219 properties and contaminants, including pH, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds (VOCs), were measured. Fecal indicator bacteria and additional radionuclides were analyzed for a smaller number of wells. The large number of contaminants assessed and the broad geographic coverage of the present study provides a foundation for an improved understanding of the quality of water from the major aquifers tapped by domestic supply wells in the United States.

  11. Optimum operation of restoration techniques for eutrophic water bodies

    NASA Astrophysics Data System (ADS)

    Hagen, N. M.; Kleeberg, H.-B.

    1994-05-01

    Operating rules have been applied in water resources management for a long time in order to control and supply a required quantity (volume) of water. The operating rules have to guarantee the optimum management of the reservoir(s). The quality of the stored water has been satisfactory for the desired utilization up to the sixties. Due to the deterioration of reservoir water quality through human impacts, however, increased attention had to be paid since. Eutrophication of stagnant waters is still an unsolved problem. Through means of various restoration techniques, i.e., dilution/flushing or hypolimnetic withdrawal, the quality of the stored water can be improved. Continuous operation or appropriate time or depth variant operating rules are required to achieve this goal. The paper presents such rules for long-term operation. They have been established for the first time and can he represented in two or three-dimensional graphs depending on the number of included components (e.g., actual water storage and quality). The ‘quality operating rules’ take into account the dynamics of the processes in aquatic ecosystems. Simplifications with regard to application and acceptance (e.g., clarity) are developed and tested. The general validity and efficiency of the operating rules have been proved in a case study (a multi-purpose reservoir) and a fictitious lake.

  12. Assessment of surface water quality using a growing hierarchical self-organizing map: a case study of the Songhua River Basin, northeastern China, from 2011 to 2015.

    PubMed

    Jiang, Mingcen; Wang, Yeyao; Yang, Qi; Meng, Fansheng; Yao, Zhipeng; Cheng, Peixuan

    2018-03-30

    The analysis of a large number of multidimensional surface water monitoring data for extracting potential information plays an important role in water quality management. In this study, growing hierarchical self-organizing map (GHSOM) was applied to a water quality assessment of the Songhua River Basin in China using 22 water quality parameters monitored monthly from 13 monitoring sites from 2011 to 2015 (14,782 observations). The spatial and temporal features and correlation between the water quality parameters were explored, and the major contaminants were identified. The results showed that the downstream of the Second Songhua River had the worst water quality of the Songhua River Basin. The upstream and midstream of Nenjiang River and the Second Songhua River had the best. The major contaminants of the Songhua River were chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total phosphorus (TP), and fecal coliform (FC). In the Songhua River, the water pollution at downstream has been gradually eased in years. However, FC and biochemical oxygen demand (BOD 5 ) showed growth over time. The component planes showed that three sets of parameters had positive correlations with each other. GHSOM was found to have advantages over self-organizing maps and hierarchical clustering analysis as follows: (1) automatically generating the necessary neurons, (2) intuitively exhibiting the hierarchical inheritance relationship between the original data, and (3) depicting the boundaries of the classification much more clearly. Therefore, the application of GHSOM in water quality assessments, especially with large amounts of monitoring data, enables the extraction of more information and provides strong support for water quality management.

  13. Prototype water reuse system

    USGS Publications Warehouse

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  14. Case study approach to modeling historical disinfection by-product exposure in Iowa drinking waters.

    PubMed

    Krasner, Stuart W; Cantor, Kenneth P; Weyer, Peter J; Hildesheim, Mariana; Amy, Gary

    2017-08-01

    In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was 156μg/L compared to 74μg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels (>96μg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure. Copyright © 2017. Published by Elsevier B.V.

  15. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    PubMed

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  16. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China.

    PubMed

    Ma, Jinzhu; Ding, Zhenyu; Wei, Guoxiao; Zhao, Hua; Huang, Tianming

    2009-02-01

    Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced.

  17. The Case for Universal Screening of Private Well Water Quality in the U.S. and Testing Requirements to Achieve It: Evidence from Arsenic.

    PubMed

    Zheng, Yan; Flanagan, Sara V

    2017-08-03

    The 1974 Safe Drinking Water Act (SDWA) regulates >170,000 public water systems to protect health, but not >13 million private wells. State and local government requirements for private well water testing are rare and inconsistent; the responsibility to ensure water safety remains with individual households. Over the last two decades, geogenic arsenic has emerged as a significant public health concern due to high prevalence in many rural American communities. We build the case for universal screening of private well water quality around arsenic, the most toxic and widespread of common private water contaminants. We argue that achieving universal screening will require policy intervention, and that testing should be made easy, accessible, and in many cases free to all private well households in the United States, considering the invisible, tasteless, odorless, and thus silent nature of arsenic. Our research has identified behavioral, situational and financial barriers to households managing their own well water safety, resulting in far from universal screening despite traditional public health outreach efforts. We observe significant socioeconomic disparities in arsenic testing and treatment when private water is unregulated. Testing requirements can be a partial answer to these challenges. Universal screening, achieved through local testing requirements complemented by greater community engagement targeting biologically and socioeconomically vulnerable groups, would reduce population arsenic exposure greater than any promotional efforts to date. Universal screening of private well water will identify the dangers hidden in America's drinking water supply and redirect attention to ensure safe water among affected households. https://doi.org/10.1289/EHP629.

  18. Rocky-shore communities as indicators of water quality: a case study in the Northwestern Mediterranean.

    PubMed

    Pinedo, Susana; García, María; Satta, Maria Paola; de Torres, Mariona; Ballesteros, Enric

    2007-01-01

    The collection of 152 samples from the upper sublittoral zone along the rocky coasts of Catalonia (Northwestern Mediterranean) was carried out in 1999 in order to test the suitability of littoral communities to be used as indicators of water quality in the frame of the European Water Framework Directive. Detrended correspondence analysis were performed to distinguish between different communities and to relate communities composition to water quality. Samples collected in reference sites were included in the analysis. Mediterranean rocky shore communities situated in the upper sublittoral zone can be used as indicators of the water quality: there is a gradient from high to bad status that comprises from dense Cystoseira mediterranea forests to green algae dominated communities. The geographical patterns in the distribution of these communities show that the best areas are situated in the Northern coast, where tourism is the main economic resource of the area, and the worst area is situated close to the metropolitan zone of Barcelona with high population and industrial development. Thus, Mediterranean sublittoral rocky shore communities are useful indicators of water quality and multivariate analysis are a suitable statistical tool for the assessment of the ecological status.

  19. The Case for Ecoregion Rather than Regional Extension Water Education

    ERIC Educational Resources Information Center

    Mahler, Robert. L.

    2009-01-01

    In 2000 the National Water Quality program (USDA-CSREES) was refocused to provide water resources education to citizens on a regional basis. The Pacific Northwest--consisting of Alaska, Idaho, Oregon, and Washington--comprises one of these regions. Even though the Pacific Northwest appears to be a relatively homogeneous region, there are large…

  20. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    EPA Science Inventory

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  1. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    USDA-ARS?s Scientific Manuscript database

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  2. Water Quality Protection from Nutrient Pollution: Case ...

    EPA Pesticide Factsheets

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  3. Integrated catchment modelling within a strategic planning and decision making process: Werra case study

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg; Funke, Markus

    Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.

  4. BIOMONITORING TO ACHIEVE CONTROL OF TOXIC EFFLUENTS

    EPA Science Inventory

    This 48 - page Technology Transfer Report provides a case study of how water quality-based toxicity control procedures can be combined with chemical analyses and biological stream surveys to achieve more effective water pollution control. t describes how regulatory agencies used ...

  5. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness.

    PubMed

    Catling, Louise A; Abubakar, Ibrahim; Lake, Iain R; Swift, Louise; Hunter, Paul R

    2008-12-01

    The aim of this study is to systematically review and critically assess analytical observational epidemiology studies investigating the association between levels of drinking water hardness and cardiovascular disease. We searched electronic databases and used standardised forms to extract data and assess study quality. Of 2,906 papers identified, 14 met the inclusion criteria (nine case control and five cohort studies). Of the nine case control studies, seven examined both drinking water magnesium and calcium and risk of death from cardiovascular disease. A pooled odds ratio showed a statistically significant inverse association between magnesium and cardiovascular mortality (OR 0.75 (95%CI 0.68, 0.82), p < 0.001). Only two studies reported a statistically significant effect for calcium. Substantial heterogeneity between studies made calculation of a summary estimate for drinking water calcium inappropriate. Of three cohort studies reviewed, two were of good quality. A weak suggestion that soft water was harmful in females and possibly associated with a slightly greater risk of sudden death was reported, but there was no association between water hardness and mortality from stroke or cardiovascular disease. This study found significant evidence of an inverse association between magnesium levels in drinking water and cardiovascular mortality following a meta-analysis of case control studies. Evidence for calcium remains unclear. Copyright IWA Publishing 2008.

  6. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    PubMed

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Targeted Water Quality Assessment in Small Reservoirs in Brazil, Zimbabwe, Morocco and Burkina Faso

    NASA Astrophysics Data System (ADS)

    Boelee, Eline; Rodrigues, Lineu; Senzanje, Aidan; Laamrani, Hammou; Cecchi, Philippe

    2010-05-01

    Background Physical and chemical parameters of water in reservoirs can be affected by natural and manmade pollutants, causing damage to the aquatic life and water quality. However, the exact water quality considerations depend on what the water will be used for. Brick making, livestock watering, fisheries, irrigation and domestic uses all have their own specific water quality requirements. In turn, these uses impact on water quality. Methodology Water quality was assessed with a variety of methods in small multipurpose reservoirs in the São Francisco Basin in Brazil, Limpopo in Zimbabwe, Souss Massa in Morocco and Nakambé in Burkina Faso. In each case the first step was to select the reservoirs for which the water quality was to be monitored, then identify the main water uses, followed by a determination of key relevant water quality parameters. In addition, a survey was done in some cases to identify quality perceptions of the users. Samples were taken from the reservoir itself and related water bodies such as canals and wells where relevant. Results Accordingly in the four basins different methods gave different locally relevant results. In the Preto River in the Sao Francisco in Brazil small reservoirs are mainly used for irrigated agriculture. Chemical analysis of various small reservoirs showed that water quality was mainly influenced by geological origins. In addition there was nutrient inflow from surrounding areas of intensive agriculture with high fertilizer use. In the Limpopo basin in Zimbabwe small reservoirs are used for almost all community water needs. Plankton was selected as indicator and sampling was carried out in reservoirs in communal areas and in a national park. Park reservoirs were significantly more diversified in phytoplankton taxa compared to those in the communal lands, but not for zooplankton, though communal lands had the highest zooplankton abundance. In Souss Massa in Morocco a combination of perceptions and scientific water quality analyses was applied to a small reservoir. High levels of fecal coliform bacteria were found in the reservoir, which made it unfit for human and animal consumption but suitable for most other purposes. In Burkina Faso, the Nakambé basin has been targeted because of its elevated densities of both population and (small) reservoirs that are used for irrigation, livestock, fishing and other purposes. While a large diversity of phytoplankton was found, the massive dominance of aquatic cyanobacteria was the most significant result. Two lakes exhibited significant cyanotoxins concentrations, which had never been documented before. The presence of the involved bacteria in a large number of sites indicated that such contamination with toxins could potentially affect large populations. Classical limnological descriptors failed to explain the observed situations. Conversely, the cyanobacterial abundances were positively correlated with population densities and land-use. This is probably associated with agricultural intensification and particularly horticulture around most reservoirs, because of the high use of pesticides and their selective impacts on plankton communities that tend to favor cynaobacteria. Still, the scientific hypotheses linking human activities to water quality remain to be formally assessed. Discussion and conclusion Both financial difficulties and the frequent absence of specific and academic local competences limit the implementation of relevant water quality monitoring programs. However, on the basis of our findings in four basins we postulate that while the mobilization of water resources has been an emergency priority for a long time, now the time has come to explicitly target the preservation and protection of aquatic ecosystems. This urgent need should dominate the debate on sustainable multipurpose exploitation of small reservoirs whose several benefits (especially fisheries) appear clearly linked to their quality.

  8. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, E.

    2015-12-01

    Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.

  9. Experimental based experiences with the introduction of a water safety plan for a multi-located university clinic and its efficacy according to WHO recommendations

    PubMed Central

    Dyck, Alexander; Exner, Martin; Kramer, Axel

    2007-01-01

    Background Due to the high number of immunosuppressed and other predisposed patients hospitals have to control and ensure the microbiological water quality. The origin for the occurrence of pathogenic microorganisms in water pipes is the formation of biofilm. Methods For the permanent control of water safety a water safety plan (WSP) was realized as recommended by the WHO following the principle "search and destroy". The WSP is based on an established HACCP concept due to the special focus. The most important measures include the concept for sample taking depending on patient risk. 3 different categories) are distinguished: risk area1 (high infection risk), risk 2 (moderate infection risk), and risk area 3 (not increased infection risk). Additionally to the threshold value of the German law for the quality of drinking water (TrinkwV) three more limiting values were defined (warning, alert, and worst case) for immediate risk adapted reaction. Additional attention has to be focussed on lavatory sinks, which are an open bacterial reservoir. Therefore continuous disinfecting siphons were installed as part of the WSP in high risk areas. If extended technical equipment is not available, especially for immunocompromised patients the following measures are easy to realize: boiled (or sun exposed) water for nursing procedures as well alimentary use, no showering. Results Comparing data over 3 years the microbial water quality was significantly improved resulting in no new case of nosocomial Legionella pneumoniae and decrease in neonatal sepsis. Conclusion According to average situations with highly contaminated water system the management must be defined with implementation of water task force, immediate providing of special equipment, information of patients and staff and control of the water quality, an example for successful decontamination of the hospital within 24 hours is given. PMID:17355621

  10. Drinking water: a risk factor for high incidence of esophageal cancer in Anyang, China.

    PubMed

    Cao, Wenbo; Han, Jianying; Yuan, Yi; Xu, Zhixiang; Yang, Shengli; He, Weixin

    2016-06-01

    Anyang is known to be a high-incidence area of esophageal cancer (EC) in China. Among a long list of risk factors, the quality of drinking water was evaluated. We have selected 3806 individuals and collected 550 drinking water samples correspondent with this not-matched case-control survey. There are 531 EC patients included based on Population Cancer Registry from 92 townships, of which 3275 controls with long-lived aged over 90 years and free from EC are used as controls in the same regions. Our result suggests that the quality of drinking water is a highly associated risk factor for EC. The residential ecological environment and the quality of water resource positively link with each other. The analysis of water samples also demonstrated that the concentrations of methyl ethylamine, morpholine, N-methylbenzylamine, nitrate and chloride in water from springs and rivers are higher than those in well and tap water (P = 0.001). Micronuclei formation tests show that well water and tap water in these regions have no mutagenicity.

  11. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    PubMed Central

    Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y.-H.; Thompson, Janelle R.

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools. PMID:26441948

  12. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  13. WATERPROTECT: Innovative tools enabling drinking water protection in rural and urban environments

    NASA Astrophysics Data System (ADS)

    Seuntjens, Piet; Campling, Paul; Joris, Ingeborg; Wauters, Erwin; Lopez de Alda, Miren; Kuczynska, Anna; Lajer Hojberg, Anker; Capri, Ettore; Brabyn, Cristina; Boeckaert, Charlotte; Mellander, Per Erik; Pauwelyn, Ellen; Pop, Edit

    2017-04-01

    High-quality, safe, and sufficient drinking water is essential for life: we use it for drinking, food preparation and cleaning. Agriculture is the biggest source of pesticides and nitrate pollution in European fresh waters. The overarching objective of the recently approved H2020 project WATERPROTECT is to contribute to effective uptake and realisation of management practices and mitigation measures to protect drinking water resources. Therefore WATERPROTECT will create an integrative multi-actor participatory framework including innovative instruments that enable actors to monitor, to finance and to effectively implement management practices and measures for the protection of water sources. We propose seven case studies involving multiple actors in implementing good practices (land management, farming, product stewardship, point source pollution prevention) to ensure safe drinking water supply. The seven case studies cover different pedo-climatic conditions, different types of farming systems, different legal frameworks, larger and smaller water collection areas across the EU. In close cooperation with actors in the field in the case studies (farmers associations, local authorities, water producing companies, private water companies, consumer organisations) and other stakeholders (fertilizer and plant protection industry, environment agencies, nature conservation agencies, agricultural administrations) at local and EU level, WATERPROTECT will develop innovative water governance models investigating alternative pathways from focusing on the 'costs of water treatment' to 'rewarding water quality delivering farming systems'. Water governance structures will be built upon cost-efficiency analysis related to mitigation and cost-benefit analysis for society, and will be supported by spatially explicit GIS analyses and predictive models that account for temporal and spatial scaling issues. The outcome will be improved participatory methods and public policy instruments to protect drinking water resources.

  14. Assessing ecological water quality with macroinvertebrates and fish: a case study from a small Mediterranean river.

    PubMed

    Cheimonopoulou, Maria Th; Bobori, Dimitra C; Theocharopoulos, Ioannis; Lazaridou, Maria

    2011-02-01

    Biological elements, such as benthic macroinvertebrates and fish, have been used in assessing the ecological quality of rivers according to the requirements of the Water Framework Directive. However, the concurrent use of multiple organism groups provides a broader perspective for such evaluations, since each biological element may respond differently to certain environmental variables. In the present study, we assessed the ecological quality of a Greek river (RM4 type), during autumn 2003 and spring 2004 at 10 sites, with benthic macroinvertebrates and fish. Hydromorphological and physicochemical parameters, habitat structure, and riparian vegetation were also considered. Pollution sensitive macroinvertebrate taxa were more abundant at headwaters, which had good/excellent water quality according to the Hellenic Evaluation System (HES). The main river reaches possessed moderate water quality, while downstream sites were mainly characterised as having bad or poor water quality, dominated by pollution-tolerant macroinvertebrate taxa. Macroinvertebrates related strongly to local stressors as chemical degradation (ordination analysis CCA) and riparian quality impairment (bivariate analysis) while fish did not. Fish were absent from the severely impacted lower river reaches. Furthermore, external pathological signs were observed in fish caught at certain sites. A combined use of both macroinvertebrates and fish in biomonitoring programs is proposed for providing a safer assessment of local and regional habitat impairment.

  15. Integrated planning for regional development planning and water resources management under uncertainty: A case study of Xining, China

    NASA Astrophysics Data System (ADS)

    Fu, Z. H.; Zhao, H. J.; Wang, H.; Lu, W. T.; Wang, J.; Guo, H. C.

    2017-11-01

    Economic restructuring, water resources management, population planning and environmental protection are subjects to inner uncertainties of a compound system with objectives which are competitive alternatives. Optimization model and water quality model are usually used to solve problems in a certain aspect. To overcome the uncertainty and coupling in reginal planning management, an interval fuzzy program combined with water quality model for regional planning and management has been developed to obtain the absolutely ;optimal; solution in this study. The model is a hybrid methodology of interval parameter programming (IPP), fuzzy programing (FP), and a general one-dimensional water quality model. The method extends on the traditional interval parameter fuzzy programming method by integrating water quality model into the optimization framework. Meanwhile, as an abstract concept, water resources carrying capacity has been transformed into specific and calculable index. Besides, unlike many of the past studies about water resource management, population as a significant factor has been considered. The results suggested that the methodology was applicable for reflecting the complexities of the regional planning and management systems within the planning period. The government policy makers could establish effective industrial structure, water resources utilization patterns and population planning, and to better understand the tradeoffs among economic, water resources, population and environmental objectives.

  16. Applicability of market-based instruments for safeguarding water quality in coastal waterways: Case study for Darwin Harbour, Australia

    NASA Astrophysics Data System (ADS)

    Greiner, Romy

    2014-02-01

    Water pollution of coastal waterways is a complex problem due to the cocktail of pollutants and multiplicity of polluters involved and pollution characteristics. Pollution control therefore requires a combination of policy instruments. This paper examines the applicability of market-based instruments to achieve effective and efficient water quality management in Darwin Harbour, Northern Territory, Australia. Potential applicability of instruments is examined in the context of biophysical and economic pollution characteristics, and experience with instruments elsewhere. The paper concludes that there is potential for inclusion of market-based instruments as part of an instrument mix to safeguard water quality in Darwin Harbour. It recommends, in particular, expanding the existing licencing system to include quantitative pollution limits for all significant point polluters; comprehensive and independent pollution monitoring across Darwin Harbour; public disclosure of water quality and emissions data; positive incentives for landholders in the Darwin Harbour catchment to improve land management practices; a stormwater offset program for greenfield urban developments; adoption of performance bonds for developments and operations which pose a substantial risk to water quality, including port expansion and dredging; and detailed consideration of a bubble licensing scheme for nutrient pollution. The paper offers an analytical framework for policy makers and resource managers tasked with water quality management in coastal waterways elsewhere in Australia and globally, and helps to scan for MBIs suitable in any given environmental management situation.

  17. Land application of domestic wastewater in Florida--statewide assessment of impact on ground-water quality

    USGS Publications Warehouse

    Franks, Bernard J.

    1981-01-01

    In Florida domestic waste water is being applied to the land for disposal and reuse. State and Federal regulations favor land-application methods over other advanced waste water treatment practices. Despite the increasing use of this alternative technology, little is known about localized effects on groundwater quality. This report documents the extent of land-application practices in Florida and summarizes case study information on some of the more adequately monitored site throughout the State. More than 2,500 sites in Florida are permitted by the Department of Environmental Regulation for applying domestic waste water to the land. The majority (more than 1,700 sites), classified as infiltration ponds, are concentrated in central and southern Florida. More than 560 sites classified as drainfields, and more than 250 sites classified as irrigation sites, are located primarily in central Florida. An estimated 150 million gallons per day of domestic waste water, after required secondary treatment, are applied to Florida soils. Despite the large numbers of sites and the considerable volume of waste water utilized, little is known about potential impact on groundwater quality. At the few sites where observation wells have been drilled and local groundwater quality monitored, no significant deterioration of water quality has been detected. (USGS)

  18. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion.

  19. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion.

    PubMed

    Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua

    2018-08-01

    Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  1. Water data to answer urgent water policy questions: Monitoring design, available data, and filling data gaps for determining whether shale gas development activities contaminate surface water or groundwater in the Susquehanna River Basin

    USGS Publications Warehouse

    Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.

    2016-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  2. Design and implementation of the National Water-Quality Assessment Program: a United States example: understanding the limitations of using compliance-monitoring data to assess the water quality of a large river basin

    USGS Publications Warehouse

    Wangsness, David J.

    1997-01-01

    In the 1980s it was determined that existing ambient and compliance-monitoring data could not satisfactorily evaluate the results of hundreds of billions of dollars spent for water-pollution abatement in the United States. At the request of the US Congress, a new programme, the National Water-Quality Assessment, was designed and implemented by government agency, the US Geological Survey (USGS). The Assessment has reported status and trends in surface- and ground-water quality at national, regional, and local scales since 1991. The legislative basis for US monitoring and data-sharing policies are identified as well as the successive phases of the design and implementation of the USGS Assessment. Application to the Danube Basin is suggested. Much of the water-quality monitoring conducted in the United States is designed to comply with Federal and State laws mandated primarily by the Clean Water Act of 1987 and the Safe Drinking Water Act of 1986. Monitoring programs generally focus on rivers upstream and downstream of point-source discharges and at water-supply intakes. Few data are available for aquifer systems, and chemical analyses are often limited to those constituents required by law. In most cases, the majority of the available chemical and streamflow data have provided the information necessary to meet the objectives of the compliance-monitoring programs, but do not necessarily provide the information requires for basin-wide assessments of the water quality at the local, regional, or national scale.

  3. Change in drinking water quality from source to point-of-use and storage: a case study from Guwahati, India.

    PubMed

    Khadse, Gajanan Kisan; Kalita, Moromi D; Labhsetwar, Pawan K

    2012-09-01

    To ascertain the quality of drinking water being supplied and maintained at Guwahati, the study was conducted on the status of water supply in city through surveillance of drinking water quality for consecutive 7 days at various treatment stages, distribution network and consumer ends. The performance of five water treatment plants (WTPs), viz. Panbazar WTP, Satpukhuri WTP, Kamakhya WTP, PHED WTP and Hegrabari WTP were assessed for summer, piost-post-monsoon and winter seasons. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/L in the treated water. During post-monsoon, winter, and summer seasons the thermotolerent TC and FC counts ranged between Nil to 168 CFU/100 ml and Nil to 84 CFU/100 ml; Nil to 3356 CFU/100 ml and Nil to 152 CFU/100 ml; and Nil to 960 CFU/100 ml and Nil to 108 CFU/100 ml respectively. There was variation in bacterial counts among the different service reservoirs and consumer ends, which may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicate that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physico-chemical characteristics.

  4. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The conceptual models are intended in part to provide a foundation for subsequent development of regional-scale statistical models that relate specific constituent concentrations or occurrence in groundwater to natural and human factors.

  5. [Effects of land use structure on water quality in Xin'anjiang River].

    PubMed

    Cao, Fang-Fang; Li, Xue; Wang, Dong; Zhao, Yue; Wang, Yu-Qiu

    2013-07-01

    Take Xin'anjiang upstream watershed as a case study. Based on data of interpreting TM orthophoto images and water quality monitoring in May 2010, the land use map of Xin'anjiang River, which was categorized to cultivated land, forestland, grassland, water body, building site, was obtained. Using ArcGIS hydrological and spatial analysis function, Xin'anjiang River was divided into eight sub-watersheds, and its watershed land use structure was analyzed. The water quality parameters such as TN, TP, permanganate index, fecal coliform bacteria were monitored from Jan 2010 to Dec 2010. The relations between water quality and land use were analyzed. The results showed that TN and NH4(+) -N had a significant temporal variation: dry season > wet season > normal river flow period, but other parameters did not vary significantly. In the space, Yuliang and Pukou were the most serious pollution sites. Cultivated land, water body, building site had a positive impact on water quality parameters, while there were negative correlation between the forestland and grassland. Annually, cultivated land had the most significantly important effect on TN, NH4(+) -N and permanganate index, and grassland had the most significantly important effect on TP. Cultivated land had the most prominently important impact on water quality parameters in dry season and wet season. What's more, in the normal river flow, cultivated land, grassland and forestland had the most remarkably important influence on TN, TP and fecal coliform bacteria respectively.

  6. Associations between Maternal Water Consumption and Birth Defects in the National Birth Defects Prevention Study (2000-2005).

    PubMed

    Alman, Breanna L; Coffman, Evan; Siega-Riz, Anna Maria; Luben, Thomas J

    2017-02-15

    Water and water-based beverages constitute a major part of daily fluid intake for pregnant women, yet few epidemiologic studies have investigated the role of water consumption on birth outcomes. We used data from the National Birth Defects Prevention Study to conduct a case-control study investigating associations between maternal water consumption during pregnancy and birth defects (BD). We used interview data on water consumption during the first trimester of pregnancy in 14,454 cases (major BDs n ≥ 50) and 5,063 controls. Total water consumption was analyzed as a continuous variable and in quartiles. We evaluated the role of dietary quality and sugar sweetened beverage consumption. Logistic regression models were used to assess effects of water consumption on risk of BDs with adjustment for relevant covariates. Mean daily maternal water consumption among controls was 4.4 eight-ounce glasses. We observed decreases in estimated risk associated with increases in water consumption for several BDs, including neural tube defects (spina bifida), oral clefts (cleft lip), musculoskeletal defects (gastroschisis, limb deficiencies), and congenital heart defects (hypoplastic left heart syndrome, right-sided obstructions, pulmonary valve stenosis). Our results were generally unchanged when an indicator for overall dietary quality was included; however, there was evidence of effect measure modification by heavy consumption of sugar-sweetened beverages for some defects, but not all. These analyses suggest the importance of sufficient water consumption during early pregnancy, above and beyond it being a marker of higher diet quality. Additional analyses are warranted to understand the biological mechanism for this association. Birth Defects Research 109:193-202, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. A community-based bacteriological study of quality of drinking-water and its feedback to a rural community in Western Maharashtra, India.

    PubMed

    Tambe, Prachi V; Daswani, Poonam G; Mistry, Nerges F; Ghadge, Appasaheb A; Antia, Noshir H

    2008-06-01

    A longitudinal study of the bacteriological quality of rural water supplies was undertaken for a movement towards self-help against diseases, such as diarrhoea, and improved water management through increased community participation. Three hundred and thirteen water samples from different sources, such as well, tank, community standpost, handpumps, percolation lakes, and streams, and from households were collected from six villages in Maharashtra, India, over a one-year period. Overall, 49.8% of the 313 samples were polluted, whereas 45.9% of the samples from piped water supply were polluted. The quality of groundwater was generally good compared to open wells. Irregular and/or inadequate treatment of water, lack of drainage systems, and domestic washing near the wells led to deterioration in the quality of water. No major diarrhoeal epidemics were recorded during the study, although a few sporadic cases were noted during the rainy season. As a result of a continuous feedback of bacteriological findings to the community, perceptions of the people changed with time. An increased awareness was observed through active participation of the people cutting across age-groups and different socioeconomic strata of the society in village activities.

  8. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    NASA Technical Reports Server (NTRS)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  9. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    PubMed

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.

  10. Data assimilation in optimizing and integrating soil and water quality water model predictions at different scales

    USDA-ARS?s Scientific Manuscript database

    Relevant data about subsurface water flow and solute transport at relatively large scales that are of interest to the public are inherently laborious and in most cases simply impossible to obtain. Upscaling in which fine-scale models and data are used to predict changes at the coarser scales is the...

  11. The challenges of sustainable access to safe drinking water in rural areas of developing countries: case of Zawtar El-Charkieh, Southern Lebanon.

    PubMed

    Massoud, May A; Al-Abady, Abdolmonim; Jurdi, Mey; Nuwayhid, Iman

    2010-06-01

    Adequate and safe water is important for human health and well-being, economic production, and sustainable development. Failure to ensure the safety of drinking water may expose the community to the risk of outbreaks of waterborne and infectious diseases. Although drinking water is a basic human right, many people do not have access to safe and adequate drinking water or proper sanitation facilities. The authors conducted a study to assess the quantity, cost, continuity, coverage, and quality of drinking water in the village of Zawtar El-Charkieh, Lebanon. Their aim was to identify the challenges of sustainable access to safe drinking water in order to determine the short-term management actions and long-term strategies to improve water quality. Results revealed that contamination of the source, absence of any disinfection method or insufficient dose, poor maintenance operations, and aging of the networks are significant factors contributing to water contamination during the storage and distribution process. Establishing a comprehensive drinking water system that integrates water supply, quality, and management as well as associated educational programs in order to ensure the safety and sustainability of drinking water supplies is essential.

  12. Drivers of microbiological quality of household drinking water - a case study in rural Ethiopia.

    PubMed

    Usman, Muhammed A; Gerber, Nicolas; Pangaribowo, Evita H

    2018-04-01

    This study aims at assessing the determinants of microbiological contamination of household drinking water under multiple-use water systems in rural areas of Ethiopia. For this analysis, a random sample of 454 households was surveyed between February and March 2014, and water samples from community sources and household storage containers were collected and tested for fecal contamination. The number of Escherichia coli (E. coli) colony-forming units per 100 mL water was used as an indicator of fecal contamination. The microbiological tests demonstrated that 58% of household stored water samples and 38% of protected community water sources were contaminated with E. coli. Moreover, most improved water sources often considered to provide safe water showed the presence of E. coli. The result shows that households' stored water collected from unprotected wells/springs had higher levels of E. coli than stored water from alternative sources. Distance to water sources and water collection containers are also strongly associated with stored water quality. To ensure the quality of stored water, the study suggests that there is a need to promote water safety from the point-of-source to point-of-use, with due considerations for the linkages between water and agriculture to advance the Sustainable Development Goal 6 of ensuring access to clean water for everyone.

  13. Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state

    NASA Astrophysics Data System (ADS)

    Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba

    2016-07-01

    Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.

  14. Water data to answer urgent water policy questions: Monitoring design, available data and filling data gaps for determining the effectiveness of agricultural management practices for reducing tributary nutrient loads to Lake Erie

    USGS Publications Warehouse

    Bentanzo, Elin A.; Choquette, Anne F.; Reckhow, Kenneth H.; Hayes, Laura; Hagan, Erik R; Argue, Denise M.; Cangelosi, A.A.

    2015-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, informed conservation and use of the nation’s finite fresh water resources in the context of increasingly intensive land development is a priority for today’s policy decisionmakers. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Lake Erie drainage basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  15. Water Energy Simulation Toolset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thuy; Jeffers, Robert

    The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.

  16. Economic feasibility study for improving drinking water quality: a case study of arsenic contamination in rural Argentina.

    PubMed

    Molinos-Senante, María; Perez Carrera, Alejo; Hernández-Sancho, Francesc; Fernández-Cirelli, Alicia; Sala-Garrido, Ramón

    2014-12-01

    Economic studies are essential in evaluating the potential external investment support and/or internal tariffs available to improve drinking water quality. Cost-benefit analysis (CBA) is a useful tool to assess the economic feasibility of such interventions, i.e. to take some form of action to improve the drinking water quality. CBA should involve the market and non-market effects associated with the intervention. An economic framework was proposed in this study, which estimated the health avoided costs and the environmental benefits for the net present value of reducing the pollutant concentrations in drinking water. We conducted an empirical application to assess the economic feasibility of removing arsenic from water in a rural area of Argentina. Four small-scale methods were evaluated in our study. The results indicated that the inclusion of non-market benefits was integral to supporting investment projects. In addition, the application of the proposed framework will provide water authorities with more complete information for the decision-making process.

  17. How climate change threats water resource: the case of the Thau coastal lagoon (Mediterranean Sea, France)

    NASA Astrophysics Data System (ADS)

    La Jeunesse, Isabelle; Sellami, Haykel; Cirelli, Claudia

    2014-05-01

    The latest reports of the intergovernmental panel on climate change explained that the Mediterranean regions are especially vulnerable to the impacts of climate change. These latest are expected to have strong impacts on the management of water resources and on regional economies. The aim of this paper is to discuss impacts of climate changes on the Thau case study in relation to the evolution of water balance, water uses and adaptation to climate change. The Thau coastal lagoon is located in the Mediterranean coast in south of France in the Languedoc-Roussillon Region. Economic activities are diverse from shellfish farming, fertilizers industries to agriculture and tourism. However, tourism and shellfish farming are of major importance for local economy. If tourism is mainly turned to the Sea coast, shellfishes grow within the lagoon and rely on water quality. Previous studies have demonstrated the link between the coastal lagoon water quality and inputs of freshwater from the catchment. Thus, changes in rainfalls, runoff and water balance would not only affect water uses but also water quality. Climate changes projections are presented following the implementation of 4 downscaled climatic models. Impacts on water balance are modelled with SWAT (Soil Water Assessment Tool) for 2041-2070 compared to the 1971-2000 reference period. The decrease of precipitations and water balance will impact discharges and thus decrease the freshwater inputs to the coastal lagoon. A study of water uses conducted in interactions with stakeholders within the Thau area has permitted to assess both current and evolution of water uses. It has revealed local water resources are depleting while water demand is increasing and is planned to continue to increase in the really near future. To prevent water scarcity events, mainly due to the climate change context, the Regional authorities have connected the catchment to the Rhône river to import water. The conclusion of this study is while expected impacts of climate changes on the Thau system were expected to be linked to water balance depletion in the catchment, the main threats are now linked to the impact on water quality of the introduction of the Rhône river waters within the system. This study is conducted in the CLIMB EU-FP7 project (2010-2014).

  18. Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China

    NASA Astrophysics Data System (ADS)

    Kang, Fengxin; Jin, Menggui; Qin, Pinrui

    2011-06-01

    Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5 m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.

  19. Technical and Sociological Investigation of Impacts in Using Lignite Mine Drainage for Irrigation - A Case Study

    NASA Astrophysics Data System (ADS)

    Murugappan, A.; Manoharan, A.; Senthilkumar, G.; Krishnamurthy, J.

    2017-07-01

    Irrigated farming depends on an ample supply of water compatible quality. Presently, a lot of irrigation projects have to depend on inferior quality and not so enviable sources of water supply. In order to prevent troubles during usage of such water supplies of poor quality, there must be meticulous preparation to ensure that the water available with such quality characteristics is put to best use. The effect of water quality upon soil and crops must be better understood in choosing fitting options to manage with impending water quality associated troubles that might decrease soil and crop productivity under existing circumstances of water use. Two tanks (small sized reservoirs) namely, Walajah Tank and Perumal Tank in Cuddalore District, used for irrigation, receive mine drainage water pumped out continuously from the open cast lignite mines of the NLC India Limited, Neyveli, Tamilnadu State. This water has been used by the farmers in the irrigated commands of both Walajah Tank and Perumal Tank for more than three decades. Recently, the beneficiaries had raised fears on the quality of mine drainage waters they had been using for raising crops in the commands of both the tanks. They opined that the coal dust laden mine water used for irrigation had affected the crop yields. This incited us to take up a study to (i) assess the status of quality of surface waters released from the two tanks for irrigation in the respective command areas and (ii) assess the likely impacts of quality of water on soil and on growth and productivity of crops cultivated in the command areas. Further to the technical evaluation of the impacts, a structured questionnaire survey was also conducted among the farmers and the common public in the study area. The findings of the survey confirmed with the outcome of the technical assessment in that the mine drainage had a poor impact in the cultivable command area of Walajah tank system while such impacts were less significant in most parts of the command area of Perumal tank system.

  20. An Integrated Risk Management Model for Source Water Protection Areas

    PubMed Central

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770

  1. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    PubMed

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  2. Seasonal assessment and apportionment of surface water pollution using multivariate statistical methods: Sinos River, southern Brazil.

    PubMed

    Alves, Darlan Daniel; Riegel, Roberta Plangg; de Quevedo, Daniela Müller; Osório, Daniela Montanari Migliavacca; da Costa, Gustavo Marques; do Nascimento, Carlos Augusto; Telöken, Franko

    2018-06-08

    Assessment of surface water quality is an issue of currently high importance, especially in polluted rivers which provide water for treatment and distribution as drinking water, as is the case of the Sinos River, southern Brazil. Multivariate statistical techniques allow a better understanding of the seasonal variations in water quality, as well as the source identification and source apportionment of water pollution. In this study, the multivariate statistical techniques of cluster analysis (CA), principal component analysis (PCA), and positive matrix factorization (PMF) were used, along with the Kruskal-Wallis test and Spearman's correlation analysis in order to interpret a water quality data set resulting from a monitoring program conducted over a period of almost two years (May 2013 to April 2015). The water samples were collected from the raw water inlet of the municipal water treatment plant (WTP) operated by the Water and Sewage Services of Novo Hamburgo (COMUSA). CA allowed the data to be grouped into three periods (autumn and summer (AUT-SUM); winter (WIN); spring (SPR)). Through the PCA, it was possible to identify that the most important parameters in contribution to water quality variations are total coliforms (TCOLI) in SUM-AUT, water level (WL), water temperature (WT), and electrical conductivity (EC) in WIN and color (COLOR) and turbidity (TURB) in SPR. PMF was applied to the complete data set and enabled the source apportionment water pollution through three factors, which are related to anthropogenic sources, such as the discharge of domestic sewage (mostly represented by Escherichia coli (ECOLI)), industrial wastewaters, and agriculture runoff. The results provided by this study demonstrate the contribution provided by the use of integrated statistical techniques in the interpretation and understanding of large data sets of water quality, showing also that this approach can be used as an efficient methodology to optimize indicators for water quality assessment.

  3. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    PubMed

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base.

  4. Equivalency of risk for a modified health endpoint: a case from recreational water epidemiology studies

    EPA Science Inventory

    The United States Environmental Protection Agency (US EPA) and its predecessors have conducted three distinct series of epidemiological studies beginning in 1948 on the relationship between bathing water quality and swimmers' illnesses. Keeping pace with advances in microbial tec...

  5. SWMM 5 - A Case Study of Model Re-Development

    EPA Science Inventory

    By the turn of the 21st century the U.S. Environmental Protection Agency’s (EPA) Storm Water Management Model (SWMM) already had a 30-year history of extensive use throughout the world for analyzing complex hydrologic, hydraulic, and water quality problems related to urban draina...

  6. Nowcasting and Forecasting Concentrations of Biological Contaminants at Beaches: A Feasibility and Case Study

    EPA Science Inventory

    Public concern over microbial contamination of recreational waters has increased in recent years. A common approach to evaluating beach water quality has been to use the persistence model which assumes that day-old monitoring results provide accurate estimates of current concentr...

  7. Trouble on Tap.

    ERIC Educational Resources Information Center

    Lewis, Scott Alan

    1995-01-01

    Evaluates the state of drinking-water quality in the United States. Maps the number of reported cases of waterborne disease by state and lists 23 cities with violations of contaminant standards 1 or more times from 1992 to 1994. Briefly describes four primary drinking-water pollution causes and six management options. (LZ)

  8. A case study of dissolved air flotation for seasonal high turbidity water in Korea.

    PubMed

    Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K

    2004-01-01

    A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme.

  9. Contaminated drinking water and rural health perspectives in Rajasthan, India: an overview of recent case studies.

    PubMed

    Suthar, Surindra

    2011-02-01

    Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO3-) contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.

  10. An adaptive framework to differentiate receiving water quality impacts on a multi-scale level.

    PubMed

    Blumensaat, F; Tränckner, J; Helm, B; Kroll, S; Dirckx, G; Krebs, P

    2013-01-01

    The paradigm shift in recent years towards sustainable and coherent water resources management on a river basin scale has changed the subject of investigations to a multi-scale problem representing a great challenge for all actors participating in the management process. In this regard, planning engineers often face an inherent conflict to provide reliable decision support for complex questions with a minimum of effort. This trend inevitably increases the risk to base decisions upon uncertain and unverified conclusions. This paper proposes an adaptive framework for integral planning that combines several concepts (flow balancing, water quality monitoring, process modelling, multi-objective assessment) to systematically evaluate management strategies for water quality improvement. As key element, an S/P matrix is introduced to structure the differentiation of relevant 'pressures' in affected regions, i.e. 'spatial units', which helps in handling complexity. The framework is applied to a small, but typical, catchment in Flanders, Belgium. The application to the real-life case shows: (1) the proposed approach is adaptive, covers problems of different spatial and temporal scale, efficiently reduces complexity and finally leads to a transparent solution; and (2) water quality and emission-based performance evaluation must be done jointly as an emission-based performance improvement does not necessarily lead to an improved water quality status, and an assessment solely focusing on water quality criteria may mask non-compliance with emission-based standards. Recommendations derived from the theoretical analysis have been put into practice.

  11. Achieving the sustainable development goals: a case study of the complexity of water quality health risks in Malawi.

    PubMed

    Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden

    2016-07-15

    Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to households to motivate behavioral changes to effectively protect future water resources and human health.

  12. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    NASA Astrophysics Data System (ADS)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human use.

  13. Preferences for policy attributes and willingness to pay for water quality improvements under uncertainty

    NASA Astrophysics Data System (ADS)

    Mullen, Jeffrey D.; Calhoun, Kayla C.; Colson, Gregory J.

    2017-04-01

    When exploring environmental policy options, sometimes neither the current state of the environmental good being analyzed nor the effectiveness of the proposed policy is known with certainty. This is the case with privately owned, residential, onsite wastewater treatment systems (septic systems)—there is ample evidence that they can contribute to water quality impairment, but their contribution is generally stochastic in nature and the efficacy of technological solutions is uncertain. Furthermore, the benefits of ameliorating water quality impairments are public in nature. Septic system owners are legally responsible for maintaining their systems, but requiring them to upgrade otherwise properly functioning tanks is outside the scope of water quality regulations. An incentive structure is necessary to induce private homeowners to invest in septic upgrades that deliver both private benefits in addition to the positive externality for the wider public and environment. The question for policy makers is how these private incentives should be financed, and whether public support can be garnered. Results of a choice experiment in Gwinnett County, Georgia, accounting for both sources of uncertainty—the current state of water quality and the efficacy of the intervention—in the design of water quality policy are presented. We find baseline water quality conditions and policy efficacy significantly affect public support for a policy transferring public funds to private homeowners, in terms of both sentiment and willingness to pay. The manner in which costs are shared across stakeholders also affects the selection of a policy option, but not willingness to pay for it.

  14. Water management for development of water quality in the Ruhr River basin.

    PubMed

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  15. Assessment of groundwater quality in a typical rural settlement in southwest Nigeria.

    PubMed

    Adekunle, I M; Adetunji, M T; Gbadebo, A M; Banjoko, O P

    2007-12-01

    In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand - dug wells in a typical rural area (Igbora) of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites) were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3- and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended.

  16. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  17. Consistency of Use and Effectiveness of Household Water Treatment Practices among Urban and Rural Populations Claiming to Treat Their Drinking Water at Home: A Case Study in Zambia

    PubMed Central

    Rosa, Ghislaine; Kelly, Paul; Clasen, Thomas

    2016-01-01

    Household water treatment (HWT) can improve drinking water quality and prevent disease, if used correctly and consistently. While international monitoring suggests that 1.8 billion people practice HWT, these estimates are based on household surveys that may overstate the level of consistent use and do not address microbiological effectiveness. We sought to examine how HWT is practiced among households identified as HWT users according to international monitoring standards. Case studies were conducted in urban and rural Zambia. After a baseline survey (urban: 203 households, rural: 276 households) to identify HWT users, 95 urban and 82 rural households were followed up for 6 weeks. Consistency of HWT reporting was low; only 72.6% of urban and 50.0% of rural households reported to be HWT users in the subsequent visit. Similarly, availability of treated water was low, only 23.3% and 4.2% of urban and rural households, respectively, had treated water on all visits. Drinking water was significantly worse than source water in both settings. Only 19.6% of urban and 2.4% of rural households had drinking water free of thermotolerant coliforms on all visits. Our findings raise questions about the value of the data gathered through the international monitoring of HWT practices as predictors of water quality in the home. PMID:26572868

  18. Geospatial modelling for groundwater quality mapping: a case study of Rupnagar district, Punjab, India

    NASA Astrophysics Data System (ADS)

    Sahoo, S.; Kaur, A.; Litoria, P.; Pateriya, B.

    2014-11-01

    Over period of time, the water usage and management is under stress for various reasons including pollution in both surface and subsurface. The groundwater quality decreases due to the solid waste from urban and industrial nodes, rapid use of insecticides and pesticides in agricultural practices. In this study, ground water quality maps for Rupnagar district of Punjab has been prepared using geospatial interpolation technique through Inverse Distance Weighted (IDW) approach. IDW technique has been used for major ground water quality parameters observed from the field samples like Arsenic, Hardness, pH, Iron, Fluoride, TDS, and Sulphate. To assess the ground water quality of the Rupnagar district, total 280 numbers of samples from various sources of tubewells for both pre and post monsoon have collected. Out of which, 80 to 113 samples found Iron with non potable limits ranging 0.3-1.1mg/l and 0.3-1.02mg/l according to BIS standard for both the seasons respectively. Chamkaur Sahib, Rupnagar, Morinda blocks have been found non potable limit of iron in both pre & post-monsoon. 11 to 52 samples in this region have sulphate with permissible limits in both the season ranging 200-400mg/l and 201-400mg/l. But arsenic had acceptable limit in both the season. Various parameters-wise ground water quality map is generated using the range values of drinking water quality to know the distribution of different parameters and diversification in the concentration of different elements. These maps are very much needful for human being to expand awareness among the people to maintain the Cleanness of water at their highest quality and purity levels to achieve a healthy life.

  19. Turbidity and nitrate transfer in karstic aquifers in rural areas: the Brionne Basin case-study.

    PubMed

    Nebbache, S; Feeny, V; Poudevigne, I; Alard, D

    2001-08-01

    The degradation of water quality in many groundwaters of Europe is a major source of concern. Rises in turbidity and nitrate concentrations represent present or potential threats for the quality of drinking water in rural areas. They are for the most part a consequence of agricultural intensification which has considerably affected land cover and land use in recent decades. In our case-study (a karstic catchment) the mechanisms which explain changes in water quality, as far as turbidity and nitrate are concerned, result from a strong continuity between surface and underground waters. The karstic system of the Brionne Basin can be considered as both the focus of rapid horizontal flows (runoff, a rapid process in which rainwater reaches the spring directly through sinkholes) and slow vertical flows (leaching, in which rainwater filters through the soil to the spring). A hierarchical approach to the water pollution problem of the basin suggests that turbidity or nitrate concentrations peak during heavy rain episodes and are short-term events. In terms of management, this implies that the solution to water pollution caused by such events is also short-term and can therefore be addressed at a local scale. The rise of nitrate concentrations during the past twenty years is the main concern. The solution can only be found at a global scale (all the catchment area must be taken in account: land plots and their spatial configuration), and by taking a long-term approach.

  20. Voluntary Management of Residential Water Demand in Low and Middle-Low Income Households: Case Study of Soacha (colombia)

    NASA Astrophysics Data System (ADS)

    Acosta, R.; Rodriguez, J. P.

    2016-12-01

    Water resources availability is a global concern due to increasing demands, decreasing quality and uncertain spatio-temporal variability (United Nations, 2009). In urban contexts research on efficient water use is a priority to cope with the future vulnerability of water supplies as a result of the impacts of climate change (Bates et al, 2008). Following the proposed methodologies of He and Kua (2013) for implementing programs to promote sustainable energy consumption, we focused on the use of educational strategies to promote a voluntary rationalization of residential water demand. We collaborated with three schools in Soacha (Colombia) where students ranging from 12 to 15 years participated in the project as promoters of educational campaigns inside their families, covering 120 low and middle-low income households. Three intervention or treatment strategies (i.e. e-learning, in-person active learning activities and graphical learning tools) were carried out over a period of 5 months. We analyzed the effects of the treatments strategies in reducing water consumption rates and the dependence of this variable on socio-demographic, economic, environmental, and life quality factors by using personal interviews and self reported water saving technics. The results showed that educational campaigns have a positive effect on reducing consumption in the households. Graphical learning tools accounted for the highest reduction in water consumption. Moreover, the results of the study suggests that socio-economic factors such as type of house, social level, income, and life quality variables significantly affect the variability in water consumption, which is an important fact to consider in similar cases where communities face difficult socio-economic conditions, displacement or high rates of urban growth.

  1. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  2. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementingmore » dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other« less

  3. Use of phytoplankton assemblages to assess the quality of coastal waters of a transitional ecosystem: Río de la Plata estuary

    NASA Astrophysics Data System (ADS)

    Sathicq, María Belén; Gómez, Nora; Bauer, Delia Elena; Donadelli, Jorge

    2017-11-01

    Among the estuarine ecosystems under anthropogenic stress, the Río de la Plata can represent a case study to help identify phytoplanktonic species diagnosing and warning about water quality changes. The freshwater tidal zone on the coast of Argentina is used for several purposes, including recreational and navigational activities and the provision of drinking water. We analyzed the relationship between the abundance of the phytoplanktonic species, changes in water quality (linked to enrichment with nutrients and organic matter) and the land use on the coast of Argentina. A canonical correlation analysis (CCA) allowed us to identify two environmental gradients, one related to anthropogenic activities, where the most influential factors were BOD5, DIN, PO43- and DO, and a second gradient related to turbidity and conductivity. The relative abundances of 24 species were significantly correlated with the deterioration of the water quality. This set of tolerant species is mostly composed of taxa considered C-strategists, and the most represented group was the Chlorococcalean algae. The percentage of this group can provide an early warning indicator of the impairment of the water quality; its abundance exceeded 30% at those sites with a bad water quality (reaching 19000 cell mL-1), and were less than 15% (300 cell mL-1) in sites with a good water quality. The use of a reduced group of species constitutes a potential tool for monitoring, complementing another common indicators such as chlorophyll a or the total density of phytoplankton. Considering that most of these tolerant species are widely distributed it is possible to employ them as a biomonitor in other freshwater zones of temperate estuaries.

  4. Consideration of drainage ditches and sediment rating cure on SWAT model performance

    USDA-ARS?s Scientific Manuscript database

    Water quality models most often require a considerable amount of data to be properly configured and in some cases this requires additional procedural steps prior to model applications. We examined two different scenarios of such input issues in a small watershed using the Soil and Water Assessment ...

  5. WATER QUALITY AND THE REPLACEMENT AND REPAIR OF DRINKING WATER INFRASTRUCTURE: THE WASHINGTON, DC CASE STUDY

    EPA Science Inventory

    A major challenge for society in the 21st century will be replacement, design and optimal management of urban infrastructure. It is estimated that the current world wide demand for infrastructure investment is approximately three trillion US dollars annually. Many developing coun...

  6. Using Satellite Data to Monitor the Impacts of CyanoHAB Events on Drinking Water: A Texas Case Study

    EPA Science Inventory

    Overview of CYAN and it's mission to support the environmental management and public use of U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.

  7. Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia.

    PubMed

    Mohamed, Ibrahim; Othman, Faridah; Ibrahim, Adriana I N; Alaa-Eldin, M E; Yunus, Rossita M

    2015-01-01

    This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.

  8. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  9. Stagnant surface water bodies (SSWBs) as an alternative water resource for the Chittagong metropolitan area of Bangladesh: physicochemical characterization in terms of water quality indices.

    PubMed

    Rahman, Ismail Md Mofizur; Islam, M Monirul; Hossain, M Mosharraf; Hossain, M Shahadat; Begum, Zinnat A; Chowdhury, Didarul A; Chakraborty, Milan K; Rahman, M Azizur; Nazimuddin, M; Hasegawa, Hiroshi

    2011-02-01

    The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh--where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.

  10. Climate change and water security with a focus on the Arctic.

    PubMed

    Evengard, Birgitta; Berner, Jim; Brubaker, Michael; Mulvad, Gert; Revich, Boris

    2011-01-01

    Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed.

  11. Climate change and water security with a focus on the Arctic

    PubMed Central

    Evengard, Birgitta; Berner, Jim; Brubaker, Michael; Mulvad, Gert; Revich, Boris

    2011-01-01

    Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed. PMID:22043217

  12. A framework for modeling contaminant impacts on reservoir water quality

    NASA Astrophysics Data System (ADS)

    Jeznach, Lillian C.; Jones, Christina; Matthews, Thomas; Tobiason, John E.; Ahlfeld, David P.

    2016-06-01

    This study presents a framework for using hydrodynamic and water quality models to understand the fate and transport of potential contaminants in a reservoir and to develop appropriate emergency response and remedial actions. In the event of an emergency situation, prior detailed modeling efforts and scenario evaluations allow for an understanding of contaminant plume behavior, including maximum concentrations that could occur at the drinking water intake and contaminant travel time to the intake. A case study assessment of the Wachusett Reservoir, a major drinking water supply for metropolitan Boston, MA, provides an example of an application of the framework and how hydrodynamic and water quality models can be used to quantitatively and scientifically guide management in response to varieties of contaminant scenarios. The model CE-QUAL-W2 was used to investigate the water quality impacts of several hypothetical contaminant scenarios, including hypothetical fecal coliform input from a sewage overflow as well as an accidental railway spill of ammonium nitrate. Scenarios investigated the impacts of decay rates, season, and inter-reservoir transfers on contaminant arrival times and concentrations at the drinking water intake. The modeling study highlights the importance of a rapid operational response by managers to contain a contaminant spill in order to minimize the mass of contaminant that enters the water column, based on modeled reservoir hydrodynamics. The development and use of hydrodynamic and water quality models for surface drinking water sources subject to the potential for contaminant entry can provide valuable guidance for making decisions about emergency response and remediation actions.

  13. Association of type 1 diabetes and concentrations of drinking water components in Newfoundland and Labrador, Canada.

    PubMed

    Chafe, Roger; Aslanov, Rana; Sarkar, Atanu; Gregory, Peter; Comeau, Alex; Newhook, Leigh Anne

    2018-01-01

    To determine the association between drinking water quality and rates of type 1 diabetes in the Newfoundland and Labrador (NL) population, which has one of the highest incidences of type 1 diabetes reported globally. The study used a community-based, case-control design. We first calculated incidence rates of type 1 diabetes at the provincial, regional and community levels. The connection between incidence rates and components in public water supplies were then analyzed in three ways: to evaluate differences in water quality between communities with and without incident cases of type 1 diabetes, and to analyze the relationship between water quality and incidence rates of type 1 diabetes at both the community and regional levels. The provincial incidence of type 1 diabetes was 51.7/100 000 (0-14 year age group) for the period studied. In the community-based analysis, there were significant associations found between higher concentrations of arsenic (β=0.268, P=0.013) and fluoride (β=0.202, P=0.005) in drinking water and higher incidence of type 1 diabetes. In the regional analysis, barium (β=-0.478, P=0.009) and nickel (β=-0.354, P=0.050) concentrations were negatively associated with incidence of type 1 diabetes. We confirmed the high incidence of type 1 diabetes in NL. We also found that concentrations of some components in drinking water were associated with higher incidence of type 1 diabetes, but no component was found to have a significant association across the three different levels of analysis performed.

  14. Climate change impacts on marine water quality: The case study of the Northern Adriatic sea.

    PubMed

    Rizzi, J; Torresan, S; Critto, A; Zabeo, A; Brigolin, D; Carniel, S; Pastres, R; Marcomini, A

    2016-01-30

    Climate change is posing additional pressures on coastal ecosystems due to variations in water biogeochemical and physico-chemical parameters (e.g., pH, salinity) leading to aquatic ecosystem degradation. With the main aim of analyzing the potential impacts of climate change on marine water quality, a Regional Risk Assessment methodology was developed and applied to coastal marine waters of the North Adriatic. It integrates the outputs of regional biogeochemical and physico-chemical models considering future climate change scenarios (i.e., years 2070 and 2100) with site-specific environmental and socio-economic indicators. Results showed that salinity and temperature will be the main drivers of changes, together with macronutrients, especially in the area of the Po' river delta. The final outputs are exposure, susceptibility and risk maps supporting the communication of the potential consequences of climate change on water quality to decision makers and stakeholders and provide a basis for the definition of adaptation and management strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Time series study of weather, water quality, and acute gastroenteritis at Water Safety Plan implementation sites in France and Spain

    PubMed Central

    Setty, Karen E.; Enault, Jerome; Loret, Jean-Francois; Serra, Claudia Puigdomenech; Martin-Alonso, Jordi; Bartram, Jamie

    2018-01-01

    Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, can help drinking water suppliers to proactively identify potential risks and implement preventive barriers that improve safety. Few studies have investigated long-term impacts of WSPs, such as changes in drinking water quality or public health; however, some evidence from high-income countries associates WSP implementation with a reduction in diarrheal disease. To validate the previously observed linkages between WSPs and health outcomes, this time series study examined site-specific relationships between water-related exposures and acute gastroenteritis rates at three locations in France and Spain, including the role of WSP status. Relationships between control or exposure variables and health outcomes were tested using Poisson regression within generalized additive models. Controls included suspected temporal trends in disease reporting. Exposures included temperature, precipitation, raw water quality, and finished water quality (e.g., turbidity, free chlorine). In France, daily acute gastroenteritis cases were tracked using prescription reimbursements; Spanish data aggregated monthly acute gastroenteritis hospital visits. The models identified several significant relationships between indicators of exposure and acute gastroenteritis. Lag times of 6–9 days (including transit time) were most relevant for hydrological indicators (related to precipitation, runoff, and flow) at the two French sites, indicative of viral pathogens. Flush events (defined as surface runoff after a two-week antecedent dry period) linked to nonpoint source pollution were associated with a 10% increase in acute gastroenteritis rates at one location supplied by surface water. Acute gastroenteritis rates were positively associated with elevated turbidity average or maximum values in finished water at locations supplied by both surface and groundwater, by about 4% per 1-NTU increase in the two-week moving average of daily maxima or about 10% per 0.1 NTU increase in the prior month’s average value. In some cases, risk appeared to be mitigated by WSP-related treatment interventions. Our results suggest drinking water exposure is associated with some potentially preventable gastrointestinal illness risk in high-income regions. PMID:29678324

  16. Interventions to improve water quality for preventing diarrhoea

    PubMed Central

    Clasen, Thomas F; Alexander, Kelly T; Sinclair, David; Boisson, Sophie; Peletz, Rachel; Chang, Howard H; Majorin, Fiona; Cairncross, Sandy

    2015-01-01

    Background Diarrhoea is a major cause of death and disease, especially among young children in low-income countries. In these settings, many infectious agents associated with diarrhoea are spread through water contaminated with faeces. In remote and low-income settings, source-based water quality improvement includes providing protected groundwater (springs, wells, and bore holes), or harvested rainwater as an alternative to surface sources (rivers and lakes). Point-of-use water quality improvement interventions include boiling, chlorination, flocculation, filtration, or solar disinfection, mainly conducted at home. Objectives To assess the effectiveness of interventions to improve water quality for preventing diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (11 November 2014), CENTRAL (the Cochrane Library, 7 November 2014), MEDLINE (1966 to 10 November 2014), EMBASE (1974 to 10 November 2014), and LILACS (1982 to 7 November 2014). We also handsearched relevant conference proceedings, contacted researchers and organizations working in the field, and checked references from identified studies through 11 November 2014. Selection criteria Randomized controlled trials (RCTs), quasi-RCTs, and controlled before-and-after studies (CBA) comparing interventions aimed at improving the microbiological quality of drinking water with no intervention in children and adults. Data collection and analysis Two review authors independently assessed trial quality and extracted data. We used meta-analyses to estimate pooled measures of effect, where appropriate, and investigated potential sources of heterogeneity using subgroup analyses. We assessed the quality of evidence using the GRADE approach. Main results Forty-five cluster-RCTs, two quasi-RCTs, and eight CBA studies, including over 84,000 participants, met the inclusion criteria. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies) with unimproved water sources (30 studies) and unimproved or unclear sanitation (34 studies). The primary outcome in most studies was self-reported diarrhoea, which is at high risk of bias due to the lack of blinding in over 80% of the included studies. Source-based water quality improvements There is currently insufficient evidence to know if source-based improvements such as protected wells, communal tap stands, or chlorination/filtration of community sources consistently reduce diarrhoea (one cluster-RCT, five CBA studies, very low quality evidence). We found no studies evaluating reliable piped-in water supplies delivered to households. Point-of-use water quality interventions On average, distributing water disinfection products for use at the household level may reduce diarrhoea by around one quarter (Home chlorination products: RR 0.77, 95% CI 0.65 to 0.91; 14 trials, 30,746 participants, low quality evidence; flocculation and disinfection sachets: RR 0.69, 95% CI 0.58 to 0.82, four trials, 11,788 participants, moderate quality evidence). However, there was substantial heterogeneity in the size of the effect estimates between individual studies. Point-of-use filtration systems probably reduce diarrhoea by around a half (RR 0.48, 95% CI 0.38 to 0.59, 18 trials, 15,582 participants, moderate quality evidence). Important reductions in diarrhoea episodes were shown with ceramic filters, biosand systems and LifeStraw® filters; (Ceramic: RR 0.39, 95% CI 0.28 to 0.53; eight trials, 5763 participants, moderate quality evidence; Biosand: RR 0.47, 95% CI 0.39 to 0.57; four trials, 5504 participants, moderate quality evidence; LifeStraw®: RR 0.69, 95% CI 0.51 to 0.93; three trials, 3259 participants, low quality evidence). Plumbed in filters have only been evaluated in high-income settings (RR 0.81, 95% CI 0.71 to 0.94, three trials, 1056 participants, fixed effects model). In low-income settings, solar water disinfection (SODIS) by distribution of plastic bottles with instructions to leave filled bottles in direct sunlight for at least six hours before drinking probably reduces diarrhoea by around a third (RR 0.62, 95% CI 0.42 to 0.94; four trials, 3460 participants, moderate quality evidence). In subgroup analyses, larger effects were seen in trials with higher adherence, and trials that provided a safe storage container. In most cases, the reduction in diarrhoea shown in the studies was evident in settings with improved and unimproved water sources and sanitation. Authors' conclusions Interventions that address the microbial contamination of water at the point-of-use may be important interim measures to improve drinking water quality until homes can be reached with safe, reliable, piped-in water connections. The average estimates of effect for each individual point-of-use intervention generally show important effects. Comparisons between these estimates do not provide evidence of superiority of one intervention over another, as such comparisons are confounded by the study setting, design, and population. Further studies assessing the effects of household connections and chlorination at the point of delivery will help improve our knowledge base. As evidence suggests effectiveness improves with adherence, studies assessing programmatic approaches to optimising coverage and long-term utilization of these interventions among vulnerable populations could also help strategies to improve health outcomes. PLAIN LANGUAGE SUMMARY Interventions to improve water quality and prevent diarrhoea This Cochrane Review summarizes trials evaluating different interventions to improve water quality and prevent diarrhoea. After searching for relevant trials up to 11 November 2014, we included 55 studies enrolling over 84,000 participants. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies), with unimproved water sources (30 studies), and unimproved or unclear sanitation (34 studies). What causes diarrhoea and what water quality interventions might prevent diarrhoea? Diarrhoea is a major cause of death and disease, especially among young children in low-income countries where the most common causes are faecally contaminated water and food, or poor hygiene practices. In remote and low-income settings, source-based water quality improvement may include providing protected groundwater (springs, wells, and bore holes) or harvested rainwater as an alternative to surface sources (rivers and lakes). Alternatively water may be treated at the point-of-use in people's homes by boiling, chlorination, flocculation, filtration, or solar disinfection. These point-of-use interventions have the potential to overcome both contaminated sources and recontamination of safe water in the home. What the research says There is currently insufficient evidence to know if source-based improvements in water supplies, such as protected wells and communal tap stands or treatment of communal supplies, consistently reduce diarrhoea in low-income settings (very low quality evidence). We found no trials evaluating reliable piped-in water supplies to people's homes. On average, distributing disinfection products for use in the home may reduce diarrhoea by around one quarter in the case of chlorine products (low quality evidence), and around a third in the case of flocculation and disinfection sachets (moderate quality evidence). Water filtration at home probably reduces diarrhoea by around a half (moderate quality evidence), and effects were consistently seen with ceramic filters (moderate quality evidence), biosand systems (moderate quality evidence) and LifeStraw® filters (low quality evidence). Plumbed-in filtration has only been evaluated in high-income settings (low quality evidence). In low-income settings, distributing plastic bottles with instructions to leave filled bottles in direct sunlight for at least six hours before drinking probably reduces diarrhoea by around a third (moderate quality evidence). Research assessing the effects of household connections and chlorination at the point of delivery will help improve our knowledge base. Evidence indicates the more people use the various interventions for improving water quality, the larger the effects, so research into practical approaches to increase coverage and help assure long term use of them in poor groups will help improve impact. PMID:26488938

  17. A hepatitis E outbreak caused by a temporary interruption in a municipal water treatment system, Baripada, Orissa, India, 2004.

    PubMed

    Swain, Susanta K; Baral, Prameela; Hutin, Yvan J; Rao, T Venkat; Murhekar, Manoj; Gupte, Mohan D

    2010-01-01

    In January 2004, we investigated a cluster of acute hepatitis in Baripada, Orissa, India. Between January and March 2004, 538 cases (definition: fever with loss of appetite and jaundice) were reported (attack rate: 263 per 100 000, 5 deaths, case fatality rate: 0.93%). Forty-seven of 48 sera were positive for IgM antibodies to hepatitis E virus. Cases peaked in February 2004 and decreased rapidly, suggesting a common source outbreak. Five neighbourhoods supplied by a common water supply were most affected. Ninety-one percent of the 538 cases and 30% of 538 unaffected controls reported drinking water from one source (odds ratio 31, 95% CI 27-48). The neighbourhood's water was pumped directly from a river and had not been treated during a 10-day period in early January (1 month before the peak of the outbreak) because of a strike at the treatment plant. This large hepatitis E outbreak was associated with drinking untreated raw river water. Measures must be in place to check the quality of municipal water and to ensure essential services in case of strikes.

  18. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  19. Inequalities in microbial contamination of drinking water supplies in urban areas: the case of Lilongwe, Malawi.

    PubMed

    Boakye-Ansah, Akosua Sarpong; Ferrero, Giuliana; Rusca, Maria; van der Zaag, Pieter

    2016-10-01

    Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p < 0.05. Finally, the paper shows how the inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.

  20. Impacts of Typhoon Soudelor (2015) on the water quality of Taipei, Taiwan

    PubMed Central

    Fakour, Hoda; Lo, Shang-Lien; Lin, Tsair-Fuh

    2016-01-01

    Typhoon Soudelor was one of the strongest storms in the world in 2015. The category 5 hurricane made landfall in Taiwan on August 8, causing extensive damage and severe impacts on the environment. This paper describes the changes of trihalomethane (THM) concentrations in tap and drinking fountain water in selected typhoon-affected areas in Taipei before and after the typhoon. Samples were taken from water transmission mains at various distances from the local water treatment plant. The results showed that organic matter increased between pre- and post-typhoon periods with a greater proportion of aromatic compounds. Although drinking fountains showed moderately less total trihalomethane (TTHM) levels than that of tap water, the intake of high turbidity water considerably diminished the efficiency of their purification systems after the typhoon. The percentage distribution of THM species increased throughout the distribution network, probably due to a longer contact time between chlorine and the organic matter in the pipelines. After 2 to 5 min of boiling, THM reduction was considerable in all cases with the greater extent in post-typhoon samples. It is evident that extreme weather conditions may have a severe impact on water quality, and thus more cautious strategies should be adopted in such cases. PMID:27125312

  1. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A future climate assessment on the quality and quantity of CrVI contaminated groundwater in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Argyraki, A.; Gkiouleka, I.; Paternoster, M.; Hatipoglu Bagci, Z.; Shammout, M.; Moraetis, D.; Dermatas, D.; Christou, A.

    2017-12-01

    The shortage of water and the water quality problems in Mediterranean countries appear more severe under climate change due to the intensive agricultural activities and the urban and industrial development that require reforms in the water policy approach. The ERANETMED CrITERIA project aims to assist water management organizations and water users in decision making when coping with water scarcity, climate extremes and contaminated water. Case areas of Mediterranean countries (Italy, Greece, Turkey, Cyprus, Jordan) with Cr(VI) contaminated waters are used as an example of a specific water pressure problem that has to be tackled through integrated water resources management. Moreover, Oman represents the arid-end member in identifying the different pathways of Cr(VI) contamination in surface and groundwater due to arid conditions. Thus, areas of similar geology can be used as analogs of areas passing from semi-arid to arid conditions. From a climate change perspective, it is important to investigate the impacts of changing precipitation patterns and, thus, assess the vulnerability of the aquifers. Thus, a high spatial resolution analysis is performed with observational data and climate model simulations on several time-scales drought and extreme precipitation, providing a concise picture of drought and flooding events for the present and the future climate. We use CORDEX experiment simulations under RCPs 4.5 and 8.5, further downscaled over the case study areas providing high spatial resolution information. The case studies inter-comparison stresses the diverse needs on water management along the Mediterranean and at the same time identifies common messages related to the future changes on water resources. RCP 4.5 shows a mild decrease in precipitation that becomes more severe towards the end of the century, though under the RCP 8.5 intense decrease is explicit in most timescales. The significant increase of precipitation variability and short and long-term drought are likely to affect freshwater systems and water quality by intensifying surface runoff, aiding in the erosion of ophiolithic occurrences present in the studied areas, elevating and even inflicting changes in the groundwater table. Acknowledgment: The ERANETMED CrITERIA project (T3ERA-00004) is co-funded by Greece, the Scientific and Technological Research Council of Turkey-TÜBİTAK (Project No 115Y844) and the European Union.

  3. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity, water treatment and nutrient management. Our analysis by sector highlights that the economic cost of water scarcity due to pollution in this region is largely borne by the public.

  4. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and the capacity of treatment facilities and supporting water infrastructure to deliver safe drinking water consistently and reliably. Simulation models of water treatment facilities are used to evaluate the outcome of specific source water quality scenarios on treatment system performance and reliability. Modeling results are used to evaluate the process and operational capacity to respond to transient water quality changes and adapt to longer-term variability in water quality and availability. In some cases, changes in temperature and mineral content serve to improve the overall treatment performance. In addition, the integration of microbially enhanced treatment systems such as biological filtration can provide additional capacity. Conversely, changes in the nutrient and temperature dynamics can trigger algal and cyanobacterial blooms that can impair performance. Research needs are identified and the importance of developing more integrated modeling systems is highlighted.

  5. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable, ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.

  6. An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict.

    PubMed

    Vivar, M; Pichel, N; Fuentes, M; Martínez, F

    2016-04-15

    Drinking water access in the Saharawi refugee camps located in the Algerian desert is a challenge that is still an on-going problem after 40years of conflict. This work presents an analysis of the situation with emphasis on the water supply in health institutions (quantity and quality) including both sanitary inspections and a comprehensive water quality study. Results from sanitary inspections show that only half of the water supply installations at the hospitals are in adequate conditions and the rest present high risk of microbiological contamination. Water access in small medical community centres on the other hand present issues related to the non-availability of food-grade water tanks for the institutions (70%), the use of small 10l containers as the main water supply (40%), poor maintenance (60% under antihygienic conditions and 30% with damaged covers), and insufficient chlorine levels that prevent microbiological contamination. Regarding water quality analyses, raw water supply in Smara, El Aiun and Awserd camps present high conductivity and high levels of fluoride, chloride, nitrate and sulphate, but dropping to normal levels within the drinking-water standards after water treatment via reverse osmosis plants. But for the case of El Aiun and Awserd, the reverse osmosis plant only provides treated water to the population each 20days, so the population receives raw water directly and health risks should be evaluated. Finally, Dakhla water supply is the best in terms of physico-chemical parameters quality, currently providing safe drinking water after a chlorination stage. In summary, drinking water access has improved dramatically in the last years due to the efforts of local and international authorities but several issues remain to be solved: access to treated water for all the population, improved water quality controls (especially in Dakhla), expansion of distribution networks, and adequate storage systems and maintenance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Covering Water Issues Through a Climate Lens

    NASA Astrophysics Data System (ADS)

    Freedman, A. C.

    2017-12-01

    Media portrayals of critical water issues can help or hinder decision makers' understanding of critical, complex water issues. Through a series of case studies, this presentation will provide examples of how today's media - complete with its 5-minute news cycle - has uncovered water quality scandals (Flint), investigated chronic flooding that will worsen with climate change (Houston), and more. It will also delve into why reporters often fail to convey the magnitude of water supply challenges in the West (Colorado River) and around the world (Middle East, Southeast Asia).

  8. Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China.

    PubMed

    Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei

    2016-01-01

    This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed.

  9. Chemical and Microbiological Quality of Runoff Into and Out of Dry Wells; A Case Study in Millburn, NJ

    EPA Science Inventory

    Abstract Since 1999, the city of Millburn has required dry wells to accommodate additional flows from newly developed areas. This new requirement to divert the increased roof and impervious surfaces runoff to dry wells was established to mitigate local drainage and water quality...

  10. 76 FR 34799 - Permanent Dam Safety Modification at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... notice is provided in accordance with the Council on Environmental Quality's regulations (40 CFR parts... interconnected, fabric-lined, sand-filled HESCO containers in order to safely pass predicted worst-case..., but will not necessarily be limited to, the potential impacts on water quality, aquatic and...

  11. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    NASA Astrophysics Data System (ADS)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and irrigation activities except in some cases. For example, the high hardness in both water samples specifies the active hydraulic relation between surface and groundwater. Moreover, the statistical application and interpretation exhibit a good positive correlation among most of the water constituents which might be the indicator of having tightly grouped, precise homogeneous good-quality water resources around the mining industry. Finally from the environmental degradation point of view, it can be implied that there are no significant parameters or factors observed which are much badly effective on environment except very few cases. Thus, this research strongly recommends for monitoring the water quality in every 6 months or annually around this industry which might be positive for keeping the safe environment and healthy production of the coal mine.

  12. Cholera epidemic associated with consumption of unsafe drinking water and street-vended water--Eastern Freetown, Sierra Leone, 2012.

    PubMed

    Nguyen, Von D; Sreenivasan, Nandini; Lam, Eugene; Ayers, Tracy; Kargbo, David; Dafae, Foday; Jambai, Amara; Alemu, Wondimagegnehu; Kamara, Abdul; Islam, M Sirajul; Stroika, Steven; Bopp, Cheryl; Quick, Robert; Mintz, Eric D; Brunkard, Joan M

    2014-03-01

    During 2012, Sierra Leone experienced a cholera epidemic with 22,815 reported cases and 296 deaths. We conducted a matched case-control study to assess risk factors, enrolling 49 cases and 98 controls. Stool specimens were analyzed by culture, polymerase chain reaction (PCR), and pulsed-field gel electrophoresis (PFGE). Conditional logistic regression found that consuming unsafe water (matched odds ratio [mOR]: 3.4; 95% confidence interval [CI]: 1.1, 11.0), street-vended water (mOR: 9.4; 95% CI: 2.0, 43.7), and crab (mOR: 3.3; 95% CI: 1.03, 10.6) were significant risk factors for cholera infection. Of 30 stool specimens, 13 (43%) showed PCR evidence of toxigenic Vibrio cholerae O1. Six specimens yielded isolates of V. cholerae O1, El Tor; PFGE identified a pattern previously observed in seven countries. We recommended ensuring the quality of improved water sources, promoting household chlorination, and educating street vendors on water handling practices.

  13. Implementation of Water Safety Plans (WSPs): A Case Study in the Coastal Area in Semarang City, Indonesia

    NASA Astrophysics Data System (ADS)

    Budiyono; Ginandjar, P.; Saraswati, L. D.; Pangestuti, D. R.; Martini; Jati, S. P.

    2018-02-01

    An area of 508.28 hectares in North Semarang is flooded by tidal inundation, including Bandarharjo village, which could affect water quality in the area. People in Bandarharjo use safe water from deep groundwater, without disinfection process. More than 90% of water samples in the Bandaharjo village had poor bacteriological quality. The aimed of the research was to describe the implementation of Water Safety Plans (WSPs) program in Bandarharjo village. This was a descriptive study with steps for implementations adopted the guidelines and tools of the World Health Organization. The steps consist of introducing WSPs program, team building, training the team, examination of water safety before risk assessment, risk assessment, minor repair I, examination of water safety risk, minor repair II (after monitoring). Data were analyzed using descriptive methods. WSPs program has been introduced and formed WSPs team, and the training of the team has been conducted. The team was able to conduct risks assessment, planned the activities, examined water quality, conduct minor repair and monitoring at the source, distribution, and households connection. The WSPs program could be implemented in the coastal area in Semarang, however regularly supervision and some adjustment are needed.

  14. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  15. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    PubMed

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  16. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1995-01-01

    The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.

  17. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  18. Rethinking indicators of microbial drinking water quality for health studies in tropical developing countries: case study in northern coastal Ecuador.

    PubMed

    Levy, Karen; Nelson, Kara L; Hubbard, Alan; Eisenberg, Joseph N S

    2012-03-01

    To address the problem of the health impacts of unsafe drinking water, methods are needed to assess microbiologic contamination in water. However, indicators of water quality have provided mixed results. We evaluate five assays (three for Escherichia coli and one each for enterococci and somatic coliphage) of microbial contamination in villages in rural Ecuador that rely mostly on untreated drinking water. Only membrane filtration for E. coli using mI agar detected a significant association with household diarrheal disease outcome (odds ratio = 1.29, 95% confidence interval = 1.02-1.65 in household containers and odds ratio = 1.18, 95% confidence interval = 1.02-1.37) in source samples. Our analysis and other published research points to the need for further consideration of study design factors, such as sample size and variability in measurements, when using indicator organisms, especially when relating water quality exposure to health outcomes. Although indicator organisms are used extensively in health studies, we argue that their use requires a full understanding of their purposes and limitations.

  19. Rethinking Indicators of Microbial Drinking Water Quality for Health Studies in Tropical Developing Countries: Case Study in Northern Coastal Ecuador

    PubMed Central

    Levy, Karen; Nelson, Kara L.; Hubbard, Alan; Eisenberg, Joseph N. S.

    2012-01-01

    To address the problem of the health impacts of unsafe drinking water, methods are needed to assess microbiologic contamination in water. However, indicators of water quality have provided mixed results. We evaluate five assays (three for Escherichia coli and one each for enterococci and somatic coliphage) of microbial contamination in villages in rural Ecuador that rely mostly on untreated drinking water. Only membrane filtration for E. coli using mI agar detected a significant association with household diarrheal disease outcome (odds ratio = 1.29, 95% confidence interval = 1.02–1.65 in household containers and odds ratio = 1.18, 95% confidence interval = 1.02–1.37) in source samples. Our analysis and other published research points to the need for further consideration of study design factors, such as sample size and variability in measurements, when using indicator organisms, especially when relating water quality exposure to health outcomes. Although indicator organisms are used extensively in health studies, we argue that their use requires a full understanding of their purposes and limitations. PMID:22403326

  20. Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads.

    PubMed

    Casadio, A; Maglionico, M; Bolognesi, A; Artina, S

    2010-01-01

    The Navile Channel (Bologna, Italy) is an ancient artificial water course derived from the Reno river. It is the main receiving water body for the urban catchment of Bologna sewer systems and also for the Waste Water Treatment Plant (WWTP) main outlet. The aim of this work is to evaluate the Combined Sewer Overflows (CSOs) impact on Navile Channel's water quality. In order to collect Navile flow and water quality data in both dry and wet weather conditions, two measuring and sampling stations were installed, right upstream and downstream the WWTP outflow. The study shows that even in case of low intensity rain events, CSOs have a significant effect on both water quantity and quality, spilling a considerable amount of pollutants into the Navile Channel and presenting also acute toxicity effects. The collected data shown a good correlations between the concentrations of TSS and of chemical compounds analyzed, suggesting that the most part of such substances is attached to suspended solids. Resulting toxicity values are fairly high in both measuring points and seem to confirm synergistic interactions between heavy metals.

  1. Water quality in the tropical Andes hotspot: The Yacuambi river (southeastern Ecuador).

    PubMed

    Villa-Achupallas, Mercedes; Rosado, Daniel; Aguilar, Silvio; Galindo-Riaño, María Dolores

    2018-08-15

    Yacuambi river waters (southeast Ecuador, Amazonian region) were assessed to evaluate the potential risk to populations, who use it for drinking and irrigation, and ecosystems, which are part of Tropical Andes hotspot and considered some of the most biodiverse in the world. The water quality index was calculated and some quality parameters were checked to comply with Ecuadorian and North American standards for human consumption, preservation of aquatic life and irrigation. Four samplings were carried out in six stations covering the entire length of the Yacuambi river. Several parameters were analyzed: pH, conductivity, dissolved oxygen, temperature, color, phosphates, nitrite, nitrate, biochemical oxygen demand, chemical oxygen demand, total solids, turbidity, metals (Ba, Cd, Cr, Pb, As and Hg), pesticides and fecal coliforms. The water quality in the Yacuambi river was good and medium according to the classification of the Water Quality Index. However, it was unsuitable for human consumption, preservation of aquatic life and irrigation according to Ecuadorian and North American standards. Arsenic, color and fecal coliforms exceeded the limits for human consumption in all samples tested. Thresholds of preservation of aquatic life were exceeded in all samples in the case of Pb and in some samples for As, pH, nitrite and nitrate. Arsenic and fecal coliforms made Yacuambi river waters unsuitable for irrigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  3. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    NASA Astrophysics Data System (ADS)

    Bora, Minakshi; Goswami, Dulal C.

    2017-10-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.

  4. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  5. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of Mutshedzi WTP. These have been confirmed in literature to be widespread in similar WTPs in SA. It is recommended that water meters be provided and the community be advised to subsidise the cost of water supply. The study recommended that the treatments of turbidity and fluoride should form critical functions of the plant to ensure that final water for domestic use is always safe from any harmful substances or disease causing pathogens. The study concluded that the WTP only needs minor improvement to boost its efficiency with regard to the treatment of raw water. This will also ensure that the plant achieves 100% compliance for final water.

  6. Toward greener dialysis: a case study to illustrate and encourage the salvage of reject water.

    PubMed

    Connor, Andrew; Milne, Steve; Owen, Andrew; Boyle, Gerard; Mortimer, Frances; Stevens, Paul

    2010-06-01

    Climate change is now considered to be a major global public health concern. However, the very provision of health care itself has a significant impact upon the environment. Action must be taken to reduce this impact. Water is a precious and finite natural resource. Vast quantities of high-grade water are required to provide haemodialysis. The reverse osmosis systems used in the purification process reject approximately two-thirds of the water presented to them. Therefore, around 250 litres of 'reject water' result from the production of the dialysate required for one treatment. This good quality reject water is lost-to-drain in the vast majority of centres worldwide. Simple methodologies exist to recycle this water for alternative purposes. We describe here a case study of the only UK renal service we know to have implemented such water-saving methodologies. We outline the benefits in terms of financial and environmental savings.

  7. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Treesearch

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  8. MODELING WATER QUALITY IN DRINKING WATER DISTRIBUTION SYSTEMS: SELECTED CASE STUDIES

    EPA Science Inventory

    The SDWA of 1974 and its' Amendments of 1986 require that the USEPA establish maximum contaminant level goals (MCLGs) for each contaminant which may have an adverse effect on the health of persons. Each goal must be set at a level at which no known or anticipated adverse effects ...

  9. Public Attitudes towards Socio-Cultural Aspects of Water Supply and Sanitation Services: Palestine as a Case Study

    ERIC Educational Resources Information Center

    Haddad, Marwan

    2005-01-01

    Identifying and considering public attitudes towards various aspects of water supply and sanitation services by planners and decision makers represent an important developmental element relating to the quality, efficiency, and performance of those services. A sample of 1000 Palestinian adults completed a questionnaire assessing attitudes towards…

  10. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    USDA-ARS?s Scientific Manuscript database

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  11. Predicting Plausible Impacts of Sets of Climate and Land Use Change Scenarios on Water Resources

    EPA Science Inventory

    Global changes in climate and land use can alTect the quantity and quality of water resources. Hence, we need a methodology to predict these ramifications. Using the Little Miami River (LMR) watershed as a case study, this paper describes a spatial analytical approach integrating...

  12. Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua

    2016-06-01

    The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.

  13. Examining angler behavior using contingent behavior modeling: A case study of water quality change at a Wisconsin lake

    NASA Astrophysics Data System (ADS)

    Eiswerth, Mark E.; Kashian, Russell D.; Skidmore, Mark

    2008-11-01

    We use contingent behavior (CB) analysis to examine the potential impacts of a hypothetical change in the clarity of a lake. We collect and use both CB and revealed preference data to estimate a pooled negative binomial count data travel cost model. From this analysis we calculate the consumer surplus per angling party day for our case study lake to be about $104, or a total annual consumer surplus of $1.4 million. Using this consumer surplus measure and changes in the intended number of visits obtained from the CB survey, we estimate the loss in consumer surplus associated with a decline in water clarity from 10 to 3 feet (1 foot = 0.3048 m) to be about $522,000 annually (a 38% decrease). Since this is the first such application of CB analysis to estimate the effects of a water clarity change, the study may illustrate a method well suited to analyzing changes in water quality attributes that are easily observable and well understood by recreators.

  14. Reality check of socio-hydrological interactions in water quality and ecosystem management

    NASA Astrophysics Data System (ADS)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-04-01

    Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data from Swedish waters support this hypothesis, by showing that the first WFD management cycle 2009-2015 has led to only slight changes in measured nutrient concentrations, with moderate-to-bad status waters mostly undergoing concentration increases. These management results are in direct contrast to the WFD management goals that ecosystem status in all member-state waters must be improved to at least good level, and in any case not be allowed to further deteriorate. In general, the present results show that societal approaches to ecosystem status classification, monitoring and improvement may need a focus shift for improved identification and quantification of the human-driven components of nutrient inputs, concentrations and loads in water environments. Dominant hydro-climatic change drivers and effects must of course also be understood and accounted for. However, adaptation to hydro-climatic changes should be additional to and aligned with, rather than instead of, necessary mitigation of human-driven eutrophication. The present case results call for further science-based testing and evidence of societal water quality and ecosystem management actually targeting and following up the potential achievement of such mitigation.

  15. Faecal contamination of water and fingertip-rinses as a method for evaluating the effect of low-cost water supply and sanitation activities on faeco-oral disease transmission. I. A case study in rural north-east Thailand.

    PubMed Central

    Pinfold, J. V.

    1990-01-01

    Most villagers in north-east Thailand carry water to their homes and store it in separate containers depending on its subsequent use. In one village, information on water use was collated with the bacteriological quality of stored water, water sources and fingertip-rinses. Stored water quality was a function of water-related activities rather than quality at source (P less than 0.0001). Specifically water used for toilet, washing dishes and cooking-related activities was much more contaminated with faecal bacteria than that used for drinking and cooking. Salmonella spp. was significantly more common in water used for washing dishes than drinking (P less than 0.05). Escherichia coli contamination of fingertip-rinses was strongly associated with the individual's activity prior to testing (P less than 0.0001); child care, food and water-related activities produced much higher levels of fingertip contamination than others. Dirty utensils used for cooking and eating were usually left to soak and faecal bacterial growth occurred in this grossly contaminated soak-water. Cross-contamination via water handling was the main mechanism of stored water pollution. These results were used to develop a hygiene intervention study presented in a companion paper. PMID:2209740

  16. A case-control study on the risk factors of urinary calculus in Uyghur children in the Kashi region.

    PubMed

    Wang, H C; Liu, C; He, H Y; Wang, M X

    2015-06-01

    The incidence of urinary calculus (UC) is very high in Uyghur children in the Kashi region of Xinjiang, China, which seriously affects the growth and life quality of these children. This study was aimed at investigating the risk factors of UC in Uyghur children in Kashi region. One hundred fifteen Uyghur children (age <7 years) with UC who were treated in First People's Hospital in Kashi were enrolled in the case group. A 1:1 case-control study with a questionnaire was performed. The results showed that, among the 115 UC patients, there were more boys (71.3%) than girls (28.7%), and most cases had an onset age of 1-3 years (75.7%). A lower than primary school education in the mother, drinking unboiled water, water intake <500 mL/day, and eating too much sweets were risk factors [odds ratio (OR) = 2.385, 9.160, 3.263, and 8.945, respectively], whereas vegetable intake and exposure to summer sunshine of <2 h/day were protective factors against UC onset (OR = 0.154 and 0.344, respectively). Analysis of UC-related factors in 99 cases of <3-year-old children revealed that breastfeeding was also a protective factor (OR = 0.007), whereas frequent cow's milk intake within 5 months (OR = 2.414) and frequent "panada" intake (OR = 2.529) were risk factors. The occurrence of UC in Uyghur children in the Kashi region is mainly affected by maternal educational background, quality of drinking water, water intake volume, and dietary pattern. Furthermore, geography may also have a role.

  17. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    PubMed

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  18. [Atmospheric correction of HJ-1 CCD data for water imagery based on dark object model].

    PubMed

    Zhou, Li-Guo; Ma, Wei-Chun; Gu, Wan-Hua; Huai, Hong-Yan

    2011-08-01

    The CCD multi-band data of HJ-1A has great potential in inland water quality monitoring, but the precision of atmospheric correction is a premise and necessary procedure for its application. In this paper, a method based on dark pixel for water-leaving radiance retrieving is proposed. Beside the Rayleigh scattering, the aerosol scattering is important to atmospheric correction, the water quality of inland lakes always are case II water and the value of water leaving radiance is not zero. So the synchronous MODIS shortwave infrared data was used to obtain the aerosol parameters, and in virtue of the characteristic that aerosol scattering is relative stabilized in 560 nm, the water-leaving radiance for each visible and near infrared band were retrieved and normalized, accordingly the remotely sensed reflectance of water was computed. The results show that the atmospheric correction method based on the imagery itself is more effective for the retrieval of water parameters for HJ-1A CCD data.

  19. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning.

    PubMed

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai; Wang, Hao

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China.

  20. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning

    PubMed Central

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China. PMID:28386514

  1. Risk aversion and willingness to pay for water quality: The case of non-farm rural residents.

    PubMed

    Larue, Bruno; West, Gale E; Singbo, Alphonse; Tamini, Lota Dabio

    2017-07-15

    Stated choice experiments are used to investigate the economic valuation of rural residents living in the province of Quebec for water quality improvements. In Quebec, rural residents played an important role in the setting of stricter environmental regulations. Unlike most stated choice experiments about the valuation of improvements in water quality, this study explicitly accounts for risk in the design and analysis of choice experiments. Risk in phosphorus and coliform reductions is introduced through a three-point uniform distribution in the choice sets. The results show greater support for constant absolute risk aversion preferences than for constant relative risk aversion. Rural residents value coliform and phosphorus reductions and the more educated ones are particularly willing to see the government tax farmers and taxpayers to secure such reductions. As the science improves and risk in water quality outcomes decrease and as the political weight of non-farm rural residents increase, it should be easier for governments to replace voluntary cost-share programs by polluter-payer programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts in precipitation which will alter both water availability and dilution capacity. Possible stakeholders include not only municipal, agricultural and industrial water users but also several levels of regulatory governance as the watershed crosses state lines and includes tribal lands. While the water system is bound by the limits of stratigraphy and hydrology, there are feedbacks to the physical system revealed feedbacks to the physical system resulting from decisions, preferences, and beliefs of the stakeholders. The complexity of these feedbacks are most easily explored through discussion of the specific case, which can then be generalized. The course design encourages participation and let students discuss, argue, and think critically about real problems they can identify with and that interest them. Walking through the cases shows students how complicated environmental problem-solving can be in a way that they internalize and how these ideas are then transferable to other situations.

  3. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Hoghooghi, N.

    2017-12-01

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of the same watershed can render management explicitly targeted to limit the negative outcomes from urbanization ineffective. For example, evidence indicates that green infrastructure, or low impact development (LID), practices can attenuate the adverse water quality and quantity effects of urbanizing systems. However, the research providing this evidence has been conducted at local scales (e.g., plots, small homogeneous urban catchments) that isolate the measurable effects of such approaches. Hence, a distinct disconnect exists between the scale of scientific inquiry and the scale of management and decision-making practices. Here we explore the oft-discussed yet rarely directly addressed scientific and management conundrum: How do we scale our well-documented scientific knowledge of the water quantity and quality responses to LID practices measured and modeled at local scales to that of "actual" management scales? We begin by focusing on LID practices in mixed land cover watersheds. We present key concepts that have emerged from LID research at the local scale, considerations for scaling this research to watersheds, recent advances and findings in scaling the effects of LID practices on water quality and quantity at watershed scales, and the use of combined novel measurements and models for these scaling efforts. We underscore these concepts with a case study that evaluates the effects of three LID practices using simulation modeling across a mixed land cover watershed. This synthesis and case study highlight that scientists are making progress toward successfully tailoring fundamental research questions with decision-making goals in mind, yet we still have a long road ahead.

  4. Assessment of economic and water quality impacts of land use change using a simple bioeconomic model.

    PubMed

    Bhattarai, Gandhi; Srivastava, Puneet; Marzen, Luke; Hite, Diane; Hatch, Upton

    2008-07-01

    The objective of this study is to assess the economic and water quality impact of land use change in a small watershed in the Wiregrass region of Alabama. The study compares changes in water quality and revenue from agricultural and timber production due to changes in land use between years 1992 and 2001. The study was completed in two stages. In the first stage, a biophysical model was used to estimate the effect of land use change on nitrogen and phosphorus runoff and sediment deposition in the main channel; in the second stage, farm enterprise budgeting tools were used to estimate the economic returns for the changes in land use condition. Both biophysical and economic results are discussed, and a case for complex optimization to develop a decision support system is presented.

  5. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea.

    PubMed

    Houri, Daisuke; Koo, Chung Mo

    2015-09-01

    The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the "Prerequisites for Tasty Water" and the "Standards for Tasty Water" devised for city water. The PET Bottled water varieties analyzed in this study-Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND-showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. The South Korean PET bottled water studied here fulfills the "Water Index of Taste," "Water Index of Health," "Standard for Tasty Water" and "Prerequisites for Tasty Water" that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people.

  6. Using Bayesian Belief Networks to Explore the Effects of Nitrogen Inputs on Wetland Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Spence, P. L.; Jordan, S. J.

    2011-12-01

    Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and waste treatment) and supporting (i.e. nutrient cycling) ecosystem services. Wetlands generally respond both by sequestering Nr (i.e. soil accumulation and biomass assimilation) and converting Nr into inert gaseous forms via biogeochemical processes. It is important for wetlands to be efficient in removing excessive Nr inputs from polluted waters to reduce eutrophication in downstream receiving water bodies while producing negligible amounts of nitrous oxide (N2O), a potent greenhouse gas, which results from incomplete denitrification. Wetlands receiving excessive Nr lose their ability to provide a constant balance between regulating water quality and mitigating climate change. The purpose of this study is to explore the effects of Nr inputs on ecosystem services provided by wetlands using a Bayesian Belief Network (BBN). The network was developed from established relationships between a variety of wetland function indicators and biogeochemical process associated with Nr removal. Empirical data for 34 freshwater wetlands were gathered from a comprehensive review of published peer-reviewed and gray literature. The BBN was trained using 30 wetlands (88% of the freshwater wetland case file) and tested using 4 wetlands (12% of the freshwater wetland case file). Sensitivity analysis suggested that Nr removal, water quality, soil Nr accumulation and N2O emissions had the greatest influence on ecosystem service tradeoffs. The magnitude of Nr inputs did not affect ecosystem services. The network implies that Nr removal efficiency has a greater influence on final ecosystem services associated with water quality impairment and atmospheric pollution. A very low error rate, which was based on 4 wetland cases, indicated that a larger dataset is required to provide robust predictions. These findings are considered preliminary and could change as the model is updated.

  7. Water quality in the lower Puyallup River valley and adjacent uplands, Pierce County, Washington

    USGS Publications Warehouse

    Ebbert, J.C.; Bortleson, Gilbert C.; Fuste, L.A.; Prych, E.A.

    1987-01-01

    The quality of most ground and surface water within and adjacent to the lower Puyallup River valley is suitable for most typical uses; however, some degradation of shallow groundwater quality has occurred. High concentrations of iron and manganese were found in groundwater, sampled at depths of < 40 ft, from wells tapping alluvial aquifers and in a few wells tapping deeper aquifers. Volatile and acid- and base/neutral-extractable organic compounds were not detected in either shallow or deep groundwater samples. The quality of shallow groundwater was generally poorer than that of deep water. Deep ground water (wells set below 100 ft) appears suitable as a supplementary water supply for fish-hatchery needs. Some degradation of water quality, was observed downstream from river mile 1.7 where a municipal wastewater-treatment plant discharges into the river. In the Puyallup River, the highest concentrations of most trace elements were found in bed sediments collected downstream from river mile 1.7. Median concentrations of arsenic, lead, and zinc were higher in bed sediments from small streams compared with those from the Puyallup River, possibly because the small stream drainages, which are almost entirely within developed areas, receive more urban runoff as a percentage of total flow. Total-recoverable trace-element concentrations exceeded water-quality criteria for acute toxicity in the Puyallup River and in some of the small streams. In most cases, high concentrations of total-recoverable trace elements occurred when suspended-sediment concentrations were high. Temperatures in all streams except Wapato Creek and Fife Dutch were within limits (18 C) for Washington State class A water. Minimum dissolved oxygen concentrations were relatively low at 5.6 and 2.0 mg/L, respectively, for Wapato Creek and Fife Dutch. The poorest surface-water quality, which can be characterized as generally unsuitable for fish, was in Fife Dutch, a manmade channel and therefore uncharacteristic of other small streams. (Author 's abstract)

  8. Consequences of land use cover change and precipitation regimes on water quality in a tropical landscape: the case of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.

    2017-12-01

    One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.

  9. Water environmental management with the aid of remote sensing and GIS technology

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.

    2005-01-01

    Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.

  10. Consistency of Use and Effectiveness of Household Water Treatment Practices Among Urban and Rural Populations Claiming to Treat Their Drinking Water at Home: A Case Study in Zambia.

    PubMed

    Rosa, Ghislaine; Kelly, Paul; Clasen, Thomas

    2016-02-01

    Household water treatment (HWT) can improve drinking water quality and prevent disease, if used correctly and consistently. While international monitoring suggests that 1.8 billion people practice HWT, these estimates are based on household surveys that may overstate the level of consistent use and do not address microbiological effectiveness. We sought to examine how HWT is practiced among households identified as HWT users according to international monitoring standards. Case studies were conducted in urban and rural Zambia. After a baseline survey (urban: 203 households, rural: 276 households) to identify HWT users, 95 urban and 82 rural households were followed up for 6 weeks. Consistency of HWT reporting was low; only 72.6% of urban and 50.0% of rural households reported to be HWT users in the subsequent visit. Similarly, availability of treated water was low, only 23.3% and 4.2% of urban and rural households, respectively, had treated water on all visits. Drinking water was significantly worse than source water in both settings. Only 19.6% of urban and 2.4% of rural households had drinking water free of thermotolerant coliforms on all visits. Our findings raise questions about the value of the data gathered through the international monitoring of HWT practices as predictors of water quality in the home. © The American Society of Tropical Medicine and Hygiene.

  11. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    PubMed

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  12. Heavy metal determinations in algae and clams and their possible employment for assessing the sea water quality criteria.

    PubMed

    Locatelli, C; Fabbri, D; Torsi, G

    2001-01-01

    An empirical criterion for a possible classification of sea water quality is proposed. It is based on the knowledge of metal content in algae (Ulva Rigida) and clams (Tapes Philippinarum), two species present in marine ecosystems. The elements considered are Hg, Cu, Pb, Cd, Zn. The analytical technique employed is Differential Pulse Anodic Stripping Voltammetry (DPASV) in the case of Cu, Pb, Cd, Zn, while the determination of mercury is obtained by the Cold Vapour Atomic Absorption Spectroscopy (CV-AAS) technique with SnCl2 as reducing agent. The analytical procedure has been verified on three standard reference materials: Sea Water BCR-CRM 403, Ulva Lactuca BCR-CRM 279 and Mussel Tissue BCR-CRM 278. For all the elements, in addition to detection limits, accuracy and precision are given: the former, expressed as relative error (e), and the latter, expressed as relative standard deviation (Sr), were in all cases lower than 6%.

  13. Bias in ground-water data caused by well-bore flow in long-screen wells

    USGS Publications Warehouse

    Church, P.E.; Granato, G.E.

    1996-01-01

    The results of a field experiment comparing water-quality constituents, specific conductance, geophysical measurements, and well-bore hydraulics in two long-screen wells and adjacent vertical clusters of short-screen wells show bias in ground-water data caused by well-bore flow in long-screen wells. The well screen acts as a conduit for vertical flow because it connects zones of different head and transmissivity, even in a relatively homogeneous, unconfined, sand and gravel aquifer where such zones are almost indistinguishable. Flow in the well bore redistributes water and solutes in the aquifer adjacent to the well, increasing the risk of bias in water-quality samples, failure of plume detection, and cross-contamination of the aquifer. At one site, downward flow from a contaminated zone redistributes solutes over the entire length of the long-screen well. At another site, upward flow from an uncontaminated zone masks the presence of road salt plume. Borehole induction logs, conducted in a fully penetrating short-screen well, can provide a profile of solutes in the aquifer that is not attainable in long-screen wells. In this study, the induction-log profiles show close correlation with data from analyses of water-quality samples from the short-screen wells; however, both of these data sets differ markedly from the biased water-quality samples from the long-screen wells. Therefore, use of induction logs in fully cased wells for plume detection and accurate placement of short-screen wells is a viable alternative to use of long screen wells for water-quality sampling.

  14. Relationship between water quality and human health: a case study of the Linggi River Basin in Malaysia.

    PubMed

    Lonergan, S; Vansickle, T

    1991-01-01

    Due to the increasingly documented prevalence of diarrhoeal diseases in Malaysia, a number of water-related programmes have been implemented in an attempt to improve health status through the reduction of incidence of waterborne communicable diseases associated with poor public water supplies. The implicit assumption underlying these projects is that the enhancement of the physical infrastructure, and subsequent improvements in the quality of the water supply, will substantially reduce water-related disease. The present study questions this hypothesis and uses a socio-ecological model as a framework to assess risk factors associated with the increased probability of waterborne disease. Research is centred on Port Dickson, a district which typifies existing water and sanitation conditions in much of semi-rural Malaysia. Health services utilization data and a 268-household diarrhoeal morbidity survey were used to measure the burden of illness of waterborne disease within the district and to identify predictors of morbidity. It was concluded that although treatment facilities will reduce the health burden in the region, a number of behavioural and sanitation factors may be more important and could act to minimize the potential impacts of improved water quality.

  15. Study of Material Used in Nanotechnology for the Recycling of Industrial Waste Water

    NASA Astrophysics Data System (ADS)

    Larbi, L.; Fertikh, N.; Toubal, A.

    The objective of our study is to recycle the industrial waste water of a industrial Complex after treatment by the bioprocess MBR (membrane bioreactor). In order to apply this bioprocess, the water quality in question was first of all studied. To characterize this industrial waste water, a series of physicochemical analysis was carried out according to standardized directives and methods. Following-up the water quality to meet the regulatory requirements with rejection of this industrial waste water, a study was done thanks to the permanently monitoring of the following relevant parameters(P): the flow, the potential of hydrogen (pH), the total suspended solids(TSS), the turbidity (Turb), the chemical oxygen demand (COD),the biochemical oxygen demand (BOD), the Kjeldahl total nitrogen (KTN) and ammonia (NH4+), the total phosphorus (Ptot), the fluorine (F), the oils (O), the fats (F) and the phenols (Ph). According to collected information, it was established the sampling rates to which the quality control was done, the selected analytical methods were validated by the control charts and the analysis test number was determined by the Cochran test. The results of the quality control show that some rejected water contents are not in the Algerian standards, but, in our case, the objective is the preoccupation for a standard setting of these industrial water parameters so as to recycle it. The process adopted by MBR for waste water treatment is being studied, first in the development of the experimental characterizing of the reactor and the selected membrane.

  16. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    NASA Astrophysics Data System (ADS)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water pollution abatement. The presented approach differs from existing approaches in a number of ways. First, we explicitly present an analytical derivation of private (national) and social (trans-national) welfare maximizing rates of water pollution abatement using nation-specific abatement cost functions. Second, the analytical optimal control approach provides an elegant and easily understandable solution concept that contributes to the development of efficient water quality improvement targets. Finally, we go beyond the usual cost-effectiveness analysis based on arbitrary 'tolerable' or target levels of pollution as we specifically account for the negative external costs of increased water pollution in the downstream aquatic and coastal environment. Results for the Minho region show that some private (national) welfare gains can be obtained through the adoption of win-win management practices, leading to a 12% reduction in the annual rate of water pollution and an almost 7% increase in annual regional income. Maximum social (trans-national) welfare gains can, however, be obtained through the adoption of win-win and lose-win management practices across Spain and Portugal, leading to a 36% reduction in water pollution and a 14% increase in regional income. Yet, non-cooperation in water pollution mitigation would only lead to a 16%-32% reduction in water pollution and a 8%-13% increase in regional income. Hence, social (trans-national) welfare losses from non-cooperation between Spain and Portugal would equate to between 16 and 81 million Euros per year.

  17. Association of type 1 diabetes and concentrations of drinking water components in Newfoundland and Labrador, Canada

    PubMed Central

    Chafe, Roger; Aslanov, Rana; Sarkar, Atanu; Gregory, Peter; Comeau, Alex; Newhook, Leigh Anne

    2018-01-01

    Objective To determine the association between drinking water quality and rates of type 1 diabetes in the Newfoundland and Labrador (NL) population, which has one of the highest incidences of type 1 diabetes reported globally. Research design and methods The study used a community-based, case-control design. We first calculated incidence rates of type 1 diabetes at the provincial, regional and community levels. The connection between incidence rates and components in public water supplies were then analyzed in three ways: to evaluate differences in water quality between communities with and without incident cases of type 1 diabetes, and to analyze the relationship between water quality and incidence rates of type 1 diabetes at both the community and regional levels. Results The provincial incidence of type 1 diabetes was 51.7/100 000 (0-14 year age group) for the period studied. In the community-based analysis, there were significant associations found between higher concentrations of arsenic (β=0.268, P=0.013) and fluoride (β=0.202, P=0.005) in drinking water and higher incidence of type 1 diabetes. In the regional analysis, barium (β=−0.478, P=0.009) and nickel (β=−0.354, P=0.050) concentrations were negatively associated with incidence of type 1 diabetes. Conclusions We confirmed the high incidence of type 1 diabetes in NL. We also found that concentrations of some components in drinking water were associated with higher incidence of type 1 diabetes, but no component was found to have a significant association across the three different levels of analysis performed. PMID:29527309

  18. Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2015-06-01

    This paper aims to test a new physically oriented approach to viticulture zoning at farm scale that is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirements and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models, applying physically based equations to describe the soil hydrological processes and solve soil-plant water status. This study (part of the ZOVISA project) was conducted on a farm devoted to production of high-quality wines (Aglianico DOC), located in southern Italy (Campania region, Mirabella Eclano, AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two homogeneous zones (HZs) were identified; in each one a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional homogeneous zones (fHZs). For the second process, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, leaf area index (LAI) measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). This experiment proved the usefulness of the physically based approach, also in the case of mapping viticulture microzoning.

  19. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea

    PubMed Central

    Houri, Daisuke; Koo, Chung Mo

    2015-01-01

    Background The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. Methods For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the “Prerequisites for Tasty Water” and the “Standards for Tasty Water” devised for city water. Results The PET Bottled water varieties analyzed in this study—Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND—showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. Conclusion The South Korean PET bottled water studied here fulfills the “Water Index of Taste,” “Water Index of Health,” “Standard for Tasty Water” and “Prerequisites for Tasty Water” that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people. PMID:26538797

  20. Water quality modeling in the dead end sections of drinking water (Supplement)

    EPA Pesticide Factsheets

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used tocalibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variation

  1. Surface-ground water interactions and hydrogeochemical evolution in a fluvio-deltaic setting: The case study of the Pinios River delta

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Lazogiannis, Konstantinos; Botsou, Fotini; Dassenakis, Manos; Ghionis, George; Alexopoulos, John D.; Poulos, Serafim E.

    2018-06-01

    River deltas sustain important ecosystems with rich biodiversity and large biomass, as well as human populations via the availability of water and food sources. Anthropogenic activities, such as urbanization, tourism and agriculture, may pose threats to river deltas. The knowledge of the factors controlling the regional water quality regime in these areas is important for planning sustainable use and management of the water resources. Here, hydrochemical methods and multivariate statistical techniques were combined to investigate the shallow aquifer of the Pinios River (Thessaly) deltaic plain with respect to water quality, hydrogeochemical evolution and interactions between groundwater and surface water bodies. Water quality assessment indicated that most of the river and groundwater samples fully comply with the criteria set by the Drinking Water Directive (98/83/EC). The river is recharged mainly from springs of the Tempi valley and the shallow aquifer, and to a lesser degree from precipitation, throughout the year. The hydrogeochemical characteristics indicated a cation (Ca, Mg, and Na) bicarbonate water type, which evolves to calcium-chloride, sodium-bicarbonate and sodium-chloride water type, in the northern part of the delta. Calcite and dolomite dissolution determined the major ion chemistry, but other processes, such as silicate weathering and cation exchange reactions, also contributed. In the northern part of the plain, the interaction with the deeper aquifer enriched the shallow aquifer with Na and Cl ions. Principal Component Analysis showed that five components (PCs) explain 77% of the total variance of water quality parameters; these are: (1) salinity; (2) water-silicate rocks interaction; (3) hardness due to calcite dissolution, and cation exchange processes; (4) nitrogen pollution; and (5) non-N-related artificial fertilizers. This study demonstrated that the variation of water hydrochemistry in the deltaic plain could be attributed to natural and anthropogenic processes. The interpretation of the PCA results dictated the parameters used for the development of a modified Water Quality Index (WQI), to provide a more comprehensive spatial representation of the water quality of the river delta.

  2. GEO-CAPE Coastal Ocean Ecosystem Dynamics White Paper ...

    EPA Pesticide Factsheets

    The Clean Water Act protects all navigable waters in the United States (CWA, 1988). The objective of the CWA is to "restore and maintain the chemical, physical, and biological integrity of the Nation's waters." This Federal mandate authorizes states, tribes, and U.S. territories, with guidance and oversight from the U.S. Environmental Protection Agency (EPA), to develop and implement water quality standards to protect the human and aquatic life uses of the Nation’s waterways. Water quality standards include designated uses, defined as the services that a water body supports such as drinking water, aquatic life, harvestable species, and recreation. These standards under the CWA Section 304(a) are applicable within state waters, defined as less than 3 nautical miles from shore. Therefore, a majority of research by the EPA addresses near-shore coastal waters within 3 nautical miles, estuaries and lakes where applicable water quality regulation could be implemented. Policy makers and environmental managers in EPA’s program and regional offices need tools enabling them to assess the sustainability of watershed ecosystems, and the services they provide, under current and future land use practices. The typical 1km resolution and current Case 1 algorithms of SeaWiFS, MODIS, and VIIRS provide limited assessments of near-shore coastal waters, estuaries and lakes. It has proven difficult to adequately resolve and derive products in smaller estuaries or waters in proxim

  3. Using high frequency water quality data to assess sampling strategies for the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Skeffington, R. A.; Halliday, S. J.; Wade, A. J.; Bowes, M. J.; Loewenthal, M.

    2015-01-01

    The EU Water Framework Directive (WFD) requires that the ecological and chemical status of water bodies in Europe should be assessed, and action taken where possible to ensure that at least "good" quality is attained in each case by 2015. This paper is concerned with the accuracy and precision with which chemical status in rivers can be measured given certain sampling strategies, and how this can be improved. High frequency (hourly) chemical data from four rivers in southern England were subsampled to simulate different sampling strategies for four parameters used for WFD classification: dissolved phosphorus, dissolved oxygen, pH and water temperature. These data sub-sets were then used to calculate the WFD classification for each site. Monthly sampling was less precise than weekly sampling, but the effect on WFD classification depended on the closeness of the range of concentrations to the class boundaries. In some cases, monthly sampling for a year could result in the same water body being assigned to one of 3 or 4 WFD classes with 95% confidence, whereas with weekly sampling this was 1 or 2 classes for the same cases. In the most extreme case, random sampling effects could result in the same water body being assigned to any of the 5 WFD quality classes. The width of the weekly sampled confidence intervals was about 33% that of the monthly for P species and pH, about 50% for dissolved oxygen, and about 67% for water temperature. For water temperature, which is assessed as the 98th percentile in the UK, monthly sampling biases the mean downwards by about 1 °C compared to the true value, due to problems of assessing high percentiles with limited data. Confining sampling to the working week compared to all seven days made little difference, but a modest improvement in precision could be obtained by sampling at the same time of day within a 3 h time window, and this is recommended. For parameters with a strong diel variation, such as dissolved oxygen, the value obtained, and thus possibly the WFD classification, can depend markedly on when in the cycle the sample was taken. Specifying this in the sampling regime would be a straightforward way to improve precision, but there needs to be agreement about how best to characterise risk in different types of river. These results suggest that in some cases it will be difficult to assign accurate WFD chemical classes or to detect likely trends using current sampling regimes, even for these largely groundwater-fed rivers. A more critical approach to sampling is needed to ensure that management actions are appropriate and supported by data.

  4. Impacts of the Urbanization Process on Water Quality of Brazilian Savanna Rivers: The Case of Preto River in Formosa, Goiás State, Brazil.

    PubMed

    Pires, Nayara Luiz; Muniz, Daphne Heloisa de Freitas; Kisaka, Tiago Borges; Simplicio, Nathan de Castro Soares; Bortoluzzi, Lilian; Lima, Jorge Enoch Furquim Werneck; Oliveira-Filho, Eduardo Cyrino

    2015-08-31

    The release of domestic sewage in water resources is a practical feature of the urbanization process, and this action causes changes that may impair the environmental balance and the water quality for several uses. The aim of this study was to evaluate the influence of urbanization on the surface water quality of the Preto River throughout the town of Formosa, Goiás, Brazil. Samples were collected at five points along the river, spatially distributed from one side to the other of the town of Formosa, from May to October of 2012. Data were subjected to descriptive statistics, as well as variance and cluster analysis. Point P2, the first point after the city, showed the worst water quality indicators, mainly with respect to the total and fecal coliform parameters, as well as nitrate concentrations. These results may be related to the fact that this point is located on the outskirts of the town, an area under urbanization and with problems of sanitation, including absence of sewage collection and treatment. The data observed in this monitoring present a public health concern because the water body is used for bathing, mainly in parts of Feia Lagoon. The excess of nutrients is a strong indicator of water eutrophication and should alert decision-makers to the need for preservation policies.

  5. Environmental quality of transitional waters: the lagoon of Venice case study.

    PubMed

    Micheletti, C; Gottardo, S; Critto, A; Chiarato, S; Marcomini, A

    2011-01-01

    The health status of European aquatic environments, including transitional waters such as coastal lagoons, is regulated by the Water Framework Directive (WFD), which requires the classification of the water bodies' environmental quality and the achievement of a good ecological status by 2015. In the Venice lagoon, a transitional water body located in the northeastern part of Italy, the achievement of a good ecological status is hampered by several anthropogenic and natural pressures, such as sediment and water chemical contamination, and sediment erosion. In order to evaluate the lagoon's environmental quality according to the WFD (i.e. 5 quality classes, from High to Bad), an integrated Weight-of-Evidence methodology was developed and applied to classify the quality of the lagoon water bodies, integrating biological, physico-chemical, chemical, ecotoxicological, and hydromorphological data (i.e. Lines of Evidence, LOE). The quality assessment was carried out in two lagoon habitat typologies (previously defined on the basis of morphological, sediment, and hydrodynamic characteristics) which were selected taking into account the ecological gradient from sea to land, and the differences in anthropogenic pressure and contamination levels. The LOE classification was carried out by using indicators scored by comparing site specific conditions to reference conditions measured in lagoon reference sites, or provided by local, national or European regulations (e.g. Environmental Quality Standards, EQS, for chemicals). Finally, the overall quality status for each water body was calculated by a probabilistic approach, i.e. by reporting the final result as the frequency distribution of quality classes. The developed procedure was applied by using data and information concerning selected LOE and collected from monitoring programs and research studies carried out in the last 15 years in the lagoon of Venice. A set of sampling stations characterized by spatially and temporally coherent information for each LOE was selected, and among these stations, potential reference sites for each water body typology were identified. The quality assessment highlighted that there are specific lagoon areas, especially those located near the industrially developed area, which are highly affected by anthropogenic activities, and that chemical contamination is one of the main pressures affecting ecological status (e.g. macro-benthonic biodiversity) in the Venice lagoon. The integrated quality assessment procedure that was developed provided a new tool supporting decision making, as well as lagoon assessment and management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Everglades Landscape Model: Integrated Assessment of Hydrology, Biogeochemistry, and Biology

    NASA Astrophysics Data System (ADS)

    Fitz, H. C.; Wang, N.; Sklar, F. H.

    2002-05-01

    Water management infrastructure and operations have fragmented the greater Everglades into separate, impounded basins, altering flows and hydropatterns. A significant area of this managed system has experienced anthropogenic eutrophication. This combination of altered hydrology and water quality has interacted to degrade vegetative habitats and other ecological characteristics of the Everglades. One of the modeling tools to be used in developing restoration alternatives is the Everglades Landscape Model (ELM), a process-based, spatially explicit simulation of ecosystem dynamics across a heterogeneous, 10,000 km2 region. The model has been calibrated to capture hydrologic and surface water quality dynamics across most of the Everglades landscape over decadal time scales. We evaluated phosphorus loading throughout the Everglades system under two base scenarios. The 1995 base case assumed current management operations, with phosphorus inflow concentrations fixed at their long term, historical average. The 2050 base case assumed future modifications in water and nutrient management, with all managed inflows to the Everglades having reduced phosphorus concentrations. In an example indicator subregion that currently is highly eutrophic, the 31-yr simulations predicted that desirable periphyton and macrophyte communities were maintained under the 2050 base case, whereas in the 1995 base case, periphyton biomass and production decreased to negligible levels and macrophytes became extremely dense. The negative periphyton response in the 1995 base case was due to high phosphorus loads and rapid macrophyte growth that shaded this algal community. Along an existing 11 km eutrophication gradient, the model indicated that the 2050 base case had ecologically significant reductions in phosphorus accumulation compared to the 1995 base case. Indicator regions (in Everglades National Park) distant from phosphorus inflow points also exhibited reductions in phosphorus accumulation under the 2050 base case, albeit to a lesser extent due to its distance from phosphorus inflows. The ELM fills a critical information need in Everglades management, and has become an accepted tool in evaluating scenarios of potential restoration of the natural system.

  7. [Water quality and personal hygiene in rural areas of Senegal].

    PubMed

    Faye, A; Ndiaye, N M; Faye, D; Tal-Dia, A

    2011-02-01

    The high prevalence of diarrhea in developing countries is mostly due to poor water quality and hygiene practices. The purpose of this study was to assess water quality as well as hygiene practices and their determinants in Ngohé, i.e., a rural community (RC) in Senegal. A combined approach consisting of a cross-sectional descriptive survey and bacterial analysis of water was used. Study was conducted in 312 randomly selected households. Data was collected through individual interviews with the assistance of a guide. Water for bacteriological analysis was collected from various sources, i.e., 3 modem borehole wells, 2 protected wells, and 10 traditional wells. Study points included home water treatment, drinking water source, latrine use, hand washing habits, and bacteria identified in water. A multiple regression model was used for data analysis. The household survey population was 59% male, 61% illiterate, and 93% married. Mean age was 44.8 +/- 18.1 years. Chlorination technique was inadequate in 62% of cases. Latrines were not restricted to adult use in 76% of homes. Hand washing was not performed at critical times in 94%. Drinking water was drawn from traditional wells in 48% of households, modem borehole wells in 45% and protected wells in 7%. Escherichia coli was found in water from all three sources and Vibrio cholerae was found in two traditional wells. Level of education, average monthly income, knowledge about chlorination techniques, and source of the water consumed were the main behavioral determinants (p < 0.05). Water treatment at the source and in the home as well as protection of water sources is necessary to ensure water quality. This will require effective public education campaigns and financial support for improvement of sanitary facilities.

  8. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain).

    PubMed

    Chica-Olmo, Mario; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía

    2014-02-01

    Groundwater nitrate pollution associated with agricultural activity is an important environmental problem in the management of this natural resource, as acknowledged by the European Water Framework Directive. Therefore, specific measures aimed to control the risk of water pollution by nitrates must be implemented to minimise its impact on the environment and potential risk to human health. The spatial probability distribution of nitrate contents exceeding a threshold or limit value, established within the quality standard, will be helpful to managers and decision-makers. A methodology based on non-parametric and non-linear methods of Indicator Kriging was used in the elaboration of a nitrate pollution categorical map for the aquifer of Vega de Granada (SE Spain). The map has been obtained from the local estimation of the probability that a nitrate content in an unsampled location belongs to one of the three categories established by the European Water Framework Directive: CL. 1 good quality [Min - 37.5 ppm], CL. 2 intermediate quality [37.5-50 ppm] and CL. 3 poor quality [50 ppm - Max]. The obtained results show that the areas exceeding nitrate concentrations of 50 ppm, poor quality waters, occupy more than 50% of the aquifer area. A great proportion of the area's municipalities are located in these poor quality water areas. The intermediate quality and good quality areas correspond to 21% and 28%, respectively, but with the highest population density. These results are coherent with the experimental data, which show an average nitrate concentration value of 72 ppm, significantly higher than the quality standard limit of 50 ppm. Consequently, the results suggest the importance of planning actions in order to control and monitor aquifer nitrate pollution. © 2013.

  9. 40 CFR 230.77 - Other actions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Effects § 230.77 Other actions. (a) In the case of fills, controlling runoff and other discharges from... Engineers, maintain desired water quality of the return discharge through agreement with the Federal funding...

  10. 40 CFR 230.77 - Other actions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Effects § 230.77 Other actions. (a) In the case of fills, controlling runoff and other discharges from... Engineers, maintain desired water quality of the return discharge through agreement with the Federal funding...

  11. Suffering for Water, Suffering from Water: Access to Drinking-water and Associated Health Risks in Cameroon

    PubMed Central

    2010-01-01

    Although many African countries, along the equator, receive a great amount of rainfall and possess a dense hydrographic network, access to drinking-water remains a great challenge. In many households, water is used for various purposes, including domestic and crafts activities. According to the World Health Organization, an estimated four billion cases of diarrheoa occurs worldwide, of which 88% are ascribed to unsafe drinking-water. This study aimed at evaluating health risks in the usage of contaminated drinking-water and its relationship with the prevalence of diarrhoeal diseases in Yaoundé, Cameroon. In this cross-sectional epidemiological design, 3,034 households with children aged less than five years were investigated. Households were selected from among 20 representative neighbourhoods out of 105 that made up the city. The study revealed a diarrheoa prevalence of 14.4% (437 diarrheoa cases out of 3,034 children tested). Among various risk factors examined, water-supply modes and quality of drinking-water were statistically associated with diarrheoa cases. Moreover, levels of diarrheoa attacks varied considerably from one neighbourhood to the other. The spatial analysis helped determine neighbourhoods of higher and lower prevalence of diarrheoa in the city. PMID:20941893

  12. Suffering for water, suffering from water: access to drinking-water and associated health risks in Cameroon.

    PubMed

    Yongsi, H Blaise Nguendo

    2010-10-01

    Although many African countries, along the equator, receive a great amount of rainfall and possess a dense hydrographic network, access to drinking-water remains a great challenge. In many households, water is used for various purposes, including domestic and crafts activities. According to the World Health Organization, an estimated four billion cases of diarrheoa occurs worldwide, of which 88% are ascribed to unsafe drinking-water. This study aimed at evaluating health risks in the usage of contaminated drinking-water and its relationship with the prevalence of diarrhoeal diseases in Yaound6, Cameroon. In this cross-sectional epidemiological design, 3,034 households with children aged less than five years were investigated. Households were selected from among 20 representative neighbourhoods out of 105 that made up the city. The study revealed a diarrheoa prevalence of 14.4% (437 diarrheoa cases out of 3,034 children tested). Among various risk factors examined, water-supply modes and quality of drinking-water were statistically associated with diarrheoa cases. Moreover, levels of diarrheoa attacks varied considerably from one neighbourhood to the other. The spatial analysis helped determine neighbourhoods of higher and lower prevalence of diarrheoa in the city.

  13. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity. Population rate of waste water treatment is 67 % in the total catchment area. Assumption case of 100% WWT was simulated and the result suggests that connection to public sewer system with WWTP is effective potential measure. TN emission in the Tone is higher than it in the Mur. Emission per capita is almost same level for both basin areas. Though the personal pollution stresses same as European basin area, the basin has huge population and activities to support their daily life. Agricultural activity and urban structure have great impacts on N emission and on the river water quality. Possible remedy for river pollution is construction of sewer system with waste water treatment. Agricultural activity is potential betterment factor. Comparison of Mur, Tone and assumption cases

  14. Cholera Epidemic Associated with Consumption of Unsafe Drinking Water and Street-Vended Water—Eastern Freetown, Sierra Leone, 2012

    PubMed Central

    Nguyen, Von D.; Sreenivasan, Nandini; Lam, Eugene; Ayers, Tracy; Kargbo, David; Dafae, Foday; Jambai, Amara; Alemu, Wondimagegnehu; Kamara, Abdul; Islam, M. Sirajul; Stroika, Steven; Bopp, Cheryl; Quick, Robert; Mintz, Eric D.; Brunkard, Joan M.

    2014-01-01

    During 2012, Sierra Leone experienced a cholera epidemic with 22,815 reported cases and 296 deaths. We conducted a matched case-control study to assess risk factors, enrolling 49 cases and 98 controls. Stool specimens were analyzed by culture, polymerase chain reaction (PCR), and pulsed-field gel electrophoresis (PFGE). Conditional logistic regression found that consuming unsafe water (matched odds ratio [mOR]: 3.4; 95% confidence interval [CI]: 1.1, 11.0), street-vended water (mOR: 9.4; 95% CI: 2.0, 43.7), and crab (mOR: 3.3; 95% CI: 1.03, 10.6) were significant risk factors for cholera infection. Of 30 stool specimens, 13 (43%) showed PCR evidence of toxigenic Vibrio cholerae O1. Six specimens yielded isolates of V. cholerae O1, El Tor; PFGE identified a pattern previously observed in seven countries. We recommended ensuring the quality of improved water sources, promoting household chlorination, and educating street vendors on water handling practices. PMID:24470563

  15. Predicting water filter and bottled water use in Appalachia: a community-scale case study.

    PubMed

    Levêque, Jonas G; Burns, Robert C

    2017-06-01

    A questionnaire survey was conducted in order to assess residents' perceptions of water quality for drinking and recreational purposes in a mid-sized city in northcentral West Virginia. Two logistic regression analyses were conducted in order to investigate the factors that influence bottle use and filter use. Results show that 37% of respondents primarily use bottled water and that 58% use a household filter when drinking from the tap. Respondents with lower levels of environmental concern, education levels, and lower organoleptic perceptions were most likely to perceive health risks from tap water consumption, and were most likely to use bottled water. Income, age, and organoleptic perceptions were predictors of water filter use among respondents. Clean water for recreational purposes was not found to be significant with either of these models. Our results demonstrate that bottle use and filter use are explained differently. We argue that more education and better communication about local tap water quality would decrease the use of bottled water. We demonstrate that household filters could be used as an alternative to bottled water.

  16. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  17. An assessment of the water quality of drinking water in rural districts in Zimbabwe. The case of Gokwe South, Nkayi, Lupane, and Mwenezi districts

    NASA Astrophysics Data System (ADS)

    Hoko, Zvikomborero

    Zimbabwe generally receives an average rainfall of 675 mm per annum of which only a maximum of 10% finds its way to rivers as runoff. Gokwe, Nkayi, Lupane and Mwenezi are some of the driest districts in Zimbabwe having mean annual runoffs (MAR) in the range 17-70 mm. River flows especially in Nkayi and Lupane are seasonal and often dry in the period June to November every year. The Kalahari sands predominantly found in such areas as Gokwe, Nkayi, and Lupane promote rapid percolation of rainwater leaving little runoff. The main source of water for domestic purposes in these areas is groundwater with very little reliance on surface water. This study analyzed the water quality of water points in Gokwe South, Nkayi, Lupane, and Mwenezi districts. Parameters analyzed were pH, temperature, dissolved oxygen (DO), turbidity and electrical conductivity (EC). Water quality perceptions from the villagers and the research team were investigated and possible correlations studied. Water quality perceptions included, taste and soap consumption and colour. The uses of the water at domestic level as well as available alternatives to borehole water were investigated. The pH generally ranged from 6.5 to 8.0, which is within the Canadian guidelines. DO was 0.3-5.9 mg/l while turbidity ranged from 0 to 259 NTU with Mwenezi having the highest turbidity value. Conductivity ranged from 70 to 9800 μS/cm with the lowest and highest values recorded in Gokwe and Mwenezi. It was found out that the water quality in terms of taste and odour was 97% satisfactory for Gokwe South, 85% Nkayi, 64% Lupane, and 62% for Mwenezi. High soap consumption which is related to hardness was perceived to be least in Lupane (14%) and highest in Mwenezi with 81%. In general taste complaints also corresponded to high soap consumption but the opposite was not true. It was observed that there was no clear correlation between the quality parameters studied and perceived quality as for example satisfactory taste responses were obtained at EC values higher than the threshold minimum value for objection.

  18. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  19. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  20. Prediction of Water Quality Parameters Using Statistical Methods: A Case Study in a Specially Protected Area, Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Alp, E.; Yücel, Ö.; Özcan, Z.

    2014-12-01

    Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.

  1. Hydrology, water resources and the epidemiology of water-related diseases

    NASA Astrophysics Data System (ADS)

    Bertuzzo, Enrico; Mari, Lorenzo

    2017-10-01

    Water-borne and water-based diseases are infections in which the causative agent (or one of its hosts) spends at least part of its lifecycle in water [1]. They still represent a major threat to human health, especially in the developing world. As an example, diarrhoea, commonly linked to water-borne diseases like cholera, is responsible for the death of about 525,000 children under five every year (out of nearly 1.7 billion cases globally), thus representing one of the leading causes of death among infants and children in low-income countries [2]. A wide range of micro- (protozoa, bacteria, viruses, algae) and macro-parasites (mostly flatworms and roundworms) is associated with water-borne and water-based diseases. Infection is generally caused by ingestion of, or exposure to, contaminated water, and is thus tightly linked to water excess, scarcity, availability or quality. More broadly, the term water-related diseases may also include vector-borne infections in which the ecology of the vector population is closely related to the presence of environmental water. This is the case, for instance, of mosquitoes acting as vectors of deadly diseases like malaria, dengue fever and yellow fever. Malaria alone exacted a toll of 429,000 deaths in 2015 (out of 212 million cases globally), according to the latest WHO estimates [3].

  2. Tribal 319: 2010 NPS Workshop

    EPA Pesticide Factsheets

    This tribal training was offered during the first day of the National Water Quality Monitoring Council conference held in Denver, Colorado. The session covered CWA Section 106 and 319 topics, and featured three tribal case studies.

  3. Constructed Wetlands for Wastewater Treatment and Wildlife Habitat: 17 Case Studies

    EPA Pesticide Factsheets

    This document provides brief descriptions of 17 wetland treatment systems from across the country that are providing significant water quality benefits while demonstrating additional benefits such as wildlife habitat.

  4. Comparative assessment for future prediction of urban water environment using WEAP model: A case study of Kathmandu, Manila and Jakarta

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Yoshifumi, Masago; Ammar, Rafieiemam; Mishra, Binaya; Fukushi, Ken

    2017-04-01

    Uncontrolled release of pollutants, increasing extreme weather condition, rapid urbanization and poor governance posing a serious threat to sustainable water resource management in developing urban spaces. Considering half of the world's mega-cities are in the Asia and the Pacific with 1.7 billion people do not access to improved water and sanitation, water security through its proper management is both an increasing concern and an imperative critical need. This research work strives to give a brief glimpse about predicted future water environment in Bagmati, Pasig and Ciliwung rivers from three different cities viz. Manila, Kathmandu and Jakarta respectively. Hydrological model used here to foresee the collective impacts of rapid population growth because of urbanization as well as climate change on unmet demand and water quality in near future time by 2030. All three rivers are major source of water for different usage viz. domestic, industrial, agriculture and recreation but uncontrolled withdrawal and sewerage disposal causing deterioration of water environment in recent past. Water Evaluation and Planning (WEAP) model was used to model river water quality pollution future scenarios using four indicator species i.e. Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Nitrate (NO3). Result for simulated water quality as well as unmet demand for year 2030 when compared with that of reference year clearly indicates that not only water quality deteriorates but also unmet demands is increasing in future course of time. This also suggests that current initiatives and policies for water resource management are not sufficient enough and hence immediate and inclusive action through transdisciplinary research.

  5. Watershed sediment measurement and sediment transport modeling techniques: Case study to quantify the impact of converting cropland to forested stream buffers on soil loss and water quality at the watershed scale

    USDA-ARS?s Scientific Manuscript database

    Watershed models such as the Soil and Water Assessment Tool (SWAT) have been widely used to simulate watershed hydrologic processes and the effect of management, such as agroforestry, on soil and water resources. In order to use model outputs for tasks ranging from aiding policy decision making to r...

  6. Operational monitoring and forecasting of bathing water quality through exploiting satellite Earth observation and models: The AlgaRisk demonstration service

    NASA Astrophysics Data System (ADS)

    Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.

    2015-04-01

    Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

  7. Effect of intense short rainfall events on coastal water quality parameters from remote sensing data

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Lassini, Fabio; Mancini, Marco

    2016-07-01

    Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.

  8. Air quality in developing world disaster and conflict zones--the case of post-earthquake Haiti.

    PubMed

    Davis, Mary E; Rappaport, Ann

    2014-10-15

    Data on air quality are remarkably limited in the poorest of the world's countries. This is especially true for post-conflict and disaster zones, where international relief efforts focus largely on more salient public health challenges such as water and sanitation, infectious diseases, and housing. Using post-earthquake Haiti as the example case, this commentary explores air quality challenges in the developing world, highlighting concerns related to infrastructure damage from post-conflict and disaster settings. We contend that there is a growing and presently unmet need for further research and attention from the global health community to address these issues. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Relationship between landscape characteristics and surface water quality.

    PubMed

    Chang, C L; Kuan, W H; Lui, P S; Hu, C Y

    2008-12-01

    The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.

  10. Water Quality Modeling in the Dead End Sections of Drinking ...

    EPA Pesticide Factsheets

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of a distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations

  11. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  12. A new and integrated hydro-economic accounting and analytical framework for water resources: a case study for North China.

    PubMed

    Guan, Dabo; Hubacek, Klaus

    2008-09-01

    Water is a critical issue in China for a variety of reasons. China is poor of water resources with 2,300 m(3) of per capita availability, which is less than 13 of the world average. This is exacerbated by regional differences; e.g. North China's water availability is only about 271 m(3) of per capita value, which is only 125 of the world's average. Furthermore, pollution contributes to water scarcity and is a major source for diseases, particularly for the poor. The Ministry of Hydrology [1997. China's Regional Water Bullets. Water Resource and Hydro-power Publishing House, Beijing, China] reports that about 65-80% of rivers in North China no longer support any economic activities. Previous studies have emphasized the amount of water withdrawn but rarely take water quality into consideration. The quality of the return flows usually changes; the water quality being lower than the water flows that entered the production process initially. It is especially important to measure the impacts of wastewater to the hydro-ecosystem. Thus, water consumption should not only account for the amount of water inputs but also the amount of water contaminated in the hydro-ecosystem by the discharged wastewater. In this paper we present a new accounting and analytical approach based on economic input-output modelling combined with a mass balanced hydrological model that links interactions in the economic system with interactions in the hydrological system. We thus follow the tradition of integrated economic-ecologic input-output modelling. Our hydro-economic accounting framework and analysis tool allows tracking water consumption on the input side, water pollution leaving the economic system and water flows passing through the hydrological system thus enabling us to deal with water resources of different qualities. Following this method, the results illustrate that North China requires 96% of its annual available water, including both water inputs for the economy and contaminated water that is ineligible for any uses.

  13. HSPF Modeling for Compliance and Enforcement: An Urban Case Study

    NASA Astrophysics Data System (ADS)

    Marshalonis, D.

    2017-12-01

    Stormwater runoff is one of the most significant challenges to water quality facing surface waters globally. In the United States, the Environmental Protection Agency (EPA) regulates stormwater flows through its National Pollutant Discharge Elimination System (NPDES) program permits. When egregious violations occur, EPA may develop its case and prove those violations through the legal dispute process. However, evidence in stormwater-related cases is ephemeral, difficult to collect due to unpredictable weather dynamics, and there are usually no witnesses. The work presented here illustrates an approach EPA takes for certain wet weather cases: introduce results from hydrologic and hydraulic models as evidence to meet legal burden of proof standards. The challenges and opportunities of using models in stormwater discharge modeling are highlighted.

  14. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  15. Mālama Wai: A science and native Hawaiian integrated case study

    NASA Astrophysics Data System (ADS)

    La Valle, F. F.; Camvel, D. A. K.; Thomas, F. I. M.; Aikau, H. K.; Lemus, J. D.

    2016-02-01

    Hawaiian mo`olelo (stories, legends, literature), especially those recorded and written in Hawaiian language, function as a record of traditional and customary practices that are critically relevant to current scientific research. This is especially true of scientific studies measuring water quality parameters that might depend on land management practices. The following study aimed to use mo`olelo to integrate water-related research by two doctoral students from different disciplines, native Hawaiian studies and marine biology, from the University of Hawai`i at Mānoa. We compared the relationship between water quality, mo`olelo, and historical land usage at three sites. Two sites are in the urbanized Maunalua Bay, on the southern coast of Oahu. One site is in an undeveloped kuleana (property) in `Ioleka`a, on the windward side of Oahu. Nutrient concentrations along with other water quality parameters were measured in fresh water streams in `Ioleka`a and coastal areas, in Maunalua Bay, that receive inputs from subterranean groundwater discharge. Research on site-specific mo`olelo was conducted and an analysis made on the associative values pertaining to the gods as elements, their kinolau (body form), and the connections with the water quality. Based on our findings, we created a lexicon of Hawaiian language science terms that are not solely transliterated but take into account the processes (scientific and Hawaiian) involved in the terms' definitions. This project provided a deeper understanding of the intricacies in relating water quality-based science and traditional customary and contemporary practices (TCCP). To conclude, we reflected on lesson learned, challenges, and future directions for similar interdisciplinary projects.

  16. Adaptive management for mitigating Cryptosporidium risk in source water: a case study in an agricultural catchment in South Australia.

    PubMed

    Bryan, Brett A; Kandulu, John; Deere, Daniel A; White, Monique; Frizenschaf, Jacqueline; Crossman, Neville D

    2009-07-01

    Water-borne pathogens such as Cryptosporidium pose a significant human health risk and catchments provide the first critical pollution 'barrier' in mitigating risk in drinking water supply. In this paper we apply an adaptive management framework to mitigating Cryptosporidium risk in source water using a case study of the Myponga catchment in South Australia. Firstly, we evaluated the effectiveness of past water quality management programs in relation to the adoption of practices by landholders using a socio-economic survey of land use and management in the catchment. The impact of past management on the mitigation of Cryptosporidium risk in source water was also evaluated based on analysis of water quality monitoring data. Quantitative risk assessment was used in planning the next round of management in the adaptive cycle. Specifically, a pathogen budget model was used to identify the major remaining sources of Cryptosporidium in the catchment and estimate the mitigation impact of 30 alternative catchment management scenarios. Survey results show that earlier programs have resulted in the comprehensive adoption of best management practices by dairy farmers including exclusion of stock from watercourses and effluent management from 2000 to 2007. Whilst median Cryptosporidium concentrations in source water have decreased since 2004 they remain above target levels and put pressure on other barriers to mitigate risk, particularly the treatment plant. Non-dairy calves were identified as the major remaining source of Cryptosporidium in the Myponga catchment. The restriction of watercourse access of non-dairy calves could achieve a further reduction in Cryptosporidium export to the Myponga reservoir of around 90% from current levels. The adaptive management framework applied in this study was useful in guiding learning from past management, and in analysing, planning and refocusing the next round of catchment management strategies to achieve water quality targets.

  17. Modelling Common Agricultural Policy-Water Framework Directive interactions and cost-effectiveness of measures to reduce nitrogen pollution.

    PubMed

    Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic

    2010-01-01

    Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use.

  18. Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.

    PubMed

    Morari, F; Lugato, E; Borin, M

    2003-01-01

    An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.

  19. Cholera Epidemic - Lusaka, Zambia, October 2017-May 2018.

    PubMed

    Sinyange, Nyambe; Brunkard, Joan M; Kapata, Nathan; Mazaba, Mazyanga Lucy; Musonda, Kunda G; Hamoonga, Raymond; Kapina, Muzala; Kapaya, Fred; Mutale, Lwito; Kateule, Ernest; Nanzaluka, Francis; Zulu, James; Musyani, Chileshe Lukwesa; Winstead, Alison V; Davis, William W; N'cho, Hammad S; Mulambya, Nelia L; Sakubita, Patrick; Chewe, Orbie; Nyimbili, Sulani; Onwuekwe, Ezinne V C; Adrien, Nedghie; Blackstock, Anna J; Brown, Travis W; Derado, Gordana; Garrett, Nancy; Kim, Sunkyung; Hubbard, Sydney; Kahler, Amy M; Malambo, Warren; Mintz, Eric; Murphy, Jennifer; Narra, Rupa; Rao, Gouthami G; Riggs, Margaret A; Weber, Nicole; Yard, Ellen; Zyambo, Khozya D; Bakyaita, Nathan; Monze, Namani; Malama, Kennedy; Mulwanda, Jabbin; Mukonka, Victor M

    2018-05-18

    On October 6, 2017, an outbreak of cholera was declared in Zambia after laboratory confirmation of Vibrio cholerae O1, biotype El Tor, serotype Ogawa, from stool specimens from two patients with acute watery diarrhea. The two patients had gone to a clinic in Lusaka, the capital city, on October 4. Cholera cases increased rapidly, from several hundred cases in early December 2017 to approximately 2,000 by early January 2018 (Figure). In collaboration with partners, the Zambia Ministry of Health (MoH) launched a multifaceted public health response that included increased chlorination of the Lusaka municipal water supply, provision of emergency water supplies, water quality monitoring and testing, enhanced surveillance, epidemiologic investigations, a cholera vaccination campaign, aggressive case management and health care worker training, and laboratory testing of clinical samples. In late December 2017, a number of water-related preventive actions were initiated, including increasing chlorine levels throughout the city's water distribution system and placing emergency tanks of chlorinated water in the most affected neighborhoods; cholera cases declined sharply in January 2018. During January 10-February 14, 2018, approximately 2 million doses of oral cholera vaccine were administered to Lusaka residents aged ≥1 year. However, in mid-March, heavy flooding and widespread water shortages occurred, leading to a resurgence of cholera. As of May 12, 2018, the outbreak had affected seven of the 10 provinces in Zambia, with 5,905 suspected cases and a case fatality rate (CFR) of 1.9%. Among the suspected cases, 5,414 (91.7%), including 98 deaths (CFR = 1.8%), occurred in Lusaka residents.

  20. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  1. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  2. Understanding the relationships among phytoplankton, benthic macroinvertebrates, and water quality variables in peri-urban river systems.

    PubMed

    Pinto, Uthpala; Maheshwari, Basant L; Morris, E Charles

    2014-12-01

    In this article, using the Hawkesbury-Nepean River as a case study, the spatial and temporal trends of water quality variables over three sampling surveys in a peri-urban situation are examined for their effect on benthic macroinvertebrate communities and phytoplankton communities and whether phytoplankton and benthic macroinvertebrate species can be used as indicators for river health assessment. For this, the authors monitored the spatial and temporal difference of 10 water quality parameters: temperature, turbidity, pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, total nitrogen, total phosphorus, manganese, and suspended solids. The variability in water quality parameters clearly indicated a complex pattern, depending on the season (interaction p = 0.001), which highlighted how the river condition is stressed at multiple points as a result of anthropogenic effects. In particular, the downstream locations indicated an accumulation of nutrients, the presence of increased sediments, and phytoplankton related variables such as total counts, bio-volumes, chlorophyll-a, and total phosphorus. The patterns of phytoplankton communities varied in a complex way depending on the season (interaction p = 0.001). Abundances of phytoplankton were also found in low concentrations where the water column is not severely disturbed by flow and tide. However, when the water clarity drops resulting from tidal cycles, inflows from tributaries, and intense boating activities, the phytoplankton abundances also increased considerably. On the other hand, benthic macroinvertebrates compositions were significantly different between locations (p = 0.001) with increased abundances associated with upstream sites. Aphanocapsa holsatica and chironomid larvae appeared as the important indicators for upstream and downstream site differences in water quality. Water temperature influenced the phytoplankton community pattern (ρ(w) = 0.408), whereas pH influenced the benthic macroinvertebrate community pattern (ρ(w) = 0.437). The findings of this study provide valuable insights into the interactions of water quality parameters on biotic assemblages and to the extent that benthic macroinvertebrates and phytoplankton assemblages are suitable as indicators for monitoring and assessing peri-urban river health.

  3. Water quality variation during a strong El Niño event in 2016: a case study in Kampar River, Malaysia.

    PubMed

    Ng, Casey Keat-Chuan; Goh, Choo-Hou; Lin, Jia-Chun; Tan, Minn-Syenn; Bong, Willie; Yong, Chea-Soon; Chong, Jun-Yao; Ooi, Peter Aun-Chuan; Wong, Wey-Lim; Khoo, Gideon

    2018-06-15

    El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.

  4. Turkey Creek—a case study of ecohydrology and integrated watershed management in the low-gradient Atlantic Coastal Plain, USA

    Treesearch

    Devendra Amatya; Timothy Callahan; William Hansen; Carl Trettin; Artur Radecki-Pawlik; Patrick Meire

    2015-01-01

    Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was...

  5. The effects of motorway runoff on freshwater ecosystems. 2: Identifying major toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltby, L.; Boxall, A.B.A.; Forrow, D.M.

    1995-06-01

    Previous studies have provided prima facie evidence that runoff from the M1 motorway, UK, affects both the quality of the receiving water and the biota living there, in sites short distances from point sources-i.e., possible worst-case situations. Because discharges contain a wide variety of contaminants, both the identification of toxicants and the establishment of causal relationships between observed changes in water/sediment quality and biology are often difficult. In this particular case, the problem was addressed by conducting a series of toxicity tests using the benthic amphipod Gammarus pulex. The abundance of this species was greatly reduced downstream of the pointmore » where motorway runoff entered the stream. Stream water contaminated with motorway runoff was not toxic to G. pulex. However, exposure to contaminated sediments resulted in a slight reduction in survival over 14 d, and sediment manipulation experiments identified hydrocarbons, copper, and zinc as potential toxicants. Spiking experiments confirmed the importance of hydrocarbons, and fractionation studies indicated that most of the observed toxicity was due to the fraction containing polycyclic aromatic hydrocarbons. Animals exposed to contaminated sediments and water spiked with sediment extract accumulated aromatic hydrocarbons in direct proportion to exposure concentrations.« less

  6. Spatial distribution and temporal variation of chemical properties of drainage watercourses in rural and peri-urban areas of Novi Sad (Serbia)-a case study.

    PubMed

    Savic, Radovan; Ondrasek, Gabrijel; Blagojevic, Bosko; Bubalo Kovacic, Marina; Zemunac, Rados

    2017-12-29

    Waters are among to the most vulnerable environmental resources exposed to the impact of various point and non-point pollutants from rural/urban activities. Systematic and long-term monitoring of hydro-resources is therefore of crucial importance for sustainable water management, although such practice is lacking across many (agro-)hydro-ecosystems. In the presented study, for the first time, the spatial distribution (covering almost 9000 ha) and temporal variation (2006-2013) in certain quality parameters was characterized in drainage watercourses Tatarnica and Subic, whose catchment is rural and suburban areas close to the city of Novi Sad, Republic of Serbia. Based on majority of observed parameters, both watercourses belonged to I and II water quality classes, with occasional presence of certain parameters (e.g., suspended solids, total phosphorus; ammonium) at extreme values exacerbating both watercourses to classes IV and V. The value of the synthetic pollution index (i.e., a combined effect of all considered parameters) showed a higher degree of water pollution in watercourse Subic (on average 2.00) than Tatarnica (on average 0.72). Also, cluster analysis for watercourse Tatarnica detected two groups of parameters (mostly related to nutrients and organic matter), indicating more complex impacts on water quality during the observed period, in which elucidation thus established water quality monitoring program would be of great importance.

  7. Drinking water treatment and risk of cancer death in Wisconsin.

    PubMed Central

    Kanarek, M S; Young, T B

    1982-01-01

    A case control study of drinking water treatment practices and female cancer mortality was conducted in Wisconsin. Cancer deaths for 1972-1977 from 28 Wisconsin counties and noncancer deaths matched to cancer deaths on age, year of death and county of residence, were compared for characteristics of drinking water supplied to their places of residence. Using logistic regression, estimates of relative risk associated with chlorinated water were examined allowing for the influence of indicators of water organics and the potential confounders of occupation, marital status and urbanicity. Only colon cancer appeared to be related significantly to chlorination in all models explored. A dose-response relationship was found between crude indicators of trihalomethane level (chlorination X organic contamination) and colon cancer death. The odds ratio for chlorinated surface water for colon cancer was 2.81 (p less than 0.01); approximately half this risk was found for chlorinated ground water. Consequently, a case control study of colon cancer and drinking water quality utilizing newly diagnosed patients is being conducted in Wisconsin. PMID:7151760

  8. Use of EDTA in modified kinetic testing for contaminated drainage prediction from waste rocks: case of the Lac Tio mine.

    PubMed

    Plante, Benoît; Benzaazoua, Mostafa; Bussière, Bruno; Kandji, El-Hadji-Babacar; Chopard, Aurélie; Bouzahzah, Hassan

    2015-05-01

    The tools developed for acid mine drainage (AMD) prediction were proven unsuccessful to predict the geochemical behavior of mine waste rocks having a significant chemical sorption capacity, which delays the onset of contaminated neutral drainage (CND). The present work was performed in order to test a new approach of water quality prediction, by using a chelating agent solution (0.03 M EDTA, or ethylenediaminetetraacetic acid) in kinetic testing used for the prediction of the geochemical behavior of geologic material. The hypothesis underlying the proposed approach is that the EDTA solution should chelate the metals as soon as they are released by sulfide oxidation, inhibiting their sorption or secondary precipitation, and therefore reproduce a worst-case scenario where very low metal attenuation mechanisms are present in the drainage waters. Fresh and weathered waste rocks from the Lac Tio mine (Rio tinto, Iron and Titanium), which are known to generate Ni-CND at the field scale, were submitted to small-scale humidity cells in control tests (using deionized water) and using an EDTA solution. Results show that EDTA effectively prevents the metals to be sorbed or to precipitate as secondary minerals, therefore enabling to bypass the delay associated with metal sorption in the prediction of water quality from these materials. This work shows that the use of a chelating agent solution is a promising novel approach of water quality prediction and provides general guidelines to be used in further studies, which will help both practitioners and regulators to plan more efficient management and disposal strategies of mine wastes.

  9. Impacts of fertilization on water quality of a drained pine plantation: a worst case scenario.

    PubMed

    Beltran, Bray J; Amatya, Devendra M; Youssef, Mohamed; Jones, Martin; Callahan, Timothy J; Skaggs, R Wayne; Nettles, Jami E

    2010-01-01

    Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North Carolina using a paired watershed approach. The plantation consists of three watersheds, two mature (31-yr) and one young (8-yr) (age at treatment). One of the mature watersheds was commercially thinned in 2002. The mature unthinned watershed was designated as the control. The young and mature-thinned watersheds were fertilized at different rates with Arborite (Encee Chemical Sales, Inc., Bridgeton, NC), and boron. The outflow rates and nutrient concentrations in water drained from each of the watersheds were measured. Nutrient concentrations and loadings were analyzed using general linear models (GLM). Three large storm events occurred within 47 d of fertilization, which provided a worst case scenario for nutrient export from these watersheds to the receiving surface waters. Results showed that average nutrient concentrations soon after fertilization were significantly (alpha = 0.05) higher on both treatment watersheds than during any other period during the study. This increase in nutrient export was short lived and nutrient concentrations and loadings were back to prefertilization levels as soon as 3 mo after fertilization. Additionally, the mature-thinned watershed presented higher average nutrient concentrations and loadings when compared to the young watershed, which received a reduced fertilizer rate than the mature-thinned watershed.

  10. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  11. Modelling the impacts of global change on concentrations of Escherichia coli in an urban river

    NASA Astrophysics Data System (ADS)

    Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2017-10-01

    Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.

  12. Apollo experience report: Potable water system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Calley, D. J.

    1973-01-01

    A description of the design and function of the Apollo potable water system is presented. The command module potable water is supplied as a byproduct of the fuel cells. The cells, located in the service module, function primarily to supply electrical energy to the spacecraft. The source of the lunar module potable water is three tanks, which are filled before lift-off. The technique of supplying the water in each of these cases and the problems associated with materials compatibility are described. The chemical and microbiological quality of the water is reviewed, as are efforts to maintain the water in a microbially safe condition for drinking and food mixing.

  13. Water and Regional Stability: The Nile a Case Study

    DTIC Science & Technology

    2011-03-24

    including agriculture, hydropower , economic growth, and maintaining a healthy aquatic ecosystem. Each nation may not alter the quantity or quality of the...Victoria which is the largest lake in Africa covering 69,000 km2. The White Nile contributes a small but steady flow of water, about 14 percent of the...linked the availability of sufficient clean water to an area’s economic potential. 20 Countries that have a very low per capita Gross Domestic Product

  14. Drinking water quality in Indigenous communities in Canada and health outcomes: a scoping review.

    PubMed

    Bradford, Lori E A; Okpalauwaekwe, Udoka; Waldner, Cheryl L; Bharadwaj, Lalita A

    2016-01-01

    Many Indigenous communities in Canada live with high-risk drinking water systems and drinking water advisories and experience health status and water quality below that of the general population. A scoping review of research examining drinking water quality and its relationship to Indigenous health was conducted. The study was undertaken to identify the extent of the literature, summarize current reports and identify research needs. A scoping review was designed to identify peer-reviewed literature that examined challenges related to drinking water and health in Indigenous communities in Canada. Key search terms were developed and mapped on five bibliographic databases (MEDLINE/PubMED, Web of Knowledge, SciVerse Scopus, Taylor and Francis online journal and Google Scholar). Online searches for grey literature using relevant government websites were completed. Sixteen articles (of 518; 156 bibliographic search engines, 362 grey literature) met criteria for inclusion (contained keywords; publication year 2000-2015; peer-reviewed and from Canada). Studies were quantitative (8), qualitative (5) or mixed (3) and included case, cohort, cross-sectional and participatory designs. In most articles, no definition of "health" was given (14/16), and the primary health issue described was gastrointestinal illness (12/16). Challenges to the study of health and well-being with respect to drinking water in Indigenous communities included irregular funding, remote locations, ethical approval processes, small sample sizes and missing data. Research on drinking water and health outcomes in Indigenous communities in Canada is limited and occurs on an opportunistic basis. There is a need for more research funding, and inquiry to inform policy decisions for improvements of water quality and health-related outcomes in Indigenous communities. A coordinated network looking at First Nations water and health outcomes, a database to store and create access to research findings, increased funding and time frames for funding, and more decolonizing and community-based participatory research aimed at understanding the relationship between drinking water quality and health outcomes in First Nations communities in Canada are needed.

  15. Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds.

    PubMed

    Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin

    2012-11-01

    Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.

  16. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program

    USGS Publications Warehouse

    Hardy, M.A.; Leahy, P.P.; Alley, W.M.

    1989-01-01

    Several pilot projects are being conducted as part of the National Water Quality Assessment (NAWQA) Program. The purpose of the pilot program is to test and refine concepts for a proposed full-scale program. Three of the pilot projects are specifically designed to assess groundwater. The purpose of this report is to describe the criteria that are being used in the NAWQA pilot projects for selecting and documenting wells, installing new wells, and sampling wells for different water quality constituents. Guidelines are presented for the selection of wells for sampling. Information needed to accurately document each well includes site characteristics related to the location of the well, land use near the well, and important well construction features. These guidelines ensure the consistency of the information collected and will provide comparable data for interpretive purposes. Guidelines for the installation of wells are presented and include procedures that need to be followed for preparations prior to drilling, the selection of the drilling technique and casing type, the grouting procedure, and the well-development technique. A major component of the protocols is related to water quality sampling. Tasks are identified that need to be completed prior to visiting the site for sampling. Guidelines are presented for purging the well prior t sampling, both in terms of the volume of water pumped and the chemical stability of field parameters. Guidelines are presented concerning sampler selection as related to both inorganic and organic constituents. Documentation needed to describe the measurements and observations related to sampling each well and treating and preserving the samples are also presented. Procedures are presented for the storage and shipping of water samples, equipment cleaning, and quality assurance. Quality assurance guidelines include the description of the general distribution of the various quality assurance samples (blanks, spikes, duplicates, and reference samples) that will be used in the pilot program. (Lantz-PTT)

  18. [GIS and scenario analysis aid to water pollution control planning of river basin].

    PubMed

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  19. [The water supply of a pediatric hospital as a possible source of an outbreak of diarrhea due to Microsporidium spp. in immunocompromised patients].

    PubMed

    Coria, Paulina; Urízar, Claudia; Alba, Andrea; Noemí, Isabel; Pino, Anita; Cerva, José Luis

    2016-08-01

    The hospital water supply is a reservoir of a variety of potentially pathogenic microorganisms that can particularly affect children and immunocompromised patients. Potentially pathogenic Microsporidium spp. have been identified in water. Microsporidiosis is an emerging parasitic and opportunistic infection in immunocompromised patients. to describe an outbreak of nosocomial diarrhea due to Microsporidium, species Encephalitozoon intestinalis. Seven cases of E. intestinalis associated diarrhea were reported between november 2012 and february 2013, in a unit of immunocompromised patients in L. Calvo Mackenna Children's Hospital. Microsporidium spp. was found in the hospital water supply and water reservoir tank. Secondary cases were transmitted by contact. Control measures included contact precautions, not to use faucet water for hand washing, bottled water for drinking and water reservoir tank sanitation. This research is about a nosocomial outbreak associated with water supply. Water quality in Chilean hospitals is an unresolved issue, especially in immunocompromised patient areas. Compliance of cleaning and disinfection of water supply systems in hospitals must be ensured.

  20. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    NASA Astrophysics Data System (ADS)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  1. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    PubMed

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  2. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate uncertainty.

  3. Effects of peatland burning on hydrology, water quality and aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, L. E.; Holden, J.; Palmer, S. M.

    2009-04-01

    Controlled burning is used worldwide for the management of vegetation, yet there is serious concern about the environmental implications of such practices. Across the UK many peatlands are burned to encourage and maintain heather growth. However, detailed evaluations of the costs, benefits and sustainability of burning are hampered by a lack of basic scientific data. This paper will present the outline of a new three year NERC-funded project called EMBER which provides the first co-ordinated evaluation of vegetation burning on peatland hydrological and ecological processes. Case study sites influenced by prescribed burns will be established in internationally important sites in the Peak District and North Pennines, UK. EMBER will increase understanding of the processes linking prescribed peat vegetation fires, hydrology, water quality and stream invertebrate communities in upland peat dominated catchments. Four work packages will aim to: 1) increase understanding of the effects of moorland patch burning on the hydrology and physicochemistry of peat, through examination of changes in soil hydrology and water quality; 2) provide a better understanding of the effects of moorland patch burning on basin runoff quantity and quality, through examination of river flow regimes, suspended sediment concentration and water chemistry; 3) assess the influence of changes in stream hydrology, water quality and sediment fluxes on stream ecosystems through examination of stream invertebrate community biodiversity and fish abundance and 4) gain a more fundamental understanding of some environmental drivers of upland aquatic community response to burning by experimentally manipulating fine sediment flux under controlled conditions using a series of streamside mesocosms. Taken together these packages will provide a holistic patch- to basin-scale evaluation of burning from the perspective of peat hydrology, chemistry, river water quantity and quality, and stream ecosystems, thus providing the balanced knowledge base which is currently lacking for peatlands.

  4. Quality of Piped and Stored Water in Households with Children Under Five Years of Age Enrolled in the Mali Site of the Global Enteric Multi-Center Study (GEMS)

    PubMed Central

    Baker, Kelly K.; Sow, Samba O.; Kotloff, Karen L.; Nataro, James P.; Farag, Tamer H.; Tamboura, Boubou; Doumbia, Mama; Sanogo, Doh; Diarra, Drissa; O'Reilly, Ciara E.; Mintz, Eric; Panchalingam, Sandra; Wu, Yukun; Blackwelder, William C.; Levine, Myron M.

    2013-01-01

    Water, sanitation, and hygiene information was collected during a matched case-control study of moderate and severe diarrhea (MSD) among 4,096 children < 5 years of age in Bamako, Mali. Primary use of piped water (conditional odds ratio [cOR] = 0.45; 0.34–0.62), continuous water access (cOR = 0.30; 0.20–0.43), fetching water daily (cOR = 0.77; 0.63–0.96), and breastfeeding (cOR = 0.65; 0.49–0.88) significantly reduced the likelihood of MSD. Fetching water in > 30 minutes (cOR = 2.56; 1.55–4.23) was associated with MSD. Piped tap water and courier-delivered water contained high (> 2 mg/L) concentrations of free residual chlorine and no detectable Escherichia coli. However, many households stored water overnight, resulting in inadequate free residual chlorine (< 0.2 mg/L) for preventing microbial contamination. Coliforms and E. coli were detected in 48% and 8% of stored household water samples, respectively. Although most of Bamako's population enjoys access to an improved water source, water quality is often compromised during household storage. PMID:23836570

  5. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study.

    PubMed

    Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang

    2018-01-01

    This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  7. Understanding the impact of crop and food production on the water environment--using sugar as a model.

    PubMed

    Hess, Tim; Aldaya, Maite; Fawell, John; Franceschini, Helen; Ober, Eric; Schaub, Ruediger; Schulze-Aurich, Jochen

    2014-01-15

    The availability of fresh water and the quality of aquatic ecosystems are important global concerns, and agriculture plays a major role. Consumers and manufacturers are increasingly sensitive to sustainability issues related to processed food products and drinks. The present study examines the production of sugar from the growing cycle through to processing to the factory gate, and identifies the potential impacts on water scarcity and quality and the ways in which the impact of water use can be minimised. We have reviewed the production phases and processing steps, and how calculations of water use can be complicated, or in some cases how assessments can be relatively straightforward. Finally, we outline several ways that growers and sugar processors are improving the efficiency of water use and reducing environmental impact, and where further advances can be made. This provides a template for the assessment of other crops. © 2013 Society of Chemical Industry.

  8. Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches.

    PubMed

    Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar

    2016-02-01

    The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders approach outperforms FA/PCA when limited water quality and extensive watershed information is available. The available water quality dataset is limited and FA/PCA-based approach fails to identify monitoring locations with higher variation, as these multivariate statistical approaches are data-driven. The priority/hierarchy and number of sampling sites designed by modified Sanders approach are well justified by the land use practices and observed river basin characteristics of the study area.

  9. City Green: Innovative Green Infrastructure Solutions for Downtowns and Infill Locations

    EPA Pesticide Factsheets

    City Green uses case studies to illustrate how green infrastructure techniques can be used in downtowns and infill locations, where space is limited, to protect water quality and bring other environmental and community benefits.

  10. Overview of groundwater management approaches at salinisation risk

    NASA Astrophysics Data System (ADS)

    Polemio, Maurizio; Zuffianò, Livia Emanuela

    2013-04-01

    All natural waters contain dissolved minerals from interactions with atmospheric and soil gases, mixing with other solutions, and/or interactions with the biosphere and lithosphere. In many cases, these processes result in natural waters containing solute or salinity above concentrations recommended for a specified use, which creates significant social and economic problems. Groundwater salinisation can be caused by natural phenomena and anthropogenic activities. For the former case, we can distinguish terrestrial and marine phenomena. Approximately 16% of the total area of continental earth is potentially involved in groundwater salinisation. Seawater intrusion can be considered to be the primary phenomenon to be studied in terms of groundwater salinisation. Three schematic approaches to the protection of groundwater via salinisation mitigation and/or groundwater salinity improvement are described based on the classifications of the primary salinisation sources and focusing on the effect of seawater intrusion. The complexity of these approaches generally increases due to difficulties caused by groundwater quality and quantity degradation and increased demand for quality water. In order from the lowest to the highest complexity, these approaches are the engineering approach, the discharge management approach, and the water and land management approach. The engineering approach is realised on the local or detailed scale with the purpose of controlling the salinisation, optimising the well discharge with specific technical solutions and/or completing works to improve the quality and/or quantity of the discharged fresh groundwater. The discharge management approach encompasses at least an entire coastal aquifer and defines rules concerning groundwater utilisation and well discharge. The water and land management approach should be applied on the regional scale. Briefly, this approach becomes necessary when one or more need creates an overall framework of high-quality water scarcity. These conditions, sometimes combined with an awareness of negative environmental effects, force people to accept new water saving practices and land use modifications. As the natural effects of salinisation can be enhanced by a multiplicity of human actions, the discharge management approach and the water and land management approach should generally be applied by water authorities or institutional and governmental organisations that are responsible for groundwater quality and availability. The practical study of Apulian karstic coastal aquifers is discussed in detail. Previously experienced management difficulties are described, as well as a proposed multi-methodological approach based on monitoring networks, the spatiotemporal analysis of groundwater quality changes, and multiparameter well logging. The core of this approach is the definition of the salinity threshold value between pure fresh groundwater and any fresh and saline groundwater mixture. The basic or single tools were defined to be simple, quick and cost-effective to be applicable to the widest range of situations.

  11. Water Reclamation and Reuse.

    PubMed

    Huang, Chunkai; Zeng, Ping; Yang, Sen; Shao, Yanxi; Liu, Yang

    2016-10-01

    A review of the literature published in 2015 on topics relating to water reclamation and reuse is presented. The review is divided into the following sections: (1) General: extent of reuse, research needs, guidelines and monitoring, health effects; (2) Treatment technologies: integrated process design, membrane treatment, membrane bioreactors, electrocoagulation, ion exchange and adsorption, disinfection, wetlands, managed aquifer recharge; (3) Planning and management: public acceptance and education, economics/pricing, water quality planning and management and project/case studies. Much of the water treatment research focuses on membrane treatment, integrated designs, and other innovative technologies.

  12. A Software for soil quality conservation at organic waste disposal areas: The case of olive mill and pistachio wastes.

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Sarris, Apostolos; Papadopoulos, Nikos; Hliaoutakis, Aggelos; Kydonakis, Aris; Argyriou, Lemonia; Theocharopoulos, Sid; Kolovos, Chronis

    2016-04-01

    For the sustainable reuse of organic wastes at agricultural areas, apart from extensive evaluation of waste properties and characteristics, it is of significant importance, in order to protect soil quality, to evaluate land suitability and estimate the correct application doses prior waste landspreading. In the light of this precondition, a software was developed that integrates GIS maps of land suitability for waste reuse (wastewater and solid waste) and an algorithm for waste doses estimation in relation to soil analysis, and in case of reuse for fertilization with soil analysis, irrigation water quality and plant needs. EU and legislation frameworks of European Member States are also considered for the assessment of waste suitability for landspreading and for the estimation of the correct doses that will not cause adverse effects on soil and also to underground water (e.g. Nitrate Directive). Two examples of software functionality are presented in this study using data collected during two LIFE projects, i.e. Prosodol for landspreading of olive mill wastes and AgroStrat for pistachio wastes.

  13. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    USGS Publications Warehouse

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy Reservoirs. Modelers cited limitations in data, including too few years with sufficient stormflow data, and (or) a lack of (readily available) data, for selected tributary and reservoir hydrodynamic, water-quality, and biotic conditions. Reservoir monitoring also is too infrequent to adequately address the above water-quality endpoints. Monitoring data also have been effectively used to generally describe trophic states, changes in trophic state or conditions related to trophic state, and in selected cases, trends in water-quality or biotic parameters that reflect RWMA water-quality concerns. Limitations occur in the collection, aggregation, analyses, and (or) archival of monitoring data in relation to most RWMA water-quality concerns. Trophic, including eutrophic, conditions have been broadly described for each reservoir in terms of phytoplankton production, and variations in production related to typical seasonal patterns in the concentration of DO, and hypoxic to anoxic conditions, where the latter have led to elevated concentrations of iron and manganese in reservoir and supply waters. Trend analyses for the period 1981-2004 have shown apparent declines in production (algal counts and possibly chl-a). The low frequency of phytoplankton data collection (monthly or bimonthly, depending on the reservoir), however, limits the development of a model to quantitatively describe and relate temporal variations in phytoplankton production including seasonal succession to changes in trophic states or other reservoir water-quality or biotic conditions. Extensive monitoring for nutrients, which, in excessive amounts, cause eutrophic conditions, has been conducted in the watershed tributaries and reservoirs. Data analyses (1980-90s) have (a) identified seasonal patterns in concentrations, (b) characterized loads from (non)point sources, and (c) shown that different seasonal patterns and trends in nutrient concentrations occur between watershed tributaries and downstream reservoir

  14. The role of pesticide fate modelling in a prevention-led approach to potable water quality management

    NASA Astrophysics Data System (ADS)

    Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David

    2013-04-01

    Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management intervention scenarios were explored (including changes to land use and pesticide usage) with the aim of providing a useful input to the debate between water companies, their regulators and pesticide users over the scale of catchment management required to support both DWD and WFD Article 7 compliance.

  15. The New York City Operations Support Tool: Supporting Water Supply Operations for Millions in an Era of Changing Patterns in Hydrological Extreme Events

    NASA Astrophysics Data System (ADS)

    Matonse, A. H.; Porter, J. H.; Frei, A.

    2015-12-01

    Providing an average 1.1 billion gallons (~ 4.2 x 106 cubic meters) of drinking water per day to approximately nine million people in New York City (NYC) and four upstate counties, the NYC water supply is among the world's largest unfiltered systems. In addition to providing a reliable water supply in terms of water quantity and quality, the city has to fulfill other flow objectives to serve downstream communities. At times, such as during extreme hydrological events, water quality issues may restrict water usage for parts of the system. To support a risk-based water supply decision making process NYC has developed the Operations Support Tool (OST). OST combines a water supply systems model with reservoir water quality models, near real time data ingestion, data base management and an ensemble hydrological forecast. A number of reports have addressed the frequency and intensities of extreme hydrological events across the continental US. In the northeastern US studies have indicated an increase in the frequency of extremely large precipitation and streamflow events during the most recent decades. During this presentation we describe OST and, using case studies we demonstrate how this tool has been useful to support operational decisions. We also want to motivate a discussion about how undergoing changes in patterns of hydrological extreme events elevate the challenge faced by water supply managers and the role of the scientific community to integrate nonstationarity approaches in hydrologic forecast and modeling.

  16. Towards health impact assessment of drinking-water privatization--the example of waterborne carcinogens in North Rhine-Westphalia (Germany).

    PubMed Central

    Fehr, Rainer; Mekel, Odile; Lacombe, Martin; Wolf, Ulrike

    2003-01-01

    Worldwide there is a tendency towards deregulation in many policy sectors - this, for example, includes liberalization and privatization of drinking-water management. However, concerns about the negative impacts this might have on human health call for prospective health impact assessment (HIA) on the management of drinking-water. On the basis of an established generic 10-step HIA procedure and on risk assessment methodology, this paper aims to produce quantitative estimates concerning health effects from increased exposure to carcinogens in drinking-water. Using data from North Rhine-Westphalia in Germany, probabilistic estimates of excess lifetime cancer risk, as well as estimates of additional cases of cancer from increased carcinogen exposure levels are presented. The results show how exposure to contaminants that are strictly within current limits could increase cancer risks and case-loads substantially. On the basis of the current analysis, we suggest that with uniform increases in pollutant levels, a single chemical (arsenic) is responsible for a large fraction of expected additional risk. The study also illustrates the uncertainty involved in predicting the health impacts of changes in water quality. Future analysis should include additional carcinogens, non-cancer risks including those due to microbial contamination, and the impacts of system failures and of illegal action, which may be increasingly likely to occur under changed management arrangements. If, in spite of concerns, water is privatized, it is particularly important to provide adequate surveillance of water quality. PMID:12894324

  17. The quest for safe drinking water: an example from Guinea-Bissau (West Africa).

    PubMed

    Bordalo, Adriano A; Savva-Bordalo, Joana

    2007-07-01

    While humans require water for life, one-sixth of our species lives without access to safe water. In Africa, the situation is particularly acute because of global warming, the progression of the Sahara desert, civil unrest and poor governance, population growth, migration and poverty. In rural areas, the lack of adequate safe water and sanitary infrastructures leaves millions with doubtful water quality, increasing the harshness of daily life. In this paper, a pilot study was conducted during the wet season on Bolama Island (Guinea-Bissau, West Africa), a UNESCO Man and the Biosphere Reserve. Twenty-eight shallow wells, supplying water to most of the population, were sampled for microbiological, physical and chemical water quality characteristics. A ten-parameter water quality index (WQI) adapted to tropical conditions was applied to compare the different wells. About 79% of the wells showed moderate to heavy fecal contamination. From the surveyed parameters, it was found that chemical contamination was less important, although all samples were acidic, with the pH averaging 5.12+/-0.08. The WQI was 43+/-4% (0%-worst; 100%-best quality), showing that the water from the majority of wells was polluted but should be suitable for domestic use after appropriate treatment. At the onset of the wet season, diarrhea represented 11.5% of all medical cases, 92.5% of which were children aged <15. This paper suggests inexpensive steps to reduce the fecal contamination and control the pH in order to increase the potability of the well water and, concomitantly, to raise the living standards of the population in one of the poorest countries of the world.

  18. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).

    PubMed

    Mooney, C; Farrier, D

    2002-01-01

    Kangaroo Valley is a drinking water supply catchment for Kangaroo Valley village, parts of the Southern Highlands and Sydney. It is also a popular recreation area both for swimming and canoeing. Land use has traditionally been dominated by dairy farming but there has been significant and continuing development of land for hobby farms and rural residential subdivision. Dairy industry restructuring has affected the viability of some farms in the Valley and created additional pressure for subdivision. River health is a function of flows, water quality, riparian vegetation, geomorphology and aquatic habitat and riverine biota. River flows in the Kangaroo River are affected by water extraction and storage for urban water supply and extraction by commercial irrigators and riparian land holders which have a significant impact at low flows. Current water quality often does not meet ANZECC Guidelines for primary contact and recreation and the river is a poor source of raw drinking water. Key sources of contaminants are wastewater runoff from agriculture, and poorly performing on-site sewage management systems. Riparian vegetation, which is critical to the maintenance of in-stream ecosystems suffers from uncontrolled stock access and weed infestation. The management of land use and resulting diffuse pollution sources is critical to the long term health of the river. The Healthy Rivers Commission of New South Wales Independent Inquiry into the Shoalhaven River System Final Report July, 1999 found that the longer term protection of the health of the Kangaroo River is contingent upon achievement of patterns of land use that have regard to land capability and also to the capability of the river to withstand the impacts of inappropriate or poorly managed land uses. This micro case study of Kangaroo Valley examines the complex legal and administrative arrangements with particular reference to the management of diffuse pollution for river health. In the past, diffuse pollution has fallen through the gaps in legislation and its administration. Although water pollution legislation is broad enough to embrace diffuse pollution, in practice the Environment Protection Authority has focused on regulating point sources. Water legislation has traditionally been concerned with issues of water quantity rather than water quality. Legislation which allows agency intervention in relation to land degradation has grown from soil conservation roots, neglecting the flow-on effects upon water quality. Under the land use planning system existing land uses are protected from new regulatory requirements. A number of recent developments in NSW law and its administration have set the scene for addressing this past neglect. Water planning provisions in the Water Management Act 2000 have the potential to enable community based Water Management Committees to move away from a narrow focus on water quantity to the broader issues of river health, including water quality. Improved management of on-site sewage management systems is expected as a result of the Local Government (Approvals) Amendment (Sewage Management Regulation) 1998. A draft Regional Environmental Plan prepared for the Sydney Catchment Authority aims to improve the assessment of new development in terms of its impact on drinking water quality. It also moves away from an exclusive concern with controlling new development towards grappling with existing uses. Proposed amendments to the Environmental Planning and Assessment Act, 1979 as detailed in the White Paper, Plan First (2001) include the integration of imperatives derived from catchment strategies and water management plans into local land use plans.

  19. Evaluation of landfill leachate in arid climate-a case study.

    PubMed

    Al-Yaqout, A F; Hamoda, M F

    2003-08-01

    Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.

  20. Case study: design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff.

    PubMed

    Scholz, Miklas

    2004-12-01

    The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.

  1. Using high-frequency water quality data to assess sampling strategies for the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Skeffington, R. A.; Halliday, S. J.; Wade, A. J.; Bowes, M. J.; Loewenthal, M.

    2015-05-01

    The EU Water Framework Directive (WFD) requires that the ecological and chemical status of water bodies in Europe should be assessed, and action taken where possible to ensure that at least "good" quality is attained in each case by 2015. This paper is concerned with the accuracy and precision with which chemical status in rivers can be measured given certain sampling strategies, and how this can be improved. High-frequency (hourly) chemical data from four rivers in southern England were subsampled to simulate different sampling strategies for four parameters used for WFD classification: dissolved phosphorus, dissolved oxygen, pH and water temperature. These data sub-sets were then used to calculate the WFD classification for each site. Monthly sampling was less precise than weekly sampling, but the effect on WFD classification depended on the closeness of the range of concentrations to the class boundaries. In some cases, monthly sampling for a year could result in the same water body being assigned to three or four of the WFD classes with 95% confidence, due to random sampling effects, whereas with weekly sampling this was one or two classes for the same cases. In the most extreme case, the same water body could have been assigned to any of the five WFD quality classes. Weekly sampling considerably reduces the uncertainties compared to monthly sampling. The width of the weekly sampled confidence intervals was about 33% that of the monthly for P species and pH, about 50% for dissolved oxygen, and about 67% for water temperature. For water temperature, which is assessed as the 98th percentile in the UK, monthly sampling biases the mean downwards by about 1 °C compared to the true value, due to problems of assessing high percentiles with limited data. Low-frequency measurements will generally be unsuitable for assessing standards expressed as high percentiles. Confining sampling to the working week compared to all 7 days made little difference, but a modest improvement in precision could be obtained by sampling at the same time of day within a 3 h time window, and this is recommended. For parameters with a strong diel variation, such as dissolved oxygen, the value obtained, and thus possibly the WFD classification, can depend markedly on when in the cycle the sample was taken. Specifying this in the sampling regime would be a straightforward way to improve precision, but there needs to be agreement about how best to characterise risk in different types of river. These results suggest that in some cases it will be difficult to assign accurate WFD chemical classes or to detect likely trends using current sampling regimes, even for these largely groundwater-fed rivers. A more critical approach to sampling is needed to ensure that management actions are appropriate and supported by data.

  2. Estimation of the possible flood discharge and volume of stormwater for designing water storage.

    PubMed

    Kirzhner, Felix; Kadmon, Avri

    2011-01-01

    The shortage of good-quality water resources is an important issue in arid and semiarid zones. Stormwater-harvesting systems that are capable of delivering good-quality wastewater for non-potable uses while taking into account environmental and health requirements must be developed. For this reason, the availability of water resources of marginal quality, like stormwater, can be a significant contribution to the water supply. Current stormwater management practices in the world require the creation of control systems that monitor quality and quantity of the water and the development of stormwater basins to store increased runoff volumes. Public health and safety considerations should be considered. Urban and suburban development, with the creation of buildings and roads and innumerable related activities, turns rain and snow into unwitting agents of damage to our nation's waterways. This urban and suburban runoff, legally known as stormwater, is one of the most significant sources of water pollution in the world. Based on various factors like water quality, runoff flow rate and speed, and the topography involved, stormwater can be directed into basins, purification plants, or to the sea. Accurate floodplain maps are the key to better floodplain management. The aim of this work is to use geographic information systems (GIS) to monitor and control the effect of stormwater. The graphic and mapping capabilities of GIS provide strong tools for conveying information and forecasts of different storm-water flow and buildup scenarios. Analyses of hydrologic processes, rainfall simulations, and spatial patterns of water resources were performed with GIS, which means, based on integrated data set, the flow of the water was introduced into the GIS. Two cases in Israel were analyzed--the Hula Project (the Jordan River floods over the peat soil area) and the Kishon River floodplains as it existed in the Yizrael Valley.

  3. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  4. A new unconditionally stable and consistent quasi-analytical in-stream water quality solution scheme for CSTR-based water quality simulators

    NASA Astrophysics Data System (ADS)

    Woldegiorgis, Befekadu Taddesse; van Griensven, Ann; Pereira, Fernando; Bauwens, Willy

    2017-06-01

    Most common numerical solutions used in CSTR-based in-stream water quality simulators are susceptible to instabilities and/or solution inconsistencies. Usually, they cope with instability problems by adopting computationally expensive small time steps. However, some simulators use fixed computation time steps and hence do not have the flexibility to do so. This paper presents a novel quasi-analytical solution for CSTR-based water quality simulators of an unsteady system. The robustness of the new method is compared with the commonly used fourth-order Runge-Kutta methods, the Euler method and three versions of the SWAT model (SWAT2012, SWAT-TCEQ, and ESWAT). The performance of each method is tested for different hypothetical experiments. Besides the hypothetical data, a real case study is used for comparison. The growth factors we derived as stability measures for the different methods and the R-factor—considered as a consistency measure—turned out to be very useful for determining the most robust method. The new method outperformed all the numerical methods used in the hypothetical comparisons. The application for the Zenne River (Belgium) shows that the new method provides stable and consistent BOD simulations whereas the SWAT2012 model is shown to be unstable for the standard daily computation time step. The new method unconditionally simulates robust solutions. Therefore, it is a reliable scheme for CSTR-based water quality simulators that use first-order reaction formulations.

  5. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    NASA Astrophysics Data System (ADS)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  6. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality

    USGS Publications Warehouse

    Litke, David W.

    1999-01-01

    Historical information on phosphorus loadings to the environment and the effect on water quality are summarized in this report, which was produced as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Phosphorus is a water-quality constituent of concern because it is often the limiting nutrient responsible for accelerated eutrophication in water bodies. Phosphorus inputs to the environment have increased since 1950 as the use of phosphate fertilizer, manure, and phosphate laundry detergent increased; however, the manufacture of phosphate detergent for household laundry was ended voluntarily in about 1994 after many States had established phosphate detergent bans. Total phosphorus concentrations in raw wastewater effluent contained about 3 milligrams per liter of total phosphorus during the 1940's, increased to about 11 milligrams per liter at the height of phosphate detergent use (1970), and have currently declined to about 5 milligrams per liter. However, in some cases, tertiary wastewater treatment still is needed to effectively improve water quality of streams. Downward trends in phosphorus concentrations since 1970 have been identified in many streams, but median total phosphorus concentrations still exceed the recommended limit of 0.1 milligram per liter across much of the Nation. Data from the NAWQA Program are representative of a variety of phosphorus-control measures, and, therefore, may be used to evaluate the effects of various control strategies. Current areas of concern include: evaluation of the effects of increased manure loadings of phosphorus on soil phosphorus and, subsequently, on ground water and subsurface runoff; determination of point-source and nonpoint-source components of phosphorus loads by geographic modeling and hydrologic separation techniques; and development of methods or indices to evaluate nutrient impairment in streams and rivers to serve as a basis for developing phosphorus criteria or standards.

  7. Bacteriological quality of ground water used for household supply, Lower Susquehanna River basin, Pennsylvania and Maryland

    USGS Publications Warehouse

    Bickford, Tammy M.; Lindsey, Bruce D.; Beaver, M.R.

    1996-01-01

    This report describes the bacteriological results of a ground-water study conducted from 1993 to 1995 as part of the U.S. Geological Survey's National Water-Quality Assessment Program in the Lower Susquehanna River Basin study unit. Water samples collected from 146 household supply wells were analyzed for fecal-indicator organisms including total coliform, fecal coliform, Escherichia coli (E. coli), and fecal streptococcus concentrations. Supporting data used in the interpretations are selected water-quality constituents, well-construction information, and the environmental setting at the well site including land use, physiography, and bedrock type. Water from nearly 70 percent of the wells sampled had total coliform present and thus was not suitable for drinking without treatment. Fecal coliforms were found in water from approximately 25 percent of the sampled wells. E. coli testing was not conducted in 1993. Approximately 30 percent of the 88 sampled wells had waters with E. coli. Fecal streptococcus bacteria was present in water from about 65 percent of the wells sampled. Bacteriological contamination was more likely to occur in water from wells in agricultural areas than in water from wells in forested areas. Water from wells sampled in the Ridge and Valley Physiographic Province was more likely to have bacteria than water from wells in the Piedmont Physiographic Province. Differences in bacterial concentrations among bedrock types are only statistically significant for E. coli. Bacterial concentrations are weakly related to well-age but not to other well characteristics such as the total well depth or the casing length. Relations exist between bacterial concentrations and selected water-quality constituents. Most wells from which water was sampled did not have sanitary seals and very few were grouted. This may have contributed to the number of detections of bacteria. It is uncertain whether the bacteria detected are the result of widespread aquifer contamination or site-specific factors.

  8. Scripted Collaboration in Serious Gaming for Complex Learning: Effects of Multiple Perspectives when Acquiring Water Management Skills

    ERIC Educational Resources Information Center

    Hummel, Hans G. K.; van Houcke, Jasper; Nadolski, Rob J.; van der Hiele, Tony; Kurvers, Hub; Lohr, Ansje

    2011-01-01

    This paper examines how learning outcomes from playing serious games can be enhanced by including scripted collaboration in the game play. We compared the quality of advisory reports, that students in the domain of water management had to draw up for an authentic case problem, both before and after collaborating on the problem with (virtual) peer…

  9. Time series analysis for the estimation of tidal fluctuation effect on different aquifers in a small coastal area of Saijo plain, Ehime prefecture, Japan.

    PubMed

    Kumar, Pankaj; Tsujimura, Maki; Nakano, Takanori; Minoru, Tokumasu

    2013-04-01

    Considering the current poor understanding of the seawater-freshwater (SW-FW) interaction pattern at dynamic hydro-geological boundary of coastal aquifers, this work strives to study tidal effect on groundwater quality using chemical tracers combined with environmental isotopes. In situ measurement data of electrical conductivity and groundwater level along with laboratory measurement data of hydro-chemical species were compared with tidal level data measured by Hydrographic and Oceanographic Department, Saijo City, Japan for time series analysis. Result shows that diurnal tides have significant effect on groundwater level as well as its chemical characteristics; however, the magnitude of effect is different in case of different aquifers. Various scatter diagrams were plotted in order to infer mechanisms responsible for water quality change with tidal phase, and results show that cations exchange, selective movement and local SW-FW mixing were likely to be the main processes responsible for water quality changes. It was also found that geological structure of the aquifers is the most important factor affecting the intensity of tidal effect on water quality.

  10. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    NASA Astrophysics Data System (ADS)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.

  11. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    USGS Publications Warehouse

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge dates ranging from pre-1940 to the present, and with most dates falling within the 1950s to 1980s time span. Several widely detected compounds were discontinued as long ago as the 1970s but have yet to be flushed from the ground-water system. Although large tracts of land in central Oahu have been converted from agriculture to residential urban use since the 1950s, water quality in the converted areas still more closely reflects the former agricultural land. It appears to be too early to detect a distinct water-quality signature characteristic of the newer urban use, although several urban turfgrass herbicides in use for just 10 years or so were detected in monitoring wells and may represent early arrivals of urban contaminants at the water table.

  12. Association between Changing Mortality of Digestive Tract Cancers and Water Pollution: A Case Study in the Huai River Basin, China

    PubMed Central

    Ren, Hongyan; Wan, Xia; Yang, Fei; Shi, Xiaoming; Xu, Jianwei; Zhuang, Dafang; Yang, Gonghuan

    2014-01-01

    The relationship between the ever-increasing cancer mortality and water pollution is an important public concern in China. This study aimed to explore the association between serious water pollution and increasing digestive cancer mortality in the Huai River Basin (HRB) in China. A series of frequency of serious pollution (FSP) indices including water quality grade (FSPWQG), biochemical oxygen demand (FSPBOD), chemical oxygen demand (FSPCOD), and ammonia nitrogen (FSPAN) were used to characterize the surface water quality between 1997 and 2006. Data on the county-level changing mortality (CM) due to digestive tract cancers between 1975 and 2006 were collected for 14 counties in the study area. Most of investigated counties (eight) with high FSPWQG (>50%) distributed in the northern region of the HRB and had larger CMs of digestive tract cancers. In addition to their similar spatial distribution, significant correlations between FSP indices and CMs were observed by controlling for drinking water safety (DWS), gross domestic product (GDP), and population (POP). Furthermore, the above-mentioned partial correlations were clearly increased when only controlling for GDP and POP. Our study indicated that county-level variations of digestive cancer mortality are remarkably associated with water pollution, and suggested that continuous measures for improving surface water quality and DWS and hygienic interventions should be effectively implemented by local governments. PMID:25546281

  13. Association between changing mortality of digestive tract cancers and water pollution: a case study in the Huai River Basin, China.

    PubMed

    Ren, Hongyan; Wan, Xia; Yang, Fei; Shi, Xiaoming; Xu, Jianwei; Zhuang, Dafang; Yang, Gonghuan

    2014-12-23

    The relationship between the ever-increasing cancer mortality and water pollution is an important public concern in China. This study aimed to explore the association between serious water pollution and increasing digestive cancer mortality in the Huai River Basin (HRB) in China. A series of frequency of serious pollution (FSP) indices including water quality grade (FSPWQG), biochemical oxygen demand (FSPBOD), chemical oxygen demand (FSPCOD), and ammonia nitrogen (FSPAN) were used to characterize the surface water quality between 1997 and 2006. Data on the county-level changing mortality (CM) due to digestive tract cancers between 1975 and 2006 were collected for 14 counties in the study area. Most of investigated counties (eight) with high FSPWQG (>50%) distributed in the northern region of the HRB and had larger CMs of digestive tract cancers. In addition to their similar spatial distribution, significant correlations between FSP indices and CMs were observed by controlling for drinking water safety (DWS), gross domestic product (GDP), and population (POP). Furthermore, the above-mentioned partial correlations were clearly increased when only controlling for GDP and POP. Our study indicated that county-level variations of digestive cancer mortality are remarkably associated with water pollution, and suggested that continuous measures for improving surface water quality and DWS and hygienic interventions should be effectively implemented by local governments.

  14. A geographic information system screening tool to tackle diffuse pollution through the use of sustainable drainage systems.

    PubMed

    Todorovic, Zorica; Breton, Neil P

    2014-01-01

    Sustainable drainage systems (SUDS) offer many benefits that traditional solutions do not. Traditional approaches are unable to offer a solution to problems of flood management and water quality. Holistic consideration of the wide range of benefits from SUDS can result in advantages such as improved flood resilience and water quality enhancement through consideration of diffuse pollution sources. Using a geographical information system (GIS) approach, diffuse pollutant sources and opportunities for SUDS are easily identified. Consideration of potential SUDS locations results in source, site and regional controls, leading to improved water quality (to meet Water Framework Directive targets). The paper will discuss two different applications of the tool, the first of which is where the pollutant of interest is known. In this case the outputs of the tool highlight and isolate the areas contributing the pollutants and suggest the adequate SUDS measures to meet the required criteria. The second application is where the tool identifies likely pollutants at a receiving location, and SUDS measures are proposed to reduce pollution with assessed efficiencies.

  15. Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants.

    PubMed

    Dehghani Darmian, Mohsen; Hashemi Monfared, Seyed Arman; Azizyan, Gholamreza; Snyder, Shane A; Giesy, John P

    2018-06-06

    Selecting an appropriate crisis management plans during uncontrollable loading of pollution to water systems is crucial. In this research the quality of water resources against uncontrollable pollution is protected by use of suitable tools. Case study which was chosen in this investigation was a river-reservoir system. Analytical and numerical solutions of pollutant transport equation were considered as the simulation strategy to calculate the efficient tools to protect water quality. These practical instruments are dilution flow and a new tool called detention time which is proposed and simulated for the first time in this study. For uncontrollable pollution discharge which was approximately 130% of the river's assimilation capacity, as long as the duration of contact (T c ) was considered as a constraint, by releasing 30% of the base flow of the river from the upstream dilution reservoir, the unallowable pollution could be treated. Moreover, when the affected distance (X c ) was selected as a constraint, the required detention time that the rubber dam should detained the water to be treated was equal to 187% of the initial duration of contact. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.

    NASA Astrophysics Data System (ADS)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana

    2017-04-01

    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions. Different doses of ammonium nitrate were used as well as waste compost derived from the wine-distillery industry, which is relevant in this area. Grey WF was estimated in both type of fertilizers using Castellanos et al. [3] methodology. The results showed that in the case of inorganic fertilization gray WF experiment a huge increase when the optimum dose were exceeded. Meanwhile, in the case of organic fertilization, even the doses exceeded the optimum, the increase gray WF was significantly lower. The discussion of these results will be presented based on the mineralization rate and N content of irrigation water. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03. [1] ITAP, 2011. Protocolo para el seguimiento y control de los programas de actuación en las zonas vulnerables a la contaminación por nitratos de Castilla-La Mancha. Available in: www.itap.es. [2] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands. [3] Castellanos, M.T., Cartagena, M.C., Requejo, M.I. Arce, A., Cabello, M.J., Ribas, F., Tarquis, A.M. 2016. Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions. Agricultural Water Management 170: 81-90.

  17. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    NASA Technical Reports Server (NTRS)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in water quality changes. In situ monitoring locations that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Water quality parameter of total nitrogen, phosphorous, turbidity and biological oxygen demand had high correlations with these sites, as well. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California (USA) have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and the cyclonic bay-wide circulation can transport these nutrients to the northern Bay bloom incubation region. Both of these case studies illustrate the utility MODIS FLH observations in supporting management decisions in coastal and estuarine waters.

  18. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...

  19. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...

  20. Chemical and bacteriological quality of water at selected sites in the San Antonio area, Texas, August 1968-January 1975

    USGS Publications Warehouse

    Reeves, R.D.; Blakey, J.F.

    1976-01-01

    Urban development on or adjacent to the recharge zone of the Edwards aquifer is causing concern about the possible pollution of ground water in the aquifer, which is the principal source of water supply for the San Antonio area. Water-quality data for many wells and springs and for selected sites on streams that cross the recharge zone of the aquifer are being collected to provide background information and to detect any current pollution of ground water in the area. Water from the Edwards aquifer is very hard and of the calcium bicarbonate type. The concentrations of dissolved solids in samples from wells and springs ranged from about 200 to 470 mg/1 (milligrams per liter); the chloride and sulfate concentrations ranged from 6.5 to 62 mg/1 and from 0.0 to 65 mg/1, respectively. The nitrate and phosphate contents of the ground water ranged from 0.0 to 15 mg/1 and from 0.00 to 0. 37 mg/1. The concentrations of these and other constituents show that the chemical quality of water in the Edwards aquifer has not been degraded significantly by domestic, industrial, or agricultural effluents. However, variations in the number of coliforms, the concentrations of nitrate and phosphate, and the presence of fecal coliforms and fecal streptococci in samples from some wells show that fecal pollution is reaching the aquifer. Most of these wells, which are located in or just downdip from the recharge zone, are poorly sealed or inadequately cased. The areal variation in the locations of these wells indicates that pollution of ground water in the aquifer is very localized. Prllution results principally from runoff from the land surface and from effluent from septic tanks which enters the aquifer through fractures in the recharge zone or which infiltrates through the thin soil into poorly sealed or inadequately cased wells in or adjacent to the recharge zone. Trace amounts of several pesticides have been detected in samples from two wells in the San Antonio area. Field investigations showed the source of pesticides in these wells to be. surface drainage that entered the wellbores. Water-quality data collected at sites on streams that cross the recharge zone of the Edwards aquifer show the chemical composition of surface water to be very similar to that of ground water in the area. Water in most streams is very hard and of the calcium bicarbonate type. Limited data on the bacteriological quality show that coliforms were present at each of the site sampled and that fecal coliforms and fecal streptococci were present at most sites. Although the number of these bacteria varied greatly in both time and place, their density in samples from most sites were low for untreated surface water.

  1. The enigma of aluminum deposition in bone tissue from a patient with chronic kidney disease: a case report.

    PubMed

    Meira, Rodrigo Dias de; Carbonara, Cinthia Esbrile Moraes; Quadros, Kélcia Rosana da Silva; Santos, Carolina Urbini Dos; Schincariol, Patrícia; Pêssoa, Gustavo de Souza; Arruda, Marco Aurélio Zezzi; Jorgetti, Vanda; Oliveira, Rodrigo Bueno de

    2018-06-04

    About four decades ago, the relationship between dialysis-dementia and aluminum (Al) began to be established. The restriction of drugs containing Al and improvements on water quality used for dialysis resulted in the clinical disappearance of Al intoxication. However, high prevalence of Al deposition in bone tissue from Brazilian dialysis patients is still being detected. Through the case report of a patient on hemodialysis (HD) for one year, presenting significant Al deposition in bone tissue, we speculated if this problem is not being underestimated. We used extensive investigation to identify potential sources of Al exposure with a careful review of medication history and water quality controls. Al concentration was measured by different methods, including mass spectrometry, in poly-electrolyte concentrate solutions and solution for peritoneal dialysis, in an attempt to elucidate the possible sources of contamination. The objective of this case report is to alert the medical community about a potential high prevalence of Al deposition in bone tissue and to discuss the possible sources of contamination in patients with chronic kidney disease (CKD).

  2. Environmental and ecological impacts of water supplement schemes in a heavily polluted estuary.

    PubMed

    Su, Qiong; Qin, Huapeng; Fu, Guangtao

    2014-02-15

    Water supplement has been used to improve water quality in a heavily polluted river with small base flow. However, its adverse impacts particularly on nearby sensitive ecosystems have not been fully investigated in previous studies. In this paper, using the Shenzhen River estuary in China as a case study, the impacts of two potential water supplement schemes (reclaimed water scheme and seawater scheme) on water quality improvement and salinity alteration of the estuary are studied. The influences of salinity alteration on the dominant mangrove species (Aegiceras corniculatum, Kandelia candel, and Avicennia marina) are further evaluated by comparing the alteration with the historical salinity data and the optimum salinity range for mangrove growth. The results obtained indicate that the targets of water quality improvement can be achieved by implementing the water supplement schemes with roughly the same flow rates. The salinity under the reclaimed water scheme lies in the range of historical salinity variation, and its average value is close to the optimum salinity for mangrove growth. Under the seawater scheme, however, the salinity in the estuary exceeds the range of historical salinity variation and approaches to the upper bound of the survival salinity of the mangrove species which have a relatively low salt tolerance (e.g. A. corniculatum). Therefore, the seawater scheme has negative ecological consequences, while the reclaimed water scheme has less ecological impact and is recommended in this study. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Hydrochemical and environmental isotope analysis of groundwater and surface water in a dry mountain region in Northern Chile.

    PubMed

    Zang, Carina; Dame, Juliane; Nüsser, Marcus

    2018-05-08

    This case study examines the geological imprint and land use practices on water quality in the arid Huasco Valley against the backdrop of ongoing water conflicts surrounding competing demands for agriculture and mining. The study is based on a detailed analysis of spatial and temporal variations of monthly surface and bi-monthly groundwater quality samples measured during the Chilean summer of 2015/16. Additional information on source regions and river-groundwater interactions were collected using stable water isotopes. Regarding the geological impact on water quality, high concentrations of Ca 2+ , SO 4 2- and HCO 3 - indicate a strong influence of magmatic rocks, which constitute this high mountain basin, on the hydrochemistry. Piper and Gibbs-diagrams revealed that all samples show a homogenous distribution dominated by rock-water interactions. Measured NO 3 - concentrations in surface water are generally low. However, groundwater aquifers exhibit higher concentrations. Mn is the only heavy metal with elevated concentrations in surface water, which are possibly related to mining activities. The results illustrate that both surface and groundwater can be classified as suitable for irrigation. In addition, groundwater has been found to be suitable as drinking water. High similarities in isotopic signatures indicate a strong connection between surface and groundwater. Isotopic analyses suggest a strong influence of evaporation. This combined approach of hydrogeochemical and isotopic analysis proved to be a helpful tool in characterizing the catchment and can serve as a basis for future sustainable water management.

  4. Management decision of optimal recharge water in groundwater artificial recharge conditions- A case study in an artificial recharge test site

    NASA Astrophysics Data System (ADS)

    He, H. Y.; Shi, X. F.; Zhu, W.; Wang, C. Q.; Ma, H. W.; Zhang, W. J.

    2017-11-01

    The city conducted groundwater artificial recharge test which was taken a typical site as an example, and the purpose is to prevent and control land subsidence, increase the amount of groundwater resources. To protect groundwater environmental quality and safety, the city chose tap water as recharge water, however, the high cost makes it not conducive to the optimal allocation of water resources and not suitable to popularize widely. To solve this, the city selects two major surface water of River A and B as the proposed recharge water, to explore its feasibility. According to a comprehensive analysis of the cost of recharge, the distance of the water transport, the quality of recharge water and others. Entropy weight Fuzzy Comprehensive Evaluation Method is used to prefer tap water and water of River A and B. Evaluation results show that water of River B is the optimal recharge water, if used; recharge cost will be from 0.4724/m3 to 0.3696/m3. Using Entropy weight Fuzzy Comprehensive Evaluation Method to confirm water of River B as optimal water is scientific and reasonable. The optimal water management decisions can provide technical support for the city to carry out overall groundwater artificial recharge engineering in deep aquifer.

  5. Urban water infrastructure asset management - a structured approach in four water utilities.

    PubMed

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  6. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.

    PubMed

    Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos

    2016-09-01

    Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.

  7. Identification and description of potential ground-water quality monitoring wells in Florida

    USGS Publications Warehouse

    Seaber, P.R.; Thagard, M.E.

    1986-01-01

    The results of a survey of existing wells in Florida that meet the following criteria are presented: (1) well location is known , (2) principal aquifer is known, (3) depth of well is known, (4) well casing depth is known, (5) well water had been analyzed between 1970 and 1982, and (6) well data are stored in the U.S. Geological Survey 's (USGS) computer files. Information for more than 20,000 wells in Florida were stored in the USGS Master Water Data Index of the National Water Data Exchange and in the National Water Data Storage and Retrieval System 's Groundwater Site Inventory computerized files in 1982. Wells in these computer files that had been sampled for groundwater quality before November 1982 in Florida number 13,739; 1,846 of these wells met the above criteria and are the potential (or candidate) groundwater quality monitoring wells included in this report. The distribution by principal aquifer of the 1,846 wells identified as potential groundwater quality monitoring wells is as follows: 1,022 tap the Floridan aquifer system, 114 tap the intermediate aquifers, 232 tap the surficial aquifers, 246 tap the Biscayne aquifer, and 232 tap the sand-and-gravel aquifer. These wells are located in 59 of Florida 's 67 counties. This report presents the station descriptions, which include location , site characteristics, period of record, and the type and frequency of chemical water quality data collected for each well. The 1,846 well locations are plotted on 14 USGS 1:250,000 scale, 1 degree by 2 degree, quadrangle maps. This relatively large number of potential (or candidate) monitoring wells, geographically and geohydrologically dispersed, provides a basis for a future groundwater quality monitoring network and computerized data base for Florida. There is a large variety of water quality determinations available from these wells, both areally and temporally. Future sampling of these wells would permit analyses of time and areal trends for selected water quality characteristics throughout the State. The identification and description of the potential monitoring wells and the listing of the type and frequency of the groundwater quality data forms a foundation for both the network and the data base. (Author 's abstract)

  8. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    NASA Astrophysics Data System (ADS)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards with a spatial analysis. We compare diverse case studies using geochemical maps built by kriging in which we interpolate the conditional probability of exceeding the reference value (i.e. the drinking water standard) OR the local natural background level. The resulting maps provide a useful reference for management purposes.

  9. Understanding the influence of climate change on the embodied energy of water supply.

    PubMed

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol

    NASA Astrophysics Data System (ADS)

    Zhang, Dongshi; Gökce, Bilal; Sommer, Steffen; Streubel, René; Barcikowski, Stephan

    2016-03-01

    In this paper, we perform liquid-assisted picosecond laser cutting of 150 μm thin germanium wafers from the rear side. By investigating the cutting efficiency (the ability to allow an one-line cut-through) and quality (characterized by groove morphologies on both sides), the pros and cons of this technique under different conditions are clarified. Specifically, with laser fluence fixed, repetition rate and scanning speed are varied to show quality and efficiency control by means of laser parameter modulation. It is found that low repetition rate ablation in liquid gives rise to a better cut quality on the front side than high repetition rate ablation since it avoids dispersed nanoparticles redeposition resulting from a bubble collapse, unlike the case of 100 kHz which leads to large nanorings near the grooves resulting from a strong interaction of bubbles and the case of 50 kHz which leads to random cutting due to the interaction of the former pulse induced cavitation bubble and the subsequent laser pulse. Furthermore, ethanol is mixed with pure distilled water to assess the liquid's impact on the cutting efficiency and cutting quality. The results show that increasing the ethanol fraction decreases the ablation efficiency but simultaneously, greatly improves the cutting quality. The improvement of cut quality as ethanol ratio increases may be attributed to less laser beam interference by a lower density of bubbles which adhere near the cut kerf during ablation. A higher density of bubbles generated from ethanol vaporization during laser ablation in liquid will cause stronger bubble shielding effect toward the laser beam propagation and therefore result in less laser energy available for the cut, which is the main reason for the decrease of cut efficiency in water-ethanol mixtures. Our findings give an insight into under which condition the rear-side laser cutting of thin solar cells should be performed: high repetition, pure distilled water and high laser power are favorable for high-speed rough cutting but the cut kerf suffers from strong side effects of ripples, nanoredeposition occurrence, while low laser power at low repetition rate (10 kHz), mixed solution (1 wt% ethanol in water) and moderate scanning speed (100 μm/s) are preferable for ultrafine high-quality debris-free cutting. The feasibility of high-quality cut is a good indication of using rear laser ablation in liquid to cut thinner wafers. More importantly, this technique spares any post cleaning steps to reduce the risk to the contamination or crack of the thin wafers.

  11. River water quality changes in New Zealand over 26 years: response to land use intensity

    NASA Astrophysics Data System (ADS)

    Julian, Jason P.; de Beurs, Kirsten M.; Owsley, Braden; Davies-Colley, Robert J.; Ausseil, Anne-Gaelle E.

    2017-02-01

    Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity - the inputs (fertilizer, livestock) and activities (vegetation removal) of land use - is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) - consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use-water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34/77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27/77 catchments, which we largely attribute to increased cattle density and legacy nutrients that have built up on intensively managed grasslands and plantation forests since the 1950s and are slowly leaking to the rivers. Despite recent improvements in water quality for some NZ rivers, these legacy nutrients and continued agricultural intensification are expected to pose broad-scale environmental problems for decades to come.

  12. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    NASA Astrophysics Data System (ADS)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  13. Heavy metal determinations in algae, mussels and clams. Their possible employment for assessing the sea water quality criteria

    NASA Astrophysics Data System (ADS)

    Locatelli, C.

    2003-05-01

    An empirical criterion for a possible classification of sea water quality is proposed. It is based on the knowledge of metal content in algae (Ulva Rigida) mussels (Mytilus Galloprovincialis) and clams (Tapes Philippinarum), three species present in marine ecosystems. The elements considered are Hg, Cu, Pb, Cd, Zn, Ni and Cr. The anatytical technique employed is Atomic Absorption Spectroscopy (AAS). The analytical procedure has been verified on three standard reference materials : Sea Water BCR-CRM 403, Ulva Lactuca BCR-CRM 279 and Mussel Tissue BCR-CRM 278. For all the elements, in addition to detection limits, accuracy and precision are given : the former, expressed as retative error (e). and the latter, expressed as relative standard deviation (sr), were in all cases lower than 6%.

  14. Surface and Groundwater Interactions: Cikapundung Bandung, Kanal Banjir Timur Semarang and Cisadane Tangerang

    NASA Astrophysics Data System (ADS)

    Irawan, D. E.; Sulistyawati, E.; Midori, A. A.; Faisal, B.; Darul, A.; Agustin, A.

    2018-04-01

    In most Asia countries, the riverbank area is mostly inhabited by the low-income population, due to the shortage of formal housing. Most of the settlement areas are not equipped with proper sanitation system. Hence, the water quality gets lower over time with the increasing number of inhabitants around the riverbank. Th water quality gets worse with the close hydrological connection between surface water and the shallow groundwater. We compare the state of water quality based on our three case studies: Cikapundung Bandung, Kanal Banjir Timur Semarang, and Cisadane Tangerang. In each location, we gathered the following data: water level measurements, water flow mapping, and water quality samples. Then we make maps to evaluate existing status. The comparison will be made based on the physical and chemical properties that we get from the field. On all locations, we find very close interactions between surface water and groundwater. The hydrological connections are different in direction from upstream to downstream: gaining stream, combined stream or perched stream, and losing stream. However different river gradient gives a slightly different length of hydrological zonations. All samples show a high bicarbonate from rain water, the dissolution of carbonate minerals from the rocks and soils, and also organic species from microbial activities, which induced by domestic wastes. However, we need to make a carbonate balance calculation to break down the components. All samples also have high nitrate and nitrite concentration which come from domestic waste along the river and fertilizer from the rice fields upstream (only in Cikapundung river). For further research, we suggest chemical modeling to break up the contamination components and possible sources.

  15. Effects of a tropical cyclone on the drinking-water quality of a remote Pacific island.

    PubMed

    Mosley, Luke M; Sharp, Donald S; Singh, Sarabjeet

    2004-12-01

    The effect of a cyclone (Ami, January 2003) on drinking-water quality on the island of Vanua Levu, Fiji was investigated. Following the cyclone nearly three-quarters of the samples analysed did not conform to World Health Organisation (WHO) guideline values for safe drinking-water in terms of chlorine residual, total and faecal coliforms, and turbidity. Turbidity and total coliform levels significantly increased (up 56 and 62 per cent, respectively) from pre-cyclone levels, which was likely due to the large amounts of silt and debris entering water-supply sources during the cyclone. The utility found it difficult to maintain a reliable supply of treated water in the aftermath of the disaster. Communities were unaware they were drinking water that had not been adequately treated. Circumstances permitted this cyclone to be used as a case study to assess whether a simple paper-strip water-quality test (the hydrogen sulphide, H(2)S) kit could be distributed and used for community-based monitoring following such a disaster event to better protect public health. The H(2)S test results correlated well with faecal and total coliform results as found in previous studies. A small percentage of samples (about 10 per cent) tested positive for faecal and total coliforms but did not test positive in the H(2)S test. It was concluded that the H(2)S test would be well suited to wider use, especially in the absence of water-quality monitoring capabilities for outer island groups as it is inexpensive and easy to use, thus enabling communities and community health workers with minimal training to test their own water supplies without outside assistance. The importance of public education before and after natural disasters is also discussed.

  16. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

  17. Diverse Land Use and the Impact on (Irrigation) Water Quality and Need for Measures — A Case Study of a Norwegian River

    PubMed Central

    Johannessen, Gro S.; Wennberg, Aina C.; Nesheim, Ingrid; Tryland, Ingun

    2015-01-01

    Surface water is used for irrigation of food plants all over the World. Such water can be of variable hygienic quality, and can be contaminated from many different sources. The association of contaminated irrigation water with contamination of fresh produce is well established, and many outbreaks of foodborne disease associated with fresh produce consumption have been reported. The objective of the present study was to summarize the data on fecal indicators and selected bacterial pathogens to assess the level of fecal contamination of a Norwegian river used for irrigation in an area which has a high production level of various types of food commodities. Sources for fecal pollution of the river were identified. Measures implemented to reduce discharges from the wastewater sector and agriculture, and potential measures identified for future implementation are presented and discussed in relation to potential benefits and costs. It is important that the users of the water, independent of intended use, are aware of the hygienic quality and the potential interventions that may be applied. Our results suggest that contamination of surface water is a complex web of many factors and that several measures and interventions on different levels are needed to achieve a sound river and safe irrigation. PMID:26090611

  18. Effects of increasing seawater circulation by tidal power plant operation on the water quality in the Shihwa coastal reservoir, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Lee, B. Y.; Lee, C. H.; KIm, K. T.

    2016-02-01

    Since 2012 to present, the Tidal Power Plant (TPP) has been operated in Shihwa Coastal Reservoir (SCR) to improve the water quality. The tidal mixing volume increased about 5 times from 0.03 to 0.16 billion ton/day which represents about 50% of the SCR water volume. Water quality monitoring data showed that it break a strong stratification and hypoxia (≤3 mg/L Dissolved Oxygen) during summer season in main tidal channel. In addition, Total Phosphorus (TP), Total Nitrogen (TN) and Chemical Oxygen Demand concentrations in the main tidal channel reached to similar level with outside SCR concentrations. However, inner area with limited tidal mixing has not experienced improvement in TN and TP concentrations after the TPP operation. Trophic State Index (TSI) which was composite index of trophic condition also kept high score (>50) and remained in eutrophic state especially in summer season. Overall, an increase of seawater circulation has a positive effect on water quality in main tidal channel but not in inner area because of limited seawater mixing and effects of stormwater runoff. The stormwater runoff should be properly managed in this case because most point source pollution load is discharged outside of SCR. Acknowledgement : This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea

  19. Water quality of the Luján river, a lowland watercourse near the metropolitan area of Buenos Aires (Argentina).

    PubMed

    Castañé, Patricia M; Sánchez-Caro, Aníbal; Salibián, Alfredo

    2015-10-01

    Luján river is a lowland watercourse which runs 130 km before flowing into the Río de la Plata Estuary, and receives a mixture of domestic and industrial wastewaters originating at its margins. In order to know the physicochemical profile of its surface water, 36 physical-chemical variables were analyzed in samples collected seasonally between 2004 and 2006 at three sampling stations. The results obtained through the principal component analysis (PCA) suggest that the variations in water quality are explained by natural components (soluble salts; metals), nonpoint inputs (nutrients), and anthropogenic (organic and bacterial) and industrial (toxic heavy metals) pollutants. The cases did not fit a clear spatial or seasonal pattern when plotted against the first two PCA axes. The three water quality indices calculated gave middle scores; Sampling station 1 gave a baseline for the comparison of the river's water quality along its course while Sampling station 3 (downriver) was the most degraded. A variety of pollution pulses reach and affect the watercourse downstream. Cities' sewage discharges into the river seem to be the major polluting factor, together with natural metals and other solutes loads that are present from the headwaters. The results may be useful for the development of local and regional mitigation and remediation programs regarding toxic and eutrophying loads in the upper basin of the river.

  20. Hydrochemical evaluation of river water quality—a case study: Horroud River

    NASA Astrophysics Data System (ADS)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  1. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    PubMed

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  2. Relation of Shallow Water Quality in the Central Oklahoma Aquifer to Geology, Soils, and Land Use

    USGS Publications Warehouse

    Rea, Alan H.; Christenson, Scott C.; Andrews, William J.

    2001-01-01

    The purpose of this report is to identify, describe, and explain relations between natural and land-use factors and ground-water quality in the Central Oklahoma aquifer NAWQA study unit. Natural factors compared to water quality included the geologic unit in which the sampled wells were completed and the properties of soils in the areas surrounding the wells. Land-use factors included types of land use and population densities surrounding sampled wells. Ground-water quality was characterized by concentrations of inorganic constituents, and by frequencies of detection of volatile organic compounds and pesticides. Water-quality data were from samples collected from wells 91 meters (300 feet) or less in depth as part of Permian and Quaternary geologic unit survey networks and from an urban survey network. Concentrations of many inorganic constituents were significantly related to geology. In addition, concentrations of many inorganic constituents were greater in water from wells from the Oklahoma City urban sampling network than in water from wells from low-density survey networks designed to evaluate ambient water quality in the Central Oklahoma aquifer study unit. However, sampling bias may have been induced by differences in hydrogeologic factors between sampling networks, limiting the ability to determine land-use effects on concentrations of inorganic constituents. Frequencies of detection of pesticide and volatile organic compounds (VOC's) in ground-water samples were related to land use and population density, with these compounds being more frequently detected in densely-populated areas. Geology and soil properties were not significantly correlated to pesticide or VOC occurrence in ground water. Lesser frequencies of detection of pesticides in water from wells in rural areas may be due to low to moderate use of those compounds on agricultural lands in the study unit, with livestock production being the primary agricultural activity. There are many possible sources of pesticides and VOC's in the urban areas of Central Oklahoma. Because only existing water-supply wells were sampled, it is not clear from the data collected whether pesticides and VOC's: (1) occur in low concentrations throughout upper portions of the aquifer in urban areas, or (2) are present in ground water only in the immediate vicinity of the wells due to back-flow of those chemicals into the wells or to inflow around cement seals and through gravel packs surrounding well casings of surface runoff containing those compounds.

  3. Acid-base accounting to predict post-mining drainage quality on surface mines.

    PubMed

    Skousen, J; Simmons, J; McDonald, L M; Ziemkiewicz, P

    2002-01-01

    Acid-base accounting (ABA) is an analytical procedure that provides values to help assess the acid-producing and acid-neutralizing potential of overburden rocks prior to coal mining and other large-scale excavations. This procedure was developed by West Virginia University scientists during the 1960s. After the passage of laws requiring an assessment of surface mining on water quality, ABA became a preferred method to predict post-mining water quality, and permitting decisions for surface mines are largely based on the values determined by ABA. To predict the post-mining water quality, the amount of acid-producing rock is compared with the amount of acid-neutralizing rock, and a prediction of the water quality at the site (whether acid or alkaline) is obtained. We gathered geologic and geographic data for 56 mined sites in West Virginia, which allowed us to estimate total overburden amounts, and values were determined for maximum potential acidity (MPA), neutralization potential (NP), net neutralization potential (NNP), and NP to MPA ratios for each site based on ABA. These values were correlated to post-mining water quality from springs or seeps on the mined property. Overburden mass was determined by three methods, with the method used by Pennsylvania researchers showing the most accurate results for overburden mass. A poor relationship existed between MPA and post-mining water quality, NP was intermediate, and NNP and the NP to MPA ratio showed the best prediction accuracy. In this study, NNP and the NP to MPA ratio gave identical water quality prediction results. Therefore, with NP to MPA ratios, values were separated into categories: <1 should produce acid drainage, between 1 and 2 can produce either acid or alkaline water conditions, and >2 should produce alkaline water. On our 56 surface mined sites, NP to MPA ratios varied from 0.1 to 31, and six sites (11%) did not fit the expected pattern using this category approach. Two sites with ratios <1 did not produce acid drainage as predicted (the drainage was neutral), and four sites with a ratio >2 produced acid drainage when they should not have. These latter four sites were either mined very slowly, had nonrepresentative ABA data, received water from an adjacent underground mine, or had a surface mining practice that degraded the water. In general, an NP to MPA ratio of <1 produced mostly acid drainage sites, between 1 and 2 produced mostly alkaline drainage sites, while NP to MPA ratios >2 produced alkaline drainage with a few exceptions. Using these values, ABA is a good tool to assess overburden quality before surface mining and to predict post-mining drainage quality after mining. The interpretation from ABA values was correct in 50 out of 52 cases (96%), excluding the four anomalous sites, which had acid water for reasons other than overburden quality.

  4. Could be the future climate change an opportunity for the winegrowers? The case study of Aglianico wine in southern Italy.

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Basile, Angelo; Dragonetti, Giovanna; De Lorenzi, Francesca; De Mascellis, Roberto; Gambuti, Angelita; Giorio, Pasquale; Guida, Giampiero; Manna, Piero; Minieri, Luciana; Oliva, Marco; Orefice, Nadia; Terribile, Fabio

    2015-04-01

    Water deficit is a limiting factor to yield production and crop adaptation to future climate conditions. This is true for crops addressed mainly for biomass production (e.g. maize, wheat, etc.) but not for those where the quality is relevant. Specifically, in grapevine water stress (mid or limited) - occurring during specific phenological phases - is a factor to produce good quality wines. It induces for example the production of anthocyanins and aroma precursors. Therefore, the water stress, due to the future increase of temperature and the rainfall decrease, could represent an opportunity to increase winegrowers' incomes. The study was carried out in Campania region (Southern Italy), in an area vocated to high quality wines production (ZOVISA project: Viticultural zoning at farm scale) The study was realized in two different soils (calcisol and cambisol), under the same climate, on Aglianico cultivar, standard clone population on 1103 Paulsen rootstocks placed along a slope of 90 m length with 11% of gradient. The agro-hydrological model SWAP was calibrated and applied to estimate soil-plant water status at the various crop phenological phases for three vintages (2011-2013). Crop water stress index (CWSI) - estimated by the model - was related to physiological measurements (e.g leaf water potential), grape bunches measurements (e.g. sugar content) and wine quality (e.g. tannins). For both soils, the correlation between measurements and CWSI were high (e.g. -0.97** with sugar; 0.895* with anthocyanins in the skins). Then, the model was applied to future climate condition (2021-2051) obtained from statistical downscaling of GCM in order to estimate the effect of the climate on CWSI and hence on vine quality. The results show that the effects of the climate change on the vine quality is dependent by the soil, being relevant to the cambisol and less pronounced to the calcisol, with an expected improvement of wine quality in the cambisol.

  5. Efficacy of single and multi-metric fish-based indices in tracking anthropogenic pressures in estuaries: An 8-year case study.

    PubMed

    Martinho, Filipe; Nyitrai, Daniel; Crespo, Daniel; Pardal, Miguel A

    2015-12-15

    Facing a generalized increase in water degradation, several programmes have been implemented for protecting and enhancing the water quality and associated wildlife, which rely on ecological indicators to assess the degree of deviation from a pristine state. Here, single (species number, Shannon-Wiener H', Pielou J') and multi-metric (Estuarine Fish Assessment Index, EFAI) community-based ecological quality measures were evaluated in a temperate estuary over an 8-year period (2005-2012), and established their relationships with an anthropogenic pressure index (API). Single metric indices were highly variable and neither concordant amongst themselves nor with the EFAI. The EFAI was the only index significantly correlated with the API, indicating that higher ecological quality was associated with lower anthropogenic pressure. Pressure scenarios were related with specific fish community composition, as a result of distinct food web complexity and nursery functioning of the estuary. Results were discussed in the scope of the implementation of water protection programmes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Risk factors for the transmission of diarrhoea in children: a case-control study in rural Malaysia.

    PubMed

    Knight, S M; Toodayan, W; Caique, W C; Kyi, W; Barnes, A; Desmarchelier, P

    1992-08-01

    In response to a recorded increasing incidence of diarrhoea in Tumpat District, Malaysia, a case-control study was performed to identify modifiable risk factors for the transmission of diarrhoea, in children aged 4-59 months. Ninety-eight pairs of children, matched on age and sex, were recruited prospectively from health centres. Exposure status was determined during a home visit. Interviewers were 'blinded' as to the disease status of each child. Odds ratios were measured through matched pair analysis and conditional logistic regression. Risk factors for diarrhoea identified were: reported--drinking of unboiled water, storage of cooked food before consumption and bottle feeding; and observations--animals inside the house and absence of washing water in latrines. Water quality, source of drinking water, reported hand washing behaviour, indiscriminate defecation by children, cup use and the absence of a functional latrine were not associated with diarrhoea. Nonsignificant associations were found for: accessibility of washing water source, type of water storage container and use of fly covers for food.

  7. Science Around the Corner.

    ERIC Educational Resources Information Center

    Lunetta, Vincent N.; And Others

    1984-01-01

    Advocates including environmental issues balanced with basic science concepts/processes to provide a sound science foundation. Suggests case studies of regional environmental issues to sensitize/motivate students while reflecting complex nature of science/society issues. Issues considered include: fresh water quality, earthquake predication,…

  8. Seasonal drought effects on the water quality of the Biobío River, Central Chile.

    PubMed

    Yevenes, Mariela A; Figueroa, Ricardo; Parra, Oscar

    2018-05-01

    Quantifying the effect of droughts on ecosystem functions is essential to the development of coastal zone and river management under a changing climate. It is widely acknowledged that climate change is increasing the frequency and intensity of droughts, which can affect important ecosystem services, such as the regional supply of clean water. Very little is understood about how droughts affect the water quality of Chilean high flow rivers. This paper intends to investigate the effect of an, recently identified, unprecedented drought in Chile (2010-2015), on the Biobío River water quality, (36°45'-38°49' S and 71°00'-73°20' W), Central Chile. This river is one of the largest Chilean rivers and it provides abundant freshwater. Water quality (water temperature, pH, dissolved oxygen, electrical conductivity, biological oxygen demand, total suspended solids, chloride, sodium, nutrients, and trace metals), during the drought (2010-2015), was compared with a pre-drought period (2000-2009) over two reaches (upstream and downstream) of the river. Multivariate analysis and seasonal Mann-Kendall trend analyses and a Theil-Sen estimator were employed to analyze trends and slopes of the reaches. Results indicated a significant decreased trend in total suspended solids and a slightly increasing trend in water temperature and EC, major ions, and trace metals (chrome, lead, iron, and cobalt), mainly in summer and autumn during the drought. The reduced variability upstream suggested that nutrient and metal concentrations were more constant than downstream. The results evidenced, due to the close relationship between river discharge and water quality, a slightly decline of the water quality downstream of the Biobío River during drought period, which could be attenuated in a post-drought period. These results displayed that water quality is vulnerable to reductions in flow, through historical and emerging solutes/contaminants and induced pH mobilization. Consequently, seasonal changes and a progressive reduction of river flow affect the ecosystem functionality in this key Chilean river. The outcomes from this research can be used to improve how low flow conditions and the effects of a reduction in the river volume and discharge are assessed, which is the case under the scenario of more frequent drought periods.

  9. Gas-diffusion-based passive sampler for ammonia monitoring in marine waters.

    PubMed

    O'Connor Šraj, Lenka; Almeida, M Inês G S; Bassett, Chelsea; McKelvie, Ian D; Kolev, Spas D

    2018-05-01

    A novel passive sampler based on gas-diffusion across a hydrophobic membrane is described for the determination of the time-weighted average concentration of dissolved molecular ammonia in high ionic strength aquatic environments, such as sea, coastal and estuarine waters, for a period of 3 days. The passive sampler developed is cheap, easy-to-use, reusable, and has a dynamic concentration range of 2.0-12µM, which covers the water quality guideline trigger value of 11.4µM (160µgL -1 NH 3 -N) for high conservation value waters, making this a powerful new tool for water quality managers involved in long-term ammonia monitoring. The gas-diffusion-based passive sampler was calibrated under laboratory conditions and deployed in a tank of seawater in the laboratory and at an estuarine site for proof of concept, and a good agreement between passive and spot sampling was achieved in both cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    NASA Astrophysics Data System (ADS)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  11. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  12. Viticulture microzoning: a functional approach aiming to grape and wine qualities

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2014-12-01

    This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale, strongly rooted on hydropedology and aiming to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach is defined by the use of soil-plant-atmosphere simulation models which applies physically-based equations to describe the soil hydrological processes and solves soil-plant water status. This study (ZOVISA project) was conducted in a farm devoted to high quality wines production (Aglianico DOC), located in South Italy (Campania region, Mirabella Eclano-AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two Homogenous Zones (HZs) were identified; in each one of those a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional Homogeneous Zones (fHzs). In these last, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, LAI measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). Eventually this experiment has proved the usefulness of the physical based approach also in the case of mapping viticulture microzoning.

  13. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to central plains stream conditions

    USGS Publications Warehouse

    Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P.

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  14. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK.

    PubMed

    Astaraie-Imani, Maryam; Kapelan, Zoran; Fu, Guangtao; Butler, David

    2012-12-15

    Climate change and urbanisation are key factors affecting the future of water quality and quantity in urbanised catchments and are associated with significant uncertainty. The work reported in this paper is an evaluation of the combined and relative impacts of climate change and urbanisation on the receiving water quality in the context of an Integrated Urban Wastewater System (IUWS) in the UK. The impacts of intervening system operational control parameters are also investigated. Impact is determined by a detailed modelling study using both local and global sensitivity analysis methods together with correlation analysis. The results obtained from the case-study analysed clearly demonstrate that climate change combined with increasing urbanisation is likely to lead to worsening river water quality in terms of both frequency and magnitude of breaching threshold dissolved oxygen and ammonium concentrations. The results obtained also reveal the key climate change and urbanisation parameters that have the largest negative impact as well as the most responsive IUWS operational control parameters including major dependencies between all these parameters. This information can be further utilised to adapt future IUWS operation and/or design which, in turn, should make these systems more resilient to future climate and urbanisation changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to Central Plains stream conditions.

    PubMed

    Griffith, Jerry A; Martinko, Edward A; Whistler, Jerry L; Price, Kevin P

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  16. Five-year interim report of the United States-Mexico Transboundary Aquifer Assessment Program: 2007--2012

    USGS Publications Warehouse

    Alley, William M.

    2013-01-01

    Transboundary aquifers are an essential, and in many cases, singular source of water for United States – Mexico border communities, particularly in arid regions. Declining water levels, deteriorating water quality, and increasing use of groundwater resources by municipal, industrial, and agricultural water users on both sides of the international border have raised concerns about the long-term availability of this supply. Water quantity and quality are determining and limiting factors that ultimately control agriculture, future economic development, population growth, human health, and ecological conditions along the border. Knowledge about the extent, depletion rates, and quality of transboundary aquifers, however, is limited and, in some areas, completely absent. The U.S. – Mexico Transboundary Aquifer Assessment Act (Public Law 109-448), referred to in this report as “the Act,” was signed into law by the President of the United States on December 22, 2006, to conduct binational scientific research to systematically assess priority transboundary aquifers and to address water information needs of border communities. The Act authorizes the Secretary of the Interior, through the U.S. Geological Survey (USGS), to collaborate with the States of Arizona, New Mexico, and Texas through their Water Resources Research Institutes (WRRIs) and with the International Boundary and Water Commission (IBWC), stakeholders, and Mexican counterparts to provide new information and a scientific foundation for State and local officials to address pressing water-resource challenges along the U.S. – Mexico border.

  17. Water Quality Monitoring Using Tryptophan-like Fluorescence.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Urquhart, G.; Baker, A.; Ward, D.; Reynolds, D.; Carliell-Marquet, C.

    2006-12-01

    The Biochemical Oxygen Demand (BOD) test is recognised as being credible with over 90 years of application in water analysis. However it is easily affected by environmental constraints and requires the presence of a viable biological community. The BOD test takes 5-21 days and is laboratory based and so is unsuitable for rapid responses to potential pollution incidents. Analysis of fluorescence excitation emission matrices (EEM) of natural waters gives a rapid determination of the proportions of labile and refractory organic matter present. It facilitates a greater understanding of the oxygen depleting potential of organic matter in unfiltered samples in a shorter timescale than would be the case using BOD, the conventional water quality assessment method. The research presented assesses the relationship between 5-day BOD (BOD5) and the fluorescent amino acid tryptophan-like peak for a range of waters. The research is undertaken with a view to using fluorescence spectroscopy as an alternative to the BOD5 test for on-site monitoring or lab based, rapid indication of organic pollution in natural waters. A significant relationship is observed between the analytical parameters in line with the findings of previous research in which waste waters including synthetic sewage, and polluted surface waters were studied. This research demonstrates that for a large, variable data set tryptophan-like fluorescence is a strong indicator of BOD5 and may be used as a water quality monitoring tool particularly for high BOD5 samples.

  18. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  19. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  20. Assessing the environmental impacts of freshwater consumption in LCA.

    PubMed

    Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie

    2009-06-01

    A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.

  1. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only <1% of the nutrients are able to be captured in urban agriculture, limited by the small proportion of effluent divertible to urban agriculture due to land constraints. Thus, water treatment plus reuse in urban farms can enhance GHG mitigation and also directly save groundwater; however, very large amounts of land are needed to extract nutrients from dilute effluents. Third, although energy use for wastewater treatment results in pathogen indicator organism concentrations in irrigation water to be reduced by 99.9% (three orders of magnitude) compared to the untreated case, crop pathogen content was reduced by much less, largely due to environmental contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  2. Automated estimation of river bathymetry using change detection based on Landsat imagery and river morphological models

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Jagers, B.; Van De Giesen, N.; Baart, F.; van Dam, A.

    2015-12-01

    Free global data sets on river bathymetry at global scale are not yet available. While one of the mostly used free elevation datasets, SRTM, provides data on location and elevation of rivers, its quality usually is very limited. This happens mainly because water mask was derived from older satellite imagery, such as Landsat 5, and also because the radar instruments perform bad near water, especially with the presence of vegetation in riparian zone. Additional corrections are required before it can be used for applications such as higher resolution surface water flow simulations. On the other hand, medium resolution satellite imagery from Landsat mission can be used to estimate water mask changes during the last 40 years. Water mask from Landsat imagery can be derived on per-image basis, in some cases, resulting in up to one thousand water masks. For rivers where significant water mask changes can be observed, this information can be used to improve quality of existing digital elevation models in the range between minimum and maximum observed water levels. Furthermore, we can use this information to further estimate river bathymetry using morphological models. We will evaluate how Landsat imagery can be used to estimate river bathymetry and will point to cases of significant inconsistencies between SRTM and Landsat-based water masks. We will also explore other challenges on a way to automated estimation of river bathymetry using fusion of numerical morphological models and remote sensing data. Some of them include automatic generation of model mesh, estimation of river morphodynamic properties and issues related to spectral method used to analyse optical satellite imagery.

  3. Quantitative Microbial Risk Assessment Models for Consumption of Raw Vegetables Irrigated with Reclaimed Water

    PubMed Central

    Hamilton, Andrew J.; Stagnitti, Frank; Premier, Robert; Boland, Anne-Maree; Hale, Glenn

    2006-01-01

    Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10−3 to 10−1 when reclaimed-water irrigation ceased 1 day before harvest and from 10−9 to 10−3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10−4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10−4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation could substantially lower risks and need to be considered in future models, particularly for developed nations where these extra risk reduction measures are more common. PMID:16672468

  4. Prioritization of intervention methods for prevention of communicable diseases in Tanzania

    NASA Astrophysics Data System (ADS)

    Mayo, A. W.

    Water, sanitation, housing and hygienic behavior plays dominant role in the transmission and intensification of diseases. To effectively utilize limited financial resources, it is important to prioritize disease intervention methods in order to minimize mortality and morbidity cases. Realization of the environmental health components that respond to the practical effects of their contribution to transmission of diseases has greater chances of effectively enhancing health. Data of frequency of diseases and mortality rate were collected from four municipal hospitals from districts of Ilala, Kinondoni, Temeke and Kibaha in Dar es Salaam and Coast Regions. The populations at risk were sub-categorized in relation to age; below five years and above five years. The age parameter assists on envisaging the major causes to be either in-house or in public domain. Data were analyzed to assess the role of water quality, water quantity, excreta disposal, waste disposal and hygiene education on spreading the diseases in order to come up with scientifically evaluated information. Scores were given to each intervention method depending on its importance in controlling a particular disease. The results indicate that incidences of malaria, skin and eye infections, pneumonia and diarrhea are frequent in these districts. Children under 5 years are particularly affected by pneumonia and diarrhea more than adults. Malaria, tuberculosis and pneumonia are the major causes of mortality rates in these districts. Fatality cases are caused largely by malaria, pneumonia and diarrhea for children less than 5 years, but malaria, tuberculosis and pneumonia are responsible for mortality rates in adults and children over 5 years. Statistical analysis revealed that in all districts, hygiene education is the major factor responsible for transmission of diseases accounting for 32-39%. Other factors, which are the major contributors to the incidences of diseases, are inadequacy of water (15.6-22.5%) and poor housing environment (14.5-24.0%). Water quality played the least role in transmission of diseases accounting for only 3-8%. It was concluded that provision of hygiene education, and improvement of water quantity and housing, in that order can significantly contribute to reduction of communicable diseases in the area. Improvement of water quality has potentially the least effect on the number of morbidity and mortality cases.

  5. Temporal and Spatial Variation of Chemical Water Quality in a Contour Canal.

    NASA Astrophysics Data System (ADS)

    Swanson, L. A.; Lunn, R. J.

    2004-12-01

    Chemical water quality is a highly variable aspect of any water body. Historically numerous researchers have investigated the chemical variability of rivers, streams and wetlands, artificial water bodies such as canals have been largely neglected. Canals are typically hydraulically characterised by low flows and a lack of mixing processes. This can potentially lead to significant spatial variability in water chemistry, and as a result many canals in the UK regularly fail water quality targets at specific locations. Recent changes to UK legislation, following the European Water Framework Directive (2000/60/EC), have resulted in canals being subject to achieving `good ecological status'. In the case of canals, what constitutes `good ecological status' is largely unknown and little expertise is available since historically canal management has not been driven by chemical and ecological quality targets. Consequently, there is an urgent need for new research to determine the main factors influencing canal water quality and their ecological status. This research presents results from a study based on a UK contour canal, the Union Canal in central Scotland. The Union Canal typically demonstrates spatially and temporally variable levels of dissolved oxygen (DO) and orthophosphate (PO4-P): simultaneously, seasonal and diel fluctuations of DO and PO4-P are pronounced at a small number of locations. During 1995, minimum levels of DO along the canal length ranged from 9mgl-1 in Edinburgh to as low as 2mgl-1 approximately 20kms away, this then rose again to 8mgl-1 after a further distance of 2km. These acutely low levels of DO are coupled with events of excessive PO4-P up to 0.235mgl-1:10 times greater than those normally found in rivers, causing localised eutrophication and extensive fish kills. To determine the cause of the `hot spots' of poor water quality found on the Union Canal, simultaneous investigations of the hydraulic regime, spatial and temporal water quality variation and the canal's biological status were carried out. Velocity metering in the canal identified extremely low flow rates ~0.15m3s-1. A tracer testing procedure for the canal's low flow conditions was designed and implemented which identified a lack of rapid dispersion processes with D~0.133m3s-1. Water quality sampling consisted of a year-long programme of high frequency temporal and spatial sampling along the canal length. Observations demonstrate significant variability, with widely differing measurements of DO as little as 5m apart. In addition, spot samples of water quality taken from individual incoming field drains showed PO4-P concentrations up to 2mgl-1, with a predominance of nutrient bound clay and silt sediments that ultimately settle on the canal bed. Due to low dispersion rates, residence times for pollutants are long and field drains, in combination with navigational activity, may well be one of the primary causes of raised nutrient levels at some locations. This research has shown that canal water quality is highly spatially and temporally variable; far in excess of the variability normally found in river systems. This is mainly determined by a lack of hydraulic mixing and the presence of small quantities of incoming runoff water of very low quality. Whilst low in volume, incoming sediment from the drains appears to strongly influence the nearby canal water quality. These results have important consequences both for future monitoring strategies of canals and management of their gradual ecological improvement.

  6. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study.

    PubMed

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene; Pedersen, Carsten B; Sigsgaard, Torben

    2018-07-01

    Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person-years at risk. We used Cox proportional hazards models to estimate hazard ratios (HRs) of nitrate exposure on the risk of CRC, colon and rectal cancer. Persons exposed to the highest level of drinking water nitrate had an HR of 1.16 (95% CI: 1.08-1.25) for CRC compared with persons exposed to the lowest level. We found statistically significant increased risks at drinking water levels above 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Our results add to the existing evidence suggesting increased CRC risk at drinking water nitrate concentrations below the current drinking water standard. A discussion on the adequacy of the drinking water standard in regards to chronic effects is warranted. © 2018 UICC.

  7. Competing risks and the development of adaptive management plans for water resources: Field reconnaissance investigation of risks to fishes and other aquatic biota exposed to endocrine disrupting chemicals (edcs) in lake mead, Nevada USA

    USGS Publications Warehouse

    Linder, G.; Little, E.E.

    2009-01-01

    The analysis and characterization of competing risks for water resources rely on a wide spectrum of tools to evaluate hazards and risks associated with their management. For example, waters of the lower Colorado River stored in reservoirs such as Lake Mead present a wide range of competing risks related to water quantity and water quality. These risks are often interdependent and complicated by competing uses of source waters for sustaining biological resources and for supporting a range of agricultural, municipal, recreational, and industrial uses. USGS is currently conducting a series of interdisciplinary case-studies on water quality of Lake Mead and its source waters. In this case-study we examine selected constituents potentially entering the Lake Mead system, particularly endocrine disrupting chemicals (EDCs). Worldwide, a number of environmental EDCs have been identified that affect reproduction, development, and adaptive behaviors in a wide range of organisms. Many EDCs are minimally affected by current treatment technologies and occur in treated sewage effluents. Several EDCs have been detected in Lake Mead, and several substances have been identified that are of concern because of potential impacts to the aquatic biota, including the sport fishery of Lake Mead and endangered razorback suckers (Xyrauchen texanus) that occur in the Colorado River system. For example, altered biomarkers relevant to reproduction and thyroid function in fishes have been observed and may be predictive of impaired metabolism and development. Few studies, however, have addressed whether such EDC-induced responses observed in the field have an ecologically significant effect on the reproductive success of fishes. To identify potential linkages between EDCs and species of management concern, the risk analysis and characterization in this reconnaissance study focused on effects (and attendant uncertainties) that might be expressed by exposed populations. In addition, risk reduction measures that may be of interest to resource managers are considered relative to emerging contaminants in treated effluents, interdependencies among biological resources at risk, and uses of reservoir waters derived from multiple inflows of widely varying qualities. ??2009 ASCE.

  8. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  9. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    PubMed

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang

    2015-01-01

    Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.

  11. Predicting Bacteria Removal by Enhanced Stormwater Control Measures (SCMs) at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Wolfand, J.; Bell, C. D.; Boehm, A. B.; Hogue, T. S.; Luthy, R. G.

    2017-12-01

    Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Fecal indicator bacteria are present in high concentrations in stormwater and are strictly regulated in receiving waters; yet, their fate and transport in urban stormwater is poorly understood. Stormwater control measures (SCMs) are often used to treat, infiltrate, and release urban runoff, but field measurements show that the removal of bacteria by these structural solutions is limited (median log removal = 0.24, n = 370). Researchers have therefore looked to improve bacterial removal by enhancing SCMs through alterations in flow regimes or adding geomedia such as biochar. The present research seeks to develop a model to predict removal of fecal indicator bacteria by enhanced SCMs at the watershed scale in a semi-arid climate. Using the highly developed Ballona Creek watershed (290 km2) located in Los Angeles County as a case study, a hydrologic model is coupled with a stochastic water quality model to predict E. coli concentration near the outfall of the Ballona Creek, Santa Monica Bay. A hydrologic model was developed using EPA SWMM, calibrated for flow from water year 1998-2006 (NSE = 0.94; R2 = 0.94), and validated from water year 2007-2015 (NSE = 0.90; R2 = 0.93). This bacterial loading model was then linked to EPA SUSTAIN and a SCM bacterial removal script to simulate log removal of bacteria by various SCMs and predict bacterial concentrations in Ballona Creek. Preliminary results suggest small enhancements to SCMs that improve bacterial removal (<0.5 log removal) may offer large benefits to surface water quality and enable communities such as Los Angeles to meet their regulatory requirements.

  12. Integrated Analysis of Flow, Temperature, and Specific-Conductance Logs and Depth-Dependent Water-Quality Samples from Three Deep Wells in a Fractured-Sandstone Aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Knutson, Kevin D.

    2009-01-01

    Analysis of flow, temperature, and specific-conductance logs and depth-dependent water-quality samples collected under ambient and pumped conditions provided a preliminary delineation of flow zones and water quality in three deep abandoned water-supply wells. The integrated analysis was completed as part of the characterization of a fractured-sandstone aquifer in the mountainous setting of the Santa Susana Field Laboratory in southern Ventura County, California. In the deepest well, which was 1,768 feet deep and had the highest specific capacity (120 gallons per minute per foot), flow zones were detected at 380 feet (base of casing) and at 440, 595, and 770 feet in the open hole. Under ambient conditions, measured flow was downward from the 380- and 440-foot zones to the 595- and 770-foot zones. Under pumped conditions, most of flow was contributed by the 595-foot zone. Flow from the 380- and 440-foot zones appeared to have lower specific conductance and higher trichloroethylene concentrations than that from the 595-foot zone. In the shallowest well, which was reportedly 940 feet deep but only logged to 915 feet due to blockage, flow zones were detected behind the perforated casing and at 867 feet in the open hole. Under ambient conditions, downward and upward flows appeared to exit at a zone behind the perforated casing at 708 feet. Most of the pumped flow was contributed from zones behind the perforated casing between 565 and 708 feet. Pumped flow also was contributed by zones at 867 feet and below the logged depth. Volatile organic compounds were not detected in the ambient and pumped flows. In the third well, which was 1,272 feet deep and had the lowest specific capacity (3.6 gallons per minute per foot), flow zones were detected in the open hole above and just below the water level near 337 feet and at 615, 785, 995, and 1,070 feet. Under ambient conditions, measured flow in well was downward from the shallowmost zones to the 995-foot zone. Fracture zones at 615, 785, and 995 feet each contributed about one-third of the pumped flow measured below the pump. Volatile organic compounds were not detected in the ambient and pumped flows.

  13. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Determining the Ecosystem Services Important for Urban Landscapes-Slides

    EPA Science Inventory

    This presentation consists of introductory slides on ecosystem services in urban landscapes and then a discussion of two case studies concerning the provision of water quality in urban landscapes. The introductory slides will explore the range of ecosystem services provided by u...

  15. Computerized stratified random site-selection approaches for design of a ground-water-quality sampling network

    USGS Publications Warehouse

    Scott, J.C.

    1990-01-01

    Computer software was written to randomly select sites for a ground-water-quality sampling network. The software uses digital cartographic techniques and subroutines from a proprietary geographic information system. The report presents the approaches, computer software, and sample applications. It is often desirable to collect ground-water-quality samples from various areas in a study region that have different values of a spatial characteristic, such as land-use or hydrogeologic setting. A stratified network can be used for testing hypotheses about relations between spatial characteristics and water quality, or for calculating statistical descriptions of water-quality data that account for variations that correspond to the spatial characteristic. In the software described, a study region is subdivided into areal subsets that have a common spatial characteristic to stratify the population into several categories from which sampling sites are selected. Different numbers of sites may be selected from each category of areal subsets. A population of potential sampling sites may be defined by either specifying a fixed population of existing sites, or by preparing an equally spaced population of potential sites. In either case, each site is identified with a single category, depending on the value of the spatial characteristic of the areal subset in which the site is located. Sites are selected from one category at a time. One of two approaches may be used to select sites. Sites may be selected randomly, or the areal subsets in the category can be grouped into cells and sites selected randomly from each cell.

  16. Drinking water quality in Indigenous communities in Canada and health outcomes: a scoping review

    PubMed Central

    Bradford, Lori E. A.; Bharadwaj, Lalita A.; Okpalauwaekwe, Udoka; Waldner, Cheryl L.

    2016-01-01

    Background Many Indigenous communities in Canada live with high-risk drinking water systems and drinking water advisories and experience health status and water quality below that of the general population. A scoping review of research examining drinking water quality and its relationship to Indigenous health was conducted. Objective The study was undertaken to identify the extent of the literature, summarize current reports and identify research needs. Design A scoping review was designed to identify peer-reviewed literature that examined challenges related to drinking water and health in Indigenous communities in Canada. Key search terms were developed and mapped on five bibliographic databases (MEDLINE/PubMED, Web of Knowledge, SciVerse Scopus, Taylor and Francis online journal and Google Scholar). Online searches for grey literature using relevant government websites were completed. Results Sixteen articles (of 518; 156 bibliographic search engines, 362 grey literature) met criteria for inclusion (contained keywords; publication year 2000–2015; peer-reviewed and from Canada). Studies were quantitative (8), qualitative (5) or mixed (3) and included case, cohort, cross-sectional and participatory designs. In most articles, no definition of “health” was given (14/16), and the primary health issue described was gastrointestinal illness (12/16). Challenges to the study of health and well-being with respect to drinking water in Indigenous communities included irregular funding, remote locations, ethical approval processes, small sample sizes and missing data. Conclusions Research on drinking water and health outcomes in Indigenous communities in Canada is limited and occurs on an opportunistic basis. There is a need for more research funding, and inquiry to inform policy decisions for improvements of water quality and health-related outcomes in Indigenous communities. A coordinated network looking at First Nations water and health outcomes, a database to store and create access to research findings, increased funding and time frames for funding, and more decolonizing and community-based participatory research aimed at understanding the relationship between drinking water quality and health outcomes in First Nations communities in Canada are needed. PMID:27478143

  17. Applications of MODIS Fluorescence Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity in Coastal and Estuarine Waters

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.

    2012-12-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and cyclonic bay-wide circulation transports these nutrients to a northern Bay bloom incubation region. Both of these case studies illustrate the utility of improved MODIS FLH observations in supporting management decisions in coastal and estuarine waters.

  18. Understanding natural capital

    USGS Publications Warehouse

    Stallard, Robert F.; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella

    2015-01-01

    This chapter serves to introduce the geophysics of Neotropical steeplands. Topics are covered in a general manner with hyperlinks to active research and monitoring sites (such as the National Hurricane Center and US Geological Survey publication). Topics covered include ‘tropical climate and weather,’ ‘climate variations and trends,’ Neotropical ‘geology, and soils,’ ‘hillslopes and erosion,’ ‘lakes and reservoirs,’ and ‘effects of land cover on water quality and quantity.’ Obviously, this is a lot of information to cover in a short chapter, hence the use of hyperlinks. The last theme ‘effects of land cover on water quality and quantity’ is covered by case studies, in all of which I have been centrally involved. These studies were chosen because they are among the few studies with sufficient data of high enough quality to reach definitive conclusions.

  19. Hemodialysis and water quality.

    PubMed

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    PubMed

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  1. Application of the index WQI-CCME with data aggregation per monitoring campaign and per section of the river: case study-Joanes River, Brazil.

    PubMed

    de Almeida, Geane Silva; de Oliveira, Iara Brandão

    2018-03-07

    This work applied the Water Quality Index developed by the Canadian Council of Ministers of the Environment (WQI-CCME), to communicate the water quality per section of the Joanes River basin, State of Bahia, Brazil. WQI-CCME is a statistical procedure that originally requires the execution of at least four monitoring campaigns per monitoring location and the measurement of at least four parameters. This paper presents a new aggregation method to calculate the WQI-CCME because, to apply the original method in Joanes River, a huge loss of information would occur, by the fact that, the number of analyzed parameters varied between the monitoring campaigns developed by the Government Monitoring Program. This work modified the original aggregation method replacing it by a data aggregation for a single monitoring campaign, in a minimum of four monitoring locations per section of the river and a minimum of four parameters per monitoring location. Comparison between the calculation of WQI-CCME for river sections, with the index, WQI-CETESB, developed by the Brazilian Environmental Sanitation and Technology Company-CETESB, proved the applicability of the new aggregation method. The WQI-CETESB has it bases on the WQI from the National Sanitation Foundation and uses nine fixed parameters. As WQI-CCME uses the totality of the analyzed parameters without restrictions, it is more flexible, and the results seem more adequate to indicate the real river water quality. However, the WQI-CCME has a more stringent water quality scale in comparison with the WQI-CETESB, resulting in inferior water quality information. In conclusion, the WQI-CCME with a new aggregation method is adequate for communicating the water quality at a given time, per section of a river, respecting the minimum number of four analyses and four monitoring points. As a result, without a need to wait for other campaigns, it reduces the cost of a monitoring program and the period to communicate the water quality. The adequacy of the WQI-CCME was similar to the finding of others.

  2. Integration of population census and water point mapping data-A case study of Cambodia, Liberia and Tanzania.

    PubMed

    Yu, Weiyu; Wardrop, Nicola A; Bain, Robert; Wright, Jim A

    2017-07-01

    Sustainable Development Goal (SDG) 6 has expanded the Millennium Development Goals' focus from improved drinking-water to safely managed water services. This expanded focus to include issues such as water quality requires richer monitoring data and potentially integration of datasets from different sources. Relevant data sets include water point mapping (WPM), the survey of boreholes, wells and other water points, census and household survey data. This study examined inconsistencies between population census and WPM datasets for Cambodia, Liberia and Tanzania, and identified potential barriers to integrating the two datasets to meet monitoring needs. Literatures on numbers of people served per water point were used to convert WPM data to population served by water source type per area and compared with census reports. For Cambodia and Tanzania, discrepancies with census data suggested incomplete WPM coverage. In Liberia, where the data sets were consistent, WPM-derived data on functionality, quantity and quality of drinking water were further combined with census area statistics to generate an enhanced drinking-water access measure for protected wells and springs. The process revealed barriers to integrating census and WPM data, including exclusion of water points not used for drinking by households, matching of census and WPM source types; temporal mismatches between data sources; data quality issues such as missing or implausible data values, and underlying assumptions about population served by different water point technologies. However, integration of these two data sets could be used to identify and rectify gaps in WPM coverage. If WPM databases become more complete and the above barriers are addressed, it could also be used to develop more realistic measures of household drinking-water access for monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Assessment of environmental improvement measures using a novel integrated model: a case study of the Shenzhen River catchment, China.

    PubMed

    Qin, Hua-Peng; Su, Qiong; Khu, Soon-Thiam

    2013-01-15

    Integrated water environmental management in a rapidly urbanizing area often requires combining social, economic and engineering measures in order to be effective. However, in reality, these measures are often considered independently by different planners, and decisions are made in a hierarchical manner; this has led to problems in environmental pollution control and also an inability to devise innovative solutions due to technological lock-in. In this paper, we use a novel coupled system dynamics and water environmental model (SyDWEM) to simulate the dynamic interactions between the socio-economic system, water infrastructure and receiving water in a rapidly urbanizing catchment in Shenzhen, China. The model is then applied to assess the effects of proposed socio-economic or engineering measures on environmental and development indicators in the catchment for 2011-2020. The results indicate that 1) measures to adjust industry structures have a positive effect on both water quantity and quality in the catchment; 2) measures to increase the labor productivity, the water use efficiency, the water transfer quota or the reclaimed wastewater reuse can alleviate the water shortage, but cannot improve water quality in the river; 3) measures to increase the wastewater treatment rate or the pollutant removal rate can improve water quality in the river, but have no effect on water shortage. Based on the effectiveness of the individual measures, a combination of socio-economic and engineering measures is proposed, which can achieve water environmental sustainability in the study area. Thus, we demonstrate that SyDWEM has the capacity to evaluate the effects of both socio-economic and engineering measures; it also provides a tool for integrated decision making by socio-economic and water infrastructure planners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Simplifying and upscaling water resources systems models that combine natural and engineered components

    NASA Astrophysics Data System (ADS)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  5. Economic analysis of municipal wastewater utilization for thermoelectric power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, I.; Walker, M.; Abbasian, J.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents themore » development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.« less

  6. Assessment of the hydrogeology and water quality in a near-shore well field, Sarasota, Florida

    USGS Publications Warehouse

    Broska, J.C.; Knochenmus, L.A.

    1996-01-01

    The city of Sarasota, Florida, operates a downtown well field that pumps mineralized water from ground water sources to supply a reverse osmosis plant. Because of the close proximity of the well field to Sarasota Bay and the high sulfate and chloride concentrations of ground-water supplies, a growing concern exists about the possibility of lateral movement of saltwater in a landward direction (intrusion) and vertical movement of relict sea water (upconing). In 1992, the U.S. Geological Survey began a 3-year study to evaluate the hydraulic characteristics and water quality of ground-water resources within the downtown well field and the surrounding 235-square-mile study area. Delineation of the hydrogeology of the study area was based on water- quality data, aquifer test data, and extensive borehole geophysical surveys (including gamma, caliper, temperature, electrical resistivity, and flow meter logs) from the six existing production wells and from a corehole drilled as part of the study, as well as from published and unpublished reports on file at the U.S. Geological Survey, the Southwest Florida Water Management District, and consultant's reports. Water-quality data were examined for spatial and temporal trends that might relate to the mechanism for observed water-quality changes. Water quality in the study area appears to be dependent upon several mechanisms, including upconing of higher salinity water from deeper zones within the aquifer system, interbore-hole flow between zones of varying water quality through improperly cased and corroded wells, migration of highly mineralized waters through structural deformities, and the presence of unflushed relict seawater. A numerical ground-water flow model was developed as an interpretative tool where field-derived hydrologic characteristics could be tested. The conceptual model consisted of seven layers to represent the multilayered aquifer systems underlying the study area. Particle tracking was utilized to delineate the travel path of water as it enters the model area under a set of given conditions. Within the model area, simulated flow in the intermediate aquifer system originates primarily from the northwestern boundary. Simulated flow in the Upper Floridan aquifer originates in lower model layers (deeper flow zones) and ultimately can be traced to the southeastern and northwestern boundaries. Volumetric budgets calculated from numerical simulation of a hypothetical well field indicate that the area of contribution to the well field changes seasonally. Although ground-water flow patterns change with wet and dry seasons, most water enters the well-field flow system through lower parts of the Upper Floridan aquifer from a southeastern direction. Moreover, particle tracking indicated that ground-water flow paths with strictly lateral pathlines in model layers correspond to the intermediate aquifer system, whereas particles traced through model layers corresponding to the Upper Floridan aquifer had components of vertical and lateral flow.

  7. [Parasitic zoonoses transmitted by drinking water. Giardiasis and cryptosporidiosis].

    PubMed

    Exner, M; Gornik, V

    2004-07-01

    Nowadays, the parasitic zoonose organisms Giardia lamblia und Cryptosporidium spp. are among the most relevant pathogens of drinking water-associated disease outbreaks. These pathogens are transmitted via a fecal-oral route; in both cases the dose of infection is low. Apart from person-to-person or animal-to-person transmissions, the consumption of contaminated food and water are further modes of transmission. The disease is mainly characterized by gastrointestinal symptoms. In industrialized countries, the prevalence rate of giardiasis is 2-5 % and of cryptosporidiosis 1-3%. Throughout the world, a large number of giardiasis and cryptosporidiosis outbreaks associated with drinking water were published; in 2001 the first case in Germany was identified. Giardia and Cryptosporidium are detected in surface water and sporadically in unprotected groundwater. Use of these waters for drinking water abstraction makes high demands on the technology of the treatment process: because of the disinfectant resistance of the parasites, safe elimination methods are needed, which even at high contamination levels of source water guarantee safe drinking water. Further measures for prevention and control are implementation of the HACCP concept, which includes the whole chain of procedures of drinking water supply from catchment via treatment to tap and a quality management system.

  8. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    PubMed

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  9. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study.

    PubMed

    Heddam, Salim; Bermad, Abdelmalek; Dechemi, Noureddine

    2012-04-01

    Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.

  10. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    PubMed

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Assessment of Characteristics and Remedial Alternatives for Abandoned Mine Drainage: Case Study at Staple Bend Tunnel Unit of Allegheny Portage Railroad National Historic Site, Cambria County, Pennsylvania, 2004

    DTIC Science & Technology

    2005-01-01

    water quality-Northern Appalachian Basin, In Brady, K. B. C., Smith, M. W., and Schueck, J. H., (eds.), Coal Mine Drainage Prediction and Pollution ...United States: Water , Air, and Soil Pollution , v. 50, p. 91-107. Hyman, D. M., and Watzlaf, G. R., 1997, Metals and other components of coal mine...Advances in the hydrochemistry and microbiology of acid mine waters : International Geology Review, v. 42, p. 499-515. Nordstrom, D. K., and Alpers, C

  12. Translations on Environmental Quality, Number 157.

    DTIC Science & Technology

    1978-01-27

    mining code is not being obeyed. 10,042 CSO: 5000 17 BRAZIL BRIEFS GUANABARA BAY POLLUTION CONTROLLED—The main objective of the Pollution Con...trol Group in Guanabara Bay (GEPOL) has been achieved.. An emergency plan has been established involving various agencies capable of acting...promptly in cases of accidental pollution of the waters of Guanabara Bay . Abill is also ready for the legislature for cases of oil-spills in the bay . This

  13. An assessment of quality of water from boreholes in Bindura District, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Hoko, Zvikomborero

    This study assessed the water quality of 144 boreholes in Bindura District in Mashonaland Province of Zimbabwe as part of a borehole rehabilitation project implemented by a local NGO. In previous studies it has been observed that some boreholes are not used for domestic purposes because of consumer perceived poor water quality. Consequently, communities have resorted to unsafe alternative water sources thus creating health risks. The study was carried out in June 2005. The objectives of the study were to assess the levels of parameters associated with the aesthetics of the water and to compare them with guideline values for drinking water. The study also investigated the relationship between some of the measured water quality and the consumer perceived water quality. Measured water quality parameters included pH, temperature, electrical conductivity (EC), turbidity, calcium (Ca), magnesium (Mg) and iron (Fe). All parameters were measured in the field except Ca, Mg and Fe, which were measured in a laboratory using a spectrophotometer. Consumer perceptions on water quality were investigated through interviews with the consumer community. Turbidity was found to be 0.75-428(20.8 ± 59.2; n = 144) NTU, pH 5.7-9.3 (6.88 ± 0.46; n = 144), temperature 18-26.8 (22.6 ± 2.1; n = 144) °C. EC 26-546 (199 ± 116; n = 144) μS/cm, Ca 6-71.6 (26.9 ± 14.1; n = 81) mg/l, Mg 1.2-49.6 (12.3 ± 10.0; n = 81) mg/l and Fe 0.08-9.60 (0.56 ± 1.15; n = 81) mg/l. Some 23% of the samples had pH outside the recommended range of 6.5-8.5, whilst 59% of the samples had turbidity values exceeding the 5NTU WHO limit. For EC, all samples had values less than the WHO derived limit of 1380 μS/cm. All Ca and magnesium values were within the common and recommended levels of 100 mg/l and 70 mg/l respectively. Iron had values greater than the WHO and SAZ limit of 0.3 mg/l in 36% of the samples. Water quality was deemed satisfactory for taste and soap consumption by 95% and 72% of the respondents respectively. Satisfaction was higher for drinking compared to soap consumption meaning that generally hard waters may still be acceptable for drinking purposes. The water quality met the stipulated standard or guideline value from a minimum of 41% (turbidity) to a maximum of 100% (EC, Ca and Mg). There was no correlation between taste and conductivity as some 5% of the respondents suggested the water was unsatisfactory although all EC values were far below the maximum limit. Again there was no correlation between iron and taste as iron had 36% of the samples above the threshold of 0.3 mg/l whilst objectionable taste perception was only in 5% of the cases. It is recommended that priority in future projects should be given to repairs of boreholes whose water quality is acceptable according to consumer perceptions obtained at project planning stage. Low cost household treatment aimed at improving quality should be investigated.

  14. Vibrio infections and surveillance in Maryland, 2002-2008.

    PubMed

    Jones, Erin H; Feldman, Katherine A; Palmer, Amanda; Butler, Erin; Blythe, David; Mitchell, Clifford S

    2013-01-01

    Vibrio is a naturally occurring waterborne pathogen with potential occupational, recreational, and commercial impacts. During the last 15 years in the U.S. and in Maryland, the incidence of vibriosis has increased. Due to the increase in cases in Maryland, warming water temperatures, and public concern about human health effects resulting from exposure to the Chesapeake Bay, we reviewed cases of vibriosis and evaluated the Vibrio surveillance system in Maryland for timeliness and data quality, attributes necessary for successful outbreak investigation and illness prevention. The evaluation included (1) informal qualitative surveys of state and local personnel who report and manage Vibrio cases and (2) a review of Vibrio surveillance data from 2002 through 2008 for data quality and timeliness of the system. From 2002 to 2008, 188 laboratory-confirmed cases of vibriosis were reported in Maryland with an annual average of 27 cases. The species of Vibrio that were most frequently responsible for infection, regardless of clinical presentation, were V. parahaemolyticus (43.6%), V. vulnificus (23.9%), V. alginolyticus (9.6%), and non-toxigenic V. cholerae (9.0%). The case fatality rate fluctuated during the study period, but the number of cases increased. The surveillance system in Maryland is flexible and captures cases of vibriosis where specimens were collected for testing; however, the system may not adequately capture mild, self-limiting infections. Better integration of data collection for clinical, laboratory, and environmental information and improved completion of variables for shellfish harvest or water exposure locations could improve the system. Quarterly meetings comprising surveillance, public health laboratory, and food-control personnel could direct and ensure the success of improvement efforts.

  15. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    USGS Publications Warehouse

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in the southern part. Ground water is the primary water supply in most of Arizona and the only source of drinking water used by communities in the southern half of the study area. Years of overpumping have caused water tables in basin fill to drop below once-perennial streams leaving streambeds dry, water too deep to pump economically, pumping of poorer quality water with depth, and earth fissures resulting from subsidence after dewatering of sediments. Natural processes-such as leaching of trace elements and major ions from geologic formations-and human activities-such as mining, agriculture, and urban development-have major effects on the quality of surface-water and ground-water resources in the Central Arizona Basins study area. Surface-water quality standards in Arizona are based on the designated use of the water such as full or partial body contact, fish consumption, aquatic and wildlife uses, and agriculture. Maintaining the biological integrity (health) of surface waters in Arizona is an important part of ensuring that these waters are suitable for designated uses. Important water-quality issues for surface water that are somewhat unique to Arizona include: (1) streamflows and riparian environments sustained by effluent from municipal wastewater-treatment plants that contains high concentrations of nutrients, potentially toxic trace elements and organic compounds, and fecal bacteria; (2) industrial, mining, agricultural, and municipal sources of contamination from Mexico; and (3) unpredictable high flows from major summer thunder storms causing stream-channel changes; high suspended-sediment concentrations and loads; sewage overflows; and breaching, erosion, and washout of landfills and mining operations. The quality of water in aquifers that are protected for drinking- water use is subject to standards that are in most cases equal to or more stringent than the primary drinking-water regulations of the U.S. Environmental Protection Agency. The general che

  16. The quality of our Nation's waters: factors affecting public-supply-well vulnerability to contamination: understanding observed water quality and anticipating future water quality

    USGS Publications Warehouse

    Eberts, Sandra M.; Thomas, Mary Ann; Jagucki, Martha L.

    2013-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, a study was conducted from 2001 to 2011 to shed light on factors that affect the vulnerability of water from public-supply wells to contamination (referred to hereafter as “public-supply-well vulnerability”). The study was designed as a follow-up to earlier NAWQA studies that found mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation and, less frequently, in deeper groundwater typically used for public supply. Beside the factors affecting public-supply-well vulnerability to contamination, this circular describes measures that can be used to determine which factor (or factors) plays a dominant role at an individual public-supply well. Case-study examples are used throughout to show how such information can be used to improve water quality. In general, the vulnerability of the water from public-supply wells to contamination is a function of contaminant input within the area that contributes water to a well, the mobility and persistence of a contaminant once released to the groundwater, and the ease of groundwater and contaminant movement from the point of recharge to the open interval of a well. The following measures described in this circular are particularly useful for indicating which contaminants in an aquifer might reach an individual public-supply well and when, how, and at what concentration they might arrive: * Sources of recharge—Information on the sources of recharge for a well provides insight into contaminants that might enter the aquifer with the recharge water and potentially reach the well. * Geochemical conditions—Information on the geochemical conditions encountered by groundwater traveling to a well provides insight into contaminants that might persist in the water all the way to the well. * Groundwater-age mixtures—Information on the ages of the different waters that mix in a well provides insight into the time lag between contaminant input at the water table and contaminant arrival at the well. It also provides insight into the potential for in-well dilution of contaminated water by unaffected groundwater of a different age that simultaneously enters the well. Preferential flow pathways—pathways that provide little resistance to flow—can influence how all other factors affect public-supply-well vulnerability to contamination. For example, preferential flow pathways can influence whether a contaminant source is physically linked to a well, whether contaminant concentrations are substantially altered before contaminated groundwater reaches a well, and whether contaminated groundwater can arrive at a well within a timeframe of concern to the well owner. Methods for recognizing the influence of preferential flow pathways on the quality of water from a public-supply well are presented in this circular and can provide opportunities to prevent or mitigate the deterioration of a water supply. Knowing what water-quality variables to measure, what spatial and temporal scales on which to measure them, and how to interpret the resulting data makes it possible for samples from public-supply wells to provide a broad window into a well’s past and present water quality—and possibly future water quality. Such insight can enable resource managers to prioritize actions for sustaining a high-quality groundwater source of drinking water.

  17. Disposal of Vessel Wastes: Shipboard and Shoreside Facilities. Phase 2. Graywater

    DTIC Science & Technology

    1979-07-01

    Increase in Concentration Resulting from Daily Loadings and Vessel-Induced Mixing 45 3-7 Annual Loadings to Presque Isle - Marquette Harbor from...in port for 24 hours (Upper Lakes Reference Group, 1977a). Two harbors were considered for case studies. The first harbor, Presque Isle -Marquette...harbor. Presque Isle -Marquette The existing conditions of the harbor are considered to be of high quality with respect to coastal waters, the open waters

  18. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Case study applications of the BASINS climate assessment tool (CAT)

    EPA Science Inventory

    This EPA report will illustrate the application of different climate assessment capabilities within EPA’s BASINS modeling system for assessing a range of potential questions about the effects of climate change on streamflow and water quality in different watershed settings and us...

  20. Tillamook Estuary Case Study: Local Drivers Influencing Coastal Acidification

    EPA Science Inventory

    US EPA initiated a study in the Tillamook estuary and watershed focused on the impact of changes in watershed land use, ocean conditions, and weather on estuarine water quality and ecosystem goods and services production within the estuary. This project is a collaboration betwee...

Top